TradeAngle Language

Motivation — TradeStation EasyLanguage method of trading strategies is slow, and
cumbersome (for the programmer). TradeStation wants users to trade through its platform
so they have crafted their scripting language to have major gaps in its functionality and
information capabilities. There is no ability, for instance, to know specific information
about a given open order. The programmer has to figure out which if his (possibly many)
trades have fired within the last ‘bar’ by looking at OHLC values. Stop and Limit orders
are cancelled on the next bar. Again the programmer has to figure out if the stop/limit
order has actually been hit, and if not then re-fire the same order again for every bar.

It is also very tightly geared to their graphical environment. The optimization of any
given trading strategy is brute-force (ie O(n”3) for 3 variables), and is unusable for
anything but the simplest of algorithms. And finally, there is no debugging capabilities
built-in to the EasyLanguage compiler. Error messages like ‘an array bounds has been
breached’ without specifying a line number or variable name are useless and add many
hours of debugging to complicated scripts.

Result — TradeAngle Language (TAL) has been created to take the trading strategy
outside of TradeStation. We have created the following:

TAL Specification : the script language is specified using a BNF Grammar.
It is comparable to Pascal with a little C

TAL Parser/Compiler : the script is parsed and compiled into a binary file.
Any errors are detected and displayed showing their precise
location within the script

TAL System Functions : a library if internal ‘“functions’ that can be called
from within scripts is continually being updated. Useful functions
range from simple square-root calculations, to more complex
stochastics

TAL Simulator : the compiled script can be ‘run.” Currently we have (ironically)
tied the running of a TAL script back into TradeStation. This
allows us the graphical interface for results, strategy monitoring
capabilities, and the price data.

WWW. TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@GMAIL.COM SKYPE: ANDREYBBRYV

Андрей
tr-soft-collect

TRADING SOFTWARE

FOR SALE & EXCHANGE

www.trading-software-collection.com

Subscribe for FREE download 5000+ trading books.

Mirrors:

www.forex-warez.com
www.traders-software.com

Contacts

andreybbrv@gmail.com
andreybbrv@hotmail.com
andreybbrv@yandex.ru
Skype: andreybbrv
1CQ: 70966433

http://www.trading-software-collection.com/
mailto:andreybbrv@ya.ru?subject=Subscribe
http://www.forex-warez.com/
http://www.traders-software.com/
mailto:andreybbrv@gmail.com
mailto:andreybbrv@hotmail.com
mailto:andreybbrv@yandex.ru

The next stage (in development now) is a stand-alone simulator that does not require
TradeStation to run TAL files. It will include:

(1) Connectivity to a quote stream (InstaQuote, HyperFeed, etc.) for price data

(2) Smart optimization of script variables (Monte Carlo method, etc)

(3) More trade types (Trailing Stop, Banded, etc) with script access to trades

(4) Portfolio handling (with library functions to allow TAL scripts to access
portfolio/account information)

(5) Back-testing capabilities

(6) Graphical interface

Here is a simple TAL script example:

D1 : DataSeries;
ProfitPoints : double;
LossPoints : double;

Var: ma : double;
Var: pl,p2 : double;
Var: Trades : intarray;
Var: i,t integer;

ma = MovingAverage(D1.Close(),30);

if ma > D1.0Open[b1] then begin
pl = D1.CurrentPrice();
I = NewTrade(GetUser(),D1.symbol(),p1,”B");
if i >= 0 Then begin
Trades.add(i);
SetLimit(i,ProfitPoints);
SetStop(i,LossPoints);
end;
end;

for i =0 to Trades.Count() — 1

Begin
t = Trades[i]l
if(TradeStatus(t)== False) then
Trades.remove(t);
else
Output(“Trade: * + TradeName(t) + “ is live. P/L = * + TradePL(t));
End;

WWW. TRADING-SOFTWARE-COLLECTION.COM
ANDREYBBRV@GMAIL.COM SKYPE: ANDREYBBRYV

Андрей
tr-soft-collect

