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In 1952, Harry Markowitz introduced a critical 
innovation in investment management—popularly 
referred to as modern portfolio theory—in which 

he suggested that investors should decide the allocation 
of their investment funds on the basis of the trade-off 
between portfolio risk, as measured by the standard 
deviation of investment returns, and portfolio return, as 
measured by the expected value of the investment return. 
Entire new research areas grew from his groundbreaking 
idea, which, with the spread of low-cost powerful 
computers, found important practical applications in 
several fi elds of fi nance. Developing the necessary inputs 
for constructing portfolios based on modern portfolio 
theory has been facilitated by the development of 
Bayesian statistics, shrinkage techniques, factor models, 
and robust portfolio optimization. Modern quantitative 
techniques have now made it possible to manage large 
investment portfolios with computer programs that look 
for the best risk-return trade-off available in the market. 

This book shows you how to perform quantitative 
equity portfolio management using these modern 
techniques. It skillfully presents state-of-the-art 
advances in the theory and practice of quantitative 
equity portfolio management. Page by page, the 
expert authors—who have all worked closely with 
hedge fund and quantitative asset management 
fi rms—cover the most up-to-date techniques, tools, 
and strategies used in the industry today.

They begin by discussing the role and use of 
mathematical techniques in fi nance, offering sound 
theoretical arguments in support of fi nance as a 
rigorous science. They go on to provide extensive 
background material on one of the principal tools 
used in quantitative equity management—fi nancial 
econometrics—covering modern regression theory, 
applications of Random Matrix Theory, dynamic 
time series models, vector autoregressive models, 
and cointegration analysis. The authors then look 
at fi nancial engineering, the pitfalls of estimation, 
methods to control model risk, and the modern 
theory of factor models, including approximate 
and dynamic factor models. After laying a fi rm 
theoretical foundation, they provide practical advice 
on optimization techniques and trading strategies 
based on factors and factormodels, offering a modern 
view on how to construct factor models.

$95.00 USA/$114.00 CAN

FRANK J. FABOZZI is Professor in the Practice 
of Finance and Becton Fellow at the Yale School of 
Management and Editor of the Journal of Portfolio 
Management. He is a Chartered Financial Analyst 
and earned a doctorate in economics from the City 
University of New York.

SERGIO M. FOCARDI is Professor of Finance 
at EDHEC Business School in Nice and a 
founding partner of the Paris-based consulting 
f irm The Intertek Group. He is also a member 
of the Editorial Board of the Journal of Portfolio 
Management. Sergio holds a degree in electronic 
engineering from the University of Genoa and a 
PhD in mathematical f inance from the University 
of Karlsruhe as well as a postgraduate degree 
in communications from the Galileo Ferraris 
Electrotechnical Institute (Turin).

PETTER N. KOLM is the Deputy Director of the 
Mathematics in Finance Master’s Program and 
Clinical Associate Professor of Mathematics at 
the Courant Institute of Mathematical Sciences, 
New York University; and a founding Partner of 
the New York–based f inancial consulting f irm the 
Heimdall Group, LLC. Previously, Petter worked 
in the Quantitative Strategies Group at Goldman 
Sachs Asset Management. He received an MS in 
mathematics from ETH in Zurich; an MPhil in 
applied mathematics from the Royal Institute of 
Technology in Stockholm; and a PhD in applied 
mathematics from Yale University.

Jacket Illustration: Jupiter Images

QUANTITATIVE EQUITY INVESTING

Quantitative equity portfolio management is a fundamental 
building block of investment management. This hands-on guide 
closes the gap between theory and practice by presenting state-of-
the-art quantitative techniques and strategies for managing equity 
portfolios.

Authors Frank Fabozzi, Sergio Focardi, and Petter Kolm—all of 
whom have extensive experience in this area—address the essential 
elements of this discipline, including fi nancial model building, 
fi nancial engineering, static and dynamic factor models, asset 
allocation, portfolio models, transaction costs, trading strategies, 
and much more. They provide numerous illustrations and thorough 
discussions of implementation issues facing those in the investment 
management business and include the necessary background material 
in fi nancial econometrics to make the book self-contained. For many 
of the advanced topics, they also provide the reader with references 
to the most recent applicable research in this rapidly evolving fi eld. 

In today’s fi nancial environment, you need the skills to analyze, 
optimize, and manage the risk of your quantitative equity portfolio. 
This guide offers you the best information available to achieve this 
goal.
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Preface

xi

Quantitative equity portfolio management is a fundamental building block 
of investment management. The basic principles of investment management 
have been proposed back in the 1950s in the pathbreaking work of Harry 
Markowitz. For his work, in 1990 Markowitz was awarded the Nobel Me-
morial Prize in Economic Sciences. Markowitz’s ideas proved to be very fer-
tile. Entire new research areas originated from it which, with the diffusion 
of low-cost powerful computers, found important practical applications in 
several fi elds of fi nance. 

Among the developments that followed Markowitz’s original approach 
we can mention:

The development of CAPM and of general equilibrium asset pricing 
models.
The development of multifactor models. 
The extension of the investment framework to a dynamic multiperiod 
environment.
The development of statistical tools to extend his framework to fat-
tailed distributions.
The development of Bayesian techniques to integrate human judgment 
with results from models.
The progressive adoption of optimization and robust optimization tech-
niques.

Due to these and other theoretical advances it has progressively become pos-
sible to manage investments with computer programs that look for the best 
risk-return trade-off available in the market.

People have always tried to beat the market, in the hunt for a free lunch. 
This began by relying on simple observations and rules of thumb to pick the 
winners, and later with the advent of computers brought much more com-
plicated systems and mathematical models within common reach. Today, 
so-called buy-side quants deploy a wide range of techniques ranging from 
econometrics, optimization, and computer science to data mining, machine 
learning, and artifi cial intelligence to trade the equity markets. Their strate-
gies may range from intermediate and long-term strategies, six months to 

■

■

■

■

■

■
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xii PREFACE

several years out, to so-called ultra-high or high-frequency strategies, at the 
sub-millisecond level. The modern quantitative techniques have replaced 
good old-fashioned experience and market insight, with the scientifi c rigor 
of mathematical and fi nancial theories.

This book is about quantitative equity portfolio management per-
formed with modern techniques. One of our goals for this book is to present 
advances in the theory and practice of quantitative equity portfolio manage-
ment that represent what we might call the “state of the art of advanced 
equity portfolio management.” We cover the most common techniques, 
tools, and strategies used in quantitative equity portfolio management in 
the industry today. For many of the advanced topics, we provide the reader 
with references to the most recent applicable research in the fi eld.

This book is intended for students, academics, and fi nancial practitio-
ners alike who want an up-to-date treatment of quantitative techniques in 
equity portfolio management, and who desire to deepen their knowledge of 
some of the most cutting-edge techniques in this rapidly developing area. 
The book is written in an almost self-contained fashion, so that little back-
ground knowledge in fi nance is needed. Nonetheless, basic working knowl-
edge of undergraduate linear algebra and probability theory are useful, 
especially for the more mathematical topics in this book.

In Chapter 1 we discuss the role and use of mathematical techniques in 
fi nance. In addition to offering theoretical arguments in support of fi nance 
as a mathematical science, we discuss the results of three surveys on the dif-
fusion of quantitative methods in the management of equity portfolios. In 
Chapters 2 and 3, we provide extensive background material on one of the 
principal tools used in quantitative equity management, fi nancial economet-
rics. Coverage in Chapter 2 includes modern regression theory, applications 
of Random Matrix Theory, and robust methods. In Chapter 3, we extend 
our coverage of fi nancial economics to dynamic models of times series, vec-
tor autoregressive models, and cointegration analysis. Financial engineering, 
the many pitfalls of estimation, and methods to control model risk are the 
subjects of Chapter 4. In Chapter 5, we introduce the modern theory of factor 
models, including approximate factor models and dynamic factor models. 

Trading strategies based on factors and factor models are the focus of 
Chapters 6 and 7. In these chapters we offer a modern view on how to 
construct factor models based on fundamental factors and how to design 
and test trading strategies based on these. We offer a wealth of practical 
examples on the application of factor models in these chapters. 

The coverage in Chapters 8, 9, and 10 is on the use of optimization 
models in quantitative equity management. The basics of portfolio optimi-
zation are reviewed in Chapter 9, followed by a discussion of the Bayesian 
approach to investment management as implemented in the Black-Litterman 
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Preface xiii

framework in Chapter 9. In Chapter 10 we discuss robust optimization 
techniques because they have greatly enhanced the ability to implement 
portfolio optimization models in practice.

The last two chapters of the book cover the important topic of trad-
ing costs and trading techniques. In Chapter 11, our focus is on the issues 
related to trading cost and implementation of trading strategies from a prac-
tical point of view. The modern techniques of algorithmic trading are the 
subject of the fi nal chapter in the book, Chapter 12.

There are three appendixes. Appendix A provides a description of the 
data and factor defi nitions used in the illustrations and examples in the 
book. A summary of the factors, their economic rationale, and references 
that have supported the use of each factor is provided in Appendix B. In 
Appendix C we provide a review of eigenvalues and eigenvectors.

TEACHING USING THIS BOOK

Many of the chapters in this book have been used in courses and workshops 
on quantitative investment management, econometrics, trading strategies 
and algorithmic trading. The topics of the book are appropriate for under-
graduate advanced electives on investment management, and graduate stu-
dents in fi nance, economics, or in the mathematical and physical sciences. 

For a typical course it is natural to start with Chapters 1–3, 5, and 8 
where the quantitative investment management industry, standard economet-
ric techniques, and modern portfolio and asset pricing theory are reviewed. 
Important practical considerations such as model risk and its mitigation are 
presented in Chapter 4. Chapters 6 and 7 focus on the development of fac-
tor-based trading strategies and provide many practical examples. Chapters 
9–12 cover the important topics of Bayesian techniques, robust optimiza-
tion, and transaction cost modeling—by now standard tools used in quanti-
tative portfolio construction in the fi nancial industry. We recommend that a 
more advanced course covers these topics in some detail. 

Student projects can be based on specialized topics such as the devel-
opment of trading strategies (in Chapters 6 and 7), optimal execution, and 
algorithmic trading (in Chapters 11 and 12). The many references in these chap-
ters, and in the rest of the book, provide a good starting point for research.
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CHAPTER 1
Introduction

An economy can be regarded as a machine that takes in input labor and 
natural resources and outputs products and services. Studying this 

machine from a physical point of view would be very diffi cult because we 
should study the characteristics and the interrelationships among all modern 
engineering and production processes. Economics takes a bird’s-eye view of 
these processes and attempts to study the dynamics of the economic value 
associated with the structure of the economy and its inputs and outputs. 
Economics is by nature a quantitative science, though it is diffi cult to fi nd 
simple rules that link economic quantities. 

In most economies value is presently obtained through a market process 
where supply meets demand. Here is where fi nance and fi nancial markets 
come into play. They provide the tools to optimize the allocation of resources 
through time and space and to manage risk. Finance is by nature quantita-
tive like economics but it is subject to a large level of risk. It is the measure-
ment of risk and the implementation of decision-making processes based on 
risk that makes fi nance a quantitative science and not simply accounting. 

Equity investing is one of the most fundamental processes of fi nance. 
Equity investing allows allocating the savings of the households to invest-
ments in the productive activities of an economy. This investment process 
is a fundamental economic enabler: without equity investment it would be 
very diffi cult for an economy to properly function and grow. With the diffu-
sion of affordable fast computers and with progress made in understanding 
fi nancial processes, fi nancial modeling has become a determinant of invest-
ment decision-making processes. Despite the growing diffusion of fi nancial 
modeling, objections to its use are often raised. 

In the second half of the 1990s, there was so much skepticism about 
quantitative equity investing that David Leinweber, a pioneer in applying 
advanced techniques borrowed from the world of physics to fund manage-
ment, and author of Nerds on Wall Street,1 wrote an article entitled: “Is 
1David Leinweber, Nerds on Wall Street: Math, Machines, and Wired Markets 
(Hoboken, NJ: John Wiley & Sons, 2009).
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2 QUANTITATIVE EQUITY INVESTING

quantitative investment dead?”2 In the article, Leinweber defended quantita-
tive fund management and maintained that in an era of ever faster comput-
ers and ever larger databases, quantitative investment was here to stay. The 
skepticism toward quantitative fund management, provoked by the failure 
of some high-profi le quantitative funds at that time, was related to the fact 
that investment professionals felt that capturing market ineffi ciencies could 
best be done by exercising human judgment. 

Despite mainstream academic opinion that held that markets are effi -
cient and unpredictable, the asset managers’ job is to capture market inef-
fi ciencies and translate them into enhanced returns for their clients. At 
the academic level, the notion of effi cient markets has been progressively 
relaxed. Empirical evidence led to the acceptance of the notion that fi nancial 
markets are somewhat predictable and that systematic market ineffi ciencies 
can be detected. There has been a growing body of evidence that there are 
market anomalies that can be systematically exploited to earn excess profi ts 
after considering risk and transaction costs.3 In the face of this evidence, 
Andrew Lo proposed replacing the effi cient market hypothesis with the 
adaptive market hypothesis as market ineffi ciencies appear as the market 
adapts to changes in a competitive environment.

In this scenario, a quantitative equity investment management process 
is characterized by the use of computerized rules as the primary source of 
decisions. In a quantitative process, human intervention is limited to a con-
trol function that intervenes only exceptionally to modify decisions made by 
computers. We can say that a quantitative process is a process that quantifi es 
things. The notion of quantifying things is central to any modern science, 
including the dismal science of economics. Note that everything related to 
accounting—balance sheet/income statement data, and even accounting at 
the national level—is by nature quantitative. So, in a narrow sense, fi nance 
has always been quantitative. The novelty is that we are now quantifying 
things that are not directly observed, such as risk, or things that are not 
quantitative per se, such as market sentiment and that we seek simple rules 
to link these quantities

In this book we explain techniques for quantitative equity investing. 
Our purpose in this chapter is threefold. First, we discuss the relationship 
between mathematics and equity investing and look at the objections raised. 
We attempt to show that most objections are misplaced. Second, we discuss 
the results of three studies based on surveys and interviews of major market 

2David Leinweber, “Is Quantitative Investing Dead?” Pensions & Investments, 
February 8, 1999. 
3For a modern presentation of the status of market effi ciency, see M. Hashem 
Pesaran, “Market Effi ciency Today,” Working Paper 05.41, 2005 (Institute of 
Economic Policy Research). 
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Introduction  3

participants whose objective was to quantitative equity portfolio manage-
ment and their implications for equity portfolio managers. The results of 
these three studies are helpful in understanding the current state of quantita-
tive equity investing, trends, challenges, and implementation issues. Third, 
we discuss the challenges ahead for quantitative equity investing.

IN PRAISE OF MATHEMATICAL FINANCE 

Is the use of mathematics to describe and predict fi nancial and economic 
phenomena appropriate? The question was fi rst raised at the end of the 
nineteenth century when Vilfredo Pareto and Leon Walras made an initial 
attempt to formalize economics. Since then, fi nancial economic theorists 
have been divided into two camps: those who believe that economics is a sci-
ence and can thus be described by mathematics and those who believe that 
economic phenomena are intrinsically different from physical phenomena 
which can be described by mathematics.

In a tribute to Paul Samuelson, Robert Merton wrote:

Although most would agree that fi nance, micro investment theory 
and much of the economics of uncertainty are within the sphere 
of modern fi nancial economics, the boundaries of this sphere, like 
those of other specialties, are both permeable and fl exible. It is 
enough to say here that the core of the subject is the study of the 
individual behavior of households in the intertemporal allocation 
of their resources in an environment of uncertainty and of the role 
of economic organizations in facilitating these allocations. It is the 
complexity of the interaction of time and uncertainty that provides 
intrinsic excitement to study of the subject, and, indeed, the math-
ematics of fi nancial economics contains some of the most interest-
ing applications of probability and optimization theory. Yet, for all 
its seemingly obtrusive mathematical complexity, the research has 
had a direct and signifi cant infl uence on practice4

The three principal objections to treating fi nance economic theory as 
a mathematical science we will discuss are that (1) fi nancial markets are 
driven by unpredictable unique events and, consequently, attempts to use 
mathematics to describe and predict fi nancial phenomena are futile, (2) 
fi nancial phenomena are driven by forces and events that cannot be quanti-
fi ed, though we can use intuition and judgment to form a meaningful fi nan-

4Robert C. Merton, “Paul Samuelson and Financial Economics,” American 
Economist 50, no. 2 (Fall 2006), pp. 262–300. 

c01-Intro.indd   3c01-Intro.indd   3 1/6/10   11:25:30 AM1/6/10   11:25:30 AM



4 QUANTITATIVE EQUITY INVESTING

cial discourse, and (3) although we can indeed quantify fi nancial phenom-
ena, we cannot predict or even describe fi nancial phenomena with realistic 
mathematical expressions and/or computational procedures because the 
laws themselves change continuously.

A key criticism to the application of mathematics to fi nancial economics 
is the role of uncertainty. As there are unpredictable events with a potentially 
major impact on the economy, it is claimed that fi nancial economics cannot 
be formalized as a mathematical methodology with predictive power. In a 
nutshell, the answer is that black swans exist not only in fi nancial markets 
but also in the physical sciences. But no one questions the use of mathemat-
ics in the physical sciences because there are major events that we cannot 
predict. The same should hold true for fi nance. Mathematics can be used to 
understand fi nancial markets and help to avoid catastrophic events.5 How-
ever, it is not necessarily true that science and mathematics will enable unlim-
ited profi table speculation. Science will allow one to discriminate between 
rational predictable systems and highly risky unpredictable systems.

There are reasons to believe that fi nancial economic laws must include 
some fundamental uncertainty. The argument is, on a more general level, 
the same used to show that there cannot be arbitrage opportunities in fi nan-
cial markets. Consider that economic agents are intelligent agents who can 
use scientifi c knowledge to make forecasts.

Were fi nancial economic laws deterministic, agents could make (and 
act on) deterministic forecasts. But this would imply a perfect consensus 
between agents to ensure that there is no contradiction between forecasts 
and the actions determined by the same forecasts. For example, all invest-
ment opportunities should have exactly identical payoffs. Only a perfectly 
and completely planned economy can be deterministic; any other economy 
must include an element of uncertainty.

In fi nance, the mathematical handling of uncertainty is based on prob-
abilities learned from data. In fi nance, we have only one sample of small 
size and cannot run tests. Having only one sample, the only rigorous way 
to apply statistical models is to invoke ergodicity. An ergodic process is a 
stationary process where the limit of time averages is equal to time-invariant 
ensemble averages. Note that in fi nancial modeling it is not necessary that 
economic quantities themselves form ergodic processes, only that residu-
als after modeling form an ergodic process. In practice, we would like the 
models to extract all meaningful information and leave a sequence of white 
noise residuals.

5This is what Nassim Taleb refers to as “black swans” in his critique of fi nancial 
models in his book The Black Swan: The Impact of the Highly Improbable (New 
York: Random House, 2007).
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Introduction  5

If we could produce models that generate white noise residuals over 
extended periods of time, we would interpret uncertainty as probability and 
probability as relative frequency. However, we cannot produce such models 
because we do not have a fi rm theory known a priori. Our models are a 
combination of theoretical considerations, estimation, and learning; they 
are adaptive structures that need to be continuously updated and modifi ed.

Uncertainty in forecasts is due not only to the probabilistic uncertainty 
inherent in stochastic models but also to the possibility that the models 
themselves are misspecifi ed. Model uncertainty cannot be measured with 
the usual concept of probability because this uncertainty itself is due to 
unpredictable changes. Ultimately, the case for mathematical fi nancial eco-
nomics hinges on our ability to create models that maintain their descrip-
tive and predictive power even if there are sudden unpredictable changes in 
fi nancial markets. It is not the large unpredictable events that are the chal-
lenge to mathematical fi nancial economics, but our ability to create models 
able to recognize these events.

This situation is not confi ned to fi nancial economics. It is now recog-
nized that there are physical systems that are totally unpredictable. These 
systems can be human artifacts or natural systems. With the development 
of nonlinear dynamics, it has been demonstrated that we can build arti-
facts whose behavior is unpredictable. There are examples of unpredict-
able artifacts of practical importance. Turbulence, for example, is a chaotic 
phenomenon. The behavior of an airplane can become unpredictable under 
turbulence. There are many natural phenomena from genetic mutations to 
tsunami and earthquakes whose development is highly nonlinear and cannot 
be individually predicted. But we do not reject mathematics in the physical 
sciences because there are events that cannot be predicted. On the contrary, 
we use mathematics to understand where we can fi nd regions of dangerous 
unpredictability. We do not knowingly fl y an airplane in extreme turbulence 
and we refrain from building dangerous structures that exhibit catastrophic 
behavior. Principles of safe design are part of sound engineering.

Financial markets are no exception. Financial markets are designed 
artifacts: we can make them more or less unpredictable. We can use math-
ematics to understand the conditions that make fi nancial markets subject 
to nonlinear behavior with possibly catastrophic consequences. We can 
improve our knowledge of what variables we need to control in order to 
avoid entering chaotic regions. 

It is therefore not reasonable to object that mathematics cannot be used 
in fi nance because there are unpredictable events with major consequences. 
It is true that there are unpredictable fi nancial markets where we cannot use 
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6 QUANTITATIVE EQUITY INVESTING

mathematics except to recognize that these markets are unpredictable. But 
we can use mathematics to make fi nancial markets safer and more stable.6

Let us now turn to the objection that we cannot use mathematics in 
fi nance because the fi nancial discourse is inherently qualitative and cannot 
be formalized in mathematical expressions. For example, it is objected that 
qualitative elements such as the quality of management or the culture of a 
fi rm are important considerations that cannot be formalized in mathemati-
cal expressions.

A partial acceptance of this point of view has led to the development 
of techniques to combine human judgment with models. These techniques 
range from simply counting analysts’ opinions to sophisticated Bayesian 
methods that incorporate qualitative judgment into mathematical models. 
These hybrid methodologies link models based on data with human over-
lays.

Is there any irreducibly judgmental process in fi nance? Consider that 
in fi nance, all data important for decision-making are quantitative or can 
be expressed in terms of logical relationships. Prices, profi ts, and losses are 
quantitative, as are corporate balance-sheet data. Links between companies 
and markets can be described through logical structures. Starting from these 
data we can construct theoretical terms such as volatility. Are there hidden 
elements that cannot be quantifi ed or described logically?

Ultimately, in fi nance, the belief in hidden elements that cannot be either 
quantifi ed or logically described is related to the fact that economic agents 
are human agents with a decision-making process. The operational point 
of view of Samuelson has been replaced by the neoclassical economics view 
that, apparently, places the accent on agents’ decision-making. It is curious 
that the agent of neoclassical economics is not a realistic human agent but a 
mathematical optimizer described by a utility function. 

Do we need anything that cannot be quantifi ed or expressed in logical 
terms? At this stage of science, we can say the answer is a qualifi ed no, if 
we consider markets in the aggregate. Human behavior is predictable in the 
aggregate and with statistical methods. Interaction between individuals, at 
least at the level of economic exchange, can be described with logical tools. 
We have developed many mathematical tools that allow us to describe criti-
cal points of aggregation that might lead to those situations of unpredict-
ability described by complex systems theory.

We can conclude that the objection of hidden qualitative variables 
should be rejected. If we work at the aggregate level and admit uncertainty, 

6A complex system theorist could object that there is a fundamental uncertainty 
as regards the decisions that we will make: Will we take the path of building safer 
fi nancial systems or we will build increasingly risky fi nancial systems in the hope of 
realizing a gain?
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there is no reason why we have to admit inherently qualitative judgment. 
In practice, we integrate qualitative judgment with models because (pres-
ently) it would be impractical or too costly to model all variables. If we con-
sider modeling individual decision-making at the present stage of science, 
we have no defi nitive answer. Whenever fi nancial markets depend on single 
decisions of single individuals we are in the presence of uncertainty that can-
not be quantifi ed. However, we have situations of this type in the physical 
sciences and we do not consider them an obstacle to the development of a 
mathematical science.

Let us now address a third objection to the use of mathematics in fi nance. 
It is sometimes argued that we cannot arrive at mathematical laws in fi nance 
because the laws themselves keep on changing. This objection is somehow 
true. Addressing it has led to the development of methods specifi c to fi nan-
cial economics. First observe that many physical systems are characterized 
by changing laws. For example, if we monitor the behavior of complex 
artifacts such as nuclear reactors we fi nd that their behavior changes with 
aging. We can consider these changes as structural breaks. Obviously one 
could object that if we had more information we could establish a precise 
time-invariant law. Still, if the artifact is complex and especially if we cannot 
access all its parts, we might experience true structural breaks. For example, 
if we are monitoring the behavior of a nuclear reactor we might not be able 
to inspect it properly. Many natural systems such as volcanoes cannot be 
properly inspected and structurally described. We can only monitor their 
behavior, trying to fi nd predictive laws. We might fi nd that our laws change 
abruptly or continuously. We assume that we could identify more complex 
laws if we had all the requisite information, though, in practice, we do not 
have this information.

These remarks show that the objection of changing laws is less strong 
than we might intuitively believe. The real problem is not that the laws of 
fi nance change continuously. The real problem is that they are too complex. 
We do not have enough theoretical knowledge to determine fi nance laws 
and, if we try to estimate statistical models, we do not have enough data 
to estimate complex models. Stated differently, the question is not whether 
we can use mathematics in fi nancial economic theory. The real question 
is: How much information we can obtain in studying fi nancial markets? 
Laws and models in fi nance are highly uncertain. One partial solution is to 
use adaptive models. Adaptive models are formed by simple models plus 
rules to change the parameters of the simple models. A typical example 
is nonlinear state-space models. Nonlinear state-space models are formed 
by a simple regression plus another process that adapts continuously the 
model parameters. Other examples are hidden Markov models that might 
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8 QUANTITATIVE EQUITY INVESTING

represent prices as formed by sequences of random walks with different 
parameters.

We can therefore conclude that the objection that there is no fi xed law 
in fi nancial economics cannot be solved a priori. Empirically we fi nd that 
simple models cannot describe fi nancial markets over long periods of time: 
if we turn to adaptive modeling, we are left with a residual high level of 
uncertainty.

Our overall conclusion is twofold. First, we can and indeed should 
regard mathematical fi nance as a discipline with methods and mathematics 
specifi c to the type of empirical data available in the discipline. Given the 
state of continuous change in our economies, we cannot force mathemati-
cal fi nance into the same paradigm of classical mathematical physics based 
on differential equations. Mathematical fi nance needs adaptive, nonlinear 
models that are able to adapt in a timely fashion to a changing empirical 
environment. 

This is not to say that mathematical fi nance is equivalent to data-mining. 
On the contrary, we have to use all available knowledge and theoretical 
reasoning on fi nancial economics. However, models cannot be crystallized 
in time-invariant models. In the future, it might be possible to achieve the 
goal of stable time-invariant models but, for the moment, we have to admit 
that mathematical fi nance needs adaptation and must make use of com-
puter simulations. Even with the resources of modern adaptive computa-
tional methods, there will continue to be a large amount of uncertainty in 
mathematical fi nance, not only as probability distributions embedded in 
models but also as residual model uncertainty. When changes occur, there 
will be disruption of model performance and the need to adapt models to 
new situations. But this does not justify rejecting mathematical fi nance. 
Mathematical fi nance can indeed tell us what situations are more danger-
ous and might lead to disruptions. Through simulations and models of 
complex structure, we can achieve an understanding of those situations 
that are most critical.

Economies and fi nancial markets are engineered artifacts. We can use 
our science to engineer economic and fi nancial systems that are safer or we 
can decide, in the end, to prefer risk-taking and its highly skewed rewards. 
Of course we might object that uncertainty about the path our societies 
will take is part of the global problem of uncertainty. This objection is the 
objection of complex system theorists to reductionism. We can study a sys-
tem with our fundamental laws once we know the initial and boundary 
conditions but we cannot explain how initial and boundary conditions were 
formed. These speculations are theoretically important but we should avoid 
a sense of passive fatality. In practice, it is important that we are aware that 
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Introduction  9

we have the tools to design safer fi nancial systems and do not regard the 
path towards unpredictability as inevitable.

STUDIES OF THE USE OF 
QUANTITATIVE EQUITY MANAGEMENT

There are three recent studies on the use of quantitative equity management 
conducted by Intertek Partners. The studies are based on surveys and inter-
views of market participants. We will refer to these studies as the 2003 Inter-
tek European study,7 2006 Intertek study,8 and 2007 Intertek study.9

2003 Intertek European Study 

The 2003 Intertek European study deals with the use of fi nancial modeling 
at European asset management fi rms. It is based on studies conducted by 
The Intertek Group to evaluate model performance following the fall of the 
markets from their peak in March 2000, and explores changes that have 
occurred since then. In total, 61 managers at European asset management 
fi rms in the Benelux countries, France, Germany, Italy, Scandinavia, Switzer-
land, and the U.K. were interviewed. (The study does not cover alternative 
investment fi rms such as hedge funds.) At least half of the fi rms interviewed 
are among the major players in their respective markets, with assets under 
management ranging from €50 to €300 billion. 

The major fi ndings are summarized next.10

Greater Role for Models

In the two years following the March 2000 market highs, quantitative meth-
ods in the investment decision-making process began to play a greater role. 
7The results of this study are reported in Frank J. Fabozzi, Sergio M. Focardi, and 
Caroline L. Jonas, “Trends in Quantitative Asset Management in Europe,” Journal of 
Portfolio Management 31, no. 4 (2004), pp. 125–132 (Special European Section).
8The results of this study are reported in Frank J. Fabozzi, Sergio M. Focardi, and 
Caroline Jonas, “Trends in Quantitative Equity Management: Survey Results,” 
Quantitative Finance 7, no. 2 (2007), pp. 115–122.
9The results of this study are reported in Frank J. Fabozzi, Sergio M. Focardi, and 
Caroline Jonas, Challenges in Quantitative Equity Management (CFA Institute 
Research Foundation, 2008) and Frank J. Fabozzi, Sergio M. Focardi, and Caroline 
L. Jonas, “On the Challenges in Quantitative Equity Management.” Quantitative 
Finance 8, no. 7 (2008), pp. 649–655.
10In the quotes from sources in these studies, we omit the usual practice of identifying 
the reference and page number. The study where the quote is obtained will be clear. 
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10 QUANTITATIVE EQUITY INVESTING

Almost 75% of the fi rms interviewed reported this to be the case, while 
roughly 15% reported that the role of models had remained stable. The 
remaining 10% noted that their processes were already essentially quantita-
tive. The role of models had also grown in another sense; a higher percent-
age of assets were being managed by funds run quantitatively. One fi rm 
reported that over the past two years assets in funds managed quantitatively 
grew by 50%.

Large European fi rms had been steadily catching up with their U.S. 
counterparts in terms of the breadth and depth of use of models. As the price 
of computers and computer software dropped, even small fi rms reported 
that they were beginning to adopt quantitative models. There were still dif-
ferences between American and European fi rms, though. American fi rms 
tended to use relatively simple technology but on a large scale; Europeans 
tended to adopt sophisticated statistical methods but on a smaller scale.

Demand pull and management push were among the reasons cited for 
the growing role of models. On the demand side, asset managers were under 
pressure to produce returns while controlling risk; they were beginning to 
explore the potential of quantitative methods. On the push side, several 
sources remarked that, after tracking performance for several years, their 
management has made a positive evaluation of a model-driven approach 
against a judgment-driven decision-making process. In some cases, this led 
to a corporate switch to a quantitative decision-making process; in other 
instances, it led to shifting more assets into quantitatively managed funds.

Modeling was reported to have been extended over an ever greater uni-
verse of assets under management. Besides bringing greater structure and 
discipline to the process, participants in the study remarked that models 
helped contain costs. Unable to increase revenues in the period immediately 
following the March 2000 market decline, many fi rms were cutting costs. 
Modeling budgets, however, were reported as being largely spared. About 
68% of the participants said that their investment in modeling had grown 
over the prior two years, while 50% expected their investments in modeling 
to continue to grow over the next year.

Client demand for risk control was another factor that drove the 
increased use of modeling. Pressure from institutional investors and consul-
tants in particular continued to work in favor of modeling.

More generally, risk management was widely believed to be the key 
driving force behind the use of models. 

Some fi rms mentioned they had recast the role of models in portfolio 
management. Rather than using models to screen and rank assets—which 
has been a typical application in Europe—they applied them after the asset 
manager had acted in order to measure the pertinence of fundamental anal-
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ysis, characterize the portfolio style, eventually transform products through 
derivatives, optimize the portfolio, and track risk and performance.

Performance of Models Improves

Over one-half of the study’s participants responded that models performed 
better in 2002 than two years before. Some 20% evaluated 2002 model 
performance as stable with respect to two years ago, while another 20% 
considered that performance had worsened. Participants often noted that it 
was not models in general but specifi c models that had performed better or 
more poorly.

There are several explanations for the improved performance of mod-
els. Every model is, ultimately, a statistical device trained and estimated 
on past data. When markets began to fall from their peak in March 2000, 
models had not been trained on data that would have allowed them to cap-
ture the downturn—hence, the temporary poor performance of some mod-
els. Even risk estimates, more stable than expected return estimates, were 
problematic. In many cases, it was diffi cult to distinguish between volatility 
and model risk. Models have since been trained on new sets of data and are 
reportedly performing better.

From a strictly scientifi c and economic theory point of view, the ques-
tion of model performance overall is not easy to address. The basic question 
is how well a theory describes reality, with the additional complication that 
in economics uncertainty is part of the theory. As we observed in the previ-
ous section, we cannot object to fi nancial modeling but we cannot pretend a 
priori that model performance be good. Modeling should refl ect the objec-
tive amount of uncertainty present in a fi nancial process. The statement that 
“models perform better” implies that the level of uncertainty has changed. 
To make this discussion meaningful, clearly somehow we have to restrict the 
universe of models under consideration. In general, the uncertainty associ-
ated with forecasting within a given class of models is equated to market 
volatility. And as market volatility is not an observable quantity but a hid-
den one, it is model-dependent.11 In other words, the amount of uncertainty 
in fi nancial markets depends on the accuracy of models. For instance, an 
ARCH-GARCH model will give an estimate of volatility different from that 
of a model based on constant volatility. On top of volatility, however, there 
is another source of uncertainty, which is the risk that the model is misspeci-
fi ed. The latter uncertainty is generally referred to as model risk.

11This statement is not strictly true. With the availability of high-frequency data, there 
is a new strain of fi nancial econometrics that considers volatility as an observable 
realized volatility. 
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12 QUANTITATIVE EQUITY INVESTING

The problem experienced when markets began to fall was that models 
could not forecast volatility simply because they were grossly misspecifi ed. A 
common belief is that markets are now highly volatile, which is another way 
of saying that models do not do a good job of predicting returns. Yet models 
are now more coherent; fl uctuations of returns are synchronized with expec-
tations regarding volatility. Model risk has been reduced substantially. 

Overall, the global perception of European market participants who 
participated in the study was that models are now more dependable. This 
meant that model risk had been reduced; although their ability to predict 
returns had not substantially improved, models were better at predicting 
risk. Practitioners’ evaluation of model performance can be summarized as 
follows: (1) models will bring more and more insight in risk management, 
(2) in stock selection, we will see some improvement due essentially to better 
data, not better models, and (3) in asset allocation, the use of models will 
remain diffi cult as markets remain diffi cult to predict.

Despite the improved performance of models, the perception European 
market participants shared was one of uncertainty as regards the macroeco-
nomic trends of the markets. Volatility, structural change, and unforecast-
able events continue to challenge models. In addition to facing uncertainty 
related to a stream of unpleasant surprises as regards corporate accounting 
at large public fi rms, participants voiced the concern that there is consider-
able fundamental uncertainty on the direction of fi nancial fl ows.

A widely shared evaluation was that, independent of models them-
selves, the understanding of models and their limits had improved. Most 
traders and portfolio managers had at least some training in statistics and 
fi nance theory; computer literacy was greatly increased. As a consequence, 
the majority of market participants understand at least elementary statisti-
cal analyses of markets.

Use of Multiple Models on the Rise

According to the 2003 study’s fi ndings, three major trends had emerged in 
Europe over the prior few years: (1) a greater use of multiple models, (2) the 
modeling of additional new factors, and (3) an increased use of value-based 
models. 

Let’s fi rst comment on the use of multiple models from the point of 
view of modern fi nancial econometrics, and in particular from the point 
of view of the mitigation of model risk. The present landscape of fi nancial 
modeling applied to investment management is vast and well articulated.12 

12For a discussion of the different families of fi nancial models and modeling issues, 
see Sergio M. Focardi and Frank J. Fabozzi, The Mathematics of Financial Modeling 
and Investment Management (Hoboken, NJ: John Wiley & Sons, 2004).
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Financial models are typically econometric models, they do not follow laws 
of nature but are approximate models with limited validity. Every model has 
an associated model risk, which can be roughly defi ned as the probability 
that the model does not forecast correctly. Note that it does not make sense 
to consider model risk in abstract, against every possible assumption; model 
risk can be meaningfully defi ned only by restricting the set of alternative 
assumptions. For instance, we might compute measures of the errors made 
by an option pricing model if the underlying follows a distribution different 
from the one on which the model is based. Clearly it must be specifi ed what 
families of alternative distributions we are considering.

Essentially every model is based on some assumption about the func-
tional form of dependencies between variables and on the distribution of 
noise. Given the assumptions, models are estimated, and decisions made. 
The idea of estimating model risk is to estimate the distribution of errors 
that will be made if the model assumptions are violated. For instance: Are 
there correlations or autocorrelations when it is assumed there are none? 
Are innovations fat-tailed when it is assumed that noise is white and nor-
mal? From an econometric point of view, combining different models in 
this way means constructing a mixture of distributions. The result of this 
process is one single model that weights the individual models. 

Some managers interviewed for the 2003 study reported they were using 
judgment on top of statistical analysis. This entails that models be reviewed 
when they begin to produce results that are below expectations. In practice, 
quantitative teams constantly evaluate the performance of different fami-
lies of models and adopt those that perform better. Criteria for switching 
from one family of models to another are called for, though. This, in turn, 
requires large data samples.

Despite these diffi culties, application of multiple models has gained 
wide acceptance in fi nance. In asset management, the main driver is the 
uncertainty related to estimating returns. 

Focus on Factors, Correlation, Sentiment, and Momentum

Participants in the 2003 study also reported efforts to determine new factors 
that might help predict expected returns. Momentum and sentiment were 
the two most cited phenomena modeled in equities. Market sentiment, in 
particular, was receiving more attention.

The use of factor models is in itself a well-established practice in fi nancial 
modeling. Many different families of models are available, from the widely 
used classic static return factor analysis models to dynamic factor models, 
both of which are described later in Chapter 5. What remains a challenge is 
determination of the factors. Considerable resources have been devoted to 
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studying market correlations. Advanced techniques for the robust estima-
tion of correlations are being applied at large fi rms as well as at boutiques. 

According to study respondents, over the three years prior to 2001, 
quantitative teams at many asset management fi rms were working on deter-
mining which factors are the best indicators of price movements. Senti-
ment was often cited as a major innovation in terms of modeling strategies. 
Asset management fi rms typically modeled stock-specifi c sentiment, while 
sentiment as measured by business or consumer confi dence was often the 
responsibility of the macroeconomic teams at the mother bank, at least in 
continental Europe. Market sentiment is generally defi ned by the distribu-
tion of analyst revisions in earnings estimates. Other indicators of market 
confi dence are fl ows, volume, turnover, and trading by corporate offi cers.

Factors that represent market momentum were also increasingly adopted 
according to the study. Momentum means that the entire market is moving 
in one direction with relatively little uncertainty. There are different ways to 
represent momentum phenomena. One might identify a specifi c factor that 
defi nes momentum, that is, a variable that gauges the state of the market 
in terms of momentum. This momentum variable then changes the form of 
models. There are models for trending markets and models for uncertain mar-
kets.

Momentum can also be represented as a specifi c feature of models. A 
random walk model does not have any momentum, but an autoregressive 
model might have an intrinsic momentum feature.

Some participants also reported using market-timing models and style 
rotation for the active management of funds. Producing accurate timing 
signals is complex, given that fi nancial markets are diffi cult to predict. One 
source of predictability is the presence of mean reversion and cointegration 
phenomena.

Back to Value-Based Models

At the time of the 2003 study, there was a widespread perception that value-
based models were performing better in post-2000 markets. It was believed 
that markets were doing a better job valuing companies as a function of the 
value of the fi rm rather than price trends, notwithstanding our remarks on 
the growing use of factors such as market sentiment. From a methodologi-
cal point of view, methodologies based on cash analysis had increased in 
popularity in Europe. A robust positive operating cash fl ow is considered to 
be a better indication of the health of a fi rm than earnings estimates, which 
can be more easily massaged.

Fundamental analysis was becoming highly quantitative and auto-
mated. Several fi rms mentioned they were developing proprietary method-
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ologies for the automatic analysis of balance sheets. For these fi rms, with 
the information available on the World Wide Web, fundamental analysis 
could be performed without actually going to visit fi rms. Some participants 
remarked that caution might be called for in attributing the good perfor-
mance of value-tilted models to markets. One of the assumptions of value-
based models is that there is no mechanism that conveys a large fl ow of 
funds through preferred channels, but this was the case in the telecommu-
nications, media, and technology (TMT) bubble, when value-based models 
performed so poorly. In the last bull run prior to the study, the major preoc-
cupation was to not miss out on rising markets; investors who continued 
to focus on value suffered poor performance. European market participants 
reported that they are now watching both trend and value.

Risk Management

Much of the attention paid to quantitative methods in asset management 
prior to the study had been focused on risk management. According to 83% 
of the participants, the role of risk management had evolved signifi cantly 
over the prior two years to extend across portfolios and across processes. 

One topic that has received a lot of attention, both in academia and 
at fi nancial institutions, is the application of extreme value theory (EVT) 
to fi nancial risk management.13 The RiskLab in Zurich, headed by Paul 
Embrechts, advanced the use of EVT and copula functions in risk man-
agement. At the corporate level, universal banks such as HSBC CCF have 
produced theoretical and empirical work on the applicability of EVT to risk 
management.14 European fi rms were also paying considerable attention to 
risk measures. 

For participants in the Intertek study, risk management was the area 
where quantitative methods had made their biggest contribution. Since the 
pioneering work of Harry Markowitz in the 1950s, the objective of invest-
ment management has been defi ned as determining the optimal risk-return 
trade-off in an investor’s profi le. Prior to the diffusion of modeling tech-
niques, though, evaluation of the risk-return trade-off was left to the judg-
ment of individual asset managers. Modeling brought to the forefront the 
question of ex ante risk-return optimization. An asset management fi rm that 
uses quantitative methods and optimization techniques manages risk at the 

13See Sergio M. Focardi and Frank J. Fabozzi, “Fat Tails, Scaling, and Stable Laws: 
A Critical Look at Modeling Extremal Events in Financial Phenomena,” Journal of 
Risk Finance 5, no. 1 (Fall 2003), pp. 5–26.
14François Longin, “Stock Market Crashes: Some Quantitative Results Based on 
Extreme Value Theory.” Derivatives Use, Trading and Regulation 7 (2001), pp. 
197–205.
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16 QUANTITATIVE EQUITY INVESTING

source. In this case, the only risk that needs to be monitored and managed 
is model risk.15

Purely quantitative managers with a fully automated management 
process were still rare according to the study. Most managers, although 
quantitatively oriented, used a hybrid approach calling for models to give 
evaluations that managers translate into decisions. In such situations, risk 
is not completely controlled at the origin.

Most fi rms interviewed for the study had created a separate risk manage-
ment unit as a supervisory entity that controls the risk of different portfolios 
and eventually—although still only rarely—aggregated risk at the fi rm-wide 
level. In most cases, the tools of choice for controlling risk were multifactor 
models. Models of this type have become standard when it comes to making 
risk evaluations for institutional investors. For internal use, however, many 
fi rms reported that they made risk evaluations based on proprietary models, 
EVT, and scenario analysis.

Integrating Qualitative and Quantitative Information

More than 60% of the fi rms interviewed for the 2003 Intertek study report-
ed they had formalized procedures for integrating quantitative and qualita-
tive input, although half of these mentioned that the process had not gone 
very far; 30% of the participants reported no formalization at all. Some 
fi rms mentioned they had developed a theoretical framework to integrate 
results from quantitative models and fundamental views. Assigning weights 
to the various inputs was handled differently from fi rm to fi rm; some fi rms 
reported establishing a weight limit in the range of 50%–80% for quantita-
tive input.

A few quantitative-oriented fi rms reported that they completely formal-
ized the integration of qualitative and quantitative information. In these 
cases, everything relevant was built into the system. Firms that both quan-
titatively managed and traditionally managed funds typically reported that 
formalization was implemented in the former but not in the latter.

Virtually all fi rms reported at least a partial automation in the handling 
of qualitative information. For the most part, a fi rst level of automation—
including automatic screening and delivery, classifi cation, and search—is 
provided by suppliers of sell-side research, consensus data, and news. These 
suppliers are automating the delivery of news, research reports, and other 
information.

15Asset management fi rms are subject to other risks, namely, the risk of not fulfi lling 
a client mandate or operational risk. Although important, these risks were outside 
the scope of the survey.
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About 30% of the respondents note they have added functionality over 
and above that provided by third-party information suppliers, typically 
starting with areas easy to quantify such as earnings announcements or ana-
lysts’ recommendations. Some have coupled this with quantitative signals 
that alert recipients to changes or programs that automatically perform an 
initial analysis.

Only the braver will be tackling diffi cult tasks such as automated news 
summary and analysis. For the most part, news analysis was still considered 
the domain of judgment. A few fi rms interviewed for this study reported that 
they attempted to tackle the problem of automatic news analysis, but aban-
doned their efforts. The diffi culty of forecasting price movements related to 
new information was cited as a motivation.

2006 Intertek Study

The next study that we will discuss is based on survey responses and con-
versations with industry representatives in 2006. Although this predates the 
subprime mortgage crisis and the resulting impact on the performance of 
quantitative asset managers, the insights provided by this study are still use-
ful. In all, managers at 38 asset management fi rms managing a total of $4.3 
trillion in equities participated in the study. Participants included individu-
als responsible for quantitative equity management and quantitative equity 
research at large- and medium-sized fi rms in North America and Europe.16 
Sixty-three percent of the participating fi rms were among the largest asset 
managers in their respective countries; they clearly represented the way a 
large part of the industry was going with respect to the use of quantitative 
methods in equity portfolio management.17 

The fi ndings of the 2006 study suggested that the skepticism relative to 
the future of quantitative management at the end of the 1990s had given 
way by 2006 and quantitative methods were playing a large role in equity 
portfolio management. Of the 38 survey participants, 11 (29%) reported 
that more than 75% of their equity assets were being managed quantita-
tively. This includes a wide spectrum of fi rms, with from $6.5 billion to over 
$650 billion in equity assets under management. Another 22 fi rms (58%) 
reported that they have some equities under quantitative management, 
though for 15 of these 22 fi rms the percentage of equities under quantitative 
management was less than 25%—often under 5%—of total equities under 

16The home market of participating fi rms was a follows: 15 from North America (14 
from the United States, 1 from Canada) and 23 from Europe (United Kingdom 7, 
Germany 5, Switzerland 4, Benelux 3, France 2, and Italy 2). 
17Of the 38 participants in this survey, two responded only partially to the 
questionnaire. Therefore, for some questions, there are 36 (not 38) responses.
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management. Five of the 38 participants in the survey (13%) reported no 
equities under quantitative management. 

Relative to the period 2004–2005, the amount of equities under quanti-
tative management was reported to have grown at most fi rms participating 
in the survey (84%). One reason given by respondents to explain the growth 
in equity assets under quantitative management was the fl ows into existing 
quantitative funds. A source at a large U.S. asset management fi rm with 
more than half of its equities under quantitative management said in 2006 
“The fi rm has three distinct equity products: value, growth, and quant. 
Quant is the biggest and is growing the fastest.” 

According to survey respondents, the most important factor contribut-
ing to a wider use of quantitative methods in equity portfolio management 
was the positive result obtained with these methods. Half of the participants 
rated positive results as the single most important factor contributing to 
the widespread use of quantitative methods. Other factors contributing to 
a wider use of quantitative methods in equity portfolio management were, 
in order of importance attributed to them by participants, (1) the compu-
tational power now available on the desk top, (2) more and better data, 
and (3) the availability of third-party analytical software and visualization 
tools. 

Survey participants identifi ed the prevailing in-house culture as the 
most important factor holding back a wider use of quantitative methods 
(this evaluation obviously does not hold for fi rms that can be described as 
quantitative): more than one third (10/27) of the respondents at other than 
quant-oriented fi rms considered this the major blocking factor. This posi-
tive evaluation of models in equity portfolio management in 2006 was in 
contrast with the skepticism of some 10 years early. A number of changes 
have occurred. First, expectations at the time of the study had become more 
realistic. In the 1980s and 1990s, traders were experimenting with method-
ologies from advanced science in the hope of making huge excess returns. 
Experience of the prior 10 years has shown that models were capable of 
delivering but that their performance must be compatible with a well-
functioning market.

More realistic expectations have brought more perseverance in model 
testing and design and have favored the adoption of intrinsically safer mod-
els. Funds that were using hundred fold leverage had become unpalatable 
following the collapse of LTCM (Long Term Capital Management). This, 
per se, has reduced the number of headline failures and had a benefi cial 
impact on the perception of performance results. We can say that models 
worked better in 2006 because model risk had been reduced: simpler, more 
robust models delivered what was expected. Other technical reasons that 
explained improved model performance included a manifold increase in 
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computing power and more and better data. Modelers by 2006 had avail-
able on their desk top computing power that, at the end of the 1980s, could 
be got only from multimillion-dollar supercomputers. Cleaner, more com-
plete data, including intraday data and data on corporate actions/dividends, 
could be obtained. In addition, investment fi rms (and institutional clients) 
have learned how to use models throughout the investment management 
process. Models had become part of an articulated process that, especially 
in the case of institutional investors, involved satisfying a number of differ-
ent objectives, such as superior information ratios.

Changing Role for Models in Equity Portfolio

The 2006 study revealed that quantitative models were now used in active 
management to fi nd sources of excess returns (i.e., alphas), either relative to 
a benchmark or absolute. This was a considerable change with respect to 
the 2003 Intertek European study where quantitative models were reported 
as being used primarily to manage risk and to select parsimonious portfolios 
for passive management. 

Another fi nding of the study was the growing amount of funds man-
aged automatically by computer programs. The once futuristic vision of 
machines running funds automatically without the intervention of a port-
folio manager was becoming a reality on a large scale: 55% (21/38) of the 
respondents reported that at least part of their equity assets were being 
managed automatically with quantitative methods; another three planned 
to automate at least a portion of their equity portfolios within the next 12 
months. The growing automation of the equity investment process suggests 
that there was no missing link in the technology chain that leads to auto-
matic quantitative management. From return forecasting to portfolio forma-
tion and optimization, all the needed elements were in place. Until recently, 
optimization represented the missing technology link in the automation of 
portfolio engineering. Considered too brittle to be safely deployed, many 
fi rms eschewed optimization, limiting the use of modeling to stock ranking 
or risk control functions. Advances in robust estimation  methodologies (see 
Chapter 2) and in optimization (see Chapter 8) now allow an asset manager 
to construct portfolios of hundreds of stocks chosen in universes of thou-
sands of stocks with little or no human intervention outside of supervising 
the models.

Modeling Methodologies and the Industry’s Evaluation

At the end of the 1980s, academics and researchers at specialized quant 
boutiques experimented with many sophisticated modeling methodologies 
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including chaos theory, fractals and multifractals, adaptive programming, 
learning theory, complexity theory, complex nonlinear stochastic models, 
data mining, and artifi cial intelligence. Most of these efforts failed to live 
up to expectations. Perhaps expectations were too high. Or perhaps the re-
sources or commitment required were lacking. Emanuel Derman provides a 
lucid analysis of the diffi culties that a quantitative analyst has to overcome. 
As he observed, though modern quantitative fi nance uses some of the tech-
niques of physics, a wide gap remains between the two disciplines.18

The modeling landscape revealed by the 2006 study is simpler and more 
uniform. Regression analysis and momentum modeling are the most widely 
used techniques: respectively, 100% and 78% of the survey respondents said 
that these techniques were being used at their fi rms. With respect to regres-
sion models used today, the survey suggests that they have undergone a sub-
stantial change since the fi rst multifactor models such as Arbitrage Pricing 
Theory (APT) were introduced. Classical multifactor models such as APT are 
static models embodied in linear regression between returns and factors at 
the same time. Static models are forecasting models insofar as the factors at 
time t are predictors of returns at time behavior t + 1. In these static models, 
individual return processes might exhibit zero autocorrelation but still be 
forecastable from other variables. Predictors might include fi nancial and mac-
roeconomic factors as well as company specifi c parameters such as fi nancial 
ratios. Predictors might also include human judgment, for example, analyst 
estimates, or technical factors that capture phenomena such as momentum. 
A source at a quant shop using regression to forecast returns said,

Regression on factors is the foundation of our model building. 
Ratios derived from fi nancial statements serve as one of the most 
important components for predicting future stock returns. We use 
these ratios extensively in our bottom-up equity model and catego-
rize them into fi ve general categories: operating effi ciency, fi nancial 
strength, earnings quality (accruals), capital expenditures, and ex-
ternal fi nancing activities.

Momentum and reversals were the second most widely diffused modeling 
technique among survey participants. In general, momentum and reversals 
were being used as a strategy, not as a model of asset returns. Momentum 
strategies are based on forming portfolios choosing the highest/lowest 
returns, where returns are estimated on specifi c time windows. Survey par-
ticipants gave these strategies overall good marks but noted that (1) they 
do not always perform so well, (2) they can result in high turnover (though 

18Emanuel Derman, “A Guide for the Perplexed Quant,” Quantitative Finance 1, 
no. 5 (2001), pp. 476–480.
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some were using constraints/penalties to deal with this problem), and (3) 
identifying the timing of reversals was tricky.

Momentum was fi rst reported in 1993 by Jegadeesh and Titman in the 
U.S. market.19 Nine years later, they confi rmed that momentum continued 
to exist in the 1990s in the U.S. market.20 Two years later, Karolyi and Kho 
examined different models for explaining momentum and concluded that 
no random walk or autoregressive model is able to explain the magnitude 
of momentum empirically found;21 they suggested that models with time 
varying expected returns come closer to explaining empirical magnitude of 
momentum. Momentum and reversals are presently explained in the context 
of local models updated in real time. For example, momentum as described 
in the original Jegadeesh and Titman study is based on the fact that stock 
prices can be represented as independent random walks when considering 
periods of the length of one year. However, it is fair to say that there is 
no complete agreement on the econometrics of asset returns that justifi es 
momentum and reversals and stylized facts on a global scale, and not as 
local models. It would be benefi cial to know more about the econometrics 
of asset returns that sustain momentum and reversals.

Other modeling methods that were widely used by participants in the 
2006 study included cash fl ow analysis and behavioral modeling. Seventeen 
of the 36 participating fi rms said that they modeled cash fl ows; behavioral 
modeling was reported as being used by 16 of the 36 participating fi rms.22 
Considered to play an important role in asset predictability, 44% of the 
survey respondents said that they use behavioral modeling to try to cap-
ture phenomena such as departures from rationality on the part of inves-
tors (e.g., belief persistence), patterns in analyst estimates, and corporate 

19Narasimhan Jegadeesh and Sheridan Titman, “Returns to Buying Winners and 
Selling Losers: Implications for Stock Market Effi ciency,” Journal of Finance 48, no. 
1 (1993), pp. 65–92.
20Narasimhan Jegadeesh and Sheridan Titman, “Cross-Sectional and Time-Series 
Determinants of Momentum Returns,” Review of Financial Studies 15, no. 1 (2002), 
pp. 143–158.
21George A. Karolyi and Bong-Chan Kho, “Momentum Strategies: Some Bootstrap 
Tests,” Journal of Empirical Finance 11 (2004), pp. 509–536.
22The term behavioral modeling is often used rather loosely. Full-fl edged behavioral 
modeling exploits a knowledge of human psychology to identify situations where 
investors are prone to show behavior that leads to market ineffi ciencies. The 
tendency now is to call any model behavioral that exploits market ineffi ciency. 
However, implementing true behavioral modeling is a serious challenge; even fi rms 
with very large, powerful quant teams who participated in the survey reported that 
there is considerable work needed to translate departures from rationality into a set 
of rules for identifying stocks as well as entry and exit points for a quantitative stock 
selection process.
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executive investment/disinvestment behavior. Behavioral fi nance is related 
to momentum in that the latter is often attributed to various phenomena of 
persistence in analyst estimates and investor perceptions. A source at a large 
investment fi rm that has incorporated behavioral modeling into its active 
equity strategies commented, 

The attraction of behavioral fi nance is now much stronger than it 
was just fi ve years ago. Everyone now acknowledges that markets 
are not effi cient, that there are behavioral anomalies. In the past, 
there was the theory that was saying that markets are effi cient while 
market participants such as the proprietary trading desks ignored 
the theory and tried to profi t from the anomalies. We are now see-
ing a fusion of theory and practice.

As for other methodologies used in return forecasting, sources cited 
nonlinear methods and cointegration. Nonlinear methods are being used 
to model return processes at 19% (7/36) of the responding fi rms. The non-
linear method most widely used among survey participants is classifi cation 
and regression trees (CART). The advantage of CART is its simplicity and 
the ability of CART methods to be cast in an intuitive framework. A source 
in the survey that reported using CART as a central part of the portfolio 
construction process in enhanced index and longer-term value-based port-
folios said, 

CART compresses a large volume of data into a form which identi-
fi es its essential characteristics, so the output is easy to understand. 
CART is non-parametric—which means that it can handle an in-
fi nitely wide range of statistical distributions—and nonlinear—so 
as a variable selection technique it is particularly good at handling 
higher-order interactions between variables.

Only 11% (4/36) of the respondents reported using nonlinear regime-
shifting models; at most fi rms, judgment was being used to assess regime 
change. Participants identifi ed the diffi culty in detecting the precise timing 
of a regime switch and the very long time series required to estimate shifts 
as obstacles to modeling regime shifts. A survey participant at a fi rm where 
regime-shifting models have been experimented with commented, 

Everyone knows that returns are conditioned by market regimes, but 
the potential for overfi tting when implementing regime-switching 
models is great. If you could go back with fi fty years of data—but 
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we have only some ten years of data and this is not enough to build 
a decent model. 

Cointegration was being used by 19% (7/36) of the respondents. As 
explained in Chapter 3, cointegration models the short-term dynamics 
(direction) and long-run equilibrium (fair value). A perceived plus of coin-
tegration is the transparency that it provides: the models are based on eco-
nomic and fi nance theory and calculated from economic data.

Optimization

Another area where much change was revealed by the 2006 study was opti-
mization. According to sources, optimization was being performed at 92% 
(33/36) of the participating fi rms, albeit in some cases only rarely. Mean 
variance was the most widely used technique among survey participants: it 
was being used by 83% (30/36) of the respondents. It was followed by util-
ity optimization (42% or 15/36) and, robust optimization (25% or 9/36). 
Only one fi rm mentioned that it is using stochastic optimization. 

The wider use of optimization was a signifi cant development compared 
to the 2003 study when many sources had reported that they eschewed opti-
mization: the diffi culty of identifying the forecasting error was behind the 
then widely held opinion that optimization techniques were too brittle and 
prone to error maximization. The greater use of optimization was attributed 
to advances in large-scale optimization coupled with the ability to include 
constraints and robust methods for both estimation and optimization. 
This result is signifi cant as portfolio formation strategies rely on optimiza-
tion. With optimization feasible, the door was open to a fully automated 
investment process. In this context, it is noteworthy that 55% of the survey 
respondents in the 2006 study reported that at least a portion of their equity 
assets is being managed by a fully automated process.

Optimization is the engineering part of portfolio construction and for 
this reason is discussed in Chapters 6, 7, and 8. Most portfolio construction 
problems can be cast in an optimization framework, where optimization is 
applied to obtain the desired optimal risk-return profi le. Optimization is the 
technology behind the current offering of products with specially engineered 
returns, such as guaranteed returns. However, the offering of products with 
particular risk-return profi les requires optimization methodologies that go 
well beyond classical mean-variance optimization. In particular one must be 
able to (1) work with real-world utility functions and (2) apply constraints 
to the optimization process.
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Challenges

The growing diffusion of models is not without challenges. The 2006 survey 
participants noted three: (1) increasing diffi culty in differentiating products; 
(2) diffi culty in marketing quant funds, especially to non-institutional inves-
tors; and (3) performance decay. 

Quantitative equity management has now become so wide spread that a 
source at a long-established quantitative investment fi rm remarked, 

There is now a lot of competition from new fi rms entering the space 
[of quantitative investment management]. The challenge is to contin-
ue to distinguish ourselves from competition in the minds of clients.

With quantitative funds based on the same methodologies and using 
the same data, the risk is to construct products with the same risk-return 
profi le. The head of active equities at a large quantitative fi rm with more 
than a decade of experience in quantitative management remarked in the 
survey, “Everyone is using the same data and reading the same articles: it’s 
tough to differentiate.”

While sources in the survey reported that client demand was behind the 
growth of (new) pure quantitative funds, some mentioned that quantitative 
funds might be something of a hard sell. A source at a medium-sized asset 
management fi rm servicing both institutional clients and high-net worth 
individuals said, 

Though clearly the trend towards quantitative funds is up, quant 
approaches remain diffi cult to sell to private clients: they remain 
too complex to explain, there are too few stories to tell, and they 
often have low alpha. Private clients do not care about high infor-
mation ratios.

Markets are also affecting the performance of quantitative strategies. A 
report by the Bank for International Settlements (2006) noted that this is a 
period of historically low volatility. What is exceptional about this period, 
observes the report, is the simultaneous drop in volatility in all variables: 
stock returns, bond spreads, rates, and so on. While the role of models in 
reducing volatility is unclear, what is clear is that models immediately trans-
late this situation into a rather uniform behavior. Quantitative funds try to 
differentiate themselves either fi nding new unexploited sources of return 
forecastability, for example, novel ways of looking at fi nancial statements, 
or using optimization creatively to engineer special risk-return profi les. 
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A potentially more serious problem is performance decay. Survey par-
ticipants remarked that model performance was not so stable. Firms are 
tackling these problems in two ways. First, they are protecting themselves 
from model breakdown with model risk mitigation techniques, namely by 
averaging results obtained with different models. It is unlikely that all mod-
els break down in the same way in the same moment, so that averaging with 
different models allows asset managers to diversify risk. Second, there is an 
ongoing quest for new factors, new predictors, and new aggregations of fac-
tors and predictors. In the long run, however, something more substantial 
might be required: this is the subject of the chapters ahead.

2007 Intertek Study

The 2007 Intertek study, sponsored by the Research Foundation of the CFA 
Institute, is based on conversations with asset managers, investment con-
sultants, and fund-rating agencies as well as survey responses from 31 asset 
managers in the United States and Europe. In total, 12 asset managers and 
eight consultants and fund-rating agencies were interviewed and 31 manag-
ers with a total of $2.2 trillion in equities under management participated in 
the survey. Half of the participating fi rms were based in the United States; 
half of the participating fi rms were among the largest asset managers in their 
countries. Survey participants included chief investment offi cers of equities 
and heads of quantitative management and/or quantitative research. 

A major question in asset management that this study focused on was if 
the diffusion of quantitative strategies was making markets more effi cient, 
thereby reducing profi t opportunities. The events of the summer of 2007 
which saw many quantitatively managed funds realize large losses brought 
an immediacy to the question. The classical view of fi nancial markets holds 
that market speculators make markets effi cient, hence the absence of profi t 
opportunities after compensating for risk. This view had formed the basis 
of academic thinking for several decades starting from the 1960s. However, 
practitioners had long held the more pragmatic view that a market formed 
by fallible human agents (as market speculators also are) offers profi t oppor-
tunities due to the many small residual imperfections that ultimately result 
in delayed or distorted responses to news.

A summary of the fi ndings of this study are provided next.

Are Model-Driven Investment Strategies Impacting Market Effi ciency and Price Processes?

The empirical question of the changing nature of markets is now receiving 
much academic attention. For example, using empirical data from 1927 to 
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2005, Hwang and Rubesam23 argued that momentum phenomena disap-
peared during the period 2000–2005, while Figelman,24 analyzing the S&P 
500 over the period 1970–2004, found new evidence of momentum and 
reversal phenomena previously not described. Khandani and Lo25 show how 
a mean-reversion strategy that they used to analyze market behavior lost 
profi tability in the 12-year period from 1995 to 2007.

Intuition suggests that models will have an impact on price processes 
but whether models will make markets more effi cient or less effi cient will 
depend on the type of models widely adopted. Consider that there are two 
categories of models, those based on fundamentals and those based on the 
analysis of time series of past prices and returns. Models based on funda-
mentals make forecasts based on fundamental characteristics of fi rms and, 
at least in principle, tend to make markets more effi cient. Models based on 
time series of prices and returns are subject to self-referentiality and might 
actually lead to mispricings. A source at a large fi nancial fi rm that has both 
fundamental and quant processes said, 

The impact of models on markets and price processes is asymmet-
rical. [Technical] model-driven strategies have a less good impact 
than fundamental-driven strategies as the former are often based 
on trend following.

Another source commented, 

Overall quants have brought greater effi ciency to the market, but 
there are poor models out there that people get sucked into. Take 
momentum. I believe in earnings momentum, not in price momen-
tum: it is a fool buying under the assumption that a bigger fool will 
buy in the future. Anyone who uses price momentum assumes that 
there will always be someone to take the asset off your hands—a 
fool’s theory. Studies have shown how it is possible to get into a 
momentum-type market in which asset prices get bid up, with ev-
eryone on the collective belief wagon.

The question of how models impact the markets—making them more 
or less effi cient—depends on the population of specifi c models. As long as 

23Soosung Hwang and Alexandre Rubesam, “The Disappearance of Momentum” 
(November 7, 2008). Available at SSRN: http://ssrn.com/abstract=968176. 
24Ilya Figelman, “Stock Return Momentum and Reversal,” Journal of Portfolio 
Management 34 (2007), pp. 51–69.
25Amir E. Khandani and Andrew W. Lo, “What Happened to the Quants in August 
2007,” Journal of Investment Management 5 (2007), pp. 29–78.
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models based on past time series of prices and returns (i.e., models that are 
trend followers) are being used, it will not be possible to assume that models 
make markets more effi cient. Consider that it is not only a question of how 
models compete with each other but also how models react to exogenous 
events and how models themselves evolve. For example, a prolonged period 
of growth will produce a breed of models different from models used in 
low-growth periods.

Performance Issues

When the 2006 Intertek study was conducted on equity portfolio modeling 
in early 2006, quantitative managers were very heady about performance. 
By mid-2007, much of that headiness was gone. By July–August 2007, there 
was much perplexity. 

Many participants in the 2007 Intertek study attributed the recent poor 
performance of many quant equity funds to structural changes in the mar-
ket. A source at a large fi nancial fi rm with both fundamental and quantita-
tive processes said, 

The problem with the performance of quant funds [since 2006] is 
that there was rotation in the marketplace. Most quants have a 
strong value bias so they do better in a value market. The period 
1998–1999 was not so good for quants as it was a growth market; 
in 2001–2005 we had a value market so value-tilted styles such as 
the quants were doing very well. In 2006 we were back to a growth 
market. In addition, in 2007, spreads compressed. The edge quants 
had has eroded.

One might conclude that if markets are cyclical, quant outperformance 
will also be cyclical. A leading investment consultant who participated in 
the survey remarked, 

What is most successful in terms of producing returns—quant or 
fundamental—is highly contextual: there is no best process, quant 
or fundamental. Quants are looking for an earnings-quality compo-
nent that has dissipated in time. I hate to say it but any manager has 
to have the wind behind its strategies, favoring the factors.

Speaking in August 2007, the head of active quantitative research at a 
large international fi rm said, 
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It has been challenging since the beginning of the year. The problem 
is that fundamental quants are stressing some quality—be it value 
or growth—but at the beginning of the year there was a lot of activ-
ity of hedge funds, much junk value, much froth. In addition there 
was a lot of value-growth style rotation, which is typical when there 
is macro insecurity and interest rates go up and down. The growth 
factor is better when rates are down, the value factor better when 
rates are up. Fundamental quants could not get a consistent expo-
sure to factors they wanted to be exposed to. 

Another source said, “We tried to be balanced value-growth but the biggest 
danger is rotation risk. One needs a longer-term view to get through mar-
ket cycles.” The CIO of equities at a large asset management fi rm added, 
“Growth and value markets are cyclical and it is hard to get the timing 
right.”

The problem of style rotation (e.g., value versus growth) is part of the 
global problem of adapting models to changing market conditions. Value 
and growth represent two sets of factors, both of which are captured, for 
example, in the Fama–French three-factor model.26 But arguably there are 
many more factors. So factor rotation is more than just a question of value 
and growth markets. Other factors such as momentum are subject to the 
same problem; that is to say, one factor prevails in one market situation and 
loses importance in another and is replaced by yet another factor(s).

Other reasons were cited to explain why the performance of quantita-
tive products as a group has been down since 2006. Among these is the 
fact that there were now more quantitative managers using the same data, 
similar models, and implementing similar strategies. A source at a fi rm that 
has both quant and fundamental processes said, 

Why is performance down? One reason is because many more peo-
ple are using quant today than three, fi ve years ago. Ten years ago 
the obstacles to entry were higher: data were more diffi cult to ob-
tain, models were proprietary. Now we have third-party suppliers 
of data feeds, analytics, and back-testing capability.

A consultant concurred, 

The next 12 to 24 months will be tough for quants for several rea-
sons. One problem is … the ease with which people can now buy 
and manipulate data. The problem is too many people are running 

26Eugene F. Fama and Kenneth R. French, “Common Risk Factors and the Returns 
on Stocks and Bonds,” Journal of Financial Economics, 47 (1993), pp. 427–465.

c01-Intro.indd   28c01-Intro.indd   28 1/6/10   11:25:36 AM1/6/10   11:25:36 AM



Introduction  29

similar models so performance decays and it becomes hard to stay 
ahead. Performance is a genuine concern.

Still another source said, 

Quant performance depends on cycles and the secular trend but 
success breeds its own problems. By some estimates there are $4 
trillion in quantitative equity management if we include passive, 
active, hedge funds, and proprietary desks. There is a downside to 
the success of quants. Because quants have been so successful, if a 
proprietary desk or a hedge fund needs to get out of a risk, they 
can’t. Then you get trampled on as others have more to sell than 
you have to buy. The business is more erratic because of the sheer 
size and needs of proprietary desks and hedge funds whose clients 
hold 6 to 12 months against six years for asset managers.

However, not all sources agreed that the fact that quantitative managers 
are using the same data and/or similar models entails a loss of performance. 
One source said, 

Though all quants use the same data sources, I believe that there is 
a difference in models and in signals. There are details behind the 
signals and in how you put them together. Portfolio construction is 
one very big thing.

Another source added,

All quants use similar data but even minor differences can lead to 
nontrivial changes in valuation. If you have 15 pieces of informa-
tion, different sums are not trivial. Plus if you combine small dif-
ferences in analytics and optimization, the end result can be large 
differences. There is not one metric but many metrics and all are 
noisy.

Investment consultants identifi ed risk management as among the big-
gest pluses for a quantitative process. According to one source, 

Quantitative managers have a much greater awareness of risk. They 
are attuned to risk in relation to the benchmark as well as to sys-
temic risk. Fundamental managers are often not aware of concen-
tration in, for example, factors or exposure.
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In view of the performance issues, survey participants were asked if they 
believed that quantitative managers were fi nding it increasingly diffi cult to 
generate excess returns as market ineffi ciencies were exploited. Just over 
half agreed while 32% disagreed and 16% expressed no opinion. When the 
question was turned around, 73% of the survey participants agreed that, 
though profi t opportunities would not disappear, quantitative managers 
would fi nd it increasingly hard to exploit them. One source remarked, 

Performance is getting harder to wring out not because everyone is 
using the same data and similar models, but because markets are 
more effi cient. So we will see Sharpe ratios shrink for active returns. 
Managers will have to use more leverage to get returns. The prob-
lem is more acute for quant managers as all quant positions are 
highly correlated as they all use book to price; fundamental manag-
ers, on the other hand, differ on the evaluation of future returns’.

When asked what market conditions were posing the most serious 
challenge to a quantitative approach in equity portfolio management, sur-
vey respondents ranked in order of importance on a scale from one to fi ve 
the rising correlation level, style rotation, and insuffi cient liquidity. Other 
market conditions rated important were a fundamental market shift, high 
(cross sector) volatility and low (cross) volatility. Felt less important were 
the impact of the dissipation of earnings and non-trending markets.

In their paper on the likely causes of the summer 2007 events, Khandani 
and Lo27 note the sharp rise in correlations over the period 1998–2007. 
They observe that this rise in correlations refl ects a much higher level of 
interdependence in fi nancial markets. This interdependence is one of the 
factors responsible for the contagion from the subprime mortgage crisis to 
the equity markets in July–August 2007. When problems began to affect 
equity markets, the liquidity crisis started. Note that liquidity is a word 
that assumes different meanings in different contexts. In the study, liquidity 
refers to the possibility of fi nding buyers and thus to the possibility of dele-
veraging without sustaining heavy losses. One CIO commented, 

Everyone in the quant industry is using the same factors [thus creat-
ing highly correlated portfolios prone to severe contagion effects]. 
When you need to unwind, there is no one there to take the trade: 
Quants are all children of Fama and French. Lots of people are us-
ing earnings revision models.

27Khandani and Lo, “What Happened to the Quants in August 2007?”
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Another source remarked, “Because quants have been so successful, if you 
need to get out of a risk for whatever reason, you can’t get out. This leads 
to a liquidity sell-off.”

Specifi c to recent market turmoil, participants identifi ed the unwinding 
of long–short positions by hedge funds as by far the most important factor 
contributing to the losses incurred by some quant equity fi nds in the sum-
mer of 2007. One source said wryly, “Everyone is blaming the quants; they 
should be blaming the leverage.”

Improving Performance

As it was becoming increasingly diffi cult to deliver excess returns, many 
quant managers had turned to using leverage in an attempt to boost perfor-
mance—a strategy most sources agreed was quite risky. The events of the 
summer of 2007 were to prove them right. Given the performance issues, 
survey participants were asked what they were likely to do to try to improve 
performance. 

The search to identify new and/or unique factors was the most fre-
quently cited strategy and complementary to it, the intention to employ new 
models. A CIO of equities said, 

Through the crisis of July–August 2007, quant managers have 
learned which of their factors are unique and will be focusing on 
what is unique. There will be a drive towards using more propri-
etary models, doing more unique conceptual work. But it will be 
hard to get away from fundamental concepts: you want to hold 
companies that are doing well and do not want to pay too much 
for them.

As for the need to employ new models, the global head of quantitative 
strategies at a large fi nancial group remarked, 

Regression is the art of today’s tool kit. To get better performance, 
we will have to enlarge the tool kit and add information and dy-
namic and static models. People are always changing things; maybe 
we will be changing things just a bit quicker.

Other strategies to improve performance given by the 2007 survey par-
ticipants included attempts to diversify sources of business information and 
data. As one investment consultant said, 
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All quant managers rely on the same set of data but one cannot 
rely on the same data and have an analytical edge; it is a tough sell. 
Quant managers need an informational edge, information no one 
else has or uses. It might be coming out of academia or might be 
information in the footnotes of balance sheet data or other infor-
mation in the marketplace that no one else is using. 

Just over 60% of the survey participants agreed that, given that every-
one is using the same data and similar models, quantitative managers need 
a proprietary informational edge to outperform. Sources mentioned that 
some hedge fund managers now have people in-house on the phone, doing 
proprietary market research on fi rms. 

Opinions among survey respondents diverged as to the benefi ts to be 
derived from using high-frequency (up to tick-by-tick) data. Thirty-eight 
percent of the participants believed that high-frequency data can give an 
informational edge in equity portfolio management while 27% disagreed 
and 35% expressed no opinion. It is true that there was still only limited 
experience with using high-frequency data in equity portfolio management 
at the time of the survey. One source remarked, “Asset managers now have 
more frequent updates, what was once monthly is now daily with services 
such as WorldScope, Compustat, Market QA, Bloomberg, or Factset. But 
the use of intraday data is still limited to the trading desk.”

Fund Flows

Estimates of how much was under management in active quant strategies 
in 2007 vary from a few hundred million dollars to over $1 trillion. In a 
study that compared cumulative net fl ows in U.S. large cap quantitative and 
“other” products as a percentage of total assets during the 36-month period 
which coincided with the 2001–2005 value market, Casey, Quirk and As-
sociates28 found that assets grew 25% at quantitative funds and remained 
almost fl at for other funds. A co-author of that study commented, 

What we have seen in our studies, which looked at U.S. large cap 
funds, is that since 2004 investors have withdrawn money from 
the U.S. large cap segment under fundamental managers but active 
quants have held on to their assets or seen them go up slightly.

28Casey, Quirk and Associates, “The Geeks Shall Inherit the Earth?” November 
2005.
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Addressing the question of net fl ows into quantitatively managed equity 
funds before July–August 2007, a source at a leading investment consul-
tancy said,

There has been secular growth for quant equity funds over the past 
20 or so years, fi rst into passive quant and, over the past 12–36 
months, into active quant given their success in the past value mar-
ket. Right now there is about an 80/20 market split between funda-
mental and active quant management. If active quants can continue 
their strong performance in a growth market which I think we are 
now in, I can see the percentage shift over the next three years to 
75/25 with active quant gaining a few points every year.

Despite the high-profi le problems at some long–short quantitative man-
aged funds during the summer of 2007, 63% of the respondents indicated 
that they were optimistic that, overall, quantitatively managed equity funds 
will continue to increase their market share relative to traditionally managed 
funds, as more fi rms introduce quantitative products and exchange-traded 
funds (ETFs) give the retail investor access to active quant products. How-
ever, when the question was reformulated, that optimism was somewhat 
dampened. Thirty-nine percent of the survey participants agreed that overall 
quantitatively managed funds would not be able to increase their market 
share relative to traditionally managed funds for the year 2007 while 42% 
disagreed.

Many consultants who were interviewed for the study just before the 
July–August 2007 market turmoil were skeptical that quantitative managers 
could continue their strong performance. These sources cited performance 
problems dating back to the year 2006. 

Lipper tracks fl ows of quantitative and non-quantitative funds in four 
equity universes: large cap, enhanced index funds, market neutral, and long-
short funds. The Lipper data covering the performance of quantitatively and 
nonquantitatively driven funds in the three-year period 2005-2007 showed 
that quant funds underperformed in 2007 in all categories except large 
cap—a reversal of performance from 2005 and 2006 when quant manag-
ers were outperforming nonquantitative managers in all four categories. 
However, Lipper data are neither risk adjusted nor fee adjusted and the 
sampling of quant funds in some categories is small. For the period Janu-
ary 2005–June 2008, according to the Lipper data, long-only funds—both 
quant and nonquant—experienced a net outfl ow while all other categories 
experienced net infl ows—albeit at different rates—with the exception of 
nonquant market neutral funds. The differences (as percentages) between 
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quant and non-quant funds were not very large but quant funds exhibited 
more negative results. 

In view of the preceding, the survey participants were asked if, given 
the poor performance of some quant funds in the year 2007, they thought 
that traditional asset management fi rms that have diversifi ed into quanti-
tative management would be reexamining their commitment. Nearly one 
third agreed while 52% disagreed (16% expressed no opinion). Those that 
agreed tended to come from fi rms at which equity assets under management 
represent less than 5% of all equities under management or where there is a 
substantial fundamental overlay to the quantitative process.

The head of quantitative equity at a large traditional manager said, 

When the fi rm decided back in the year 2000 to build a quant 
business as a diversifi er, quant was not seen as a competitor to 
fundamental analysis. The initial role of quant managers was one 
of being a problem solver, for 130/30-like strategies or whereever 
there is complexity in portfolio construction. If quant performance 
is down, the fi rm might reconsider its quant products. Should they 
do so, I would expect that the fi rm would keep on board some 
quants as a support to their fundamental business.

Quantitative Processes, Oversight, and Overlay 

Let’s defi ne what we mean by a quantitative process. Many traditionally 
managed asset management fi rms now use some computer-based, statistical 
decision-support tool and do some risk modeling. The study referred to an 
investment process as fundamental (or traditional) if it is performed by a 
human asset manager using information and judgment, and quantitative if 
the value-added decisions are made primarily in terms of quantitative out-
puts generated by computer-driven models following fi xed rules. The study 
referred to a process as being hybrid if it uses a combination of the two. An 
example of the latter is a fundamental manager using a computer-driven 
stock-screening system to narrow his or her portfolio choices.

Among participants in the study, two-thirds had model-driven processes 
allowing only minimum (5%–10%) discretion or oversight, typically to 
make sure that numbers made sense and that buy orders were not issued for 
fi rms that were the subject of news or rumors not accounted for by the mod-
els. Model oversight was considered a control function. This oversight was 
typically exercised when large positions were involved. A head of quantita-
tive equity said, “Decision-making is 95% model-driven, but we will look at 
a trader’s list and do a sanity check to pull a trade if necessary.”
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Some fi rms indicated that they had automated the process of checking if 
there are exogenous events that might affect the investment decisions. One 
source said, 

Our process is model driven with about 5% oversight. We ask our-
selves: “Do the numbers make sense?” and do news scanning and 
fl agging using in-house software as well as software from a pro-
vider of business information. 

This comment underlines one of the key functions of judgmental overlays: 
the consideration of information with a bearing on forecasts that does not 
appear yet in the predictors. This information might include, for example, 
rumors about important events that are not yet confi rmed, or facts hidden in 
reporting or news releases that escape the attention of most investors.

Fundamental analysts and managers might have sources of information 
that can add to the information that is publicly available. However, there 
are drawbacks to a judgmental approach to information gathering. As one 
source said, “An analyst might fall in love with the Chief Financial Offi cer 
of a fi rm, and lose his objectivity.” 

Other sources mentioned using oversight in the case of rare events such 
as those of July–August 2007. The head of quantitative management at a 
large fi rm said, 

In situations of extreme market events, portfolio managers talk 
more to traders. We use Bayesian learning to learn from past events 
but, in general, dislocations in the market are hard to model.”

Bayesian priors are a disciplined way to integrate historical data and a man-
ager’s judgment in the model.

Another instance of exercising oversight is in the area of risk. One source 
said, “The only overlay we exercise is on risk, where we allow ourselves a 
small degree of freedom, not on the model.”

The key question is: Is there a best way to comingle judgment and 
models? Each of these presents pitfalls. Opinions among participants in the 
2007 Intertek study differed as to the advantage of commingling models 
and judgment and ways that it might be done. More than two-thirds of the 
survey participants (68%) disagreed with the statement that the most effec-
tive equity portfolio management process combines quantitative tools and 
a fundamental overlay; only 26% considered that a fundamental overlay 
adds value. Interestingly, most investment consultants and fund-rating fi rms 
interviewed for the study shared the appraisal that adding a fundamental 
overlay to a quantitative investment process did not add value.
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A source at a large consultancy said, 

Once you believe that a model is stable, effective over a long time, 
it is preferable not to use human overlay as it introduces emotion, 
judgment. The better alternative to human intervention is to arrive 
at an understanding of how to improve model performance and 
implement changes to the model.

Some sources believed that a fundamental overlay had value in extreme 
situations, but not everyone agreed. One source said, 

Overlay is additive and can be detrimental, oversight is neither. It 
does not alter the quantitative forecast but implements a reality 
check. In market situations such as of July–August 2007, overlay 
would have been disastrous. The market goes too fast and takes on 
a crisis aspect. It is a question of intervals.

Among the 26% who believed that a fundamental overlay does add 
value, sources cited the diffi culty of putting all information in the models. A 
source that used models for asset managers said, 

In using quant models, there can be data issues. With a fundamen-
tal overlay, you get more information. It is diffi cult to convert all 
fundamental data, especially macro information such as the yen/
dollar exchange rate, into quant models.

A source at a fi rm that is using a fundamental overlay systematically 
said, 

The question is how you interpret quantitative outputs. We do a 
fundamental overlay, reading the 10-Qs and the 10-Ks and the 
footnotes, plus looking at, for example, increases in daily sales in-
voices. I expect that we will continue to use a fundamental overlay: 
it provides a common-sense check. You cannot ignore real-world 
situations.

In summary, overlays and human oversight in model-driven strategies 
can be implemented in different ways. First, as a control function, oversight 
allows managers to exercise judgment in specifi c situations. Second, human 
judgment might be commingled with a model’s forecasts. 
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Implementing a Quant Process

The 2007 survey participants were asked how they managed the model 
building and back-testing process. One-fourth of the participants said that 
their fi rms admitted several processes. For example, at 65% of the sources, 
quantitative models are built and back-tested by the asset manager him/her-
self; at 39% quantitative models are built and back-tested by the fi rm’s cen-
tral research center. More rarely, at 23% models might also be built by the 
corporate research center to the specifi cations of the asset manager, while at 
16% models might also be built by the asset manager but are back-tested by 
the research center.29

Some sources also cited a coming together of quantitative research and 
portfolio management. Certainly this is already the case at some of the larg-
est quantitative players that began in the passive quantitative arena, where, 
as one source put it, “the portfolio manager has Unix programming skills 
as a second nature.”

The need to continuously update models was identifi ed by sources as 
one of the major challenges to a quantitative investment process. A consul-
tant to the industry remarked, 

The specifi cs of which model each manager uses is not so important 
as long as management has a process to ensure that the model is al-
ways current, that as a prism for looking at the universe the model 
is relevant, that it is not missing anything. One problem in the U.S. 
in the 1980s–90s was that models produced spectacular results for 
a short period of time and then results decayed. The math behind 
the models was static, simplistic, able to capture only one trend. 
Today, quants have learned their lesson; they are paranoid about 
the need to do a constant evaluation to understand what’s working 
this year and might not work next year. The problem is one of cap-
turing the right signals and correctly weighting them when things 
are constantly changing.

The need to sustain an on-going effort in research was cited by invest-
ment consultants as determinant in manager choices. One consultant said, 

When quant performance decays it is often because the manager 
has grown complacent and then things stop working. When we 
look at a quant manager, we ask: can they continue to keep doing 
research?

29The percentages do not add to 100 because events overlap.
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One way to ensure that models adapt to the changing environment is to 
use adaptive modeling techniques. One quantitative manager said, 

You cannot use one situation, one data set in perpetuity. For consis-
tently good performance, you need new strategies, new factors. We 
use various processes in our organization, including regime-shifting 
adaptive models. The adaptive model draws factors from a pool 
and selects variables that change over time.

The use of adaptive models and of strategies that can self-adapt to 
changing market conditions is an important research topic. From a math-
ematical point of view, there are many tools that can be used to adapt mod-
els. Among these is a class of well-known models with hidden variables, 
including state-space models, hidden Markov models, or regime-shifting 
models. These models have one or more variables that represent different 
market conditions. The key challenge is estimation: the ability to identify 
regime shifts suffi ciently early calls for a rich regime structure, but estimat-
ing a rich regime shifting model calls for a very large data sample—some-
thing we rarely have in fi nance.

The survey participants were asked if they thought that quantitative-
driven equity investment processes were moving towards full automation. 
By a fully automated quant investment process we intend a process where 
investment decisions are made by computers with little or no human inter-
vention. An automated process includes the input of data, production of 
forecasts, optimization/portfolio formation, oversight, and trading. Among 
those expressing an opinion, as many believed that quantitative managers 
are moving toward full automation (38%) as not (38%). Industry observers 
and consultants also had diffi culty identifying a trend. One source remarked, 
“There are all degrees of automation among quants and we see no obvious 
trend either towards or away from automation.” It would appear that we 
will continue to see a diversity in management models. This diversity is due 
to the fact that there is no hard science behind quantitative equity invest-
ment management; business models refl ect the personalities and skill sets 
inside an organization.

Obstacles to full automation are not due to technical shortcomings. As 
noted earlier, there are presently no missing links in the automation chain 
going from forecasting to optimization. Full automation is doable but suc-
cessful implementation depends on the ability to link seamlessly a return 
forecasting tool with a portfolio formation strategy. Portfolio formation 
strategies can take the form of full optimization or might be based on some 
heuristics with constraints.
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The progress of full automation will ultimately depend on performance 
and investor acceptance. Consultants that interviewed for this study were 
divided in their evaluation of the advisability of full automation. One source 
said, “All things being equal, I actually prefer a fully automated process 
once you believe that a model is stable, effective over a long time.” How-
ever, in a divergent view, another consultant said, “I am not keen on fully 
automated processes. I like to see human intervention, interaction before 
and after optimization, and especially before trading.”

Risk Management

The events of July–August 2007 highlighted once more that quantitative-
ly managed funds can be exposed to the risk of extreme events (i.e., rare 
large—often adverse—events). Fundamentally managed funds are also ex-
posed to the risk of extreme events, typically of a more familiar nature such 
as a market crash or a large drop in value of single fi rms or sectors. A 
head of quantitative management remarked, “There are idiosyncratic risks 
and systemic risks. Fundamental managers take idiosyncratic risk while the 
quants look at the marginal moves, sometimes adding leverage.”

There seems to be a gap between state-of-the-art risk management and 
the practice of fi nance. At least, this is what appears in a number of state-
ments made after the summer of 2007 that attributed losses to multi-sigma 
events in a Gaussian world. It is now well known that fi nancial phenomena 
do not follow normal distributions and that the likelihood of extreme events 
is much larger than if they were normally distributed. Financial phenomena 
are governed by fat-tailed distributions. The fat-tailed nature of fi nancial 
phenomena has been at the forefront of research in fi nancial econometrics 
since the 1990s. Empirical research has shown that returns are not normal 
and most likely can be represented as fat-tailed processes. 

Facts like this have an important bearing on the distribution of returns of 
dynamic portfolios. Consequently, the 2007 study asked survey participants 
if they believed that the current generation of risk models had pitfalls that 
do not allow one to properly anticipate risks such as those of July–August 
2007. Just over two-thirds of the survey respondents evaluated agreed that, 
because today’s risk models do not take into consideration global systemic 
risk factors, they cannot predict events such as those of July–August 2007. 
One source commented,

Risk management models work only under benign conditions and 
are useless when needed. We use two risk methods, principal com-
ponent analysis and rare (six-sigma) events, and risk models from 
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MSCI Barra and Northfi eld. But the risk models are mis-specifi ed: 
most pairs of stocks have high correlations. 

Another source added, 

There are estimation errors in everything, including in risk models. 
You know that they will fail, so we add heuristics to our models. 
Risk models do not cover downside risk but they do help control 
it. Studies have shown that risk models do improve the information 
ratio.

The growing use of derivatives in equity portfolio management is add-
ing a new type of risk. One source commented, 

The derivatives markets are susceptible to chaos; they overheat 
compared to normal markets. Derivatives contracts are complex 
and no one knows how they will behave in various scenarios. In 
addition, there is credit risk/counterparty risk dealing with entities 
such as Sentinel—not a Wall Street fi rm—that can go with a puff of 
smoke. Their going under was blamed on the subprime crisis but it 
was fraud. 

Sixty-three percent of the survey participants agreed that the deriva-
tive market is a market driven by its own supply and demand schedule and 
might present risk that is not entirely explained in terms of the underlying.

Why Implement a Quant Process?

According to survey respondents, three main objectives were behind the 
decision to adopt (at least partially) a quantitative-based equity investment 
process: tighter risk control, more stable returns, and better overall per-
formance. The profi le of a fi rm’s founder(s) and/or the prevailing in-house 
culture were correlated in that they provided the requisite environment.

Other major objectives reported behind the decision to implement a 
quantitative equity investment process include diversifi cation in general 
or in terms of new products such as 130/30-type strategies and scalability, 
including the ability to scale to different universes. Relative to the diversi-
fi cation in a global sense, a source at a large asset management fi rm with a 
small quant group said, 
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An important motivating factor is diversifi cation of the overall 
product lineup performance. Management believes that quant and 
fundamental products will not move in synch.

As for the ability to offer new products such as the long–short strate-
gies, a source at a sell-side fi rm modeling for the buy side remarked, 

We are seeing a lot of interest by fi rms known for being fundamen-
tal and that now want to introduce quant processes in the form of 
screens or other. These fi rms are trying to get into the quant space 
and it is the 130/30-type product that is pushing into this direc-
tion.

It was generally believed that quantitatively managed funds outperform 
fundamental managers in the 130/30-type arena. The ability to back-test 
the strategy was cited as giving quantitatively managed funds the edge. A 
manager at a fi rm that offers both fundamental and quantitative products 
said, “Potential clients have told us that new products such as the 130/30 
strategies are more believable with extensive quant processes and testing 
behind them.”

More generally, sources believed that quantitative processes give an 
edge whenever there is a complex problem to solve. An investment consul-
tant remarked,

Quant has an advantage when there is an element of fi nancial en-
gineering. The investment process is the same but quant adds value 
when it comes to picking components and coming up with products 
such as the 130/30.

Another source added, 

A quant process brings the ability to create structured products. 
In the U.S., institutional investors are using structured products in 
especially fi xed income and hedge funds. Given the problem of ag-
ing, I would expect more demand in the future from private inves-
tors who want a product that will give them an income plus act as 
an investment vehicle, such as a combination of an insurance-type 
payout and the ability to decompose and build up.

As for scalability, a consultant to the industry remarked, 
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One benefi t a quantitative process brings to the management fi rms 
is the ability to apply a model quickly to a different set of stocks. 
For example, a fi rm that had been applying quant models to U.S. 
large cap also tested these models on 12–15 other major markets 
in the backroom. Once they saw that the models had a successful 
in-house track record in different universes, they began to commer-
cialize these funds.

Among survey participants, the desire to stabilize costs, revenues, and 
performance or to improve the cost/revenues ratio were rated relatively low 
as motivating factors to introduce quantitative processes. But one source 
at a large asset management fi rm said that stabilizing costs, revenues, and 
performance was an important factor in the fi rm’s decision to embrace a 
quantitative process. According to this source, “Over the years, the fi rm has 
seen great consistency in a quant process: fees, revenues, and costs are all 
more stable, more consistent than with a fundamental process.”

Bringing management costs down was rated by participants as the 
weakest factor behind the drive to implement a quantitative-driven equity 
investment process. A source at a large asset management fi rm with a small 
quantitative group said, 

Has management done a cost/benefi t analysis of quant versus 
fundamental equity investment management process? Not to my 
knowledge. I was hired a few years ago to start up a quant process. 
But even if management had done a cost/benefi t analysis and found 
quant attractive, it would not have been able to move into a quant 
process quickly. The average institutional investor has a seven-man 
team on the fund. If you were to switch to a two-man quant team, 
80% of the clients would go away. Management has to be very 
careful; clients do not like to see change.

Barriers to Entry

The 2007 study concluded with an investigation of the barriers to entry in 
the business. Seventy-seven percent of the survey respondents believed that 
the active quantitative arena will continue to be characterized by the domi-
nance of a few large players and a large number of small quant boutiques. 
Only 10% disagreed.

Participants were asked to rate a number of factors as barriers to new 
entrants into the quant equity investment space. The most important barrier 
remained the prevailing in-house culture. While one source at a fundamental-
oriented fi rm said that very few fi rms are seriously opposed to trying to add 
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discipline and improve performance by applying some quant techniques, the 
problem is that it is not so easy to change an organization. 

A source at a large international investment consultancy commented, 

For a fi rm that is not quant-endowed, it is diffi cult to make the shift 
from individual judgment to a quant process. Those that have been 
most successful in terms of size in the active quant arena are those 
that began in passive quant. They chose passive because they under-
stood it would be easier for a quantitative process to perform well 
in passive as opposed to active management. Most of these fi rms 
have been successful in their move to active quant management.

A source at a large fi rm with fundamental and quant management styles 
said, 

Can a fi rm with a fundamental culture go quant? It is doable but 
the odds of success are slim. Fundamental managers have a differ-
ent outlook and these are diffi cult times for quants.

Diffi culty in recruiting qualifi ed persons was rated the second most 
important barrier while the cost of qualifi ed persons was considered less 
of a barrier. Next was the diffi culty in gaining investor confi dence and the 
entrenched position of market leaders. An industry observer remarked, 

What matters most is the investment culture and market credibility. 
If an investor does not believe that the manager has quant as a core 
skill, the manager will not be credible in the arena of quant prod-
ucts. There is the risk that the effort is perceived by the investor as 
a backroom effort with three persons, understaffed, and undercom-
mitted.

Among the selling points, participants (unsurprisingly) identifi ed alpha 
generation as the strongest selling point for quant funds, followed by the 
disciplined approach and better risk management. Lower management and 
trading costs and a statistics-based stock selection process were rated lowest 
among the suggested selling points.

Survey participants were also asked to rate factors holding back invest-
ment in active quant equity products. A lack of understanding of quant pro-
cesses by investors and consultants was perceived to be the most important 
factor holding back investments in active quant products. As one quantita-
tive manager at an essentially fundamental fi rm noted, “Quant products are 
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unglamorous. There are no ‘story’ stocks to tell, so it makes it a hard sell for 
consultants to their clients.”

The need to educate consultants and investors alike, in an effort to gain 
their confi dence, was cited by several sources as a major challenge going 
forward. Educating investors might require more disclosure about quant 
processes. At least that was what just under half of the survey participants 
believed, while one-fourth disagree and one-fourth have no opinion.

One CIO of equities who believes that greater disclosure will be required 
remarked, 

Following events of this summer [i.e., July–August 2007], quants 
will need to be better on explaining what they do and why it ought 
to work. They will need to come up with a rationale for what they 
are doing. They will have to provide more proof-of-concept state-
ments.

However, among the sources that disagreed, the CIO of equities at another 
fi rm said, 

One lesson from the events of July–August 2007 is that we will be 
more circumspect when describing what we are doing. Disclosing 
what one is doing can lead to others replicating the process and 
thus a reduction of profi t opportunities.

Lack of stellar performance was rated a moderately important factor in 
holding back investments in quantitative funds. Lack of stellar performance 
is balanced by a greater consistency in performance. A source at a fund rat-
ing service said, “Because quant funds are broadly diversifi ed, returns are 
watered down. Quants do not hit the ball out of the park, but they deliver 
stable performance.” The ability to deliver stable if not stellar performance 
can, of course, be turned into a major selling point.

Quantitative managers cite how Oakland Athletics’ manager Billy Beane 
improved his team’s performance using sabermetrics, the analysis of base-
ball through objective (i.e., statistical) evidence. Beane’s analysis led him 
to shifting the accent from acquiring players who hit the most home runs 
to acquiring players with the most consistent records of getting on base.30 
Interestingly, Beane is credited with having made the Oakland Athletics the 
most cost-effective team in baseball though winning the American League 
Championship Series has proved more elusive.

30As reported in Michael Lewis, Moneyball: The Art of Winning an Unfair Game 
(New York: Norton, 2003). 
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LOOKING AHEAD FOR QUANTITATIVE EQUITY INVESTING

The studies we have just discussed suggested challenges that participants 
see in implementing quantitative strategies. We can see a number of ad-
ditional challenges. Robust optimization, robust estimation, and the in-
tegration of the two are probably on the research agenda of many fi rms. 
As asset management fi rms strive to propose innovative products, robust 
and fl exible optimization methods will be high on the R&D agenda. In 
addition, as asset management fi rms try to offer investment strategies to 
meet a stream of liabilities (i.e., measured against liability benchmarking), 
multistage stochastic optimization methods will become a priority for fi rms 
wanting to compete in this arena. Pan, Sornette, and Kortanek call “Intel-
ligent Finance” the new fi eld of theoretical fi nance at the confl uence of dif-
ferent scientifi c disciplines.31 According to them, the theoretical framework 
of intelligent fi nance consists of four major components: (1) fi nancial infor-
mation fusion, (2) multilevel stochastic dynamic process models, (3) active 
portfolio and total risk management, and (4) fi nancial strategic analysis.

Modelers are facing the problem of performance decay that is the con-
sequence of a wider use of models. Classical fi nancial theory assumes that 
agents are perfect forecasters in the sense that they know the stochastic 
processes of prices and returns. Agents do not make systematic predictable 
mistakes: their action keeps the market effi cient. This is the basic idea under-
lying rational expectations and the intertemporal models of Merton.32

Practitioners (and now also academics) have relaxed the hypothesis of 
the universal validity of market effi ciency; indeed, practitioners have always 
being looking for asset mispricings that could produce alpha. As we have 
seen, it is widely believed that mispricings are due to behavioral phenomena, 
such as belief persistence. This behavior creates biases in agent evaluations—
biases that models attempt to exploit in applications such as momentum 
strategies. However, the action of models tends to destroy the same sources 
of profi t that they are trying to exploit. This fact receives specifi c attention 
in applications such as measuring the impact of trades. In almost all cur-
rent implementations, measuring the impact of trades means measuring the 
speed at which models constrain markets to return to an unprofi table effi -
ciency. To our knowledge, no market impact model attempts to measure the 
opposite effect, that is, the eventual momentum induced by a trade.

It is reasonable to assume that the diffusion of models will reduce the 
mispricings due to behavioral phenomena. However, one might reasonably 

31Heping Pan, Dider Sornette, and Kenneth Kortanek, “Intelligent Finance—An 
Emerging Direction.” Quantitative Finance 6, no. 4 (2006), pp. 273–277.
32Robert C. Merton, “An Intertemporal Capital Asset Pricing Model,” Econometrica, 
41, no. 5 (1973), pp. 867–887. 
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ask whether the action of models will ultimately make markets more effi -
cient, destroying any residual profi tability in excess of market returns, or 
if the action of models will create new opportunities that can be exploited 
by other models, eventually by a new generation of models based on an 
accurate analysis of model biases. It is far from being obvious that markets 
populated by agents embodied in mathematical models tend to be effi cient. 
In fact, models might create biases of their own. For example, momentum 
strategies (buy winners, sell losers) are a catalyst for increased momentum, 
further increasing the price of winners and depressing the price of losers.

This subject has received much attention in the past as researchers stud-
ied the behavior of markets populated by boundedly rational agents. While 
it is basically impossible, or at least impractical, to code the behavior of 
human agents, models belong to a number of well-defi ned categories that 
process past data to form forecasts. Several studies, based either on theory 
or on simulation, have attempted to analyze the behavior of markets popu-
lated by agents that have bounded rationality, that is, fi lter past data to 
form forecasts.33 One challenge going forward is to study what type of inef-
fi ciencies are produced by markets populated by automatic decision-makers 
whose decisions are based on past data. It is foreseeable that simulation and 
artifi cial markets will play a greater role as discovery devices.

33For the theoretical underpinning of bounded rationality from the statistical 
point of view, see Thomas J. Sargent, Bounded Rationality in Macroeconomics 
(New York: Oxford University Press, 1994). For the theoretical underpinning of 
bounded rationality from the behavioral fi nance perspective, see Daniel Kahneman, 
“Maps of Bounded Rationality: Psychology for Behavioral Economics,” American 
Economic Review 93, no. 5 (2003), pp. 1449–1475. For a survey of research on 
computational fi nance with boundedly rational agents see Blake LeBaron, “Agent-
Based Computational Finance,” in Leigh Tesfatsion and Kenneth L. Judd (eds.) 
Handbook of Computational Economics (Amsterdam: North-Holland: 2006).
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CHAPTER 2
Financial Econometrics I: 

Linear Regressions

F inancial econometrics is a set of mathematical techniques to represent 
fi nancial processes and to estimate their parameters from empirical data. 

Though much fi nancial econometrics deals with the time evolution of fi nan-
cial processes, there are many in which the time dimension does not appear. 
These include fi nancial econometrics based on analyzing cross-sectional 
data and panel data. Notable examples include the distribution of fi rm size, 
stock market capitalization, personal wealth, and personal income.

In this chapter we discuss the concepts and estimation techniques of 
covariance, correlation, linear regressions, and projections. These tech-
niques are ubiquitous in fi nancial econometrics. For example, the estima-
tion of correlations and the estimation of covariances are the basis of risk 
management. Regressions appear in many fi nancial applications. Static asset 
pricing theory, for example, is expressed through regressions. Autoregres-
sive processes are the basis of many dynamic models including ARCH and 
GARCH processes.

We introduce the basic as well as the more advanced techniques currently 
used in quantitative equity portfolio management. These include techniques 
to estimate large covariance matrices, regression analysis under non-standard 
assumptions including quantile regression, and estimation with instrumen-
tal variables. We also discuss multivariate regressions, the basis for vector 
autoregressive models that will be discussed in the next chapter. 

HISTORICAL NOTES

The term econometrics, in its modern meaning, was introduced in the eco-
nomic literature by the Norwegian economist Ragnar Frisch, corecipient 
with Jan Timbergen of the fi rst Nobel Memorial Prize in Economic Sci-
ences in 1969. Frisch played a fundamental role in establishing economics 
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as a quantitative and mathematical science and defi ned many of the terms 
we now use including the term macroeconomics. He used the term econo-
metrics for the fi rst time in his 1926 paper.1 In this and the following chapter 
we will primarily describe techniques to represent the evolution of fi nancial 
processes observed at discrete intervals of time. In this chapter we will fi rst 
introduce the basic concepts of correlation and covariance and will outline 
the theory of linear regressions and projections. In the next chapter, we will 
introduce the theory of the linear moving average process and the autore-
gressive process, and we will discuss the question of the representation of 
time series and the concept of causality in econometrics. In Chapter 5 we 
will specifi cally deal with static and dynamic factor models.

Though the theory of stochastic processes is as old as the theory of 
probability, the sheer possibility of a probabilistic and statistical representa-
tion of fi nancial and economic laws—hence of econometrics—has been the 
subject of debate. The main reason for skepticism was due to the fact that 
in most cases we only have one realization of economic processes while 
statistics is based on samples made by many individuals. If we analyze an 
economic process, we can form a sample formed by many individuals tak-
ing observations at different moments. However, classical techniques of 
statistical estimation assume independent samples extracted from a popu-
lation with a well-defi ned distribution, while fi nancial and economic time 
series exhibit correlations and autocorrelations and cannot be considered 
sequences of independent samples extracted from some distribution. 

The introduction of econometrics in economics and fi nance theory is 
due to a student of Frisch, Trygve Haavelmo, who was himself a recipient 
of the Nobel Memorial Prize in Economic Sciences in 1989. In his 1944 
paper,2 Haavelmo introduced the idea that economic time series are “sam-
ples selected by Nature.” 

This notion hinges on representing the joint probability distri-
bution of a fi nite sample from a time series p(x1, …, xT) as the prod-
uct of an initial distribution and successive conditional distributions:
p x x p x p x x p x x xT T T T( , , ) ( ) ( ) ( , , )1 1 1 2 2 1 1 1… � …= − .3 These conditional distri-
butions are indeed mutually independent. If, in addition, we can represent 
all conditional distributions with the same functional form that includes 
only a small number of past data, we can represent a series recursively 

1Ragnar Frisch, “Kvantitativ formulering av den teoretiske økonomikks lover,” 
Statsøkonomisk Tidsskrift, 40 (1926), pp. 299–334. [“Quantitative formulation of 
the laws of economic theory”].
2Trygve Magnus Haavelmo, “The Probability Approach in Econometrics,” Supple-
ment to Econometrica, 11 (1944), pp. S1–S115.
3For methodological issues, see David F. Hendry, Dynamic Econometrics (Oxford: 
Oxford University Press, 1995).
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through a data generating process (DGP). For example, if the condi-
tional distributions depend only on the previous time step, we can write: 
p x x p x p x x p x xT DGP DGP T T( , , ) ( ) ( ) ( )1 1 1 2 1 1… �= − . All these pDGP are indepen-
dent and we can form the likelihood of the sample.

Otherwise stated, econometrics is made possible by the separation of 
observed variables and residuals. Financial models are probes that extract a 
sequence of independent residuals from correlated observations. Residuals 
are formed by independent samples and therefore allow for a probabilistic 
treatment along the lines of classical statistics. We can apply probabilistic 
concepts to fi nance theory if we can identify simple laws that extract inde-
pendent samples from observed data.

In this chapter we introduce the basic concepts and techniques used 
to build fi nancial models. First we discuss the concepts of correlation and 
covariance and then we discuss regressions and their estimation. 

COVARIANCE AND CORRELATION

Covariance and correlation are measures of linear dependence between 
data. Consider two sets of data indexed by the same parameter i: Yi, Xi. 
Were there a deterministic linear dependence between the data, Yi, Xi would 
lie on the path of some linear function y = ax + b. In practice, however, even 
if a true linear dependence exists, observed data might be corrupted by noise 
or might be infl uenced by other variables. In this case, Yi, Xi, even if theo-
retically linearly dependent, would not lie on a straight line but they would 
be dispersed in a region of the plane as illustrated in Exhibit 2.1. The fi gure 
illustrates data generated by a model Yi = aXi + b + Ui where the term Ui is a 
zero-mean, normally distributed random variable. The fi gures show scatter-
plots corresponding to different choices of the standard deviation denoted 
by σ. As we can see from the scatterplots in Exhibit 2.1, when the standard 
deviation is small, data seem to closely follow a straight line; when the stan-
dard deviation is large, data occupy a much wider region.

Assume now that we are given a set of data Yi, Xi. We want to understand 
if the data have a linear functional dependence and, if so, we want to measure 
the strength of this linear dependence. The covariance and the correlation 
coeffi cient are measures of this dependence. Intuitively, covariance and the 
correlation coeffi cient measure how closely the two variables move together. 
The covariance between two random variables Y,X is defi ned as follows:

 

cov , cov ,

,

Y X X Y E Y Y X X

Y E Y X

( ) = ( ) = −( ) −( )⎡⎣ ⎤⎦
= ( ) == ( )E X
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EXHIBIT 2.1 Plot of the Straight Line Y = 0.2X + 0.6 and Scatterplot of the 
Same Line with Added Noise 
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If Y = X, then

 cov , varX X X E X X( ) = ( ) = −( )⎡
⎣⎢

⎤
⎦⎥

2 .

The covariance between two variables is normalized with respect to the 
mean of the variables so that it is not affected by shifts in the mean value of 
the variables. However, it depends on the size of the fl uctuations. In particu-
lar, it depends on the scale and on the measurement unit of the variables.

We can make the covariance independent of the size of the variables by 
dividing by the standard deviations of the variables. The correlation coef-
fi cient is the covariance divided by the product of the standard deviations 
of the variables. 

Given any two variables Y,X, the correlation coeffi cient is a real number 
–1 ≤ ρYX ≤ 1 defi ned as follows:

 ρ
σ σYX

Y X

E Y Y X X
=

−( ) −( )⎡⎣ ⎤⎦
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Y E Y X E X

Y XY X

= ( ) = ( )
= ( ) = ( )

,

var , varσ σ

If the variables exhibit a linear relationship without any noise, that is, 
if Y = aX + b, then:

 

cov ,Y X E aX b aX b X X a

E aX

X

YX

( ) = + − −( ) −( )⎡⎣ ⎤⎦ =

=
+

σ

ρ

2

bb aX b X X

a

aE X X

aX X

− −( ) −( )⎡⎣ ⎤⎦ =
−( )⎡

⎣⎢
⎤
⎦⎥ = ±

σ σ2

2

2 11

according to the sign of a. Conversely, it can be demonstrated that if the 
correlation coeffi cient is ±1 then the variables have a linear relationship 
without noise. 

If the linear relationship is affected by a noise term, that is, if Y = aX + 
b + ε, then:

 ρ
σYX

X

E aX b aX b X X

a

aE X X
=

+ − −( ) −( )⎡⎣ ⎤⎦ =
−( )⎡

⎣⎢
⎤
⎦

2

2

⎥⎥

+a X Xσ σε

and therefore ρYX < 1 . Two random variables are said to be uncorrelated if 
their correlation coeffi cient is zero.

The linear correlation coeffi cient measures the strength of the even-
tual linear relationship between two variables but it does not measure 
the strength of an eventual nonlinear functional relationship between the 
variables. In particular, the correlation coeffi cient might be zero even if the 
variables have a deterministic nonlinear relationship. For example, if the 
random variable X is uniformly distributed in the interval [–1,+1] , the two 
variables X and X² are uncorrelated though they have a well-defi ned func-
tional relationship.

Consider now the variables X and Y = aX + b + ε. If the noise term ε is 
uncorrelated with X, then the covariance between X and Y is not infl uenced 
by ε but the variance of Y depends on the variance of ε. Therefore, given a 
basic linear relationship between two variables X and Y, by adding a noise 
term uncorrelated with the variable X, correlation is lowered, covariance 
remains unchanged but the variance of Y increases. Note that the correlation 
coeffi cient does not depend on a and that it does not measure the steepness 
of the straight line Y = aX + b.
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Estimation of the Covariance and Correlation Coeffi cient

Let’s now discuss estimation of the covariance and correlation coeffi cient. 
Suppose a sample of N observations of the variables X and Y is given. Let’s 
organize the sample data in two N × N vectors:

 

Y

Y

Y

X

X

XN N

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1

� �,

The expected value of both variables can be estimated with the empiri-
cal average:

 ˆ , ˆY
Y

N
X

X

N

i
i

N

i
i

N

= == =
∑ ∑

1 1

If we write 1 for a vector of ones, the empirical average can be also 
represented as:

 ˆ , ˆY
Y

N
X

X
N

T T

= =1 1

The covariance can be estimated as the empirical average of the product of 
X and Y:

 

cov ,

ˆ ˆ

ˆ

Y X
Y Y X X

N

Y X Y

i i
i

N

i i
i

N

i

( ) =
−( ) −( )

=
−

=

=

∑

∑

1

1

XX X Y NYX

N

Y X Y X

i

N

i
i

N

i i
i

N

i
i

N

= =

= =

∑ ∑

∑

− +

=
−

1 1

1 1

ˆ ˆ ˆ

ˆ∑∑ ∑

∑

− +

=
− − +

=

=

X Y NYX

N

Y X NYX NYX N

i
i

N

i i
i

N

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

1

1

ˆ̂ ˆ

ˆ ˆ

YX

N

N
Y X YXi i

i

N

= −
=
∑1

1

or, in vector notation:
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 cov ,
ˆ ˆ

ˆ ˆY X
Y Y X X

N N
Y X YX

T

T( ) =
−( ) −( )

= −1

The variance of the variables X and Y can be estimated with the empiri-
cal variance as follows:

 var
ˆ ˆ

, var
ˆ

Y
Y Y Y Y

N
X

X X
Y

T

X( ) = =
−( ) −( ) ( ) = =

−
σ σ2 2 (( ) −( )T

X X

N

ˆ

We can now write the estimator of the correlation coeffi cient as follows:

 corr Y X
Y X

Y X

,
cov ,( ) =

( )
σ σ

In the previous formulas, we obtain better small-sample properties if we 
divide by N − 1 instead of dividing by N. 

Let’s now consider multivariate variables. Suppose we are given a P-vector 
formed by P components: 

 X = (X1, …, XP)

We can compute the covariance and the correlation coeffi cient between each 
pair of components and arrange them in two square P × P

 
matrices, the co-

variance matrix Ω and the correlation matrix C: 

 
Ω = { } = ( )

= { } =

σ σij ij cov

corr

, ,

,

X X

C c c

i j

ij ij XX Xi j,( )
Both the covariance and the correlation matrices are square symmet-

ric matrices because both the covariance and the correlation coeffi cient are 
independent of the order of the variables. The diagonal elements of the 
covariance matrix are the individual variances of the variables Xi while the 
diagonal elements of the correlation matrix are all 1.

Suppose a sample of N observations of the P variables Xi is given. 
Arrange the data in a N × P matrix X such that every column is formed by 
all observations of a variable and a row is formed by one observation of all 
variables. If observations take place in different moments, one row corre-
sponds to all observations at any given moment.
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X

X X

X X

N

N NP

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 1

1

�
� � �

�

The estimation of the element σij can be performed using the above 
formulas:

 σ ij =
−

=
∑X X NX X

N

si sj
s

N

i j
1

In matrix notation, the covariance matrix can therefore be written as 
follows:

 Ω = { } = − { }σ ij

X X
N

X X
T

i j

Estimation Issues

There are a number of issues associated with estimating covariances and 
correlations. The fi rst important issue is the time-varying nature of correla-
tions and covariances. The previous formulas compute an average of covari-
ances and correlations over the time window used for estimation. Clearly, 
the covariance and correlation at the end of the estimation period—the time 
of major interest in most practical fi nancial applications—can differ sig-
nifi cantly from the average. To mitigate this problem, a common strategy is 
to use a weighting scheme that assigns a heavier weight to the most recent 
observations. A widely used weighting scheme is the exponentially weighted 
moving average (EWMA) which assigns exponentially declining weights. 

Suppose, for simplicity, that the variables X have zero mean. The 
EWMA consists in replacing the estimation formula 

 σ ij =
=
∑1

1N
X Xsi sj

s

N

which has constant weights 1/N with the EWMA:

 σ λ
λ

λij = −
− − −

=

−

∑( )
( ) , ,

1
1 0

1

N
s

N s i N s j
s

N

X X

where 0 < λ < 1 is a parameter to be calibrated. 
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Another estimation strategy consists in forecasting the covariance 
matrix. The forecasting of volatility parameters is a major success of mod-
ern econometrics. Robert Engle introduced the notion that the volatility 
of economic and fi nancial time series is time-varying and proposed the 
autoregressive conditional heteroskedastic (ARCH) family of models to 
model volatility.4 Engle and Clive Granger were awarded the 2003 Nobel 
Memorial Prize in Economic Sciences for this discovery. The original 
ARCH model has since been extended in many ways. In particular, it was 
proposed to extend ARCH modeling to multivariate processes and there-
fore to the entire covariance or correlation matrix. Given the large number 
of parameters to be estimated, many different simplifi cations have been 
proposed.5 

Another covariance estimation strategy was proposed by Aguilar and 
West.6 They suggested forecasting the covariance matrix using dynamic 
factor models. In the following section of this chapter, we will discuss the 
general question of the attainable accuracy in estimating large covariance 
matrices. First we need to briefl y introduce Random Matrix Theory.

Random Matrix Theory

Let us now consider the estimation of a large covariance matrix. We en-
counter this problem, for example, if we want to estimate the mutual co-
variances and correlations between the stocks in a large market, say the 
U.S. equity market. In such cases, the number of stocks can be in the 
range of several hundreds or even a few thousands. If we consider weekly 
returns, the number of data points, in this case, the sample of empirical 
returns, is at most in the range of a few hundred data points. There are 
two major problems in considering long time series of empirical returns. 
First, over a period of several years it is unlikely that correlations and 
covariances remain suffi ciently constant; therefore empirical correlations 
are only an average which might be very different from true correlations 
at the end of the period. Second, if we consider long periods, we can se-
lect only those stocks that existed throughout the entire period. This fact, 
per se, creates signifi cant biases in the estimates. We can conclude that in 

4Robert F. Engle, “Autoregressive Conditional Heteroskedasticity with Estimates of 
Variance of United Kingdom Infl ation,” Econometrica, 50 (1982), pp. 987–1008. 
5See for a review of these models, Robert F. Engle, Sergio Focardi, and Frank J. 
Fabozzi, “ARCH/GARCH Models in Applied Financial Econometrics,” in Frank 
J. Fabozzi (ed.), Handbook of Finance, Vol. III (Hoboken, NJ: John Wiley & Sons, 
2008). 
6Omar Aguilar and Mike West, “Bayesian Dynamic Factor Models and Portfolio Al-
location,” Journal of Business and Economic Statistics, 18 (2000), pp. 338–357. 
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fi nancial time series, the number of empirical data is often approximately 
of the same size as the number of variables.

When the number of observations is of the same order as the number 
of variables, it can be proved that estimates of covariances and correlations 
are subject to signifi cant uncertainties. To gain an intuition of the uncertain-
ties associated with estimating a large covariance matrix, consider that the 
number of independent entries of a covariance matrix (which is a symmetric 
matrix) is N(N + 1)/2, a number that grows with the square of the number of 
stocks. For example, the covariance matrix of 500 stocks includes 125,250 
independent entries while the covariance matrix of 1,000 stocks includes 
500,500 entries. However, the global number of data points to estimate 
a covariance matrix grows only linearly with the number of stocks. For 
example, a fi ve-year sample of daily returns includes approximately 1,000 
returns. If a portfolio includes 500 stocks, there are a total of 500,000 data 
points to estimate 125,250 entries, less than four data per entry. It is clear 
that, given these numbers, the statistical fl uctuations of samples produce a 
large number of covariance estimates very far from the true covariances.

In order to arrive at a robust estimate of a large covariance matrix, we 
need to reduce the dimensionality of the matrix, that is, we need to reduce 
the number of independent entries. Several techniques have been proposed. 
One widely employed technique relies on estimating the eigenvalues of the 
covariance matrix and recovering a robust covariance matrix through fac-
tor analysis or principal components analysis. The problem of estimating a 
covariance matrix is thus shifted to the problem of estimating its eigenval-
ues. We can expect the eigenvalues of a large covariance matrix to exhibit a 
random behavior. A precise quantifi cation of these phenomena is given by 
random matrix theory (RMT). In fact, one of the main results of RMT is the 
computation of the asymptotic distribution of eigenvalues. 

Random matrices are matrix-variate random variables. RMT was origi-
nally developed in the 1920s to respond to specifi c application needs in 
biometrics and general multivariate statistics. In the 1950s, RMT became 
a key tool in quantum physics. It is now applied to many fi elds of science, 
from quantum mechanics, statistical physics, and wireless communications 
to number theory and fi nancial econometrics. We will briefl y sketch RMT 
and survey recent results with a bearing on econometrics.

A random matrix model (RMM) is a probability space (Ω, P, F) where 
the sample space is a set of matrices. We are particularly interested in ran-
dom matrices that represent covariance matrices. Given the m × n matrix H 
whose columns are independent real/complex zero-mean Gaussian vectors 
with covariance matrix Σ, the matrix A = HHT is called a central Wishart 
matrix Wm(n,Σ) with n degrees of freedom and covariance Σ. If the entries 
of H are not zero-mean, the Wishart matrix is noncentral. A Wishart matrix 
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is an element of a probability space and we can determine its probability 
distribution and probability distribution function (pdf). The pdf of a central 
Wishart matrix with n > m has the following form: 

 p A
n i !

traceW

m m

n

i

m( ) = ∂

( ) −( )
−

−
−( )

=∏

1 1

2

1
det

exp
Σ

ΣΣ− −( )⎡⎣ ⎤⎦
1A An mdet

A basic insight provided by RMT is that if the number of observations 
is close to the number of variables, eigenvalues computed from empirical 
covariance matrices do not converge to the true eigenvalues when both the 
sample size T and the number of stocks N go to infi nity keeping constant the 
ratio N/T. The N/T ratio is called the aspect ratio. The RMT distinguishes 
between the distribution of the bulk of eigenvalues and the distribution of 
the edges. Let’s fi rst discuss the bulk of the eigenvalue distribution. Results 
for the bulk of the distribution of eigenvalues can be summarized as fol-
lows. 

Anderson (1963) proved that the empirical distribution of the eigenval-
ues of a square N × N matrix tends to the distribution of the eigenvalues 
of the true covariance matrix when the number of samples tends to infi nity. 
However, if both the number of samples and the number of entries of the 
covariance matrix tend to infi nity, then the empirical eigenvalues are not 
consistent estimators of the true eigenvalues. 

A fundamental asymptotic result was proved in Marčenko and Pastur 
for rectangular matrices.7 They proved that the distribution of the empirical 
eigenvalues of a covariance matrix tend to a well-defi ned distribution when 
the size of the matrix tends to infi nity. Consider a T × N matrix H whose 
entries are independent and identically distribution (i.i.d.) real or complex 
zero mean variables with variance 1/T and fourth moments of order O(1/
T2). Consider the matrix A = HTH. As the entries of the matrix H are i.i.d. 
variables, the theoretical eigenvalues of the matrix A are all equal to 1. 
However, Marčenko and Pastur proved that the asymptotic distribution of 
the eigenvalues of the matrix A when T, N → ∞, N/T → γ has the following 
density:

 

f x x
x a b x

x
aγ γ

δ
πγ

γ( ) = −⎛
⎝⎜

⎞
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( ) +
−( ) −( )

= −(
+

1
1

2
1, )) ≤ ≤ = +( )

( ) = < >

2 2
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0

x b

f x x a x b

γ

β , ,

7V. A. Marčenko and L. A. Pastur, “Distributions of Eigenvalues for Some Sets of 
Random Matrices,” Math. USSR-Sbornik, 1 (1967), pp. 457–483.
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where (z)+ = max(0,z). Under the same assumptions, the asymptotic distri-
bution of the eigenvalues of the matrix HHT when T, N → ∞, N/T → γ has 
the following density:

 

�f x x
x a b x

x
a xγ γ δ

π
γ( ) = −( ) ( ) +
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If γ = 1, the distribution of singular values, which are the square roots 
of the corresponding eigenvalues, is the quarter circle law: 

 
q x

x
x

q x x x

( ) = − ≤ ≤
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4
0 2

0 0 2

2

π
, ,

, ,

Dirac’s delta at the origin refl ects the fact that a fraction (N – T)/2 of the 
eigenvalues are zero if γ ≥ 1. 

The above result has been extended and refi ned in many different ways. 
For example, Silverstein proved an extension of Marčenko-Pastur for cor-
related matrices without assuming the existence of the fourth moments.8 
Suppose the entries of the T × N matrix H are i.i.d. real or complex variables 
with zero mean, unit variance, and fi nite fourth moments. Let TN be a fi xed 
N × N Hermitian (unitary if real) matrix. Assume the sample vector is T HN

1
2 . 

This implies that TN is the population covariance matrix. Consider the sam-
ple covariance matrix: 

 B
N

T HH TN N N= ′1 1
2

1
2

Silverstein proved that if the distribution of the eigenvalues of the matri-
ces TN tend to a nonrandom distribution, then the empirical covariance 
matrices BN also tend to a nonrandom distribution. He then determined the 
distribution of the eigenvalues in terms of an integral equation. Burda and 
Jurkiewicz9 proved the Marčenko-Pastur law using the method of the resol-
vent and diagrammatic techniques from quantum mechanics. Burda, Jurkie-

8Jack W. Silverstein, “Strong Convergence of the Empirical Distribution of Eigenval-
ues of Large Dimensional Random Matrices,” Journal of Multivariate Analysis, 55 
(1995), pp. 331–339. 
9Zdzislaw Burda and Jerzy Jurkiewicz, “Signal and Noise in Financial Correlation 
Matrices,” February 2004.
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wicz, and Waclaw10 extended the Marčenko-Pastur law to samples that are 
both correlated and autocorrelated. Burda, Goerlich, and Waclaw11 deter-
mined explicit formulas in the case of Student-t distributions up to integrals. 
Similar results had already been obtained by Sengupta and Mitra.12 

The asymptotic distribution of the eigenvalues provides a benchmark to 
separate meaningful eigenvalues from eigenvalues that are only noisy fl uc-
tuations around the theoretical value 1. It is therefore important to under-
stand the behavior of the largest eigenvalues. The Marčenko-Pastur law is 
compatible with the existence of a few stray eigenvalues that are at the right 
(left) of its rightmost (leftmost) edge. 

Let’s fi rst consider uncorrelated variables. Geman13 and Silverstein14 
demonstrated that the largest eigenvalue λ1 of the covariance matrix of a 
T × N i.i.d. matrix H when T, N → ∞, N/T → γ converges almost surely to 
the value

 b = +( )1
2

γ

and the eigenvalue λk, k = min(T,N) converges to the value

 a = −( )1
2

γ

with λk+1 = λN = 0 if T < N. That is, the largest and the smallest eigenvalues 
converge to the upper and lower edges of the Marčenko-Pastur law.

The latter result does not tell us anything about the asymptotic distri-
bution of the largest eigenvalue. This distribution, called the Tracy-Widom 
distribution, has been determined as the solution of particular differential 
equations.15 The behavior of the largest eigenvalue changes completely if the 

10Zdzislaw Burda, Jerzy Jurkiewicz, and Bartlomiej Waclaw, “Eigenvalue Density of 
Empirical Covariance Matrix for Correlated Samples,” August 2005.
11Zdzislaw Burda, Andrzej T. Görlich, and Bartlomiej Waclaw, “Spectral Properties 
of Empirical Covariance Matrices for Data With Power-Law Tails,” April 2006.
12A. M. Sengupta and P. P. Mitra, “Distributions of Singular Values for Some Ran-
dom Matrices, Physical Review E, 60 (1999). 
13S. Geman, “A Limit Theorem for the Norm of Random Matrices,” Annals of Prob-
ability, 8 (1980), pp. 252–261.
14Silverstein, “Strong Convergence of the Empirical Distribution of Eigenvalues of 
Large Dimensional Random Matrices.”
15See for example, Peter J. Forrester, and Taro Nagao, “Eigenvalue Statistics of the 
Real Ginibre Ensemble,” June 2007; Søren Johansen, “Modelling of Cointegration 
in the Vector Autoregressive Model,” Economic Modelling, 17 (2000), pp. 359–373; 
and M. Iain Johnstone, “On the Distribution of the Largest Eigenvalue in Principal 
Components Analysis,” Annals of Statistics, 29 (2001), pp. 295–327. 
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matrix H is heavy-tailed. Soshnikov and Fyodorov16 and Soshnikov17 proved 
that the distribution of the largest eigenvalue exhibits a weak convergence 
to a Poisson process. Biroli, Bouchaud, and Potters18 showed that the largest 
eigenvalue of a square random matrix whose entries have distributions with 
power-law tails exhibits a phase transition for the Tracy-Widom law to a 
Frechet distribution with tail index 4.

The above results characterize the behavior of the largest eigenvalue(s) 
under the null hypothesis of i.i.d. entries of the matrix H. Bai and Silver-
stein19 proved that similar results hold for correlated matrices in the sense 
there is no eigenvalue outside of the support of the asymptotic distributions 
of the eigenvalues of correlated matrices H. Consider the matrix

 A = HTH

under the assumption that observations are 

 H T ZN=
1
2

where TN

1
2  is the square root of a Hermitian matrix whose eigenvalues con-

verge to a proper probability distribution and Z has i.i.d. standard complex 
entries. They proved an asymptotic exact separation theorem which states 
that, for any interval that separates true eigenvalues, there is a correspond-
ing interval that separates corresponding empirical eigenvalues.

Johnstone20 introduced the “spiked” covariance model where the popu-
lation covariance matrix is diagonal with N − r eigenvalues equal to 1 while 
the fi rst r largest eigenvalues are larger than 1. Baik, Ben Arous, and Péché21 

16Alexander Soshnikov and Yan V. Fyodorov, “On the Largest Singular Values of 
Random Matrices with Independent Cauchy Entries,” Journal of Mathematical 
Physics, 46 (2005).
17Alexander Soshnikov, “Poisson Statistics for the Largest Eigenvalues in Random 
Matrix Ensembles,” in Mathematical Physics of Quantum Mechanics, Vol. 690 of 
Lecture Notes in Physics (Berlin: Springer, 2006), pp. 351–364. 
18Giulio Biroli, Jean-Philippe Bouchaud, and Marc Potters, “On the Top Eigenvalue 
of Heavy-Tailed Random Matrices,” DSM/SPhT-T06/216 http://www-spht.cea.fr/
articles/T06/216/.
19Zhidong D. Bai and Jack W. Silverstein, “Exact Separation of Eigenvalues of Large 
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proved a phase transition law for this “spiked” model. Consider a complex 
T × N matrix H whose rows are independent samples extracted from a mul-
tivariate distribution such that the eigenvalues of the covariance matrix 

 S
N

H HT= 1

are

 
l lr

r N r

1 1 1, , , ,…��� 	� …��	
−

⎛
⎝⎜

⎞
⎠⎟

Assume N, T → ∞, N/T → γ < 1. Then, the quantity

 1+( )γ  

is a threshold such that, if the true eigenvalues are less than 

 1+( )γ  

then their empirical counterpart is buried in the bulk while, if the true eigen-
values are greater than 

 1+( )γ

then their empirical counterpart is outside of the bulk.
These results prove that given a large empirical covariance matrix 

obtained from T samples of N variables, we can establish a benchmark 
interval such that only those empirical eigenvalues that lay outside of the 
interval can be safely considered estimates of true eigenvalues different from 
1 and therefore contribute to genuine correlations. 

REGRESSIONS, LINEAR REGRESSIONS, AND PROJECTIONS

Earlier we discussed covariance and correlation as measures of the strength 
of the linear link between two variables. In this section we discuss the rep-
resentation and the estimation of functional links between two or more 
random variables. We will fi rst discuss the concept of regression as a proba-
bilistic model and then we will discuss the estimation of regression and re-
gression as a data model.

Consider the representation of functional relationships. A functional 
relationship between deterministic data is represented by a numerical func-
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tion. For example, there is an approximately linear relationship, called 
Hooke’s law, between the extension of a spring made with elastic material 
and the force applied to it. Though they can be approximate and/or subject 
to measurement errors, functional relationships of this type are considered 
deterministic relationships between one or more independent variable and 
one or more dependent variables. 

In other cases, however, the dependent variable is a true random vari-
able. For example, the distribution of market stock capitalization at dif-
ferent times can be modeled as a random variable function of time. In this 
case, time can be considered a deterministic variable while stock market 
capitalization can be modeled as a random variable. Still in other cases, 
both the dependent variables and the independent variables are true random 
variables with a probability distribution. For example, the relationship, if it 
exists, between the returns of a stock and its trading volume involves two 
random variables, returns and trading volumes. Of course, one might say 
that every empirical relationship is a relationship between random variables 
as there will always be measurement errors.

Let’s fi rst consider a model formed by a random variable indexed with 
a deterministic variable: Yx = Y(x) where the deterministic variable is generi-
cally denoted by the lower-case letter x. To each x corresponds a probability 
distribution and the expected value of the random variable Yx. This model 
is typical of experimental situations in which the independent variables can 
be controlled by the observer whilst the dependent variable can randomly 
assume different values. Various observational settings are possible. In some 
instances, the experimenter can control a set of parameters but cannot con-
trol the outcome of the observation. For example, we can control the time 
at which we observe the return of a given stock but we cannot control the 
return itself, which we assume to be a random variable. In other instances, 
however, we randomly choose from a population. For example, in a quality 
control experiment, we can control the time when we perform the quality 
control and the parameters of the production batch from which we choose 
samples randomly.

With a slight abuse of notation, we defi ne a regression function as the 
deterministic function E Y xx( )  obtained forming the expectation of the vari-
able Yx for a given x. The variable Y is called the dependent variable or the 
regressand; the variable x is called the independent variable or the regressor; 
the difference u Y E Y xx x x= − ( )  is called the residual of the regression. Note 
that the expression E Y xx( )  is not a proper conditional expectation because 
the variable x is deterministic. The function y x E Y xx( ) ( )=  is not a random 
variable but a deterministic function of the variable x. 

Regression is a useful tool if we can determine the functional form of the 
regression function. A linear regression is a linear representation of the type:
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 Yx = ax + b + ux

In the sequel of this chapter we will discuss only linear regressions. If 
we place no constraints on the residual terms, the above relationship is only 
a defi nition of the residual terms and is therefore always valid. Here is a set 
of standard constraints on the residual terms for the linear regression to 
become empirically identifi able:

 

E u x

E u x

E u u x y x

x

x

x y

( ) = ∀

( ) = ∀

( ) ∀

0
2 2

,

,

, ,

σ

≠≠ y

These constraints state that the variable Yx can be represented as a 
deterministic straight line plus a residual term with zero mean, constant 
variance, uncorrelated for different values of the index. This defi nition can 
be immediately extended to any number of independent variables:

 Y a x b ux i i
i

q

x= + +
=
∑

1

where x = (x1, ..., xq). 
In this model, the ux are a family of random variables indexed by the 

variable x, with zero mean and constant variance, uncorrelated for the dif-
ferent values of the index x. If we do not make any assumption as regards 
the higher moments, the random variables ux are not necessarily identically 
distributed. For example, the residuals could have different tails in function 
of the regressor. If we want residuals to be identically distributed we have to 
make a specifi c assumption in that sense. If the ux are normal variables than 
they are indeed identically distributed as normal variables are identifi ed only 
by the mean and the variance. 

Let’s now consider the case in which we want to understand the func-
tional relationships between random variables that we cannot control. For 
example, we might want to understand if there is any relationship between 
the trading volume of a given stock and the stock’s returns. Both quantities 
are random; the correct statistical model is therefore that of a functional 
relationship between two random variables.

One might observe that it does not make any difference if the independent 
variables are deterministic or random because, in any case, we are interested 
in a functional relationship between different variables. It could be argued 
that the relationship between the different variables cannot depend on the fact 
that regressands are chosen by the observer or “selected by Nature,” using 
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the expression of Trygve Haavelmo. The response is that while relationships 
between variables cannot be infl uenced by how samples are selected, a statis-
tical model where all variables are random answers questions that cannot be 
answered by a model where the independent variables are deterministic. For 
example, the correlation between the independent and the dependent vari-
able is not a meaningful concept in a deterministic environment.

Consider now two random variables Y and X defi ned on the same prob-
ability space. Let’s assume that a joint probability distribution f(x, y) exists. 
Recall that the marginal distribution of X is defi ned as

 f x f x y dyX ( ) = ( )
−∞

+∞

∫ ,

while the conditional distribution of Y given X is defi ned as

 f y x
f x y

f xX

( ) =
( )

( )
,

Recall also that the conditional mean or conditional expectation of Y given 
X is a random variable function of X defi ned as follows:

 
E Y X x yf y x dy=( ) = ( )

−∞

+∞

∫

The regression function of Y on X is defi ned as the conditional expecta-
tion of Y given X: 

 F X E Y X( ) = ( )
We can write Y = F(X) + u where u is the residual. The conditional expecta-
tion is a random variable F(X) function of X, so both F(X) and u are ran-
dom variables. 

 As in the previous case, we need to place restrictions on the residu-
als and make some assumptions on the functional form of the conditional 
expectation. Let’s assume that the conditional expectation E Y X( )  is a lin-
ear relationship:

 Y = aX +b

and assume also that the residual is a zero-mean variable, with fi nite vari-
ance, uncorrelated with the variable X:
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E u

E u

E uX

u

( ) =

( ) =

( ) =

0

0

2 2σ

As in the case where x is deterministic, the variable Y is called the regres-
sand or the dependent variable while X is called the regressor or indepen-
dent variable.

In summary, a linear regression function is a linear function that links 
the regressand and the regressor; it represents the conditional expectation 
of the regressand given the regressor. If the regressor is deterministic, the 
regression function is a deterministic relationship between deterministic 
variables; if the regressor is a random variable, the regression function is 
a linear relationship between two random variables. Exhibit 2.2 illustrates 
the difference between a deterministic regression function and a regression 
function between random variables. In the deterministic case, the values 
of both X and Y variables are uniformly spaced while in the case of ran-
dom variables they are randomly spaced. However, the linear relationship 
between regressor and regressand is the same in both cases. Exhibit 2.3 
illustrates the case where a normally distributed noise u is added.

EXHIBIT 2.2 Regression Function between Deterministic and Random Regressors

40

35

30

25

20

15

10

5

0

–5
–10 0 10 20 30 40 50 60 70

Regression function Y = 0.6X + 0.4, Normal Distribution
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EXHIBIT 2.3 Regression Function between Deterministic and Random Regressors 
with Added Residuals
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Regression Y = 0.6X + 0.4 + E

Given the above assumptions, the following relationships between the 
mean and the variance of Y and X holds:
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σ
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Consider now the covariance between Y and X. The following relation-
ships hold: 

 

E Y X E aX b u a b X

a

Y X X X−( ) −( )( ) = + + − −( ) −( )⎡⎣ ⎤⎦
=

μ μ μ μ

EE X E uX a E u a

aE X a

X X X

X

2 2 2

2 2

2( ) + ( ) − − ( ) +

= ( ) − =

μ μ μ

μ aa

a
Y X Y X

X

YX
Y

X Y X

Y

X X

σ

ρ
σ
σ σ σ

σ
σ σ

2

2= =
( )

=
( )cov , cov ,

Therefore the coeffi cient a is the correlation coeffi cient between Y and X 
multiplied by the ratio of the standard deviations of Y and X which is equiva-
lent to the covariance between Y and X divided by the variance of X.

Consider now the linear regression of a variable Y on N variables Xi, i 
= 1, 2, …, N. We write the linear regression as:
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 Y b b X Ui i
i

N

= + +
=
∑1

2

If we defi ne the variable X1 ≡ 1 we can write the linear regression as 
follows: 

 Y b X Ui i
i

N

= +
=
∑

1

The regression terminology remains unchanged: Y is the dependent variable 
or the regressand; the X are the independent variables or regressors; U is the 
residual. The regression of one regressand on multiple regressors is called a 
multiple regression, not to be confused with multivariate regression which is 
the regression of multiple regressands on multiple regressors. The following 
assumptions are the standard assumptions of regression theory:

 

E u

E u

E uX i N

u

i

( ) =

( ) =

( ) = ∀ =

0

0 1

2 2σ

, , ,…

These standard assumptions are not the only possible assumptions and can 
be relaxed as we will see shortly. However, they are assumptions that defi ne 
a reasonable model. The condition that residuals are zero-mean variables is 
nonrestrictive as it implies that the eventual constant value of Y is represent-
ed by the intercept b1. The condition that the residual’s variance is constant 
entails a signifi cant mathematical simplifi cation as called for by the Ordinary 
Least Squares (OLS) method. This might seem slightly unnatural as it entails 
that the size of the residuals is unrelated to the scale of the variable.

Lastly, the condition E(uX) = 0 is equivalent to the Least Squares (LS) 
principle as a population property. Here is the reasoning. Assume fi rst that 
all observed variables have fi nite mean and fi nite variance:

 
−∞ < ( ) < +∞ − ∞ < ( ) < +∞ =

( ) < +∞

E Y E X i N

E Y

i, , , ,

,

1
2

…

E X i Ni
2 1( ) < +∞ =, , ,…

Consequently, by the Cauchy-Schwarz inequality, all covariances exist. 
The least squares principle applied to the population requires that the coef-
fi cients bi, i = 1, …, N minimize the expectation of the squared residual:

 E Y b Xi i
i

N

−
⎛
⎝⎜

⎞
⎠⎟=

∑
1

2
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We can now demonstrate that the condition E(uX) = 0 holds if and only if 
the coeffi cients bi, i = 1, …, N satisfy the least squares principle. The condi-
tions E(uX) = 0 are called orthogonality conditions because they stipulate 
that residuals and regressors are uncorrelated. Uncorrelated variables are 
said to be orthogonal because the correlation coeffi cient can be interpreted 
as a scalar product. Hence uncorrelated variables are orthogonal because 
their scalar product is zero.

The expression 

 E Y b Xi i
i

N

−
⎛
⎝⎜

⎞
⎠⎟=

∑
1

2

is minimized as a function of the bi, i = 1, …, N when all of its partial deriva-
tives with respect to the bi are equal to zero:

 
∂

∂
−

⎛
⎝⎜

⎞
⎠⎟

= − −
⎛
⎝⎜

⎞
⎠= =

∑ ∑b
E Y b X E Y b X

i
i i

i

N

i i
i

N

1

2

1

2 ⎟⎟
⎛

⎝⎜
⎞

⎠⎟
=Xi 0

Hence equating to zero the partial derivatives of the expected squared 
error yields the orthogonality conditions which prove the equivalence 
between the orthogonality conditions and the least squares principle. Using 
vector notation, we can rewrite the orthogonality conditions as follows: 

 E(XTY) = E(XTX)B

which, assuming that the matrix E(XTX) is nonsingular, yields

 B E X X E X YT T= ( )⎡⎣ ⎤⎦ ( )−1

In summary, the assumption of the orthogonality conditions is equiva-
lent to imposing the choice of the regression coeffi cients of the linear regres-
sion; the latter minimize the expectation of the square residual. Note that 
this minimum expectation condition is a general property of the population, 
not an estimation equation: the assumption that the residuals and regressors 
of a linear regression are uncorrelated is equivalent to the assumption that 
the regression coeffi cient satisfi es the least squares principle.22

When the bj satisfy the LS orthogonality conditions, the random variable 

 b Xj ij
j

N

=
∑

1

22See for example, the discussion in Thomas Sargent, Macroeconomic Theory (Lon-
don: Academic Press, 1987).
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is called the projection of Y on the X and is written as:

 P Y X X b XN j ij
j

N

1
1

, ,…( ) =
=
∑

A projection decomposes the variable Y into two mutually orthogonal 
components, the projection P Y X XN1, ,…( )  and the residual U. It can be 
demonstrated that projections obey the following recursive relationships:

 
P Y X X X

P Y X X P Y P Y X X

N N

N N

1 1

1 1

, , ,

, , , ,

…

… …

+( )
= ( ) + − ( ) XX P X X XN N− ( )( )1, ,…

This recursive relationship shows that regressions can be constructed pro-
gressively in the sense that we can regress a variable on a partial set of 
variables and then add new variables progressively, without changing the 
previously determined coeffi cients.

Estimation of the Regression Coeffi cients

Let’s now move on to the estimation of the regression parameters. Assume 
that we have T observations of one dependent variable Y and of N indepen-
dent variables Xi, i = 1, 2, …, N. Organize sample data in matrix forms as 
follows:
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The matrix X is called the design matrix. Each row of the design matrix 
is an observation of the N independent variables; each column represents all 
T observations of an independent variable. Let’s stipulate that if a constant 
term is needed in the regression equation, then the fi rst column is a col-
umn of 1s. Each element of the vectors Y and U represent, respectively, an 
observation of the dependent variable Y and the value of the corresponding 
residual. Let’s place all the regression coeffi cients in a column N-vector:

 B = (b1, …, bN)T

To each observation corresponds a regression equation which, assum-
ing a constant term, can be written as follows:
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Using matrix notation, we can compactly write all the regression equations 
for all observations as: 

 Y = XB + U

where Y and U are T-vectors, B is a N-vector, and X is a T × N matrix. All 
X, Y, and U are formed by random variables. Assuming that samples are 
independent, we can rewrite the assumptions of the regression model as 
follows:

 
E U

E UU IT
u T

( ) =

( ) =

0
2σ

We can also assume that residuals and independent variables are inde-
pendent for all variables and all lags and that the matrix XTX is nonsingular. 
Under these assumptions, the Gauss-Markov theorem states that the follow-
ing estimator of the regression coeffi cients:

 B = (XTX)–1XTY

is the Best Linear Unbiased Estimator (BLUE). 
Let’s now sketch the OLS approach to determine the estimator B = 

(XTX)–1XTY. The OLS principle is a method of data analysis. Per se, the OLS 
method does not require any statistical assumption. Let’s begin by illustrating 
the method with an example. Suppose we are given a sample of 100 pairs of 
data: (Yi, Xi), i = 1, …, 100. The Y and the design matrix for this sample are:

Y′ = [1.1877    2.5339   –1.5088    1.6622    1.1688   –0.4077    0.5164    
1.3426    4.6284    3.8694   –0.1999    4.2349    1.9754   1.2369    2.0647    
1.1950    1.3259    2.9897    2.9590    3.0172    2.3215    0.4925    2.4672    
3.4302    2.3389    2.9347   2.6769    1.6966    2.3439    1.3127    3.0384    
1.0529    1.1811    1.4905   –0.5943    3.8384    2.7752    1.7451    3.9203   
0.8885    2.5478    2.4586    3.0692    3.1129    1.9851    2.8699    2.7851    
3.6277    4.1433    4.2093    2.2863    3.2774   2.0359    2.1865    3.3432    
4.9326    2.6803    3.8714    3.3244    4.7174    2.5609    3.7326    4.3025    
4.9006    5.3942   3.9859    2.4584    3.2577    2.9884    6.4505    3.5344    
4.9481    4.0576    5.1886    3.5852    2.9977    3.0276    4.9882   4.3726    
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4.4039    6.0693    4.9916    4.9478    6.3877    4.0455    5.5966    5.7851    
4.7563    5.2657    3.9342    4.0020    5.3049    5.9723    7.8855    4.6831    
5.5873    5.3675    3.5670    5.1110    3.8053]

 ′ =
⎡

⎣
⎢

⎤

⎦
⎥X

1 1 1 1

1 2 3 100

�
�

Exhibit 2.4 illustrates the scatterplot of the data.
We want to determine the straight line y = b1 + b2x that best approxi-

mates the linear relationship between X and Y. The least squares principle 
looks for the straight line that minimizes the sum of the squares of the dif-
ferences between the data and the line. In this two-variable case, we want to 
minimize the following expression:

 Y b b Xi i
i

− +( )
=
∑ 1 2

2

1

100

Differentiate this expression with respect to b1, b2 and equate the derivatives 
to zero to obtain the conditions:

 

2 0
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EXHIBIT 2.4 Scatterplot of the Sample Data
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These conditions can be written in vector-matrix notation:

 
X U

X U

T

T

1

2

0

0

=

=

These conditions are called orthogonality conditions because they imply 
that the residuals are uncorrelated with the independent variables. Absence 
of correlation is called orthogonality because correlation can be interpreted 
algebraically as a scalar product. These conditions can be written in matrix 
form as:

 XTU = 0

Consider now the regression model Y = XB + U and premultiply both 
sides by XT thus obtaining 

 (XTX)B = XTY + XTU

Note that Y is a T vector and XT is a N × T matrix. As we have just seen, the 
least squares condition implies XTU = 0. Hence in premultiplying both sides 
by the inverse of XTX, we obtain the estimator B = (XTX)–1XTY. If we apply 
this formula to our data, we obtain B = [1.0807  0.0429] which is in good 
agreement with empirical data generated with B = [1  0.05].

We can immediately generalize to any number of variables. In fact, con-
sider a regression model Y = XB + U. The least squares condition seeks the 
coeffi cients that minimize:

 Y b Xi j ij
j

N

i

T

−
⎛

⎝⎜
⎞

⎠⎟==
∑∑

1

2

1

Differentiating and equating the derivatives to zero, we obtain the orthogo-
nality conditions:
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which state that the independent variables are orthogonal to the residuals. 
This set of orthogonality conditions can be expressed in matrix form: XTU 
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= 0. Using the same reasoning as above, from the orthogonality conditions 
we obtain 

 B = (XTX)–1XTY

Thus far we have not assumed any statistical model but we have deter-
mined a vector of coeffi cients B such that the sum of squared residuals

 Y b Xi j ij
j

N

i

T

−
⎛

⎝⎜
⎞

⎠⎟==
∑∑

1

2

1

is minimized. The OLS procedure can be applied to any set of data regard-
less of how they are generated. If we assume that data are generated by a 
statistical model Y = XB + U with the sole assumptions that residuals are 
zero-mean variables with constant variance, mutually uncorrelated and un-
correlated with the regressors, then the B are a BLUE estimator of the true 
regression coeffi cients. Note that there are no assumptions on the distribu-
tion of residuals and regressors other than requiring zero mean and constant 
variance. Observe that we can look at the OLS estimator B as obtained from 
the orthogonality condition E(XTY) = E(XTX)B, replacing the expectations 
with the empirical means. 

Here is the intuition. We have seen that if we can describe a popula-
tion with a regression model where regressors are uncorrelated with residu-
als, then the coeffi cients of the model satisfy the least squares condition as 
a population property. When we apply OLS to sample data, we estimate 
the population least squares property replacing expectations with empirical 
averages.

 b Xj ij
j

N

=
∑

1

 P Y X X b XN j ij
j

N

1
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, ,…( ) =
=
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P Y X X X
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The OLS method is a method of data analysis which can always be 
applied, regardless of the distribution of the variables, provided that second-
order moments exist. The OLS estimator is not the only possible estimator. 
If all the variables are normally distributed, we can obtain the maximum 
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likelikood estimator. It can be demonstrated that the maximum likelihood 
estimation principle yields the same estimator as the OLS method. The 
demonstration is straightforward. In fact, assuming normally distributed 
residuals with a diagonal covariance matrix, the sample likelihood L can be 
written as follows:

 L B Y b Xi j ij
j

N

, expσ σ
σ

( ) = − −
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞
−

=
∑1

2
1

2
1

2 ⎠⎠
⎟
⎟=

∏
i

T

1

The loglikelihood can be written as follows:

 log ,L B T Y b Xi j ij
j
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σ σ
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The maximum likelihood is obtained maximizing the term

 Y b Xi j ij
j
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⎛
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1

2

1

This term is the sum of the squared residuals as with the OLS method.
The estimators B̂  are random variables that depend on the sample data. 

The estimators B̂  are unbiased and therefore their expectations equal the 
true value of the regression coeffi cients: E B Bˆ( ) = . As B̂  is BLUE, it has the 
minimum variance among the linear unbiased estimators. It can be demon-
strated that if residuals are uncorrelated:

 cov B̂ X XT( ) = ( )−
σ2 1

and that an unbiased estimate s2 of σ2 is the following:

 s
U U
T N

T
2 =

( )
−

If residuals are normally distributed, the ratio = s2(T – N)/σ2 is distrib-
uted as a Student’s t with T−N degrees of freedom.

Relaxing Assumptions

We can now relax some of the assumptions we made previously on regres-
sions. 
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Generalized Least Squares

Suppose that residuals might not be uncorrelated and/or that residuals do 
not have a constant variance. Let’s therefore assume the residuals of the 
model Y = XB + U have the following covariance matrix:

 cov(U) = σ2Σ

where we assume that Σ is known while σ2 is a scale parameter to be estimat-
ed. Note explicitly that this covariance matrix represents both the eventual 
heteroskedasticity and autocorrelation structure of the residuals. In particu-
lar, the terms on the diagonal of Σ represent the eventual time-dependence 
of the variance of the residuals while the off-diagonal terms represent the 
autocorrelations between residuals at different times.

In order to determine the regression parameters, we can use the Gen-
eralized Least Squares (GLS) principle. The GLS principle is the analogue 
of the OLS principle applied to correlated residuals. It is similar to the OLS 
principle insofar as it requires the minimization of the squared residuals. 
However, given that residuals are random variables, the sum of squared 
residuals depends on their covariance matrix. In fact, we can write the GLS 
conditions as follows:

 arg min
B

T
Y BX Y BX−( ) −( )⎡

⎣⎢
⎤
⎦⎥

− −σ 2 1Σ

If we differentiate and equate the derivatives to zero, we obtain:

 (XTΣ–1X)B = XTΣ–1Y

Assuming that the matrix XTΣ–1X is nonsingular, the above yields the Gener-
alized Least Squares (GLS) estimator also called Aitken’s estimator:

 B̂ X X X YT T= ( )− − −Σ Σ1 1 1

In addition, if we premultiply the regression model by Σ–1/2 we obtain 
another regression model Y* = X*B + U* where Y* = Σ–1/2Y, X* = Σ–1/2X, U* 
= Σ–1/2U where cov(U*) = σ2I. In other words, if the covariance matrix of the 
residuals is known, it is possible to transform a regression model with corre-
lated residuals in a standard regression model with uncorrelated residuals.

The Gauss-Markov theorem extends to the GLS estimators as it can be 
demonstrated that the GLS estimator is the BLUE. The covariance matrix 
of the GLS estimator is
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 cov B̂ X XT( ) = ( )−σ2 1Σ

Though conceptually satisfactory, the GLS principle per se is of little use 
in practice as the covariance matrix of the residuals is generally not known. 
In practice, the GLS is replaced by the Feasible GLS (FGLS) in which the 
covariance matrix of residuals is replaced by an estimate of the same matrix. 
FGLS is applied iteratively. The fi rst step is to estimate the multiple regres-
sion coeffi cients B with OLS. In general, the residuals from this initial step 
will show a covariance matrix Σ ≠ σ2I. The second step is to use the empiri-
cal covariance matrix of the residuals obtained with OLS to produce an 
updated GLS-type estimate of the regression coeffi cients B. This procedure 
can be iterated until convergence is reached.

Instrumental Variables

Consider a linear model Y = XB + U. A variable Zh is called an instrumen-
tal variable or more briefl y an instrument if it is uncorrelated with all the 
residuals: E(Ziu) = 0. A set of H instrumental variables Z1, …, ZH is called a 
system of instrumental variables if the variables Zh are linearly independent, 
that is, no variable is a linear combination of the others, a condition which 
ensures that the matrix ZTZ is nonsingular. 

Suppose that the linear model Y = XB + U does not satisfy the orthogo-
nality conditions but that a system of instrumental variables exist. If the 
number H of instrumental variables is equal to the number N of regressors, 
and if the matrix ZTX is nonsingular, then the instrumental variables estima-
tor of the regression coeffi cients is:

 B̂ Z X Z YT T= ( )−1

Instrumental variables do not necessarily exist. When an instrumental 
variables system of the correct size do indeed exist, instrumental variables 
offer a way to estimate regressions where regressors and residuals are cor-
related.

MULTIVARIATE REGRESSION

Thus far we have discussed single equation regression where one variable is 
regressed on multiple regressands. However, in economics and in fi nancial 
econometrics we often need to regress multiple regressands on multiple re-
gressors. A regression of this type is called a multivariate regression. 
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There are different forms of multivariate regressions. The most com-
plete specifi cation of a regression model is given by a system of linear equa-
tions that link linearly both the Yi and the Xj. The general form of a multiple 
equations model is the following:

 

Y a Y a Y b X b X Ut t M t M t N t t, , ,1 21 2 1 11 1 1 1 1= + + = + + +� �

��������������������
�Y a Y a Yt M M t M M t M, , ,= + + −1 1 1 == + + +b X b X UM t NM t tM1 1 1 1�

This system of equations can be written in matrix form as follows:

 YA = XB + U

In this system, the variables Y are determined endogenously in function 
of the exogenous variables X. Assuming that the matrix A be nonsingular, 
multiplying both sides by A–1 the same system can be written as:

 Y XBA UA

Y XC V

= +
= +

− −1 1

In this formulation the exogenous variables are expressed directly in 
function of the endogenous variables. Multivariate regressions can be esti-
mated with the OLS method provided that residuals are zero-mean variables 
with constant variance and that residuals and regressors are not correlated. 

The estimators have the same form as for multiple regressions:

 B̂ X X X YT T= ( )−1

where, however, the B̂  are now a matrix of coeffi cients. 

Seemingly Unrelated Regressions

The seemingly unrelated regression (SUR) model is a multivariate regression 
model where all equations are independent but the residuals are mutually 
correlated. The SUR model was introduced by Arnold Zellner in his 1962 
paper.23 Zellner observed that if regressions use the same data, residuals can 
be correlated even if they refer to seemingly unrelated equations. The SUR 
model might seem to be counterintuitive as it might be diffi cult to see how 

23Arnold Zellner, “An Effi cient Method of Estimating Seemingly Unrelated Regres-
sion Equations and Tests for Aggregation Bias,” Journal of the American Statistical 
Association, 57 (1962), pp. 348–368.
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independent equations with different dependent and independent variables 
can have anything in common.

The setting of SUR is the following. Consider a number M of classical 
regression equations:

 

Y X U

Y X

t i i t
i

K

t

M t Mi i

1 1 1
1

1

1

, , ,

,

= +

=

=
∑β

β

���������

MM t
i

K

M tU, ,
=
∑ +

1

1

Assume that each equation can be estimated with OLS and that residuals 
are correlated with covariance matrix Σ ≠ σ2I. Then the OLS estimators of 
each equation might not be effi cient. The SUR model uses a GLS estimator 
applied to the global model. 

QUANTILE REGRESSIONS

Thus far we analyzed classical regression models whose predictions are 
point estimates of the conditional mean of the dependent variable. In fact, 
a regression function is defi ned as the conditional expectation of the regres-
sand given the regressors. It was also proved that the OLS and the GLS 
procedures actually estimate the conditional mean. The conditional mean 
is not the only possible choice of a point estimate of the distribution of the 
regressand. For example, another possible choise is the median. 

In fact, in the eighteenth century there was a scientifi c debate on the 
relative merits of the median versus the mean as a point estimate of a dis-
tribution. The scientist and mathematician Pierre-Simon Laplace favored 
the median while the mathematician Karl Friedrich Gauss favored the mean 
and the OLS method he developed. Thereafter, the preferred point estimate 
became the mean and the preferred method of data analysis became the 
OLS regression. Reasons behind the preference for OLS include the fact 
that OLS is based on the minimization of the sum of squared deviations, a 
task that can be performed with analytical methods which yield closed-form 
formulas. However with the advent of fast computers and the development 
of more effi cient optimization methods, this advantage is greatly reduced.24 

Additional considerations might come into play. For example, the 
median is less sensitive to outliers than the mean, and therefore a regression 
24See Stephen Portnoy and Roger Koenker, “The Gaussian Hare and the Laplacian 
Tortoise: Computability of Squared-Error versus Absolute-Error Estimators,” Statis-
tical Science, 12 (1997), pp. 279–300.
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based on the conditional median as opposed to a regression based on the 
conditional mean is more robust. Robustness is not the only consideration. 
More in general, we might want to obtain more information on the distri-
bution of the dependent variable than a point estimate of the mean or of 
the median. The key idea of quantile regression proposed by Koenker and 
Basset in 1978,25 is to model the conditional quantiles, that is, to model the 
quantiles given the regressors. 

In order to explain quantile regression, let’s recall a few basic facts. 
First, given a set of data Xi, i = 1, …, N, the mean and the median can be 
represented as a minimization problem:

 

arg min

arg min

μ
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i
i
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Consider now a multivariate data set which we represent as in the pre-
vious sections with a vector Y and a design matrix X whose fi rst column is 
formed by 1s. The following properties hold:
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 yields the conditional mean, 
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 yields the conditional median. 

As shown in Koenker and Basset, this relationship can be generalized to 
any quantile. Here is how. Suppose τ, 0 < τ < 1 indicates the quantile. For 
example, τ = 0.09 indicates the upper decile. The following expression:
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yields the conditional τ quantile.
Quantile regressions have found important applications in fi nance. For 

example, quantile regressions were used by Engle and Manganelli to com-

25Roger Koenker and Gilbert Bassett, “Regression Quantiles,” Econometrica, 46 
(1978), pp. 33–50.
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pute directly a risk measure known as Value at Risk (VaR) without the need 
to estimate the probability distribution.26 

REGRESSION DIAGNOSTIC

Once we have estimated a regression model, we need criteria to check the 
quality of the regression. There are several classical ways of evaluating in 
sample the quality of a classical regression. They include the following: 

The confi dence intervals of the regression coeffi cients.
The R-square statistic.
The F statistic.
The p value.
The leverage points.

In order to compute regression diagnostics we need to make an assumption 
about the distribution of the regression variables. The practice is to assume 
that residuals are normally distributed.

Under the assumption that residuals are mutually uncorrelated and 
uncorrelated with the regressors, if the latter are random variables, the 
regression coeffi cients are estimated by:

 B̂ X X X YT T= ( )−1

and the variance of the residuals is estimated by 

 σ̂2 2

1

1= −( )
=
∑T N Ut
t

T

It can be demonstrated that the estimated variance of residuals has a Chi-
square distribution with T– N degrees of freedom, that the coeffi cients B are 
normally distributed, and that

 E B B)(B B)( ˆ ˆ ˆ ( )− − ′⎡⎣ ⎤⎦ = σ2 X XT

26Robert F. Engle and Simone Manganelli, “CAViaR: Conditional Autoregressive 
Value at Risk by Regression Quantiles,” Journal of Business and Economic Statis-
tics, 22 (2004), pp. 367–381. For a further discussion of applications in fi nance, see 
Chris Gowland, Zhijie Xiao, and Qi Zeng, “Beyond the Central Tendency: Quantile 
Regression as a Tool in Quantitative Investing,” Journal of Portfolio Management, 
35 (2009), pp. 106–119.

■

■

■

■

■
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Therefore the quantities

 

ˆ

ˆ

b b
a

j j
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σ

where the ajj are the diagonal elements of the matrix (XTX) have a Student’s 
t distribution with T – N degrees of freedom. This allows one to create sig-
nifi cance intervals for the regression coeffi cients. A confi dence interval for a 
given variable is an interval which includes the values of the variable within 
a predetermined probability. For example, a 95% confi dence interval for b1 
is an interval (b1l, b1h) around the estimated b̂1  where, under the assump-
tions made, we will fi nd the true value of b1 with a 95% probability. In other 
words, if the model is correct, the true value of the parameter b1 will be in 
the (b1l, b1h) interval. Of course the confi dence interval is meaningful only if 
the model is correct.

In practice, most statistical packages will compute the N-vector
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of the estimated regression coeffi cients and a N × 2 matrix 
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that contains the relative confi dence intervals at a specifi ed confi dence level.
The R-square statistic, also called coeffi cient of determination, evaluates 

the percentage of the total variation of the independent variable explained by 
the regression. Consider a single equation multiple regression. If we want to 
evaluate how well the regression fi ts data we can compare the total variation 
of the residuals with the total variation of the data. Using the notation of this 
chapter, we call Y the independent variable and U the residuals. The ratio 
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t
t
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t
t
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∑

∑
between the total variation of the residuals and the total variation of the 
dependent variables measures the percentage of the data variance which is 
not explained by the regression. Consequently, the quantity:
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measures the percentage of the total variation of the independent variables 
which is explained by the regression equation. 

Defi ned in this way, the R2 is misleading and might lead to serious over-
fi tting. In fact, in sample, the percentage of total variation explained grows 
with the number of regressors . However, the increase of R2 generated in this 
way might be a numerical artifact. For this reason it has been proposed to 
correct the R2, penalizing models with many regressors. The modifi ed R2, or 
adjusted R2, represented as R2 used in most packages is defi ned as follows:
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which grows with the number of the regressors and therefore penalizes the 
term 
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which gets smaller with growing numbers of regressors.
The F statistic is a statistic computed by most statistical software pack-

ages used to test the null assumption that all regression coeffi cients are zero: 
B = 0. The total F statistic is defi ned as follows: 

 F
R

R
N K
K

=
−

−
−

2

21 1

It can be demonstrated that the F statistic is distributed as an F-distribution 
F(K – 1, N – K) that allows one to determine the relative p values. The p 
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values are the probability of the distribution tail at the right of the value of 
a statistic. Most statistical software packages compute the F statistics and 
the corresponding p value from the F distribution. A small p value rejects 
the null of B = 0 because it means that the computed statistic is very unlikely 
given that it is far in the tail region. 

ROBUST ESTIMATION OF REGRESSIONS

In this section we discuss methods for the robust estimation of regressions. 
Robust estimation is a topic of robust statistics. Therefore we fi rst introduce 
the general concepts and methods of robust statistics and then apply them 
to regression analysis. In particular, we will introduce robust regression es-
timators and robust regression diagnostics. 

Robust Statistics

Robust statistics addresses the problem of making estimates that are insen-
sitive to small changes in the basic assumptions of the statistical models 
employed. The concepts and methods of robust statistics originated in the 
1950s. The technical term robust statistics was coined by G. E. P. Box in 
1953. 

Statistical models are based on a set of assumptions; the most impor-
tant include (1) the distribution of key variables, for example the normal 
distribution of errors, and (2) the model specifi cation, for example model 
linearity or nonlinearity. Some of these assumptions are critical to the 
estimation process: if they are violated, the estimates become unreliable. 
Robust statistics (1) assesses the changes in estimates due to small changes 
in the basic assumptions and (2) creates new estimates that are insensitive 
to small changes in some of the assumptions. The focus of our exposition is 
to make estimates robust to small changes in the distribution of errors and, 
in particular, to the presence of outliers.

Robust statistics is also useful to separate the contribution of the tails 
from the contribution of the body of the data. We can say that robust sta-
tistics and classical nonrobust statistics are complementary. By conducting a 
robust analysis, one can better articulate important econometric fi ndings. 

As observed by Peter Huber, robust, distribution-free, and nonpara-
metrical seem to be closely related properties but actually are not.27 For 
example, the sample mean and the sample median are nonparametric esti-
mates of the mean and the median but the mean is not robust to outliers. 

27Huber’s book is a standard reference on robust statistics: Peter J. Huber, Robust 
Statistics (New York: John Wiley & Sons, Inc., 1981).
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In fact, changes of one single observation might have unbounded effects on 
the mean while the median is insensitive to changes of up to half the sample. 
Robust methods assume that there are indeed parameters in the distribu-
tions under study and attempt to minimize the effects of outliers as well as 
erroneous assumptions on the shape of the distribution. 

A general defi nition of robustness is, by nature, quite technical. The 
reason is that we need to defi ne robustness with respect to changes in distri-
butions. That is, we need to make precise the concept that small changes in 
the distribution, which is a function, result in small changes in the estimate, 
which is a number. Let’s fi rst give an intuitive, nontechnical overview of the 
modern concept of robustness and how to measure robustness.

Qualitative and Quantitative Robustness

Here we introduce the concepts of qualitative and quantitative robustness of 
estimators. Estimators are functions of the sample data. Given an N-sample 
of data X = (x1, …, xN)′ from a population with a cdf F(x), depending on 
parameter θ∞, an estimator for θ∞ is a function ˆ ( , ..., ).ϑ ϑ= N Nx x1  Consider 
those estimators that can be written as functions of the cumulative empirical 
distribution function:

 F x N I x xN i
i

N

( ) ( )= ≤−

=
∑1

1

where I is the indicator function. For these estimators we can write

 ˆ ( )ϑ ϑ= N NF

Most estimators, in particular the ML estimators, can be written in this 
way with probability 1. In general, when N → ∞ then FN(x) → F(x) almost 
surely and ϑ̂ ϑN → ∞  in probability and almost surely. The estimator ϑ̂N  is 
a random variable that depends on the sample. Under the distribution F, it 
will have a probability distribution LF(ϑN). Intuitively, statistics defi ned as 
functionals of a distribution are robust if they are continuous with respect 
to the distribution. In 1968, Hampel introduced a technical defi nition of 
qualitative robustness based on metrics of the functional space of distribu-
tions.28 The Hampel defi nition states that an estimator is robust for a given 
distribution F if small deviations from F in the given metric result in small 
deviations from LF(ϑN) in the same metric or eventually in some other metric 
for any sequence of samples of increasing size. The defi nition of robustness 

28F. R. Hampel, “A General Qualitative Defi nition of Robustness,” Annals of Math-
ematical Statistics, 42 (1971), pp. 1887–1896.
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can be made quantitative by assessing quantitatively how changes in the 
distribution F affect the distribution LF(ϑN). 

Resistant Estimators

An estimator is called resistant if it is insensitive to changes in one single 
observation.29 Given an estimator ˆ ( )ϑ ϑ= N NF , we want to understand what 
happens if we add a new observation of value x to a large sample. To this 
end we defi ne the infl uence curve (IC), also called infl uence function. The IC 
is a function of x given ϑ, and F is defi ned as follows:

 IC x
s F s F

sF s

x
ϑ

ϑ δ ϑ
, ( ) lim

(( ) ) ( )
=

− + −
→0

1

where δx denotes a point mass 1 at x (i.e., a probability distribution concen-
trated at the single point x). As we can see from its previous defi nition, the 
IC is a function of the size of the single observation that is added. In other 
words, the IC measures the infl uence of a single observation x on a statistics 
ϑ for a given distribution F. In practice, the infl uence curve is generated by 
plotting the value of the computed statistic with a single point of X added 
to Y against that X value. For example, the IC of the mean is a straight line. 
Several aspects of the infl uence curve are of particular interest: 

Is the curve bounded as the X values become extreme? Robust statistics 
should be bounded. That is, a robust statistic should not be unduly 
infl uenced by a single extreme point. 
What is the general behavior as the X observation becomes extreme? 
For example, does it become smoothly down-weighted as the values 
become extreme? 
What is the infl uence if the X point is in the center of the Y points?

Let’s now introduce concepts that are important in applied work. We 
then introduce the robust estimators.

The breakdown (BD) bound or point is the largest possible fraction of 
observations for which there is a bound on the change of the estimate when 
that fraction of the sample is altered without restrictions. For example, we 
can change up to 50% of the sample points without provoking unbounded 
changes of the median. On the contrary, changes of one single observation 
might have unbounded effects on the mean.

29For an application to the estimation of the estimation of beta, see R. Douglas Mar-
tin and Timothy T. Simin, “Outlier Resistant Estimates of Beta,” Financial Analysts 
Journal, 59 (2003), pp. 56–58. We discuss this application later in this chapter.

■

■

■
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The rejection point is defi ned as the point beyond which the IC becomes 
zero. Note that observations beyond the rejection point make no contribu-
tion to the fi nal estimate except, possibly, through the auxiliary scale esti-
mate. Estimators that have a fi nite rejection point are said to be redescending 
and are well protected against very large outliers. However, a fi nite rejection 
point usually results in the underestimation of scale. This is because when 
the samples near the tails of a distribution are ignored, an insuffi cient frac-
tion of the observations may remain for the estimation process. This in turn 
adversely affects the effi ciency of the estimator. 

The gross error sensitivity expresses asymptotically the maximum effect 
that a contaminated observation can have on the estimator. It is the maxi-
mum absolute value of the IC. 

The local shift sensitivity measures the effect of the removal of a mass 
at y and its reintroduction at x. For continuous and differentiable IC, the 
local shift sensitivity is given by the maximum absolute value of the slope 
of IC at any point. 

Winsor’s principle states that all distributions are normal in the middle.
M-estimators are those estimators that are obtained by minimizing a 

function of the sample data. Suppose that we are given an N-sample of data 
X = (x1, …, xN)′. The estimator T(x1, …, xN) is called an M-estimator if it is 
obtained by solving the following minimum problem:

 
T J x tt i

i

N

= =
⎧
⎨
⎩

⎫
⎬
⎭=

∑arg min ( , )ρ
1

where ρ(xi,t) is an arbitrary function. Alternatively, if ρ(xi,t) is a smooth func-
tion, we can say that T is an M-estimator if it is determined by solving the 
equations:

 ψ( , )x ti
i

N

=
∑ =

1

0

where

 ψ
ρ

( , )
( , )

x t
x t

ti
i=

∂
∂

When the M-estimator is equivariant, that is T(x1 + a, …, xN + a) = T(x1, 
…, xN) + a, ∀a ∈ R, we can write ψ and ρ in terms of the residuals x – t. 
Also, in general, an auxiliary scale estimate, S, is used to obtain the scaled 
residuals r = (x – t)/S. If the estimator is also equivariant to changes of scale, 
we can write 
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ψ ψ ψ

ρ ρ ρ

( , ) ( )
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x t
x t

S
r
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x t

S

= −⎛
⎝⎜

⎞
⎠⎟ =

= −⎛
⎝⎜

⎞
⎠⎟ = (( )r

ML estimators are M-estimators with ρ = –log f, where f is the probabil-
ity density. (Actually the name M-estimators means maximum likelihood-
type estimators.) LS estimators are also M-estimators.

The IC of M-estimators has a particularly simple form. In fact, it can be 
demonstrated that the IC is proportional to the function ψ:

 IC = Constant × ψ

To understand our next estimator, consider an N-sample (x1, …, xN)′. 
Order the samples so that x(1) ≤ x(2) ≤ … ≤ x(N). The i-th element X = x(i) of the 
ordered sample is called the i-th order statistic. L-estimators are estimators 
obtained as a linear combination of order statistics:

 L a xi i
i

N

=
=
∑ ( )

1

where the ai are fi xed constants. Constants are typically normalized so that

 ai
i

N

=
=
∑ 1

1

An important example of an L-estimator is the trimmed mean. The 
trimmed mean is a mean formed excluding a fraction of the highest and/
or lowest samples. In this way the mean, which is not a robust estimator, 
becomes less sensitive to outliers.

R-estimators are obtained by minimizing the sum of residuals weighted 
by functions of the rank of each residual. The functional to be minimized is 
the following:

 arg min ( )J a R ri i
i

N

=
⎧
⎨
⎩

⎫
⎬
⎭=

∑
1

where Ri is the rank of the i-th residual ri and a is a nondecreasing score 
function that satisfi es the condition 

 a Ri
i

N

( ) =
=
∑ 0

1
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The Least Median of Squares Estimator 

Instead of minimizing the sum of squared residuals, as in LS, to estimate the 
parameter vector, Rousseuw30 proposed minimizing the median of squared re-
siduals, referred to as the least median of squares (LMedS) estimator. This es-
timator effectively trims the N/2 observations having the largest residuals, and 
uses the maximal residual value in the remaining set as the criterion to be mini-
mized. It is hence equivalent to assuming that the noise proportion is 50%. 

LMedS is unwieldy from a computational point of view because of its 
nondifferentiable form. This means that a quasi-exhaustive search on all 
possible parameter values needs to be done to fi nd the global minimum. 

The Least Trimmed of Squares Estimator 

The least trimmed of squares (LTS) estimator offers an effi cient way to fi nd 
robust estimates by minimizing the objective function given by 

 J r i
i

h

=
⎧
⎨
⎩

⎫
⎬
⎭=

∑ ( )
2

1

where r i( )
2  is the i-th smallest residual or distance when the residuals are 

ordered in ascending order, that is: r r rN( ) ( ) ( )1
2

2
2 2≤ ≤  and h is the number of 

data points whose residuals we want to include in the sum. This estimator 
basically fi nds a robust estimate by identifying the N – h points having the 
largest residuals as outliers, and discarding (trimming) them from the data 
set. The resulting estimates are essentially LS estimates of the trimmed data 
set. Note that h should be as close as possible to the number of points in the 
data set that we do not consider outliers.

Reweighted Least Squares Estimator 

Some algorithms explicitly cast their objective functions in terms of a set 
of weights that distinguish between inliers and outliers. However, these 
weights usually depend on a scale measure that is also diffi cult to estimate. 
For example, the reweighted least squares (RLS) estimator uses the follow-
ing objective function:

 arg min J ri i
i

N

=
⎧
⎨
⎩

⎫
⎬
⎭=

∑ω 2

1

30P. Rousseuw, “Least Median of Squares Regression,” Journal of the American Sta-
tistical Association, 79 (1984), pp. 871–890.
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where ri are robust residuals resulting from an approximate LMedS or LTS 
procedure. Here the weights ωi trim outliers from the data used in LS mini-
mization, and can be computed after a preliminary approximate step of 
LMedS or LTS. 

Robust Estimators of the Center The mean estimates the center of a distribu-
tion but it is not resistant. Resistant estimators of the center are the fol-
lowing:31

Trimmed mean. Suppose x(1) ≤ x(2) ≤ … ≤ x(N) are the sample order statis-
tics (that is, the sample sorted). The trimmed mean TN(δ,1 – γ) is defi ned 
as follows: 

 

T
U L

x

L

N
N N

j
j L

U

N

N

N

( , )

, ( , . ),

δ γ

δ γ

1
1

0 0 5
1

− =
−

∈ =
= +
∑

flloor floor[ ], [ ]N U NNδ γ=

Winsorized mean. The Winsorized mean XW  is the mean of Winsorized 
data:
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Median. The median Med(X) is defi ned as that value that occupies a 
central position in a sample order statistics:

 Med
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Robust Estimators of the Spread The variance is a classical estimator of the 
spread but it is not robust. Robust estimators of the spread are the fol-
lowing:

Median absolute deviation. The median absolute deviation (MAD) is 
defi ned as the median of the absolute value of the difference between a 
variable and its median, that is,

31This discussion and the next draw from Anna Chernobai and Svetlozar T. Rachev, 
“Applying Robust Methods to Operation Risk Modelling,” Journal of Operational 
Risk, 1 (2006), pp. 27–41.

■

■

■

■
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 MAD = MED|X – MED(X)|

Interquartile range. The interquartile range (IQR) is defi ned as the dif-
ference between the highest and lowest quartile:

 IQR = Q(0.75) – Q(0.25)

where Q(0.75) and Q(0.25) are the 75th and 25th percentiles of the data.
Mean absolute deviation. The mean absolute deviation (MAD) is defi ned 
as follows:

 1
N

xj −∑ MED( )X
j=1

N

Winsorized standard deviation. The Winsorized standard deviation is 
the standard deviation of Winsorized data, that is,

 σ
σ

W
N

N NU L N
=

−( ) /

Robust Estimators of Regressions

Let’s now apply the concepts of robust statistics to the estimation of regres-
sion coeffi cients, which is sensitive to outliers.

Identifying robust estimators of regressions is a rather diffi cult problem. 
In fact, different choices of estimators, robust or not, might lead to radically 
different estimates of slopes and intercepts. Consider the following linear 
regression model:

 Y Xi i
i

N

= + +
=
∑β β ε0

1

The standard nonrobust LS estimation of regression parameters minimizes 
the sum of squared residuals,

 ε βt
i

T

i ij ij
j

N

i

T

Y X2
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2

= ==
∑ ∑∑= −
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⎝⎜

⎞
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The solution of this minimization problem is

 ˆ ( )ββ = ′ ′−X X X Y1

■

■

■
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The fi tted values (i.e, the LS estimates of the expectations) of the Y are

 ˆ ( )Y X X X X Y HY= ′ ′ =−1

The H matrix is called the hat matrix because it puts a hat on, that is, it 
computes the expectation Ŷ  of the Y. The hat matrix H is a symmetric T × 
T projection matrix; that is, the following relationship holds: HH = H. The 
matrix H has N eigenvalues equal to 1 and T – N eigenvalues equal to 0. Its 
diagonal elements, hi ≡ hii satisfy:

 0 ≤ hi ≤ 1

and its trace (i.e., the sum of its diagonal elements) is equal to N:

 tr(H) = N

Under the assumption that the errors are independent and identically 
distributed with mean zero and variance σ2, it can be demonstrated that the 
Ŷ are consistent, that is, ˆ ( )Y Y→ E  in probability when the sample becomes 
infi nite if and only if h = max(hi) → 0. Points where the hi have large values 
are called leverage points. It can be demonstrated that the presence of lever-
age points signals that there are observations that might have a decisive 
infl uence on the estimation of the regression parameters. A rule of thumb, 
reported in Huber,32 suggests that values hi ≤ 0.2 are safe, values 0.2 ≤ hi ≤ 
0.5 require careful attention, and higher values are to be avoided.

Thus far we have discussed methods to ascertain regression robustness. 
Let’s now discuss methods to “robustify” the regression estimates, namely, 
methods based on M-estimators and W-estimators. 

Robust Regressions Based on M-Estimators

Let’s fi rst discuss how to make robust regressions with Huber M-estimators. 
The LS estimators ˆ ( )ββ = ′ ′−X X X Y1  are M-estimators but are not robust. We 
can generalize LS seeking to minimize 
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by solving the set of N + 1 simultaneous equations

32Huber, Robust Statistics.
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Robust Regressions Based on W-Estimators

W-estimators offer an alternative form of M-estimators. They are obtained 
by rewriting M-estimators as follows:

 ψ β βY X w Y Xi ij ij
j
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Hence the N + 1 simultaneous equations become 
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or, in matrix form

 X′WXβ = X′WY

where W is a diagonal matrix. 
The above is not a linear system because the weighting function is in 

general a nonlinear function of the data. A typical approach is to deter-
mine iteratively the weights through an iterative reweighted least squares 
(RLS) procedure. Clearly the iterative procedure depends numerically on 
the choice of the weighting functions. Two commonly used choices are the 
Huber weighting function wH(e), defi ned as

 w e
e k

k e e kH ( )
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=
≤
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and the Tukey bisquare weighting function wT(e), defi ned as
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where k is a tuning constant often set at 1.345 × (standard deviation of er-
rors) for the Huber function and k = 4.6853 × (standard deviation of errors) 
for the Tukey function. 

Robust Estimation of Covariance and Correlation Matrices

Variance-covariance matrices are central to modern portfolio theory. In fact, 
the estimation of the variance-covariance matrices is critical for portfolio 
management and asset allocation. Suppose returns are a multivariate ran-
dom vector written as

 rt t= +μμ εε

The random disturbances εεt  is characterized by a covariance matrix ΩΩ . 
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The correlation coeffi cient fully represents the dependence structure of 
multivariate normal distribution. More in general, the correlation coeffi -
cient is a valid measure of dependence for elliptical distributions (i.e., distri-
butions that are constants on ellipsoids). In other cases, different measures 
of dependence are needed (e.g., copula functions).33

The empirical covariance between two variables is defi ned as

 ˆ ( )( ),σX Y i i
i

N

N
X X Y Y=

−
− −

=
∑1

1 1

where

 X
N

X Y
N

Yi
i

N

i
i

N

= =
= =
∑ ∑1 1

1 1

,

are the empirical means of the variables.
The empirical correlation coeffi cient is the empirical covariance nor-

malized with the product of the respective empirical standard deviations:

33Paul Embrechts, Filip Lindskog, and Alexander McNeil, “Modelling Dependence 
with Copulas and Applications to Risk Management,” in S. T. Rachev (ed.), Hand-
book of Heavy Tailed Distributions in Finance (Amsterdam: Elsevier/North-Holland, 
2003).
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The empirical standard deviations are defi ned as
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Empirical covariances and correlations are not robust as they are highly 
sensitive to tails or outliers. Robust estimators of covariances and/or cor-
relations are insensitive to the tails. However, it does not make sense to 
robustify correlations if dependence is not linear.

Different strategies for robust estimation of covariances exist; among 
them are:

Robust estimation of pairwise covariances.
Robust estimation of elliptic distributions.

Here we discuss only the robust estimation of pairwise covariances. As de-
tailed in Huber,34 the following identity holds:

 cov( , ) [var( ) var( )]X Y
ab

aX bY aX bY= + − −1
4

Assume S is a robust scale functional:

 S aX b a S X( ) ( )+ =

A robust covariance is defi ned as

 C X Y
ab

S aX bY S aX bY( , ) [ ( ) ( ) ]= + − −1
4

2 2

Choose

 a
S X

b
S Y

= =1 1
( )

,
( )

A robust correlation coeffi cient is defi ned as 

34Huber, Robust Statistics.

■

■
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 c S aX bY S aX bY= + − −1
4

2 2[ ( ) ( ) ]

The robust correlation coeffi cient thus defi ned is not confi ned to stay in the 
interval [–1,+1]. For this reason the following alternative defi nition is often 
used:

 r
S aX bY S aX bY
S aX bY S aX bY

= + − −
+ + −

( ) ( )
( ) ( )

2 2

2 2

Applications

Regression analysis has been used to estimate the market risk of a stock 
(beta) and to estimate the factor loadings in a factor model. Robust regres-
sions have been used to improve estimates in these two areas. 

Martin and Simin provide the fi rst comprehensive analysis of the 
impact of outliers on the estimation of beta.35 Moreover, they propose 
a weighted least-squares estimator with data-dependent weights for esti-
mating beta, referring to this estimate as resistant beta, and report that 
this beta is a superior predictor of future risk and return characteristics 
than the beta calculated using LS. To see the potential dramatic difference 
between the LS beta and the resistant beta, shown below are the estimates 
of beta and the standard error of the estimate for four companies reported 
by Martin and Simin:36

OLS Estimate Resistant Estimate

Beta Standard Error Beta Standard Error

AW Computer Systems 2.33 1.13 1.10 0.33

Chief Consolidated 1.12 0.80 0.50 0.26

Mining Co. Oil City Petroleum 3.27 0.90 0.86 0.47

Metallurgical Industries Co. 2.05 1.62 1.14 0.22

Martin and Simin provide a feeling for the magnitude of the absolute 
difference between the OLS beta and the resistant beta using weekly returns 
for 8,314 companies over the period January 1992 to December 1996. A 
summary of the distribution follows:

35Martin and Simin, “Outlier-Resistant Estimates of Beta.”
36Reported in Table 1 of the Martin-Simin study. Various time periods were used 
from January 1962 to December 1996.
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Absolute Difference in Beta No. of Companies Percent

0.0+ to 0.3 5,043 60.7

0.3+ to 0.5 2,206 26.5

0.5+ to 1.0 800 9.6

Greater than 1.0+ 265 3.2

Studies by Fama and French fi nd that market capitalization (size) and 
book-to-market are important factors in explaining cross-sectional returns.37 
These results are purely empirically based since there is no equilibrium asset 
pricing model that would suggest either factor as being related to expected 
return. The empirical evidence that size may be a factor that earns a risk 
premia (popularly referred to as the small-fi rm effect or size effect) was 
fi rst reported by Banz.38 Knez and Ready reexamined the empirical evidence 
using robust regressions, more specifi cally the least-trimmed squares regres-
sion discussed earlier.39 Their results are twofold. First, they fi nd that when 
1% of the most extreme observations are trimmed each month, the risk 
premia found by Fama and French for the size factor disappears. Second, 
the inverse relation between size and the risk premia reported by Banz and 
Fama and French (i.e., the larger the capitalization, the smaller the risk pre-
mia) no longer holds when the sample is trimmed. For example, the average 
monthly risk premia estimated using LS is –12 basis points. However, when 
5% of the sample is trimmed, the average monthly risk premia is estimated 
to be +33 basis points; when 1% of the sample is trimmed, the estimated 
average risk premia is +14 basis points. 

CLASSIFICATION AND REGRESSION TREES

One of the limitations of utilizing regression analysis is that it treats the 
variable whose value we seek to predict from the perspective of averages. 
That is, by design, linear combinations of the explanatory variables and the 
regression coeffi cients pick up an average effect. Moreover, by only account-
ing for an average effect, linear combinations of the explanatory variables 

37Eugene F. Fama and Kenneth R. French, “The Cross-Section of Expected Stock 
Returns,” Journal of Finance, 47 (1992), pp. 427–466; and “Common Risk Factors 
in the Returns on Stocks and Bonds,” Journal of Financial Economics, 33 (1993), 
pp. 3–56.
38Rolf W. Banz, “The Relationship Between Return and Market Value of Common 
Stocks,” Journal of Financial Economics, 9 (1981), pp. 3–18.
39Peter J. Knez and Mark J. Ready, “On the Robustness of Size and Book-to-Market 
in Cross-Sectional Regressions,” Journal of Finance, 52 (1997), pp. 1355–1382.
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in a regression make it diffi cult to take into account interactions among the 
explanatory variables or to examine relationships on a conditional basis. 
A methodology popularly referred to as classifi cation and regression trees 
(CART) can overcome these limitations of regression analysis by allowing 
one to (1) investigate nonlinear behavior, (2) take into consideration inter-
actions of the explanatory variables, and (3) examine relationships on a 
conditional basis.40 CART is one of the methodologies that respondents to 
the survey studies discussed in Chapter 1 indicated that they employ.

CART involves building decision trees that are used for regression pur-
poses to predict dependent variables and for classifi cation purposes to obtain 
categorical predictor variables. CART is a supervised learning method. This 
means that the CART methodology builds upon a known sample with 
known classifi cations or regression values. After the model is built, it is used 
on new cases. In a new case the CART rules are applied to predictors and 
the output is a classifi cation or regression value.41

CART allows one to investigate relationships on a conditional basis by 
building a sophisticated tree-structured data analysis technique that employs 
a set of “if-then” decision rules. The use of if-then rules is a natural metho-
dology for analyzing complex problems under conditions of uncertainty. 
The technique effectively allows a researcher to determine the most signifi -
cant infl uences on the variable of interest (i.e., dependent variable). In appli-
cations to equity investing, for example, the variable of interest could be the 
behavior of the equity market. CART would allow portfolio managers to 
determine in the case of the equity market what might be a more important 
factor impacting the equity market, say, the economy or the valuation of 
equities. CART involves estimating the appropriate hierarchy of factors that 
are believed to impact the variable of interest and then assign probabilities. 

40This technique was introduced in Leo Breiman, Jerome H. Friedman, Richard A. 
Olshen, and Charles J. Stone, Classifi cation and Regression Trees (Belmont: Wad-
sworth, 1984).
41The CART methodology works by constructing binary recursive trees. Each node 
of the tree is split in two by a binary decision on one of the predictor variables. The 
optimal splitting criterion divides the sample into two subsamples which are maxi-
mally homogeneous. An often used criterion of homogeneity is based on the Gini 
coeffi cient. The splitting process can be carried on to the individual units, thereby 
building a complete tree. However, a complete tree would yield very poor generaliza-
tion performance. Therefore, a key aspect of the learning process includes rules as to 
when to stop splitting the tree. Alternatively, one can build a complete tree and then 
“prune” it in order to reach the best performance out of sample. Once the length of 
the tree is decided, one has to assign a classifi cation value to each of the last nodes. 
One can assign to each node the classifi cation value that appears more frequently in 
the sample. After completing this step the tree is ready to be used on new cases.
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To our knowledge, Sorensen, Mezrich, and Miller were the fi rst to apply 
CART to quantitative investment management. 42 They applied it to relative 
value analysis for purposes of traditional asset allocation, one of the most 
common problems in quantitative investment management. The specifi c 
application was to construct optimal decision trees to model the relative 
performance of the S&P 500 with respect to cash. They defi ne relative value 
as the earnings yield on the S&P 500 minus the long bond yield, with high 
relative value being indicative of higher future equity market performance. 
The output of their model assigned probabilities to three market states: 
outperform, underperform, and neutral. The question that they sought to 
answer is the one we mentioned earlier: What is more important in driving 
the equity market, the economy or the valuation of equities (as measured by 
price-earnings ratios)? They fi nd, for example, that the relevance of valua-
tion is subordinate to the economy. That is, in a strong economy, investors 
are not as concerned about market price-earnings ratios. 

Just to provide a feel for the CART procedure, we briefl y describe what 
was done by Sorensen, Mezrich, and Miller. They fi rst identify the explan-
atory variables that they believed are the major determinants of equity 
returns. The explanatory variables that they used were the steepness of the 
yield curve, credit spread, equity risk premium, and dividend yield premium 
(i.e., S&P 500 dividend yield minus the long bond yield). Then CART was 
used to split the dependent variable, stock returns, into two distinct groups, 
each group being as homogeneous as possible. To accomplish this, a critical 
level for an explanatory variable was determined for splitting the depen-
dent variable. The CART algorithm then continues splitting each of these 
two subgroups into fi ner subgroups each that are statistically distinguish-
able but homogenous within a group. The splitting continues until it can 
no longer improve the statistical homogeneity of each subgroup by splitting 
on additional explanatory variables. The resulting hierarchy of explanatory 
variables is such that it will have the minimum misclassifi cation rate for 
the entire tree. The fi nal product of CART is a tree-structured hierarchy of 
nonlinear if-then rules, where each rule is conditioning its behavior on the 
rules that preceded it. From this tree-structured hierarchy, a set of prob-
abilities for reaching each state of the dependent variable can be obtained. 
In the application by Sorensen, Mezrich, and Miller, it is the assignment of 
probabilities to three market states: outperform, underperform, and neutral. 
They report that when the forecast probability for outperformance exceeds 
70%, the model is correct almost 70% of the time.

42Eric H. Sorensen, Joseph J. Mezrich, and Keith L. Miller, “A New Technique for 
Tactical Asset Allocation,” Chapter 12 in Frank J. Fabozzi, ed., Active Equity Port-
folio Management (Hoboken: John Wiley & Sons, 1998).
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SUMMARY

A probabilistic description of fi nancial time series is possible if residuals 
are uncorrelated white noise.
Covariance and correlations measure the linear dependence between 
random variable.
Estimating the correlations and covariances between many processes is 
very diffi cult when the sample length is of the same order of magnitude 
as the number of processes.
Exponentially weighted moving averages mitigate the problem associ-
ated with estimate covariances and correlations.
Random Matrix Theory offers a systematic analysis of the level of 
uncertainty associated with estimating large covariance and correlation 
matrices.
Linear regressions represent linear functional links between variables.
Standard regression models can be estimated through Ordinary Least 
Squares.
Generalized Least Squares is the analog of the Ordinary Least Squares 
applied to correlated residuals.
Extensions of the regression model include instrumental variables mod-
els and multivariate regressions.
Quantile regressions can be used to obtain more information on the 
distribution of the dependent variable than a point estimate of the mean 
or of the median; the key idea is modeling the conditional quantiles (i.e., 
modeling the quantiles given the regressors).
Regression diagnostics include signifi cance tests of the coeffi cients and 
the analysis of the leverage points.
The techniques of robust statistics address the problem of obtaining 
estimates that are insensitive to small changes in the basic assumptions 
of the statistical model employed and is also useful to separate the con-
tribution of the tails from the contribution of the body of the data.
Robust statistic methods can be applied to the estimation of regression 
coeffi cients, which is sensitive to outliers.
The classifi cation and regression trees methodology is a nonlinear 
regression tool that can be used to take into account interactions among 
the explanatory variables or to examine relationships on a conditional 
basis; the methodology involves building decision trees that are used to 
predict dependent variables and for classifi cation purposes to obtain 
categorical predictor variables.
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CHAPTER 3
Financial Econometrics II: 

Time Series

In this chapter we introduce the theory of time series and estimation meth-
ods related to time series. We begin by introducing the theory of the rep-

resentation of time series in both the time and frequency domains. Next we 
introduce vector autoregressive processes and the concept of cointegration 
and discuss their estimation methods.

STOCHASTIC PROCESSES

A stochastic process is a time-dependent random variable. Consider a prob-
ability space (Ω,P), where Ω is the set of possible states of the world ω ∈ 
Ω and P is a probability measure. A stochastic process is a collection of 
random variables Xt indexed with the time variable t. Therefore a stochastic 
process is a bivariate function X(t,ω) of time and states. A path of a stochas-
tic process is a univariate function of time formed by the set of all values 
X(t,ω) for a given ω ∈ Ω. We can therefore say that a stochastic process is 
the collection of all of its paths. Two stochastic processes might have the 
same paths but different probability distributions. For example, consider a 
stock market. All stock price processes share the same paths but the prob-
ability distributions are different for different stocks.

A possible way to represent a stochastic process is through all the fi nite 
joint probability distributions:

 
F x x P X t x X t x t tn n n i1 1 1 1, , ( , , ),… … � �( ) = ( ) ≤ ( ) ≤ ≤ ≤ ≤≤ tn

for any n and for any selection of n time points. The fi nite distributions do 
not determine all the properties of a stochastic process and therefore they do 
not uniquely identify the process. 

If the fi nite distributions do not depend on their absolute time location 
but only on the differences τi = ti – tt–1, then the process is called stationary 
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102 QUANTITATIVE EQUITY INVESTING

or strictly stationary. In this case, the fi nite distributions can be written as 
F(τ1, ..., τn–1). 

In Chapter 2 we observed that the possibility of a statistical description 
of fi nancial events has been the subject of debate. In fact, we have only one 
realization for each stock price process but the statistical model of stock 
price processes includes an infi nite number of paths. The fact that there were 
doubts as to the possibility of making statistical inference from one single 
realization is understandable. Ultimately the solution is to assume that the 
statistical properties of the ensemble of paths can be inferred from the sta-
tistical properties of the set of points of one single realization. A stationary 
stochastic process is called ergodic if all the (time independent) moments 
are equal to the limit of the corresponding time average when time goes to 
infi nity. For example, if a process is ergodic, the mean equals the time aver-
age. If a process is ergodic its statistical parameters can be inferred from one 
single realization.

The defi nition of a stochastic process extends naturally to multivari-
ate processes. A multivariate stochastic process is a time-dependent random 
vector: Xt = (X1,t, …, Xp,t). Therefore, a multivariate stochastic process is a 
set of p bivariate functions: X(t,ω) = [X1(t,ω), …, Xp(t,ω)]. The fi nite dis-
tributions are joint distributions of the p variables at n different instants of 
time. Stationarity and ergodicity are defi ned as in the univariate case.

TIME SERIES

If the time parameter moves in discrete increments, a stochastic process is 
called a time series. A univariate time series is a sequence of random vari-
ables:

 X(t1), …, X(ts), …

Time points can be equally spaced, that is, the difference between adja-
cent time points is a constant: ts – ts–1 = ∆t. Time points can also be spaced 
randomly or follow a deterministic law. In the former case, the time series is 
more properly called a point process. A multivariate time series is a sequence 
of random vectors. 

The number of time points of a time series is generally considered to be 
infi nite. Time series can be infi nite in both directions, from –∞ to +∞ or they 
can have a starting point t0. Any empirical time series can be considered a 
sample extracted from an infi nite time series. Strictly speaking, a time series 
can be stationary only if it is infi nite in both directions. 
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A multivariate series is called a covariance stationary or weakly stationary 
or wide-sense stationary time series if the vector of the means is constant in 
time: 

 E X t X t E X t X t i,i N i j N j1 1( ) ( )( ) = ( ) ( )( ) ∀, , , , ,… … jj

and if all the covariances and autocovariances, correlations, and autocor-
relations depend only on the time lags:

 

corr corrX t X t X t X ti r j s i r q j s q( ) ( )( ) = ( ) ( )( )+ +, , ,,

, , , , , , , , ,

cov

∀ = ∀ = − −i, j N q r, s

Xi

1 2 1 0 1 2… … …

tt X t X t X t

i,

r j s i r q j s q( ) ( )( ) = ( ) ( )( )
∀

+ +, cov , ,

jj N q r, s= ∀ = − −1 2 1 0 1 2, , , , , , , , ,… … …

If a series is covariance stationary, the covariances and correlations are con-
stant and we can defi ne autocorrelation and autocovariance functions as 
follows:

 
ρ τ

γ τ

τ τ

τ

ij i r j r

ij

X t X t

X

,

,

,( ) = ( ) ( )( )
( ) =

+corr

cov ii r j rt X t( ) ( )( )+, τ

Note that a strictly stationary series is not necessarily covariance station-
ary because the means and the covariances might not exist. If they exist, a 
strictly stationary series is indeed covariance stationary. 

Representation of Time Series
In both theoretical and applied work, we need to characterize and repre-
sent time series. Time series might admit several different representations. 
A fundamental, and very general, representation of covariance stationary 
time series is given by the Wold representation, named after the statistician 
Herman Ole Andreas Wold. A doctoral student of Harald Cramer,1 Wold 
introduced his representation in his dissertation under the supervision of 
Cramer. Hence, the Wold representation is often called the Cramer-Wold 
representation. 

Let’s fi rst state the Wold representation for univariate series as proved 
by Wold in 1938.2 Consider a zero-mean, covariance stationary series Xt. 

1Harald Cramer, a famous Swedish mathematician, was one of the founders of ac-
tuarial science. 
2Herman O. A. Wold, The Analysis of Stationary Time Series (Uppsala: Almqvist 
and Wicksell, 1938).
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104 QUANTITATIVE EQUITY INVESTING

The Wold Representation Theorem states that Xt can be represented as the 
sum of two stochastic processes. The fi rst is formed by an infi nite moving 
average of past innovation terms; the second is a process that can be per-
fectly linearly predicted by the past values of Xt:

 

X b w

E E w t

t j t j
j

t

t t s

= +

( ) = ( ) = ∀

−
=

∞

∑ ε

ε ε
0

0 0, , , ss E E t s t s

b

t t s, , , ,

,

ε σ ε ε2 2

0

0

1

( ) = ( ) = ∀ ≠

= bj
j

2

0=

∞

∑ < ∞

To gain an intuition of Wold’s theorem, assume that the process Xt has 
zero-mean and form the linear projections of Xt on Xt, …, Xt–n: 

 ˆ , ,X a X P X X Xt
n

i
i

n

t i t t t n
( )

=
− − −= = ⎡⎣ ⎤⎦∑

1
1 …

Consider now the residuals 

 w X P X X Xt
n

t t t t n
( )

− −= − ⎡⎣ ⎤⎦1, ,…

By the orthogonality property discussed in Chapter 2, the projections 
and the relative residuals are orthogonal:

 E X P X X Xt
n

t t t n
ˆ , , ,( )

− −⎡⎣ ⎤⎦( ) =1 0…

It can be demonstrated that if we let n go to infi nity then the sequence 
of projections

 P X X Xt t t n− −⎡⎣ ⎤⎦1, ,…

converges, in the mean square sense, to a well defi ned random variable:

 
ˆ , ,X a X P X X Xt i

i
t i t t t= = ⎡⎣ ⎤⎦

=

∞

− − −∑
1

1 2 …

The residuals εt t tX X= − ˆ  are orthogonal to all Xt–j. The residuals are 
the innovations that remain after the linear predictions

 P X X Xt t t− −⎡⎣ ⎤⎦1 2, ,…
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and hence they are linearly unpredictable. The Wold Representation Theo-
rem states that any stationary process can be represented as the sum of two 
stochastic processes 

 X b wt j t j
j

t= +−
=

∞

∑ ε
0

that are mutually orthogonal at every lag and such that the process wt is 
perfectly linearly predictable from the past Xt–j while the process

 bj t j
j

ε −
=

∞

∑
0

is linearly unpredictable. The process wt is called linearly deterministic while 
the process above is called purely nondeterministic.

Note that, though deterministic, the process wt is a stochastic process 
formed by an infi nite set of different paths that are individually linearly 
predictable functions. The process wt should be distinguished from deter-
ministic trends that are not stochastic processes. An example of a linearly 
deterministic stationary stochastic process is given by the process yt = (a sin(ωt) 
+ b cos(ωt)) where a, b are mutually uncorrelated random variables.

The Wold decomposition carries over to the multivariate case. Consider 
a multivariate series Xt = (X1t, …, Xnt). In the multivariate case, the covari-
ance function is replaced by a set of covariance matrices Γτ τγ= { },ij  whose 
entries are the auto crosscovariances at lag τ: γ τ τij i t j tE X X, , ,( )= − . The Wold 
decomposition theorem states that a multivariate process can be uniquely 
decomposed in two processes 

 X BU Wt i t i
i

t= +−
=

∞

∑
0

where the terms Bi are square n × n matrices such that B0 = In, the sum

 B Bi t
i

′
=

∞

∑
0

converges, the process Ut is n-variate real-valued white noise such that:

 E U E U U E U U mt t t
T

t t s
T( ) = ( ) = ( ) = >−0 0 0, , forΣ

and Wt is a linearly deterministic process. Analogous to the univariate case, 
this latter condition means that there is an n-vector C0 and n × n matrices 
CS such that the process Xt is perfectly linearly predictable from its own past 
in the sense that:
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 W C C Wt s t s
s

= + −
=

∞

∑0
1

and 

 
E U W mt t m

T
−( ) = = ± ±0 0 1 2, , , ,…

As in the univariate case, the n-dimensional white noise Ut is an innova-
tion process in the sense that Ut is the residual of the best linear forecast of 
Xt, that is, U X P X X Xt t t t t= − ( )− −1 2, ,… .

The Wold decomposition, as stated previously, applies to stationary 
processes that extend from –∞ to +∞. Cramer extended the Wold decom-
position, proving that any process can be decomposed in a deterministic 
process, not necessarily linear, plus a purely nondeterministic process.3

The Wold decomposition is unique as a linear moving average represen-
tation but it is not the only possible representation of a stationary stochastic 
process. For example, a nonlinear process might have a nonlinear repre-
sentation in addition to the Wold representation. It is remarkable that even 
nonlinear processes admit the Wold representation which is linear.

Invertibility and Autoregressive Representations

Let’s fi rst introduce the lag operator L. The operator L shifts a series back 
by one place: L(Xt) = Xt–1. The lag operator can be applied recursively: 

 

L X X

L X X

L X L L X X

t t

t t

t t t

0

1
1

2
2

( ) =
( ) =
( ) = ( )( ) =

−

−

�����������

L X L L X Xn
t

n
t t n( ) = ( )( ) =−

−
1

Using the lag operator, the Wold representation can be written as

 X B L b L wt t j
j

t
j

t= ( ) = +
=

∞

∑ε ε
0

where

3Harald Cramer, “On Some Classes of Non-Stationary Processes,” in Proceedings of 
the 4th Berkeley Symposium on Mathematical Statistics and Probability, University 
of California Press, 1961, pp. 221–230.
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 B L b Lj
j

j

( ) =
=

∞

∑
0

Assume that the linearly predictable part has been removed, so that X 
is the purely indeterministic process Xt = B(L)εt. Let’s formally write the 
inverse of the operator B(L) as follows:

 B L B L I I L L( ) ( ) = = + + +
−1 21 0 0, …

We can therefore formally establish the two relationships:

 
X B L

B L X

t t

t t

= ( )
= ( )−

ε

ε
1

Not every operator B(L) has an inverse. If an inverse exists, then the 
process is called invertible. In this case, a process Xt can be represented as 
a sum of mutually uncorrelated innovation terms and the innovation terms 
can be represented as an infi nite sum of the past of the process. 

Representation in the Frequency Domain

Let’s recall a few facts related to the analysis of time series in the frequency 
domain.4 The basis for spectral analysis is the Fourier series and the Fourier 
transforms. A periodic function x(t) with period 2τ can be represented as a 
Fourier series formed with a denumerably-infi nite number of sine and cosine 
functions: 

 x t a a t b tn n( ) = + ⎛
⎝⎜

⎞
⎠⎟
+ ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞1
2 0 cos sin

π
τ

π
τ ⎠⎠⎟=

∞∑ n 1

This series can be inverted in the sense that the coeffi cients can be recov-
ered as integrals through the following formulas:

 

a x t t dt

b x t t

n

n

= ( ) ⎛
⎝⎜

⎞
⎠⎟

= ( )

−

+

∫
1

1

τ
π
τ

τ
π
τ

τ

τ
cos

sin
⎛⎛
⎝⎜

⎞
⎠⎟−

+

∫ dt
τ

τ

4We follow M. B. Priestley, Spectral Analysis and Time Series (London: Academic 
Press, 1983), and D. R. Cox and H. D. Miller, The Theory of Stochastic Processes 
(Boca Raton, FL: Chapman & Hall/CRC, 1977).
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If the function x(t) is square integrable, it can be represented as a Fourier 
integral: 

 x t e F di t( ) = ( )
−∞

+∞

∫
1

2π
ω ωω

where the function F(ω) is called the Fourier transform of x(t):

 F e x t dti tω
π

ω( ) = ( )−

−∞

+∞

∫
1

2

In both cases, periodic and nonperiodic, Parseval’s Theorem holds:

 

x t dt c c a c a bn
n

n n n
2 2

1
0

1
2 0

1
2

22( ) = = = +
−∞

+∞

=

∞

∫ ∑τ , , 22

2 2

( )
( ) = ( )

−∞

+∞

−∞

+∞

∫ ∫x t dt F dω ω

The preceding Fourier analysis applies to a deterministic function x(t). 
Suppose now that x(t) is a univariate stationary stochastic process in con-
tinuous time x(t). A stochastic process is a set of paths. As the process is 
infi nite and stationary, its paths are not periodic, they do not decay to zero 
when time goes to infi nity, and they cannot be square integrable as functions 
of time. 

Consider the power of the signal and the power spectra. Given a sta-
tionary series (signal), its energy (i.e., the integral of its square) is infi nite, 
but the power of the series (i.e., its energy divided by time) might tend to a 
fi nite limit. 

Consider a stationary time series. Wold’s theorem states that a neces-
sary and suffi cient condition for the sequence ρ(t), t = 0, ±1, ±2, … to be 
the autocorrelation function of a discrete stationary process x(t), t = 0, ±1, 
±2, … is that there is a nondecreasing function F(ω) such that F(–π) = 0 and 
F(+π) = 1 and such that:

 ρ ωω

π

π
r e dFi r( ) = ( )

−

+

∫

Assuming that the function F(ω) is differentiable and 

 
dF
d

f
( )

( )
ω
ω

ω=

we can write:
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 ρ ω ωω

π

π
( ) ( )r e f di r=

−

+

∫
This relationship can be inverted in terms of a Fourier series:

 f r e i r

r

r
ω

π
ρ ω( ) = ( ) −

=−∞

=+∞∑1
2

If the series x(t), t = 0, ±1, ±2, … is real-valued, then ρ(r) is an even 
sequence and we can write:

 f r r r r
r

r

r
ω

π
ρ ω

π π
ρ ω( ) = ( ) = + ( )=−∞

=+∞∑1
2

1
2

1
cos cos

==

=+∞∑ 1

r

Similar relationships can be established for covariances. In particular,

 R r e dHi r( ) = ( )
−

+

∫ ω

π

π
ω

and if there is a density 

 
dH

d
h

ω
ω

ω
( )

= ( )

the previous formula becomes:

 R r e h di r( ) = ( )
−

+

∫ ω

π

π
ω ω

This expression can be inverted:

 h R r e i r

r

r
ω

π
ω( ) = ( ) −

=−∞

=+∞∑1
2

If the time series is real-valued:

 h R r r R r r
r

r xω
π

ω
σ
π π

ω( ) = ( ) = + ( )=−∞

=+∞∑1
2 2

1
cos cos

rr

r

=

=+∞∑ 1

Errors and Residuals

In statistics there is a classical distinction between errors and residuals. Er-
rors are deviations from the true population mean while residuals are devia-
tions from the computed sample mean. The two terms are often confused 
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and are used almost interchangeably. However, there are fundamental dif-
ferences between the two terms. For example, errors can be independent 
while residuals typically are not independent. To see this point, consider 
a sample randomly extracted from a population. As samples are supposed 
to be independent draws from the population, errors can be assumed to 
be independent. However, by construction, the residuals of the empirical 
sample average have zero mean which makes them surely not theoretically 
independent. Of course, if the sample is large, the residuals of the empirical 
mean are practically independent. 

When discussing regressions in Chapter 2 we observed that the assump-
tion of constant error variance implies that errors do not have the same 
importance in different regions of the variables. In fact, errors have a rela-
tively smaller importance when the regression variables have large values 
than when they have small values. Therefore, a linear regression with con-
stant errors is assumed to offer a better fi t in the extremes of the variables 
than in the center. 

In modeling time series, when we discuss an abstract probabilistic 
model we make assumptions about the model errors but when we estimate 
the model we observe the residuals after modeling the expected conditional 
mean and not the true error. We can create different probabilistic models 
making different assumptions about the errors. For example, we can assume 
that errors follow a GARCH process. Given a sample, we have to decide 
what model and related residuals better fi t the data. 

Generally speaking, we can say that any given model apportions fore-
casts between the model itself and its residuals. In the ideal situation, 
residuals are white noise that do not carry any information. In most cases, 
however, the main model will leave residuals with more structure. It is fun-
damental to restrict the structure of the residuals, otherwise the model is 
void of empirical content. 

STABLE VECTOR AUTOREGRESSIVE PROCESSES

Consider fi rst a univariate zero-mean stationary series. An autoregressive 
model of a univariate time series is a model of the form:

 X a X a Xt t q t q t= + + +− −1 1 � ε

where we assume that εt is a sequence of uncorrelated white noise terms 
with constant variance (homoscedastic). This series can be inverted if the 
roots of the equation:
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 1 01− − − =a z azq�

where z is a complex variable, are all greater than one in modulus. Consider, 
for example, the case of q = 1:

 

X a X

a L X
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t t t

t t

t
i i

t

= +

−( ) =

=
−( ) =

−1 1

1

1
1

1

1
1
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ε

ε
ii=

∞

∑
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The series

 a Li i
t

i
1

1

ε
=

∞

∑

converges if ⎪a1⎪ < 1, a condition that implies that the real-valued solution 
z = 1/a1 of the equation 1 – a1z = 0 is greater than 1.

Consider the covariance function of a series that can be written as 
follows:

 

ρ ε1 1 1 1 1 1 1( ) = ( ) = +( )( ) =− − − −E X X E X a X a E X Xt t t t t t t−−

− − − −

( ) =
( ) = ( ) = +

1 1
2

2 2 1
2

2 12

a

E X X E X a X at t t t t

σ

ρ ε 11 1
2

2 2 1
2 2+( )( ) = ( ) =− −ε σt t ta E X X a

���������������������������

ρ τ στ( ) = ( ) =+E X X at t
q
1

2

An autoregressive time series Xt = a1Xt–1 + … + aqXt–q + εt is a regres-
sion model of the type discussed in Chapter 2. Suppose that the roots of the 
equation 1 – a1z – … – azq = 0 are greater than 1 in modulus. If residuals 
are serially uncorrelated and have constant variance (homoscedastic) then 
we can estimate the autoregressive model with ordinary least squares (OLS). 
Let’s organize sample data as we did in the case of linear regressions. An 
autoregressive model with q lags is a regression model with q variables plus 
one constant. Suppose we are given a sample time series:

 ( , , , , , )X X X Xq q T q1 1… …+ +
′

We can organize the sample data and the residuals as follows:
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Call A = (a0, a1, …, aq) the vector of model coeffi cients. The autoregressive 
model can be compactly written in matrix form:

 X = ZA + E

and the OLS estimator of the model is:

 Â Z Z Z X= ′( ) ′
-1

Let’s now generalize to multivariate processes. Consider a multivariate 
time series:

 X X Xt t Nt= ′( , , )1 …

and suppose that it satisfi es a set of linear difference equations

 

X c a X a X a Xt t N Nt
q

1 1 11
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� �X c a X a X aNt N N t NN Nt N= + + + + +( )
−

( )
−1

1
1 1

1
1 1

qq
t q NN
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Nt q NtX a X( )

−
( )

−+ + +1 � ε

where we assume that the residuals ε are serially uncorrelated and have 
constant covariance matrix Σ.

If we defi ne the N×N matrices of coeffi cients:
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and the vector of constants C = (c1, …, cN)′ and the vector of residuals Et = 
(ε1t, …, εNt) ′, we can write the above model in matrix form:

 X C A X A X Et t q t q t= + + + +− −1 1 �

A model of this type is called a vector autoregressive model (VAR model) 
of order q. 
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A VAR model of order q is always equivalent to a VAR model of order 
1. To see this point, let’s defi ne a new time series as follows: 

 

Z X X X

Z X X

t t t t q

t t t

= ′ ′ ′( )′
= ′ ′

− − +

− − −

, , ,

, ,

1 1

1 1 2

…

…,, ′( )−Xt q

The series Z satisfi es the following equation:

 Zt = D + AZt–1 + F

where A is the following Nq × Nq companion matrix:
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⎥
⎥
⎥
⎥
⎥

F = (E′, 0, …, 0)′ is a Nq × 1 vector whose fi rst q elements are the residuals 
E, the other elements are all zero, and D is a vector of constants whose fi rst 
q elements are the constants C and the other elements are all zero. 

A VAR model is called stable if the roots of the following equation:

 det I A z A zq
q− −( ) =1 0

where z is a complex variable, are all outside the unit circle. Equivalently, a 
VAR model is stable if all the eigenvalues of the companion matrix A have 
modulus less than one. A stable VAR model initialized in the infi nite past 
produces a stationary process X.

Assume that the series Xt is covariance stationary. Taking expectations 
of both sides of the equation Xt = C + A1Xt–1 + … + AqXt–q + Et , we see that 
the unconditional mean of Xt is given by:

 μ = − − −( )−I A A Cq1

1
�

Subtracting the mean, we can rewrite the process in the following form:
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 X A X A X Et t q t q t− = −( ) + + −( ) +− −μ μ μ1 1 �

A stable VAR model can be estimated as a multivariate regression. 
Observe that the VAR model is a seemingly unrelated regression model 

(SUR model). This fact implies that the multivariate VAR, under the assump-
tion of serially uncorrelated and homoskedastic residuals, can be estimated 
with OLS equation by equation.

INTEGRATED AND COINTEGRATED VARIABLES

Thus far we have considered models of stationary series, in particular cova-
riance stationary series. A univariate series is called integrated of order d if it 
becomes stationary by differencing d times but remains nonstationary after 
differencing d − 1 times. In particular, a nonstationary series is said to be 
integrated of order one, or simply integrated, if it can be made stationary by 
differencing once. Consider a process X integrated of order one. The process 
X is formed by the sum of all past shocks. That is, shocks to an integrated 
process never decay.

The simplest example of an integrated process is the random walk 
defi ned as follows:

 

X X t

X X

X t

t t t

t t
s

t

t

= + =

= +

( ) =

−

=
∑

1

0
0

0 1ε

ε

, , ,

var v

…

aar varεt X( ) + ( )0

where the terms εt are uncorrelated white noise. The random walk is non-
stationary and its variance grows linearly with time. In addition, it can be 
shown that the correlation coeffi cient between points far apart in time tends 
to one when the time interval between the points tends to infi nity.

An integrated process is nonstationary and typically has a start in time 
and initial conditions, otherwise it is diffi cult to justify any condition on 
fi nite moments. 

Therefore, a process is integrated of order d if it is nonstationary but 
it becomes stationary differencing at least d times. This concept is slightly 
ambiguous given the preceding observation that an integrated process has 
a starting point in time. From a strictly theoretical point of view, if we dif-
ference an integrated process which has a starting point in time we obtain 
another process which has a starting point in time. A process with a start-
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ing point in time cannot be stationary. We can solve the problem replacing 
the condition of stationarity with the condition of asymptotic stationarity 
which means that the relevant moments of the process, in particular the 
vector of the means and the covariance matrix tend to a fi nite limit when 
time tends to infi nity. In practice, we assume that the differenced process 
becomes stationary after a transient period.

If we difference more than d times we difference a stationary series. The 
process of differencing a stationary series is called overdifferencing, and a 
series obtained differencing a stationary series is said to be overdifferenced. 

If we difference a stationary series we obtain another stationary series 
which, however, is not invertible. In fact, the difference operator 1 – L can-
not be inverted because we obtain 

 
1

1

1

−( ) =
−

=

∞

∑λ λL Li i

i

which does not converge for λ = 1.
Let’s now consider a multivariate series. The concept of an integrated 

multivariate series is made complex by the fact that it might occur that 
all the component series are individually integrated but the process is not 
jointly integrated in the sense that there are linear combinations of the series 
that are stationary. When this occurs, a multivariate series is said to be coin-
tegrated. A VAR model, therefore, needs to consider the eventual cointegra-
tion of its component series. 

Consider a multivariate time series: Xt = (X1t, …, XNt)′. Suppose all the 
Xit are integrated of order d. If there are K independent linear combinations 

 α i
k

it
i

N

X i K( )

=
∑ =

1

1, , ,…

that are of a lower order of integration d′ < d, then the process Xt is said to 
be cointegrated of order K. 

Nonstationary VAR Models

Consider a VAR model Xt = A1Xt–1 + … + AqXt–q + Et. If one of the roots of 
the characteristic equation det(I – A1z – Aqz

q) = 0 is on the unit circle, the 
VAR model is called unstable. A process defi ned by an unstable VAR model 
is nonstationary and it includes integrated variables. However, the solution 
of an unstable VAR model might include cointegrated variables. A key issue 
in the theory of unstable, nonstationary VAR models is the eventual order 
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116 QUANTITATIVE EQUITY INVESTING

of the cointegration of its solutions. In order to discuss this point, we need 
to introduce the concept of VAR models in error correction form.

VAR Models in Error Correction Form

In order to understand how VAR analysis can be applied to integrated pro-
cesses, let’s fi rst write a VAR model for a process whose components are 
individually integrated of order one:

 Xt = A1Xt–1 + … + AqXt–q + Et

Let’s assume that there is no constant or deterministic term. We will relax 
this assumption later. If we subtract Xt–1 from both sides, we obtain the new 
equation:

 

X X A I X A X E

X L X A

t t t q t q t

t t

− = −( ) + + +

= −( ) =
− − −1 1 1

1

�

Δ 11 1 2 2−( ) + + +− − −I X A X A X Et t q t q t�

Suppose now that we add and subtract (A1 – I)Xt–2 from the right side of the 
equation. We obtain a new equivalent equation

 Δ ΔX A I X A A I X A X Et t t q t q t= −( ) + + −( ) + +− − −1 1 2 1 2 �

Suppose now that we add and subtract (A1 – I)Xt–3 from the right side of the 
equation. We obtain a new equivalent equation 

 Δ ΔX A I X A A I X A X Et t t q t q t= −( ) + + −( ) + +− − −1 1 2 1 2 �

We can continue this process up to the last term:

 
Δ ΔX A I X A A I X A A It t t q= −( ) + + −( ) + + + −(− − −1 1 2 1 2 1 1� � ))

+ + + −( ) +

−

−

ΔX

A A I X E

t

q t q t

2

1�

The above is the error-correction form of a VAR model; it shows that 
a VAR model can be written as a model in fi rst differences plus an error-
correction term in levels:

 
Δ Δ ΔX B X B X B X B X Et t t q t q t q t= + + + +− − − − −1 1 2 2 1 2�
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The error correction term can be placed in any position. For example, an 
alternate, more useful formulation is the following. Start by adding and 
subtracting AqXt–q+1. We obtain:

 X A X A A X A X Et t q q t q q t q t= + + +( ) − +− − − + − +1 1 1 1 1� Δ

Next we add and subtract (Aq–1 + Aq) Xt–q+2 and we obtain 

 

X A X A A A X A At t q q q t q q q= + + + +( ) + +( )− − − − + −1 1 2 1 2 1� ΔXX

A X E

t q

q t q t

− +

− +− +
2

1Δ

We continue until we obtain the:

 
Δ ΔX A A I X A A A X

A

t q t q q t= + + −( ) − + + +( ) −

−

− − −1 1 2 1 1� � �

qq q t q q t q tA X A X E− − + − ++( ) − +1 2 1Δ Δ

The above is called the vector error correction model (VECM) representa-
tion, which is written as follows:

 

Δ Π Γ Δ Γ Δ

Π

X X X X E

A A

t t t q t q t

q

= + + + +

= + +
− − − − +1 1 1 1 1

1

�

� −−( ) = − + +( ) = −+I A A j qj j q, , , ,Γ 1 1 1� …

Given we assume that the process X is integrated of order one, all the terms 
in difference are stationary of order zero and therefore the term ΠXt–1 must 
also be stationary. 

The matrix Π = (A1 + … + Aq – I) cannot have full rank because we 
have assumed that the process X is integrated. If the matrix Π = (A1 + … + 
Aq – I) is the null matrix, there is no cointegration and the process X can be 
estimated in fi rst differences.

Suppose that the matrix Π = (A1 + … + Aq – I) has rank K with 0 < K 
< N. In this case we know from matrix theory that we can represent the N 
× N matrix Π as the product of two N × K matrices α, β, both of rank K: 
Π = αβ′. The columns of β are called the cointegrating relationships. The K 
linear combinations β′Xt are stationary processes. The cointegrating rela-
tionships are not unique. In fact, given any nonsingular matrix P, we obtain 
another decomposition Π = α*β*′ choosing α* = αP, β* = αP–1. 
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118 QUANTITATIVE EQUITY INVESTING

The term ΠXt–1 is called the long-term (or the long-run) part or the 
error-correction (or equilibrium-correction) term. The entries of the matri-
ces Γj are called the short-term (or short-run) parameters.

The order K of cointegration of the solutions of a VAR model is equal to 
the rank of the matrices α, β. Therefore, determining the order of cointegra-
tion of the solutions of a VAR model is obtained by determining the rank of 
the matrix Π = αβ′ which includes the coeffi cients of the terms in levels in 
the VECM representation. 

Deterministic Terms

Thus far we have assumed that the process X has zero mean and that there 
is no constant term in the equation 

 X A X A X Et t q t q t= + + +− −1 1 �

Let’s rewrite this equation as follows:

 

X A X A X E

I A L A L X E

A L

t t q t q t

q
q

t t

− − − =

− − −( ) =

(

− −1 1

1

�

�

)) = ( ) = − − −( )X E A L I A L A Lt t q
q, 1 �

To understand the interplay of a deterministic trend with a VAR model, 
let’s consider the simplest univariate VAR model without a trend, the ran-
dom walk and write:

 xt = xt–1 + εt, t = 0, 1, …

Now add a linear trend wt = c0 + c1t. There is a big difference if we add a 
linear trend to the random walk as 

 y x w c c tt t t s
s

t

= + = + +
=
∑ε 0 1

0

or if we write the random walk model as 

 y c c t yt t t= + + +−0 1 1 ε

The preceding yields a quadratic trend:
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Exhibit 3.1 illustrates the difference between the two models by simu-
lating two random walks obtained from the same error terms and with the 
same parameters of the linear trend but using one of the following models:

 
y c c t yt t t= + + +−0 1 1 ε

or

 y x w c c tt t t s
s

t

= + = + +
=
∑ε 0 1

0

The former model yields a quadratic trend, the latter a linear trend. 

EXHIBIT 3.1 Random Walks with Linear and Quadratic Trends
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Generalizing to the multivariate VAR, let’s fi rst consider the model 

 Y X W X C C tt t t t= + = + +0 1

where X is a zero-mean stochastic process that obeys the VAR conditions 
Suppose now that the VAR equation includes a deterministic trend so that 
the model is written as follows:

 Y C C t A Y A Y Et t q t q t= + + + + +− −0 1 1 1 �

Premultiply both sides of the equation Yt = Xt + C0 + C1t by A(L) and 
we obtain:

 
A L Y A L X A L C C t

A L Y E A L C
t t

t t

( ) = ( ) + ( ) +( )
( ) = + ( ) +

0 1

0 CC t1( )
which gives a representation in levels of the process Y and places constraints 
on the deterministic terms.

Cointegration plays a fundamental role in economic and fi nancial mod-
eling. In Chapter 5 we will discuss the relationship of cointegration with 
mean reversion. 

ESTIMATION OF STABLE VECTOR 
AUTOREGRESSIVE (VAR) MODELS

The least squares method and the maximum likelihood method apply im-
mediately to unrestricted stable VAR models. Note that models are said to 
be unrestricted if the estimation process is allowed to determine any possible 
outcome, and restricted if the estimation process is allowed to determine 
parameters that satisfy given conditions, that is, restrictions on their pos-
sible range of values. 

Suppose that an empirical time series is given and that the data generat-
ing process (DGP) of the series is a fi nite dimensional VAR(p) model. Recall 
that a VAR(p) model has the following form:

 x A x A x A x v1t t t p t p t= + + ⋅ ⋅ ⋅ + + +− − −1 2 2 εε

where 
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xt = (x1,t, …, xN,t)′ is a N–dimensional stochastic time series in vector 
notation

Ai = ( ),,as t
i  i = 1, 2, …, p, s, t = 1, 2, …, N are deterministic N × N 

matrices
εεt = (ε1,t, …, εN,t)′ is a multivariate white noise with variance-covariance 

matrix Σ = (σ1, …, σN)′
v = (v1, …, vN)′ is a vector of deterministic terms

Though deterministic terms might be time-dependent deterministic vec-
tors, in this section we will limit our discussion to the case of a constant 
intercept as this is the case commonly encountered in fi nancial economet-
rics. A constant intercept in a stable VAR model yields a nonzero mean of 
the process. 

The previous model can be written in lag notation as

 x A A A x v1t p
p

t tL L L= + + ⋅ ⋅ ⋅ +( ) + +2
2 εε

Consider the matrix polynomial

 A I A A A1z z z z zp
p( ) = − − − ⋅ ⋅ ⋅ − ∈2

2 , �

and consider the inverse characteristic equation

 det(A(z)) = 0

In this section we assume that stability conditions hold

 det(A(z)) ≠ 0 for |z| ≤ 1

that is, the roots of the inverse characteristic equation are strictly outside 
of the unit circle. The result is that the VAR(p) model is stable and the cor-
responding process stationary. The property of stationarity applies only to 
processes that extend on the entire real axis, as a process that starts at a 
given point cannot be strictly time-invariant. In general, we will consider 
processes that start at t = 1, assuming that p initial conditions are given: 
x–p+1, …, x0.

5 In this case, stable VAR models yield asymptotically station-
ary processes. When there is no risk of confusion, we will not stress this 
distinction.

5As in this chapter we assume that the entire time series is empirically given, the dis-
tinction between initial conditions and the remaining data is made only to simplify 
notation.
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Recall also that the preceding N-dimensional VAR(p) model is equiva-
lent to the following Np-dimensional VAR(1) model:

 Xt = AXt – 1 + V + Ut

where
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⎤

⎦

⎥
⎥
⎥
⎥
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, V

v
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⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
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⎥

=

⎡

⎣

⎢
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⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

0

0

0

� �
, t

tεε

The matrix A is called the companion matrix of the VAR(p) system.
Note that in this section we do not place any a priori computational 

restrictions on the model parameters, though we do assume that the model 
is stable. The assumption of model stability ensures that the process is sta-
tionary. This, in turn, ensures that the covariances are time-invariant. As 
the previous VAR(p) model is unrestricted, it can be estimated as a linear 
regression; it can therefore be estimated with the estimation theory of lin-
ear regression. As we consider only consistent estimators, the estimated 
parameters (in the limit of an infi nite sample) satisfy the stability condition. 
However on a fi nite sample, the estimated parameters might not satisfy the 
stability condition.

We will fi rst show how the estimation of a VAR(p) model and its VAR(1) 
equivalent can be performed with least squares methods or with maximum 
likelihood methods.

Vectoring Operators and Tensor Products

We fi rst defi ne the vectoring operator. Given an m × n matrix,

 
A

a a

a a

n

m mn

=
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

11 1

1

…
� � �

�

the vectoring operator, written as vec(A),6 stacks the matrix columns in a 
vector as follows:

6The vec operator should not be confused with the vech operator which is similar but 
not identical. The vech operator stacks the terms below and on the diagonal.
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vec A( ) =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

a

a

a

a

m

n

mn

11

1

1

�

�

�
⎟⎟

Next it is useful to defi ne the Kronecker product. Given the m × n matrix

 
A =

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

a a

a a

n

m mn

11 1

1

…
� � �

�

and the p × q matrix

 
B =

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

b b

b b

q

p pq

11 1

1

…

� � �
�

we defi ne the Kronecker product C = A ⊗ B as follows:

 
C A B

B B

B B

= ⊗ =
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

a a

a a

n

m mn

11 1

1

…
� � �

�

The Kronecker product, also called the direct product or the tensor 
product, is an (mp) × (nq) matrix. It can be demonstrated that the tensor 
product satisfi es the associative and distributive property and that, given 
any four matrices A, B, C, D of appropriate dimensions, the following prop-
erties hold:

 

vec( vec(A B B I A

A B C D AC BD

A

⊗ = ′ ⊗
⊗ ⊗ = ⊗

) ( ) )

( )( ) ( ) ( )

( ⊗⊗ ′ = ′ ⊗ ′

′ ′ = ′ ⊗

B A B

A BCD A D B

) ( ) ( )

) ( )) )Trace( vec( ( vvec(C)

Next we discuss estimation of the model parameters using the multivariate 
least squares estimation method.
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Multivariate Least Squares Estimation

Conceptually, the multivariate least squares (LS) estimation method is 
equivalent to that of a linear regression (see Chapter 2); the notation, how-
ever, is more complex. This is because we are dealing with multiple time 
series and because there are correlations between noise terms. Similar to 
what we did in estimating regressions, we now represent the autoregressive 
process applied to the sample and presample data as a single-matrix equa-
tion. Note that the VAR(p) process is an autoregressive process where the 
variables xt are regressed over their own lagged values: The regressors are 
the lagged values of the dependent variable. We will introduce two different 
but equivalent notations. 

Suppose that a sample of T observations of the N-variate variable xt, t 
= 1, …, T and a presample of p initial conditions x–p+1,…, x0 are given. We 
fi rst stack all observations xt, t = 1, …, T in a vector as was done in the case 
of regressions:

 

x =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

x

x

x

x

N

T

N T

1 1

1

1

,

,

,

,

�

�
�

�

⎟⎟
⎟
⎟
⎟
⎟

Introducing a notation that will be useful later, we can also write

 x = vec(X)

 
X x x= ( ) =

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

1 1 1

1

, ,
, ,

, ,

…

�

� � �
�

T

T

N N T

x x

x x

In other words, x is a (NT × 1) vector where all observations are stacked, 
while X is a (N × T) matrix where each column represents an N-variate 
observation.

Proceeding analogously with the innovation terms, we stack the innova-
tion terms in a (NT × 1) vector as follows:
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u =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

ε

ε

ε

ε

1 1

1

1

,

,

,

,

�

�
�

�

N

T

N T

⎟⎟
⎟
⎟
⎟
⎟

which we can represent alternatively as follows:

 

u U

U

= ( )

=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

vec

ε ε

ε ε

1 1 1

1

, ,

, ,

�

� � �
�

T

N N T

where U is a (N × T) matrix such that each column represents an N-variate 
innovation term.

The innovation terms have a nonsingular covariance matrix,

 Σ = ⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦σ ε εi j i t j tE, , ,

while E[εi,t εj,s] = 0, ∀i, j, t ≠ s. The covariance matrix of u, Σu can now be 
written as

 
Σ Σ

Σ

Σ
u
I= ⊗ =

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T

�
� � �

�

0

0

In other words, the covariance matrix of u is a block-diagonal matrix 
where all diagonal blocks are equal to Σ. This covariance structure refl ects 
the assumed white-noise nature of innovations that precludes autocorrela-
tions and cross autocorrelations in the innovation terms.

In discussing the case of multivariate single-equation regressions (Chap-
ter 2), we stacked the observations of the regressors in a matrix where each 
column represented all the observations of one regressor. Here we want to 
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use the same technique but there are two differences: (1) In this case, there 
is no distinction between the observations of the regressors and those of the 
dependent variables; and (2) the multiplicity of equations requires special 
care in constructing the matrix of regressors. One possible solution is to 
construct the (NT × (N2p + N)) matrix of observations of the regressors 
shown in Exhibit 3.2.

This matrix can be written compactly as follows: w = (W′ ⊗ IN), where 

 

W

x x x x

x x x x

x x

=

1 1 1 1

0 1 2 1

1 0 3 2

1

�
�
�

� � � �

T T

T T
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− pp T p T p

x x
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�

�

x x
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N N N T N T
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11 1 1 0 1 3 1 2

1 0 3
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N p N p N T p N T p
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⎜
⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟

is a ((Np + 1) × T) matrix and IN is the N-dimensional identity matrix.
Let us arrange all the model coeffi cients in a single (N × (Np + 1)) 

matrix as 

 

A v A A= ( )

=

, , ,1

1 11
1

1
1

11 1

…

� � � � �
� � � � � �

p

N
p

N
pv a a a a

�� � � �
� � � � �v a a a aN N NN N

p
NN
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1
1 1

1

⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
⎟
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and construct the (N(Np + 1) × 1) vector as

 

ββ = ( ) =

⎛
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

vec A

v

v

a

a

a
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N
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11
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1
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⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Using the preceding notation, we can now compactly write the VAR(p) 
model in two equivalent ways as follows:

 X = AW + U

 x = wβ + u

The fi rst is a matrix equation where the left and right sides are N × T 
matrices such that each column represents the VAR(p) equation for each 
observation. The second equation, which equates the two NT vectors on the 
left and right sides, can be derived from the fi rst as follows, using the proper-
ties of the vec operator and the Kronecker product established previously:

 vec(X) = vec(AW) + vec(U)

 vec(X) = (W′ ⊗ IN)vec(A) + vec(U)

 x = wβ + u

This latter equation is the equivalent of the regression equation established 
in Chapter 2.

To estimate the model, we have to write the sum of the squares of resid-
uals as we did for the sum of the residuals in a regression. However, as 
already mentioned, we must also consider the multivariate nature of the 
noise terms and the presence of correlations. 

Our starting point will be the regression equation x = wβ + u which 
we can rewrite as u = x – wβ. As the innovation terms exhibit a correlation 
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structure, we have to proceed as in the case of Generalized Least Squares. 
We write the squared residuals as follows:

 S t t
t

T

= ′ = ′− −

=
∑u uuΣΣ εε ΣΣ εε1 1

1

For a given set of observations, the quantity S is a function of the model 
parameters S = S(β). The function S admits the following alternative repre-
sentation:

 S β( ) = − ′ −⎡
⎣⎢

⎤
⎦⎥ = ′−trace trace( ) ( )X AW X AW UΣ Σu u

1 −−⎡⎣ ⎤⎦
1U

In fact, we can write the following derivation:

 

S T= ′ = ′ ⊗

= −

−u u U I U

X AW

uΣ Σ1 ( )) ( ) )

(

vec( vec(

vec(

-1

))) )

( ) (

′ ⊗ −

= − ′ −

−

−

( )vec(

trace[

I X AW

X AW X Au

T Σ

Σ

1

1 WW U U)] ]= ′ −trace[ Σ 1

These expressions are recurrent in the theory of estimation of VAR pro-
cesses and multiple regressions. 

We are now ready to estimate the model parameters, imposing the least 
squares condition: the estimated parameters β̂  are those that minimize S = 
S(β). The minimum of S is attained for those values of β that equate to zero 
the partial derivatives of S:

 ∂
∂

=S( )β
β

0

Equating these derivatives to zero yields the so-called normal equations 
of the LS method that we can derive as follows:

 
S = ′ = − ′ −

= ′ + ′ ′

− −

− −

u u x w x w

x x w
u u

u u

Σ Σ

Σ Σ

1 1

1

( ) ( )β β

β 11 12w w xuβ β− ′ ′ −Σ

Hence the normal equations

 ∂
∂

= ′ − ′ =− −S( )β
β

β2 2 01 1w w w xu uΣ Σ

In addition, the Hessian is positive as
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 ∂
∂ ∂ ′

= ′ −
2

12
S( )β
β β

w wuΣ

Consequently, the LS estimator is

 ˆ ( )β = ′ ′− − −w w w xu uΣ Σ1 1 1

This expression—which has the same form as the Aitkin GLS estimator—is 
a fundamental expression in LS methods. However in this case, due to the 
structure of the regressors, further simplifi cations are possible. In fact, the 
LS estimator can be also written as follows:

 ˆ (( ) )β = ′ ⊗−WW W I x1
N

To demonstrate this point, consider the following derivation:

 

β̂ = ′( ) ′

= ′ ⊗( )′ ⊗( ) ′ ⊗

− − −
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w w w x

W I I W I

u uΣ Σ

Σ

1 1 1

1

N T N(( )( ) ⊗( ) ⊗( )
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−
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1
1

1

W I I x

W I I W I

N T

N T N

Σ

Σ ))( ) ⊗( ) ⊗( )
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− −
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1
1

1

W I I x

WI I W I

N T

T N N
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Σ )) ( )⊗ ( )
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− −

− − −

1
1

1
1

1

WI I x

W W I W

T N

N

Σ

Σ Σ ))
= ′( ) ⊗ ( )( ) ⊗( )
= ′( )( )⊗ ( )

− −

− −

x

WW W x

WW W

1 1

1 1

Σ Σ

Σ Σ xx

WW W I x= ′( ) ⊗( )−1

N

The preceding shows that, in the case of a stable unrestricted VAR process, 
the multivariate LS estimator is the same as the OLS estimator obtained 
by minimizing the quantity S = u′u.We can therefore state that in the case 
of VAR processes, the LS estimators are the same as the OLS estimators 
computed equation by equation. Computationally, this entails a signifi cant 
simplifi cation.

We can also write another expression for the estimators. In fact, we can 
write the following estimator for the matrix A:
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�
A XW WW= ′ ′( )−1

The preceding relationship is obtained from:

 

β̂ = ′( ) ⊗( )
( ) ′( ) ⊗( ) (

−

−

WW W I x

A WW W I X

1

1

N

Nvec = vec
� ))
= ′ ′( )( )−

vec XW WW
1

To summarize, we have obtained the following results:

Given a VAR(p) process, the multivariate LS estimator is the same as the 
OLS estimator computed equation by equation.
The following three expressions for the estimator are equivalent:

 

ˆ

ˆ

β

β

= ′( ) ′

= ′( ) ⊗( )
= ′

− − −

−

w w w x

WW W I x

A X

u uΣ Σ1 1 1

1

N

�
WW WW′( )−1

We next discuss the large-sample (asymptotic) distribution of these estimators.

The Asymptotic Distribution of LS Estimators 

Estimators depend on the sample and have therefore to be considered ran-
dom variables. To assess the quality of the estimators, the distribution of the 
estimators must be determined. The properties of these distributions are not 
the same in small and large samples.

It is diffi cult to calculate the small sample distributions of the LS esti-
mators of the stationary VAR process determined earlier. Consider that the 
only restriction placed on the distribution of the white noise process is that 
it has a nonsingular covariance matrix. Small sample properties of a sta-
tionary VAR process can be approximately ascertained using Monte Carlo 
methods.

Signifi cant simplifi cations hold approximately in large samples and 
hold asymptotically when the sample size becomes infi nite. The essential 
result is that the distribution of the model estimators becomes normal. The 
asymptotic properties of the LS estimators can be established under addi-
tional assumptions on the white noise. Suppose that the white-noise process 

1.

2.
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has fi nite and bounded fourth moments and that noise variables at different 
times are independent and not merely uncorrelated as we have assumed thus 
far. (Note that these conditions are automatically satisfi ed by any Gaussian 
white noise.) Under these assumptions, it can be demonstrated that the fol-
lowing properties hold:

The ((Np + 1) × (Np +1)) matrix

 Γ: plim= ′WW
T

exists and is nonsingular.
The (N(Np + 1) × 1) vector β̂β  of estimated model parameters is jointly 
normally distributed:

 T N
d

ˆ ,ββ ββ ΓΓ ΣΣ−( )→ ⊗( )−0 1

The (N(Np + 1) × N(Np + 1)) matrix ΓΓ ΣΣ− ⊗1  is the covariance matrix 
of the parameter distribution.

From the preceding, in any large but fi nite sample, we can identify the 
following estimators for the matrices Γ, ΣΣ :

 
Γ̂Γ = ′WW

T

 
Σ̂ = − ′ ′( )( ) ′

−1 1

T TX I W WW W X

Note that these matrices are not needed to estimate the model parameters; 
they are required only to understand the distribution of the model param-
eters. If N = 1, these expressions are the same as those already established 
for multivariate regressions. 

Estimating Demeaned Processes

In previous sections we assumed that the VAR(p) model had a constant in-
tercept and the process variables had, in general, a nonzero mean. Note that 
the mean and the intercept are not the same numbers. In fact, given that the 
process is assumed to be stationary, we can write

■

■
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E E E Et t t p t px A x A x A x v1( ) = ( ) + ( ) + ⋅ ⋅ ⋅ + ( ) +
−

− − −1 2 2

μμ AA A A v

I A A A v

1

1

μμ μμ μμ

μμ

− − ⋅ ⋅ ⋅ − =

= − − − ⋅ ⋅ ⋅ −( )−
2

2

1

p

N p

We can recast the previous reasoning in a different notation, assuming 
that the process variables are demeaned with a zero intercept. In this case, 
we can rewrite the VAR process in the following form:

 x A x A x A x1t t t p t p−( ) = −( ) + −( ) + ⋅ ⋅ ⋅ + −( )− − −μμ μμ μμ μμ1 2 2 ++ εεt

If we write yt = xt – μ, the VAR process becomes

 y A y A y A y1t t t p t p t= + + ⋅ ⋅ ⋅ + +− − −1 2 2 εε

This model contains N parameters less than the original model as the 
intercepts do not appear. If the mean is not known, it can be estimated 
separately as

 μ̂μ =
=
∑xt
t

T

1

The formulas previously established hold with some obvious changes. We 
will write down the formulas explicitly, as they will be used in the following 
sections:

 

Y y y

U

y Y

u U

Iu

= ( )
= ( )
= ( )
= ( )
=

1

1

, ,

, ,

…

…
T

T

T

εε εε

ΣΣ

vec

vec

⊗⊗

= ( )
= ( )

=
−

− −

ΣΣ

A A A

A

Z

y y

y y

1

0 1

1

, ,…

…
� � �

�

p

T

p T p

α vec

⎛⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= ′ ⊗( )z Z IN
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The model is then written in matrix form as

 

y z u

Y AZ U

= +
= +

α

The LS estimators are then written as follows:

 

ˆ

ˆ

ˆ

αα

αα

= ′( ) ′

= ′( ) ⊗( )
= ′

− − −

−

z z z y

ZZ Z I y

A Y

u uΣ Σ1 1 1

1

N

ZZ ZZ′( )−1

It can be demonstrated that the sample mean,

 μ̂μ =
=
∑xt
t

T

1

is a consistent estimator of the process mean and has a normal asymptotic 
distribution. If the process is not demeaned and has constant estimated in-
tercept v̂, the mean can be estimated with the following estimator: 

 ˆ ˆμ = − − − ⋅ ⋅ ⋅ −( )−I A A A v1N p2

1

which is consistent and has an asymptotic normal distribution. 
We now turn our attention to the Maximum Likelihood estimation 

methods.

Maximum Likelihood Estimators

Under the assumption of Gaussian innovations, Maximum Likelihood (ML) 
estimation methods coincide with LS estimation methods. Recall that, given 
a known distribution, ML methods try to fi nd the distribution parameters 
that maximize the likelihood function (i.e., the joint distribution of the 
sample computed on the sample itself). In the case of a multivariate mean-
adjusted VAR(p) process, the given sample data are T empirical observa-
tions of the N-variate variable yt, t = 1, …, T and a presample of p initial 
conditions y–p+1, …, y0. If we assume that the process is stationary and that 
innovations are Gaussian white noise, the variables yt, t = 1, …, T will also 
be jointly normally distributed. 
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One can derive the joint distribution of the sample yt, t = 1, …, T in 
function of the sample data and apply ML methods to this distribution. 
However, it is easier to express the joint distribution of the noise terms in 
function of the data. As the white noise is assumed to be Gaussian, the noise 
variables at different times are independent. 

The noise terms εε εε1, ,… T( )  are assumed to be independent with con-
stant covariance matrix ΣΣ  and, therefore, u = vec(U) has covariance matrix 
ΣΣ ΣΣu I= ⊗T . Under the assumption of Gaussian noise, the density fu(u) of u 
is the following NT-variate normal density:

 

f NT T Tu u I u I u( ) =
( )

⊗ − ′ ⊗( )⎛
⎝⎜

⎞
⎠

− −1

2

1
22

1
2 1

π
ΣΣ ΣΣexp ⎟⎟

=
( )

− ′
⎛
⎝⎜

⎞
⎠⎟

− −

=
∑1

2

1
22

2 1

1π
ε εNT

T

t t
t

T

ΣΣ ΣΣexp

This density is expressed in function of the noise terms which are unob-
served terms. In order to estimate, we need to express the density in terms 
of the observations. The density can easily be expressed in terms of observa-
tions using the VAR(p) equation:

 

εε

εε
1 1 0 2 1 1

2 2 1 2 0

= − − − ⋅ ⋅ ⋅ −

= − − −
− −y A y A y A y

y A y A y
1

1

p p

⋅⋅ ⋅ ⋅ −

= − −

−

−

A y

y A y A y1

p p

p p p p

2

1 2

���������������
εε −−

+ + −

− ⋅ ⋅ ⋅ −

= − − − ⋅ ⋅ ⋅ −
2 0

1 1 2 2 1

A y

y A y A y A y1

p

p p p p pεε

����������������
εεT T T T− − − −= − − − ⋅ ⋅ ⋅ −1 1 2 2 3y A y A y1 AA y

y A y A y A y1

p T p

T T T T p T p

− −

− − −= − − − ⋅ ⋅ ⋅ −
1

1 2 2εε

The preceding can be rewritten in matrix form as follows:
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Using these expressions and the model equation y = zα + u, we can now 
express the density function in terms of the variables

 f f NT Ty uy
u
y

u I y z( ) = ∂
∂

( ) =
( )

⊗ − −( )−1

2

1
22

1
2

π
αΣΣ exp ′′ ⊗( ) −( )⎛

⎝⎜
⎞
⎠⎟

−I y zT ΣΣ 1 α

Using reasoning similar to what we used in the LS case, we can write the 
log-likelihood as follows:

 

log l
NT T
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Equating the partial derivatives of this expression to zero, we obtain the 
very same estimators we obtained with the LS method. In the case of Gauss-
ian noise, LS/OLS methods and ML methods yield the same result.

ESTIMATING THE NUMBER OF LAGS

In the previous sections, we assumed that the empirical process is generated 
by a stable VAR model. This assumption entails that the process is station-
ary. In both the LS and ML estimation methods, the order p of the model 
(i.e., the number of lags in the model) is assumed to be known. However, 
there is nothing in the estimation method that imposes a specifi c model 
order. Given an empirical time series, we can fi t a VAR(p) model with an 
arbitrary number of lags.

The objective of this section is to establish criteria that allow deter-
mining a priori the correct number of lags. This idea has to be made more 
precise. We assume, as we did in the previous sections on the estimation of 
the model coeffi cients, that the true DGP is a VAR(p) model. In this case, we 
expect that the correct model order is exactly p, that is, we expect to come 
out with a consistent estimator of the model order. This is not the same 
problem as trying to determine the optimal number of lags to fi t a VAR 
model to a process that might not be generated by a linear DGP. Here we 
assume that the type of model is correctly specifi ed and discuss methods to 
estimate the model order under this assumption. 

As observed, we can fi t a model of any order to any set of empirical 
data. In general, increasing the model order will reduce the size of residuals 
but reduces the forecasting ability of the model. It is a basic tenet of learning 
theory that, by increasing the number of parameters, we will improve the 
in-sample accuracy but worsen the out-of-sample forecasting ability. In this 
section we consider only linear models under the assumption that the DGP 
is linear and autoregressive with unknown parameters.7

To see how increasing the number of lags can reduce the forecasting 
ability of the model, consider that the forecasting ability of a linear VAR 
model can be estimated. It can be demonstrated that the optimal forecast of 
a VAR model is the conditional mean. This implies that the optimal one-step 
forecast given the past p values of the process up to the present moment is

 x A x A x A x v1t t t p t p+ − − += + + ⋅ ⋅ ⋅ + +1 2 1 1

7The difference between the two approaches should not be underestimated. In its 
generality, learning theory deals with fi nding models of empirical data without any 
previous knowledge of the true DGP. In this section, however, we assume that a true 
DGP exists and is a fi nite VAR.
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The forecasting mean square error (MSE) can be estimated. It can be dem-
onstrated that an approximate estimate of the one-step MSE is given by the 
following expression:

 ΣΣ ΣΣx 1
1( ) = + + ( )T Np

T
p

where ΣΣ( )p  is the covariance matrix of a model of order p. The ΣΣx( )1  is a co-
variance matrix of the forecasting errors. Based on ΣΣx( )1 , Akaike8 suggested 
a criterion to estimate the model order. First, we have to replace ΣΣ( )p  with its 
estimate. In the case of a zero-mean process, we can estimate ΣΣ( )p  as

 Σ̂Σ p
T T( ) = − ′ ′( )( ) ′

−1 1
X I W WW W X

The quantity

 
FPE( )= detp

T Np
T Np

p
N

+ +
− +

⎡

⎣
⎢

⎤

⎦
⎥ ( )( )1

1
Σ̂Σ

is called the fi nal prediction error (FPE). In 1969, Akaike9 proposed to 
determine the model order by minimizing the FPE. Four years later, he 
proposed a different criterion based on information theory considerations. 
The new criterion, commonly called the Akaike Information Criterion 
(AIC), proposes to determine the model order by minimizing the follow-
ing expression:

 AIC( ) logp p
pN
T

= +ˆ ( )ΣΣ 2 2

Neither the FPE nor the AIC estimators are consistent estimators in 
the sense that they determine the correct model order in the limit of an infi -
nite sample. Different but consistent criteria have been proposed. Among 
them, the Bayesian Information Criterion (BIC) is quite popular. Proposed 
by Schwartz,10 the BIC chooses the model that minimizes the following 
expression:

8Hirotugu Akaike, “Fitting Autoregressive Models for Prediction,” Annals of the 
Institute of Statistical Mathematics, 21 (1969), pp. 243–247.
9Hirotugu Akaike, “Information Theory and an Extension of the Maximum Likeli-
hood Principle,” in B. N. Petrov and F. Csaki (eds.), Second International Sympo-
sium on Information Theory (Budapest: Akademiaio Kiado, 1973).
10Gideon Schwarz, “Estimating the Dimension of a Model,” Annals of Statistics, 6 
(1978), pp. 461–464.
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 AIC( ) logp p
T

T
pN= +ˆ ( )

logΣΣ 2 2

There is a vast literature on model selection criteria. The justifi cation of each 
criterion impinges on rather complex considerations of information theory, 
statistics, and learning theory.11

AUTOCORRELATION AND 
DISTRIBUTIONAL PROPERTIES OF RESIDUALS

The validity of the LS method does not depend on the distribution of in-
novations provided that their covariance matrix exists. However, the LS 
method might not be optimal if innovations are not normally distributed. 
The ML method, in contrast, critically depends on the distributional proper-
ties of innovations. Nevertheless, both methods are sensitive to the eventual 
autocorrelation of innovation terms. Therefore, it is important to check the 
absence of autocorrelation of residuals and to ascertain eventual deviations 
from normal distributions. 

The estimated VAR model distributional properties are critical in appli-
cations such as asset allocation, portfolio management, and risk manage-
ment. The presence of tails might change optimality conditions and the 
entire optimization process.

Checking the distributional properties of an estimated VAR model can 
be done with one of the many available tests of autocorrelation and normal-
ity. After estimating the VAR model parameters and the model order—a 
process that calls for iterating the estimation process—the residuals of the 
process are computed. Given the linearity of the model, the normality of the 
model distributions can be checked by analyzing only the residuals. 

The autocorrelation properties of the residuals can be checked using the 
Dickey-Fuller (DF) or the Augmented Dickey-Fuller (ADF) test. Both tests 
are widely used tests of autocorrelation implemented in most time series 
computer programs. The DF and ADF tests work by estimating the autore-
gresssion coeffi cient of the residuals and comparing it with a table of critical 
values.

11See, for example, Dean P. Foster and Robert A. Stine, “An Information Theoretic 
Comparison of Model Selection Criteria,” Working Paper 1180, 1997, Northwest-
ern University, Center for Mathematical Studies in Economics and Management Sci-
ence.
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STATIONARY AUTOREGRESSIVE DISTRIBUTED LAG MODELS

An important extension of pure VAR models is given by the family of Auto-
regressive Distributed Lag (ARDL) models. The ARDL model is essentially 
the coupling of a regression model and a VAR model. The ARDL model is 
written as follows:

 
y v y y P x P x

x A
t t s t s t q t q t

t

= + + + + + ⋅ ⋅ ⋅ + +

=
− − −ΦΦ ΦΦ ηη1 1 0�

11x A xt p t p t− −+ ⋅ ⋅ ⋅ + +1 εε

In the ARDL model, a variable yt is regressed over its own lagged values and 
over the values of another variable xt which follows a VAR(p) model. Both 
the ηηt  and the εεt  terms are assumed to be white noise with a time-invariant 
covariance matrix. 

The previous ARDL model can be rewritten as a VAR(1) model as follows:
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The estimation of the ARDL model can therefore be done with the 
methods used for VAR models. Coeffi cients can be estimated with OLS 
methods and the number of lags can be determined with the AIC or BIC 
criteria discussed in a previous section.

The ARDL model is quite important in fi nancial econometrics: many 
models of stock returns are essentially ARDL models. In particular, all mod-
els where stock returns are regressed over a number of state variables that 
follow a VAR model are ARDL models. We now proceed to discuss some 
applications of VAR processes.
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ESTIMATION OF NONSTATIONARY VAR MODELS

In the previous sections we assumed that all processes were stationary and 
all models stable. In this section we drop this restriction and examine the es-
timation of nonstationary and nonstable processes. In a nonstationary pro-
cess, the averages, variances, and covariances vary with time. A somewhat 
surprising fact is that least-squares methods can be applied to the nonsta-
tionary case although other methods are more effi cient.

Consider the following VAR process:
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Recall that a VAR process can be rewritten in the following error correction 
form:
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In fact, we can write
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Δ tt t t p t p= −( ) + + −( ) + ⋅ ⋅ ⋅ + + +− − −A I x A A I x A x v1 1Δ 1 2 2 εεtt

t t tΔ Δ Δx A I x A A I x

I A A

1 1

1

= −( ) + + −( ) + ⋅ ⋅ ⋅

− − −
− −1 2 2

22 − −( ) + +−� A x vp t p tεε

Alternatively, a VAR process can be rewritten in the following error correc-
tion (ECM) form:

 

Δ Δ Δ Δx x F x F x F xt t t t p t p= − + + + ⋅ ⋅ ⋅ + +− − − − − +ΠΠ 1 1 1 2 2 1 1 vv

F A I A A A1

+

= − = − − − −
= +
∑

εεt

i i
q i

p

p
1

2, Π �

The two formulations are equivalent for our purposes as the error correc-
tion term Π is the same. The error correction term Π could also be placed 
in any other intermediate position.

The integration and cointegration properties of the VAR model depend 
on the rank r of the matrix Π. If r = 0, then the VAR model does not exhibit 
any cointegration relationship and it can be estimated as a stable process in 
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fi rst differences. In this case, the process in fi rst differences can be estimated 
with LS or MLE techniques for estimation of stable VAR processes as dis-
cussed in the previous sections.

If r = N, that is, if the matrix Π is of full rank, then the VAR model itself 
is stable and can be estimated as a stable process. If the rank r is intermedi-
ate 0 < r < N, then the VAR process exhibits cointegration. In this case, we 
can write the matrix Π as the product Π = HC′ where both H and C are n 
× r matrices of rank r. The r columns of the matrix C are the cointegrating 
vectors of the process.

We next discuss different estimation methods for nonstationary but 
cointegrated VAR models, starting with the LS estimation method.

Estimation of a Cointegrated VAR with Unrestricted LS Methods 

In this section on estimation of nonstationary VAR processes, we assume for 
simplicity v = 0, that is, we write a VAR process as follows:

 x A x A x A x1t t t p t p t= + + ⋅ ⋅ ⋅ + +− − −1 2 2 εε

The cointegration condition places a restriction on the model. In fact, if we 
assume that the model has r cointegrating relationships, we have to impose 
the restriction rank(Π) = r, where Π = I – A1 – A2 – L – Ap. This restriction 
precludes the use of standard LS methods. However, Sims, Stock, and Wat-
son12 and Park and Phillips13 demonstrated that, if we estimate the preced-
ing model as an unconstrained VAR model, the estimators thus obtained are 
consistent and have the same asymptotic properties as the ML estimators 
that are discussed in the next section. 

This last conclusion might look confusing because we say that we 
cannot apply LS methods due to constraints—and then apparently make 
a contradictory statement. To clarify the question, consider the following. 
We assume that the empirical data are generated by a VAR model with con-
straints. If we want to estimate that VAR model on a fi nite sample enforcing 
constraints, then we cannot apply standard LS methods. However, there is 
no impediment, per se, to applying unconstrained LS methods to the same 
data. Sims, Stock, and Watson and Park and Phillips demonstrated that, 
if we proceed in this way, we generate consistent estimators that respect 
constraints asymptotically. The model constraints will not be respected, in 

12Christopher A. Sims, James H. Stock, and Mark W. Watson. 1990. “Inference in 
Linear Time Series Models with Some Unit Roots,” Econometrica, 58, no. 1, pp. 
161–182.
13Joon Y. Park and Peter C. B. Phillips, “Statistical Inference in Regressions with 
Integrated Processes. Part 2,” Econometric Theory, 5 (1989), pp. 95–131.
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general, on any fi nite sample. Intuitively, it is clear that an unconstrained 
estimating process, if consistent, should yield estimators that asymptoti-
cally respect the constraints. However, the demonstration is far from being 
obvious as one has to demonstrate that the LS procedures can be applied 
consistently.

To write down the estimators, we defi ne, as in the case of stable VAR, 
the following notation:

 

X x x

A A A

Z

x x

x x

= ( )
= ( )

=
−

− −

1

1

0 1

1

, ,

, ,

…

…

…
� � �

�

T

p

T

p T p

⎛⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Using this notation, we can write the estimators of the cointegrated VAR 
model as the usual LS estimator of VAR models as discussed in the previous 
sections, that is, we can write

 Â XZ ZZ= ′ ′( )−1

It has also to be demonstrated that this estimator has the same asymptotic 
properties of the ML estimators that we are now going to discuss.

ML Estimators

The ML estimation procedure has become the state-of-the-art estimation 
method for systems of relatively small dimensions, where it outperforms 
other methods. The ML estimation methodology was developed primarily 
by Søren Johansen,14 hence it is often referred to as the Johansen method. 
We will assume, following Johansen, that innovations are independent and 
identically distributed multivariate, correlated, Gaussian variables. The 
methodology can be extended to nonnormal distributions for innovations 
but computations become more complex and depend on the distribution. 
We will use the ECM formulation of the VAR model, that is, we will write 
our cointegrated VAR as follows:

 Δ Δ Δ Δx x F x F x F xt t t t p t p= − + + + ⋅ ⋅ ⋅ + +− − − − − +ΠΠ 1 1 1 2 2 1 1 εεεεt

14Soren Johansen “Estimation and Hypothesis Testing of Cointegration Vectors 
in Gaussian Vector Autoregressive Models,” Econometrica, 59 (1991), pp. 1551–
1581.
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We will fi rst describe the ML estimation process for cointegrated processes 
as introduced by Banerjee and Hendry.15 We will then make the connection 
with original reduced rank regression method of Johansen.

The method of Banerjee and Hendry is based on the idea of concentrated 
likelihood. Concentrated likelihood is a mathematical technique through 
which the original likelihood function (LF) is transformed into a function of 
a smaller number of variables, called the concentrated likelihood function 
(CLF). The CLF is better known in statistics as the profi le likelihood. To see 
how CLF works, suppose that the LF is a function of two separate sets of 
parameters:

 L L= ( )ϑ ϑ1 2,

In this case, the MLE principle can be established as follows:

 max max max max
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ
1 2 1 2

1 2 1 2,
, ,L L( ) = ( )⎛

⎝
⎞
⎠ = ϑϑ

ϑ
1

1LC ( )( )

where LC(ϑ1) is the CLF which is a function of the parameters ϑ1 only. 
To see how this result can be achieved, recall from Chapter 2 that, 

assuming usual regularity conditions, the maximum of the LF is attained 
where the derivatives of the log-likelihood function l vanish. In particular:

 
∂ ( )

∂
=

l ϑ ϑ
ϑ
1 2

2

0
,

If we can solve this system of functional equations, we obtain: ϑ2 = 
ϑ2(ϑ1). The equivariance property of the ML estimators16 now allows us to 
conclude that the following relationship must hold between the two sets of 
estimated parameters:

 ˆ ˆϑ ϑ ϑ2 2 1= ( )
We see that the original likelihood function has been concentrated in a 

function of a smaller set of parameters. We now apply this idea to the ML 
estimation of cointegrated systems. It is convenient to introduce a notation 

15Anindya Banerjee and David F. Hendry, “Testing Integration and Cointegration: An 
Overview,” Oxford Bulletin of Economics and Statistics, 54 (1992), pp. 225–255.
16Recall that the equivariance property of ML estimators says that if parameter a is a 
function of parameter b then the ML estimator of a is the same function of the ML 
estimator of b.
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which parallels that already introduced but is adapted to the special form of 
the cointegrated VAR model that we are going to use:

 Δ Δ Δ Δx x F x F x F xt t t t p t p= − + + + ⋅ ⋅ ⋅ + +− − − − − +ΠΠ 1 1 1 2 2 1 1 εεεεt

We defi ne

 

X x x

x

X x
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⎛
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= −F F F F1 2 … 11( )
Using the matrix notation, as we assume Π = HC, we can compactly write 
our model in the following form: 

 Δ ΔX F Z HCX + U= −

Reasoning as we did in the case of stable VAR models, we can write the 
log-likelihood function as follows:
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log l
NT T

t t
t

T

( ) = − ( ) − − ′

=

−

=
∑2

2
2

1
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1

log logπ ΣΣ εε εεu Σ
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( ) − − ′( )
= − (
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ΣΣ ΣΣu utrace UU
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− − +( )′ − +−

T
2

1
2

1

log ΣΣ

ΣΣ

u

utrace Δ ΔX FZ HCX X FZ HCX(( )⎛
⎝⎜

⎞
⎠⎟

We now concentrate this log-likelihood function, eliminating ΣΣ  and 
F. As explained previously, this entails taking partial derivatives, equating 
them to zero, and expressing ΣΣ  and F in terms of the other parameters. By 
equating to zero the derivatives with respect to ΣΣ , it can be demonstrated 
that ΣΣC T= ′−1UU . Substituting this expression in the log-likelihood, we 
obtain the concentrated likelihood after removing ΣΣ :

 

l K
T

K
T

CI = − ′

= − − +( ) − +(
2

2

log

log

UU

X FZ HCX X FZ HCXΔ Δ ))′

where K is a constant that includes all the constant terms left after concen-
trating.

We next eliminate the F terms. This result can be achieved taking deriva-
tives of l with respect to F, equating them to zero and evaluating them at ΣΣC . 
Performing all the calculations, it can be demonstrated that the evaluation 
at ΣΣC  is irrelevant and that the following formula holds:

 F X HCX Z Z ZC = +( ) ′ ′( )−Δ Δ Δ Δ
1

Substituting this expression in the formula for lCI, that is, the log-likelihood 
after eliminating ΣΣC , we obtain:

 
l K

TCII = −
− + ′ ′( ) +−

2

1

log
( ) ( )Δ Δ Δ Δ Δ ΔX X HCX Z Z Z Z HCX(( )

− + ′ ′ +( )′−Δ Δ Δ Δ Δ ΔX X HCX Z Z Z Z HCX( ) ( ) 1
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+ − + ′ ′( )−
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log ( ) ( )

1

2
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T

K
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2

log ( ) ( )Δ Δ Δ ΔXM X HCXM X XM HCX HCXM HCX′ + ′ + ′ + ′

where M = IT – ∆Z′(∆Z∆Z′)–1∆Z. Matrices of the form A = I – B′(BB′)–1B are 
called projection matrices. They are idempotent and symmetric, that is A = 
A′ and AA = A2 = A. The latter properties were used in the last three steps 
of the above derivations. 

We will rewrite the CLF as follows. Defi ne R0 = ∆XM, R1 = XM and

 S
R R

ij
i j

T
i j= =, , ,1 2

We can then rewrite the CLF as follows:

 l K
TCII HC S S HC S HC HCS HC( ) = − − − ′ +
2 00 10 01 11log ( ) ( ′′)

The original analysis of Johansen obtained the same result applying the 
method of reduced rank regression. Reduced rank regressions are multiple 
regressions where the coeffi cient matrix is subject to constraints. The Johan-
sen method eliminates the terms F by regressing ∆xt and xt–1 on (∆xt–1, ∆xt–2, 
…, ∆xt–p+1) to obtain the following residuals:

 
R x D x D x D x

R
0 1 1 2 2 1 1

1

t t t t p t p

t

= − + + ⋅ ⋅ ⋅ +

=
− − − − +Δ Δ Δ Δ

xx E x E x E xt t t p t p− − − − − +− + + ⋅ ⋅ ⋅ +1 1 1 2 2 1 1Δ Δ Δ

where 

 D D D D X Z Z Z= = ′ ′−
−( , , , ) ( )1 2 1
1… p Δ Δ Δ Δ

and

 E E E E X Z Z Z= = ′ ′−
−( , , , ) ( )1 2 1
1… p Δ Δ Δ
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The original model is therefore reduced to the following simpler model:

 R HCR u0 1t t t= +

The likelihood function of this model depends only on R0t, R1t. It can be 
written as follows:

 l K
T

( ) log ( ( )) ( ( ))HC R R HC R R HC= − + ′ +1 0 1 0 12

where we defi ne R0, R1 as previously. If we also defi ne Sij as previously, we 
obtain exactly the same form for the CLF:

 l K
TCII ( ) log ( ) (HC S S HC S HC HCS HC= − − − ′ +
2 00 10 01 11 ′′)

We have now to fi nd the maximum of this CLF. Note that this problem 
is not well identifi ed because, given any solution H, C, and any nonsingular 
matrix G, the following relationships hold:

 ΠΠ = HC = HGG C H C− =1 * *

so that the matrices

 
H HG

C G C

*

*

=
= −1

are also a solution. Additional conditions must therefore be imposed.
If the matrix Π = HC were unrestricted, then maximization would 

yield

 ΠΠ = S S01 11
1−

However, our problem now is to fi nd solutions that respect the cointegra-
tion condition, that is, the rank r of Π which is the common rank of H, C. 
To achieve this goal, we can concentrate the CLF with respect to H and thus 
solve with respect to C. By performing the rather lengthy computations, 
it can be demonstrated that we obtain a solution by solving the following 
eigenvalue problem:

 S S S S10 00
1

01 11 0− − =λ
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This eigenvalue problem, together with normalizing conditions, will yield N 
eigenvalues λi and N eigenvectors Λi. In order to make this problem well de-
termined, Johansen imposed the normalizing conditions: Λ′S11Λ = I. Order 
the eigenvalues and choose the r eigenvectors Λi corresponding to the largest 
r eigenvalues. It can be demonstrated that a ML estimator of the matrix C 
is given by

 ˆ , ,C = ( )ΛΛ ΛΛ1 … r

and an estimator of the matrix H by ˆ ˆH S C= 00 . The maximum of the log-
likelihood is

 l K
T T

i
i

r

max log log( )= − − −
=
∑2 2

100
1

S λ

The solutions of the preceding eigenvalue problem, that is, the eigen-
values λi, can be interpreted as the canonical correlations between ∆xt and 
xt–1. Canonical correlations can be interpreted as the maximum correlations 
between linear combinations of the ∆xt and xt–1. We therefore see that the 
cointegrating relationships are those linear combinations of the levels xt–1 
that are maximally correlated with linear combinations of the ∆xt after con-
ditioning with the remaining terms. 

Different types of normalizing conditions have been studied and are 
described in the literature. A general theory of long-run modeling that con-
siders general nonlinear constraints on the matrix C was developed by Pesa-
ran and Shin.17 This theory goes beyond the scope of this book. 

Estimating the Number of Cointegrating Relationships

The Johansen ML estimation method and its extensions critically depend 
on correctly estimating the number r of cointegrating relationships. Two 
tests, in particular, have been suggested in relationship with the Johansen 
method: the trace test and the maximum eigenvalue test. The trace test 
tests the hypothesis that there are at most r cointegrating vectors while the 
maximum eigenvalue test tests the hypothesis that there are r + 1 cointe-
grating vectors against the hypothesis that there are r cointegrating vectors. 
The mathematical details are given in the Johansen paper discussed earlier. 

17M. Hashem Pesaran and Yongcheol Shin, “Long-Run Structural Modelling,” 
Chapter 11 in S. Strom (ed.), Econometrics and Economic Theory in the 20th Cen-
tury: The Ragnar Frisch Centennial Symposium (Cambridge, Cambridge University 
Press, 2001).
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Lütkepohl, Saikkonen, and Trenkler18 provide an extensive discussion of 
the relative merit and power of the various forms of these tests. Here we 
provide only a quick overview of these tests which are implemented in 
many standard statistical packages. 

The trace test is immediately suggested by the Johansen procedure. 
Recall from the discussion earlier in this chapter that with the Johansen 
method the maximum of the log-likelihood function is

 l K
T T

i
i

r

max log log( )= − − −
=
∑2 2

100
1

S λ

The likelihood ratio test statistics for the hypothesis of at most r cointegrat-
ing vectors is

 λ λtrace i
i r

r

T= − −
= +
∑ log( )1

1

where the sum is extended to the n – r smallest eigenvalues. The asymptotic 
distribution of this statistic is not normal. It is given by the trace of a sto-
chastic matrix formed with functionals of a Brownian motion. Its critical 
values at different confi dence levels have been tabulated and are used in 
most packages. 

The likelihood ratio statistics for the maximum eigenvalue test is the 
following:

 λ λmax log( )= − − +T r1 1

As for the previous test, the asymptotic distribution of this test’s statistics is 
not normal. It is given by the maximum eigenvalue of a stochastic matrix 
formed with functionals of a Brownian motion. Critical values at different 
confi dence levels have been tabulated and are used in many standard statis-
tical packages.

Ml Estimators in the Presence of Linear Trends

The previous discussion assumed a zero intercept in the model and there-
fore no linear trends or nonzero intercepts in the process. If we add an 
intercept to a VAR model, we might obtain a linear trend in the variables. 
With cointegrated systems there is the additional complication that a linear 

18Helmut Lütkepohl, Pentti Saikkonen, and Carsten Trenkler, “Maximum Eigenval-
ue Versus Trace Tests for the Cointegrating Rank of a VAR Process,” Econometrics 
Journal, 4 (2001), pp. 287–310.
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trend might or might not be present in the cointegrated variables. In other 
words, the cointegrating vectors transform the I(1) variables into stationary 
variables or into trend-stationary variables. 

The original defi nition of cointegration in Engle and Granger19 excluded 
deterministic trends in the cointegrated variables. Now we distinguish 
between stochastic cointegration and deterministic cointegration. A set of 
I(1) variables is said to be stochastically cointegrated if there are linear com-
binations of these variables that are trend-stationary (i.e., stationary plus a 
deterministic trend). A set of I(1) variables are said to be deterministically 
cointegrated if there exist linear combinations which are stationary without 
any deterministic trend.

Therefore, when considering deterministic terms in a cointegrated VAR 
model, we cannot consider only constant intercepts but must include linear 
trends. Adding a constant term and a linear trend to the model variables as 
we did in the stable case, the estimation procedure described in the previous 
section remains valid.

ESTIMATION WITH CANONICAL CORRELATIONS

The use of canonical correlation analysis (CCA) was fi rst proposed by 
Bossaerts20 in 1988. In 1995, Bewley and Yang21 provided a more rigorous 
foundation for CCA-based methodology which they called level canonical 
correlation analysis (LCCA) because the canonical correlations are com-
puted in levels. Cointegration tests based on CCA are based on the idea 
that canonical correlations should discriminate those linear combinations 
of variables that are I(1) from those that are I(0). In fact, integrated vari-
ables should be more predictable while stationary components should be 
less predictable. 

Bossarts proposed performing CCA and the use of the standard Dickey-
Fuller (DF) test to discriminate those canonical variates that are I(1). He 
considers a model of the type:

 Δx HCxt t t= + εε

19Robert F. Engle and Clive W. J. Granger, “Cointegration and Error Correction: 
Representation, Estimation, and Testing,” Econometrica, 55 (1987), pp. 251–276.
20Peter Bossaerts, “Common Non-Stationary Components of Asset Prices,” Journal 
of Economic Dynamics and Control, 12 (1988), pp. 348–364.
21Ronald Bewley and Minxian Yang, “Tests for Cointegration Based on Canonical 
Correlation Analysis,” Journal of the American Statistical Association, 90 (1995), 
pp. 990–996.
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After performing the CCA between ∆xt and xt, the canonical variates are 
tested for unit roots. Bossaerts conjectured, without proof, that one can use 
the standard critical values of the DF test.

Bewley and Yang extended the methodology, allowing for deterministic 
trends and other variables explaining short-run dynamics. They proposed 
new tests, developed the asymptotic theory, and computed the critical values 
to determine the number of cointegrating vectors. 

Computationally, the LCCA methodology of Bewley and Yang is not 
very far from that of Johansen. Following Bewley and Yang, the LCCA 
method proceeds as follows. First, if there are additional variables, they have 
to be removed performing the regressions of xt and xt–1 on those variables. 
Call R0t, R1t the residuals of these regressions and form the regression:

 R BR u0 1t t t= +

We have now to determine the canonical correlations between R0t and R1t. 
This is done formally with the same equation as in the Johansen method, 
that is, solving the following eigenvalue problem (see Appendix B):

 S S S S10 00
1

01 11 0− − =λ

where

 S
R R

ij
i j

T
i j= =, , ,1 2

as in the Johansen method. However, the interpretation of these quanti-
ties is different: Here we are seeking canonical correlations between vari-
ables in levels while in the Johansen methods we correlate both levels and 
differences. The LCCA method picks the largest eigenvalues as does the 
Johansen method. Bewley and Yang developed the asymptotic theory as 
well as four tests for cointegration, two DF-type tests, a trace test, and a 
maximum eigenvalue test. For each test they determined and tabulated 
critical values for up to six variables. The tabulated critical values are 
included in their paper. 

The asymptotic theory developed by Bewley and Yang showed that one 
can indeed use the standard unit root tests such as the Dickey-Fuller and 
Phillips tests, but the critical values depend on the number of variables and 
are not standard. Therefore, one cannot use the DF test with standard criti-
cal values, as conjectured by Bossaerts. 
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ESTIMATION WITH PRINCIPAL COMPONENT ANALYSIS

Thus far we have discussed methodologies based on OLS, ML, and CCA. 
In this section we analyze another important method based on Principal 
Component Analysis (PCA). PCA is a well known statistical methodology 
that, given a set of multidimensional data, fi nds the directions of maximum 
variance. PCA-based methods are used in classical factor analysis of station-
ary returns.

The use of PCA-based methods for integrated variables was fi rst pro-
posed by Stock and Watson.22 They were the fi rst to observe that the pres-
ence of r cointegrating vectors in n time series implies the presence of r 
common stochastic trends. This means that there are r independent linear 
combinations of the variables that are I(1) while the remaining n-r are I(0). 
In addition, it means that each of the n variables can be expressed as a linear 
combination of the common stochastic trends plus a stationary process. 

Stock and Watson conjectured that those linear combinations that are 
I(1) must have the largest variance. Therefore, by performing a PCA on 
the variables in levels, one should be able to determine the cointegrating 
vectors by picking the largest eigenvalues. The Stock-Watson methodology 
proceeds as follows.

Suppose the DGP is our usual VAR(p) model:

 x A x A x A x1t t t p t p t= + + ⋅ ⋅ ⋅ + +− − −1 2 2 εε

where we assume for the moment that the intercept term is zero. Suppose 
also that the number of lags p have been determined independently. Next, 
perform the PCA of the variables xt. This entails solving the following ei-
genvalue problem:

 ΩΩββ ββ= μ

where Ω is the empirical covariance matrix of the xt, defi ned as

 ΩΩ = ′
=
∑x xt t
t

T

1

and μ and β are respectively the eigenvalues and the eigenvectors to be de-
termined.

Order the eigenvalues and choose the m largest eigenvalues μi, i = 1, …, 
m. The corresponding eigenvectors βi are the candidate cointegrating vec-

22James H. Stock and Mark W. Watson, “Testing for Common Trends,” Journal of 
the American Statistical Association, 83 (1988), pp. 1097–1107.
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tors. Forming the linear combinations Pi,t = βixt, we obtain the vector Pt = 
(P1,t, …, Pm,t)′ fi rst m principal components. We must now check the hypoth-
esis that these principal components are I(1) series and are not cointegrated 
among themselves.

In order to do this, the Stock and Watson method estimates the follow-
ing stable VAR(p) model:

 Δ Δ ΔP A P A Pt t p t p t= + + +− − − +1 1 1 1� εε

and then computes

 ˆ ˆ ˆF P A P A Pt t t p t p= − − −− − − +1 1 1 1Δ Δ�

Regress ∆Ft on Ft–1, compute the normalized eigenvalues of the regression 
matrix B, and compare with the critical values tabulated in the Stock and 
Watson paper to test the null of m common trends against m–q common 
trends. 

If the VAR model exhibits a nonzero intercept, then there might be lin-
ear trends in the variables. This fact, in turn, raises the question of stochastic 
versus deterministic cointegration. The details of the computations are actu-
ally quite intricate.23

A major advantage of the PCA-based methodologies is that critical val-
ues depend only on the number of common trends and not on the number of 
time series involved. Therefore, they can be used to determine a small num-
ber of common trends in a large number of time series. This is a signifi cant 
advantage in fi nancial econometrics; we will come back to this in the section 
on dynamic factors later.

ESTIMATION WITH THE EIGENVALUES 
OF THE COMPANION MATRIX

A process is called integrated of order one if it can be written as: xt = ρxt–1 + 
ηt where ρ = 1, and ηt is a stationary process. Dickey and Fuller established 
the asymptotic distribution of ρ and tabulated the critical values that now 
form the basis of the DF and ADF unit root test. Ahlgren and Nyblom24 de-
veloped an equivalent methodology for multivariate processes. They studied 
a N-variate, VAR(1) process of the form: 

23The interested reader should consult the original Stock and Watson paper.
24Niklas Ahlgren and Jukka Nyblom, “A General Test for the Cointegrating Rank in 
Vector Autoregressive Models,” Working Paper No. 499, 2003, Swedish School of 
Economics and Business Administration.

c03-TimeSeries.indd   154c03-TimeSeries.indd   154 1/6/10   11:25:14 AM1/6/10   11:25:14 AM



Financial Econometrics II: Time Series  155

 x xt t t= +−ΠΠ εε1

The major result of their work is that the number of cointegrating rela-
tionships depends on the eigenvalues of the autoregressive matrix. Ahlgren 
and Nyblom determined the asymptotic distribution of the eigenvalues of 
the autoregressive matrix estimated with OLS methods and computed criti-
cal values. The methodology can be extended to VAR models of any order 
by transforming the original model into a VAR(1) model and considering 
the companion matrix.

NONLINEAR MODELS IN FINANCE

Nonlinear models capture nonlinear relationships between returns or other 
fi nancial variables. They can be applied to cross sections of data or to se-
quential data. The fundamental trade-off between in-sample accuracy and 
out-of-sample generalization capabilities is particularly important in the 
case of nonlinear models. In fact, in general, nonlinear models imply esti-
mating a larger number of parameters than equivalent linear models. 

This happens because in general we do not know the precise form of the 
nonlinear relationship and therefore we need to apply nonlinear approxima-
tion schemes. For example, suppose we want to replace a linear regression 
y = ax + b + ε with a nonlinear regression y = f(x) + ε. If we knew the precise 
functional form f(x), then the number of parameters could be the same. For 
example, if we could replace our original linear regression with a regression 
of the type y = axα + b + ε, with a known α, then we would need to estimate 
the two parameters a, b as in the linear case. However, in general we would 
need to estimate a model that contains several terms. For example, in gen-
eral we would need to replace the linear regression with a regression of the 
type y = a1x + a2x

2 + a3x
3 + … anx

n + b + ε where many parameters ai need 
to be estimated. 

In addition, there are many different forms of nonlinearity with trade-
offs that do not easily translate into a larger number of parameters to esti-
mate. Given the number and the complexity of different models here, we can 
only list a few classes of nonlinear models that are important in fi nance.

Clustering Models 

Clustering models create groups that are maximally homogeneous in terms 
of some criterion. These models can be applied to sets of multivariate data 
or to time series. For example, we can cluster time series of returns in terms 
of the level of mutual correlation. The trade-offs associated with cluster-
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ing are related to the choice of the number of clusters. Among the many 
fi nancial applications of clustering we can mention the clustering of balance 
sheet accounts or fi nancial ratios to identify particular corporate conditions, 
and the clustering of time series as preprocessing of very large data sets to 
permit applications of statistical methods that could not work on the entire 
data set.

Regime Shifting Models 

Regime shifting models represent a family of nonlinear models that are 
based on coupling a basic linear model with another model that determines 
the shift between different regimes, that is, that determines the choice of 
parameters corresponding to different regimes. The trade-offs implicit in 
these models are due to the need to analyze very long time series in order to 
capture a number of shifts suffi cient to estimate the model that drives the 
shifting between regimes.

Models of Irregularly Spaced Data

Another family of nonlinear models that has acquired growing importance 
with the diffusion of high-frequency data is models of irregularly spaced 
data. High-frequency data are often irregularly spaced because they register 
individual transactions. Models of the distribution of the spacings are inher-
ently nonlinear models. They are important models for understanding the 
behavior of returns at very short intervals. 

Nonlinear DGP Models

Nonlinear DGP models are a family of models that capture those nonlin-
earities that are inherent to the relationships between adjacent returns. The 
most widely known of these models are neural networks. Neural networks 
can mimic any functional form of the DGP but imply the estimation of a 
large number of parameters with the consequent risk of overfi tting and loss 
of forecasting ability.

CAUSALITY

The subject of causality is vast with many implications for the philosophy of 
science and science itself. Here we only mention the two major approaches 
to causality that emerged in the period after World War II: the approach of 
the Cowles Commission and Granger causality. The approach of the Cowles 
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commission, which is similar to the approach to causality proposed by Her-
bert Simon, emphasizes the structural properties of models. In particular, 
the emphasis is on the the distinction between exogenous and endogenous 
variables. The approach of the Cowles Commission does not include any 
explicit element of time dependence. In this approach, whose philosophical 
roots go back to Bertrand Russell, causation implies a distinction between 
what is determined within the system of equations and what is exogenous 
to the system.

The approach of Granger, in contrast, is fundamentally related to time. 
We say that a variable Xt causes in the sense of Granger a variable Yt+1 if 
the probability P(Yt+1| all information dated t and earlier) is different from 
the probability P(Yt+1| all information dated t and earlier omitting informa-
tion about Xt). As we do not have access to all past information, in practice 
Granger causality is tested by applying tests to linear regressions. Suppose, 
for example, that we want to test Granger causality in a bivariate model 
where X,Y are regressed over lagged variables of both variables. Granger 
causality is tested by including lagged terms of one or the other variables 
in either equations and testing if the explanatory power of the regression 
increases or decreases.

SUMMARY

A stochastic process is a sequence of variables indexed with time; a mul-
tivariate stochastic process is a time-dependent random vector.
If the time parameter of a stochastic process moves in discrete incre-
ments, a stochastic process is called a time series; a multivariate time 
series is a sequence of random vectors.
The Wold representation theorem states that any stationary time series 
can be represented as the sum of two stochastic processes: a linearly 
predictable process and an infi nite moving average process.
A time series is invertible if it can be represented as a possibly infi nite 
autoregressive process.
Time series can also be represented in the frequency domain.
Vector autoregressive (VAR) processes are models where processes are 
regressed over their lagged values.
VAR can be estimated with Ordinary Least Squares methods as regres-
sions or with Maximum Likelihood Methods if the distributions are 
known.
An integrated variable is a variable that becomes stationary after dif-
ferencing; over differencing produces noninvertible processes.

■

■

■

■

■

■

■

■
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Cointegrated processes are individually integrated but admit linear 
combinations which are stationary.
Cointegrated processes can be represented as Error Correction Models, 
which are VAR models with a correction term in levels.
Many methods for estimating cointegrated systems have been proposed 
including the Johansen method based on maximum likelihood and the 
Stock-Watson method based on principal components analysis.
If a vector time series exhibits  cointegration then we can identify a 
number of common trends and all series can be represented as regres-
sions on the trends.
There are methods based on information theory to estimate the number 
of lags in a VAR model.
In applications of VAR models to asset allocation, portfolio manage-
ment, and risk management, estimated model’s distributional properties 
are critical because the presence of tails might change optimality condi-
tions and the entire optimization process.
There are several tests for autocorrelation and normality that can be 
used to test the distributional properties of an estimated VAR model 
such as the Dickey-Fuller or the Augmented Dickey-Fuller tests. 

■

■
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CHAPTER 4
Common Pitfalls in 
Financial Modeling

This chapter discusses the relationship between fi nancial engineering and 
fi nance theory. There is a sharp distinction between the two. Finance 

theory provides the mathematical description and the foundation for forecast-
ing quantities such as prices, returns, and interest rates. Financial engineering, 
on the other hand, deals with the construction and practical usability of 
fi nancial products, such as derivative contracts or investment portfolios.

Financial engineering relies on fi nance theory, in particular on the abil-
ity to forecast fi nancial quantities. Certainly, engineering is less formalized 
than theory, but needless to say, very important in getting results in the real 
world. This is true in the physical sciences as well as in economics. In these 
fi elds, science is able to provide the framework to perform analysis but is 
often ill-equipped to perform synthesis. Centuries of scientifi c investigations 
have produced an outstanding ability to model—that is—to describe our 
world in mathematical terms. However, our ability to synthesize purposeful 
artifacts, crucial for practical application, is much more limited. 

We typically use human intuition to generate new designs. Designs are 
then analyzed with scientifi c tools and refi ned in a trial-and-error like pro-
cess. Only when we are able to formalize an optimization process is our 
design ability at a par with our analytical ability. In this chapter we discuss 
how the engineering part of the portfolio formation or product design pro-
cess is approached in practice. 

THEORY AND ENGINEERING

An engineer synthesizes an artifact such as an airplane or a portfolio using 
existing knowledge. But the solution sometimes fails. One possible cause is 
the failure to recognize that the solution to the problem calls for a true theo-
retical advance. Understanding if a theoretical advance is needed to solve a 
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given problem is critical to successfully solving an engineering problem, be 
it in aeronautics or in fi nance.

Consider the design and construction of supersonic aircraft. Airline 
travelers easily recognize the Boeing 747 Jumbo jet not only because of 
its size but also because of its characteristic hump in the front part of the 
fuselage. This curious looking hump, which hosts the pilot’s cockpit as well 
as the upper passenger deck, seems at odds with a naïve view of a sleek 
jet-plane body. Still this hump is the result of a major breakthrough in aero-
dynamics—the Whitcomb area rule, or simply the area rule, also known to 
aeronautic engineers as wasp-waisted shaping. The story of the area rule is 
an example of how a practical problem was solved through a combination 
of engineering ingenuity and scientifi c discovery.

First discovered by Heinrich Hertel and Otto Frenzl, who were working 
on a transonic wind tunnel at the German airplane manufacturer Junkers 
between 1943 and 1945, the discovery of the area rule was lost in the general 
confusion at the end of World War II. It was independently rediscovered in 
1952 by Richard Whitcomb, then a young aerodynamicist working for the 
National Advisory Committee for Aeronautics (NACA) Langley Research 
Center in Hampton, Virginia.

At the end of the 1940s it was believed that the ability to operate super-
sonic planes would represent a major military and commercial advantage. 
However the fi rst trials in developing supersonic planes were disappointing: 
at transonic speeds (i.e., at speeds approaching the speed of sound), conven-
tional body design experiences an increase in aerodynamic drag. The limited 
thrust of jet engines then available was not suffi cient to overcome this drag 
and the aerodynamic theory of the day could not provide the solution.

It was known that the ideal shape of an airplane’s body should be 
smoothly curved, similar to the smooth curves of a cigar. Whitcomb made 
the breakthrough (re)discovery that the drag was caused by the disconti-
nuities created by the wings and that, to reduce this drag, the discontinuity 
between the body and the wings had to be made as smooth as possible. 
Whitcomb translated this discovery into a practical rule—the area rule—
that could be applied to aircraft design. First used in the design of the inno-
vative wasp-waisted plane, the Convair F-102 Delta Dagger, the Whitcomb 
area rule resulted in a 25% reduction of the aerodynamic drag, thus allow-
ing the F-102 to meet the contract specifi cations. The Whitcomb area rule 
has subsequently been applied to all aircraft operating at transonic speeds.

Another example of an engineering failure due to a failure to recognize 
the need for a major theoretical advance comes from the fi eld of mechanics. 
Metal fatigue is a phenomenon according to which a metal piece subject 
to repeated stresses suddenly looses its elasticity and is subject to failure. 
The phenomenon of metal fatigue has been known since the beginning of 
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the nineteenth century, but until recently a theory was lacking. This lack 
of basic theory lead to a number of major engineering failures, such as the 
crash of the train from Versailles to Paris on May 8, 1842, the sinking of 
the oil platform Alexander Kielland on March 27, 1980, and for the series 
of crashes of the fi rst commercial jet engines, the de Havilland Comet, back 
in 1954. In all of these cases, the design was correct given the knowledge 
available at the time, however, a fundamental piece of basic theory—metal 
fatigue—was missing.

ENGINEERING AND THEORETICAL SCIENCE

In this section we briefl y discuss the concepts of science and engineering. 
Modern science is based on the concept of laws of nature formulated in 
mathematical language and (for the most part) expressed through differen-
tial equations. A differential equation is an expression that links quantities 
and their rates of change. For example, given a constant rate of interest r, we 
compute the growth of capital C through the simple differential equation: 

 dC
dt

Cr=

Given initial or boundary conditions, a differential equation allows infer-
ring the behavior of a system in the future or in other regions of space. 
When probabilistic laws are involved, differential equations, or their dis-
crete counterpart, describe the evolution of probability distributions. For 
example, the price of an option can be expressed as a differential equation 
of the probability distribution of the price.

Now, differential equations are analytic and descriptive: our laws of 
nature allow us to analyze and describe a given physical system such as the 
motion of the planets or the fl ight of an airplane. Discovery, however, is the 
result of the creative efforts of humans, today typically equipped with labo-
ratories and tools such as computers. Science is not synthetic: it does not 
necessarily give us a constructive methodology for making new discoveries 
or for engineering artifacts.

Engineering, on the other hand, is a process of synthesis in the sense 
that the objective of the engineering process is to construct purposeful arti-
facts, such as airplanes, trains or, in fi nance, portfolios or derivative prod-
ucts. In engineering, we are given a problem formulated in terms of design 
specifi cations and we attempt to synthesize a design or an artifact that meets 
these specifi cations. In fi nance, for example, our starting point might be the 
specifi cations of the performance of a portfolio or the requirements of a 
hedging instrument.
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The process of engineering is based on iterating cycles of synthesis and 
analysis: We start by synthesizing an overall design and then we analyze 
the design with analytical tools based on our scientifi c knowledge. Science 
allows us to run the analysis: In the case of the design of an airplane, using 
sophisticated tools, engineers can test and analyze the structural stability, 
fl ight behavior, and eventual response to abnormal stresses such as storms 
and lightning. Typically, the analysis will suggest necessary modifi cations to 
the initial design. The design process is then iterated until the overall design 
can be considered satisfactory. At the end of the process, we have a complete 
design. 

We can think of engineering as problem-solving. Since the advent of 
computers, much attention has been given to the question of solving prob-
lems automatically. Herbert Simon, 1978 recipient of the Nobel Prize in 
Economic Sciences, was among the fi rst advocates of the notion that human 
problem-solving abilities can be formalized and mimicked by a computer. 
Following Simon’s pioneering ideas, researchers in artifi cial intelligence (AI) 
devoted considerable effort to the automation of problem-solving. 

The key idea of automatic problem-solving is the following. To solve a 
problem we proceed iteratively: we invent an approximation solution and 
analyze this solution with the analytical tools of science. Analysis suggests 
modifi cations to the approximate solution. Thus we produce another, hope-
fully better, approximate solution and proceed through another cycle. The 
key idea of automatic problem-solving is to defi ne a distance between any 
approximate solution and the true or optimal solution. At every cycle we 
attempt to reduce the distance from the optimal solution.

Automatic problem-solving works well when solutions can be expressed 
as the maximization of some goal function; that is, when the problem can 
be cast in an optimization framework. Today, we have a vast number of 
theoretical tools and computer programs that allow us to solve optimization 
problems. However, optimizing a goal function is a far cry from the type of 
creative conceptual innovation that marks the development of modern sci-
ence. For example, it is diffi cult to imagine that major scientifi c discoveries 
such as quantum mechanics can be reduced to the problem of optimizing 
a goal function. We do not (yet) have any realistic constructive method for 
making such discoveries.

Constructive methodologies are available only when we arrive at the 
point where we can optimize, that is, codify our design in terms of variables 
and express the quality of our design in terms of a goal function defi ned 
on the design variables. Once we have arrived at that level, design can be 
automated. Many, but not all, fi nancial engineering problems can be cast in 
terms of optimization problems. (See Chapters 8, 9, and 10.)

To summarize:
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Science is analytic: We have the models to analyze a given system.
Design is a constructive process: We need to synthesize a design starting 
from general high-level specifi cations.
Constructive design is performed iteratively: We make an approximate 
design and analyze it. Analysis suggests modifi cations which lead to a 
change in the design and additional analysis. We iterate until the analy-
sis tells us that our (approximate) solution and design is satisfactory.
Design automation: The process of design can be automated only when 
we arrive at the stage of expressing the design quality in terms of a goal 
function. Then we can proceed with optimization—an automatic design 
method.

ENGINEERING AND PRODUCT DESIGN IN FINANCE

Financial engineering can be defi ned loosely as an engineering process 
whose objective is to create fi nancial products with specifi ed characteris-
tics. A fi nancial analyst who designs a derivative-based product to meet 
specifi c client needs is engaged in fi nancial engineering. But portfolio man-
agement is also an instance of fi nancial engineering. In fact, a portfolio 
manager engineers a portfolio with desired properties such as a given risk-
return profi le.

Indeed most fi nancial engineering processes, including portfolio con-
struction and derivative-based strategies, can be cast, at least theoretically, 
in an optimization framework.1 This does not mean that the entire process 
of formulating the ideas of complex derivative instruments, risk manage-
ment products, and investment products can be automated. However, once 
the specifi cations of a fi nancial problem are defi ned, the engineering side can 
in general be theoretically formulated as an optimization problem.

Optimization depends critically on the ability to make forecasts and to 
evaluate the risk of those forecasts. In any optimization model, the forecast-
ing component must be explicit. The coupling of econometric forecasting 
methodologies and optimization is a delicate process insofar as errors in the 
forecasting process can actually be maximized by the optimization process. 
The diffi culties in this coupling have been a blocking factor in the use of 
optimization for many years. However, optimization can now be used more 
effectively, and this is for two reasons. First, we have learned how to make 
forecasts more robust; that is, we know how to gauge the true amount of 
information carried by our forecasts. Second, we have the technology neces-

1See H. Dahl, A. Meeraus, and S. Zenios, “Some Financial Optimization Models: 
Part I” and “Some Financial Optimization Models: Part I,” in S. Zenios (ed.). 
Financial Optimization (New York: Cambridge University Press, 1993).
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sary to make the optimization process more robust to measurement errors 
and uncertainty in the inputs. (See Chapter 10.)

In practice, in many fi nancial applications, we do not use optimization 
but heuristics or human judgment. For example, a portfolio manager might 
use a ranking system to screen a vast universe of stocks and then form port-
folios not through formal optimization but through his own judgment. 

Optimization requires a careful separation between the engineering 
part, that is, optimization, and the basic science, that is, the econometric 
model which we use to perform forecasts. In some important cases, how-
ever, the separation of engineering and econometrics are somewhat blurred. 
Consider, for example, reversal- or momentum-based strategies. Portfolio 
analysts and managers form portfolios with almost mechanical rules but the 
detailed econometrics behind these strategies is still not fully known.

LEARNING, THEORETICAL, AND HYBRID APPROACHES 
TO PORTFOLIO MANAGEMENT

Let’s now discuss the basic approaches to fi nancial modeling, namely the 
learning approach, the theoretical approach, and the learning-theoretical 
approach. The learning-theoretical approach is a hybrid of the two former 
frameworks.

The learning approach to fi nancial modeling is in principle a conse-
quence of the diffusion of low-cost high-performance computers. It is based 
on using a family of models that (1) include an unlimited number of param-
eters and (2) can approximate sample data with high precision. Neural net-
works are a classical example. With an unrestricted number of layers and 
nodes, a neural network can approximate any function with arbitrary pre-
cision. We express this fact by saying that a neural network is a universal 
function approximator. 

However, practice has shown that if we represent sample data with very 
high precision, we typically obtain poor forecasting performance. Here is 
why. In general, the main features of the data can be described by a simple 
structural model plus unpredictable noise. As the noise is unpredictable, 
the goal of a model is to capture the structural components. A very precise 
model of sample data (in-sample) will also try to match the unpredictable 
noise. This phenomenon called overfi tting, leads to poor (out-of-sample) 
forecasting abilities. Obviously there is no guarantee that data are truly 
described by a simple structural model plus noise. Data might be entirely 
random or might be described by a truly complex model.

To avoid overfi tting, the learning approach constrains the complexity of 
models. This is typically done by introducing what is called a penalty func-
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tion. The starting point of the learning approach is a family of models. Each 
model has the same set of tuning parameters, but its difference from another 
model is in the values of the tuning parameters. Parameters are learned, that 
is, determined as a function of the data, by minimizing an objective function 
that measures the precision of the model on sample data. An example is the 
ordinary least squares (OLS) method that minimizes the sum of squared 
residuals.

However, if we use universal function approximators with a suffi cient 
number of parameters, the objective function can become arbitrarily small. 
A neural network, for example, can make the sum of squared residuals arbi-
trarily small. A central idea in learning theory is to add a penalty term to 
the objective function that grows with the number of parameters but gets 
smaller if the number of sample points increases. If we increase the num-
ber of parameters, we make the original objective function smaller but we 
increase the penalty term. Therefore, the minimum of this new objective 
function is a trade-off between in-sample accuracy and model complexity.

At the other end of the landscape, the theoretical approach to fi nan-
cial modeling is based on human creativity. In this approach, models are 
the result of new scientifi c insights that have been embodied in theories. 
The theoretical approach is typical of the physical sciences. Laws such as 
the Maxwell equations of electromagnetism were discovered not through a 
process of learning but by a stroke of genius. Perhaps the most well-known 
example of a theoretical model in fi nancial economics is the capital asset 
pricing model (CAPM). 

The hybrid approach retains characteristics of both the theoretical and 
learning approaches. It uses a theoretical foundation to identify families of 
models but uses a learning approach to choose the correct model within the 
family. For example, the ARCH/GARCH family of models is suggested by 
theoretical considerations while, in its practical application, the right model 
is selected through a learning approach that identifi es the model param-
eters.

SAMPLE BIASES

Let us now see how samples might be subject to biases that reduce our abil-
ity to correctly estimate model parameters. A well-known type of bias in 
fi nancial modeling is survivorship bias, a bias exhibited by samples selected 
on the basis of criteria valid at the last point in the sample population. In the 
presence of survivorship biases in our data, return processes relative to fi rms 
that ceased to exist prior to that date are ignored. For example, while poorly 
performing mutual funds often close down (and therefore drop out of the 
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sample), better performing mutual funds continue to exist (and therefore 
remain in the sample). In this situation, estimating past returns from the full 
sample would result in overestimation due to survivorship bias.

Another important bias is the selection bias intrinsic in samples from 
common indexes such as the Russell 1000 universe (large-cap stock).2 The 
Russell 1000 includes the largest 1,000 securities (large-cap) in the Russell 
3000; the Russell 3000 Index represents about 98% of the stock market 
capitalization in the U.S. equity market. In order to understand the selection 
bias, we applied a selection rule similar to that of the Russell 1000 to arti-
fi cially generated random walks. Considering artifi cially generated random 
walks allows us to study the selection bias in a controlled environment, 
without infl uences from other phenomena. We formed 10,000 independent 
random walk price processes, each representing the price of a company’s 
stock, over 1,000 periods using the recursive formula:
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where we assume Pi(1) = 1. The level of volatility, 0.007, is compatible 
with realistic market values. Let us make the simple assumption that each 
company has the same number of stocks outstanding. Every 50 periods, we 
selected the 1,000 processes with the largest market cap. Given our assump-
tion, these are the stocks with the highest market prices. This selection rule 
roughly corresponds to the Russell 1000 selection rules assuming that one 
period represents one year. Let us call this random walk sample AR1000. 

The sample paths of the random walk have the shape shown in Exhibit 4.1.
We will look at two different universes. The fi rst is the universe were 

we consider only those processes selected at the latest selection date. For 
example, at any time between 500 and, say, 520, we include the fi rst 1,000 
processes selected at the date 500. The second universe includes all pro-
cesses selected at any date in the entire period. The last universe suffers 
from anticipation of information as it includes, at any time except the most 
recent, processes whose inclusion will be known only later. 

2Needless to say, many other indexes exhibit this bias: The Russell indexes were 
chosen as an example.

c04-CommonPitfalls.indd   166c04-CommonPitfalls.indd   166 1/6/10   11:29:38 AM1/6/10   11:29:38 AM



Common Pitfalls in Financial Modeling  167

EXHIBIT 4.1 10,000 Sample Paths of a Geometric Random Walk 
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We now study the bias of averages. In other words, the latter universe 
includes at time t stocks whose inclusion in the universe could be known 
only at a time s > t.

THE BIAS IN AVERAGES

We will now show how data sets such as the Russell 1000 suffer from in-
trinsic biases when estimating averages. Note that this is not a criticism of 
the Russell 1000 data set: any other data set that is based on selecting the 
largest or the smallest fi rms at fi xed dates exhibits similar biases. In particu-
lar we will show that computing expected returns as empirical averages or 
through least squares methods, two basic procedures implied by most mod-
els today, will lead to an overestimation of expected returns. In the practice 
of econometrics, models are estimated on moving windows. For example, 
the starting point for estimating a multifactor model could be estimating the 
expected returns and the covariance matrix over moving windows of a given 
length. Expected returns can be estimated as moving averages of returns. 
We selected a moving window of 100 periods. If one period represents one 
week, 100 periods correspond roughly to two years. 
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Continuing on our example, let’s choose two moving windows that ter-
minate at the dates 500 and 501, that is, immediately before and immedi-
ately after the selection applied at time 501. For each moving window, we 
plot the average of all 10,000 price processes as well as the average of the 
processes that were in the AR1000 at the corresponding date. Therefore, 
for the time window that ends at time 500, we average the 1,000 processes 
selected at time 451, while for the time window that ends at time 501 we 
average the 1,000 price processes selected at time 501. Exhibits 4.2 and 4.3 
represent the three plots.

As we see in Exhibit 4.2, the average of the chosen 1,000 processes 
exhibits a positive inclination for the fi rst 50 steps and then follows the 
same fl at behavior of the grand average. However, in Exhibit 4.3 we see 
that the processes selected at time 501 exhibit a positive steepness for the 
whole period.

This behavior does not refl ect any genuine growth path. In fact, by 
design, the paths of our artifi cially generated random walk do not have any 
intrinsic growth. The growth exhibited in Exhibits 4.1 and 4.2 is purely due 
to the selection process that chooses processes that grew in the previous time 
window. This growth, however, is a spurious bias. After the selection point, 
the average return is zero.

EXHIBIT 4.2 Averages of Prices in the Window before the Selection Rule is Applied
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EXHIBIT 4.3 Averages of Prices in the Window after the Selection Rule is Applied

1.40

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00

0.95
0 20 40 60 80 100 120

To test this result, we computed the average returns of price processes 
that are in the moving window selected at each moment and the average 
return in the period immediately after. As we are considering artifi cially 
generated independent random walks, if the sample had no bias, the empiri-
cal average of returns in any moving window should provide an estimate of 
the expectation of returns in the following periods. Therefore, the average 
of returns in the moving window and after the moving window should be 
the same. Instead, we obtained the following results:

 Empirical average of returns in the moving window = 0.00038698%

 Empirical average of returns after the moving window = 0.0030430%

Exhibit 4.4 provides an illustration of the empirical average of returns 
in and after the moving window.

The dotted line represents returns estimated in the moving window. 
Returns are higher immediately after the selection rule is applied and then 
get smaller, as illustrated in Exhibits 4.1 and 4.2. The continuous line repre-
sents returns after the moving window. As can be seen in Exhibit 4.4, returns 

c04-CommonPitfalls.indd   169c04-CommonPitfalls.indd   169 1/6/10   11:29:39 AM1/6/10   11:29:39 AM



170 QUANTITATIVE EQUITY INVESTING

after the moving window exhibit larger fl uctuations as we are considering 
only one period. However it is clear that, on average, returns after the mov-
ing window are smaller than average returns in the moving window.

The difference is not negligible. The empirical average of returns after 
the moving window is close to zero: the corresponding annualized return 
is 0.0002. However, the annualized returns in the moving windows exceed 
2%. This means that in a data set such as the Russell 1000, estimating 
expected returns as empirical averages of past returns overestimates expec-
tations by 2% just because of the sample biases.

PITFALLS IN CHOOSING FROM LARGE DATA SETS

Several investment management processes are based on selecting from a 
large set of price/return processes that exhibit specifi c characteristics. Per-
haps the most obvious example is pairs trading. Pairs trading is based on se-
lecting pairs of stocks that stay close together.  It is widely believed that pairs 
trading was initially introduced in investment management in the 1980s by 
Nunzio Tartaglia, a trader working at Morgan Stanley. 

EXHIBIT 4.4 Empirical Average of Returns In and After the Moving Window
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Suppose we know that the price paths of two stocks will stay close 
together. When they are at their maximum distance, we can go long in the 
stock with the highest value and short in the other stock. As the paths have 
stayed close together in the past, we assume that they are likely to come 
close again and even to invert the order of their values. When their distance 
is reduced or changes sign a profi t is realized. 

Given a large universe of stocks, a pairs trading strategy will look for 
cointegrated pairs. A typical approach will consist in running a cointegra-
tion test on each pair. Actually a test can consist of multiple tests that each 
pair has to pass in order to be accepted as cointegrated. 

Any statistical test, regardless of its complexity and power, will fail in a 
certain number of cases simply by chance. That is, a pair can appear cointe-
grated in a sample period purely by chance. Or a truly cointegrated pair may 
fail the test. In fact, any statistical test carries a signifi cance level that tells us 
in what percentage of cases that test will fail purely by chance. Therefore, 
if we run a cointegration test on a large set of price processes and we fi nd 
a number of processes that pass the cointegration test, we cannot conclude 
that all of these processes are really cointegrated.

To illustrate this phenomenon, let’s consider a set of 1,000 artifi cial 
arithmetic random walk paths that are 1,000 steps long. Consider that in 
the sample set there are (1,000 × 1,000 − 1,000)/2 = 1,000 × 999 × 0.5 = 
499,500 different pairs of processes. The cointegration tests are run only on 
these processes. As we construct these processes as random walks, no pair 
selected from these random walk paths is genuinely cointegrated. However, 
we will fi nd that a number of pairs of random walk paths test positive for 
cointegration purely by chance. 

To see this point, we ran three standard cointegration tests: 

The augmented Dickey-Fuller (ADF) test.
The Johansen trace test.
The Johansen maximum eigenvalue test.

The ADF test is based on regressing one process on the other and testing the 
stationarity of residuals. If residuals are stationary, then by defi nition the 
two processes are cointegrated. The Johansen trace and maximum eigen-
value tests are standard cointegration tests based on the Johansen procedure 
(see Chapter 3). 

In practice, the application of these tests consists of comparing some 
test statistics with tabulated critical values. We ran the three tests on a sam-
ple set of realizations of random walk paths. The random walk is defi ned by 
the following recursive equation:

1.
2.
3.
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 P t P t ti i i( ) ( ) . ( )= − + ×1 0 007 ε

where the εi(t) are independent draws from a standard normal distribution 
N(0,1). As before, we chose volatility to be 0.007 which is compatible with 
market values.

In our tests, we allow a constant term but no deterministic trend and a 
maximum of ten lags. Performing two sample runs, run 1 and 2, with the 
same parameters we obtained the following results:

Using the ADF test at 1% signifi cance level, in run 1, 1.1% pass the 
cointegration test, in run 2, 0.8%.
Using the Johansen trace test at 99% signifi cance level, in run 1, 2.7% 
pass the cointegration test, in run 2, 1.9%. 
Using the Johansen maximum eigenvalue test, in run 1, 1.7% pass the 
cointegration test, in run 2, 1.1%. 

Using the three criteria simultaneously, in run 1, 0.5% pass the cointegra-
tion test, in run 2, 0.4%. The results are summarized in Exhibit 4.5.

These numbers refer to two samples of random walk realizations. We 
can see that there are large fl uctuations between the two samples and large 
discrepancies between the three different tests. Note that the difference in 
the number of pairs that pass the cointegration tests is purely due to chance. 
We applied the same tests with the same parameterizations and used the 
same data generation process with the same parameters. Despite the large 
number of processes involved (1,000 processes), there are large differences 
in the number of pairs that pass the cointegration tests. We note that the 
critical issue is that none of the processes that pass the cointegration test is 
actually cointegrated. If one were to base a pairs trading strategy on these 
processes, one would incur losses. We can therefore reasonably conclude 
that given a set of price processes, the fact that some processes pass the coin-
tegration test is not, per se, a proof that they are really cointegrated pairs.

Given a set of processes that include some truly cointegrated pairs, how 
can we identify the truly cointegrated pairs? We have to somehow fi nd criti-
cal numbers for determining the number of pairs. If the number of pairs that 

■

■

■

EXHIBIT 4.5 Number of Cointegrated Pairs in Random Walk Realizations in Two 
Separate Runs Using the Same Parameters

ADF Trace Max Eigenvalue All Three

Run 1 1.1% 2.7% 1.7% 0.5%

Run 2 0.8% 1.9% 1.1% 0.4%
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pass the cointegration test exceeds that critical number, we can reasonably 
conclude that there are truly cointegrated pairs. 

A simple choice of the critical number of cointegrated pairs is the level 
of signifi cance multiplied by the number of pairs. That is, if our test has a 
signifi cance level of 1% and if there are 499,500 different pairs, we can 
assume that to make safe conclusions on the existence of true cointegra-
tion, the number of pairs that pass the cointegration test must be in excess 
of 499,500 × 0.01 ≈ 5,000. However, the pairs are not independent. For 
example, if we test pairs a,b and b,c, the pair a,c is not independent from 
the other two. It would be very diffi cult to establish mathematical criteria 
for small samples, hence the need for simulation.

However, as we have seen, there are large fl uctuations in the number of 
pairs that pass the cointegration test in a random walk sample. Therefore, 
we may need to refi ne our criteria. Here, we will not further discuss the many 
possible approaches that might be embedded in proprietary applications: 
Our objective is to show by way of example that in large data sets we will 
always fi nd a percentage of processes that pass specifi c tests. In order to draw 
conclusions, we must gain a better understanding, often through simulations 
and heuristics, of the critical numbers associated with these percentages.

TIME AGGREGATION OF MODELS AND PITFALLS 
IN THE SELECTION OF DATA FREQUENCY

In the physical sciences, laws of nature are typically expressed as differential 
equations. Differential equations establish instantaneous conditions that link 
functions and their derivatives. One method for solving a differential equation 
consists in discretizing the equation, that is, determining discrete difference 
equations that approximate the original differential equations.3 In order to 
obtain a good approximation, the discretization steps must usually be small. 

To ascertain the functional relationships between variables at distant 
points, we need to solve the differential equation. For example, consider 
the trajectory of a stone thrown in sea water. The trajectory of the stone is 
determined by the differential equations of dynamics and fl uid dynamics 
plus gravitation. These equations are valid instantaneously. To ascertain the 
position of the stone say every second, we have to solve the equation and 
consider its solution at intervals of one second. In general, there will be no 
simple discrete equation that yields the position of the stone every second.

3This is not the only method. For example, the fi nite elements methods is based on 
totally different principles. See Thomas J. R. Hughes, The Finite Element Method: 
Linear Static and Dynamic Finite Element Analysis (Englewood Cliffs, NJ: Prentice 
Hall, 1987). 
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In fi nancial theory, we have both discrete-time and continuous-time 
models. Continuous-time models are similar to the differential equations 
of physics. Consider, for example, the Black-Scholes option pricing equa-
tion. To ascertain the option price distribution at any given date, we have to 
solve the Black-Scholes equation. Under certain assumptions, the solution is 
known as a closed-form formula. 

From this discussion, we note that in analytical models the time step is 
arbitrarily small (infi nitesimal); we can solve for the desired quantity at any 
given point in time by solving the differential equation.

Let us now turn to discrete-time models. Consider, for example a vector 
autoregressive model of order 1, denoted by VAR(1), of the form

 X AXt t t= +−1 E

Such a model is characterized by a time step. If the X are returns, the time 
steps could be days, weeks, or months. The question we want to investigate 
is the following: Given a process that we believe is described by a given 
model, can we select the time step arbitrarily? Or are different time steps 
characterized by different models?

If we can use the same model at different time steps, we say that our 
model is invariant under time aggregation. We also want to consider a com-
panion question: Can we improve the performance of our models consider-
ing shorter time steps? This question is becoming more important with the 
availability of high-frequency data.

There is no general answer to these questions. Most models currently 
used are not invariant after time aggregation. Therefore, in the discrete 
world in general, we have to accept the fact that there are different models 
for different time steps and different horizons. We have to decide what 
type of dynamics we want to investigate and model. Models do not neces-
sarily simplify at longer time horizons. Each model is an approximation 
that is valid for a given time step and time horizon, but might not be valid 
for others. 

Using shorter time steps is not always advantageous; it might result in 
a better understanding of short-term dynamics but might not be advanta-
geous for making longer-term forecasts: We need to understand what type 
of dynamics we want to capture.

MODEL RISK AND ITS MITIGATION

We conclude this chapter by realistically assuming that errors in choosing 
and estimating models cannot be avoided. This is because models are in-

c04-CommonPitfalls.indd   174c04-CommonPitfalls.indd   174 1/6/10   11:29:41 AM1/6/10   11:29:41 AM



Common Pitfalls in Financial Modeling  175

evitably misspecifi ed as they are only an approximation, more or less faith-
ful, of the true data generating process (DGP). We discuss how to mitigate 
these errors. We begin by looking at the sources of error leading to model 
misspecifi cation and then review remedies, in particular methods based on 
information theory, Bayesian methods, shrinkage, and random coeffi cient 
models. In Chapter 6, we come back to the topic of model risk in the context 
of factor-based trading strategies.

Sources of Model Risk

We begin our discussion by introducing the concept of model risk. In simple 
intuitive terms, model risk means that we cannot be certain that the model 
that we have selected to represent the data is correctly specifi ed. If models 
are misspecifi ed, forecasting errors might be signifi cant.

To place the notion of model risk in its scientifi c context, note that the 
question of model risk is of scant interest in physics. Though at a deep philo-
sophical level the physical sciences are hypothetical and subject to revision, 
a vast body of scientifi c knowledge is considered to be validated to a high 
degree. No scientist expects the laws of physics that govern the behavior of, 
for example, trains and planes to break down, though changes might occur 
at a higher conceptual level. 

The notion of model risk entered science with the engineering of com-
plex artifacts, the study of complex systems, and the widespread adoption 
of statistical learning methods. This is because, in tackling large artifacts 
and complex systems such as the economy, science begins to address prob-
lems of a different nature. When modeling complex systems such as fi nan-
cial markets, we might encounter one of the following characteristics:

The phenomena under study might be very complex and thus only a 
simplifi ed description is possible; this leaves open the possibility that 
some critical aspect is overlooked.
The phenomena under study can be very noisy; as a consequence, the 
scientifi c endeavor consists in extracting small amounts of information 
from highly noisy environments.
Being not a law of nature but the behavior of an artifact, the object 
under study is subject to unpredictable changes.

In fi nancial econometrics, there are various sources of error that can 
lead to model misspecifi cation (though our considerations are quite univer-
sal and apply to modeling in general, we will restrict our analysis to models 
of stock prices and stock returns). In particular, sources of error in fi nancial 
econometrics include the following two:

■

■

■
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The empirical data are nearly random but might seem to exhibit structure.
The empirical data have been generated by a time-varying or randomly 
varying DGP while the model selected is static or subject to a different 
time dynamics.

The fi rst source of error—random data appearing to have structure—is 
due to the large amount of noise in fi nancial time series. Thus models cap-
ture apparent regularities that are the result of mere chance. The fact that 
fi nancial time series are so noisy, to the point of being almost completely 
random, is a weak form of market effi ciency. In fi nancial time series, any 
source of profi t that could be easily detectable would be exploited, making 
it disappear. This is the principle of absence of arbitrage. 

It is because of absence of arbitrage that stock price time series seem to 
meander randomly and stock return time series are close to random noise. 
The benchmark model for logprices is therefore the random walk. In addi-
tion, as return processes are strongly correlated, the benchmark model of 
multivariate stock logprices is that of correlated random walks. Deviations 
from this benchmark model allow profi table strategies. Because in the best 
of cases there is only very little real structure in fi nancial time series (i.e., the 
data are essentially random), it is possible that we fi nd structure where there 
is none. Given the sample sizes available, our statistical tests are not power-
ful enough to yield overwhelming evidence that data are not random. 

The sheer fact that we have to fi lter a large amount of noise renders the 
fi ltering process uncertain. For example, estimating an unrestricted vector 
autoregressive (VAR) process of many stock price processes yields an esti-
mated structure of cross autocorrelation that is almost completely spurious: 
the model coeffi cients capture noise. In Chapter 7 we discuss how to reduce 
the dimensionality of the model, for example with dynamic factor models, 
in order to capture the true information. We now come back to the same 
question as an issue in model risk.

The second possible source of error—that the data have some simple 
structure but are subject to sudden and unpredictable changes (i.e., the 
data have been generated by a time-varying or randomly varying DGP) not 
refl ected in our models—is possibly the most serious source of model risk. 
For example, empirical data might be represented by a DGP that is stable 
for a given period, but then the economy is subject to change and the DGP 
changes as a consequence. If we had lots of data and changes were suf-
fi ciently frequent, the latter could be detected and estimated. However, as 
we typically have only a few years of workable homogeneous data, detect-
ing change is problematic. A key source of model risk is the possibility that 
we estimate models correctly on a past sample of data but then the DGP 
changes and the change goes undetected.

1.
2.
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One way of dealing with a time-varying DGP is by introducing regime-
switching models (see Chapter 3). However, regime-switching models do 
not entirely solve the problem. In fact, any regime-switching model is a 
model estimated on a sample of past data. As such, it can detect only those 
features that are statistically relevant during the sample period. If a regime 
change occurs once or twice during that period, the model will not detect the 
change. One could investigate separately the possibility of regime changes, 
but doing so is complex and uncertain when applied to models that are 
already regime-switching.

The above considerations suggest the adoption of techniques to reduce 
sources of error in model selection and estimation. Possible techniques 
include the following:

Information theory, to assess the complexity and the limits of the pre-
dictability of time series.
Bayesian modeling, which assumes that models are variations of some 
a priori model.
Shrinkage, a form of averaging between different models.
Random coeffi cient models, a technique that averages models estimated 
on clusters of data.

We begin our discussion of model risk mitigation techniques with the infor-
mation theory approach to model risk.

The Information Theory Approach to Model Risk

We now take a broad approach and explore how we can use information 
theory to mitigate model risk without making reference to any specifi c fam-
ily of models.

We saw above that an important source of risk is due to the fact that 
models might mistakenly capture as stable features of the empirical data 
what is only random structure. To reduce this source of error, the theory of 
learning prescribes constraining a model’s complexity using criteria based 
on information theory. 

Intuitively, if our model shows too much structure (i.e., in the case of 
fi nancial time series, if the model appears to offer ample opportunity for 
realizing excess returns), the model is likely to be misspecifi ed and therefore 
risky. The critical questions are: 

Is it possible to estimate the maximum information extractable from a 
fi nancial time series? 

■

■

■

■

■
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Can we prescribe an information boundary such that sound robust 
models are not able to yield information beyond that boundary?
Is it possible to assess the intrinsic complexity of empirical time series?

We begin our discussion on the role of information theory in miti-
gating model risk with a defi nition of the concepts of information and 
entropy. The concept of information is associated with the name of Claude 
Shannon, who laid the foundations of information theory in 1948.4 The 
concept of a quantitative measure of information had been introduced in 
the context of communications engineering 20 years before by R. V. L. 
Hartley.5

Consider a probability distribution. Intuitively, it makes a big differ-
ence, in terms of information, if the distribution is fl at or highly peaked. 
If one throws a fair dice, each of the six possible outcomes has the same 
probability and we are totally uncertain about future outcomes; the prob-
ability distribution is said to be fl at. If the dice is biased, say number 6 has 
an 80% probability of coming up, we can be pretty confi dent that the next 
outcome will be a 6; the distribution is said to be peaked.

In a fi nite probability scheme,6 with N outcomes each with probability 
pi, i = 1, 2, …, N information is defi ned as

 I p pi i
i

T

=
=
∑ log( )

1

The quantity I, which is always negative, assumes a minimum 

 I
N

= ⎛
⎝⎜

⎞
⎠⎟log

1

if all outcomes have the same probability; it assumes a maximum I = 0 if 
one outcome has probability 1 and all other outcomes probability 0, that is, 
in the case of certainty of one outcome. From the above formula it is clear 
that the maximum information is zero but the minimum information of an 
equiprobable distribution can assume any negative value.

4Claude Shannon, “The Mathematical Theory of Communication,” Bell System 
Technical Journal, 27 (1948), pp. 379–423 and 623–656.
5Ralph V. L. Hartley, “Transmission of Information,” Bell System Technical Journal, 
7 (1928), pp. 535–564.
6The concept of information can be extended to continuous probability schemes, but 
the extension is not straightforward. For our purposes discrete probability schemes 
suffi ce.

■

■
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One can add several considerations that make the quantity I a reason-
able measure of information.7 However, what really makes the concept of 
information so important is that we can construct a theory of information 
that is meaningful from the point of view of empirical science. In other 
words, if we associate the quantity of information to physical processes, we 
can establish laws that make sense empirically.

To appreciate this point, consider fi rst that the quantity I is the opposite of 
a quantity H well known in physics as entropy: I = –H. Entropy is a measure 
of disorder.8 A fundamental law of physics, the second law of thermodynamics 
states that in closed systems the global amount of entropy (i.e., disorder) 
can only grow or remain constant over time. Next consider that a basic result 
in information theory is the link between the physical characteristics of a 
communication channel and the rate of information that can be transmitted 
through that channel. It is because of physical laws such as these that the con-
cept of information has become fundamental in physics and engineering.

We now introduce the concepts of coarse graining and symbolic dynam-
ics. Consider an empirical fi nancial time series. Through a process of coarse 
graining, we can view this series as a sequence of symbols. In fact, coarse 
graining means dividing the possible outcome xt of the series into discrete 
segments (or partitions) and associating a symbol to each segment. For 
example the symbol ai is associated to values xt in the range vi–1 < xt < vi. 
In doing so, the original DGP of the time series entails a discrete stochastic 
dynamics of the corresponding sequence of symbols.

Simulation-based techniques for choosing the optimal partitioning of 
data have been suggested.9 In principle, the process of coarse-graining is not 
restrictive as any real-world fi nancial time series is discrete. For example, 
stock prices can assume only a discrete set of values. However, given the 
size of samples, the number of symbols that can be used in practice is much 
smaller than the number of possible discrete values of a series. A fi nancial 
time series, for example, can be analyzed as a sequence of three symbols, 
while stock prices can assume any price spaced by one-tenth of a dollar.

7For a modern presentation of information theory, see, for example, Thomas M. 
Cover and Joy A. Thomas, Elements of Information Theory (New York: John Wiley 
& Sons, 1991).
8Entropy was fi rst introduced in physics in 1864 by Rudolf Clausius in the context of 
thermodynamics. It was the genius of the Austrian physicist Ludwig Boltzman that 
made the connection between entropy as a thermodynamic concept and entropy as 
a measure of disorder in statistical mechanics. Isolated and poorly understood in his 
time, Boltzman, was to commit suicide in 1906.
9Ralf Steuer, Lutz Molgedey, Wierner Ebeling, and Miguel A. Jiménez-Montaño, 
“Entropy and Optimal Partition for Data Analysis,” European Physical Journal B, 
19 (2001), pp. 265–269.
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180 QUANTITATIVE EQUITY INVESTING

Given the probabilistic dynamics of the symbol sequence, we can asso-
ciate a probability to any sequence of n symbols p(i1, …, in). Recall that the 
entropy H is the opposite of information as defi ned above, that is to say

 H p pi i
i

T

= −
=
∑ log( )

1

We can therefore defi ne the entropy per block of length n (or block entropy) 
as follows:

 H I p i i p i in n n n= − = −Σ ( , , ) log ( , , )1 1… …

From the block entropy, we can now defi ne the conditional entropy hn 
as the difference of the entropies per blocks of length n + 1 and n:

 h H H p i i i p i i in n n n n n n= − = −+ + +1 1 1 1 1Σ ( , , ) log ( , ,… … ))

Finally, we can defi ne the Kolmogorov-Sinai entropy, or entropy of the 
source, as the limit for large n of the conditional entropy. The conditional 
entropy is the information on the following step conditional on the knowl-
edge of the previous n steps. The quantity rn = 1 – hn is called the predict-
ability of the series.

The concepts of conditional entropy and entropy of the source are fun-
damental to an understanding of the complexity of a series. They supply a 
model-free methodology for estimating the basic predictability of a time series. 
Unfortunately, the concepts of entropy and information are not widely diffused 
in fi nancial econometrics. Ebeling et al.10 performed estimations of the basic 
predictability of fi nancial time series with the methods of symbolic dynamics 
using a three-letter alphabet, that is to say, they coarse grained a times series 
into three symbols. They found that series such as the returns of the S&P 500 
index have a limited level of predictability—in the range of 5% to 8%. 

The analysis of the predictability of time series based on information 
theory is a basic tool for model risk assessment. It establishes a reasonable 
boundary to the performance of models. Models that seem to exceed by a 
large measure the predictability level of entropy-based estimation are also 
likely to exhibit a high level of model risk.

10Werner Ebeling, Lutz Molgedey, Jürgen Kurths, and Udo Schwarz, “Entropy, 
Complexity, Predictability and Data Analysis of Time Series and Letter Sequences,” 
Chapter 1 in Amin Bunde, Jurgen Kropp, and Hans Joachim Schellnhuber (eds.), 
Theories of Disaster: Scaling Laws Governing Weather, Body and Stock Market 
Dynamics (Berlin: Springer, 2002).
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While the conditional entropy and the entropy of the source of coarse-
grained models give an assessment of the complexity of a series and its pre-
dictability, the recently introduced transfer entropy11 gauges the information 
fl ow from one series to another. The transfer entropy is defi ned as: the infor-
mation about future observation I(t + 1) gained from past observations of I 
and J minus the information about future observation I(t + 1) gained from 
past observations of I only. 

This defi nition already shows the advantage of transfer entropy over 
other cross correlation statistics: It is an asymmetric measure that takes into 
account only statistical dependencies, and not those correlations deriving 
from a common external driver. Expressing the above relationship in terms 
of conditional entropies yields the following expression: 

 T m l p i i j j
p i i

I J m l
m

→ +
+=( , ) ( , , , , , ) log

( (
Σ 1 1 1

1 1… …
,, , , , , ))

( , , )

… …
…

i j j

p i i i
m l

m m

1

1 1+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

This quantity evaluates the amount of information that fl ows from one se-
ries to another. Transfer entropy can be used to evaluate quantitatively cross 
autocorrelation in a general setting that does not depend on specifi c models 
and that might also consider nonlinear lead-lag effects.12

One might well ask if we can use information theory to evaluate the 
adequacy of specifi c families of models. James Hamilton introduced a series 
of specifi cation tests to evaluate the adequacy of Markov switching models.13 
Hamilton’s tests are based on the score of the models defi ned as the deriva-
tive of the conditional log-likelihood of the n-th observation with respect to 
the parameter vector. The approach is quite technical: the interested reader 
should consult the cited reference.

A very general approach to evaluating the limits of learning from fi nite 
samples comes from the Russian physicists Vapnik and Chervonenkis (VC), 
working in the second half of the twentieth century. They went beyond the 
classical information theory in the sense of Shannon, and defi ned a num-
ber of concepts and quantities to characterize the learning process, Vap-
nik entropy, empirical risk, structural risk, and the VC dimension. The VC 
theory establishes limits to the ability of given models to learn in a sense 

11Thomas Schreiber, “Measuring Information Transfer,” Physical Review Letters, 
85 (2000), p. 461.
12Robert Marschinski and Lorenzo Matassini, “Financial Markets as a Complex 
System: A Short Time Scale Perspective,” Deutsche Bank Research Note in Economics 
& Statistics (November 2001).
13James D. Hamilton, “Specifi cation Testing in Markov-Switching Time-Series 
Models,” Journal of Econometrics, 70 (1996), pp. 127–157.

c04-CommonPitfalls.indd   181c04-CommonPitfalls.indd   181 1/6/10   11:29:43 AM1/6/10   11:29:43 AM



182 QUANTITATIVE EQUITY INVESTING

made precise by these concepts.14 Considered a major breakthrough, the 
VC theory led to the development of the Vector Support Machine, a learn-
ing approach based on the theory. However, the conceptual diffi culty of the 
VC theory and the practical diffi culty in applying it have thus far limited its 
widespread application to fi nancial modeling.

To summarize, information theory offers a number of tools for evaluat-
ing, in a very general context and in a robust framework, limits to the fore-
castability of a given time series. Information theory is thus a valuable tool 
for evaluating model risk. Critical to the information-based approach are 
methods and techniques to coarse-grain time series. A number of practical 
information-based approaches have been proposed and are widely used in the 
physical sciences. Thus far, however, the use of information theory in fi nancial 
econometrics has been limited to applications such as the Akaike criterion.

Bayesian Modeling
The Bayesian approach to dynamic modeling is based on Bayesian statistics. 
Therefore, we will begin our discussion of Bayesian modeling with a brief 
introduction to Bayesian statistics.

Bayesian Statistics

Bayesian statistics is perhaps the most diffi cult area in the science of sta-
tistics. The diffi culty is not mathematical but conceptual: it resides in the 
Bayesian interpretation of probability. Classical statistics (which is the sta-
tistical approach used thus far in this book) adopts a frequentist interpreta-
tion of probability; that is to say, the probability of an event is essentially 
the relative frequency of its appearance in large samples. However, it is well 
known that pure relative frequency is not a tenable basis for probability: 
One cannot strictly identify probability with relative frequency. What is 
needed is some bridging principle that links probability, which is an ab-
stract concept, to empirical relative frequency. Bridging principles have been 
widely discussed in the literature, especially in the philosophical strain of 
statistical literature but, in practice, classical statistics identifi es probability 
with relative frequency in large samples. When large samples are not avail-
able, for example in analyzing tail events, classical statistics adopts theoreti-
cal considerations.

The frequentist interpretation is behind most of today’s estimation 
methods. When statisticians compute empirical probability distributions, 
they effectively equate probability and relative frequency. The concept is 

14The VC theory was exposed by Vapnik in his book The Nature of Statistical 
Learning Theory (Berlin: Springer-Verlag, 1991).
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also implicit in estimation methods based on likelihood. In fact, maximum 
likelihood (ML) estimates of distribution parameters can be interpreted as 
those parameters that align the distribution as close as possible to the empir-
ical distribution. When we compute empirical moments, we also adhere to 
a frequentist interpretation of probability.

In classical statistics, the probability distributions that embody a given 
statistical model are not subject to uncertainty. The perspective of classical 
statistics is that a given population has a true distribution: the objective of 
statistics is to infer the true distribution from a population sample.

Although most mathematical methods are similar to those of classical 
statistics, Bayesian statistics15 is based on a different set of concepts. In par-
ticular, the following three concepts characterize Bayesian statistics:

Statistical models are uncertain and subject to modifi cation when new 
information is acquired.
There is a distinction between prior probability (or prior distribution), 
which conveys the best estimate of probabilities given initial available 
information, and the posterior probability, which is the modifi cation of 
the prior probability consequent to the acquisition of new information.
The mathematical link between prior and posterior probabilities is 
given by Bayes’ Theorem.

The main diffi culty is in grasping the meaning of these statements. On 
one side, the fi rst two statements seem mere educated common sense, while 
the third is a rather simple mathematical statement that we illustrate in the 
following paragraphs. However, common sense does not make science. The 
usual scientifi c interpretation is that Bayesian statistics is essentially a rigor-
ous method for making decisions based on the subjectivistic interpretation 
of probability. 

In Bayesian statistics, probability is intended as subjective judgment 
guided by data. While a full exposé of Bayesian statistics is beyond the scope 
of this book, the crux of the problem can be summarized as follows. Bayes-
ian statistics is rooted in data as probability judgments are updated with 
new data or information. However, according to Bayesian statistics there is 
an ineliminable subjective element; the subjective element is given by the ini-
tial prior probabilities that cannot be justifi ed within the Bayesian theory.

15For a complete exposition of Bayesian statistics see: Donald A. Berry, Statistics: 
A Bayesian Perspective (Belmont, CA: Wadsworth Publishing, 1996) and Thomas 
Leonard and John Hsu, Bayesian Methods: An Analysis for Statisticians and 
Interdisciplinary Researchers (Cambridge, UK: Cambridge University Press, 1999) 
for a basic discussion, and Jose M. Bernardo and Adrian F. M. Smith, Bayesian Theory 
(Chichester, UK: John Wiley & Sons, 2000) for a more advanced discussion.

1.

2.

3.
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184 QUANTITATIVE EQUITY INVESTING

It would be a mistake to think that Bayesian statistics is only a rigorous 
way to perform subjective uncertain reasoning while classical statistics is about 
real data.16 Bayesian statistics explicitly recognizes that there is some inelim-
inable subjectivity in probability statements and attempts to reduce such sub-
jectivity by updating probabilities. Classical statistics implicitly recognizes the 
same subjectivity when setting rules that bridge from data to probabilities.

In a nutshell, the conceptual problem of both classical and Bayesian 
statistics is that a probability statement does not per se correspond to any 
empirical reality. One cannot observe probabilities, only events that are 
interpreted in a probabilistic sense. The real problem, both in classical and 
Bayesian statistics, is how to link probability statements to empirical data. 
If mathematically sound and interpretable probability statements are to be 
constructed, bridging principles are required.

Before leaving the subject of Bayesian statistics, note that in fi nancial 
econometrics there is a strain of literature and related methodologies based 
on Empirical Bayesian Statistics. In Empirical Bayesian Statistics, priors 
are estimated with the usual classical methods and then updated with new 
information. We will come back to this subject later in this chapter.

Bayes’ Theorem

We now discuss Bayes’ theorem, for which there are two interpretations. 
One interpretation is a simple accounting of probabilities in the classical 
sense. Given two events A and B, the following properties, called Bayes’ 
theorem, hold:

 

P A B
P B A P A

P B

P B A
P A B P B

P A

( )
( ) ( )

( )

( )
( ) ( )

( )

=

=

These properties are an elementary consequence of the defi nitions of 
conditional probabilities:

 P AB P A B P B P B A P A( ) ( ) ( ) ( ) ( )= =

In the second interpretation of Bayes’ theorem, we replace the event A 
with a statistical hypothesis H and the event B with the data and write

16Bayesian theories of uncertain reasoning are important in machine learning and 
artifi cial intelligence. See, for example, Judea Pearl, Probabilistic Reasoning in 
Intelligent Systems: Networks of Plausible Inference (San Francisco, CA: Morgan 
Kaufmann Publishers, 1988).
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 P H
P data H P H

P data
( )

( ) ( )
( )

data =

This form of Bayes’ theorem is the mathematical basis of Bayesian statistics. 
Given that P(data) is unconditional and does not depend on H, we can write 
the preceding as:

 P H P H P H( ) ( ) ( )data data∝

The probability P(H) is called the prior probability, while the probability 
P(H|data) is called the posterior probability. The probability P(data|H) of 
the data given H is called the likelihood. 

Bayes’ theorem can be expressed in a different form in terms of odds. 
The odds of H is the probability that H is false, written as P(HC). Bayes’ 
theorem is written in terms of odds as follows:

 P H

P H

P H P H
P H P HC C C

( )

( )

( ) ( )
( ) (

data

data

data
data

=
))

The second interpretation of Bayes’ theorem is not a logical consequence 
of Bayes’ theorem in the fi rst interpretation; it is an independent principle 
that assigns probabilities to statistical assumptions.

When applied to modeling, Bayes’ theorem is expressed in terms of dis-
tributions, not probabilities. Bayes’ theorem can be stated in terms of distri-
butions as follows:

 p y L y( ) ( ) ( )ϑ ϑ π ϑ∝

In this formulation, y represents the data, ϑ is the parameter set, p(ϑ⏐y) is 
the posterior distribution, L(y⏐ϑ) is the likelihood function, and π(ϑ) is the 
prior distribution. 

A key issue in Bayesian statistics is how to determine the prior. Though 
considered subjective, the prior is not arbitrary; if it were, the estimation 
exercise would be futile. The prior represents the basic knowledge before 
specifi c measurements are taken into account. Two types of priors are often 
used: diffuse priors and conjugate priors. The diffuse prior assumes that 
we do not have any prior knowledge of the phenomena. A diffuse prior is 
a uniform distribution over an unspecifi ed range. The conjugate prior is a 
prior such that, for a given likelihood, the prior and the posterior distribu-
tion coincide. 
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Bayesian Approach to Model Risk 

The Bayesian handling of model risk is based on Bayesian dynamic model-
ing. Recall that the objective of model risk mitigation is to minimize the pos-
sibility of and the effects of error in model choice. The Bayesian approach 
to model risk assumes that though there is uncertainty as regards the model, 
we have a good idea of a basic form of the model. Uncertainty is expressed 
as a prior distribution of the model parameters where the means of the 
distribution determine the basic model. In other words, in the Bayesian ap-
proach to model estimation, the estimation process does not determine the 
model from the data but uses the data to determine deviations of the actual 
model from a standard idealized model. We can say that Bayesian modeling 
is a perturbation theory of fundamental models.

As is typical in Bayesian statistics, the quality of results depends on the 
priors. It might seem reasonable that those priors that express complete 
uncertainty lead to the same estimates obtained in the classical framework, 
but this is not the case. The key issue is just what priors express complete 
uncertainty.17 Specifi cally, there is no agreement on what should be consid-
ered an uninformative prior in the case of unit root processes. 

Now see how the Bayesian framework mitigates model risk. We 
observed that fi nancial time series are very noisy and that we can only 
extract a small amount of information from all the noise. If a model appears 
to extract a lot of information, there is always the risk that that informa-
tion is camoufl aged noise. 

We have already explored dimensionality reduction as one possible 
remedy for misspecifi cation. Dimensionality reduction constrains model 
complexity, rendering effective the estimation process. In large multivari-
ate time series, dimensionality reduction typically takes the form of factor 
models. The Bayesian approach to model risk assumes that we know, in the 
form of the prior distribution of parameters, an (idealized) robust model. 
For example, as we will see below, the Litterman model allows only small 
perturbations to the random walk. Next we see how the Bayesian approach 
works in practice.

Bayesian Analysis of an Univariate AR(1) Model

Let us now perform a simple Bayesian analysis of an univariate AR(1) mod-
el under the assumption of diffuse priors. Consider the following simple 
autoregressive model:

17George S. Maddala and In-Moo Kim, Unit Roots, Cointegration, and Structural 
Change (Cambridge, UK: Cambridge University Press, 1998).
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 yt = ρyt–1 + εt

Assume that the preceding model is Gaussian so that the likelihood is 
also Gaussian. The model being linear, Gaussian innovations entail Gauss-
ian variables. The likelihood is a given, not a prior. We can write the likeli-
hood, which is a function of the data parameterized by the initial conditions 
y0, the autoregressive parameters ρ, and the variance σ of the innovation 
process as follows:
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Assume a fl at prior for (ρ, σ), that is, assume that

 π ρ σ
σ

ρ σ( , ) , ,∝ − < < >1
1 1 0

Then the joint posterior distribution is the following:
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be the OLS estimator of the regressive parameter and call

 Q yt= −Σ 1
2

and
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 R y yt t= − −Σ( ˆ )ρ 1
2

By rearranging terms and integrating, it can be demonstrated that the mar-
ginal distributions of (ρ, σ) are

 

p y y R Q
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From these expressions one can see that the marginal distribution of ρ is an 
univariate t-distribution symmetrically distributed around the OLS estimator 
ρ̂ , while the marginal distribution of σ is an inverted gamma-2 distribution.

Bayesian Analysis of a VAR Model

The Bayesian VAR (BVAR) is a Bayesian specifi cation of a VAR model. The 
BVAR approach is based on defi ning a prior distribution for the model pa-
rameters, similar to what we did above for the univariate AR(1) model. In 
simple and perhaps more intuitive terms, this means that the estimated VAR 
model is allowed only small deviations from a fundamental model, which 
is specifi ed as a prior. The specifi c form of deviations from the fundamental 
model is prescribed by the prior distribution. For example, the fundamental 
model for the Litterman BVAR is a random walk. The Litterman model 
prescribes that the coeffi cients of the BVAR model be normally distributed 
around the coeffi cients of a random walk. In other words, the BVAR ap-
proach prescribes that any multivariate model of stock prices cannot differ 
much from a random walk.

Now see how BVAR models are estimated. Consider the following 
VAR(p) model:

 x A x A x A x vt t t p t p t= + + + + +− − −1 1 2 2 … εε

where xt = (x1,t, …, xN,t )′ is an N–dimensional stochastic time series in vector 
notation; Ai s t

ia= ( ), , i = 1, 2, …, p, s,t = 1, 2, …, N are deterministic N × N 
matrices; εt = (ε1,t, …, εN,t )′ is a multivariate white noise with variance-co-
variance matrix ΣΣ σσ σσ= ( , , )1 … N ; v = (v1, …, vN)′ is a vector of deterministic 
intercepts. Using the same notation used in Chapter 2, we can compactly 
write the VAR(p) model as follows:

 X AW U

x w u

= +
= +ββ
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where
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The likelihood function can be written as in the classical case:

 l
NT T

T( ) ( ) exp ( ) ( )(x x w I x wββ ΣΣ ββ ΣΣ= − − ′ ⊗ −
− − −2

1
2

2 2 1π ββββ)
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⎝⎜

⎞
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At this point the Bayesian estimation method departs from the classical one. 
In fact, in the Bayesian framework we assume that we know a priori the 
joint distribution of the model parameters. Suppose that the parameter vec-
tor ββ  has a prior multivariate normal distribution with known mean ββ* 
and covariance matrix Vββ ; the prior density is written as

 π π( ) ( ) exp ( ) ( )ββ ββ ββ ββ ββββ ββ= − − ′ −⎛− −
2

1
2

2

2
1
2

N p

V V-1* *⎝⎝⎜
⎞
⎠⎟

Now we form the posterior distribution p l( ) ( ) ( )ββ ββ ββx x= π . It can be 
demonstrated that the following expression holds:

 p( ) exp ( ) ( )ββ ββ ββ ββ ββββx V-1∝ − − ′ −⎛
⎝⎜

⎞
⎠⎟

1
2

where the posterior mean is

 ββ ΣΣ ββ ΣΣββ ββ= + ′ ⊗ + ⊗− − − − −[ ] [ * ( ) ]V WW V W xu u
1 1 1 1 1

and the posterior covariance matrix is

 ΣΣ ΣΣββ ββ= + ′ ⊗− − −[ ]V WW u
1 1 1

In practice, the prior mean ββ* and the prior covariance matrix Vββ need 
to be specifi ed. Set the prior mean to zero for all parameters that are consid-
ered to shrink toward zero. Litterman’s choice18 for the prior distribution, 
when all variables are believed to be integrated, is such that the BVAR model 
is a perturbation of a random walk. Litterman priors, also known as “Min-
nesota” priors, are normally distributed with mean set to 1 for the fi rst lag of 
each equation while all other coeffi cients are set to zero. The prior variance 
of the intercept terms is infi nite and that of the other coeffi cients is given by

 mean v
l i j

l i jij l
i j

,

( / ) ,

( / ) ,
=

=
≠

⎧
⎨
⎪

⎩⎪

λ
λϑσ σ

2

2 aand covariance matrix Vββ

18Robert B. Litterman, “Forecasting with Bayesian Vector Autoregressions—Five Years 
of Experience,” Journal of Business and Economic Statistics, 4 (1986), pp. 25–38.
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where vij,l is the prior variance of the (i,j)th element of Al , λ is the prior stan-
dard deviation of the diagonal elements of Al, θ is a constant in the interval 
(0,1), and σij is the i-th diagonal element of ΣΣu . The deterministic terms 
have diffused prior variance. 

The Bayesian analysis of VAR models has been extended to cover the 
case of state-space models in general. West19 discusses Bayesian analysis of 
different state-space models.

Model Averaging and the Shrinkage Approach to Model Risk

Simple model averaging to reduce model risk has been advocated by several 
authors. Lubos Pastor,20 for example, recommends averaging return fore-
casts generated by different models. The intuition behind model averaging is 
simple. Here is the reasoning. Reliable estimations and forecasts from differ-
ent models should be highly correlated. When they are not, this means that 
the estimation and forecasting processes have become dubious and averag-
ing can substantially reduce the forecasting error. Model averaging should 
have only a marginal impact on forecasting performance, but should help 
to avoid large forecasting errors. If model averaging has a strong impact on 
forecasting performance, it is a sign that forecasts are uncorrelated and thus 
unreliable. One is advised to rethink the modeling strategy. 

Averaging estimators obtained from different models can be done using 
a statistical estimation technique known as shrinkage. By averaging, esti-
mators are shrunk closer to each other. Averaging weights can be obtained 
with Bayesian or Empirical Bayesian methods. Models might be based on 
completely different theoretical assumptions. An example comes from esti-
mations of the covariance matrix that might be calculated using different 
approaches, including the empirical estimation approach, which produces 
highly noisy covariance matrices, or estimations based on the Capital Asset 
Pricing Model (CAPM), which yield covariance matrices that are highly 
constrained by theoretical considerations. Shrinkage shrinks one estimate 
toward the other, averaging with appropriate shrinkage coeffi cients. The 
idea can be extended to dynamic models. Different models offer different 
approximations to the true DGP. By averaging estimations and forecasts, 

19As a detailed treatment of Bayesian modeling applied to state-space models is 
beyond the scope of this book, the interested reader is advised to consult Mike 
West and P. Jeff Harrison, Bayesian Forecasting and Dynamic Models (New York: 
Springer-Verlag, 1989).
20Lubos Pastor, “A Model Weighting Game in Estimating Expected Returns,” in 
Financial Times, Mastering Investment, May 21, 2001, and Lubos Pastor and Robert 
F. Stambaugh, “Comparing Asset Pricing Models: An Investment Perspective,” 
Journal of Financial Economics, 56 (2000), pp. 335–381.
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one saves the common robust approximations and limits the damage when 
the approximations coming from any given model break down. 

The method of shrinkage can be generalized to averaging between any 
number of models. The weighting factors can be determined by Bayesian 
principles if one has an idea of the relative strength of the models. Shrink-
age is averaging between possibly different models. In Bayesian terms this 
would call for multiple priors.21 

Random Coeffi cients Models

We now introduce another technique for model risk mitigation: random 
coeffi cient models. Random coeffi cient models are based on the idea of seg-
menting data in a number of clusters and estimating models on multiple 
clusters. The concept of random coeffi cient models was introduced in 1970 
by Swamy.22 Consider an ordinary linear regression. The regression pa-
rameters can be estimated with OLS methods using fully pooled data. This 
means that all the available data are pooled together and fed to the OLS 
estimator. However, this strategy might not be optimal if the regression data 
come from entities that have slightly different characteristics. For example, 
consider regressing stock returns on a predictor variable. If the returns come 
from companies that differ in terms of size and business sector, we might 
obtain different results in different sectors. 

However, if our objective is to reduce model risk, we might decide 
to segment data into clusters that refl ect different types of fi rms, estimate 
regression for each cluster, and combine the estimates. Random coeffi cient 
modeling techniques perform estimates assuming that clusters are randomly 
selected from a population of clusters with normal distributions. 

To see how random coeffi cient models work, suppose that data are 
clustered and that each cluster has its own regression. Using the notation 
for regressions established in Chapter 2, we write the following regression 
equation for the j-th cluster:

 y Xj j j j= +ββ εε

where nj is the number of elements in the j-th cluster and εε j  are mutually 
independent, normally distributed vectors,

21Raman Uppal, Lorenzo Garlappi, and Tan Wang, “Portfolio Selection with 
Parameter and Model Uncertainty: A Multi-Prior Approach,” CEPR Discussion 
Paper No. 5041 (May 2005), Centre for Economic Policy Research.
22A. V. B. Swamy, “Effi cient Inference in a Random Coeffi cient Regression Model,” 
Econometrica, 38 (1970), pp. 311–323.
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 εε j n nN
j j

∼ ( , )0 2σ I

If we assume that the regression coeffi cients ββ j  are a random sample from 
a multivariate normal distribution,

 ββ ββ ΣΣj N∼ ( , )

independent from the εε j , we can rewrite the regression as follows:

 y X Xj j j j j j= + +ββ γγ εε

where γγ j  are the deviations of the regression coeffi cients from their expecta-
tions: 

 γγ ββ ββ ΣΣj j N= − ∼ ( , )0

It can be demonstrated that these regressions can be estimated with MLE 
or LS methods.23

SUMMARY

Science is analytic and we have the models to analyze a given system.
Design is a constructive process which synthesizes a design starting from 
general high-level specifi cations.
Constructive design is performed iteratively until the analysis indicates 
that the (approximate) solution and design is satisfactory.
The process of design can be automated only when we arrive at the 
stage of expressing the design quality in terms of a goal function; in the 
latter case design reduces to optimization.
Optimization requires a forecasting model.
Approaches to forecast modeling include the learning approach, the 
theoretical approach, and the hybrid learning-theoretical approach.
Financial samples are subject to inevitable biases.
When we choose complex patterns from large data sets we are subject 
to random noise, in many cases only simulations can provide a guide; 
the latter problem is the opposite of the small sample problem.
Financial models are always subject to model risk.
Information theory, Bayesian modeling, and model averaging offer ways 
to mitigate the problem of model risk.

23For more on random coeffi cient techniques, see Nicholas T. Longford, Random 
Coeffi cient Models (Oxford, UK: Oxford University Press, 1993).
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CHAPTER 5
Factor Models and 

Their Estimation

Factor models are ubiquitous in fi nancial modeling. However, despite their 
apparent simplicity and widespread use, factor models entail conceptual 

subtleties that are not immediate to grasp. Conceptually, one must distin-
guish between static and dynamic factor models. Static factor models repre-
sent a large number N of random variables in terms of a small number K of 
different random variables called factors. Dynamic factor models represent 
a large number N of time series in terms of a small number K of different 
time series called dynamic factors. In the latter case, factor models are ulti-
mately an instance of state-space models. In practice, dynamic models are 
often used in a static context—a situation that might cause some confusion. 
In addition, in many classical applications of factor models, we want to 
explain many variables that are characteristics of an individual (for example 
the different responses of a person to psychometric tests) while in fi nancial 
applications we want to explain many variables that are idiosyncratic char-
acteristics of many individuals (for example, a cross section of stock returns 
in a given moment, where each return is associated to a different fi rm), 
which is another possible source of confusion. We will fi rst describe static 
models and then toward the end of the chapter turn to dynamic models. In 
Chapters 6 and 7 we discuss how factors and factor-based models are used 
in building trading strategies.

THE NOTION OF FACTORS

It is perhaps useful to start by considering the concept of factors. In every-
day language, we use the term factor to indicate something that has a causal 
link with an event. We apply the term factor both to identifi able exogenous 
events and to characteristics of different events. For example, we might say 
that the number of inches of rain per year in a given region is a factor affecting 
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the yield of farms in that region. In this case the number of inches of rain per 
year in a given region is an exogenous factor that affects the yield of each 
farm in that region. 

However, we might also say that advertising is a factor of success, mean-
ing that a high advertising budget contributes to the success of some prod-
ucts. In this latter case, the advertising budget is a characteristic of each fi rm 
and varies from fi rm to fi rm. We also have a notion of hidden factors when 
we make statements such as: “Her strength of will was the crucial factor for 
the success of her career” by which we mean that there was a mental dispo-
sition that played a crucial role though we cannot directly observe mental 
dispositions. Therefore, in everyday language, we already have many of the 
themes that are developed in the formal notion of factors. 

Two important aspects of the scientifi c formal factors, not always pres-
ent in everyday usage, should be emphasized. First, in science we call fac-
tors those variables that provide a common explanation of many other 
variables. In the absence of commonality, a factor model becomes a simple 
regression model. Second, factors as observable variables might be used to 
predict additional observations but often hidden nonobservable factors are 
the really important variables, and observations are used only to estimate 
them. For example, factor models were fi rst introduced in psychometrics to 
fi nd a common cause for many different psychometric observations coming 
from tests. Causes such as intelligence or personality traits are the important 
variables one wants to ascertain, while observations such as the results of 
psychometric tests are only used to determine hidden personality factors. In 
the dynamic case, factor models (i.e., state-space models) were introduced 
to obtain important parameters such as the position of an airplane from 
noisy measurements.

In the next section we will provide a more formal treatment of static 
linear factor models.

STATIC FACTOR MODELS

Static factor models are factor models where factors do not have any dy-
namics. We will consider only linear factor models as they represent the vast 
majority of models used in fi nance. Though we focus on factor models of 
returns, we will initially discuss linear factor models as general statistical 
models. 

Linear Factor Models

A linear factor model has the form
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 x f i N jit i ij jt
j

K

it= + + = =
=
∑α β ε

1

1 2 1 2, , , , , , , ,… … KK t T, , , ,=1 2 …

where 

xi = the i-th variable to explain
α i = the average of the i-th variable

βij = the proportionality constant of the i–th variable to the j-th factor 
(the factor loading)

fj = the j-th factor 
εi = the i-th residual term

There are N variables and K factors in the model and we make the assump-
tion that N>>K. 

We can write the previous linear factor model in matrix form

 αα ββ εε+ +f

or explicitly
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where

x = the N-vector of variables
αα = the N-vector of means of x
ββ = the N × K constant matrix of factor loadings
f = the K-vector of factors 
εε = the N-vector of residuals

We note that the vectors x, f, and εε  are random vectors. For example, a 
model with three variables and two factors takes the form
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We see from the preceding expressions why these factor models are referred 
to as static. There are no implicit dynamics in this model. It is a lower di-
mensional representation (K) of a multivariate vector (N). 

Given M samples, we can rewrite this model in an explicit regression 
form. We begin by stacking all observations, factors, and residuals in three 
matrices where each row corresponds to an observation: 

 
x f i N jit i ij jt

j
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and we create a matrix B = [αα ββ ], 
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Note that in the matrix of factors F we add a column of 1s to represent con-
stants. With this notation, we can write the model in regression form as

 X = FB′ + E

For example, given fi ve samples, the previous three-variable, two-factor 
model would be written in explicit regression form as
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The factors f may or may not be observed. If factors are not observed 
they are called hidden or latent factors, or latent variables. Factor analy-
sis and related methods such as principal components analysis are primar-
ily concerned with determining hidden factors. If factors are given, or are 
observed, a factor model is a multivariate regression of x on f and factor 
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analysis, per se, does not apply. We describe principal component analysis 
and factor analysis later in this chapter.

A variant of the previous linear factor model includes time dependence,

 x f i N jit i ij jt
j

K

it= + + = =
=
∑α β ε

1

1 2 1 2, , , , , , , ,… … KK t T, , , ,=1 2 …

or in matrix form

 xt t tf= + +αα ββ εε

where 

xt = the N-vector of variables at time t
αα = the N-vector of constant means of xt

ββ = the N × K matrix of constant factor loadings
ft = the K-vector of factors at time t
εεt = the N-vector of residuals both at time t

Note that in this model we have different variables at different points in 
time and we have to state explicitly that the means and the loadings are 
constants.

In this form, the linear factor model includes a time dependence. A 
factor model with time dependence is a model of a stochastic process. If all 
variables at different times are independent and there is no dynamics we can 
consider the time variable as a label of independent samples and can still 
apply the concepts of static linear factor models.

For the inference of a factor model of returns, we have only one realization 
of the process to rely on—namely, one observation from each point in time 
from past history. In this case, the factor model above can be expressed as

 X = FB′ + E

where each column of the matrices X, F, E represents a time series and each 
row represents an observation at a point in time (t = 1, …, N)
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There are three possible empirical settings for the above factor models. The 
fi rst setting does not include any time dependence. Consider a model of 
personality factors. In this model, x would be a sample of test results given 
to a sample of individuals. Each test would include N individual questions 
or tests and K is the number of hidden factors to explain them. A sample 
might include observations of individuals in a given population without any 
explicit reference to time. Consider now time dependence. If we introduce a 
parameter t, our sample might include multiple observations for each time 
or it might include one single observation at each time. For example, xt 
could be the observations of the tests given to all students that enter a col-
lege at the beginning of each school year. In this way we have a sample of 
many students for each year. Factors are common to all observations of an 
individual but vary from individual to individual.

Consider now a fi nancial model where xt represents daily returns of a 
universe of fi nancial assets and ft represents the factors at time t, N repre-
sents the number of assets in a given market and K is the number of factors 
to explain returns. Assuming that returns, factors, and residuals are seri-
ally independent, we can consider each xt (and ft if factors are observed) 
as an independent observation in our sample. Factors and returns are now 
the single realization of a multivariate time series, albeit without any time 
dynamics. Empirically, we have only one observation for each time point. 

Consider, however, that if we perform a Monte Carlo experiment, we 
will simulate many possible paths for both the factors and the returns. If we 
compute probabilities from a Monte Carlo experiment, we are in the situa-
tion of multiple independent samples for each point in time.

Empirical Indeterminacy of the Model and Factor Rotation

Without restrictions, none of the above models is empirically determined. 
At fi rst sight this might seem a complicated and counterintuitive statement 
but actually it is a rather obvious observation. In fact, without restrictions, a 
factor model is simply a defi nition of the residuals. We can always form lin-
ear combinations of variables: without restrictions the linear factor model 
states that residuals are a linear combination of observations and factors. 
Without restrictions on residuals, no model that includes residuals is empiri-
cally determined. In fact, if we do not place restrictions on residuals, every 
model is a defi nition of residuals.1 

1We can make the same observation for a differential equation. For example, a 
fi rst-order differential equation written in the form: F(x,y,y′) = ϕ(x) is effectively 
an equation only if we specify the term ϕ(x), for example by requiring ϕ(x) = cos t. 
Otherwise F(x,y,y′) = ϕ(x) is an expression that defi nes ϕ(x) as a function of y.
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From these remarks it should be clear that restrictions on the residu-
als of a factor model, as well as restrictions on the noise term of a regres-
sion model, are not technicalities but are an essential part of the model 
defi nition. What type of restrictions can we place on residuals? A powerful 
restriction consists in requiring that residuals are zero-mean variables mutu-
ally uncorrelated and uncorrelated with the factors. A linear factor model 
that satisfi es these conditions is called a strict factor model. We can write 
the model as follows

x = αα ββ εε+ +f
E(εε) = 0
E(f) = 0
cov(f,εε) = 0
cov(εε,εε) = D, D I= ( , , )σ σ1

2 2… N N

D = diag( , , )σ σ1
2 2… N

where 

( , , )σ σ1
2 2… N  = the vector of variances of the residuals 

I  = the unit matrix 

The condition that factors have zero mean is not restrictive as we can al-
ways subtract the mean from the factors. Observations are considered to be 
independent.

If the model is formulated with explicit time dependence, then we 
assume that the same strict factor model holds at each time

xt = αα  + ββ ft + εεt

E( εεt ) = 0
E(ft) = 0
cov(ft, εεt ) = 0
cov( εεt , εεt ) = D, D = ( , , )σ σ1

2 2… N I

and that observations and residuals in different times are independent and 
identically distributed (i.i.d.) variables. These conditions are the same con-
ditions required for a multivariate regression model. Note that requiring 
that the residuals are mutually uncorrelated and uncorrelated with factors 
is different from requiring that the residuals are i.i.d. variables. The former 
is an assumption on the model, the latter is an assumption on how different 
samples are distributed.
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The strict factor model conditions do not uniquely identify the factors. 
In fact, the factors in a factor model enter in terms of the product ββ f. Given 
any nonsingular matrix A, consider the model where the matrix of factor 
loadings is multiplied by A–1 and the vectors of factors are multiplied by A, 
such that ββ* = ββA–1, f* = Af. The new model x = αα + ββ*f* + εε by virtue of

 x = αα + ββ*f* + εε = αα + (ββA–1)(Af) + εεx = αα + ββf + εε

is equivalent to the original model. We conclude that factors and betas are 
defi ned only up to a linear transformation. 

We can use this fact to transform factors in a set of orthonormal vari-
ables (i.e., variables whose covariance matrix is the identity matrix). In fact, 
if we denote ΩΩ  as the covariance matrix of factors f, the covariance matrix 
ΩΩ * of the transformed factors f* can be written as follows:

 ΩΩ * = E[f*f*′] = E[(Af)(Af)′] = E[Aff′A] = AΩΩ A′

As ΩΩ  is symmetric and positive semidefi nite because it is a covariance 
matrix, its eigenvalues will be real non-negative numbers and the relation-
ship ΩΩ  = ΩΩ –1 holds. Assuming the eigenvalues are all distinct and different 
from zero (which is generally the case for covariance matrices), if we choose 
the matrix A to be the matrix whose columns are the eigenvectors rescaled 
by the reciprocal of the square root of the corresponding eigenvalues, than 
the matrix ΩΩ * is the identity matrix: ΩΩ * = IK.

This transformation (i.e., the transformation that makes factors ortho-
normal) is not unique because it is defi ned up to an orthogonal rotation. In 
fact, suppose we rotate the orthonormal factors f with covariance matrix ΩΩ * 
= IK by multiplying them by any orthogonal matrix (i.e., any nonsingular 
matrix B such that BB′ = IK). The rotated factors are orthonormal because 
the covariance matrix of the new rotated factors is BΩΩ *B′ = BIB′ = IK. 

Note that if we assume that the factor model is time dependent with i.i.d. 
variables, the factors become a set of independent random walks. Therefore, 
representing returns in terms of a strict factor model with K orthonormal 
factors means to represent returns as linear combinations of K independent 
random variables. This might seem counterintuitive because it might look 
as if the model does not have empirical content. Consider, however, that the 
empirical content of the model is represented by the means and by the factor 
loading matrix. Actually the assumption that returns have constant means 
and constant covariance matrix is a very strong empirical assumption, gen-
erally not verifi ed.
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The Covariance Matrix of Observations

Factor models are one of the tools that can be used to reduce the dimen-
sionality of a covariance matrix of observations. In fi nancial applications, 
the covariance matrix of observations is too large to be correctly estimated. 
Consider, for example, the covariance matrix of the returns of a universe 
of the size of the Russell 1000. The covariance matrix of 1,000 time series 
of returns has 1,000 × 999/2 = 499,500 different entries. Even if we esti-
mate covariances using four years of daily return data (approximately 1,000 
days), we have a total of 1 million data points to estimate for about half a 
million entries, that is, two data points per estimation. This sample is clearly 
insuffi cient. It can be formally demonstrated that most entries of a covari-
ance matrix of a large universe of returns are almost all random numbers.2

If we can determine a strict factor model, the covariance estimation 
problem is dramatically simplifi ed. In fact, in this case, we only need to 
determine the covariance matrix of factors plus the matrix of betas and the 
variances of the residuals. In the above example of 1,000 return processes, 
suppose we can determine a ten-factor model. The covariance matrix of 
factors include 100 × 99/2 = 4,950 entries, while the beta matrix includes 
10 × 1,000 = 10,000 entries. Adding 1,000 residual variances we need to 
estimate 15,950 numbers, or 3.2% of the estimates needed for a full cova-
riance matrix. We now have an average of 62 data points per estimate, an 
improvement of more than 30 times with respect to the previous case.

Consider a factor model: x = αα  + ββ f + εε . We can write the covariance 
matrix of returns3 as 

 ΣΣ  = E[(x – αα )(x – αα )′] = E[(ββ f + εε )(ββ f + εε )′] = ββ ΩΩ ββ ′ + V + 2ββE(f εε ′)

where V = E[ εε εε ′]. The last term is zero as factors and residuals are as-
sumed to be independent. Therefore, we have

 ΣΣ  = ββ ΩΩ ββ ′ + V

This formula simplifi es further if we apply a factor rotation that transforms 
factors into standardized orthonormal factors whose covariance matrix is 
the identity matrix

2Laurent Laloux, Pierre Cizeau, Jean-Philippe Bouchaud, and Marc Potters, “Noise 
Dressing of Financial Correlation Matrices,” Physical Review Letters, 83 (August 
1999), pp. 1467–1470. 
3In this and the following sections, we discuss factor models of returns. However, the 
methods of factor analysis described in this section can be applied to any variable 
and not only to returns.
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 ΣΣ  = ββ ββ ′ + V

If our factor model is a strict factor model then the matrix V becomes a 
diagonal matrix D and the covariance matrix takes the form

 ΣΣ  = ββ ββ ′ + D

A strict factor model is called a normal factor model if all the residuals have 
the same variance. In this case we can write D = σ2IN, and the covariance 
matrix becomes

 ΣΣ  = ββ ββ ′ + σ2IN

Using Factor Models

How do we use a factor model? Here we have to distinguish between fi -
nancial and nonfi nancial applications and between factor models in general 
and factor analysis. Factor models are primarily used in the social sciences, 
psychology studies, business applications such as marketing, and in some 
application in the physical sciences. In these domains, factor models are 
typically the result of factor analysis. One has a large number of observa-
tions, for example, responses to marketing questionnaires or results of psy-
chometric tests, and wants to determine the common causes (or factors) of 
these observations. A marketing manager might perform factor analysis to 
analyze factors affecting purchases in order to design marketing strategies. 
A psychologist might administer psychometric tests and compute the value 
of factors for each individual using a model developed and tested on a large 
sample population. In these situations factor analysis can be useful.

In fi nancial applications, however, the interest is in managing risk and 
constructing portfolios. Portfolios are constructed performing a risk-return 
optimization that requires computing a covariance matrix. As we observed 
above, computing an unrestricted covariance matrix is not feasible for large 
universes. Factor models reduce the calculations to computing the expo-
sures to each factor plus the small factor covariance matrix and idiosyn-
cratic error variances.

Factor models thus used are risk models. They do not have, per se, fore-
casting abilities. They explain returns at time t as linear combinations of fac-
tors given at time t. Risk measured by variance of returns, due to exposures 
to common factors is the residual undiversifi able risk. This risk cannot be 
diversifi ed away regardless of how large a portfolio we choose. However, 
if factors can be forecasted, or if factors that explain returns at time t are 
known at time t − 1, then factor models can be used for forecasting returns.
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From now onward we will only discuss factor models of returns. Factors 
used in factor models of returns are usually divided in three types: statistical 
factors, fundamental factors, and macroeconomic factors. Statistical factors 
are determined with factor analysis, macroeconomic factors are exogenous 
macroeconomic variables, and fundamental factors are determined from 
business fundamentals such as the balance and income statements. We dis-
cuss the resulting three methods of constructing factor models next.

FACTOR ANALYSIS AND PRINCIPAL COMPONENTS ANALYSIS

Statistical factors are determined through factor analysis. In this section we 
discuss factor analysis. The observed variables are the returns at a given 
frequency of a typically large market in a given time window. For example, 
we might observe daily returns of the Russell 1000 universe. Factors are not 
observed but must be determined together with the model. The result of the 
factor analysis will be:

A (multivariate) time series of factors.
A (multivariate) time series of residuals.
The covariance matrix of factors.
The factor loadings for each return process.
The variances of each residual term.

The factor loadings represent the exposures of returns to each factor. 
We might use these numbers in sample (backward looking), for example to 
evaluate the risk associated with a fund manager’s performance. However, if 
we need to optimize a portfolio, we have to use our estimates out of sample 
(forward looking). This implies that we make a forecast of risk exposures. 
Therefore, even risk models can be used for forecasting: they assume that 
factor exposures are stable and will not change in the following period. 
Naturally, this assumption might be unwarranted, especially in moments of 
market stress.

There are two basic techniques for estimating factor models: factor 
analysis and principal components analysis. 

Let us fi rst discuss factor analysis assuming that our returns are 
described by a strict factor model. Consider a strict factor model of returns 
with standard (orthonormal) factors. As we can always subtract the mean 
from returns, without loss of generality we make the additional assumption 
that αα  = 0. If we call the returns rt, the model can be written as 

rt= ββ ft + εεt

■

■

■

■

■
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E( εεt )= 0
E(ft)= 0
E(rt)= 0

cov(ft, εεt )= 0

cov( εεt , εεt )= D D I, , ,= ( )σ σ1
2 2… N

cov(ft, ft)= I

Under the above assumptions, the explicit regression formulation 
becomes

 R = Fββ ′ + E

where
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The factor analysis procedure is a three-pass procedure: In the fi rst pass we 
estimate the factor loadings of orthonormal factors, and the variances of re-
siduals. In the second pass we estimate factors and residuals. In the third pass 
we might want to rotate factors to gain a better intuition of the model.

Factor Analysis via Maximum Likelihood

Various models can be used to perform factor analysis, some statistically 
rigorous, others only heuristics. There is a complete and rigorous procedure 
for linear strict factor models under the assumptions that returns, factors, 
and residuals are multivariate normal variables. Under this assumption, we 
can use the maximum likelihood estimation (MLE) principle that we will 
now describe. 

Let us assume that our factor model is multivariate normal, that is to 
say that, in addition to the assumptions above, the following distributional 
assumptions also hold
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Recall that, given the assumption that our model is a strict factor model 
with orthonormal factors, the covariance matrix of returns ΣΣ  can be rep-
resented as

 
ΣΣ ββββ= ′ + = ( )D D I, , ,σ σ1

2 2… N N

where IN is the N × N identity matrix. Note that we can determine the 
empirical covariance matrix ΣΣ  using the observed data but we need to esti-
mate the factor loadings and the residual variances.

The MLE principle estimates the parameters of a model by maximiz-
ing the likelihood of the model. The likelihood of a model is the product of 
the densities of the model’s variables estimated on all samples. Under the 
assumption of joint normality and zero means, we can explicitly write the 
joint distribution of returns

 r r rt

N

t tN∼ αα ΣΣ ΣΣ ΣΣ, exp( ) = ( )⎡⎣ ⎤⎦ − ′{ }−
−2

1
2

1
2 1π

and the likelihood is given by

 L
N

t t
t

TK

ΣΣ ΣΣ ΣΣ( ) = ( )⎡⎣ ⎤⎦ − ′{ }−
−

=
∏2

1
2

2 1

1

π exp r r

As the logarithm is a monotone function, we can replace the likelihood 
function with its logarithm, forming the log-likelihood. This transformation 
often simplifi es computations because it replaces products with sums

 log log logL l
NK K

tΣΣ ΣΣ ΣΣ ΣΣ( ) = ( ) = − ( ) − ( ) − ′ −

2
2

2
1
2

1π r rtt
t

T { }
=
∑

1

 

So-called maximum likelihood expectation (MLE) method maximizes 
the log-likelihood l( ΣΣ ) as a function of the covariance matrix ΣΣ :

 ΣΣ ΣΣ
ΣΣ

= ( )arg max l
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using the restriction

 ΣΣ ββββ= ′ + = ( )D D I, , ,σ σ1
2 2… N N

Unless the factors are previously given, this computation cannot be per-
formed analytically and one needs to resort to numerical methods.

The Expectation Maximization Algorithm

A numerical method for MLE is based on the expectation maximization 
(EM) algorithm that we will now describe. The EM algorithm is an itera-
tive procedure for determining the log-likelihood when some variables are 
missing or when there are hidden variables. The EM was fully formulated 
by Dempster, Laird, and Rubin (DLR hereafter).4 They presented EM as a 
coherent and complete methodology offering the mathematical and statisti-
cal justifi cation behind it. Rubin and Thayer5 detailed the application of the 
EM algorithm to factor models.

The EM algorithm assumes that besides observed data there may also 
be missing or so-called hidden data. The observed data are the returns rt 
while the missing data are the hidden, nonobserved factors ft. The observed 
returns rt are called incomplete data while the set of variables that include 
both the observed returns rt and the unobserved factors ft are called com-
plete data. Call zt the vector of complete data at time t

 z
r

ft
t

t

=
⎡

⎣
⎢

⎤

⎦
⎥

If factors were observed, we could apply the MLE principle in a straightfor-
ward way by maximizing the likelihood given all observed data. However, 
when factors are not observed, we need iterative methods to compute the 
model parameters. 

Intuitively (albeit not precisely) speaking, the EM method is an iterative 
Bayesian method that alternates between two steps, the E step and the M 
step. The E step assumes that the model parameters are known and makes 
the best estimate of the hidden variables given the observed data and the 
model parameters estimated at the previous step. Subsequently, the M step 
computes new model parameters via ML estimates using the hidden data 

4A. P. Dempster, N. Laird, and Donald B. Rubin, “Maximum Likelihood from 
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, B, 
39 (1977), pp. 1–38.
5Donald B. Rubin and D. T. Thayer, “EM Algorithms for ML Factor Analysis,” 
Psychometrika, 47 (1983), pp. 69–76.
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estimated in the previous step. The new model parameters are then used to 
form new estimates of the hidden data and a new cycle is performed. Start-
ing from an initial guess of the model parameters, the EM methods alternate 
between estimating new hidden data using old parameters and estimating 
new parameters using old hidden data.

This loose, simplifi ed description highlights the Bayesian nature of the 
EM method in the E step where hidden factors are estimated given actual 
observed data. It is, however, a loose description because, as we will see in 
the following paragraphs, the E step does not directly estimate the hidden 
data but computes the expectation of the log-likelihood.

We now describe the EM algorithm formally following DLR. Call p(rt, 
ft⎪ββ , D) the joint density of the model’s variables which depends on the 
model parameters ββ , D. Consider T independent samples. We write the 
complete data likelihood function as

 L pt t t t
t

T

r f D r f D, , , ,ββ ββ( ) = ( )
=
∏

1

and the log-likelihood function as

 log , , log , , log ,L p pt t t t
t

T

tr f D r f D r fββ ββ( ) = ( ) =
=
∏

1
tt

i

T

ββ,D( )( )
=
∑

1

We can state the MLE principle in terms of the log-likelihood as fol-
lows:

 ββ ββ
ββ ββ

, arg max log , , arg max log
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D r f D
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However, for each sample we have observations of the returns rt but we 
do not have observations of the factors ft. Observe that we can simplify the 
log-likelihood function as

 

log log , , log , ,L p p pt t
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As factors are assumed to be orthonormal, the density p(ft⎪ββ , D) does 
not depend on ββ , D, and we can therefore write

 log log , , logL p pt t
t

T

t
t

T

= ( ) + ( )
= =
∑ ∑r f D fββ

1 1
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The maximum of the log-likelihood is a function of ββ  and D, and thus 
the last term has no impact. Consequently, we maximize the function

 l pC t t
t

T

= ( )
=
∑ log , ,r f Dββ

1

Observe that we have replaced the log-likelihood based on the joint distribu-
tion of the complete data with a function that depends only on conditional 
distribution of the observed data given the hidden factors. 

The above reasoning applies to any distribution. Let’s write down 
explicitly the log-likelihood under the assumption of joint normality. The 
density p(rt⎪ft, ββ , D) is the density of a normal distribution and it is there-
fore determined uniquely by the means and the covariances. We say that 
means and covariances are suffi cient statistics for the log-likelihood. Given 
the factors, the returns are independently and normally distributed with 
means and covariances given by

 
E Et t t t t

t t

r f D f f D f

r f D

, , , ,

cov , ,

ββ ββ εε ββ ββ

ββ

( ) = +( ) =
( ) == −( ) =E t t tr f f D Dββ ββ, ,

As factors are orthonormal variables, we can write:
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where in the last step we used the identity x′Ax = Tr[Ax′x] and that for a 
diagonal matrix A′ = A.

Following DLR, the EM algorithm can be described as follows. Sup-
pose we are at step p of the iterative procedure and that at this step we have 
computed all the suffi cient statistics relative to this step. In our case, suppose 
we have determined the matrix ββ p and the diagonal matrix Dp at step p. In 
general, these quantities will not be the true quantities. The log-likelihood 
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computed using these statistics is a random variable because it depends on 
the hidden factors that are not observed. To improve our approximation, 
the EM algorithm performs two steps:

The E-step computes the expectation of the log-likelihood (given the 
data) using the conditional density of the factors (given the data).
The M-step computes new matrices ββ p+1 and Dp+1 maximizing the 
expected log-likelihood computed in the previous E step with respect 
to ββ  and D. 

DLR observe that, in the case of factor analysis with normal distributions, the 
EM algorithm simplifi es and can be described by the following two steps:

The E-step computes the expectation of the suffi cient statistics of the 
log-likelihood given the observed data and the matrices ββ p and Dp com-
puted in the previous M step.
The M-step computes new matrices ββ p+1 and Dp+1 using the suffi cient 
statistics computed in the previous E step.

Let us see how the EM algorithm is applied to our factor model. We have to 
maximize the quantity

 l
T

C t t t t= − − ′ − ′ + ′ ′− − −

2
1
2

21 1 1log D r D r r D f D fββ ββ ββTr tt t
t

T

f⎡⎣ ⎤⎦{ }
=
∑

1

as the other terms of the complete likelihood do not depend on ββ  and D. 
First we consider the E-step.

The E-Step

The E-step computes the expectation of the log-likelihood of the complete 
data given the observed data. However, DLR observe that in the case of 
exponential distributions we need only compute the expectations of the suf-
fi cient statistics of the complete data given the observed data. The joint 
distribution p(rt, ft⎪ββ , D) of the complete variables is normal given the lin-
earity of the model and yields
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As E(zt⎪ββ , D) = 0, the complete data suffi cient statistics are ΛΛ ΛΛ ΛΛ11 12 22, , . 
The E-step at step p replaces the complete data suffi cient statistics with their 
expectations given the data. We therefore need to compute the expectation 
of the suffi cient statistics E t t t p pz z r D′( ), ,ββ . Following Rubin and Thayer, 
the suffi cient statistics are
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where γγ p+1  and ΔΔp+1  are the regression coeffi cient matrix and the residual 
covariance matrix of the regression of the factors ft on the returns rt, re-
spectively. These quantities can be compactly described through the sweep 
operator which is explained in Appendix C:
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We may gain a better intuition of the E-step if we apply the E-step in its 
most general form, computing the expectation of lC given the data; that is, 
according to the distribution p(ft⎪rt, ββ p, Dp), where parameters ββ p, Dp are 
those computed in the previous M-step
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Given the joint normality of the model, we need to compute only the 
means E(ft⎪rt, ββ p, Dp) and the covariances E(ft′ft⎪rt, ββ p, Dp). In order to 
compute these (suffi cient) statistics, we need the distribution of factors given 
the data, but the model prescribes the distribution of data given the factors. 
Hence we employ Bayes’ theorem

 
p p pt t t t tf r D r f D f, , , , ,ββ ββ( ) ∝ ( ) ( )
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The M-Step

The M-step proceeds as follows. First we replace the suffi cient statistics of 
the log-likelihood with their expectations computed in the E-step. Then we 
maximize the log-likelihood equating to zero its partial derivatives with re-
spect to ββ  and D:

 ∂
∂

⎡⎣ ⎤⎦ =
∂
∂

⎡⎣ ⎤⎦ =ββ
E L E Llog , log0 0

D

However, given that the complete data distribution is normal, we can 
use a simplifi ed process based on the regressions outlined in DLR and 
described in detail in Rubin and Thayer. We estimate the new model param-
eters directly from the covariances as follows:
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The EM algorithm has originated many other models, in particular the 
expectation conditional maximization described in Liu and Rubin.6 These 
methods address the problem of the sometimes slow convergence rate of the 
EM algorithm. The interested reader should refer to their work. 

Factor Analysis via Principal Components

Factor analysis based on the MLE principle depends critically on the as-
sumption of normal distribution of returns. However, it is well known that 
returns cannot be considered normal and have tails heavier than those of 
the normal distribution. There are a number of estimation methods that 
do not depend on the assumption of normality of returns. The best known 
and most widely used of these methods is the principal components analysis 
(PCA) method. 

Though factor analysis and PCA are similar techniques and have similar 
objectives, there are fundamental differences. Let us fi rst describe in general 
the method of PCA, then comment on how they differ from factor analy-
sis, and fi nally discuss under what conditions factor analysis and PCA are 
equivalent.7 

6Chuanhai Liu and Donald B. Rubin, “Maximum Likelihood Estimation of Factor 
Analysis Using The ECME Algorithm With Complete and Incomplete Data,” 
Statistica Sinica, 8 (1998), pp. 729–747.
7For a detailed analysis of PCA methodologies, see Ian T. Jolliffe, Principal 
Components Analysis, 2nd Ed. (New York: Springer 2002).
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214 QUANTITATIVE EQUITY INVESTING

Let us fi rst look at PCA from the point of view of the distribution of a 
population. Consider a random vector of N returns: r = (r1, …, rN)′. Suppose 
that the variables’ means have been subtracted from the respective variables 
so that r is a vector of zero-mean random variables. Consider the covariance 
matrix ΣΣ  of r, defi ned as: ΣΣ  = E(rr′) or, explicitly, ΣΣ  = {σij}, σij = E(rirj). 
Being a covariance matrix, ΣΣ  is symmetric and positive semidefi nite.8

Consider now the eigenvalues and eigenvectors of the matrix ΣΣ . Con-
sider the i-th eigenvalue λi and its corresponding eigenvector hi. As the matrix 
ΣΣ  is positive semidefi nite, we have ′ = ′ ≥h h h hi i i ì iΣΣ λ 0 , so all eigenvalues 
must be real. Let us assume that all eigenvalues are distinct and nonzero.9 
Eigenvectors are defi ned up to a multiplicative constant. We can therefore 
require that all eigenvectors have unit norm, ′ =h hi i 1 .

Assembling all eigenvectors in a matrix H = [h1 … hN] and all eigenval-
ues in a diagonal matrix ΛΛ  = diag(λ1 …λN), the following relationships are 
valid

 

ΣΣ ΛΛ
ΣΣ ΛΛ
ΛΛ ΣΣ

H H

H H

H H

=
=
=

−

−

1

1

This means that the matrix of eigenvectors diagonalizes the covariance 
matrix. As the covariance matrix ΣΣ  is symmetric, the matrix H of the eigen-
vectors has the property H′ = H–1 and therefore: H′H = IN; that is, all distinct 
eigenvectors are mutually orthogonal and ΣΣ  = H ΛΛH′.

Consider now the random vector r. The random vector p = Hr is a vector 
of orthogonal random variables. In fact, the following relationships hold

 Cov p pp Hr Hr Hrr H H rr( ) = ′( ) = ′( ) = ′ ′( ) = ′(E E E E( )( ) )) ′ = ′ =H H HΣΣ ΛΛ

In other words, multiplying the vector of returns r by the eigenvectors 
hi, we form a linear combination of the original returns that are mutually 
orthogonal and whose variances are equal to the corresponding eigenvalues 
λi. In addition, we can rewrite the vector r in terms of the orthogonal com-
ponents p as r = H′p. We say that the vectors p are an orthonormal basis for 
the vectors r.

The relationship r = H′p is an exact relationship. We partition the matrix 
H in two submatrices H = [H1 H2] where H1 is formed by the eigenvectors 
corresponding to the k largest eigenvalues and partition the vector p = [p1 p2] 

8A matrix A is positive semidefi nite if, for any vector x the relationship xAx′ ≥ 0 
holds.
9Methodologies for handling the rather unusual case of zero or equal eigenvalues are 
described in Jolliffe, Principal Components Analysis.
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into two vectors p1, p2 containing the fi rst k and the last N-k components. 
We can therefore approximately represent the vector r in terms of a reduced 
number of eigenvectors and write the following relationship:

 r H p H p H p e= ′ + ′ = ′ +1 1 2 2 1 1

This representation is formally similar to a factor model with k factors p1, 
loading matrix H1 and residuals e. However, the residuals are generally not 
uncorrelated and the basic restriction of factor models is therefore not veri-
fi ed. Therefore, the PCA representation r H p e= ′ +1 1  is an approximate re-
lationship.

Let us now move from theoretical properties of populations to samples. 
From the theory outlined in the above paragraphs, we infer that we can 
perform PCA with the following four steps:

Subtract the means from the sample.
Estimate the covariance matrix of the sample.
Compute the eigenvalues and eigenvectors of the covariance matrix.
Select the fi rst k eigenvectors as fi rst k PCs.

However, PCA can perhaps be better understood in terms of the sin-
gular value decomposition of the design matrix, which is the matrix of the 
sample data. Consider the same empirical setting of observations as in the 
previous section. A set of T observation of N returns are given. Assume that 
the vector of sample means has been subtracted from each observation and 
arrange observations in the following design matrix

 
R =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

r r

r r

N

T T N

1 1 1

1

, ,

, ,

�

� � �
�

Suppose T ≥ N. Consider the N × N square matrix: S = R′R and con-
sider its eigenvectors V = [v1, …,vN] and eigenvalues [λ1, …,λN]. The matrix 
S is proportional to the empirical covariance matrix of the sample. Let us 
assume, as we did in the previous section, that all eigenvalues are non-zero 
and distinct. The matrix S is symmetric since S′ = (R′R)′ = R′R = S. We nor-
malize eigenvectors to unitary length, so that the eigenvectors are a set of r 
orthonormal vectors. The vi are nonzero N-vectors that are the solutions of 
the equation

 
′( ) =R R v vi i iλ

1.
2.
3.
4.
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Call the positive numbers σ λi i= +  singular values. Consider the set of 
T-vectors u Rvi i i= −σ 1 .  The ui are a set of orthonormal vectors; in fact

 

′ = ( )′ = ′ ′ =− − − −u u Rv Rv v R Rvi j i i j j i j i j iσ σ σ σ σ1 1 1 1 −− −

− −
−

′

= ′ =
≠

1 1

1 1
1

0

σ λ

σ σ λ
σ

j i j j

i j j i j
i

i j

v v

v v
if

σσ λi i i j− = =
⎧
⎨
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1 1 if

We can construct a diagonal square N × N matrix ΣΣ  which has on the 
diagonal the values σi ordered by size

 
ΣΣ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

≥ ≥ ≥
σ

σ
σ σ σ

1

1 2

0 0

0 0

0 0

� �

N

N,

We also construct a T × N matrix U defi ned as: U = [u1, …, uN]. Using 
the relationships defi ned above, we can now state the singular value decom-
position (SVD) relationships

 RV = U ΣΣ

 R= U ΣΣ V′

We now see the relationship between eigenvalue decomposition and 
SVD: We defi ne the matrix

 R R*= 1

T

and we compute the SVD of R*. The SVD of R* determines a matrix V*; 
the columns of the matrix V* are the principal components of the matrix 
R. The advantage of using the PCA is that there are algorithms for perform-
ing the SVD that are more robust than the computation of eigenvalues and 
eigenvectors. 

There is another interpretation of the PCA that is based on the Karhunen-
Loéve transform. The Karhunen-Loéve transform fi nds the axis of maximum 
variance. Consider the same empirical setting as in the previous section. We 
want to determine the linear combination of returns with the largest possible 
variance, subject to the condition that the vector of coeffi cients has unitary 
length. Stated differently, we want to fi nd a portfolio of maximum variance 
among all portfolios whose weights form a portfolio of unitary length. 
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Consider a linear combination of returns

 β1
1

1 1 1j tj
j

N

t t t tNr r r
=
∑ = ′ = ′ =ββ r r R r, ( , , ) , ( ,… …,, )rT ′

where the weights ββ 1 = (β11, …,β1N)′ satisfy the condition ′ =ββ ββ1 1 1. We want 
to fi nd the weights that maximize the variance of this linear combination. Us-
ing the matrix notation developed in the previous sections, we can write:

 ββ
ββ ββ

1 1
1
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11 1
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As a second step, we search for those linear combinations ββ 2 that have 
the largest variance and that are orthogonal to the fi rst. To do this we apply 
the same procedure to the space of vectors: r r rt t

( )1
1 1= − ′ββ ββ , and write the 

condition:

 ββ ββ
ββ ββ ββ ββ

2 2
1

2

2 2 1 2

= ′( )
′ ′

( )argmax
s.t. =1, =0

rt
t==
∑⎛⎝⎜

⎞
⎠⎟1

T

We proceed in this way for N steps. It can be demonstrated that the 
matrix ββ 1 = (ββ 1, …,ββ N)′ coincides with the matrix of the eigenvalues of the 
covariance matrix. 

In general, results obtained with factor analysis and with PCA do not 
coincide. However, it can be demonstrated that given a normal factor model 
with k orthonormal factors, the fi rst K principal components coincide with 
the factors up to an orthogonal transformation. Recall that a normal factor 
model is a strict factor model where all residuals have the same variance. 
If this condition is not satisfi ed, in general the fi rst K principal components 
will not coincide with the factors. 

This consideration leads to the main differences between factor analysis 
and PCA. Both methodologies are data reduction techniques in the sense that 
they seek a parsimonious representation of data. Factor analysis assumes 
an econometric model of the data while PCA is, simply put, an eigenvalue 
decomposition of the covariance matrix of the data. Factor analysis yields 
different factors if the number of factors is changed. However, the original 
components of PCA do not change if additional components are added.

How to Determine the Number of Factors

The previous section discussed factor analysis and PCA as techniques to 
determine statistical factors. As discussed, PCA is an approximate meth-
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odology which does not require the assumption that the empirical data are 
generated by a specifi c factor model. As such, the number of principal com-
ponents chosen depends on the accuracy of approximation one wants to 
achieve, where the approximation is measured by the percentage of variance 
explained by the principal components.

In the case of factor analysis, however, it is necessary to determine a pri-
ori the number of factors of the model. Determining the number of factors 
in a factor model has received much attention in the academic literature, 
and many different theoretical and heuristic solutions have been proposed. 

Heuristic solutions are based on estimating the incremental gain in 
model quality in going from p to p + 1 factors. Perhaps the best known 
of these heuristics is the scree test proposed by Cattell.10 The scree test is 
based on plotting the eigenvalues of the covariance matrix in order of size. 
Cattell observed that this plot decreases sharply up to a certain point and 
then slows down. The point where it starts to slow down is an approximate 
estimate of the number of factors. 

Theoretical solutions are often based on Information Theory criteria. 
Information-based criteria introduce a trade-off between the size of residu-
als and model complexity. For example, Bai and Ng11 propose an effec-
tive method for estimating the number of factors based on a variant of the 
Akaike information criterion. The advantage of the method of Bai and Ng is 
that it can be applied to both strict and approximate factor models.

In practice, however, the problem of estimating the number of factors 
is made diffi cult by the fact that factor models are never correctly speci-
fi ed. We will come back to this question after discussing approximate factor 
models. Note that if returns could be represented by a correctly specifi ed 
strict factor model, the number of factors would be determined and factors 
would be empirically determined up to a linear transformation. 

Note explicitly that the determination of factors through statistical anal-
ysis depends on the size of the market. If we consider only a small number of 
return processes, we cannot hope to reconstruct factors very accurately. On 
the other hand, a large market with thousands of return processes is most 
likely able to capture all the causes that determine returns. We will cover 
this point more fully when we discuss factor-mimicking portfolios.

10Scree is a geological term that indicates the debris often found at the foot of a rock. 
Cattell used the word scree to refer to the eigenvalues that contribute only noise. 
See Raymond B. Cattell, “The Scree Test for the Number of Factors,” Multivariate 
Behavioral Research, 1 (1966), pp. 245–276.
11Jushan Bai and Serena Ng, “Determining the Number of Factors in Approximate 
Factor Models,” Econometrica, 70 (2002), pp. 191–221. (See also by the same 
authors “Errata,” 2006, Web only.)
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WHY FACTOR MODELS OF RETURNS

Classical fundamental analysis as discussed, for example, in Graham and 
Dodd12 consider each fi rm separately and assume that returns depend on 
characteristics of each fi rm. The Capital Asset Pricing Model (CAPM) as 
formulated by Sharpe,13 Lintner,14 and Mossin15 reversed this approach. 
The CAPM is a factor model, albeit with only one factor and motivated by 
theoretical considerations. In the CAPM, the expected excess return of each 
stock is proportional to the global market portfolio excess return. 

CAPM introduced the powerful idea that anything important for a 
stock’s returns must be the result of the sensitivity of the same stock to 
one global factor, while anything idiosyncratic cannot be forecasted. This 
notion was extended and partially modifi ed in the Arbitrage Pricing Theory 
(APT) formulated by Stephen Ross.16 In APT, the returns of any stock are 
a weighted average of different factors plus, possibly, a constant. The arbi-
trage restrictions impose that only a small number of returns can exhibit a 
nonzero constant. 

Both fundamental and macroeconomic factor models allow to forecast 
returns, as nothing in the structure of these models precludes the use of 
lagged factors. In these models forecasts depend only on lagged values of 
global factors common to the entire market. They assume that returns can 
be forecasted and forecasts entail sensitivity to a common cause.

The use of forecasting factor models clearly combines the ability to fore-
cast with the ability to represent correlations. We might, however, need to 
consider idiosyncratic forecasts. For example, consider momentum strate-
gies. Momentum strategies, as described for example in Figelman,17are non-
linear strategies where momentum is a characteristic of specifi c stocks in 
some specifi c moment. The result of a momentum strategy is not the same 
as that obtained with a factor model with a momentum factor. In the current 
practice of fi nancial modeling, some fi rms use models that essentially trans-

12Benjamin Graham and David Dodd, Security Analysis: Principles and Techniques 
(New York: McGraw Hill, 1962). 
13William F. Sharpe, “Capital Asset Prices: A Theory of Market Equilibrium Under 
Conditions of Risk,” Journal of Finance, 19 (1964), pp. 4 25–442.
14John Lintner, “The Valuation of Risk Assets and the Selection of Risky Investments 
in Stock Portfolios and Capital Budgets,” Review of Economics and Statistics, 47 
(1965), pp. 13–37.
15Jan Mossin, “Equilibrium in a Capital Asset Market,” Econometrica, 34 (1966), 
pp. 768–783. 
16Stephen Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of 
Economic Theory, 13 (1976), pp. 341–360.  
17Ilya Figelman, “Stock Return Momentum and Reversal,” Journal of Portfolio 
Management, 34 (2007), pp. 51–67.
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late in computer programs the reasoning of fundamental analysts. These 
models are idiosyncratic for each fi rm. 

Combining the two types of models, idiosyncratic and factor requires 
dynamic modeling techniques that go beyond the static models analyzed 
thus far. We will begin by analyzing approximate factor models and then 
move to full-fl edged dynamic factor models.

The Size of Samples and Uniqueness of Factors

Factor analysis as considered thus far assumes that the number of returns 
is given and eventually let the number of independent samples grow. That 
is, N is fi xed while T can go to infi nity. In statistics, we assume that the ac-
curacy of estimates improves when the sample size grows. Letting T grow 
makes the sample larger and improves the accuracy of the estimates. In 
practice this might not be true as the model parameters might not be con-
stant in time. However, if a strict factor model is correctly specifi ed, from a 
statistical point of view increasing the sample improves accuracy.

The other dimension of factor models, the number N of returns, requires 
different considerations. If we let N grow, and eventually tend to infi nity, we 
change the market and therefore the object of our study. We do not simply 
add samples but we change our universe and hence our model. Therefore, 
we cannot expect to treat the increase of the number of returns simply as an 
increase in the sample size.

The reason why we want to increase the number of returns in our factor 
analysis is twofold. The fi rst reason is practical, as we might want to gain 
an insight in the behavior of a larger number of stocks. The second reason, 
however, is theoretical. Each return process is a probe of the market. By 
increasing the number of returns we expect to improve our factor analysis, to 
gain a more complete understanding of the factors that drive our returns.

Letting both N and T become very large, in the limit go to infi nity, has 
a price in terms of estimation. ML estimates of factor models let only T go 
to infi nity. Therefore, it is important to understand if it is true that a large 
number of returns improve factor analysis. This is indeed true. Chamber-
lain and Rothschild18 demonstrate that in an infi nite economy factors can 
be mimicked by portfolios. When we discuss approximate factor models 
in the following section we will take this approach: we will let both N and 
T become very large (go to infi nity). In an economy with infi nitely many 
assets, factors are mimicked by portfolios determined through PCA. If an 

18Gary Chamberlain and Michael Rothschild, “Arbitrage, Factor Structure and 
Mean-Variance Analysis in Large Asset Markets,” Econometrica, 51 (1983), pp. 
1305–1324.
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economy is very large, there is only one possible set of factors uniquely 
determined only up to an orthogonal transformation.

APPROXIMATE FACTOR MODELS OF RETURNS

The conditions of a strict factor model are too restrictive for a large cross 
section of returns. In practice, it is not possible to impose the condition 
that the residuals are mutually independent. To make factor models ap-
plicable to asset returns observed in the market, we have to relax some of 
the conditions of strict factor models. The fi rst step toward a more realistic 
factor model is to allow for some correlation and autocorrelation of residu-
als. Approximate factor models allow a moderate level of correlation and 
autocorrelation among residuals. They also allow the factors themselves to 
be autocorrelated. The theory of approximate factor models is developed in 
Chamberlain and Rothschild,19 Stock and Watson,20 and Bai.21 

How do we defi ne a moderate level of correlation? Approximate factor 
models allow only correlations that are not marketwide. When we exam-
ine different samples at different points in time, approximate factor models 
admit only local autocorrelation of residuals. This condition guarantees that 
when the number of factors goes to infi nity (i.e., when the number of assets 
is very large), eigenvalues of the covariance matrix remain bounded.

We will assume that autocorrelation functions of residuals decays to zero. 
In these models, returns are locally autocorrelated but become sequences of 
i.i.d. variables if the time interval between subsequent points is suffi ciently 
long. This excludes processes with long memory or integrated processes.22 
In addition, an approximate factor model admits heteroskedastic residuals.

Therefore, we can summarize an approximate factor model as a model:

 rt = ββ ft + εεt

where all variables are stationary variables with zero mean (we assume that 
means have been subtracted). We allow factors to follow an autoregressive

19Chamberlain and Rothschild, “Arbitrage, Factor Structure and Mean-Variance 
Analysis in Large Asset Markets.”
20James H. Stock and Mark W. Watson, “Forecasting Using Principal Components 
From a Large Number of Predictors,” Journal of the American Statistical Association, 
97 (2002), pp. 1167–1179.
21Jushan Bai, “Inferential Theory for Factor Models of Large Dimensions,” 
Econometrica, 71 (2003), pp. 135–171.
22It is possible to defi ne dynamic factor models for integrated processes but additional 
conditions are required.
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model with a fi nite number of lags, and we allow residuals to mutually cor-
related, autocorrelated, and eventually heteroskedastic. All these conditions 
are quite technical and we refer the reader to the relevant literature previ-
ously referenced. 

Two major conclusions of the theory of approximate factor models 
must be noted. The fi rst conclusion is that PCA methods can be consistently 
applied to approximate factor models of large dimensions. PCA methods 
are easier to implement than true factor analysis and have the additional 
benefi ts that factors appear as portfolios. In fact, principal components are 
linear combinations of returns.

The second major conclusion is that in an economy of large dimen-
sion, PCA determines portfolios that approximately mimic all true factors. 
Ultimately there is only one family of factors defi ned up to an orthogonal 
transformation.

DYNAMIC FACTOR MODELS

Dynamic factor models are models that allow an asset manager to specify 
dynamics for factors and for the processes themselves. Dynamic factor mod-
els now have important applications outside the area of fi nancial economet-
rics, for example in ecological studies.23 The development of dynamic factor 
models is recent in comparison with static factor models. While modern 
static multifactor models were proposed by Thurstone and Hotelling in the 
1930s, the fi rst dynamic factor models were proposed in econometrics only 
in 1977 by Geweke24 and by Sargent and Sims.25 The subsequent devel-
opment of dynamic factor models followed three lines: (1) dynamic factor 
models of stationary processes in the “fi nite N, large (infi nite) T” case, (2) 
dynamic factor models of stationary processes in the “large (infi nite) N, 
large (infi nite) T” case, and (3) dynamic factor models of integrated process-
es. The literature on dynamic factor models of integrated processes overlaps 
with the large literature on cointegration.

23See, for example, A. F. Zuur, I. D. Tuck, and N. Bailey, “Dynamic Factor Analysis 
to Estimate Common Trends in Fisheries Time Series,” Canadian Journal of Fisheries 
and Aquatic Sciences, 60 (2003), pp. 542–552.
24John Geweke, “The Dynamic Factor Analysis of Economic Time Series,” in Dennis 
J. Aigner and Arthur S. Goldberger (eds.), Latent Variables in Socio-Economic 
Models (Amsterdam: North Holland, 1977).
25Thomas J. Sargent and Christopher Sims, “Business Cycle Modeling without 
Pretending to Have Too Much A Priori Economic Theory,” Working Paper 55, 
Federal Reserve Bank of Minneapolis, 1977.
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Dynamics enter factor models in three different ways: (1) specifying a 
dynamics for the factors, (2) specifying a dynamics for the residuals, and (3) 
allowing regression on lagged factors. The dynamics are typically specifi ed 
as an autoregressive process.

Consider dynamic factor models with a small number of variables and 
a number of observations that tends to infi nity. Dynamic models of this type 
are instances of state-space models.26 Estimation of these models is achieved 
either with maximum likelihood and the Kalman fi lter or in the frequency 
domain.

Both Sargent and Sims and Geweke proposed a dynamic factor model 
of the type:

 
r ft i t ii t= +−=

∞∑ ββ εε
0

where returns are an N × 1 vector, the ββ i are N × Q matrices, ft is a K × 
1 vector for each t, and εεt  is a N × 1 vector. It is assumed that N is fi nite, 
K<<N and T tends to infi nity. It is also assumed that factors and residuals 
are uncorrelated and that residuals are mutually uncorrelated though possi-
bly autocorrelated. This model is the dynamic equivalent of the strict factor 
model. Estimation is performed with maximum likelihood in the frequency 
domain. The number of factors is determined with a likelihood ratio test.

Quah and Sargent27 studied larger models (N up to 60) using the Expec-
tation Maximization algorithm.

Peña and Box28 studied the following more general model:

 

r f

f
t t t

t t

p
p

L L

L I L L

L

= +

( ) = ( )
( ) = − − −

( )

ββ εε

Φ Θ

Φ Φ Φ

Θ

η

1 �

== − − −I L Lq
qΘ Θ1 �

where factors are stationary processes, L is the lag operator, εεt  is white 
noise with a full covariance matrix but is serially uncorrelated, ηt has a full-
rank covariance matrix and is serially uncorrelated, and εεt  and ηt are 

26See H. L. Lütkepohl, Introduction to Multiple Time Series Analysis (Berlin: 
Springer, 1991).
27Danny Quah and Thomas J. Sargent, “A Dynamic Index Model for Large Cross 
Sections,” CEP Discussion Papers 0132, Centre for Economic Performance, London 
School of Economics, 1993.
28Danel Peña and George E. P. Box, “Identifying a Simplifying Structure in Time 
Series,” Journal of the American Statistical Association, 82 (1987), pp. 836–843.
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mutually uncorrelated at all lags. That is, the common dynamic structure 
comes only from the common factors while the idiosyncratic components 
can be correlated but no autocorrelation is allowed.

Peña and Box proposed the following methodology for determining the 
number of factors and estimating the factors. Assume that factors are nor-
malized through the identifi cation conditions ′ =ββ ββ I . Consider the covari-
ance matrices

 
Γ r t t kk E r r k( ) = ( ) =− , , , ,0 1 2 …

and

 
Γ f t t kk E f f k( ) = ( ) =− , , , ,0 1 2 …

The following relationships hold: 

 
Γ Γ Σ

Γ Γ
r f

r f

k

k k k

0 0 0

1

( ) = ( ) ′ + =

( ) = ( ) ′ ≥

ββ ββ

ββ ββ
ε ,

,

Compute the eigenvalues and eigenvectors of Γr(k) ≥ 1. The number of 
factors is the common rank Q of the matrices Γr(k) ≥ 1. Use the nonzero 
eigenvectors of Γr(k) ≥ 1 to estimate the loading matrix ββ . Use the loading 
matrix to recover factors.

The setting of dynamic models discussed thus far is that of classical 
statistics: a fi xed number of time series and a number of samples that tends 
to infi nity. In a series of papers, Stock and Watson29 discuss the problem of 
forecasting a time series using a large number of predictors. This method-
ology is referred to as creating diffusion indexes from a large number of 
predictors. The motivation for suggesting this procedure is the large number 
of variables available to macroeconomists. Stock and Watson observed that 
the availability of a large number of observed time series in the range of 
hundreds of series makes it impossible to use the classical VAR models used 
by macroeconomists to model a carefully selected number of variables. They 
advocated a different procedure based on constructing a number of diffu-
sion indexes from a large number of observed series.

Stock and Watson30 introduced a static factor model with an infi nite N 
and an infi nite T. They observed that this model is compatible with a 

29James H. Stock and Mark W. Watson, “Macroeconomic Forecasting Using 
Many Predictors,” in Graham Elliott, Clive Granger, and Allan Timmerman (eds.), 
Handbook of Economic Forecasting (Amsterdam: North Holland, 2006).
30James H. Stock and Mark W. Watson, “Diffusion Indexes,” NBER Working Paper 
6702, August 1998.

c05-FactorModels.indd   224c05-FactorModels.indd   224 1/6/10   11:30:28 AM1/6/10   11:30:28 AM



Factor Models and Their Estimation  225

dynamic factor model with a fi nite number of lags, but not with an 
infi nite number of lags. Stock and Watson demonstrated that in the limit N, 
T → ∞, factors can be estimated with principal components. Therefore, any 
dynamic factor model with a fi nite number of lags can be put in a static form 
and estimated with principal components.

Principal components do not disentangle factors from their lagged cop-
ies. Stock and Watson suggested estimating the number of factors with infor-
mation criteria. The model is used to forecast one variable that is regressed 
on lagged factors, hence there is no need to forecast factors. They demon-
strated that feasible forecasts (i.e., forecasts based on factors estimated with 
principal components) asymptotically coincide with the unfeasible forecasts 
performed using the unknown true factors.

Forni, Hallin, Lippi, and Reichlin31 introduced the generalized dynamic 
factor model, which is a model with N, T → ∞ and a fi nite number Q of 
factors, but allowing an infi nite number of lags. Factors are assumed to be 
orthonormal white noise and factor loadings are assumed to be constant in 
time. The idiosyncratic components are possibly correlated and autocorre-
lated but uncorrelated with factors at every lag. The major difference with 
respect to the model described in Stock and Watson on diffusion indexes is 
the allowance of an infi nite number of lags and the imposition of constant 
factor loadings.

Consider the spectral density matrix of the returns and of the idiosyn-
cratic components. Call dynamic eigenvalues the eigenvalues of the spec-
tral density at each frequency. Forni, Hallin, Lippi, and Reichlin assumed 
that the fi rst Q dynamic eigenvalues diverge while the fi rst dynamic eigen-
value of the idiosyncratic components is uniformly bounded. These condi-
tions are the dynamic equivalent of the conditions on the eigenvalues of an 
approximate factor model. They estimated the model computing principal 
components in the frequency domain. Forni, Hallin, Lippi, and Reichlin32 
determined the rates of convergence in function of the convergence path 
N = N(T), T → ∞.

Thus far we have discussed two major methodologies for estimating 
dynamic factor models: maximum likelihood in the classical small N and T 
→ ∞ factor model and principal components in the N, T → ∞ case applied in 
the time domain in Stock and Watson and in the frequency domain in Forni, 

31Mario Forni, Marc Hallin, Marco Lippi, and Lucrezia Reichlin, “The Generalized 
Dynamic Factor Model: Identifi cation and Estimation,” Review of Economics and 
Statistics, 82 (2000), pp. 540–554. 
32Mario Forni, Marc Hallin, Marco Lippi, and Lucrezia Reichlin, “The Generalized 
Dynamic Factor Model Consistency and Rates,” Journal of Econometrics, 119 
(2004), pp. 231–255.
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Hallin, Lippi, and Reichlin. Doz, Giannone, and Reichlin33 reconciled these 
two approaches. Their paper demonstrated that a dynamic factor model can 
be estimated with quasi-maximum likelihood. Their basic idea is to estimate 
a dynamic factor model with maximum likelihood and the Kalman fi lter 
as a misspecifi ed exact factor model and to show that the error vanishes 
asymptotically.

Heaton and Solo34 reconciled the small N and the large N approaches by 
introducing the signal-to-noise ratio. The setting of the paper is the same as 
in Stock and Watson,35 that is, forecasting a variable using a small number 
of diffusion indexes. They assumed a fi xed N and determined the bounds on 
the forecasting error in function of the signal-to-noise ratio when factors are 
approximated with principal components.

Dynamic Factor Models of Integrated Processes

The notion of a factor model of integrated processes is rooted in the concept 
of cointegration. Following Granger and Engle, who were jointly awarded 
the 2003 Nobel Memorial Prize in Economic Sciences for the discovery of 
cointegration and autoregressive conditional heteroskedasticity (ARCH) be-
havior, two or more integrated time series are cointegrated if there is a linear 
combination

 
α i iti

N
x

=∑ 1

of the series that is stationary. The linear combinations

 
α i iti

N
x

=∑ 1

that are stationary are referred to as cointegrating relationships.

33Catherine Doz, Domenico Giannone, and Lucrezia Reichlin, “A Quasy Maximum 
Likelihood Approach for Large Approximate Dynamic Factor Models,” European 
Central Bank Working Paper Series No 674, September 2006.
34Chris Heaton and Victor Solo, “Asymptotic Principal Components Estimation of 
Large Factor Models,” Research Papers 0303, Macquaire University, Department 
of Economics, 2003, and Chris Heaton, Chris and Victor Solo, “Estimation of 
Approximate Factor Models: Is It Important to Have a Large Number of Variables?” 
Presented at the North American Summer Meeting of the Econometric Society at the 
University of Minnesota in June 2006.
35Stock and Watson, “Diffusion Indexes” and James H. Stock and Mark W. Watson, 
“Macroeconomic Forecasting Using Diffusion Indexes,” Journal of Business and 
Economics Statistics, 20 (2002), pp. 147–162.
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As discussed in Chapter 3, there is a vast literature on cointegration 
and on determining the number of cointegrating relationships. The state-of-
the-art cointegration test is the Johansen test. Johansen36 and Hendry and 
Juselius37 offer a concise presentation of cointegration. 

The fi rst link between cointegration and dynamic factor models 
appeared in Stock and Watson.38 This landmark paper demonstrated that 
if a set of N time series is cointegrated with K cointegrating relationships, 
then there are Q = N − K integrated common trends and the N series can 
be described as regressions on the common trends. The common trends are 
obtained performing a generalized principal components analysis, that is, 
the Q common trends are determined by the eigenvectors corresponding to 
the Q largest eigenvalues of the generalized covariance matrix 

 Ω = − ′ −1
T

X X X X( ) ( )

Escribano and Peña39 established that common trends are equivalent 
to common dynamic factors in the sense that the statement that there are K 
cointegrating relationships is equivalent to the statement that data can be 
represented by N – K dynamic factors.

Peña and Poncela40 generalized the methodology put forward in Peña 
and Box.41 They introduced a generalized covariance matrix for integrated 
processes and showed that a procedure similar to the analysis in the fre-
quency domain holds also for integrated processes. Peña and Poncela pro-
posed a test for the number of common factors based on analyzing the 
eigenvalues of the generalized covariance matrices. Factors are estimated 

36Soren Johansen, “Cointegration: A Survey,” in Terrence C. Mills and Kerry 
Patterson (eds.) Palgrave Handbook of Econometrics: Volume 1, Econometric 
Theory (New York: Palgrave MacMillan, 2006), pp. 540–577.
37Katarina Juselius and David Hendry, “Explaining Cointegration Analysis,” 
University of Copenhagen, Department of Economics, Discussion Paper No. 00-20.
38James H. Stock and Mark W. Watson, “Testing for Common Trends,” Journal of 
the American Statistical Society, 83 (1988), pp. 1097–1107.
39Alvaro Escribano and Daniel Peña, “Cointegration and Common Factors,” Journal 
Time Series Analysis, 15 (1994), pp. 577–586.
40Daniel Peña, Daniel and Pilar Poncela, “Nonstationary Dynamic Factor Analysis,” 
Journal of Statistical Planning and Inference, 136 (2006), pp. 1237–1257, and 
Peña Daniel and Pilar Poncela, “Forecasting with Nonstationary Dynamic Factor 
Models,” Journal of Econometrics, 119 (2004), pp. 291–321.
41Peña and Box, “Identifying a Simplifying Structure in Time Series.” Peña Daniel 
and George E. P. Box, Identifying a Simplifying Structure in Time Series Journal of 
the American Statistical Association, 82 (1987), pp. 836–843.
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with maximum likelihood. They analyzed the forecasting performance of 
dynamic factor models with possibly integrated factors.

Illustration of Principal Components Analysis
Let’s now show how PCA is performed. The data are monthly observa-
tions for the following 10 stocks: Campbell Soup, General Dynamics, Sun 
Microsystems, Hilton, Martin Marietta, Coca-Cola, Northrop Grumman, 
Mercury Interactive, Amazon.com, and United Technologies. The period 
considered is from December 2000 to November 2005. Exhibit 5.1 shows 
the graphics of the 10 return processes.

As explained earlier, performing PCA is equivalent to determining the 
eigenvalues and eigenvectors of the covariance matrix or of the correlation 
matrix. The two matrices yield different results. We perform both exercises, 
estimating the principal components using separately the covariance and 
the correlation matrices of the return processes. We estimate the covariance 
with the empirical covariance matrix. Recall that the empirical covariance 
σij between variables (Xi,Xj) is defi ned as follows:

EXHIBIT 5.1 Graphics of the 10 Stock Return Processes
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 ˆ ( ( ) )( ( ) )σ ij i
t

T

i j jT
X t X X t X= − −

=
∑1

1

 
X

T
X t X

T
X ti i

t

T

j j
t

T

= =
= =
∑ ∑1 1

1 1

( ), ( )

Exhibit 5.2 shows the covariance matrix. 
Normalizing the covariance matrix with the standard deviations, we 

obtain the correlation matrix. Exhibit 5.3 shows the correlation matrix. 
Note that the diagonal elements of the correlation matrix are all equal to 
one. In addition, a number of entries in the covariance matrix are close to 
zero. Normalization by the product of standard deviations makes the same 
elements larger.

Let’s now proceed to perform PCA using the covariance matrix. We 
have to compute the eigenvalues and the eigenvectors of the covariance 
matrix. Exhibit 5.4 shows the eigenvectors (panel A) and the eigenvalues 
(panel B) of the covariance matrix.

Each column of panel A of Exhibit 5.4 represents an eigenvector. The 
corresponding eigenvector is shown in panel B. Eigenvalues are listed in 
descending order; the corresponding eigenvectors go from left to right in 
the matrix of eigenvectors. Thus the leftmost eigenvector corresponds to 
the largest eigenvalue. Eigenvectors are not uniquely determined. In fact, 
multiplying any eigenvector for a real constant yields another eigenvector. 
The eigenvectors in Exhibit 5.4 are normalized in the sense that the sum of 
the squares of each component is equal to 1. It can be easily checked that 
the sum of the squares of the elements in each column is equal to 1. This 
still leaves an indeterminacy, as we can change the sign of the eigenvector 
without affecting this normalization.

As explained earlier, if we form portfolios whose weights are the eigen-
vectors, we can form 10 portfolios that are orthogonal (i.e., uncorrelated). 
These orthogonal portfolios are called principal components. The variance 
of each principal component will be equal to the corresponding eigenvec-
tor. Thus the fi rst principal component (i.e., the portfolio corresponding 
to the fi rst eigenvalue), will have the maximum possible variance and the 
last principal component (i.e., the portfolio corresponding to the last eigen-
value) will have the smallest variance. Exhibit 5.5 shows the graphics of the 
principal components of maximum and minimum variance.

The 10 principal components thus obtained are linear combinations of 
the original series, X = (X1, …, XN)′ that is, they are obtained by multiplying 
X by the matrix of the eigenvectors. If the eigenvalues and the correspond-
ing eigenvectors are all distinct, as it is the case in our illustration, we can 
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apply the inverse transformation and recover the X as linear combinations 
of the principal components.

PCA is interesting if, in using only a small number of principal com-
ponents, we nevertheless obtain a good approximation. That is, we use 
PCA to determine principal components but we use only those principal 
components that have a large variance as factors of a factor model. Stated 
otherwise, we regress the original series X onto a small number of principal 
components. In this way, PCA implements a dimensionality reduction as it 
allows one to retain only a small number of components. By choosing as 
factors the components with the largest variance, we can explain a large 
portion of the total variance of X.

Exhibit 5.6 shows the total variance explained by a growing number 
of components. Thus the fi rst component explains 55.2784% of the total 
variance, the fi rst two components explain 66.8507% of the total variance, 
and so on. Obviously 10 components explain 100% of the total variance. 
The second, third, and fourth columns of Exhibit 5.7 show the residuals 
of the Sun Microsystem return process with 1, 5, and all 10 components, 

EXHIBIT 5.5 Graphic of the Portfolios of Maximum and Minimum Variance Based 
on the Covariance Matrix
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234 QUANTITATIVE EQUITY INVESTING

respectively. There is a large gain from 1 to 5, while the gain from 5 to all 
10 components is marginal.

We can repeat the same exercise for the correlation matrix. Exhibit 5.8 
shows the eigenvectors (panel A) and the eigenvalues (panel B) of the correlation 
matrix. Eigenvectors are normalized as in the case of the covariance matrix.

Exhibit 5.9 shows the total variance explained by a growing number of 
components. Thus the fi rst component explains 30.6522% of the total vari-
ance, the fi rst two components explain 45.2509% of the total variance and 
so on. Obviously 10 components explain 100% of the total variance. The 
increase in explanatory power with the number of components is slower 
than in the case of the covariance matrix.

The proportion of the total variance explained grows more slowly in the 
correlation case than in the covariance case. Exhibit 5.10 shows the graphics 
of the portfolios of maximum and minimum variance. The ratio between the 
two portfolios is smaller in this case than in the case of the covariance.

The last three columns of Exhibit 5.8 show the residuals of the Sun 
Microsystem return process with 1, 5, and all components based on the 
correlation matrix. Residuals are progressively reduced, but at a lower rate 
than with the covariance matrix.

An Illustration of Factor Analysis

Let’s now show how factor analysis is performed. To do so, we will use the 
same 10 stocks and return data for December 2000 to November 2005 that 
we used to illustrate principal components analysis.

EXHIBIT 5.6 Percentage of the Total Variance Explained by a Growing Number of 
Components Based on the Covariance Matrix

Principal 
Component

Percentage of 
Total Variance Explained

1 55.2784%

2 66.8508

3 76.4425

4 84.1345

5 91.2774

6 95.1818

7 97.9355

8 99.8982

9 99.9637

10 100.0000
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EXHIBIT 5.7 Residuals of the Sun Microsytem Return Process with 1, 5, and All 
Components Based on the Covariance Matrix and the Correlation Matrix

Residuals Based on Covariance Matrix Residuals Based on Correlation Matrix

Month/Year
1 Principal
Component

5 Principal
Components

10 Principal
Components

1 Principal
Component

5 Principal
Components

10 Principal
Components

Dec. 2000 0.069044 0.018711 1.53E-16 0.31828 0.61281 –2.00E-15

Jan. 2001 –0.04723 –0.02325 1.11E-16 –0.78027 –0.81071 1.78E-15

Feb. 2001 –0.03768 0.010533 –1.11E-16 –0.47671 0.04825 2.22E-16

March 2001 –0.16204 –0.02016 2.50E-16 –0.47015 –0.82958 –2.78E-15

April 2001 –0.00819 –0.00858 –7.63E-17 –0.32717 –0.28034 –5.00E-16

May 2001 0.048814 –0.00399 2.08E-17 0.36321 0.016427 7.22E-16

June 2001 0.21834 0.025337 –2.36E-16 1.1437 1.37 7.94E-15

July 2001 –0.03399 0.02732 1.11E-16 –0.7547 0.35591 1.11E-15

Aug. 2001 0.098758 –0.00146 2.22E-16 1.0501 0.19739 –8.88E-16

Sept. 2001 0.042674 0.006381 –5.55E-17 0.40304 0.28441 2.00E-15

Oct. 2001 0.038679 –0.00813 –5.55E-17 0.50858 0.17217 4.44E-16

Nov. 2001 –0.11967 –0.01624 1.11E-16 –0.89512 –0.8765 –7.77E-16

Dec. 2001 –0.19192 0.030744 1.67E-16 –1.001 0.047784 –1.55E-15

Jan. 2002 –0.13013 –0.00591 5.55E-17 –1.1085 –0.68171 –1.33E-15

Feb. 2002 0.003304 0.017737 0 –0.05222 0.20963 –9.99E-16

March 2002 –0.07221 0.012569 5.55E-17 –0.35765 0.13344 2.22E-16

April 2002 –0.08211 –0.00916 2.78E-17 –0.38222 –0.47647 –2.55E-15

May 2002 –0.05537 –0.02103 0 –0.45957 –0.53564 4.22E-15

June 2002 –0.15461 0.004614 1.39E-16 –1.0311 –0.54064 –3.33E-15

July 2002 0.00221 0.013057 8.33E-17 0.24301 0.37431 –1.89E-15

Aug. 2002 –0.12655 0.004691 5.55E-17 –0.8143 –0.30497 2.00E-15

Sept. 2002 –0.07898 0.039666 5.55E-17 –0.25876 0.64902 –6.66E-16

Oct. 2002 0.15839 0.003346 –1.11E-16 0.98252 0.53223 –1.78E-15

Nov. 2002 –0.11377 0.013601 1.67E-16 –0.95263 –0.33884 –2.89E-15

Dec. 2002 –0.06957 0.012352 1.32E-16 –0.10309 0.029623 –4.05E-15

Jan. 2003 0.14889 –0.00118 –8.33E-17 1.193 0.73723 5.00E-15

Feb. 2003 –0.03359 –0.02719 –4.16E-17 –0.02854 –0.38331 4.05E-15

March 2003 –0.05314 –0.00859 2.78E-17 –0.38853 –0.40615 –2.22E-16

April 2003 0.10457 –0.01442 –2.22E-16 0.73075 0.097101 –1.11E-15

May 2003 0.078567 0.022227 –5.55E-17 0.52298 0.63772 –7.77E-16

June 2003 –0.1989 –0.02905 1.39E-16 –1.4213 –1.3836 –3.55E-15

July 2003 –0.0149 –0.00955 0 0.13876 –0.1059 3.44E-15
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236 QUANTITATIVE EQUITY INVESTING

EXHIBIT 5.7 (Continued)

Residuals Based on Covariance Matrix Residuals Based on Correlation Matrix

Month/Year
1 Principal 
Component

5 Principal 
Components

10 Principal 
Components

1 Principal 
Component

5 Principal 
Components

10 Principal 
Components

Aug. 2003 –0.12529 –0.00528 8.33E-17 –0.73819 –0.51792 9.99E-16

Sept. 2003 0.10879 –0.00645 –8.33E-17 0.69572 0.25503 –2.22E-15

Oct. 2003 0.07783 0.01089 –2.78E-17 0.36715 0.45274 –1.11E-15

Nov. 2003 0.038408 –0.01181 –5.55E-17 0.11761 –0.13271 3.33E-16

Dec. 2003 0.18203 0.012593 –1.39E-16 1.2655 0.98182 3.77E-15

Jan. 2004 0.063885 –0.00042 6.94E-18 0.33717 0.038477 0

Feb. 2004 –0.12552 –0.00225 1.11E-16 –0.70345 –0.49379 0

March 2004 –0.01747 0.016836 0 –0.1949 0.35348 –1.94E-16

April 2004 0.015742 0.013764 4.16E-17 0.2673 0.46969 –5.77E-15

May 2004 –0.03556 –0.02072 –6.94E-17 –0.60652 –0.68268 0

June 2004 0.14325 0.008155 –1.94E-16 0.54463 0.59768 3.22E-15

July 2004 0.030731 –0.00285 –4.16E-17 0.13011 0.028779 7.08E-16

Aug. 2004 0.032719 –0.00179 –5.55E-17 0.26793 0.18353 2.05E-15

Sept. 2004 0.083238 0.003664 0 0.58186 0.29544 3.77E-15

Oct. 2004 0.11722 –0.00356 –1.39E-16 0.77575 0.38959 2.22E-16

Nov. 2004 –0.04794 –0.00088 0 –0.47706 –0.35464 –3.13E-15

Dec. 2004 –0.1099 –0.01903 1.11E-16 –0.69439 –0.64663 –2.22E-16

Jan. 2005 0.0479 –0.00573 2.08E-17 0.24203 –0.04065 –4.45E-16

Feb. 2005 –0.015 0.003186 1.39E-17 –0.07198 0.054412 3.28E-15

March 2005 0.005969 –0.0092 –4.16E-17 0.035251 –0.02106 3.83E-15

April 2005 –0.00742 –0.01241 –4.16E-17 –0.09335 –0.42659 –1.67E-16

May 2005 0.14998 –0.01126 6.25E-17 1.0219 0.034585 –9.05E-15

June 2005 –0.05045 –0.00363 3.47E-17 –0.25655 –0.1229 –4.66E-15

July 2005 0.065302 –0.00421 –5.20E-17 0.56136 0.16602 3.08E-15

Aug. 2005 0.006719 –0.01174 1.39E-17 0.09319 –0.22119 –2.00E-15

Sept. 2005 0.12865 –0.00259 –8.33E-17 0.95602 0.33442 3.50E-15

Oct. 2005 –0.01782 0.011827 –8.33E-17 –0.2249 0.27675 1.53E-15

Nov. 2005 0.026312 –7.72E-05 –1.39E-17 0.26642 0.19725 1.67E-15
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238 QUANTITATIVE EQUITY INVESTING

EXHIBIT 5.9 Percentage of the Total Variance Explained by a Growing Number of 
Components Using the Correlation Matrix

Principal Component Percentage of Total Variance Explained

1 30.6522%

2  45.2509

3  57.1734

4  67.0935

5  75.7044

6  82.6998

7  88.8901

8  94.5987

9  97.7417

10  100.0000

EXHIBIT 5.10 Graphic of the Portfolios of Maximum and Minimum Variance 
Based on the Correlation Matrix
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EXHIBIT 5.11 A Factor Loadings and Idiosyncratic Variances

Factor Loadings

β1 β2 β3
Variance

SUNW 0.656940 0.434420 0.27910 0.301780

AMZN 0.959860 –0.147050 –0.00293 0.057042

MERQ 0.697140 0.499410 –0.08949 0.256570

GD 0.002596 –0.237610 0.43511 0.754220

NOC –0.174710 –0.119960 0.23013 0.902130

CPB 0.153360 –0.344400 0.13520 0.839590

KO 0.170520 0.180660 –0.46988 0.717500

MLM 0.184870 0.361180 0.28657 0.753250

HLT 0.593540 0.011929 –0.18782 0.612300

UTX 0.385970 0.144390 –0.15357 0.806590

To perform factor analysis, we need estimate only the factor loadings 
and the idiosyncratic variances of noise terms. We assume that the model 
has three factors. Exhibit 5.11 shows the factor loadings. Each row repre-
sents the loadings of the three factors corresponding to each stock. The last 
column of the exhibit shows the idiosyncratic variances.

The idiosyncratic variances are numbers between 0 and 1, where 0 
means that the variance is completely explained by common factors and 1 
that common factors fail to explain variance.

The p-value turns out to be 0.6808 and therefore fails to reject the null 
of three factors. Estimating the model with 1 and 2 factors we obtain much 
lower p-values while we run into numerical diffi culties with 4 or more fac-
tors. We can therefore accept the null of three factors. Exhibit 5.12 shows 
the graphics of the three factors.

SUMMARY

Factor models are used in all phases of asset management: portfolio 
construction, stock selection, and performance evaluation (return attri-
bution analysis). 
Factor models are regression models where factors are determined either 
with statistical techniques or are given exogenously.
Factor models can be classifi ed as static models and dynamic models. 

■

■

■

c05-FactorModels.indd   239c05-FactorModels.indd   239 1/6/10   11:30:34 AM1/6/10   11:30:34 AM



240 QUANTITATIVE EQUITY INVESTING

EXHIBIT 5.12 Graphics of the Three Factors
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In a static factor model, a large number of random variables is repre-
sented in terms of a small number of different random variables called 
factors and those factors do not have any dynamics.
Dynamic factor models represent a large number of time series in terms 
of a small number of different time series called dynamic factors.
Factor models are subject to many types of indeterminacy which can be 
resolved making specifi c assumptions.
Statistical methods for factor analysis require the estimation of the 
covariance matrix. 
Covariance matrices are very noisy and only a limited number of factors 
can be effectively determined.
Factors that are not observed are referred to as hidden or latent factors, 
or latent variables and the primary statistical tool used for determining 
the hidden factors is factor analysis and related methods such as princi-
pal components analysis.
The result of factor analysis for determining the hidden factors results 
in a (multivariate) time series of factors, a (multivariate) time series of 

■

■

■

■

■

■

■
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residuals, the covariance matrix of factors, the factor loadings for each 
return process, and the variances of each residual term.
The factor loadings represent the exposures of returns to each factor.
The current theoretical paradigm for factor models is the approximate 
factor model formed by infi nite time series of infi nite length; this model 
is practically diffi cult to apply to return series because the empirical 
distribution of the eigenvalues of the covariance matrix decays very 
slowly.
Dynamic factor models introduce a dynamic by regressing processes 
over lagged factors.
In practice, dynamic factor models, which are ultimately an instance of 
state-space models, are often used in a static context—a situation that 
might cause some confusion.

■

■

■

■
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CHAPTER 6 
Factor-Based Trading Strategies I: 
Factor Construction and Analysis

R ealizing positive excess returns in the equity markets is challenging. 
To achieve this objective, we need to successfully design, research, and 

implement an investment strategy. 
Broadly we can classify investment strategies into the following catego-

ries: (1) factor-based trading strategies (also called stock selection or alpha 
models), (2) statistical arbitrage, (3) high-frequency strategies, and (4) event 
studies. The results from the Intertek surveys presented in Chapter 1 indi-
cate that factors and factor-based models form the core of a major part of 
today’s quantitative trading strategies. Our discussion that follows focuses 
on these types of models.

As background, we start our discussion of factor trading strategies 
briefl y reviewing the evolution of thought regarding market effi ciency. 
Neoclassical fi nance states that markets are effi cient. Effi cient market in 
this context means that individual investors form expectations rationally, 
markets aggregate information effi ciently, and equilibrium prices incor-
porate all available information. The implication of the effi cient market 
theory (EMT) is that there are limited, if any, opportunity to earn excess 
returns. Starting in the late 1970s, researchers have presented empirical 
results identifying anomalies and excess return opportunities. Some of 
the most well-known factors, their underlying basic economic rationale, 
and references are provided in Appendix C. Critics of neoclassical fi nance 
argue that investors are not rational and their behavior impacts the pricing 
of securities which in turn may lead to market ineffi ciencies.1 Andrew Lo 

1For a survey of behavioral fi nance, see Nicholas Barberis and Richard Thaler, “A 
Survey of Behavioral Finance,” in George M. Constantinides, M. Harris, and Rene 
M. Stulz (eds.), Handbook of the Economics of Finance, (Amsterdam: Elsevier 
Science, 2003).

This chapter was co-authored with Joseph A. Cerniglia.
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244 QUANTITATIVE EQUITY INVESTING

proposes a theory he calls the Adaptive Market Hypothesis that reconciles 
various observations about market ineffi ciency.2 His theory is based on an 
evolutionary approach to economic interaction that incorporates cogni-
tive neuroscience. 

Most academics and practitioners agree that the effi cient market hypoth-
esis does not hold all the time and that it is possible to beat the market. The 
existence of the investment management and hedge fund industry provide 
good examples, as does the numerous published works on market predict-
ability in academic journals. The themes and motivation for these studies 
differ. A number of papers show that applications of fundamental analysis3 
and fi nancial statement analysis4 may be able to outperform the market. 
Others researchers demonstrate that a range of different factors or factor-
based models may have the ability to forecast the market.5 Some models 
consist of a combination of multiple investing themes.6 

We introduced the concept of factors in Chapter 5. The focus of this and 
the next chapter is on developing trading strategies based on factors con-
structed from common (cross-sectional) characteristics of stocks. For this 
purpose, fi rst we give a more narrow defi nition of factors than that provided 

2Andrew W. Lo, “The Adaptive Markets Hypothesis,” Journal of Portfolio 
Management, 30 (2004), pp. 15–29.
3Jeffery S. Abarbanell and Brian J. Bushee, “Fundamental Analysis, Future Earnings, 
and Stock Prices,” Journal of Accounting Research, 35 (1997), pp. 1–24; and Jeffery 
S. Abarbanell and Brian J. Bushee, “Abnormal Returns to a Fundamental Analysis 
Strategy,” Accounting Review, 73 (1998), pp. 19–45.
4Jane A. Ou and Stephen H. Penman, “Financial Statement Analysis and the 
Prediction of Stock Returns,” Journal of Accounting and Economics, 11 (1989), 
pp 295–329; Doron Nissim and Stephen H. Penman, “Ratio Analysis and Equity 
Valuation: From Research to Practice,” Review of Accounting Studies, 6 (2001), 
pp. 109–154; and Stephen H. Penman, Financial Statement Analysis and Security 
Valuation (New York: McGraw Hill Company, 2001).
5Barr Rosenberg, Kenneth Reid, and Ronald Lanstein,” Persuasive Evidence of 
Market Ineffi ciency,” Journal of Portfolio Management, 11 (1985), pp 9–17; G. 
William Schwert, “Anomalies and Market Effi ciency,” in George M. Constantinides, 
M. Harris, Rene M. Stulz (eds.), Handbook of the Economics of Finance, Vol. 1, 
Chapter 15, 2003, pp. 939-974; Eugene F. Fama and Kenneth R. French, “The Cross-
Section of Expected Stock Returns,” Journal of Finance, 47, (1992), pp. 427–466; 
Robert Haugen and Nardin Baker, “Commonality in the Determinants of Expected 
Stock Returns,” Journal of Financial Economics, 41(1996), pp. 401–439; Louis 
K. C. Chan, Jason Karceski, and Josef Lakonishok, “The Risk and Return from 
Factors,” Journal of Financial and Quantitative Analysis, 33, (1998), pp 159–188; 
and Chu Zhang, “Factor-Mimicking Portfolios from Return-Predictive Firm-Specifi c 
Variables,” Working Paper, 2003.
6Clifford Asness, “The Interaction of Value and Momentum Strategies,” Financial 
Analysts Journal, 53 (1997), pp. 29–36.
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in Chapter 5. Then, we examine the major sources of risk associated with 
trading strategies, and demonstrate how factors are constructed from com-
pany characteristics and market data. The quality of the data used in this 
process is critical. We examine several data cleaning and adjustment tech-
niques to account for problems occurring with backfi lling and restatements 
of data, missing data, inconsistently reported data, as well as survivorship 
and look-ahead biases. In the last section of this chapter we discuss the 
analysis of the statistical properties of factors. In the following chapter we 
extend this analysis to include multiple factors and cover techniques used to 
implement multifactor trading strategies. 

In a series of examples throughout both chapters, we show the indi-
vidual steps for developing a basic trading strategy. The purpose of these 
examples is not to provide yet another profi table trading strategy, but rather 
to illustrate the process an analyst may follow when performing research. 
In fact, the factors that we use for this purpose are well known and have 
for years been exploited by industry practitioners. We think that the value 
added of these examples is in the concrete illustration of the research and 
development process of a factor-based trading model.

FACTOR-BASED TRADING

Since the fi rst version of the classic text on security analysis by Benjamin 
Graham and David Dodd7—considered to be the Bible on the fundamen-
tal approach to security analysis—was published in 1934, equity portfolio 
management and trading strategies have developed considerably. Graham 
and Dodd were early contributors to factor-based strategies because they 
extended traditional valuation approaches by using information throughout 
the fi nancial statements8 and by presenting concrete rules of thumb to be 
used to determine the attractiveness of securities.9

Today’s quantitative managers use factors as fundamental building 
blocks for trading strategies. Within a trading strategy, factors determine 
when to buy and sell securities. In our discussion of factor-based strate-
gies in this and the next chapter, we narrow the defi nition of factors given 
in Chapter 5. Specifi cally, we defi ne a factor as a common characteristic 
among a group of assets. For example, a factor in the fi xed income market 
would be the credit rating on a bond. In the equities market, it could be a 

7Benjamin Graham and David Dodd, Security Analysis (New York: McGraw-Hill, 
1962).
8Benjamin Graham, The Intelligent Investor (New York: Harper & Row, 1973).
9Peter L. Bernstein, Capital Ideas: The Improbable Origins of Modern Wall Street 
(New York: The Free Press, 1992).
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particular fi nancial ratio such as the price-to-earnings (P/E) or the book-to-
price (B/P) ratios.

Most often this basic defi nition is expanded to include additional objec-
tives. First, factors frequently are intended to capture some economic intu-
ition. For instance, a factor may help understand the prices of assets by 
reference to their exposure to sources of macroeconomic risk, fundamental 
characteristics, or basic market behavior. Second, we should recognize that 
assets with similar factors (characteristics) tend to behave in similar ways. 
This attribute is critical to the success of a factor. Third, we would like 
our factor to be able to differentiate across different markets and samples. 
Fourth, we want our factor to be robust across different time periods. 

Factors fall into three categories—macroeconomic infl uences, cross-
sectional characteristics, and statistical factors. Macroeconomic infl uences 
are time series that measure observable economic activity. Examples include 
interest rate levels, gross domestic production, and industrial production. 
Cross-sectional characteristics are observable asset specifi cs or fi rm charac-
teristics. Examples include, dividend yield, book value, and volatility. Sta-
tistical factors are unobservable or latent factors common across a group of 
assets. These factors make no explicit assumptions about the asset charac-
teristics that drive commonality in returns. Statistical factors are not derived 
using exogenous data but are extracted from other variables such as returns. 
These factors are calculated using various statistical techniques such as prin-
cipal components analysis or factor analysis as discussed in Chapter 5.

Within asset management fi rms, factors and forecasting models are used 
for a number of purposes. Those purposes could be central to managing 
portfolios. For example, a portfolio manager can directly send the model 
output to the trading desk to be executed. In other uses, models provide ana-
lytical support to analysts and portfolio management teams. For instance, 
models are used as a way to reduce the investable universe to a manageable 
number of securities so that a team of analysts can perform fundamental 
analysis on a smaller group of securities.

Factors are employed in other areas of fi nancial theory such as asset 
pricing, risk management, and performance attribution. In asset pricing, 
researchers use factors as proxies for common, undiversifi able sources of 
risk in the economy to understand the prices or values of securities to uncer-
tain payments. Examples include the dividend yield10 of the market or the 
yield spread between a long-term bond yield and a short-term bond yield. In 
risk management, risk managers use factors in risk models to explain and to 
decompose variability of returns from securities, while portfolio managers 
rely on risk models for covariance construction, portfolio construction, and 
10Eugene F. Fama and Kenneth R. French, “Dividend Yields and Expected Stock 
Returns,” Journal of Financial Economics, 22 (1988), pp 3–25.
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risk measurement. In performance attribution, portfolio managers explain 
past portfolio returns based on the portfolio’s exposure to various factors. 
Within these areas, the role of factors continues to expand. Recent research 
presents a methodology for attributing active return, tracking error, and the 
information ratio to a set of custom factors.11 

The focus in this and next chapter is on using factors to build equity 
forecasting models, also referred to as alpha or stock selection models. The 
models serve as mathematical representations of trading strategies. The 
mathematical representation uses future returns as dependent variables and 
factors as independent variables. 

DEVELOPING FACTOR-BASED TRADING STRATEGIES

The development of a trading strategy has many similarities with an engi-
neering project. We begin by designing a framework that is fl exible enough 
so that the components can be easily modifi ed, yet structured enough that we 
remain focused on our end goal of designing a profi table trading strategy. 

Basic Framework and Building Blocks

The typical steps in the development of a trading strategy are:

Defi ning a trading idea or investment strategy.
Developing factors.
Acquiring and processing data.
Analyzing the factors.
Building the strategy.
Evaluating the strategy.
Backtesting the strategy.
Implementing the strategy.

In what follows we will take a closer look at each step.

Defi ning a Trading Idea or Investment Strategy

A successful trading strategy often starts as an idea based on sound econom-
ic intuition, market insight, or the discovery of an anomaly. Background 
research can be helpful in order to understand what others have tried or 
implemented in the past. 

11Jose Menchero and Vijay Poduri, “Custom Factor Attribution,” Financial Analysts 
Journal, 62 (2008), pp. 81–92.
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We distinguish between a trading idea and trading strategy based on 
the underlying economic motivation. A trading idea has a more short-term 
horizon often associated with an event or mispricing. A trading strategy has 
a longer horizon and is frequently based on the exploitation of a premium 
associated with an anomaly or a characteristic. 

Developing Factors 

Factors provide building blocks of the model used to build an investment 
strategy. We introduced a general defi nition of factors earlier in this chapter. 
After having established the trading strategy, we move from the economic 
concepts to the construction of factors that may be able to capture our intu-
ition. In this chapter we will provide a number of examples of factors based 
on the cross-sectional characteristics of stocks.

Acquiring and Processing Data

A trading strategy relies on accurate and clean data to build factors. There 
are a number of third-party solutions and databases available for this pur-
pose such as Thomson MarketQA,12 Factset Research Systems,13 and Com-
pustat Xpressfeed.14

Analyzing the Factors 

A variety of statistical and econometric techniques must be performed on 
the data to evaluate the empirical properties of factors. This empirical re-
search is used to understand the risk and return potential of a factor. The 
analysis is the starting point for building a model of a trading strategy. 

Building the Strategy

The model represents a mathematical specifi cation of the trading strategy. 
There are two important considerations in this specifi cation: the selection 
of which factors and how these factors are combined. Both considerations 
need to be motivated by the economic intuition behind the trading strategy. 
We advise against model specifi cation being strictly data driven because that 
approach often results in overfi tting the model and consequently overesti-
mating forecasting quality of the model.

12http://thomsonreuters.com/products_services/financial/financial_products/
quantitative_analysis/quantitative_analytics.
13http://www.factset.com.
14http://www.compustat.com.
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Evaluating, Back Testing, and Implementing the Strategy

The fi nal step involves assessing the estimation, specifi cation, and forecast 
quality of the model. This analysis includes examining the goodness of fi t 
(often done in sample), forecasting ability (often done out of sample), and 
sensitivity and risk characteristics of the model.

We will cover the last two steps in greater detail in Chapter 7.

RISK TO TRADING STRATEGIES

In investment management, risk is a primary concern. The majority of trad-
ing strategies are not risk free but rather subject to various risks. It is im-
portant to be familiar with the most common risks in trading strategies. By 
understanding the risks in advance, we can structure our empirical research 
to identify how risks will affect our strategies. Also, we can develop tech-
niques to avoid these risks in the model construction stage when building 
the strategy. 

We describe the various risks that are common to factor trading strate-
gies as well as other trading strategies such as risk arbitrage. Many of these 
risks have been categorized in the behavioral fi nance literature.15 The risks 
discussed include fundamental risk, noise trader risk, horizon risk, model 
risk, implementation risk, and liquidity risk.

Fundamental risk is the risk of suffering adverse fundamental news. 
For example, say our trading strategy focuses on purchasing stocks with 
high earnings to price ratios. Suppose that the model shows a pharmaceu-
tical stock maintains a high score. After purchasing the stock, the company 
releases a news report that states it faces class-action litigation because 
one of its drugs has undocumented adverse side effects. While during this 
period other stocks with high earnings to price ratio may perform well, this 
particular pharmaceutical stock will perform poorly despite its attractive 
characteristic. We can minimize the exposure to fundamental risk within a 
trading strategy by diversifying across many companies. Fundamental risk 
may not always be company specifi c, sometimes this risk can be systemic. 
Some examples include the exogenous market shocks of the stock market 
crash in 1987, the Asian fi nancial crisis in 1997, and the tech bubble in 
2000. In these cases, diversifi cation was not that helpful. Instead, portfolio 
managers that were sector or market neutral in general fared better.

Noise trader risk is the risk that a mispricing may worsen in the short 
run. The typical example includes companies that clearly are undervalued 

15See Barberis and Thaler, “A Survey of Behavioral Finance.”
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(and should therefore trade at a higher price). However, because noise trad-
ers may trade in the opposite direction, this mispricing can persist for a long 
time. Closely related to noise trader risk is horizon risk. The idea here is that 
the premium or value takes too long to be realized, resulting in a realized 
return lower than a target rate of return.

Model risk, also referred to as misspecifi cation risk, refers to the risk 
associated with making wrong modeling assumptions and decisions. This 
includes the choice of variables, methodology, and context the model oper-
ates in. In Chapter 5 we examined different sources that may result in model 
misspecifi cation. In addition, we reviewed several remedies based on informa-
tion theory, Bayesian methods, shrinkage, and random coeffi cient models.

Implementation risk is another risk faced by investors implementing 
trading strategies. This risk category includes transaction costs and funding 
risk. Transaction costs such as commissions, bid-ask spreads and market 
impact can adversely affect the results from a trading strategy. If the strategy 
involves shorting, other implementation costs arise such as the ability to 
locate securities to short and the costs to borrow the securities. Funding risk 
occurs when the portfolio manager is no longer able to get the funding nec-
essary to implement a trading strategy. For example, many statistical arbi-
trage funds use leverage to increase the returns of their funds. If the amount 
of leverage is constrained then the strategy will not earn attractive returns. 
Khandani and Lo confi rm this example by showing that greater competition 
and reduced profi tability of quantitative strategies today require more lever-
age to maintain the same level of expected return.16 

Liquidity risk is a concern for investors. Liquidity is defi ned as the abil-
ity to (1) trade quickly without signifi cant price changes, and (2) the abil-
ity to trade large volumes without signifi cant price changes. Cerniglia and 
Kolm discuss the effects of liquidity risk during the “quant crisis” in August 
2007. 17 They show how the rapid liquidation of quantitative funds affected 
the trading characteristics and price impact of trading individual securities 
as well as various factor-based trading strategies. 

These risks can detract or contribute to the success of a trading strategy. 
It is obvious how these risks can detract from a strategy. What is not always 
clear is when any one of these unintentional risks contributes to a strategy. 
That is, sometimes when we build a trading strategy we take on a bias that is 
not obvious. If there is a premium associated with this unintended risk then 
a strategy will earn additional return. Later the premium to this unintended 

16Amir E. Khandani and Andrew W. Lo, “What Happened to the Quants in August 
2007?” Journal of Investment Management, 5 (2007), pp. 5–54.
17Joseph A. Cerniglia and Petter N. Kolm. “The Information Content of Order 
Imbalances: A Tick-by-Tick Analysis of the Equity Market in August 2007,” 
Working Paper. Courant Institute, New York University, 2009.
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risk may disappear. For example, a trading strategy that focuses on price 
momentum performed strongly in the calendar years of 1998 and 1999. What 
an investor might not notice is that during this period the portfolio became 
increasingly weighted toward technology stocks, particularly Internet-
related stocks. During 2000, these stocks severely underperformed.

DESIRABLE PROPERTIES OF FACTORS

Factors should be founded on sound economic intuition, market insight, 
or an anomaly. In addition to the underlying economic reasoning, factors 
should have other properties that make them effective for forecasting.

It is an advantage if factors are intuitive to investors. Many investors 
will only invest in a particular fund if they understand and agree with the 
basic ideas behind the trading strategies. Factors give portfolio managers a 
tool in communicating to investors what themes they are investing in.

The search for the economic meaningful factors should avoid strictly 
relying on pure historical analysis. Factors used in a model should not 
emerge from a sequential process of evaluating successful factors while 
removing less favorable ones. 

Most importantly, a group of factors should be parsimonious in its 
description of the trading strategy. This will require careful evaluation of 
the interaction between the different factors. For example, highly correlated 
factors will cause the inferences made in a multivariate approach to be less 
reliable. Another possible problem when using multiple factors is the pos-
sibility of overfi tting in the modeling process.

Any data set contains outliers, that is, observations that deviate from 
the average properties of the data. Outliers are not always trivial to han-
dle and sometimes we may want to exclude them and other times not. For 
example, they could be erroneously reported or legitimate abnormal values. 
Later in this chapter we will discuss a few standard techniques to perform 
data cleaning. The success or failure of factors selected should not depend 
on a few outliers. In most cases, it is desirable to construct factors that are 
reasonably robust to outliers. 

SOURCES FOR FACTORS

How do we fi nd factors? The sources are widespread with no one source 
clearly dominating. Employing a variety of sources seems to provide the 
best opportunity to uncover factors that will be valuable for developing a 
new model. 

c06-FactorConstruction.indd   251c06-FactorConstruction.indd   251 1/6/10   11:35:24 AM1/6/10   11:35:24 AM



252 QUANTITATIVE EQUITY INVESTING

There are a number of ways to develop factors based on economic foun-
dations. It may start with thoughtful observation or study of how market 
participants act. For example, we may ask ourselves how other market par-
ticipants will evaluate the prospects of the earnings or business of a fi rm. We 
may also want to consider what stock characteristics investors will reward 
in the future. Another common approach is to look for ineffi ciencies in the 
way that investors process information. For instance, research may discover 
that consensus expectations of earnings estimates are biased. 

A good source for factors is the various reports released by the manage-
ment of companies. Many reports contain valuable information and may 
provide additional context on how management interprets the company 
results and fi nancial characteristics. For example, quarterly earning reports 
(10-Qs) may highlight particular fi nancial metrics relevant to the company 
and the competitive space they are operating within. Other company fi nan-
cial statements and SEC fi lings such as the 10-K or 8-K also provide a source 
of information to develop factors. It is often useful to look at the fi nancial 
measures that management emphasize in their comments.

Factors can be found through discussions with market participants such 
as portfolio managers and traders. Factors are uncovered by understanding 
the heuristics experienced investors have used successfully. These heuristics 
can be translated into factors and models. 

Wall Street analyst reports—also called sell-side reports or equity 
research reports—may contain valuable information. The reader is often 
not interested in the fi nal conclusions, but rather in the methodology or 
metrics the analysts use to forecast the future performance of a company. It 
may also be useful to study the large quantity of books written by portfolio 
managers and traders that describe the process they use in stock selection. 

Academic literature in fi nance, accounting, and economics such as those 
in Appendix C provides evidence of numerous factors and trading strategies 
that earn abnormal returns. Not all strategies will earn abnormal profi ts 
when implemented by practitioners, for example, because of institutional 
constraints and transaction costs. Bushee and Raedy18 fi nd that trading 
strategy returns are signifi cantly decreased due to issues such as price pres-
sure, restrictions against short sales, incentives to maintain an adequately 
diversifi ed portfolio, and restrictions to hold no more than 5% ownership 
in a fi rm.

In uncovering factors, we should put economic intuition fi rst and data 
analysis second. This avoids performing pure data mining or simply overfi t-
ting our models to past history. Research and innovation is the key to fi nd-

18Brian J. Bushee and Jana Smith Raedy, “Factors Affecting the Implementability of 
Stock Market Trading Strategies,” Working Paper, University of Pennsylvania and 
University of North Carolina, 2005.
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ing new factors. Today, analyzing and testing new factors and improving 
upon existing ones, is itself a big industry.

BUILDING FACTORS FROM COMPANY CHARACTERISTICS

The following sections will focus on the techniques for building factors from 
company characteristics. Often we desire our factors to relate the fi nancial 
data provided by a company to metrics that investors use when making de-
cisions about the attractiveness of a stock such as valuation ratios, operating 
effi ciency ratios, profi tability ratios, and solvency ratios.19 Factors should 
also relate to the market data such as analysts’ forecasts, prices and returns, 
and trading volume.

WORKING WITH DATA

In this section we discuss how to work with data and data quality issues, in-
cluding some well-probed techniques used to improve the quality of the data. 
Though the role of getting and analyzing data can be mundane and tedious, 
we need not forget that high-quality data are critical to the success of a trad-
ing strategy. It is important to realize model output is only as good as the 
data used to calibrate it. As the saying goes: “Garbage in, garbage out.”20

Understanding the structure of fi nancial data is important. We distin-
guish three different categories of fi nancial data: time series, cross-sectional, 
and panel data. Time series data consist of information and variables col-
lected over multiple time periods. Cross-sectional data consist of data col-
lected at one point in time for many different companies (the cross-section 
of companies of interest). A panel data set consists of cross-sectional data 
collected at different points in time. We note that a panel data set may not 
be homogeneous. For instance, the cross-section of companies may change 
from one point in time to another.

Data Integrity

Quality data maintain several attributes such as providing a consistent view 
of history, maintaining good data availability, containing no survivorship, and 

19For defi nition of these accounting measures, see, for example, Pamela P. Peterson 
and Frank J. Fabozzi, Analysis of Financial Statements: Second Edition (John Wiley 
& Sons, 2006). 
20This phrase says to have been coined by George Fuechsel who was an IBM 305 
RAMAC technician in New York. Today, it is used to describe failures in decision 
making due to data that is somehow incorrect, incomplete, or otherwise imprecise.
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avoiding look-ahead bias. As all data sets have their limitations, it is impor-
tant for the quantitative researcher to be able to recognize the limitations and 
adjust the data accordingly.21

Data used in research should provide a consistent view of history. Two 
common problems that distort the consistency of fi nancial data are back-
fi lling and restatements of data. Backfi lling of data happens when a com-
pany is fi rst entered into a database at the current period and its historical 
data are also added. This process of backfi lling data creates a selection bias 
because we now fi nd historical data on this recently added company when 
previously it was not available. Restatements of data are prevalent in dis-
torting consistency of data. For example, if a company revises its earnings 
per share numbers after the initial earnings release, then many database 
companies will overwrite the number originally recorded in the database 
with the newly released fi gure.

A frequent and common concern with fi nancial databases is data avail-
ability. First, data items may only be available for a short period of time. 
For example, there were many years when stock options were granted to 
employees but the expense associated with the option grant was not required 
to be disclosed in fi nancial statements. It was not until 2005 that account-
ing standards required companies to recognize directly stock options as an 
expense on the income statement. Second, data items may be available for 
only a subset of the cross-section of fi rms. Some fi rms, depending on the 
business they operate in, have research and development expenses while 
others do not. For example, many pharmaceutical companies have research 
and development expenses while utilities companies do not. A third issue is 
that a data item may simply not be available because it was not recorded 
at certain points in time. Sometimes this happens for just a few observa-
tions, other times it is the case for the whole time-series for a specifi c data 
item for a company. Fourth, different data items are sometimes combined. 
For example, sometimes depreciation and amortization expenses are not a 
separate line item on an income statement. Instead it is included in cost of 
goods sold. Fifth, certain data items are only available at certain periodici-
ties. For instance, some companies provide more detailed fi nancial reports 

21Many years ago one of the co-authors met Marcus C. Bogue, founder of Charter 
Oak Investment Systems. His fi rm created a Compustat Add-On Database to address 
the needs of the more quantitatively oriented, longer-term backtesting researchers by 
storing all data from current Compustat data before it gets overwritten (updated). Mr. 
Bogue works with most of the quantitative investment management industry. In the 
conversion with him the question of what distinguishes the most successful quantitative 
managers came up. Mr Bogue suggested that their familiarity with the data is the 
differentiator. Familiarity entails understanding quality, defi nitions, measurement, 
and sample characteristics of the data sets used in the investment process.
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quarterly while others report more details annually. Sixth, data items may 
be inconsistently reported across different companies, sectors, or industries. 
This may happen as the fi nancial data provider translates fi nancial measures 
from company reports to the specifi c database items (incomplete mapping), 
thereby ignoring or not correctly making the right adjustments.

For these issues some databases provide specifi c codes to identify the 
causes of missing data. It is important to have procedures in place that can 
distinguish among the different reasons for the missing data and be able to 
make adjustments and corrections. 

Two other common problems with databases are survivorship and 
look-ahead bias. Survivorship bias occurs when companies are removed 
from the database when they no longer exist. For example, companies can 
be removed because of a merger or bankruptcy. This bias skews the results 
because only successful fi rms are included in the entire sample. Look-ahead 
bias occurs when data are used in a study that would not have been avail-
able during the actual period analyzed. For example, the use of year-end 
earnings data immediately at the end of the reporting period is incorrect 
because the data is not released by the fi rm until several days or weeks after 
the end of the reporting period.

Data alignment is another concern when working with multiple data-
bases. Many databases have different identifi ers used to identify a fi rm. Some 
databases have vendor specifi c identifi ers, others have common identifi ers 
such as CUSIPs or ticker symbols. Unfortunately, CUSIPs and ticker sym-
bols change over time and are often reused. This practice makes it diffi cult 
to link an individual security across multiple databases across time. 

Example: The EBITDA/EV Factor

This example illustrates how the nuances of data handling can infl uence 
the results of a particular study. We use data from the Compustat Point-
In-Time database and calculate the EBITA/EV factor.22 This factor is de-
fi ned as earnings before interest, taxes, depreciation, and amortization 
divided by enterprise value (EBITDA/EV). Our universe of stocks is the 
Russell 1000 from December 1989 to December 2008, excluding fi nancial 
companies. We calculate EBITDA /EV by two equivalent but different ap-
proaches. Each approach differs by the data items used in calculating the 
numerator (EBITDA):

22The ability of EBITDA/EV to forecast future returns is discussed in, for example, 
Patricia M. Dechow, S. P. Kothari, and Ross L. Watts, “The Relation Between 
Earnings and Cash Flows,” Journal of Accounting and Economics, 25 (1998), pp. 
133–168.
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EBITDA = Sales (Compustat data item 2) – Cost of Goods Sold (Com-
pustat data item 30) – Selling and General Administrative Expenses 
(Compustat data item 1).
EBITDA = Operating Income before Depreciation (Compustat data 
item 21).

According to the Compustat manual, the following identity holds:

Operating Income before Depreciation 
 = Sales – Cost of Goods Sold – Selling and General Administrative Expenses

However, while this mathematical identity is true, this is not what we 
discover in the data. After we calculate the two factors, we form quintile 
portfolios of each factor and compare the individual holding rankings 
between the portfolio. Exhibit 6.1 displays the percentage differences in 
rankings for individual companies between the two portfolios. We observe 
that the results are not identical. As a matter of fact, there are large differ-
ences, particularly in the early period. In other words, the two mathemati-
cally equivalent approaches do not deliver the same empirical results.

1.

2.

EXHIBIT 6.1 Percentage of Companies in Russell 1000 with Different Ranking 
According to the EBITDA/EV Factor 
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Potential Biases from Data

There are numerous potential biases that may arise from data quality issues. 
It is important to recognize the direct effects of these data issues are not ap-
parent a priori. We emphasize three important effects:23 

Effect on average stock characteristics. When calculating cross-sectional 
averages of various metrics such as book-to-price or market capital-
ization, data issues can skew statistics and lead to incorrect inference 
about the population characteristics used in the study.
Effect on portfolio returns. The portfolio return implications of data 
issues are not always clear. For example, survivor bias results in fi rms 
being removed from the sample. Typically fi rms are removed from the 
sample for one of two reasons—mergers and acquisitions or failure. In 
most cases fi rms are acquired at a premium from the prevailing stock 
price. Leaving these fi rms out of the sample would have a downward 
bias on returns. In cases where companies fail, the stock price falls 
dramatically and removing these fi rms from the sample will have an 
upward bias on returns.
Effects on estimated moments of returns. A study by Kothari, Sabino, 
and Zach24 found that nonsurviving fi rms tend to be either extremely 
bad or extremely good performers. Survivor bias implies truncation of 
such extreme observations. The authors of the study show that even a 
small degree of such nonrandom truncation can have a strong impact 
on the sample moments of stock returns.

Dealing with Common Data Issues

Most data sets are subject to some quality issues. To work effectively, we 
need to be familiar with data defi nitions and database design. We also need 
to use processes to reduce the potential impact of data problems as they 
could cause incorrect conclusions. 

The fi rst step is to become familiar with the data standardization pro-
cess vendors use to collect and process data. For example, many vendors use 
different templates to store data. Specifi cally, the Compustat US database 
has one template for reporting income statement data while the Worldscope 
Global database has four different templates depending on whether a fi rm 

23Stefan Nagel, “Accounting Information Free of Selection Bias: A New UK Database 
1953–1999,” Working Paper, Stanford Graduate School of Business, 2001.
24S. P. Kothari, Jowell S. Sabino, and Tzachi Zach, “Implications of Survival and Data 
Trimming for Tests of Market Effi ciency,” Journal of Accounting and Economics, 39 
(2005), pp. 129–161.

1.

2.

3.
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is classifi ed as a bank, insurance company, industrial company, or other 
fi nancial company. Other questions related to standardization a user should 
be familiar with include:

What are the sources of the data—publicly available fi nancial state-
ments, regulatory fi lings, newswire services, or other sources?
Is there a uniform reporting template?
What is the delay between publication of information and its availabil-
ity in the database?
Is the data adjusted for stock splits?
Is history available for extinct or inactive companies?
How is data handled for companies with multiple share classes?
What is the process used to aggregate the data?

Understanding of the accounting principles underlying the data is criti-
cal. Here, two principles of importance are the valuation methodology and 
data disclosure/presentation. For the valuation, we should understand the 
type of cost basis used for the various accounting items. Specifi cally, are 
assets calculated using historical cost basis, fair value accounting, or another 
type? For accounting principles regarding disclosure/presentation, we need 
to know the defi nition of accounting terms, the format of the accounts, and 
the depth of detail provided. 

Researchers creating factors that use fi nancial statements should review 
the history of the underlying accounting principles. For example, the cash 
fl ow statement reported by companies has changed over the years. Effective 
for fi scal years ending July 15, 1988, Statement of Financial Accounting 
Standards #85 (SFAS #85) requires companies to report the Statement of 
Cash Flows. Prior to the adoption of that accounting standard, companies 
could report one of three statements: Working Capital Statement, Cash 
Statement by Source and Use of Funds, or Cash Statement by Activity. His-
torical analysis of any factor that uses cash fl ow items will require adjust-
ments to the defi nition of the factor to account for the different statements 
used by companies.

Preferably, automated processes should be used to reduce the potential 
impact of data problems. We start by checking the data for consistency and 
accuracy. We can perform time series analysis on individual factors looking 
at outliers and for missing data. We can use magnitude tests to compare 
current data items with the same items for prior periods, looking for data 
that are larger than a predetermined variance. When suspicious cases are 
identifi ed, the cause of the error should be researched and any necessary 
changes made.

■

■

■

■

■

■

■
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Methods to Adjust Factors
At fi rst, factors consist of raw data from a database combined in an eco-
nomically meaningful way. After the initial setup, a factor may be adjusted 
using analytical or statistical techniques to be more useful for modeling. The 
following three adjustments are common.

Standardization 

Standardization rescales a variable while preserving its order. Typically, we 
choose the standardized variable to have a mean of zero and a standard 
deviation of one by using the transformation 

 x
x x

i
new i

x

=
−

σ

where xi is the stock’s factor score, x  is the universe average, and σx is the 
universe standard deviation. There are several reasons to scale a variable in 
this way. First, it allows one to determine a stock’s position relative to the 
universe average. Second, it allows better comparison across stocks since 
means and standard deviations are the same. Third, it can be useful in com-
bining multiple variables. 

Orthogonalization

Sometimes the performance of our factor might be related to another factor. 
Orthogonalizing a factor for other specifi ed factor(s) removes this relation-
ship. We can orthogonalize by using averages or running regressions. 

To orthogonalize the factor using averages according to industries or 
sectors, we can proceed as follows. First, for each industry we calculate the 
industry scores
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where xi is a factor and indi,k represent the weight of stock i in industry k. 
Next, we subtract the industry average of the industry scores, sk, from each 
stock. We compute

 x x ind si
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i i k
k

k= − ⋅
∈
∑ ,

Industries

where xi
new  is the new industry neutral factor.
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We can use linear regression as described in Chapter 2 to orthogonalize 
a factor. We fi rst determine the coeffi cients in the equation

 x a b fi i i= + ⋅ + ε

where fi is the factor to orthogonalize the factor xi by, b is the contribution 
of fi to xi, and εi is the component of the factor xi not related to fi. εi is or-
thogonal to fi (that is, εi is independent of fi) and represents the neutralized 
factor

 xi
new

i= ε

In the same fashion, we can orthogonalize our variable relative to a set 
of factors by using the multivariate linear regression

 
x a b fi j

j
j i= + ⋅ +∑ ε

and then setting xi
new

i= ε . 
Often portfolio managers use a risk model to forecast risk and an 

alpha model to forecast returns. The interaction between factors in a risk 
model and an alpha model often concerns portfolio managers. One possible 
approach to address this concern is to orthogonalize the factors or fi nal 
scores from the alpha model against the factors used in the risk model. Later 
in the chapter we will discuss this issue in more detail.

Transformation

It is common practice to apply transformations to data used in statistical 
and econometric models. In particular, factors are often transformed such 
that the resulting series is symmetric or close to being normally distributed. 
Frequently used transformations include natural logarithms, exponentials, 
and square roots. For example, a factor such as market capitalization has 
a large skew because a sample of large cap stocks typically includes mega-
capitalization stocks. To reduce the infl uence of mega-capitalization compa-
nies, we may instead use the natural logarithm of market capitalization in a 
linear regression model.

Outlier Detection and Management

Outliers are observations that seem to be inconsistent with the other values 
in a data set. Financial data contain outliers for a number of reasons in-
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cluding data errors, measurement errors, or unusual events. Interpretation 
of data containing outliers may therefore be misleading. For example, our 
estimates could be biased or distorted, resulting in incorrect conclusions. 

Outliers can be detected by several methods. Graphs such as boxplots, 
scatter plots, or histograms can be useful to visually identify them. Alterna-
tively, there are a number of numerical techniques available. One common 
method is to compute the inter-quartile-range and then identify outliers as 
those values that are some multiple of the range. The inter-quartile-range is 
a measure of dispersion and is calculated as the difference between the third 
and fi rst quartiles of a sample. This measure represents the middle 50% of 
the data, removing the infl uence of outliers.

After outliers have been identifi ed, we need to reduce their infl uence in 
our analysis. As explained in Chapter 2, trimming and winsorization are 
common procedures for this purpose. Trimming discards extreme values in 
the data set. This transformation requires the researcher to determine the 
direction (symmetric or asymmetric) and the amount of trimming to occur.

Winsorization is the process of transforming extreme values in the data. 
First, we calculate percentiles of the data. Next we defi ne outliers by refer-
encing a certain percentile ranking. For example, any data observation that 
is greater than the 97.5 percentile or less than the 2.5 percentile could be 
considered an outlier. Finally, we set all values greater/less than the refer-
ence percentile ranking to particular values. In our example, we may set all 
values greater than the 97.5 percentile to the 97.5 percentile value and all 
values less than 2.5 percentile set to the 2.5 percentile value. It is important 
to fully investigate the practical consequences of using either one of these 
procedures. In the next chapter, we will apply what we learn from the fol-
lowing statistical  summaries of the factors to build a model and implement 
our trading strategy.

ANALYSIS OF FACTOR DATA 

After constructing factors for all securities in the investable universe, each 
factor is analyzed individually. Presenting the time-series and cross-sectional 
averages of the mean, standard deviations, and key percentiles of the dis-
tribution provide useful information for understanding the behavior of the 
chosen factors. 

Although we often rely on techniques that assume the underlying data 
generating process is normally distributed, or at least approximately, most 
fi nancial data is not. The underlying data generating processes that embody 
aggregate investor behavior and characterize the fi nancial markets are 
unknown and exhibit signifi cant uncertainty. Investor behavior is uncertain 
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because not all investors make rational decisions or have the same goals. 
Analyzing the properties of data may help us better understand how uncer-
tainty affects our choice and calibration of a model. 

Below we provide some examples of the cross-sectional characteristics 
of various factors. For ease of exposition we use histograms to evaluate the 
data rather than formal statistical tests. We let particular patterns or prop-
erties of the histograms guide us in the choice of the appropriate technique 
to model the factor. We recommend that an intuitive exploration should be 
followed by a more formal statistical testing procedure. Our approach here 
is to analyze the entire sample, all positive values, all negative values, and 
zero values. Although omitted here, a thorough analysis should also include 
separate subsample analysis. 

Example 1: EBITDA/EV

The fi rst factor we discuss is the earnings before interest taxes and amortiza-
tion to enterprise value (EBITDA/EV) factor. Enterprise value is calculated 
as the market value of the capital structure. This factor measures the price 
(enterprise value) investors pays to receive the cash fl ows (EBITDA) of a 
company. The economic intuition underlying this factor is that the valuation 
of a company’s cash fl ow determines the attractiveness of companies to an 
investor. 

Panel A of Exhibit 6.2 presents a histogram of all cross-sectional values 
of the EBITDA/EV factor throughout the entire history of the study. The 
distribution is close to normal, showing there is a fairly symmetric disper-
sion among the valuations companies receive. Panel B of Exhibit 6.2 shows 
that the distribution of all the positive values of the factor is also almost nor-
mally distributed. On the other hand, Panel C of Exhibit 6.2 shows that the 
distribution of the negative values is skewed to the left. However, because 
there are only a small number of negative values, it is likely that they will 
not greatly infl uence our model.

Example 2: Revisions

We evaluate the cross-sectional distribution of the earnings revisions fac-
tor.25 The revisions factor we use is derived from sell-side analyst earnings 
forecasts from the IBES database. The factor is calculated as the number 
of analysts who revise their earnings forecast upward minus the number of 
downward forecasts, divided by the total number of forecasts. The econom-

25For a representative study see, for example, Anthony Bercel, “Consensus 
Expectations and International Equity Returns,” Financial Analysts Journal, 50 
(1994), pp 76-80.
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EXHIBIT 6.2 Histograms of the Cross-Sectional Values for the EBITDA/EV Factor
Panel A: All Factor Values
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ic intuition underlying this factor is that there should be a positive relation 
to changes in forecasts of earnings and subsequent returns. 

In Panel A of Exhibit 6.3 we see that the distribution of revisions is 
symmetric and leptokurtic around a mean of about zero. This distribution 
ties with the economic intuition behind the revisions. Since business pros-
pects of companies typically do not change from month-to-month, sell-side 
analysts will not revise their earnings forecast every month. Consequently, 
we expect and fi nd the cross-sectional range to be peaked at zero. Panels B 
and C of Exhibits 6.3, respectively, show there is a smaller number of both 
positive and negative earnings revisions and each one of these distributions 
are skewed.

EXHIBIT 6.3 Histograms of the Cross-Sectional Values for the Revisions Factor
Panel A: All Factor Values
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EXHIBIT 6.3 (Continued)
Panel C: Negative Factor Values
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Example 3: Share Repurchase

We evaluate the cross-sectional distribution of the shares repurchases factor. 
This factor is calculated as the difference of the current number of common 
shares outstanding and the number of shares outstanding 12 months ago, 
divided by the number of shares outstanding 12 months ago. The economic 
intuition underlying this factor is that share repurchase provides information 
to investors about future earnings and valuation of the company’s stock.26 
We expect there to be a positive relationship between a reduction in shares 
outstanding and subsequent returns. 

We see in Panel A of Exhibit 6.4 that the distribution is leptokurtic. 
The positive values (see Panel B of Exhibit 6.4) are skewed to the right 
and the negative values (see Panel C of Exhibit 6.4) are clustered in a 
small band. The economic intuition underlying share repurchases is the 
following. Firms with increasing share count indicate they require addi-
tional sources of cash. This need could be an early sign that the fi rm is 
experiencing higher operating risks or fi nancial distress. We would expect 
these fi rms to have lower future returns. Firms with decreasing share count 
have excess cash and are returning value back to shareholders. Decreas-
ing share count could result because management believes the shares are 
undervalued. As expected, we fi nd the cross-sectional range to be peaked 
at zero (see Panel D of Exhibit 6.4) since not all fi rms issue or repurchase 
shares on a regular basis. 

26Gustavo Grullon and Roni Michaely, “The Information Content of Share 
Repurchase Programs,” Journal of Finance, 59 (2004), pp 651–680.
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SUMMARY

A factor is a common characteristic among a group of assets. Factors 
should be founded on sound economic intuition, market insight, or an 
anomaly.
Factors fall into three categories—macroeconomic, cross-sectional, and 
statistical factors. 

■

■

EXHIBIT 6.4 Histograms of the Cross-Sectional Values for the Share 
Repurchase Factor
Panel A: Positive Factor Values
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The main steps in the development of a factor-based trading strategy are 
(1) defi ning a trading idea or investment strategy, (2) developing factors, 
(3) acquiring and processing data, (4) analyzing the factors, (5) building 
the strategy, (6) evaluating the strategy, (7) backtesting the strategy, and 
(8) implementing the strategy.
Most trading strategies are exposed to risk. The main sources of risk are 
fundamental risk, noise trader risk, horizon risk, model risk, implemen-
tation risk, and liquidity risk.

■

■

EXHIBIT 6.4 (Continued)
Panel C: Negative Factor Values
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Factors are often derived from company characteristics and metrics, and 
market data. Examples of company characteristics and metrics include 
valuation ratios, operating effi ciency ratios, profi tability ratios, and sol-
vency ratios. Example of useful market data include analysts forecasts, 
prices and returns, and trading volume.
High quality data are critical to the success of a trading strategy. Model 
output is only as good as the data used to calibrate it.
Some common data problems and biases are backfi lling and restate-
ments of data, missing data, inconsistently reported data, and survivor-
ship and look-ahead biases.
The ability to detect and adjust outliers is crucial to a quantitative 
investment process.
Common methods used for adjusting data are standardization, orthog-
onalization, transformation, trimming, and winsorization.
The statistical properties of factors need to be carefully analyzed. Basic 
statistical measures include the time-series and cross-sectional averages 
of the mean, standard deviations, and key percentiles.

■

■

■

■

■

■
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CHAPTER 7
Factor-Based Trading Strategies II: 

Cross-Sectional Models 
and Trading Strategies

In the previous chapter we demonstrated how factors are constructed from 
company characteristics and market data. Subsequently, we discussed the 

analysis of the statistical properties of the factors. In this chapter we extend 
the analysis to include multiple factors with the purpose of developing a 
dynamic multifactor trading strategy that incorporates a number of com-
mon institutional constraints such as turnover, transaction costs, sector, and 
tracking error. For this purpose, we use a combination of growth, value, 
quality, and momentum factors. Our universe of stocks is the Russell 1000 
from December 1989 to December 2008, and we construct our factors by 
using the Compustat Point-In-Time and IBES databases.1

We begin by reviewing several approaches for the evaluation of return 
premiums and risk characteristics to factors, including portfolio sorts, fac-
tor models, factor portfolios, and information coeffi cients. We then turn to 
techniques that are used to combine several factors into a single model—a 
trading strategy. In particular, we discuss the data driven, factor model, heu-
ristic, and optimization approaches. It is critical to perform out-of-sample 
backtests of a trading strategy to understand its performance and risk char-
acteristics. We cover the split-sample and recursive out-of-sample tests.

Throughout this chapter, we provide a series of examples, including 
backtests of a multifactor trading strategy. As noted in the previous chap-
ter, the purpose of these examples is not to provide yet another profi table 
trading strategy, but rather to illustrate the process an analyst may follow 
when performing research. We emphasize that the factors that we use are 

1Refer to Appendix A for a complete list of the factors and data sets used in this 
chapter.

This chapter was co-authored with Joseph A. Cerniglia.
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well known and have for years been exploited by industry practitioners. We 
think that the value added of these examples is in the concrete illustration of 
the research and development process of a factor-based trading model.

CROSS-SECTIONAL METHODS FOR 
EVALUATION OF FACTOR PREMIUMS

There are several approaches used for the evaluation of return premiums 
and risk characteristics to factors. In this section, we discuss the four most 
commonly used approaches: portfolio sorts, factor models, factor portfo-
lios, and information coeffi cients. We examine the methodology of each 
approach and summarize its advantages and disadvantages.

In practice, to determine the right approach for a given situation there 
are several issues to consider. One determinant is the structure of the fi nan-
cial data. A second determinant is the economic intuition underlying the 
factor. For example, sometimes we are looking for a monotonic relationship 
between returns and factors while at other times we care only about extreme 
values. A third determinant is whether the underlying assumptions of each 
approach are valid for the data generating process at hand.

Portfolio Sorts

In the asset pricing literature, the use of portfolio sorts can be traced back to 
the earliest tests of the capital asset pricing model (CAPM). The goal of this 
particular test is to determine whether a factor earns a systematic premium. 
The portfolios are constructed by grouping together securities with simi-
lar characteristics (factors). For example, we can group stocks by market 
capitalization into 10 portfolios—from smallest to largest—such that each 
portfolio contains stocks with similar market capitalization. The next step 
is to calculate and evaluate the returns of these portfolios. 

The return for each portfolio is calculated by equally weighting the indi-
vidual stock returns. The portfolios provide a representation of how returns 
vary across the different values of a factor. By studying the return behavior 
of the factor portfolios, we may assess the return and risk profi le of the fac-
tor. In some cases, we may identify a monotonic relationship of the returns 
across the portfolios. In other cases, we may identify a large difference in 
returns between the extreme portfolios. Still in other cases, there may be no 
relationship between the portfolio returns. Overall, the return behavior of 
the portfolios will help us conclude whether there is a premium associated 
with a factor and describe its properties.
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One application of the portfolio sort is the construction of a factor 
mimicking portfolio (FMP). A FMP is a long-short portfolio that goes long 
stocks with high values of a factor and short stocks with low values of a fac-
tor, in equal dollar amounts. A FMP is a zero-cost factor trading strategy.

Portfolio sorts have become so widespread among practitioners and 
academics alike that they elicit few econometric queries, and often no econo-
metric justifi cation for the technique is offered. While a detailed discussion 
of these topics are beyond the scope of this book, we would like to point 
out that asset pricing tests used on sorted portfolios may exhibit a bias that 
favors rejecting the asset pricing model under consideration.2 

The construction of portfolios sorted on a factor is straightforward:

Choose an appropriate sorting methodology.
Sort the assets according to the factor.
Group the sorted assets into N portfolios (usually N = 5, or N = 10).
Compute average returns (and other statistics) of the assets in each 
portfolio over subsequent periods.

The standard statistical testing procedure for portfolios sorts is to use a Stu-
dent’s t-test to evaluate the signifi cance of the mean return differential between 
the portfolios of stocks with the highest and lowest values of the factor. 

Choosing the Sorting Methodology

The sorting methodology should be consistent with the characteristics of 
the distribution of the factor and the economic motivation underlying its 
premium. We list six ways to sort factors:

Method 1
Sort stocks with factor values from the highest to lowest.

Method 2
Sort stocks with factor values from the lowest to highest.

Method 3
First allocate stocks with zero factor values into the bottom portfolio.
Sort the remaining stocks with nonzero factor values into the remain-
ing portfolios.

For example, the dividend yield factor would be suitable for this sort-
ing approach. This approach aligns the factor’s distributional characteristics 
of dividend and non-dividend-paying stocks with the economic rationale. 
2For a good overview of the most common issues, see Jonathan B. Berk, “Sorting out 
Sorts,” Journal of Finance, 55 (2000), pp. 407-427 and references therein. 
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Typically, non-dividend-paying stocks maintain characteristics that are 
different from dividend paying stocks. So we group non-dividend-paying 
stocks into one portfolio. The remaining stocks are then grouped into port-
folios depending on the size of their nonzero dividend yields. We differenti-
ate among stocks with dividend yield because of two reasons: (1) the size of 
the dividend yield is related to the maturity of the company, and (2) some 
investors prefer to receive their investment return as dividends.

Method 4
Allocate stocks with zero factor values into the middle portfolio.
Sort stocks with positive factor values into the remaining higher port-
folios (greater than the middle portfolio).
Sort stocks with negative factor values into the remaining lower port-
folios (less than the middle portfolio).

Method 5
Sort stocks into partitions.
Rank assets within each partition.
Combine assets with the same ranking from the different partitions 
into portfolios.

An example will clarify this procedure. Suppose we want to rank stocks 
according to earnings growth on a sector neutral basis. First, we separate 
stocks into groups corresponding to their sector. Within each sector, we 
rank the stocks according to their earnings growth. Lastly, we group all 
stocks with the same rankings of earning growth into the fi nal portfolio. 
This process ensures that each portfolio will contain an equal number of 
stocks from every sector, thereby the resulting portfolios are sector neutral.

 
Method 6

Separate all the stocks with negative factors values. Split the group 
of stocks with negative values into two portfolios using the median 
value as the break point.
Allocate stocks with zero factor values into one portfolio.
Sort the remaining stocks with nonzero factor values into portfolios 
based on their factor values.

For an example of method 6, recall the discussion of the share repur-
chase factor from Chapter 6. We are interested in the extreme positive and 
negative values of this factor. As we see in Panel A of Exhibit 6.4, the dis-
tribution of this factors is leptokurtic with the positive values skewed to 
the right and the negative values clustered in a small range. By choosing 
method 6 to sort this variable, we are able to distinguish between those 

■

■

■

■

■

■

■

■

■

c07-CrossSection.indd   272c07-CrossSection.indd   272 1/6/10   11:34:54 AM1/6/10   11:34:54 AM



Factor-Based Trading Strategies II: Cross-Sectional Models and Trading Strategies  273

values we view as extreme. The negative values are clustered so we want 
to distinguish among the magnitudes of those values. We accomplish this 
because our sorting method separates the negative values by the median of 
the negative values. The largest negative values form the extreme negative 
portfolio. The positive values are skewed to the right, so we want to differ-
entiate between the larger from smaller positive values. When implementing 
portfolio method 6, we would also separate the zero values from the posi-
tive values.

The portfolio sort methodology has several advantages. The approach 
is easy to implement and can easily handle stocks that drop out or enter 
into the sample. The resulting portfolios diversify away idiosyncratic risk of 
individual assets and provide a way of assessing how average returns differ 
across different magnitudes of a factor. 

The portfolio sort methodology has several disadvantages. The result-
ing portfolios may be exposed to different risks beyond the factor the port-
folio was sorted on. In those instances, it is diffi cult to know which risk 
characteristics have an impact on the portfolio returns. Because portfolio 
sorts are nonparametric, they do not give insight as to the functional form 
of the relation between the average portfolio returns and the factor. 

Next we provide three examples to illustrate how the economic intu-
ition of the factor and cross sectional statistics can help determine the sort-
ing methodology.

Example 1: Portfolio Sorts Based on the EBITDA/EV Factor

In the previous chapter, we introduced the EBITDA/EV factor. Panel A of 
Exhibit 7.1 contains the cross-sectional distribution of the EBITDA/EV fac-
tor. This distribution is approximately normally distributed around a mean 
of 0.1, with a slight right skew. We use method 1 to sort the variables into 
fi ve portfolios (denoted by q1, …, q5) because this sorting method aligns the 
cross-sectional distribution of factor returns with our economic intuition 
that there is a linear relationship between the factor and subsequent return. 
In Panel B of Exhibit 7.1 we see that there is a large difference between the 
equally weighted monthly returns of portfolio 1 (q1) and portfolio 5 (q5). 
Therefore, a trading strategy (denoted by ls in the graph) that goes long 
portfolio 1 and short portfolio 5 appears to produce abnormal returns. 

Example 2: Portfolios Sorts Based on the Revisions Factor

In Panel A of Exhibit 7.2 we see that the distribution of earnings revisions 
is leptokurtic around a mean of about zero, with the remaining values sym-
metrically distributed around the peak. The pattern in this cross-sectional 
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distribution provides insight on how we should sort this factor. We use 
method 3 to sort the variables into fi ve portfolios. The fi rms with no change 
in revisions we allocate to the middle portfolio (portfolio 3). The stocks 
with positive revisions we sort into portfolios 1 and 2, according to the size 
of the revisions—while we sort stocks with negative revisions into portfolios 
4 and 5, according to the size of the revisions. In Panel B of Exhibit 7.2 we 
see there is the relationship between the portfolios and subsequent monthly 
returns. The positive relationship between revisions and subsequent returns 
agrees with the factor’s underlying economic intuition: we expect that fi rms 
with improving earnings should outperform. The trading strategy that goes 

EXHIBIT 7.1 Portfolio Sorts Based on the EBITDA/EV Factor

Panel A: All Factor Values
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long portfolio 1 and short portfolio 5 (denoted by ls in the graph) appears 
to produce abnormal returns. 

Example 3: Portfolio Sorts Based on the Share Repurchase Factor

In Panel A of Exhibit 7.3 we see the distribution of share repurchase is asym-
metric and leptokurtic around a mean of zero. The pattern in this cross-
sectional distribution provides insight on how we should sort this factor. We 
use method 6 to sort the variables into seven portfolios. We group stocks 
with positive revisions into portfolios 1 through 5 (denoted by q1, …, q5 in 
the graph) according to the magnitude of the share repurchase factor. We 

EXHIBIT 7.2 The Revisions Factor
Panel A: All Factor Values

–1.5 –1.0 –0.5 0.0 0.5 1.0

0
20

00
0

40
00

0
60

00
0

Panel B: Monthly Average Returns for the Sorted Portfolios

q1 q2 q3 q4 q5 ls
0.0

0.2

0.4

0.6

0.8

c07-CrossSection.indd   275c07-CrossSection.indd   275 1/6/10   11:34:55 AM1/6/10   11:34:55 AM



276 QUANTITATIVE EQUITY INVESTING

allocate stocks with negative repurchases into portfolios q−2 and q−1 where 
the median of the negative values determines their membership. We split the 
negative numbers because we are interested in large changes in the shares 
outstanding. In Panel B of Exhibit 7.3, unlike the other previous factors, we 
see that there is not a linear relationship between the portfolios. However, 
there is a large difference in return between the extreme portfolios (denoted 
by ls in the graph). This large difference agrees with the economic intuition 
of this factor. Changes in the number of shares outstanding is a potential 
signal for the future value and prospects of a fi rm. On the one hand, a 

EXHIBIT 7.3 The Share Repurchase Factor
Panel A: All Factor Values
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large increase in shares outstanding may (1) signal to investors the need 
for additional cash because of fi nancial distress, or (2) that the fi rm may be 
overvalued. On the other hand, a large decrease in the number of shares out-
standing may indicate that management believes the shares are undervalued. 
Finally, small changes in shares outstanding, positive or negative, typically 
do not have an impact on stock price and therefore are not signifi cant. 

Information Ratios for Portfolio Sorts

The information ratio (IR) is a statistic for summarizing the risk-adjusted 
performance of an investment strategy. It is defi ned as the ratio of the 
average excess return to the standard deviation of return. For actively 
managed equity long portfolios, the IR measures the risk-adjusted value a 
portfolio manager is adding relative to a benchmark.3 IR can also be used 
to capture the risk-adjusted performance of long-short portfolios from a 
portfolio sorts. When comparing portfolios built using different factors, 
the IR is an effective measure for differentiating the performance between 
the strategies. 

New Research on Portfolio Sorts

As we mentioned earlier in this section, the standard statistical testing pro-
cedure for portfolios sorts is to use a Student’s t-test to evaluate the mean 
return differential between the two portfolios containing stocks with the 
highest and lowest values of the sorting factor. However, evaluating the re-
turn between these two portfolios ignores important information about the 
overall pattern of returns among the remaining portfolios. 

Recent research by Patton and Timmermann4 provides new analytical 
techniques to increase the robustness of inference from portfolios sorts. The 
technique tests for the presence of a monotonic relationship between the 
portfolios and their expected returns. To fi nd out if there is a systematic 
relationship between a factor and portfolio returns, they use the monotonic 

3In Richard C. Grinold and Ronald N. Kahn, Active Portfolio Management: A Quan-
titative Approach for Providing Superior Returns and Controlling Risk (New York: 
McGraw-Hill, 1999), the authors discuss the differences between the t-statistic and 
the information ratio. Both measures are closely related in their calculation. The t-
statistic is the ratio of mean return of a strategy to its standard error. Grinold and 
Kahn state the related calculations should not obscure the distinction between the 
two ratios. The t-statistic measures the statistical signifi cance of returns while the IR 
measures the risk-reward trade-off and the value added by an investment strategy.
4Andrew J. Patton and Allan Timmermann, “Monotonicity in Asset Returns: New 
Tests with Applications to the Term Structure, the CAPM and Portfolio Sorts,” 
Working Paper, University of California San Diego, 2009.
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relation (MR) test to reveal whether the null hypothesis of no systematic 
relationship can be rejected in favor of a monotonic relationship predicted 
by economic theory. By MR it is meant that the expected returns of a factor 
should rise or decline monotonically in one direction as one goes from one 
portfolio to another. Moreover, Patton and Timmermann develop separate 
tests to determine the direction of deviations in support of or against the 
theory. 

The authors emphasize several advantages in using this approach. The 
test is nonparametric and applicable to other cases of portfolios such as 
two-way and three-way sorts. This test is easy to implement via bootstrap 
methods. Furthermore, this test does not require specifying the functional 
form (e.g., linear) in relating the sorting variable to expected returns. 

FACTOR MODELS

Classical fi nancial theory states that the average return of a stock is the pay-
off to investors for taking on risk. One way of expressing this risk-reward 
relationship is through a factor model. As we discussed in Chapter 5, a factor 
model can be used to decompose the returns of a security into factor-specifi c 
and asset-specifi c returns, 

 r f fi t i i t i K K t i t, , , , , ,= + + + +α β β ε1 1 …

where βi,1, βi,2, …, βi,K are the factor exposures of stock i, f1,t, f2,t, …, fK,t are 
the factor returns, αi is the average abnormal return of stock i, and εi,t is the 
residual.

This factor model specifi cation is contemporaneous, that is, both 
left- and right-hand side variables (returns and factors) have the same 
time subscript, t. For trading strategies one generally applies a forecast-
ing specifi cation where the time subscript of the return and the factors 
are t + h (h ≥ 1) and t, respectively. In this case, the econometric specifi -
cation becomes

 r f fi t h i i t i K K t i t h, , , , , ,+ += + + + +α β β ε1 1 …

How do we interpret a trading strategy based on a factor model? The 
explanatory variables represent different factors that forecast security returns, 
each factor with its associated factor premium. Therefore, future security 
returns are proportional to the stock’s exposure to the factor premium

 E r f fi t h t K t i t( | ,..., ), , ,+ = + ′1 α ββif
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and the variance of future stock return is given by

 Var r f f Ei t h t K t i t t i( | , ..., ) ( ), , ,+ = ′ ′1 ββ ββf f

where ββi i i i K= ( ′β β β, , ,, , , )1 2 …  and ft t t K tf f f= ′( , , , ), , ,1 2 … .
We covered the estimation of linear regression and factor models in 

Chapters 2 and 5. In the next section we discuss some specifi c econometric 
issues regarding cross-sectional regressions and factor models.

Econometric Considerations for Cross-Sectional Factor Models

In cross-sectional regressions where the dependent variable5 is a stock’s re-
turn and the independent variables are factors, inference problems may arise 
that are the result of violations of classical linear regression theory as ex-
plained in Chapter 2. The three most common problems are measurement 
problems, common variations in residuals, and multicollinearity.

Measurement Problems

Some factors are not explicitly given, but need to be estimated. These factors 
are estimated with an error. The estimation errors in the factors can have 
an impact on the inference from a factor model. This problem is commonly 
referred to as the “errors in variables problem.” For example, a factor that 
is comprised of a stock’s beta is estimated with an error because beta is de-
termined from a regression of stock excess returns on the excess returns of a 
market index. While beyond the scope of this book, several approaches have 
been suggested to deal with this problem.6 

Common Variation in Residuals 

The residuals from a regression often contain a source of common variation. 
Sources of common variation in the residuals are heteroskedasticity and se-
rial correlation. We note that when the form of heteroskedasticity and serial 
correlation is known, we can apply generalized least squares (GLS) covered 
in Chapter 2. If the form is not known, it has to be estimated, for example as 

5See, for example, Eugene F. Fama and Kenneth R. French, “The Capital Asset Pric-
ing Model: Theory and Evidence,” Journal of Economic Perspectives, 18 (2004), 
pp. 25-46.
6One approach is to use the Bayesian or model averaging techniques like the ones 
described in Chapter 4. For more details on the Bayesian approach, see, for example, 
Svetlozar T. Rachev, John S. J. Hsu, Biliana S. Bagasheva, and Frank J. Fabozzi, Bay-
sian Methods in Finance (Hoboken, NJ: John Wiley & Sons, 2008).
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part of feasible generalized least squares (FGLS), also discussed in Chapter 
2. We summarize some additional possibilities next.

Heteroskedasticity occurs when the variance of the residual differs 
across observations and affects the statistical inference in a linear regression. 
In particular, the estimated standard errors will be underestimated and the 
t-statistics will therefore be infl ated. Ignoring heteroskedasticity may lead 
the researcher to fi nd signifi cant relationships where none actually exist. 
As we discussed in Chapter 2, several procedures have been developed to 
calculate standard errors that are robust to heteroskedasticity, also known 
as heteroskedasticity-consistent standard errors. 

Serial correlation occurs when consecutive residuals terms in a linear 
regression are correlated, violating the assumptions of regression theory. If 
the serial correlation is positive then the standard errors are underestimated 
and the t-statistics will be infl ated. Cochrane7 suggests that the errors in 
cross-sectional regressions using fi nancial data are often off by a factor of 
10. Procedures are available to correct for serial correlation when calculat-
ing standard errors. 

When the residuals from a regression are both heteroskedastic and seri-
ally correlated, procedures are available to correct them. One commonly 
used procedure, also discussed in Chapter 8, is the one proposed by Newey 
and West. 

Petersen8 provides guidance on choosing the appropriate method to 
use for correctly calculating standard errors for panel data regression when 
the residuals are correlated. He shows the relative accuracy of the different 
methods depends on the structure of the data. In the presence of fi rm effects, 
where the residuals of a given fi rm may be correlated across years, OLS, 
Newey-West (modifi ed for panel data sets), or Fama-MacBeth,9 corrected 
for fi rst-order autocorrelation all produce biased standard errors. To cor-
rect for this, Petersen recommends using standard errors clustered by fi rms. 
If the fi rm effect is permanent, the fi xed effects and random effects models 
produce unbiased standard errors. In the presence of time effects, where the 
residuals of a given period may be correlated across difference fi rms (cross-
sectional dependence), Fama-MacBeth produces unbiased standard errors. 
Furthermore, standard errors clustered by time are unbiased when there are 
a suffi cient number of clusters. To select the correct approach he recom-
mends determining the form of dependence in the data and comparing the 
results from several methods. 

7John H. Cochrane, Asset Pricing (Princeton, NJ: Princeton University Press, 
2005).
8Mitchell A. Petersen, “Estimating Standard Errors in Finance Panel Sets: Compar-
ing Approached,” forthcoming, in Review of Financial Studies.
9We cover Fama-MacBeth regression in the next section.
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Gow, Ormazabal, and Taylor10 evaluate empirical methods used in 
accounting research to correct for cross-sectional and time-series depen-
dence. They review each of the methods and discuss when each approach 
produces valid inferences. They analyze several methods from the account-
ing literature that have not previously been formally evaluated. 

Multicollinearity

Multicollinearity occurs when two or more independent variables are highly 
correlated. We may encounter several problems when this happens. First, 
it is diffi cult to determine which factors infl uence the dependent variable. 
Second, the individual p values can be misleading—a p value can be high 
even if the variable is important. Third, the confi dence intervals for the re-
gression coeffi cients will be wide. They may even include zero. This implies 
that, we cannot determine whether an increase in the independent variable 
is associated with an increase—or a decrease—in the dependent variable. 
There is no formal solution based on theory to correct for multicollinearity. 
The best way to correct for multicollinearity is by removing one or more of 
the correlated independent variables. It can also be reduced by increasing 
the sample size.

Fama-MacBeth Regression

To address the inference problem caused by the correlation of the residuals, 
Fama and MacBeth11 proposed the following methodology for estimating 
cross-sectional regressions of returns on factors. For notational simplicity, 
we describe the procedure for one factor. The multifactor generalization is 
straightforward.

First, for each point in time t we perform a cross-sectional regression 

 r f i Ni t i t t i t, , , , , ,= + =β ε , 1 2 …

In the academic literature, the regressions are typically performed using 
monthly or quarterly data, but the procedure could be used at any frequency. 

The mean and standard errors of the time series of slopes and residuals 
are evaluated to determine the signifi cance of the cross-sectional regression. 
We estimate f and εi as the average of their cross-sectional estimates,

10Ian D. Gow, Gaizka Ormazabal, and Daniel J. Taylor, “Correcting for Cross-Sec-
tional and Time-Series Dependence in Accounting Research,” Working Paper, Kel-
logg School of Business and Stanford Graduate School, 2009.
11Eugene F. Fama and James D. MacBeth, “Risk, Return, and Equilibrium: Empirical 
Tests,” Journal of Political Economy, 81 (1973), pp. 607–636.
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Cochrane13 provides a detailed analysis of this procedure and compares 
it to cross-sectional OLS and pooled time-series cross-sectional OLS. He 
shows that when the factors do not vary over time and the residuals are 
cross-sectionally correlated, but not correlated over time, then these proce-
dures are all equivalent. 

Information Coeffi cients

To determine the forecast ability of a model, practitioners commonly use 
the information coeffi cient (IC). The IC is a linear statistic that measures 
the cross-sectional correlation between a factor and its subsequent realized 
return14

 IC corrt t k t t t k, ,( , )+ += f r

where ft is a vector of cross sectional factor values at time t and rt,t+k is a vec-
tor of returns over the time period t to t + k. 

Just like the standard correlation coeffi cient, the values of the IC range 
from −1 to +1. A positive IC indicates a positive relation between the factor 
and return. A negative IC indicates a negative relation between the factor 
and return. ICs are usually calculated over an interval, for example, daily 
or monthly. We can evaluate how a factor has performed by examining the 
time series behavior of the ICs. Looking at the mean IC tells how predictive 
the factor has been over time. 

12Fama and French, “The Capital Asset Pricing Model: Theory and Evidence.”
13Cochrane, Asset Pricing.
14See, for example, Grinold and Kahn, Active Portfolio Management A Quantita-
tive Approach for Providing Superior Returns and Controlling Risk, and Edward E. 
Qian, Ronald H. Hua, and Eric H. Sorensen, Quantitative Portfolio Management: 
Modern Techniques and Applications (New York: Chapman & Hall/CRC, 2007).
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An alternate specifi cation of this measure is to make ft the rank of a 
cross-sectional factor. This calculation is similar to the Spearman rank coef-
fi cient. By using the rank of the factor, we focus on the ordering of the factor 
instead of its value. Ranking the factor value reduces the unduly infl uence of 
outliers and reduces the infl uence of variables with unequal variances. For 
the same reasons we may also choose to rank the returns instead of using 
their numerical value. 

Sorensen, Qian, and Hua15 present a framework for factor analysis 
based on ICs. Their measure of IC is the correlation between the factor 
ranks, where the ranks are the normalized z-score of the factor,16 and subse-
quent return. Intuitively, this IC calculation measures the return associated 
with a one standard deviation exposure to the factor. Their IC calculation is 
further refi ned by risk adjusting the value. To risk adjust, the authors remove 
systematic risks from the IC and accommodate the IC for specifi c risk. By 
removing these risks, Qian and Hua17 show that the resulting ICs provide a 
more accurate measure of the return forecasting ability of the factor.

The subsequent realized returns to a factor typically vary over different 
time horizons. For example, the return to a factor based on price reversal is 
realized over short horizons, while valuation metrics such as EBITDA/EV 
are realized over longer periods. It therefore makes sense to calculate mul-
tiple ICs for a set of factor forecasts whereby each calculation varies the 
horizon over which the returns are measured. 

The IC methodology has many of the same advantages as regression 
models. The procedure is easy to implement. The functional relationship 
between factor and subsequent returns is known (linear).

ICs can also be used to assess the risk of factors and trading strategies. 
The standard deviation of the time series (with respect to t) of ICs for a par-
ticular factor (std(ICt,t+k)) can be interpreted as the strategy risk of a factor. 
Examining the time series behavior of std(ICt,t+k) over different time periods 
may give a better understanding of how often a particular factor may fail. 
Qian and Hua show that std(ICt,t+k) can be used to more effectively under-
stand the active risk of investment portfolios. Their research demonstrates 
that ex-post tracking error often exceeds the ex-ante tracking provided by 
risk models. The difference in tracking error occurs because tracking error is 
a function of both ex-ante tracking error from a risk model and the variabil-

15Eric H. Sorensen, Ronald Hua, and Edward Qian, “Contextual Fundamentals, 
Models, and Active Management,” Journal of Portfolio Management, 32 (2005), 
pp. 23–36.
16A factor normalized z-score is given by the formula z std-score (= −f f f) / ( )  where f 
is the factor, f  is the mean and std(f) is the standard deviation of the factor. 
17Ronald Hua and Edward Qian, “Active Risk and Information Ratio,” Journal of 
Investment Management, 2 (2004), pp. 1–15.
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284 QUANTITATIVE EQUITY INVESTING

ity of information coeffi cients, std(ICt,t+k). They defi ne the expected tracking 
error as

 σ σTE t t kstd IC N dis= +( ) ( ). model Rt

where N is the number of stocks in the universe (breath), σmodel is the risk 
model tracking error, and dis(Rt) is dispersion of returns18 defi ned by

 dis std r r rt t N t( ) ( , , ..., ), , ,Rt = 1 2

Example: Information Coeffi cients

Exhibit 7.4 displays the time-varying behavior of ICs for each one of the 
factors EBITDA/EV, growth of fi scal year 1 and fi scal year 2 earnings esti-
mates, revisions, and momentum. The graph shows the time series average 
of information coeffi cients 

 IC meank = ( )ICt,t+k

The graph depicts the information horizons for each factor, showing how 
subsequent return is realized over time. The vertical axis shows the size of 
the average information coeffi cient ICk  for k = 1, 2, …, 15.

EXHIBIT 7.4 Information Coeffi cients over Various Horizons for EBITDA/EV, Growth 
of Fiscal Year 1 and Fiscal Year 2 Earnings Estimates, Revisions, and Momentum Factors
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18We are conforming to the notation used in Qian and Hua, “Active Risk and In-
formation Ratio.” To avoid confusion Qian and Hua use dis() to describe the cross-
sectional standard deviation and std() to describe the time series standard deviation.
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Specifi cally, the EBITDA/EV factor starts at almost 0.03 and monotoni-
cally increases as the investment horizon lengthens from one month to 15 
months. At 15 months, the EBITDA/EV factor has an IC of 0.09, the highest 
value among all the factors presented in the graph. This relationship sug-
gests that the EBITDA/EV factor earns higher returns as the holding period 
lengthens. 

The other ICs of the factors in the graph are also interesting. The growth 
of fi scal year 1 and fi scal year 2 earnings estimates factor is defi ned as the 
growth in current fi scal year (fy1) earnings estimates to the next fi scal year 
(fy2) earnings estimates provided by sell-side analysts.19 We will call the 
growth of fi scal year 1 and fi scal year 2 earnings estimates factor the earn-
ings growth factor throughout the remainder of the chapter. The IC is nega-
tive and decreases as the investment horizon lengthens. The momentum fac-
tor starts with a positive IC of 0.02 and increases to approximately 0.055 in 
the fi fth month. After the fi fth month, the IC decreases. The revisions factor 
starts with a positive IC and increases slightly until approximately the 11th 
month at which time the factor begins to decay.

Looking at the overall patterns in the graph, we see that the return 
realization pattern to different factors varies. One notable observation is 
that the returns to factors don’t necessarily decay but sometimes grow with 
the holding period. Understanding the multiperiod effects of each factor is 
important when we want to combine several factors. This information may 
infl uence how one builds a model. For example, we can explicitly incorpo-
rate this information about information horizons into our model by using 
a function that describes the decay or growth of a factor as a parameter to 
be calibrated. Implicitly, we could incorporate this information by changing 
the holding period for a security traded for our trading strategy. Specifi cally, 
Sneddon20 discusses an example that combines one signal that has short-
range predictive power with another that has long-range power. Incorpo-
rating this information about the information horizon often improves the 
return potential of a model. Kolm21 describes a general multiperiod model 
that combines information decay, market impact costs, and real world con-
straints. 

19The earnings estimates come from the IBES database. See Appendix A for a more 
detailed description of the data.
20Leigh Sneddon, “The Tortoise and the Hare: Portfolio Dynamics for Active Man-
agers,” Journal of Investing, 2 (2008), pp. 106–111.
21Petter N. Kolm, “Multi-Period Portfolio Optimization with Transaction Costs, Al-
pha Decay, and Constraints”, Working Paper, Courant Institute of Mathematical 
Sciences, New York University, 2010.
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Factor Portfolios 

Factor portfolios are constructed to measure the information content of a 
factor. The objective is to mimic the return behavior of a factor and minimize 
the residual risk. Similar to portfolio sorts, we evaluate the behavior of these 
factor portfolios to determine whether a factor earns a systematic premium. 

Typically, a factor portfolio has a unit exposure to a factor and zero 
exposure to other factors. Construction of factor portfolios requires holding 
both long and short positions. We can also build a factor portfolio that has 
exposure to multiple attributes, such as beta, sectors, or other characteristics. 
For example, we could build a portfolio that has a unit exposure to book-
to-price and small size stocks. Portfolios with exposures to multiple factors 
provide the opportunity to analyze the interaction of different factors. 

A Factor Model Approach 

By using a multifactor model, we can build factor portfolios that control 
for different risks.22 We decompose return and risk at a point in time into a 
systematic and specifi c component using the regression:

 r = Xb + u

where r is an N vector of excess returns of the stocks considered, X is an N 
by K matrix of factor loadings, b is a K vector of factor returns, and u is a N 
vector of fi rm specifi c returns (residual returns). Here, we assume that fac-
tor returns are uncorrelated with the fi rm specifi c return. Further assuming 
that fi rm specifi c returns of different companies are uncorrelated, the N by 
N covariance matrix of stock returns V is given by

 V XFX= ′ + ΔΔ

where F is the K by K factor return covariance matrix and ΔΔ  is the N by N 
diagonal matrix of variances of the specifi c returns.

We can use the Fama-MacBeth procedure discussed earlier to estimate 
the factor returns over time. Each month, we perform a GLS regression to 
obtain

 b X X X r= ′ ′− − −( )ΔΔ ΔΔ1 1 1

22This derivation of factor portfolios is presented in Grinold and Kahn, Active Port-
folio Management A Quantitative Approach for Providing Superior Returns and 
Controlling Risk. 
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OLS would give us an unbiased estimate, but since the residuals are hetero-
skedastic the GLS methodology is preferred and will deliver a more effi cient 
estimate. The resulting holdings for each factor portfolio are given by the 
rows of ( )′ − − −X X XΔΔ ΔΔ1 1 1.

An Optimization-Based Approach 

A second approach to build factor portfolios uses mean-variance optimiza-
tion. Using optimization techniques provide a fl exible approach for imple-
menting additional objectives and constraints.23 

Using the notation from the previous subsection, we denote by X the 
set of factors. We would like to construct a portfolio that has maximum 
exposure to one target factor from X (the alpha factor), zero exposure to 
all other factors, and minimum portfolio risk. Let us denote the alpha fac-
tor by Xα and all the remaining ones by Xσ. Then the resulting optimization 
problem takes the form

 
max

. .

w
w X w Vw

w X

′ − ′⎧
⎨
⎩

⎫
⎬
⎭

′ =

a

s t

1
2

0

λ

σ

The analytical solution to this optimization problem is given by 

 h* - - -= − ′( ) ′⎡
⎣⎢

⎤
⎦⎥

−1 1 1 1 1

λ σ σ σ σ αV I X X V X X V X

We may want to add additional constraints to the problem. Constraints 
are added to make factor portfolios easier to implement and meet addi-
tional objectives. Some common constraints include limitations on turnover, 
transaction costs, the number of assets, and liquidity preferences. These 
constraints24 are typically implemented as linear inequality constraints, as 
discussed in Chapter 8, where no analytical solution is available and we 
have to resort to quadratic programming (QP).25 We provide an example of 
this approach at the end of this chapter.

23Dimitris Melas, Raghu Suryanarayanan, and Stefano Cavaglia, “Effi cient Replica-
tion of Factor Returns,” MSCI Barra Research Insight, June 2009.
24An exception is the constraint on the number of assets that results in integer con-
straints.
25For a more detailed discussion on portfolio optimization problems and optimiza-
tion software see, for example, Frank J. Fabozzi, Petter N. Kolm, Dessislava Pacha-
manova, and Sergio M. Focardi, Robust Portfolio Optimization and Management 
(Hoboken, NJ: John Wiley & Sons, 2007).
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PERFORMANCE EVALUATION OF FACTORS

Analyzing the performance of different factors is an important part of the 
development of a factor-based trading strategy. A researcher may construct 
and analyze over a hundred different factors, so the means to evaluate and 
compare these factors is needed. Most often this process starts by trying to 
understand the time-series properties of each factor in isolation and then 
study how they interact with each other.

To give a basic idea of how this process may be performed, we use the 
fi ve factors introduced earlier in this chapter: EBITDA/EV, revisions, share 
repurchase, momentum, and earnings growth. These are a subset of the fac-
tors that we use in the factor trading strategy model discussed later in the 
chapter. We choose a limited number of factors for ease of exposition. In 
particular, we emphasize those factors that possess more interesting empiri-
cal characteristics.

Panel A of Exhibit 7.5 presents summary statistics of monthly returns of 
long-short portfolios constructed from these factors. We observe that the aver-
age monthly return ranges from −0.05% for the earnings growth to 0.90% 
for the momentum factor. The t-statistics for the mean return are signifi cant at 
the 95% level for the EBITDA/EV, share repurchase, and momentum factors. 
The monthly volatility ranges from 3.77% for the revisions factor to 7.13% 
for the momentum factor. In other words, the return and risk characteristics 
among factors vary signifi cantly. We note that the greatest monthly draw-
down has been large to very large for all of the factors, implying signifi cant 
downside risk. Overall, the results suggest that there is a systematic premium 
associated with the EBITDA/EV, share repurchase, and momentum factors.

Let pctPos and pctNeg denote the fraction of positive and negative 
returns over time, respectively. These measures offer another way of inter-
preting the strength and consistency of the returns to a factor. For example, 
EBITDA/EV and momentum have t-statistics of 2.16 and 1.90, respectively, 
indicating that the former is stronger. However, pctPos (pctNeg) are 0.55 
versus 0.61 (0.45 versus 0.39) showing that positive returns to momentum 
occur more frequently. This may provide reassurance of the usefulness of the 
momentum factor, despite the fact that its t-statistic is below the 95% level.

Panel B of Exhibit 7.5 presents unconditional correlation coeffi cients of 
monthly returns for long-short portfolios. The comovement of factor returns 
varies among the factors. The lowest correlation is −0.28 between EBITDA/
EV and revisions. The highest correlation is 0.79 between momentum and 
revisions. In addition, we observe that the correlation between revisions and 
share repurchase, and between EBITDA/EV and earnings growth are close 
to zero. The broad range of correlations provides evidence that combining 
uncorrelated factors could produce a successful strategy.
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290 QUANTITATIVE EQUITY INVESTING

Exhibit 7.6 presents the cumulative returns for the long-short portfo-
lios. The returns of the long-short factor portfolios experience substantial 
volatility. We highlight the following patterns of cumulative returns for the 
different factors: 

The cumulative return of the revisions factor is positive in the early 
periods (12/1989 to 6/1998). While it is volatile, its cumulative return 
is higher in the next period (7/1998 to 7/2000). It deteriorates sharply 
in the following period (8/2000 to 6/2003), and levels out in the later 
periods (7/2003 to 12/2008). 
The performance of the EBITDA/EV factor is consistently positive in 
the early periods (12/1989 to 9/1998), deteriorates in the next period 
(10/1998 to 1/2000) and rebounds sharply (2/2000 to 7/2002), grows at 
slower but more historically consistent rate in the later periods (8/2002 to 
4/2007), deteriorates in the next period (5/2007 to 9/2007), and returns to 
more historically consistent returns in last period (10/2007 to 12/2008). 
The cumulative return of the share repurchase factor grows at a slower 
pace in the early years (12/1989 to 5/1999), falls slightly in the middle 
periods (6/1999 to 1/2000), rebounds sharply (2/2000 to 7/2002), falls 

■

■

■

EXHIBIT 7.6 Cumulative Returns of Long-Short Portfolios
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then fl attens out in the next period (8/2002 to 4/2008), and increases at 
a large rate late in the graph (5/2008 to 12/2008). 
The momentum factor experiences the largest volatility. This factor 
performs consistently well in the early period (12/1989 to 12/1998), 
experiences sharp volatility in the middle period (1/1999 to 5/2003), 
fl attens out (6/2003 to 6/2007), and grows at an accelerating rate from 
(7/2007 to 12/2008). 

The performance of the earnings growth factor is fl at or negative 
throughout the entire period. The overall pattern of the cumulative returns 
among the factors clearly illustrate that factor returns and correlations are 
time varying.

In Panel A of Exhibit 7.7 we present summary statistics of the monthly 
information coeffi cients of the factors. The average monthly information 
coeffi cients range from 0.03 for EBITDA/EV and momentum, to 0.01 for 
the share repurchase factor. The t-statistics for the mean ICs are signifi cant 
at the 95% level for all factors except earnings growth. With the exception 
of share repurchase and earnings growth, the fraction of positive returns of 
the factors are signifi cantly greater than that of the negative returns. 

The share repurchase factor requires some comments. The information 
coeffi cient is negative, in contrast to the positive return in the long-short 
portfolio sorts, because negative share repurchases are correlated with sub-
sequent return. The information coeffi cient is lower than we would expect 
because there is not a strong linear relation between the return and the mea-
sures. As the results from the portfolio sorts indicate, the extreme values of 
this factor provide the highest returns. 

Panel B of Exhibit 7.7 displays unconditional correlation coeffi cients 
of the monthly information coeffi cients. The comovement of the ICs factor 
returns varies among the factors. The lowest correlation is −0.66 between 
EBITDA/EV and share repurchases. But again this should be interpreted 
with caution because it is negative repurchases that we view as attractive. 
The highest correlation reported in the exhibit is 0.79 between momen-
tum and revisions. Similar to the correlation of long-short factor portfolio 
returns, the diverse set of correlations provides evidence that combining 
uncorrelated factors may produce a successful strategy.

In Panel A of Exhibit 7.8 we present summary statistics of the time 
series average of the monthly coeffi cients from the Fama-MacBeth (FM) 
regressions of the factors. The information provided by the FM coeffi -
cients differs from the information provided by portfolio sorts. The FM 
coeffi cients show the linear relationship between the factor and subsequent 
returns, while the results from the portfolio sorts provide information on 
the extreme values of the factors and subsequent returns. The difference in 

■
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294 QUANTITATIVE EQUITY INVESTING

the size of the mean returns between the FM coeffi cients and portfolio sorts 
exits partially because the intercept terms from the FM regressions are not 
reported in the exhibit. 

The average monthly FM coeffi cient ranges from −0.18 for share repur-
chase to 0.31 for the momentum factor. Again the share repurchase results 
should be interpreted with caution because it is negative repurchases that 
we view as attractive. The t-statistics for the mean ICs are signifi cant at the 
95% level for the EBITDA/EV and share repurchase factors. 

Also, we compare the results of portfolio sorts in Panel A of Exhibit 7.7 
with the FM coeffi cients in Panel A of Exhibit 7.8. The rank ordering of the 
magnitude of factor returns is similar between the two panels. The t-statistics 
are slightly higher in the FM regressions than the portfolio sorts. The correla-
tion coeffi cients for the portfolio sorts in Panel B of Exhibit 7.7 are consistent 
with the FM coeffi cients in Panel B of Exhibit 7.8 for all the factors except for 
shares repurchases. The results for share repurchases needs to be interpreted 
with caution because it is negative repurchases that we view as attractive. The 
portfolio sorts take that into account while FM regressions do not.

To better understand the time variation of the performance of these 
factors, we calculate rolling 24-month mean returns and correlations of the 
factors. The results are presented in Exhibit 7.9. We see that the returns 
and correlations to all factors are time varying. A few of the time series 

EXHIBIT 7.9 Rolling 24-Month Mean Returns for the Factors
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experience large volatility in the rolling 24-month returns. The EBITDA/EV 
factor shows the largest variation followed by the momentum and share 
repurchase factors. All factors experience periods where the rolling average 
returns are both positive and negative. 

Exhibit 7.10 presents the rolling correlation between pairs of the fac-
tors. There is substantial variability in many of the pairs. In most cases the 
correlation moves in a wave-like pattern. This pattern highlights the time-
varying property of the correlations among the factors. This property will 
be important to incorporate in a factor trading model. The most consistent 
correlation is between momentum and revisions factors and this correlation 
is, in general, fairly high.

MODEL CONSTRUCTION METHODOLOGIES FOR A 
FACTOR-BASED TRADING STRATEGY

In the previous section we analyzed the performance of each factor. The 
next step in building our trading strategy is to determine how to combine 
the factors into one model. The key aspect of building this model is to (1) 

EXHIBIT 7.10 Rolling 24-Month Correlations of Monthly Returns for the Factors
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296 QUANTITATIVE EQUITY INVESTING

determine what factors to use out of the universe of factors that we have, 
and (2) how to weight them. 

We describe four methodologies to combine and weight factors to build 
a model for a trading strategy. These methodologies are used to translate the 
empirical work on factors into a working model. Most of the methodologies 
are fl exible in their specifi cation and there is some overlap between them. 
Though the list is not exhaustive, we highlight those processes frequently 
used by quantitative portfolio managers and researchers today. The four 
methodologies are the data driven, the factor model, the heuristic, and the 
optimization approaches.

It is important to be careful how each methodology is implemented. In 
particular, it is critical to balance the iterative process of fi nding a robust 
model with good forecasting ability versus fi nding a model that is a result 
of data mining. 

The Data Driven Approach

A data driven approach uses statistical methods to select and weight factors in 
a forecasting model. This approach uses returns as the independent variables 
and factors as the dependent variables. There are a variety of estimation pro-
cedures, such as neural nets, classifi cation trees, and principal components, 
that can be used to estimate these models. Usually a statistic is established to 
determine the criteria for a successful model. The algorithm of the statistical 
method evaluates the data and compares the results against the criteria.

Many data driven approaches have no structural assumptions on poten-
tial relationships the statistical method fi nds. Therefore, it is sometimes dif-
fi cult to understand or even explain the relationship among the dependent 
variables used in the model. 

Deistler and Hamann26 provide an example of a data driven approach 
to model development. The model they develop is used for forecasting the 
returns to fi nancial stocks. To start, they split their data sample into two 
parts—an in-sample part for building the model, and out-of-sample part 
to validate the model. They use three different types of factor models for 
forecasting stocks returns: quasi-static principal components, quasi-static 
factor models with idiosyncratic noise, and reduced rank regression. For 
model selection Deistler and Hamann use an iterative approach where they 
fi nd the optimal mix of factors based on the Akaike’s information criterion 
and the Bayesian information criterion (see Chapter 3). A large number of 
different models are compared using the out-of-sample data. They fi nd that 
the reduced rank model provides the best performance. This model pro-
26Manfred Deistler and Eva Hamann, “Identifi cation of Factor Models for Forecast-
ing Returns,” Journal of Financial Econometrics, 2 (2005), pp. 256–281.
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duced the highest out-of-sample R2s, hit rates,27 and Diebold Mariano test 
statistic28 among the different models evaluated. 

The Factor Model Approach

We introduced factor models in Chapter 5. In this section we will briefl y ad-
dress the use of factor models for forecasting. The goal of the factor model 
is to develop a parsimonious model that forecast returns accurately. One 
approach is for the researcher to predetermine the variables to be used in the 
factor model based on economic intuition. The model is estimated and then 
the estimated coeffi cients are used to produce the forecasts. 

A second approach is to use statistical tools for model selection. In this 
approach we construct several models—often by varying the factors and the 
number of factors used—and have them compete against each other, just 
like in a horse race. We then choose the best performing model. 

Factor model performance can be evaluated in three ways. We can eval-
uate the fi t, forecast ability, and economic signifi cance of the model. The 
measure to evaluate the fi t of a model is based on statistical measures includ-
ing the model’s R2 and adjusted R2, and F- and t-statistics of the model 
coeffi cients. 

There are several methods to evaluate how well a model will forecast. 
West29 discusses the theory and conventions of several measures of relative 
model quality. These methods use the resulting time series of predictions 
and prediction errors from a model. In the case where we want to com-
pare models, West suggests ratios or differences of mean; mean-square or 
mean-absolute prediction errors; correlation between one model’s prediction 
and another model’s realization (also know as forecast encompassing); or 
comparison of utility or profi t-based measures of predictive ability. In other 
cases where we want to assess a single model, he suggests measuring the cor-
relation between prediction and realization, the serial correlation in one step 

27The hit rate is calculated as 

 h
T T

sign y yt
i

t t
i

t T

T

=
− −
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( ˆ )|

where yt
i  is one-step ahead realized value and ˆ |yt t

i
−1  is the one-step ahead predicted 

value.
28For calculation of this measure, see Francis X. Diebold and Roberto S. Mariano, 
“Comparing Predictive Accuracy,” Journal of Business and Economic Statistics, 13 
(2005), pp. 253–263.
29Kenneth D. West, “Forecast Evaluation,” in Graham Elliot, Clive W. J. Granger, 
and Allan G. Timmermann (eds.), Handbook of Economic Forecasting, Volume 1 
(Amsterdam: Elsevier, 2006).
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ahead prediction errors, the ability to predict direction of change, and the 
model prediction bias.

We can evaluate economic signifi cance by using the model to predict 
values and using the predicted values to build portfolios. The profi tability 
of the portfolios is evaluated by examining statistics such as mean returns, 
information ratios, dollar profi ts, and drawdown.

The Heuristic Approach

The heuristic approach is another technique used to build trading models.
Heuristics are based on common sense, intuition, and market insight and 
are not formal statistical or mathematical techniques designed to meet a 
given set of requirements. Heuristic-based models result from the judgment 
of the researcher. The researcher decides the factors to use, creates rules in 
order to evaluate the factors, and chooses how to combine the factors and 
implement the model.

Piotroski30 applies a heuristic approach in developing an investment 
strategy for high value stocks (high book-to-market fi rms). He selects nine 
fundamental factors31 to measure three areas of the fi rm’s fi nancial condi-
tion: profi tability, fi nancial leverage and liquidity, and operating effi ciency. 
Depending on the factor’s implication for future prices and profi tability, 
each factor is classifi ed as either “good” or “bad.” An indicator variable for 
the factor is equal to one (zero) if the factor’s realization is good (bad). The 
sum of the nine binary factors the F_SCORE. This aggregate score measures 
the overall quality, or strength, of the fi rm’s fi nancial position. According 
to the historical results provided by Piotroski, this trading strategy is very 
profi table. Specifi cally, a trading strategy that buys expected winners and 
shorts expected losers would have generated a 23% annual return between 
1976 and 1996. 

There are different approaches to evaluate a heuristic approach. Sta-
tistical analysis can be used to estimate the probability of incorrect out-
comes. Another approach is to evaluate economic signifi cance. For example, 
Piotroski determines economic signifi cance by forming portfolios based on 
the fi rm’s aggregate score (F_SCORE) and then evaluates the size of the 
subsequent portfolio returns. 

30Joseph D. Piotroski, “Value Investing: The Use of Historical Financial Statement 
Information to Separate Winners from Losers,” Journal of Accounting Research, 38, 
Supplement (2000), pp. 1–41.
31The nine factors are return on assets, change in return on assets, cash fl ow from 
operations scaled by total assets, cash compared to net income scaled by total assets, 
change in long-term debt/assets, change in current ratio, change in shares outstand-
ing, change in gross margin, and change in asset turnover.
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There is no theory that can provide guidance when making modeling 
choices in the heuristic approach. Consequently, the researcher has to be 
careful not to fall into the data mining trap.

The Optimization Approach

In this approach, we use optimization to select and weight factors in a fore-
casting model. An optimization approach allows us fl exibility in calibrating 
the model and simultaneously optimize an objective function specifying a 
desirable investment criteria.

There is substantial overlap between optimization use in forecast model-
ing and portfolio construction. We cover portfolio optimization techniques 
in Chapters 8 through 10. There is frequently an advantage in working with 
the factors directly, as opposed to all individual stocks. The factors provide 
a lower dimensional representation of the complete universe of the stocks 
considered. Besides the dimensionality reduction, which reduces computa-
tional time, the resulting optimization problem is typically more robust to 
changes in the inputs.

Sorensen, Hua, Qian, and Schoen32 present a process that uses an opti-
mization framework to combine a diverse set of factors (alpha sources) into 
a multifactor model. Their procedure assigns optimal weights across the 
factors to achieve the highest information ratio. They show that the optimal 
weights are a function of average ICs and IC covariances. Specifi cally,

 w (IC)∝ ×−Cov 1 IC

where w is the vector of factor weights, IC  is the vector of the average of 
the risk-adjusted ICs, and Cov(IC)–1 is the inverse of the covariance matrix 
of the ICs. 

In a subsequent paper, Sorensen, Hua, and Qian33 apply this optimi-
zation technique to capture the idiosyncratic return behavior of different 
security contexts. The contexts are determined as a function of stock risk 
characteristics (value, growth, or earnings variability). They build a mul-
tifactor model using the historical risk-adjusted IC of the factors, deter-
mining the weights of the multifactor model by maximizing the IR of the 
combined factors. Their research demonstrates that the weights to factors of 

32Eric H. Sorensen, Ronald Hua, Edward Qian, and Robert Schoen, “Multiple Alpha 
Sources and Active Management,” Journal of Portfolio Management, 40 (2004), pp. 
39–45.
33Eric H. Sorensen, Ronald Hua, and Edward Qian, “Contextual Fundamentals, 
Models, and Active Management,” Journal of Portfolio Management, 32 (2005), 
pp. 23–36.
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an alpha model (trading strategy) differ depending on the security contexts 
(risk dimensions). The approach improves the ex post information ratio 
compared to a model that uses a one-size-fi ts-all approach.

Importance of Model Construction and Factor Choice

Empirical research shows that the factors and the weighting scheme of the 
factors are important in determining the effi cacy of a trading strategy model. 
Using data from the stock selection models of 21 major quantitative funds, 
the quantitative research group at Sanford Bernstein analyzed the degree of 
overlap in rankings and factors.34 They found that the models maintained 
similar exposures to many of the same factors. Most models showed high 
exposure to cash fl ow based valuations (e.g., EV/EBITDA) and price mo-
mentum, and less exposure to capital use, revisions, and normalized valu-
ation factors. Although they found commonality in factor exposures, the 
stock rankings and performance of the models were substantially different. 
This surprising fi nding indicates that model construction differs among the 
various stock selection models and provides evidence that the effi cacy of 
common signals has not been completely arbitraged away. 

A second study by the same group showed commonality across models 
among cash fl ow and price momentum factors, while stock rankings and 
realized performance were vastly different.35 They hypothesize that the dif-
ference between good and poor performing models may be related to a few 
unique factors identifi ed by portfolio managers, better methodologies for 
model construction (e.g., static, dynamic, or contextual models), or good 
old-fashioned luck. 

Example: A Factor-Based Trading Strategy 

In building this model, we hope to accomplish the following objectives: 
identify stocks that will outperform and underperform in the future, main-
tain good diversifi cation with regard to alpha sources, and be robust to 

34Vadim Zlotnikov, Ann Marie Larson, Wally Cheung, Serdar Kalaycioglu, Ronna 
D. Lao, and Zachary A. Apoian, “Quantitative Research—January 2007: Survey of 
Quantitative Models—Vastly Different Rankings and Performance, Despite Similar-
ity in Factor Exposures,” Bernstein Research, January 16, 2007.
35Vadim Zlotnikov, Ann Marie Larson, Serdar Kalaycioglu, Ronna D. Lao, and 
Zachary A. Apoian, “Quantitative Research: Survey of Quantitative Models—Con-
tinued Emphasis on EV/EBIT, Momentum, Increased Focus on Capital Use; Some 
Evidence on Non-linear Factor Implementation; Low Return Consistency,” Bern-
stein Research, November 21, 2007.
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changing market conditions such as time varying returns, volatilities, and 
correlations.

We have identifi ed 10 factors that have an ability to forecast stock 
returns.36 Of the four model construction methodologies discussed previ-
ously, we use the optimization framework to build the model as it offers the 
greatest fl exibility.

We determine the allocation to specifi c factors by solving the following 
optimization problem

 

min

.
w

w w′ ≥

≥

≥
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∈

∑
∑
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with the budget constraint

 ′ = = ′w e e1 1 1, ( ,..., )

where ΣΣ  is the covariance matrix of factor returns, Value and Growth are 
the sets of value and growth factors, and δi is equal to one if wi > 0 or zero 
otherwise.37 

We constrain the minimum exposure to values factors to be greater than 
or equal to 35% of the weight in the model based on the belief that there is 
a systematic long-term premium to value. 

Using the returns of our factors, we perform this optimization monthly 
to determine which factors to hold and in what proportions. Exhibit 7.11 
displays how the factor weights change over time. 

In the next step, we use the factor weights to determine the attractive-
ness of the stocks in our universe. We score each stock in the universe by 
multiplying the standardized values of the factors by the weights provided 
by the optimization of our factors. Stocks with high scores are deemed 
attractive and stocks with low scores are deemed unattractive. 

To evaluate how the model performs, we sort the scores of stocks into 
fi ve equally weighted portfolios and evaluate the returns of these portfolios. 
Panel A of Exhibit 7.12 provides summary statistics of the returns for each 
portfolio. Note that there is a monotonic increasing relationship among the 
36We use a combination of growth, value, quality, and momentum factors. Appendix 
A contains defi nitions of all of them.
37See Chapter 8 for a discussion of integer constraints.
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EXHIBIT 7.12 Summary of Model Results
Panel A: Summary Statistics of the Model Returns

q1 q2 q3 q4 q5 LS

Mean 1.06 0.98 0.83 0.65 0.12 0.94 

Stdev 5.64 5.18 4.98 5.31 5.88 2.82 

Median 1.61 1.61 1.58 1.55 1.11 0.71 

Max 15.79 11.18 10.92 13.26 13.01 12.84 

Min –23.59 –23.32 –19.45 –21.25 –24.51 –6.87

Num 169 169 169 169 169 169

t-statistic 2.44 2.45 2.17 1.59 0.27 4.33 

IR 0.19 0.19 0.17 0.12 0.02 0.33 

Panel B: Summary Statistics of Turnover for Portfolio 1 (q1) and Portfolio 5 (q5)

q1 q5

Mean 0.20 0.17 

Stdev 0.07 0.06 

Median 0.19 0.16 

Max 0.53 0.39 

Min 0.07 0.05 

Num 169 169

t-statistic 36.74 39.17 

portfolios with portfolio 1 (q1) earning the highest return and portfolio 5 
(q5) earning the lowest return. Over the entire period, the long-short port-
folio (LS) that is long portfolio 1 and short portfolio 5 averages about 1% 
per month with a monthly Sharpe ratio of 0.33. Its return is statistically 
signifi cant at the 97.5% level.

Panel B of Exhibit 7.12 shows the monthly average stock turnover of 
portfolio 1 (q1) and portfolio 5 (q5). Understanding how turnover varies 
from month to month for a trading strategy is important. If turnover is 
too high then it might be prohibitive to implement because of execution 
costs. While beyond the scope of this book, we could explicitly incorporate 
transaction costs in this trading strategy using a market impact model such 
as one of the models described in Chapter 11.38 Due to the dynamic nature 

38See Joseph A. Cerniglia and Petter N. Kolm, “Factor-Based Trading Strategies and 
Market Impact Costs,” Working Paper, Courant Institute of Mathematical Sciences, 
New York University, 2010.
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of our trading strategy—where active factors may change from month to 
month—our turnover of 20% is a bit higher than what would be expected 
using a static approach.

We evaluate the monthly information coeffi cient between the model 
scores and subsequent return. This analysis provides information on how 
well the model forecasts return. The monthly mean information coeffi cient 
of the model score is 0.03 and is statistically signifi cant at the 99% level. The 
monthly standard deviation is 0.08. We note that both the information coef-
fi cients and returns were stronger and more consistent in the earlier periods.

Exhibit 7.13 displays the cumulative return to portfolio 1 through 
portfolio 5. Throughout the entire period there is a monotonic relationship 
between the portfolios. To evaluate the overall performance of the model, 
we analyze the performance of the long-short portfolio returns. We observe 
that the model performs well in December 1994 to May 2007 and April 
2008 to June 2008. This is due to the fact that our model correctly picked 
the factors that performed well in those periods. We note that the model 
performs poorly in July 2007–April 2008, losing an average of 1.09% a 
month. The model appears to suffer from the same problems many quan-
titative equity funds and hedge funds faced during this period.39 The worst 
performance in a single month was –6.87, occurring in January 2001, and 
the maximum drawdown of the model was −13.7%, occurring during the 
period from May 2006 (peak) to June 2008 (trough).40

To more completely understand the return and risk characteristic of 
the strategy, we would have to perform a more detailed analysis, including 
risk and performance attribution, and model sensitivity analysis over the 
full period as well as over subperiods. As the turnover is on the higher side, 
we may also want to introduce turnover constraints or use a market impact 
model as described in Chapter 11.

Periods of poor performance of a strategy should be disconcerting to 
any analyst. The poor performance of the model during the period June 
2007–March 2008 indicates that many of the factors we use were not work-
ing. We need to go back to each individual factor and analyze them in iso-
lation over this time frame. In addition, this highlights the importance of 

39Matthew S. Rothman, “Turbulent Times in Quant Land,” Lehman Brothers Equity 
Research, August 9, 2007; and Kent Daniel, “The Liquidity Crunch in Quant Equities 
Analysis and Implications,” Goldman Sachs Asset Management, December 13, 2007 
presentation from The Second New York Fed-Princeton Liquidity Conference.
40We ran additional analysis on the model by extending the holding period of the 
model from 1 to 3 months. The results were much stronger as returns increased to 
1.6% per month for a two-month holding period and 1.9% per month for a three-
month holding period. The risk as measured by drawdown was higher at –17.4% 
for a two-month holding period and –29.5% for the three-month holding period.
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306 QUANTITATIVE EQUITY INVESTING

research to improve existing factors and develop new ones using novel data 
assets and different approaches.

BACKTESTING

In the research phase of the trading strategy, model scores are converted 
into portfolios and then examined to assess how these portfolios perform 
over time. This process is referred to as backtesting a strategy. The backtest 
should mirror as closely as possible the actual investing environment incor-
porating both the investment’s objectives and the trading environment. 

When it comes to mimicking the trading environment in backtests, spe-
cial attention needs to be given to transaction costs and liquidity consid-
erations. The inclusion of transaction costs is important because they may 
have a major impact on the total return. Realistic market impact and trading 
costs estimates affect what securities are chosen during portfolio construc-
tion. Liquidity is another attribute that needs to be evaluated. The invest-
able universe of stocks should be limited to stocks where there is enough 
liquidity to be able to get in and out of positions. 

Portfolio managers may use a number of constraints during portfolio 
construction. Frequently these constraints are derived from the portfolio 
policy of the fi rm, risk management policy, or investor objectives. Common 
constraints include upper and lower bounds for each stock, industry, or risk 
factor—as well as holding size limits, trading size limits, turnover, and the 
number of assets long or short.41 

To ensure the portfolio construction process is robust we use sensitivity 
analysis to evaluate our results. In sensitivity analysis we vary the different 
input parameters and study their impact on the output parameters. If small 
changes in inputs give rise to large changes in outputs, our process may not 
be robust enough. For example, we may eliminate the fi ve best and worst 
performing stocks from the model, rerun the optimization, and evaluate the 
performance. The results should be similar as the success of a trading strat-
egy should not depend on a handful of stocks. 

We may want to determine the effect of small changes in one or more 
parameters used in the optimization. The performance of the optimal port-
folio should in general not differ signifi cantly after we have made these 
small changes. 

Another useful test is to evaluate a model by varying the investment 
objective. For example, we may evaluate a model by building a low tracking 
error portfolio, a high tracking error portfolio, and a market neutral port-

41See Chapter 8 for a discussion of the most common portfolio constraints in prac-
tice.
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folio. If the returns from each of these portfolios are decent, the underlying 
trading strategy is more likely to be robust.

Understanding In-Sample and Out-of-Sample Methodologies

There are two basic backtesting methodologies: in-sample and out-of-sample. 
It is important is to understand the nuances of each. 

We refer to a backtesting methodology as an in-sample methodology 
when the researcher uses the same data sample to specify, calibrate, and 
evaluate a model.

An out-of-sample methodology is a backtesting methodology where the 
researcher uses a subset of the sample to specify and calibrate a model, and 
then evaluates the forecasting ability of the model on a different subset of 
data. There are two approaches for implementing an out-of-sample method-
ology. One approach is the split-sample method. This method splits the data 
into two subsets of data where one subset is used to build the model while 
the remaining subset is used to evaluate the model. 

A second method is the recursive out-of-sample test. This approach uses 
a sequence of recursive or rolling windows of past history to forecast a 
future value and then evaluates that value against the realized value. For 
example, in a rolling regression based model we will use data up to time t 
to calculate the coeffi cients in the regression model. The regression model 
forecasts the t + h dependent values, where h > 0. The prediction error is the 
difference between the realized value at t + h and the predicted value from 
the regression model. At t + 1 we recalculate the regression model and evalu-
ate the predicted value of t + 1 + h against realized value. We continue this 
process throughout the sample. 

The conventional thinking among econometricians is that in-sample 
tests tend to reject the null hypotheses of no predictability more often than 
out-of-sample tests. This view is supported by many researchers because 
they reason that in-sample tests are unreliable, often fi nding spurious pre-
dictability. Two reasons given to support this view is the presence of unmod-
eled structural changes in the data and the use of techniques that result in 
data mining and model overfi tting. 

Inoune and Kilian42 question this conventional thinking. They use 
asymptotic theory to evaluate the “trade-offs between in-sample tests and 
out-of-sample tests of predictability in terms of their size and power.” They 
argue strong in-sample results and weak out-of-sample results are not nec-
essarily evidence that in-sample tests are not reliable. Out-of-sample tests 

42Atsushi Inoune and Lutz Kilian, “In-Sample or Out-of-Sample Tests of Predictabil-
ity: Which One Should We Use?” Working Paper, North Carolina State University 
and University of Michigan, 2002.

c07-CrossSection.indd   307c07-CrossSection.indd   307 1/6/10   11:35:05 AM1/6/10   11:35:05 AM



308 QUANTITATIVE EQUITY INVESTING

using sample-splitting result in a loss of information and lower power for 
small samples. As a result, an out-of-sample test may fail to detect predict-
ability while the in-sample test will correctly identify predictability. They 
also show that out-of-sample tests are not more robust to parameter insta-
bility that results from unmodeled structural changes. 

A Comment on the Interaction between 
Factor-Based Strategies and Risk Models 

Frequently, different factor models are used to calculate the risk inputs and 
the expected return forecasts in a portfolio optimization. A common con-
cern is the interaction between factors in the models for risk and expected 
returns. Lee and Stefek43 evaluate the consequences of using different factor 
models, and conclude that (1) using different models for risk and alpha can 
lead to unintended portfolio exposures that may worsen performance, (2) 
aligning risk factors with alpha factors may improve information ratios, and 
(3) modifying the risk model by including some of the alpha factors may 
mitigate the problem.

BACKTESTING OUR FACTOR TRADING STRATEGY

Using the model scores from the trading strategy example, we build two 
optimized portfolios and evaluate their performance. Unlike the fi ve equally 
weighted portfolios built only from model scores, the models we now dis-
cuss were built to mirror as close as possible tradable portfolios a portfolio 
manager would build in real time. Our investable universe is the Russell 
1000. We assign alphas for all stock in the Russell 1000 with our dynamic 
factor model. The portfolios are long only and benchmarked to the S&P 
500. The difference between the portfolios is in their benchmark tracking 
error. For the low-tracking error portfolio the risk aversion in the optimizer 
is set to a high value, sectors are constrained to plus/minus 10% of the sec-
tor weightings in the benchmark, and portfolio beta is constrained to 1.00. 
For the high-tracking error portfolio, the risk aversion is set to a low value, 
the sectors are constrained to plus/minus 25% of the sector weightings in 
the benchmark, and portfolio beta is constrained to 1.00. Rebalancing is 
performed once a month. Monthly turnover is limited to 10% of the portfo-
lio value for the low-tracking error portfolio and 15% of the portfolio value 
for the high-tracking error portfolio. 

43Jyh-Huei Lee and Dan Stefek, “Do Risk Factors Eat Alphas?” Journal of Portfolio 
Management, 34 (2008), pp. 12-24.
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Exhibit 7.14 presents the results of our backtest. The performance num-
bers are gross of fees and transaction costs. Performance over the entire 
period is good and consistent throughout. The portfolios outperform the 
benchmark over the various time periods. The resulting annualized Sharpe 
ratios over the full period are 0.66 for the low-tracking error portfolio, 0.72 
for the high-tracking error portfolio, and 0.45 for the S&P 500.44

SUMMARY

The four most commonly used approaches for the evaluation of return 
premiums and risk characteristics to factors are portfolio sorts, factor 
models, factor portfolios, and information coeffi cients. 
The portfolio sorts approach ranks stocks by a particular factor into 
a number of portfolios. The sorting methodology should be consistent 
with the characteristics of the distribution of the factor and the eco-
nomic motivation underlying its premium. 
The information ratio (IR) is a statistic for summarizing the risk-
adjusted performance of an investment strategy and is defi ned as the 
ratio of average excess return to the standard deviation of return. 
We distinguish between contemporaneous and forecasting factor mod-
els, dependent on whether both left- and right-hand side variables 
(returns and factors) have the same time subscript, or the time subscript 
of the left-hand side variable is greater. 
The three most common violations of classical regression theory that 
occur in cross-sectional factor models are (1) the errors in variables 
problem, (2) common variation in residuals such as heteroskedastic-
ity and serial correlation, and (3) multicollinearity. There are statistical 
techniques that address the fi rst two. The third issue is best dealt with 
by removing collinear variables from the regression, or by increasing 
the sample size.
The Fama-MacBeth regression addresses the inference problem caused 
by the correlation of the residuals in cross-sectional regressions.
The information coeffi cient (IC) is used to evaluate the return forecast 
ability of a factor. It measures the cross-sectional correlation between a 
factor and its subsequent realized return.
Factor portfolios are used to measure the information content of a 
factor. The objective is to mimic the return behavior of a factor and 
minimize the residual risk. We can build factor portfolios using a factor 

44Here we calculate the Sharpe ratio as portfolio excess return (over the risk-free 
rate) divided by the standard deviation of the portfolio excess return.
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model or an optimization. An optimization is more fl exible as it is able 
to incorporate constraints.
Analyzing the performance of different factors is an important part of 
the development of a factor-based trading strategy. This process begins 
with understanding the time-series properties of each factor in isolation 
and then studying how they interact with each other.
Techniques used to combine and weight factors to build a trading strat-
egy model include the data driven, the factor model, the heuristic, and 
the optimization approaches.
An out-of-sample methodology is a backtesting methodology where the 
researcher uses a subset of the sample to specify a model and then evalu-
ates the forecasting ability of the model on a different subset of data. 
There are two approaches for implementing an out-of-sample method-
ology: the split-sample approach and the recursive out-of-sample test. 
Caution should be exercised if different factor models are used to cal-
culate the risk inputs and the expected return forecasts in a portfolio 
optimization.
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CHAPTER 8
Portfolio Optimization: 

Basic Theory and Practice

Portfolio optimization today is considered an important workhorse in 
portfolio management. The seminal paper “Portfolio Selection” by 

Harry Markowitz, published in 1952 in the Journal of Finance, introduced 
the foundations of what is now popularly referred to as mean-variance anal-
ysis, mean-variance optimization, and Modern Portfolio Theory (MPT). Ini-
tially, mean-variance analysis generated relatively little interest outside of 
academia, but with time the fi nancial community adopted the thesis. Today, 
fi nancial models based on those very same principles are constantly being 
reinvented to incorporate new fi ndings. In 1990, Harry Markowitz, Merton 
Miller, and William Sharpe were awarded the Nobel prize for their pioneer-
ing work in the theory of fi nancial economics.1

In its simplest form, mean-variance analysis provides a framework to 
construct and select portfolios, based on the expected performance of the 
investments and the risk appetite of the investor. Mean-variance analysis 
also introduced a new terminology, which now has become the norm in the 
area of investment management. 

Conventional wisdom has always dictated “not putting all your eggs 
into one basket.” In more technical terms, this old adage is addressing the 
benefi ts of diversifi cation. Markowitz quantifi ed the concept of diversifi ca-
tion through the statistical notion of covariance between individual securi-
ties, and the overall standard deviation of a portfolio. In essence, the old 
adage is saying that investing all your money in assets that may all perform 
poorly at the same time—that is, whose returns are highly correlated—is 
not a very prudent investment strategy no matter how small the chance that 
any one asset will perform poorly. This is because if any one single asset 

1Markowitz was awarded the prize for having developed the theory of portfolio 
choice, Sharpe for his contributions to the theory of price formation for fi nancial 
assets and the development of the Capital Asset Pricing Model, and Miller for his 
work in the theory of corporate fi nance.
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314 QUANTITATIVE EQUITY INVESTING

performs poorly, it is likely, due to its high correlation with the other assets, 
that these other assets are also going to perform poorly, leading to the poor 
performance of the portfolio.

In this chapter, we begin with an intuitive overview of mean-variance 
analysis before we introduce the classical mean-variance framework. In the 
presence of only risky assets, the mean-variance effi cient frontier has a para-
bolic shape. However, with the inclusion of a risk-free asset, the effi cient 
frontier becomes linear, forming the so-called Capital Market Line. In prac-
tice  when mean-variance optimization is used, portfolio managers typically 
add different constraints to the problem describing institutional features 
and investment policy decisions. We discuss the most common constraints 
used in practice today.

Then we discuss the estimation of the inputs required for mean-variance 
optimization, the expected asset returns and their covariances, using classi-
cal and practically well-probed techniques.2

We close the chapter with a coverage of alternative portfolio risk mea-
sures such as dispersion and downside measures, and develop a model for 
mean-CVaR optimization.

MEAN-VARIANCE ANALYSIS: OVERVIEW 

Markowitz’s starting point is that of a rational investor who, at time t, 
decides what portfolio of investments to hold for a time horizon of ∆t. 
The investor makes decisions on the gains and losses he will make at time 
t + ∆t, without considering eventual gains and losses either during or after 
the period ∆t. At time t + ∆t, the investor will reconsider the situation and 
decide anew. This one-period framework is often referred to as myopic (or 
short-sighted) behavior. In general, a myopic investor’s behavior is subop-
timal in comparison to an investor who makes investment decisions based 
upon multiple periods ahead. For example, nonmyopic investment strate-
gies are adopted when it is necessary to make trade-offs at multiple future 
dates between consumption and investment or when signifi cant trading 
costs related to specifi c subsets of investments are incurred throughout the 
holding period.

Markowitz reasoned that investors should decide on the basis of a trade-
off between risk and expected return. Expected return of a security is defi ned 
as the expected price change plus any additional income over the time hori-
zon considered, such as dividend payments, divided by the beginning price 
of the security. He suggested that risk should be measured by the variance of 
returns—the average squared deviation around the expected return. 

2We discuss Bayesian techniques such as the Black-Litterman model in Chapter 9.
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We note that it is a common misunderstanding that Markowitz’s 
mean-variance framework relies on joint normality of security returns. 
Markowitz’s mean-variance framework does not assume joint normality 
of security returns. However, the mean-variance approach is consistent 
with two different starting points: (1) expected utility maximization under 
certain assumptions; or (2) the assumption that security returns are jointly 
normally distributed.

Moreover, Markowitz argued that for any given level of expected 
return, a rational investor would choose the portfolio with minimum vari-
ance from amongst the set of all possible portfolios. The set of all possible 
portfolios that can be constructed is called the feasible set. Minimum vari-
ance portfolios are called mean-variance effi cient portfolios. The set of all 
mean-variance effi cient portfolios, for different desired levels of expected 
return, is called the effi cient frontier. Exhibit 8.1 provides a graphical illus-
tration of the effi cient frontier of risky assets. In particular, notice that the 
feasible set is bounded by the curve I-II-III. All portfolios on the curve II-III 
are effi cient portfolios for different levels of risk. These portfolios offer the 

EXHIBIT 8.1 Feasible and Markowitz Effi cient Portfolios

E
(R

p)

II

I

III

IV

Risk [SD(Rp)]

• Feasible set: All portfolios on and 
   bounded by curve I-II-III
• Markowitz efficient set: All 
   portfolios on curve II-III

The picture is for illustrative purposes only. The actual shape of the feasible region 
depends on the returns and risks of the assets chosen and the correlation among 
them.
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lowest level of standard deviation for a given level of expected return. Or 
equivalently, they constitute the portfolios that maximize expected return 
for a given level of risk. Therefore, the effi cient frontier provides the best 
possible trade-off between expected return and risk—portfolios below it, 
such as portfolio IV, are ineffi cient and portfolios above it are unobtainable. 
The portfolio at point II is often referred to as the global minimum vari-
ance portfolio (GMV), as it is the portfolio on the effi cient frontier with the 
smallest variance.

Exhibit 8.2 shows a schematic view of the investment process as seen 
from the perspective of modern portfolio theory. This process is often also 
referred to as mean-variance optimization or theory of portfolio selection. 
The inputs to the process are estimates of the expected returns, volatili-
ties and correlations of all the assets together with various portfolio con-
straints. For example, constraints can be as straightforward as not allowing 
the short-selling of assets, or as complicated as limiting assets to be traded 
only in round lots. Later in this chapter, we will discuss the most commonly 
used portfolio constraints in practice. An optimization software package 
is then used to solve a series of optimization problems in order to generate 
the effi cient frontier. Depending upon the complexity of the portfolio, the 
optimizations can be solved either in a spreadsheet or with more specialized 
optimization software. After the effi cient frontier has been calculated, an 
optimal portfolio is chosen based on the investor’s objectives such as his 
degree of aversion to various kinds of risk. 

Though the implementation of this process can get quite involved, the 
theory is relatively straightforward. In the next section we present Markow-

EXHIBIT 8.2 The MPT Investment Process

Expected Return
Model

Volatility & Correlation
Estimates

Constraints on
Portfolio Choice

PORTFOLIO
OPTIMIZATION

Investor
Objectives

Risk-Return
Efficient Frontier

Optimal Portfolio

Source: Exhibit 2 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markowitz, 
“The Legacy of Modern Portfolio Theory,” Journal of Investing, 11 (Fall 2002), 
p. 8.
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itz’s classical framework. Our focus is on providing a practical approach to 
modern portfolio theory as opposed to giving a complete theoretical treat-
ment. 

CLASSICAL FRAMEWORK FOR MEAN-VARIANCE OPTIMIZATION 

In this section we place the intuitive discussion thus far into a more formal 
mathematical context and develop the theory of mean-variance optimiza-
tion. Suppose fi rst that an investor has to choose a portfolio comprised of N 
risky assets.3 The investor’s choice is embodied in an N-vector w = (w1, w2, 
..., wN)′ of weights, where each weight i represents the fraction of the i-th 
asset held in the portfolio, and

 wi
i

N

=
=
∑ 1

1

For now, we permit short selling, which means that weights can be negative.
Suppose the assets’ returns R = (R1, R2, ..., RN)′ have expected returns μ 

= (μ1, μ2, ..., μN)′ and an N × N covariance matrix given by 
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where σij denotes the covariance between asset i and asset j such that σ σii i= 2, 
σij = ρijσiσj and ρij is the correlation between asset i and asset j. Under these 
assumptions, the return of a portfolio with weights w = (w1, w2, ..., wN)′ is a 
random variable Rp = w′R with expected return and variance given by4 

 
μ

σ
p

p

= ′

= ′

w

w

μμ
2 w ΣΣ

For now, we simply assume that expected returns, μ, and their covari-
ance matrix, ΣΣ , are given. Naturally, in practice these quantities have to be 
estimated. Later in this chapter we provide an overview of the many differ-
ent techniques used for this purpose.

3Throughout this book we denote by x′ the transpose of a vector x.
4Subsequently, we will use E(Rp), where Rp is the return on a portfolio, and μp inter-
changeably.
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By choosing the portfolio’s weights, an investor chooses among the 
available mean-variance pairs. To calculate the weights for one possible 
pair, we choose a target mean return, μ0. Following Markowitz, the inves-
tor’s problem is a constrained minimization problem in the sense that the 
investor must seek

 min
w

w w
1
2

′ΣΣ

subject to the constraints5 

 
μ0

0 1 1 1

= ′
′ = ′ =

w

w

μμ
ιι ιι, [ , , , ]…

We will refer to this version of the classical mean-variance optimization 
problem as the risk minimization formulation. 

This problem is a quadratic optimization problem with equality con-
straints with the solution given by6 

5It is common in many practical applications to replace the targeted expected portfolio 
return constraint with μ

0
≤ ′w μμ , expressing the fact that the expected return should not 

be below a minimum value. However, with the introduction of inequality constraints 
(unless they are binding), the portfolio optimization problem no longer becomes ana-
lytically tractable, but has to be solved by numerical optimization techniques.
6This optimization problem can be solved by the method of the Lagrange multipliers. 
The Lagrangian becomes

 L = ′ + − ′( ) + − ′( )1
2

1 0w w w wΣΣ ιι μμ μμλ γ

Differentiating with respect to w, we obtain the fi rst-order condition

 ∂
∂

= − − =L
w

wΣΣ ιι μμλ γ 0

Solving for w, we get

 w = +− −λ γΣΣ ιι ΣΣ μμ1 1

Substituting the parametrized solution for w into the constraints, we obtain the 
linear system for λ and γ

 ′ = ′ + ′ ≡
′ = + ′ ≡

− −

− −

ιι ιι ΣΣ ιι ιι ΣΣ μμ
μμ μμΣΣ ιι μμ ΣΣ μμ μμ

w

w

λ γ
λ γ

1 1

1 1
0

1

or in matrix form

 A

B

B

C

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟
=
⎛
⎝⎜

⎞
⎠⎟

λ
γ μ

1

0
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 w = +− −λ γΣΣ ιι ΣΣ μμ1 1

where

 λ
μ

γ
μ

=
−

=
−C B A B0 0

Δ Δ
,

and

 A B C= ′ = ′ = ′− − −ιι ΣΣ ιι ιι ΣΣ μμ μμ ΣΣ μμ1 1 1, ,

It is easy to see that

 

σ

μ μ
0
2

0
2

02

= ′

=
− +

w wΣΣ

A B C

Δ

Thus, the effi cient portfolios w form a parabola in the ( , )σ μ0
2

0 -plane, 
and a hyperbola in the (σ0, μ0)-plane referred to as the effi cient frontier. 
Each portfolio on the effi cient frontier is obtained by solving the preceding 
optimization problem for a different choice of μ0.

The global minimum variance portfolio can be found by solving

 
d

d

A Bσ
μ

μ0
2

0

02 2
0=

−
=

Δ

The resulting portfolio weights are given by 

 wg A
= =

′

− −

−

ΣΣ ιι ΣΣ ιι
ιι ΣΣ ιι

1 1

1

Mathematically, the mean-variance problem as described previously is 
an optimization problem referred to as a quadratic program. In the sim-
ple form presented, the problem can be solved analytically. In extensions 
involving only so-called equality constraints,7 fi nding the optimum port-
folio reduces to solving a set of linear equations. However, for formula-
tions involving inequality constraints, analytical solutions are not available 
unless the constraints are binding. In other cases numerical optimization 
techniques must be used. 

We note that the results of modern portfolio theory are consistent with 
the assumptions that either returns are jointly normally distributed, or that 

7Constraints of the form Aw = b and Aw ≤ b are referred to as equality and inequality 
constraints, respectively.
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all investors only care about the mean and the variance of their portfolios. 
In practice, it is well known that asset returns are not normal and that many 
investors have preferences that go beyond that of the mean and the vari-
ance. The earliest studies showing nonnormality of asset returns date back 
to Benoit Mandelbrot8 and Eugene Fama9 in the early 1960s. The move-
ment sometimes referred to as econophysics10 has developed methods for 
the accurate empirical analysis of the distribution of asset returns that show 
signifi cant deviations from the normal distribution.11,12 In particular, there 
is evidence that the variances of some asset returns are not bounded, but 
rather that they are infi nite. Moreover, one can show that in specifi c cases 
where variances are unbounded and asset returns behave like certain stable 
Paretian distributions, diversifi cation may no longer be possible.13 

The mean-variance optimization problem has several alternative but 
equivalent formulations that are very useful in practical applications. These 
formulations are equivalent in the sense that they all lead to the same effi -
cient frontier as they trade expected portfolio return versus portfolio risk in 
a similar way. 

First, we can choose a certain level of targeted portfolio risk, say σ0, and 
then maximize the expected return of the portfolio:

 max
w

′w μμ

subject to the constraints14 

8Benoit Mandelbrot, “The Variation in Certain Speculative Prices,” Journal of Busi-
ness, 36 (1963), pp. 394–419.
9Eugene F. Fama, “The Behavior of Stock Market Prices,” Journal of Business, 38 
(1965), pp. 34–105.
10Rosario N. Mantegna and H. Eugene Stanley, An Introduction to Econophysics 
(Cambridge: Cambridge University Press, 2000).
11Ulrich A. Mueller, Michel M. Dacorogna, and Olivier V. Pictet, “Heavy Tails in High-
Frequency Financial Data,” in Robert J. Adler, Raya E. Feldman, and Murad S. Taqqu 
(eds.), A Practical Guide to Heavy Tails (Boston, MA: Birkhaeuser, 1998), pp. 55–77.
12For recent empirical evidence on the distribution of asset returns and portfolio 
selection when distributions are nonnormal, see Svetlozar T. Rachev and Stefan 
Mittnik, Stable Paretian Models in Finance (Chichester: John Wiley & Sons, 2000); 
and Svetlozar T. Rachev (eds.), Handbook of Heavy Tailed Distributions in Finance 
(New York: Elsevier/North Holland, 2001).
13Eugene F. Fama, “Portfolio Analysis In a Stable Paretian Market,” Management 
Science, 11 (1965), pp. 404–419.
14It is common in many practical applications that the equal sign in the risk con-
straint is replaced by a weak inequality, that is, ′ ≤w w

0

2ΣΣ σ , expressing the fact that 
the risk is not allowed to be above a maximum value.
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′ =
′ = ′ =

w w

w

ΣΣ
ιι ιι

σ 0
2

1 1 1 1, [ , , , ]…

This formulation, which we will refer to as the expected return maximiza-
tion formulation of the classical mean-variance optimization problem, is often 
used by portfolio managers who are required to not take more risk, as mea-
sured by the standard deviation of the portfolio return, than a certain prespeci-
fi ed volatility. For example, portfolios managed relative to a benchmark can 
be modeled in this fashion. Here the objective is to maximize the excess return 
of the portfolio over the benchmark and at the same time make sure that the 
risks in so doing do not exceed a given tracking error over the benchmark. 

Alternatively, we can explicitly model the trade-off between risk and 
return in the objective function using a risk-aversion coeffi cient λ. We refer 
to the following formulation as the risk aversion formulation of the classical 
mean-variance optimization problem

 max
w

w′ − ′
⎛
⎝
⎜

⎞
⎠
⎟w wμμ ΣΣλ 1

2

subject to

 ′ = ′ =w ιι ιι1 1 1 1, [ , , , ]…

The risk aversion coeffi cient is also referred to as the Arrow-Pratt risk 
aversion index. When λ is small (i.e., the aversion to risk is low), the penalty 
from the contribution of the portfolio risk is also small, leading to more 
risky portfolios. Conversely, when λ is large, portfolios with more expo-
sures to risk become more highly penalized. If we gradually increase λ from 
zero and for each instance solve the optimization problem, we end up calcu-
lating each portfolio along the effi cient frontier. It is a common practice to 
calibrate λ such that a particular portfolio has the desired risk profi le. 

MEAN-VARIANCE OPTIMIZATION WITH A RISK-FREE ASSET

As demonstrated by William Sharpe,15 James Tobin,16 and John Lintner17 the 
effi cient set of portfolios available to investors who employ mean-variance 

15William F. Sharpe, “Capital Asset Prices: A Theory of Market Equilibrium Under 
Conditions of Risk,” Journal of Finance, 19 (1964), pp. 425–442.
16James Tobin, “Liquidity Preference as a Behavior Towards Risk,” Review of Eco-
nomic Studies, 67 (1958), pp. 65–86.
17John Lintner, “The Valuation of Risk Assets and the Selection of Risky Investments 
in Stock Portfolios and Capital Budgets,” Review of Economics and Statistics, 47 
(1965), pp. 13–37.
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analysis in the absence of a risk-free asset is inferior to that available when 
there is a risk-free asset. We present this formulation in this section. 

Assume that there is a risk-free asset, with a risk-free return denoted by 
Rf and that the investor is able to borrow and lend at this rate.18 The inves-
tor has to choose a combination of the N risky assets plus the risk-free asset. 
The weights ′ = ( )wR w w wR R RN1 2, , ...,  do not have to sum to 1 as the remain-
ing part ( )1− ′wRιι  is the investment in the risk-free asset. Note that this 
portion of the investment can be positive or negative if we allow risk-free 
borrowing and lending. The portfolio’s expected return and variance are

 
μ

σ
p R R f

p R R

R= ′ + − ′

= ′

w w

w w

μμ ιι

ΣΣ

( )1
2

because the risk-free asset has zero variance and is uncorrelated with the 
risky assets. 

The investor’s objective is again for a targeted level of expected port-
folio return, μ0, to choose allocations by solving a quadratic optimization 
problem

 min
w

w w
R

R R′ Σ

subject to the constraint

 μ0 1= ′ + − ′w wR R fRμμ ιι( )

The optimal portfolio weights are given by

 wR fC R= −( )−ΣΣ μμ ιι1

where

 
C

R

R R

f

f f

=
−

−( )′ −( )−

μ0

1μμ ιι μμ ιιΣ

18We remark that, in practice, this assumption is not valid for most investors. Specifi -
cally, an investor may not be able to borrow and lend at the same interest rate, or 
may only be permitted to lend. If there are no short-selling restrictions on the risky 
assets, similar theoretical results to the ones presented in this section are obtained 
also for these cases. See Fischer Black, “Capital Market Equilibrium with Restricted 
Borrowings,” Journal of Business, 45 (1972) pp. 444–455; and Jonathan E. Inger-
soll, Jr., Theory of Financial Decision Making (Savage, MD: Rowan & Littlefi eld 
Publishers, Inc., 1987).
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The preceding formula shows that the weights of the risky assets of 
any minimum variance portfolio are proportional to the vector ΣΣ μμ ιι− −1( ),Rf  
with the proportionality constant C, defi ned previously. Therefore, with a 
risk-free asset, all minimum variance portfolios are a combination of the 
risk-free asset and a given risky portfolio. This risky portfolio is called the 
tangency portfolio. Fama demonstrated that under certain assumptions the 
tangency portfolio must consist of all assets available to investors, and each 
asset must be held in proportion to its market value relative to the total mar-
ket value of all assets.19 Therefore, the tangency portfolio is often referred to 
as the market portfolio, or simply the market.20 

We know that for a particular choice of weights, wR
0 , such that ( ) ,wR

0 0′ =ιι  
the portfolio only consists of the risk-free asset. On the other hand, for the 
choice of weights, wR

M , such that (wR
M ′ =) ,ιι 1  the portfolio consists of only 

risky assets and must therefore be the market portfolio. Because 

 wR
M M

fC R= −−ΣΣ μμ ιι1( )

for some CM, we have by using (wR
M ′ =) ιι 1 that the weights of the market 

portfolio are given by

 wR
M

f
fR

R=
′ −

⋅ −−1 1

ιι ΣΣ μμ ιι
ΣΣ μμ ιι

( )
( )

It is also easy to verify that the market portfolio can be calculated 
directly from the maximal Sharpe ratio optimization problem

 max
w

w

w w

′ −

′

μμ Rf

ΣΣ

subject to ′ =w ιι 1.
In Exhibit 8.3 every combination of the risk-free asset and the market 

portfolio M is shown on the line drawn from the vertical axis at the risk-free 
rate tangent to the Markowitz effi cient frontier. All the portfolios on the line 
are feasible for the investor to construct. The line from the risk-free rate that 
is tangent to the effi cient frontier of risky assets is called the Capital Market 
Line (CML). 

We observe that with the exception of the market portfolio, the mini-
mum variance portfolios that are a combination of the market portfolio and 

19Eugene F. Fama, “Effi cient Capital Markets: A Review of Theory and Empirical 
Work,” Journal of Finance, 25 (1970), pp. 383–417.
20Although strictly speaking it is not fully correct, we will use the terms market port-
folio and tangency portfolio interchangeably throughout this book.
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the risk-free asset are superior to the portfolio on the Markowitz effi cient 
frontier for the same level of risk. For example, compare portfolio PA, which 
is on the Markowitz effi cient frontier, with portfolio PB, which is on the 
CML and therefore some combination of the risk-free asset and the market 
portfolio M. Notice that for the same level of risk, the expected return is 
greater for PB than for PA. A risk-averse investor will prefer PB to PA. 

With the introduction of the risk-free asset, we can now say that an 
investor will select a portfolio on the CML that represents a combination of 
borrowing or lending at the risk-free rate and the market portfolio.21 This 
important property is called separation. Portfolios to the left of the market 
portfolio represent combinations of risky assets and the risk-free asset. Port-
folios to the right of the market portfolio include purchases of risky assets 
made with funds borrowed at the risk-free rate. Such a portfolio is called a 
leveraged portfolio because it involves the use of borrowed funds. 

21Today it is normal practice to use standard deviation rather than variance as the 
risk measure because with the inclusion of a risk-free asset, the effi cient frontier in 
the expected return/standard deviation coordinate system is linear.

EXHIBIT 8.3 Capital Market Line and the Markowitz Effi cient Frontier

Rf

PA

PB

M

E
(R

p)

SD(Rp)

Capital
Market Line

Markowitz
Efficient
Frontier

c08-PortOptimization.indd   324c08-PortOptimization.indd   324 1/6/10   11:34:31 AM1/6/10   11:34:31 AM



Portfolio Optimization: Basic Theory and Practice  325

The separation property also has important implications in practice. 
Specifi cally, practical portfolio construction is normally broken down into 
at least the following two steps:

Asset allocation: Decide how to allocate the investor’s wealth between 
the risk-free security and the set of risky securities.
Risky portfolio construction: Decide how to distribute the risky portion 
of the investment among the set of risky securities.

The fi rst point is an integral part in devising an investment plan and 
policy for a particular investor. This is closely linked to an investor’s stra-
tegic goals and general risk profi le as well as his liquidity requirements. In 
this book the focus is more on the second point. In later chapters we will 
discuss various kinds of forecasting techniques that can be used in order 
to maximize different investment objectives and controlling the risk of the 
risky portion of the portfolio. 

Deriving the Capital Market Line 

We can derive a formula for the CML algebraically. Based on the assump-
tion of homogeneous expectations regarding the inputs in the portfolio con-
struction process, all investors can create an effi cient portfolio consisting 
of wf placed in the risk-free asset and wM in the market portfolio, where w 
represents the corresponding percentage (weight) of the portfolio allocated 
to each asset. Thus, wf + wM = 1. As the expected return of the portfolio, 
E(Rp), is equal to the weighted average of the expected returns of the two 
assets, we have

 E(Rp) = wf Rf + wME(RM)

Since we know that wf = 1 – wM, we can rewrite E(Rp) as 

 E(Rp) = (1 – wM)Rf + wME(RM)

which can be simplifi ed to

 E(Rp) = Rf + wM[E(RM) – Rf]

Since the return of the risk-free asset and the return of the market port-
folio are uncorrelated and the variance of the risk-free asset is equal to zero, 
the variance of the portfolio consisting of the risk-free asset and the market 
portfolio is given by 

1.

2.
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σ p p f f M M f MR w R w R w w2 2 2 2= = + +var( ) var( ) var( ) cov(RR R

w R

w

f M

M M

M M

, )

var( )=

=

2

2 2σ

In other words, the variance of the portfolio is represented by the weighted 
variance of the market portfolio. 

Since the standard deviation is the square root of the variance, we can write

 wM
p

M

=
σ
σ

If we substitute the preceding result and rearrange terms, we get the 
explicit expression for the CML

 E R R
E R R

p f
M f

M
p( ) = +

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

σ
σ

The bracketed portion of the second term in the equation for the CML 

 
E R RM f

M

( )−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥σ

is often referred to as the risk premium. 
Let us examine the economic meaning of this risk premium. The numer-

ator of the bracketed expression is the expected return from investing in the 
market beyond the risk-free return. It is a measure of the reward for holding 
the risky market portfolio rather than the risk-free asset. The denominator 
is the market risk of the market portfolio. Thus, the fi rst factor, or the slope 
of the CML, measures the reward per unit of market risk. Since the CML 
represents the return offered to compensate for a perceived level of risk, 
each point on the CML is a balanced market condition, or equilibrium. The 
slope of the CML determines the additional return needed to compensate 
for a unit change in risk, which is why it is also referred to as the equilibrium 
market price of risk. 

In other words, the CML says that the expected return on a portfolio 
is equal to the risk-free rate plus a risk premium, where the risk premium 
is equal to the market price of risk (as measured by the reward per unit of 
market risk) times the quantity of risk for the portfolio (as measured by the 
standard deviation of the portfolio). Summarizing, we can write

 E(Rp) = Rf + Market price of risk × Quantity of risk
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PORTFOLIO CONSTRAINTS COMMONLY USED IN PRACTICE 

Institutional features and investment policy decisions often lead to more 
complicated constraints and portfolio management objectives than those 
present in the original formulation of the mean-variance problem. For ex-
ample, many mutual funds are managed relative to a particular benchmark 
or asset universe (e.g., S&P 500, Russell 1000) so that their tracking error 
relative to the benchmark is kept small. A portfolio manager might also be 
restricted on how concentrated the investment portfolio can be in a particu-
lar industry or sector. These restrictions, and many more, can be modeled 
by adding constraints to the original formulation.

In this section, we describe constraints that are often used in combina-
tion with the mean-variance problem in practical applications. Specifi cally, 
we distinguish between linear, quadratic, nonlinear, and combinatorial/inte-
ger constraints.

Throughout this section, we denote the current portfolio weights by w0 
and the targeted portfolio weights by w, so that the amount to be traded is 
x = w – w0. 

Linear and Quadratic Constraints

Some of the more commonly used linear and quadratic constraints are de-
scribed next.

Long-Only Constraints

When short-selling is not allowed, we require that w ≥ 0. This is a frequently 
used constraint, as many funds and institutional investors are prohibited 
from selling stocks short.

Turnover Constraints

High portfolio turnover can result in large transaction costs that make port-
folio rebalancing ineffi cient. One possibility is to limit the amount of turn-
over allowed when performing portfolio optimization. The most common 
turnover constraints limit turnover on each individual asset

 x Ui i≤

or on the whole portfolio 

 x Ui
i I

≤
∈
∑ portfolio
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where I denotes the available investment universe. Turnover constraints are 
often imposed relative to the average daily volume (ADV) of a stock. For ex-
ample, we might want to restrict turnover to be no more than 5% of average 
daily volume. Modifi cations of these constraints, such as limiting turnover 
in a specifi c industry or sector, are also frequently applied.

Holding Constraints

A well-diversifi ed portfolio should not exhibit large concentrations in any 
specifi c assets, industries, sectors, or countries. Maximal holdings in an in-
dividual asset can be controlled by the constraint

 Li ≤ wi ≤ Ui

where Li and Ui are vectors representing the lower and upper bounds of 
the holdings of asset i. To constrain the exposure to a specifi c set Ii (e.g., 
industry or country) of the available investment universe I, we can introduce 
constraints of the form

 L w Ui j i
j Ii

≤ ≤
∈
∑

where Li and Ui denote the minimum and maximum exposures to Ii.

Risk Factor Constraints

In practice, it is very common for portfolio managers to use factor models 
to control for different risk exposures to risk factors such as market, size, 
and style.22 Let us assume that security returns have a factor structure with 
K risk factors, that is

 R Fi i ik k i
k

K

= + +
=
∑α β ε

1

where Fk, k = 1, …, K are the K factors common to all the securities, βik  is 
the sensitivity of the i-th security to the k-th factor, and εi is the nonsystem-
atic return for the i-th security. 

To limit a portfolio’s exposure to the k-th risk factor, we can impose the 
constraint

 βik i
i

N

kw U
=
∑ ≤

1

22We discussed factor models in more detail in Chapter 5.
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where Uk denotes maximum exposure allowed. To construct a portfolio that 
is neutral to the k-th risk factor (e.g., market neutral) we would use the 
constraint

 βik i
i

N

w
=
∑ =

1

0

Benchmark Exposure and Tracking Error Constraints

Many portfolio managers are faced with the objective of managing their 
portfolio relative to a benchmark. This is the typical situation for index 
fund managers and passive managers who are trying to deliver a small out-
performance relative to a particular benchmark, such as the Russell 1000 
or the S&P 500.

Let us denote by wb the market capitalization weights (sometimes also 
referred to as the benchmark weights), and by R the vector of returns of 
the individual assets, so that Rb b= ′ ⋅w R  is the return on the benchmark. 
A portfolio manager might choose to limit the deviations of the portfolio 
weights from the benchmark weights by imposing

 w w− ≤b M

or, similarly, for a specifi c industry Ii require that

 w w Mj bj
j I

i

i

− ≤
∈
∑

However, the most commonly used metric to measure the deviation 
from the benchmark is the tracking error. The tracking error is defi ned as 
the variance of the difference between the return of the portfolio Rp = w′ ⋅ R 
and the return of the benchmark Rb b= ′ ⋅w R, that is, TEVp = var(Rp – Rb). 
Expanding this defi nition, we get

 

TEV R Rp p b

b

b

= −( )
= ′ − ′( )
= − ′

var

var

( ) var( )

w R w R

w w R (( )

( ) ( )

w w

w w w w

−
= − ′ −

b

b bΣΣ

where Σ is the covariance matrix of the asset returns. In order to limit the 
tracking error, a constraint of the form

 ( ) ( )w w w w− ′ − ≤b b TEΣΣ σ 2
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can be added to the portfolio optimization formulation. In the next section, 
we provide an example that shows how the tracking error constraint formu-
lation can be used for index tracking.

Note that a pure tracking-error constrained portfolio ignores total 
portfolio risk or absolute risk. In practice, this can result in very ineffi cient 
portfolios (in a mean-variance sense) unless additional constraints on total 
volatility are imposed.23 

General Linear and Quadratic Constraints

The constraints described in this section are all linear or quadratic, that is, 
they can be cast either as

 

A w d

A x d

A w w d

w w

x x

b b b

≤
≤

−( ) ≤

or as

 

′ ≤
′ ≤

− ′ − ≤

w Q w

x Q x

w w Q w w

w w

x x

b b b b

q

q

q( ) ( )

These types of constraints can be dealt with directly within the quadratic 
programming framework, and there are very effi cient algorithms available 
that are capable of solving practical portfolio optimization problems with 
thousands of assets in a matter of seconds. 

Combinatorial and Integer Constraints

The following binary decision variable is useful in describing some combi-
natorial and integer constraints: 

 δi
i

i

w

w
=

≠
=

⎧
⎨
⎩⎪
1 0

0 0

,

,

if

if

where wi denotes the portfolio weight of the i-th asset.

23Philippe Jorion, “Portfolio Optimization with Tracking-Error Constraints,” Finan-
cial Analysts Journal, 59 (2003), pp. 70–82.
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Minimum Holding and Transaction Size Constraints

The classical mean-variance optimization problem often results in a few 
large and many small positions. In practice, due to transaction costs and 
other ticket charges, small holdings are undesirable. In order to eliminate 
small holdings, threshold constraints of the following form are often used

 w L i Ni w ii
≥ =δ 1,...,

where Lwi
 is the smallest holding size allowed for asset i. 

Similarly, because of the fi xed costs related to trading each individual 
security, it is desirable to avoid small trades. Therefore, a portfolio man-
ager might also want to eliminate new trades, x, smaller than a prespecifi ed 
amount

 
x L i Ni x ii

≥ =δ 1,...,

where Lxi
 is the smallest transaction size permitted for asset i.

In practice, few portfolio managers go to the extent of including con-
straints of this type in their optimization framework. Instead, a standard 
mean-variance optimization problem is solved and then, in a postoptimi-
zation step, generated portfolio weights or trades that are smaller than a 
certain threshold are eliminated. This simplifi cation leads to small, but often 
negligible, differences compared to a full optimization using the thresh-
old constraints. Given that the mean-variance optimization problem with 
threshold constraints is much more complicated to solve from a numerical 
and computational point of view, this small discrepancy is often ignored by 
practitioners. 

Cardinality Constraints

A portfolio manager might want to restrict the number of assets allowed in 
a portfolio. This could be the case when, for example, he is attempting to 
construct a portfolio tracking a benchmark using a limited set of assets. The 
cardinality constraint takes the form

 
i

N

i K
=
∑ =

1

δ

where K is a positive integer signifi cantly less than the number of assets in 
the investment universe, N. 
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Minimum holding and cardinality constraints are related. Both of them 
attempt to reduce the number of small trades and the number of portfolio 
positions. Therefore, it is not uncommon that both constraints are used 
simultaneously in the same portfolio optimization. There are situations in 
which imposing only cardinality constraints will lead to some small trades. 
Conversely, with only minimum holding constraints, the resulting portfolio 
might still contain too many positions, or result in too many trades. Port-
folio managers often have the desire not to keep the number of assets too 
large, and at the same time make sure that all of their holdings are larger 
than a certain threshold. 

Round Lot Constraints

For the most part, portfolio selection models proposed in the literature are 
based on the assumption of a perfect fractionability of the investments, in 
such a way that the portfolio weights for each security could be represented 
by real numbers. In reality, securities are transacted in multiples of a  mini-
mum transaction lots, or rounds (e.g., 100 or 500 shares). In order to model 
transaction round lots explicitly in the optimization problem, portfolio 
weights can be represented as

 wi = zi ⋅ fi ,     i = 1, …, N

where fi is a fraction of portfolio wealth and zi is an integer number of round 
lots. For example, if the total portfolio wealth is $10 million and stock i 
trades at $86 in round lots of 100, then 

 fi =
⋅ = ⋅ −86 100

10
8 6 10

7
4.

In applying round lot constraints, the budget constraint

 
i

N

iw
=
∑ =

1

1

may not be exactly satisfi ed. To accommodate this situation, the budget 
constraint is relaxed with undershoot and overshoot variables, ε– ≥ 0 and ε+ 
≥ 0, so that

 f zi i
i

N

+ − =− +

=
∑ ε ε 1

1

This formula can be written in a more compact way as 
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 z ' , ' [ , , ..., ]ΛΛιι ιι+ − = =− +ε ε 1 1 1 1

where Λ = diag(f1, f2, …, fN), that is, Λ equals the diagonal matrix of the 
fractions of portfolio wealth. 

The undershoot and overshoot variables need to be as small as possible 
at the optimal point, and therefore, they are penalized in the objective func-
tion, yielding the following optimization problem:

 max ( )
z

z z z′ − ′ − +− +ΛΛμμ ΛΛΣΣΛΛλ γ ε ε

subject to

 
′ + + = ′ =
≥ ≥

− +

− +

z ΛΛιι ιιε ε
ε ε

1 1 1 1

0 0

, [ , , ..., ]

,

where λ and γ are parameters chosen by the portfolio manager. 
Normally, the inclusion of round lot constraints to the mean-variance 

optimization problem only produces a small increase in risk for a prespeci-
fi ed expected return. Furthermore, the portfolios obtained in this manner 
cannot be obtained by simply rounding the portfolio weights from a stan-
dard mean-variance optimization to the nearest round lot.

In order to represent threshold and cardinality constraints we have to 
introduce binary (0/1) variables, and for round lots we need integer vari-
ables. In effect, the original quadratic program (QP) resulting from the mean-
variance formulation becomes a quadratic mixed integer program (QMIP). 
Therefore, these combinatorial extensions require more sophisticated and 
specialized algorithms that often require signifi cant computing time.

ESTIMATING THE INPUTS USED IN MEAN-VARIANCE 
OPTIMIZATION: EXPECTED RETURN AND RISK

In this section, we discuss the estimation of the inputs required for portfolio 
asset-allocation models. We focus on the estimation of expected asset returns 
and their covariances using classical and practically well-probed techniques. 
Modern techniques using dynamic models and hidden variable models are 
covered in Fabozzi, Focardi, and Kolm.24

An analyst might proceed in the following way. Observing weekly or 
monthly returns, he might use the past fi ve years of historical data to esti-

24See Chapters 14, 15, and 16 in Frank J. Fabozzi, Sergio M. Focardi, and Petter 
N. Kolm, Financial Modeling of the Equity Market: From CAPM to Cointegration 
(Hoboken, NJ: John Wiley & Sons, 2006).
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mate the expected return and the covariance matrix by the sample mean 
and sample covariance matrix. He would then use these as inputs to the 
mean-variance optimization, along with any ad hoc adjustments to refl ect 
his views about expected returns on future performance. Unfortunately this 
historical approach most often leads to counterintuitive, unstable, or merely 
wrong portfolios. 

Statistical estimates are noisy and do depend on the quality of the data 
and the particular statistical techniques used. In general, it is desirable that 
an estimator of expected return and risk have the following properties:

It provides a forward-looking forecast with some predictive power, not 
just a backward-looking historical summary of past performance.
The estimate can be produced at a reasonable computational cost.
The technique used does not amplify errors already present in the inputs 
used in the process of estimation.
The forecast should be intuitive, that is, the portfolio manager or the 
analyst should be able to explain and justify them in a comprehensible 
manner.

In this section we discuss the properties of the sample mean and covari-
ance estimators as a forecast of expected returns and risk. The forecasting 
power of these estimators is typically poor, and for practical applications, 
modifi cations and extensions are necessary. We focus on some of the most 
common and widely used modifi cations. We postpone the treatment of 
Bayesian techniques such as the Black-Litterman model to Chapter 9.

The Sample Mean and Covariance Estimators

Quantitative techniques for forecasting security expected returns and risk 
most often rely on historical data. Therefore, it is important keep in mind 
that we are implicitly assuming that the past can predict the future.

It is well known that expected returns exhibit signifi cant time varia-
tion (nonstationarity) and that realized returns are strongly infl uenced by 
changes in expected returns.25 Consequently, extrapolated historical returns 
are in general poor forecasts of future returns, or as a typical disclaimer in 
any investment prospectus states: “Past performance is not an indication of 
future performance.” 

25See Eugene F. Fama and Kenneth R. French, “The Equity Risk Premium,” Journal 
of Finance, 57 (2002), pp. 637–659; and Thomas K. Philips, “Why Do Valuation 
Ratios Forecast Long-Run Equity Returns?” Journal of Portfolio Management, 25 
(1999), pp. 39–44.

■

■

■

■
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One problem of basing forecasts on historical performance is that mar-
kets and economic conditions change throughout time. For example, inter-
est rates have varied substantially, all the way from the high double digits 
to the low interest rate environment in the early 2000s. Other factors that 
change over time, and that can signifi cantly infl uence the markets, include 
the political environment within and across countries, monetary and fi scal 
policy, consumer confi dence, and the business cycle of different industry 
sectors and regions.

Of course, there are reasons why we can place more faith in statisti-
cal estimates obtained from historical data for some assets as compared to 
others. Different asset classes have varying lengths of histories available. 
For example, not only do the United States and the European markets have 
longer histories, but their data also tends to be more accurate. For emerging 
markets, the situation is quite different. Sometimes only a few years of his-
torical data are available. As a consequence, based upon the quality of the 
inputs, we expect that for some asset classes we should be able to construct 
more precise estimates than others.

In practice, if portfolio managers believe that the inputs that rely on 
the historical performance of an asset class are not a good refl ection of the 
future expected performance of that asset class, they may alter the inputs 
objectively or subjectively. Obviously, different portfolio managers may 
have different beliefs and therefore their corrections will be different. 

We now turn to the estimation of the expected return and risk by the 
sample mean and covariance estimators. Given the historical returns of two 
securities i and j, Ri,t and Rj,t, where t = 1, …, T, the sample mean and cova-
riance are given by
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In the case of N securities, the covariance matrix can be expressed 
directly in matrix form:

 ΣΣ =
−

′1
1N

XX

where 
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Under the assumption that security returns are independent and iden-
tically distributed (i.i.d.), it can be demonstrated that Σ is the maximum-
likelihood estimator of the population covariance matrix and that this 
matrix follows a Wishart distribution with N – 1 degrees of freedom.26

As mentioned before, the risk-free rate Rf does change signifi cantly over 
time. Therefore, when using a longer history, it is common that historical 
security returns are fi rst converted into excess returns, Ri,t – Rf,t, and there-
after the expected return is estimated from

 R R
T

R Ri f t
t

T

i t f t= + −
=
∑, , ,( )

1

1

Alternatively, the expected excess returns may be used directly in a mean-
variance optimization framework.

Unfortunately, for fi nancial return series, the sample mean is a poor 
estimator for the expected return. The sample mean is the best linear unbi-
ased estimator (BLUE) of the population mean for distributions that are not 
heavy-tailed. In this case, the sample mean exhibits the important property 
that an increase in the sample size always improves its performance. How-
ever, these results are no longer valid under extreme thick-tailedness and 
caution has to be exercised.27 Furthermore, fi nancial time series are typically 
not stationary, so the mean is not a good forecast of expected return. More-
over, the resulting estimator has a large estimation error (as measured by the 

26Suppose X1, …, XN are independent and identically distributed random vectors, 
and that for each i it holds Xi ~ Np(0, V) (that is, E(Xi) = 0, where 0 is a p dimen-
sional vector, and

 Var( ) ( )X X X Vi i iE= ′ =

where V is a p × p dimensional matrix). Then, the Wishart distribution with N 
degrees of freedom is the probability distribution of the p × p random matrix

 S X X= ′
=
∑
i

N

i i
1

and we write S ~ Wp(V, N). In the case when p = 1 and V = 1, then this distribution 
reduces to a chi-square distribution.
27Rustam Ibragimov, “Effi ciency of Linear Estimators under Heavy-Tailedness: 
Convolutions of α-Symmetric Distributions,” Econometric Theory, 23 (2007), pp. 
501–517.
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standard error), which signifi cantly infl uences the mean-variance portfolio 
allocation process. As a consequence:

Equally-weighted portfolios often outperform mean-variance optimized 
portfolios.28

Mean-variance optimized portfolios are not necessarily well diversi-
fi ed.29

Uncertainty of returns tends to have more infl uence than risk in mean-
variance optimization.30

These problems must be addressed from different perspectives. More 
robust or stable (lower estimation error) estimates of expected return should 
be used. One approach is to impose more structure on the estimator. Most 
commonly, practitioners use some form of factor model to produce the 
expected return forecasts.31 Another possibility is to use Bayesian (such as 
the Black-Litterman model) or shrinkage estimators. 

Mean-variance optimization is very sensitive to its inputs. Small changes 
in expected return inputs often lead to large changes in portfolio weights. 
To some extent this is mitigated by using better estimators. However, by 
taking the estimation errors (whether large or small) into account in the 
optimization, further improvements can be made. In a nutshell, the problem 
is related to the fact that the mean-variance optimizer does not know that 
the inputs are statistical estimates and not known with certainty. When we 
are using classical mean-variance optimization, we are implicitly assuming 
that inputs are deterministic, and available with great accuracy. In other 
words, bad inputs lead to even worse outputs, or “garbage in, garbage out.” 
Chapter 10 covers so-called robust portfolio optimization that addresses 
these issues.

We will now turn to the sample covariance matrix estimator. Sev-
eral authors (for example, Gemmill;32 Litterman and Winkelmann;33 and 

28J. D. Jobson and Bob M. Korkie, “Putting Markowitz Theory to Work,” Journal 
of Portfolio Management, 7 (1981), pp. 70–74.
29Philippe Jorion, “International Portfolio Diversifi cation with Estimation Risk,” 
Journal of Business, 58 (1985), pp. 259–278.
30Vijay K. Chopra and William T. Ziemba, “The Effect of Errors in Means, Vari-
ances, and Covariances on Optimal Portfolio Choice,” Journal of Portfolio Manage-
ment, 19 (1993), pp. 6–11.
31Factor models are covered in Chapter 5.
32Gordon Gemmill, Options Pricing, An International Perspective (London: Mc-
Graw-Hill, 1993).
33Robert Litterman and Kurt Winkelmann, “Estimating Covariance Matrices,” Risk 
Management Series, Goldman Sachs, 1998.

■

■

■
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Pafka, Potters, and Kondor34) suggest improvements to this estimator using 
weighted data. The reason behind using weighted data is that the market 
changes and it makes sense to give more importance to recent, rather than 
to long past, information. If we give the most recent observation a weight of 
one and subsequent observations weights of d, d2, d3, … where d < 1, then
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when T is large enough. The weighting (decay) parameter d can be estimat-
ed by maximum likelihood estimation, or by minimizing the out-of-sample 
forecasting error.35 

Nevertheless, just like the estimator for expected returns, the covariance 
estimator suffers from estimation errors, especially when the number of his-
torical return observations is small relative to the number of securities. The 
sample mean and covariance matrix are poor estimators for anything but 
i.i.d. time series. In the i.i.d. case, the sample mean and covariance estimator 
are the maximum likelihood estimators of the true mean and covariance.36

The sample covariance estimator often performs poorly in practice. For 
instance, Ledoit and Wolf37 argue against using the sample covariance matrix 
for portfolio optimization purposes. They stress that the sample covariance 
matrix contains estimation errors that will very likely perturb and produce 

34Szilard Pafka, Marc Potters, and Imre Kondor, “Exponential Weighting and Random-
Matrix-Theory-Based Filtering of Financial Covariance Matrices for Portfolio Optimi-
zation,” Working Paper, Science & Finance, Capital Fund Management, 2004.
35See Giorgio De Santis, Robert Litterman, Adrien Vesval, and Kurt Winkelmann, 
“Covariance Matrix Estimation,” in Robert Litterman (ed.), Modern Investment 
Management: An Equilibrium Approach (Hoboken, NJ: John Wiley & Sons, 2003), 
pp. 224–248.
36See, for example, Fumio Hayashi, Econometrics (Princeton: Princeton University 
Press, 2000).
37Olivier Ledoit and Michael Wolf, “Honey, I Shrunk the Sample Covariance Ma-
trix,” Journal of Portfolio Management, 30 (2004), pp. 110–117.
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poor results in a mean-variance optimization. As a substitute, they suggest 
applying shrinkage techniques to covariance estimation. We discuss these 
methods later in this chapter.

The sample covariance matrix is a nonparametric (unstructured) esti-
mator. An alternative is to make assumptions on the structure of the covari-
ance matrix during the estimation process. For example, one can include 
information on the underlying economic variables or factors contributing to 
the movement of securities. This is the basic idea behind many asset pricing 
and factor models that we will describe in subsequent sections. Such models 
are intuitive and practical, and are very widely used. 

It is important to remember, however, that introducing a structure for 
any statistical estimator comes at a price. Structured estimators can suffer 
from specifi cation error, that is, the assumptions made may be too restrictive 
for accurate forecasting of reality. As a solution, Jagannathan and Ma38 pro-
posed using portfolios of covariance matrix estimators. Their idea was to 
“diversify away” the estimation and specifi cation errors to which all cova-
riance matrix estimators are subject. Portfolios of estimators are typically 
constructed in a simple fashion: they are equally weighted, and easier to 
compute than, say, shrinkage estimators. For example, one of the portfolios 
of estimators suggested by Jagannathan and Ma and Bengtsson and Holst39 
consists of the average of the sample covariance matrix, a single-index 
matrix, and a matrix containing only the diagonal elements of the sample 
matrix. The latter matrix is more stable than a full asset-asset covariance 
matrix, as the sample covariance matrix is frequently noninvertible due to 
noisy data and in general may result in ill-conditioned mean-variance port-
folio optimization. The single-index matrix is a covariance matrix estima-
tor obtained by assuming that returns are generated according to Sharpe’s 
classical single-index factor model.40 Other portfolios of estimators add the 
matrix of constant correlations (a highly structured covariance matrix that 
assumes that each pair of assets has the same correlation). Interestingly, a 
recent study of several portfolio and shrinkage covariance matrix estimators 
using historical data on stocks traded on the New York Stock Exchange 

38Ravi Jagannathan and Tongshu Ma, “Three Methods for Improving the Precision 
in Covariance Matrix Estimators,” Manuscript, Kellogg School of Management, 
Northwestern University, 2000.
39Christoffer Bengtsson and Jan Holst, “On Portfolio Selection: Improved Covari-
ance Matrix Estimation for Swedish Asset Returns,” Working Paper, Lund Univer-
sity and Lund Institute of Technology.
40William Sharpe, “A Simplifi ed Model for Portfolio Analysis,” Management Sci-
ence, 9 (1963), pp. 277–293. Sharpe suggested a single-factor model for returns, 
where the single factor is a market index. We will discuss factor models later in this 
chapter.
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concluded that while portfolios of estimators and shrinkage estimators of 
the covariance matrix were indisputably better than the simple sample cova-
riance matrix estimator, there were no statistically signifi cant differences 
in portfolio performance over time between stock portfolios constructed 
using simple portfolios of covariance matrix estimators and stock portfolios 
constructed using shrinkage estimators of the covariance matrix, at least for 
this particular set of data.41 As a general matter, it is always important to 
test any particular estimator of the covariance matrix for the specifi c asset 
classes and data with which a portfolio manager is dealing before adopting 
it for portfolio management purposes.

Further Practical Considerations

In this subsection, we consider some techniques that are important for a 
more successful implementation of the sample mean and covariance matrix 
estimators, as well as advanced estimators encountered in practice.

Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation

Financial return series exhibit serial correlation and heteroskedasticity.42 Se-
rial correlation, also referred to as autocorrelation, is the correlation of the 
return of a security with itself over successive time intervals. The presence 
of heteroskedasticity means that variances/covariances are not constant but 
time varying. These two effects introduce biases in the estimated covariance 
matrix. Fortunately, there are simple and straightforward techniques avail-
able that almost automatically correct for these biases.

Probably the most popular techniques include the approaches by Newey 
and West,43 and its extension by Andrews,44 often referred to as “Newey-
West corrections” in the fi nancial literature.45

41David Disatnik and Simon Bennings, “Shrinking the Covariance Matrix—Simpler 
is Better,” Journal of Portfolio Management, 33 (2007), pp. 56–63.
42See John Y. Campbell, Andrew W. Lo, and A. Craig MacKinlay, The Econometrics 
of Financial Markets (Princeton, NJ: Princeton University Press, 1997).
43Whitney K. Newey and Kenneth D. West, “A Simple, Positive Semidefi nite Hetero-
skedasticity and Autocorrelation Consistent Covariance Matrix,” Econometrica, 56 
(1987), pp. 203–208.
44Donald W. K. Andrews, “Heteroskedasticity and Autocorrelation Consistent Co-
variance Matrix Estimation,” Econometrica, 59 (1991), pp. 817–858.
45However, these techniques can be traced back to work done by Jowett and Hannan 
in the 1950s. See G. H. Jowett, “The Comparison of Means of Sets of Observations 
from Sections of Independent Stochastic Series,” Journal of the Royal Statistical 
Society, Series B, 17 (1955), pp. 208–227; and E. J. Hannan, “The Variance of the 
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Dealing with Missing and Truncated Data 

In practice, we have to deal with the fact that no data series are perfect. 
There will be missing and errant observations, or just simply not enough 
data. If care is not taken, this can lead to poorly estimated models and 
inferior investment performance. Typically, it is tedious but very important 
work to clean data series for practical use. Some statistical techniques are 
available for dealing with missing observations; the so-called expectation 
maximization (EM) algorithm being among the most popular for fi nancial 
applications.46

Longer daily return data series are often available from well-established 
companies in developed countries. However, if we turn to newer compa-
nies, or companies in emerging markets, this is often not the case. Say that 
we have a portfolio of 10 assets, of which fi ve have a return history of 10 
years, while the other fi ve have only been around for three years. We could, 
for example, truncate the data series making all of them three years long 
and then calculate the sample covariance matrix. But by using the method 
proposed by Stambaugh,47 we can do better than that. Simplistically speak-
ing, starting from the truncated sample covariance matrix, this technique 
produces improvements to the covariance matrix that utilizes all the avail-
able data.

Data Frequency

Merton48 shows that even if the expected returns are constant over time, a 
long history would still be required in order to estimate them accurately. 
The situation is very different for variances and covariances. Under reason-
able assumptions, it can be shown that estimates of these quantities can be 
improved by increasing the sampling frequency. 

However, not everyone has the luxury of having access to high-frequency 
or tick-by-tick data. An improved estimator of volatility can be achieved 
by using the daily high, low, opening, and closing prices, along with the 

Mean of a Stationary Process,” Journal of the Royal Statistical Society, Series B, 19 
(1957), pp. 282–285.
46See Roderick J. A. Little and Donald B. Rubin, Statistical Analysis with Missing 
Data (New York: Wiley-Interscience, 2002); and Joe L. Schafer, Analysis of Incom-
plete Multivariate Data (Boca Raton, FL: Chapman & Hall/CRC, 1997).
47For a more detailed description of the technique, see Robert F. Stambaugh, “Ana-
lyzing Investments Whose Histories Differ in Length,” Journal of Financial Econom-
ics, 45 (1997), pp. 285–331.
48Robert C. Merton, “On Estimating the Expected Return on the Market: An Ex-
ploratory Investigation,” Journal of Financial Economics, 8 (1980), pp. 323–361.
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transaction volume.49 These types of estimators are typically referred to as 
Garman-Klass estimators.

Some guidance can also be gained from the option pricing literature. As 
suggested by Burghardt and Lane, when historical volatility is calculated for 
option pricing purposes, the time horizon for sampling should be equal to 
the time to maturity of the option.50

As Butler and Schachter point out, when historical data are used for 
volatility forecasting purposes, the bias found in the estimator tends to 
increase with the sample length.51 However, it can be problematic to use 
information based on too short time periods. In this case, often the volatility 
estimator becomes highly sensitive to short-term regimes, such as over- and 
underreaction corrections.

PORTFOLIO OPTIMIZATION WITH OTHER RISK MEASURES

Generally speaking, the main objective of portfolio selection is the construc-
tion of portfolios that maximize expected returns at a certain level of risk. 
It is now well known that asset returns are not normal and, therefore, the 
mean and the variance alone do not fully describe the characteristics of the 
joint asset return distribution. Indeed, many risks and undesirable scenarios 
faced by a portfolio manager cannot be captured solely by the variance of 
the portfolio. Consequently, especially in cases of signifi cant nonnormal-
ity, the classical mean-variance approach will not be a satisfactory portfo-
lio allocation model. Since about the mid-1990s, considerable thought and 
innovation in the fi nancial industry have been directed toward creating a 
better understanding of risk and its measurement, and toward improving 
the management of risk in fi nancial portfolios. From the statistical point of 
view, a key innovation is the attention paid to the ratio between the bulk of 
the risk and the risk of the tails. The latter has become a critical statistical 
determinant of risk management policies. Changing situations and differ-
ent portfolios may require alternative and new risk measures. The race for 
inventing the best risk measure for a given situation or portfolio is still on-
going. It is possible that we will never fi nd a completely satisfactory answer 

49See Mark B. Garman and Michael J. Klass, “On the Estimation of Security Price 
Volatilities from Historical Data,” Journal of Business, 53 (1980), pp. 67–78; and 
Michael Parkinson, “The Extreme Value Method for Estimating the Variance of the 
Rate of Return,” Journal of Business, 53 (1980), pp. 61–65.
50Galen Burghardt and Morton Lane, “How to Tell if Options Are Cheap,” Journal 
of Portfolio Management, 16 (1990), pp. 72–78.
51John S. Butler and Barry Schachter, “Unbiased Estimation of the Black-Scholes 
Formula,” Journal of Financial Economics, 15 (1986), pp. 341–357.

c08-PortOptimization.indd   342c08-PortOptimization.indd   342 1/6/10   11:34:36 AM1/6/10   11:34:36 AM



Portfolio Optimization: Basic Theory and Practice  343

to the question of which risk measure to use, and the choice to some extent 
remains an art.

We distinguish between two different types of risk measures: (1) disper-
sion and (2) downside measures. We begin with an overview of the most 
common dispersion and downside measures.52 We close this section with a 
derivation of a mean-CVaR portfolio optimization model.

Dispersion Measures

Dispersion measures are measures of uncertainty. Uncertainty, however, does 
not necessarily quantify risk. Dispersion measures consider both positive 
and negative deviations from the mean, and treat those deviations as equally 
risky. In other words, overperformance relative to the mean is penalized as 
much as underperformance. In this section, we review the most popular and 
important portfolio dispersion measures such as mean standard deviation, 
mean absolute deviation, and mean absolute moment.

Mean Standard Deviation and the Mean-Variance Approach

For historical reasons, portfolio standard deviation (or portfolio variance) 
is probably the most well-known dispersion measure because of its use in 
classical portfolio theory (i.e., mean-variance framework).

Mean Absolute Deviation

Konno53 introduced the mean absolute deviation (MAD) approach in 1988. 
Rather than using squared deviations as in the mean-variance approach, 
here the dispersion measure is based on the absolution deviations from the 
mean; that is, it is defi ned as

 MAD R E w R wp i i i i
i

N

i

N

( ) = −
⎛
⎝⎜

⎞
⎠⎟==

∑∑ μ
11

where
52For a further discussion, see Sergio Ortobelli, Svetlozar T. Rachev, Stoyan Stoya-
nov, Frank J. Fabozzi, and Almira Biglova, “The Correct Use of Risk Measures 
in Portfolio Theory,” International Journal of Theoretical and Applied Finance, 8 
(2005), pp. 1–27.
53Hiroshi Konno, “Portfolio Optimization Using L1 Risk Function,” IHSS Report 
88-9, Institute of Human and Social Sciences, Tokyo Institute of Technology, 1988. 
See also, Hiroshi Konno, “Piecewise Linear Risk Functions and Portfolio Optimiza-
tion,” Journal of the Operations Research Society of Japan, 33 (1990), pp. 139–
156.
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 R w Rp i i
i

N

=
=
∑

1

Ri and μi are the portfolio return, the return on asset i, and the expected 
return on asset i, respectively. 

The computation of optimal portfolios in the case of the mean absolute 
deviation approach is signifi cantly simplifi ed, as the resulting optimization 
problem is linear and can be solved by standard linear programming routines. 

We note that it can be shown that under the assumption that the indi-
vidual asset returns are multivariate normally distributed,

 MAD Rp p( ) = 2
π
σ

where σp is the standard deviation of the portfolio.54 That is, when asset 
returns are normally distributed, the mean absolute deviation and the mean-
variance approaches are equivalent.

Mean Absolute Moment

The mean-absolute moment (MAMq) of order q is defi ned by

 MAM R E R E Rq p p p

q
q

( ) ( )
/

= −( )( )1 , q ≥ 1

and is a straightforward generalization of the mean-standard deviation (q = 
2) and the mean absolute deviation (q = 1) approaches.

Downside Measures

The objective in downside risk measure portfolio allocation models is the 
maximization of the probability that the portfolio return is above a certain 
minimal acceptable level, often also referred to as the benchmark level or 
disaster level.

Despite their theoretical appeal, downside or safety-fi rst risk measures 
are often computationally more complicated to use in a portfolio context. 
Downside risk measures of individual securities cannot be easily aggregated 
into portfolio downside risk measures, as their computation requires knowl-
edge of the entire joint distribution of security returns. Often, one has to 

54Hiroshi Konno and Hiroaki Yamazaki, “Mean-Absolute Deviation Portfolio Opti-
mization Model and its Application to Tokyo Stock Market,” Management Science, 
37 (1991), pp. 519–531.
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resort to computationally intensive nonparametric estimation, simulation, 
and optimization techniques. Furthermore, the estimation risk of downside 
measures is usually greater than for standard mean-variance approaches. 
By the estimation of downside risk measures, we only use a portion of the 
original data—maybe even just the tail of the empirical distribution—and 
hence the estimation error increases.55 Nevertheless, these risk measures are 
very useful in assessing the risk of securities with asymmetric return distri-
butions, such as call and put options, as well as other derivative contracts.

 We discuss some of the most common safety-fi rst and downside risk 
measures such as Roy’s safety-fi rst, semivariance, lower partial moment, 
Value-at-Risk, and conditional Value-at-Risk.

Roy’s Safety-First

Two very important papers on portfolio selection were published in 1952: 
fi rst, Markowitz’s56 paper on portfolio selection and classical portfolio theo-
ry; second, Roy’s57 paper on safety fi rst, which laid the seed for the develop-
ment of downside risk measures.58

Let us fi rst understand the difference between these two approaches.59 
According to classical portfolio theory, an investor constructs a portfolio 
that represents a trade-off between risk and return. The trade-off between 
risk and return and the portfolio allocation depend upon the investor’s util-
ity function. It can be hard, or even impossible, to determine an investor’s 
actual utility function.

Roy argued that an investor, rather than thinking in terms of utility 
functions, fi rst wants to make sure that a certain amount of the principal 
is preserved. Thereafter, he decides on some minimal acceptable return that 
achieves this principal preservation. In essence, the investor chooses his 
portfolio by solving the following optimization problem

55For further discussion of these issues, see Henk Grootveld and Winfried G. Haller-
bach, “Variance Versus Downside Risk: Is There Really That Much Difference?” 
European Journal of Operational Research, 114 (1999), pp. 304–319.
56Harry M. Markowitz, “Portfolio Selection,” Journal of Finance, 7 (1952), pp. 
77–91.
57Andrew D. Roy, “Safety-First and the Holding of Assets,” Econometrica, 20 
(1952), pp. 431–449.
58See, for example, Vijay S. Bawa, “Optimal Rules for Ordering Uncertain Pros-
pects,” Journal of Financial Economics, 2 (1975), pp. 95–121; and Vijay S. Bawa, 
“Safety-First Stochastic Dominance and Portfolio Choice,” Journal of Financial and 
Quantitative Analysis, 13 (1978), pp. 255–271.
59For a more detailed description of these historical events, we refer the reader to 
David Nawrocki, “A Brief History of Downside Risk Measures,” Journal of Invest-
ing (1999), pp. 9–26.
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min ( )

w
P R Rp ≤ 0

subject to

 ′ = ′ =w ιι ιι1 1 1 1, [ , , , ]…

where P is the probability function and

 R w Rp i i
i

N

=
=
∑

1

is the portfolio return. Most likely, the investor will not know the true prob-
ability function. However, by using Tchebycheff’s inequality, we obtain60 

 P R R
Rp
p

p

( )
( )

≤ ≤
−0

2

0
2

σ
μ

where μp and σp denote the expected return and the variance of the portfo-
lio, respectively. Therefore, not knowing the probability function, the inves-
tor will end up solving the approximation

 min
w

σ
μ

p

p R− 0

subject to

 ′ = ′ =w ιι ιι1 1 1 1, [ , , , ]…

We note that if R0 is equal to the risk-free rate, then this optimization prob-
lem is equivalent to maximizing a portfolio’s Sharpe ratio.

60For a random variable x with expected value μ and variance σx
2 , Tchebycheff’s 

inequality states that for any positive real number c, it holds that

 
P x c

c
x( )− > ≤μ

σ2

2

Applying Tchebycheff’s inequality, we get

 P R R P R R
Rp p p p
p

p

( ) ( )
( )

≤ = − ≥ − ≤
−0 0

2

0
2μ μ

σ
μ
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Semivariance

In his original book, Markowitz proposed the usage of semivariance to 
correct for the fact that variance penalizes overperformance and underper-
formance equally.61 When receiving his Nobel Prize in Economic Science, 
Markowitz stated that “… it can further help evaluate the adequacy of mean 
and variance, or alternative practical measures, as criteria.” Furthermore, 
he added “Perhaps some other measure of portfolio risk will serve in a two 
parameter analysis. … Semivariance seems more plausible than variance as 
a measure of risk, since it is concerned only with adverse deviations.”62

The portfolio semivariance is defi ned as

 σ μp i i i i
i

N

i

N

E w R w,min ,2

11

0= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞

==
∑∑min

⎠⎠⎟

2

where

 R w Rp i i
i

N

=
=
∑

1

Ri and μi are the portfolio return, the return on asset i, and the expected 
return on asset i, respectively. Jin, Markowitz, and Zhou provide some of 
the theoretical properties of the mean-semivariance approach both in the 
single-period as well as in the continuous-time setting.63 A generalization to 
the semivariance is provided by the lower partial moment risk measure that 
we discuss in the next subsection.

Lower Partial Moment 

The lower partial moment risk measure provides a natural generalization 
of semivariance that we described previously (see, for example, Bawa64 and 
Fishburn65). The lower partial moment with power index q and the target 
rate of return R0 is given by

61Harry Markowitz, Portfolio Selection—Effi cient Diversifi cation of Investment 
(New York: Wiley, 1959).
62Harry Markowitz, “Foundations of Portfolio Theory,” Journal of Finance, 46 
(1991), pp. 469–477.
63Hanqing Jin, Harry Markowitz, and Xunyu Zhou, “A Note on Semivariance,” 
Forthcoming in Mathematical Finance.
64Vijay S. Bawa, “Admissible Portfolio for All Individuals,” Journal of Finance, 31 
(1976), pp. 1169–1183.
65Peter C. Fishburn, “Mean-Risk Analysis with Risk Associated with Below-Target 
Returns,” American Economic Review, 67 (1977), pp. 116–126.
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σR q R p

q q

p
E R R, ,

/( ( ( , ) ))
0 0

10= −min

where

 R w Rp i i
i

N

=
=
∑

1

is the portfolio return. The target rate of return R0 is what Roy termed the 
disaster level.66 We recognize that by setting q = 2 and R0 equal to the ex-
pected return, the semivariance is obtained. Fishburn demonstrated that q = 
1 represents a risk neutral investor, whereas 0 < q ≤ 1 and q > 1 correspond 
to a risk-seeking and a risk-averse investor, respectively.

Value-at-Risk

Probably the most well-known downside risk measure is Value-at-Risk 
(VaR), fi rst developed by JP Morgan, and made available through the Risk-
Metrics™ software in October 1994.67 VaR is related to the percentiles of 
loss distributions, and measures the predicted maximum loss at a specifi ed 
probability level (for example, 95%) over a certain time horizon (for ex-
ample, 10 days). Today VaR is used by most fi nancial institutions to both 
track and report the market risk exposure of their trading portfolios. 

Formally, VaR is defi ned as

 VaR R R P R Rp p1− = − ≥ ≤ε ε( ) { ( ) }min

where P denotes the probability function. Typical values for (1 – ε) are 
90%, 95%, and 99%.68 Some of the practical and computational issues 

66Roy, “Safety-First and the Holding of Assets.”
67JP Morgan/Reuters, RiskMetrics™—Technical Document, 4th ed. (New York: 
Morgan Guaranty Trust Company of New York, 1996). See also http://www.risk
metrics.com.
68There are several equivalent ways to defi ne VaR mathematically. In this book, we 
generally use ε to denote small numbers, so the expression

VaR1–ε(Rp) = min {R|P(–Rp ≥ R) ≤ ε}

emphasizes the fact that the (1 – ε)-VaR is the value R such that the probability that 
the possible portfolio loss (–Rp) exceeds R is at most some small number ε such as 
1%, 5%, or 10%. For example, the 95% VaR for a portfolio is the value R such that 
the probability that the possible portfolio loss exceeds R is less than ε = 5%.
 An alternative, and equivalent way to defi ne (1 – ε)-VaR is as the value R such 
that the probability that the maximum portfolio loss (–Rp) is at most R is at least 
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related to using VaR are discussed in Alexander and Baptista,69 Gaivoronski 
and Pfl ug,70 and Mittnik, Rachev, and Schwartz.71 Chow and Kritzman dis-
cuss the usage of VaR in formulating risk budgets, and provide an intuitive 
method for converting effi cient portfolio allocations into value-at-risk as-
signments.72 In a subsequent article, they discuss some of the problems with 
the simplest approach for computing the VaR of a portfolio.73 In particular, 
the common assumption that the portfolio itself is lognormally distributed 
can be somewhat problematic, especially for portfolios that contain both 
long and short positions.

VaR also has several undesirable properties as a risk measure.74 First, 
it is not subadditive, so the risk as measured by the VaR of a portfolio of 
two funds may be higher than the sum of the risks of the two individual 
portfolios. In other words, for VaR it does not hold that ρ(R1 + R2) ≤ ρ(R1) 
+ ρ(R2) for all returns R1, R2. The subadditivity property is the mathemati-
cal description of the diversifi cation effect. It is unreasonable to think that 

some large number (1 – ε) such as 99%, 95%, or 90%. Mathematically, this can be 
expressed as

VaR1–ε(Rp) = min {R|P(–Rp ≤ R) ≥ 1 – ε}

 In some standard references, the parameter ε is used to denote the “large” 
probability in the VaR defi nition, such as 99%, 95% or 90%. VaR is referred to as 
α-VaR, and is defi ned as

VaRα(Rp) = min {R|P(–Rp ≤ R) ≥ α}

Notice that there is no mathematical difference between the VaR defi nitions that 
involve α or ε, because α is in fact (1 – ε). In this book, we prefer using ε instead of 
α in the VaR defi nition so as to avoid confusion with the term alpha used in asset 
return estimation.
69Gordon J. Alexander and Alexandre M. Baptista, “Economic Implications of Us-
ing a Mean-VaR Model for Portfolio Selection: A Comparison with Mean-Variance 
Analysis,” Journal of Economic Dynamics and Control, 26 (2002), pp. 1159–1193.
70Alexei A. Gaivoronski and Georg Pfl ug, “Value-at-Risk in Portfolio Optimization: 
Properties and Computational Approach,” Journal of Risk, 7 (2005), pp. 1–31.
71Stefan Mittnik, Svetlotzar Rachev, and Eduardo Schwartz, “Value At-Risk and As-
set Allocation with Stable Return Distributions,” Allgemeines Statistisches Archiv, 
86 (2003), pp. 53–67.
72George Chow and Mark Kritzman, “Risk Budgets—Converting Mean-Variance 
Optimization into VaR Assignments,” Journal of Portfolio Management, 27 (2001), 
pp. 56–60.
73George Chow and Mark Kritzman, “Value at Risk for Portfolios with Short Posi-
tions,” Journal of Portfolio Management, 28 (2002), pp. 73–81.
74Hans Rau-Bredow, “Value-at-Risk, Expected Shortfall and Marginal Risk Con-
tribution,” in Giorgio Szegö (ed.) Risk Measures for the 21st Century (Chichester: 
John Wiley & Sons, 2004), pp. 61–68.
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a more diversifi ed portfolio would have higher risk, so nonsubadditive risk 
measures are undesirable. Second, when VaR is calculated from generated 
scenarios, it is a nonsmooth and nonconvex function of the portfolio hold-
ings. As a consequence, the VaR function has multiple stationary points, 
making it computationally both diffi cult and time-consuming to fi nd the 
global optimal point in the optimization process for portfolio allocation.75 
Third, VaR does not take the magnitude of the losses beyond the VaR value 
into account. For example, it is very unlikely that an investor will be indif-
ferent between two portfolios with identical expected return and VaR when 
the return distribution of one portfolio has a short left tail and the other has 
a long left tail. These undesirable features motivated the development of 
Conditional Value-at-Risk that we discuss next.

Conditional Value-at-Risk

The defi ciencies of Value-at-Risk led Artzner et al. to propose a set of de-
sirable properties for a risk measure.76 They called risk measures satisfy-
ing these properties coherent risk measures.77 Conditional Value-at-Risk 
(CVaR) is a coherent risk measure defi ned by the formula 

75For some possible remedies and fi xes to this problem see, Henk Grootveld and 
Winfried G. Hallerbach, “Upgrading Value-at-Risk from Diagnostic Metric to De-
cision Variable: A Wise Thing to Do?” in Risk Measures for the 21st Century, pp. 
33–50. We will discuss computational issues with portfolio VaR optimization in 
more detail in Chapters 13 and 19.
76Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath, “Coherent 
Measures of Risk,” Mathematical Finance, 9 (1999), pp. 203–228.
77A risk measure ρ is called a coherent measure of risk if it satisfi es the following 
properties:

 1. Monotonicity. If X ≥ 0, then ρ(X) ≤ 0
 2. Subadditivity. ρ(X + Y) ≤ ρ(X) + ρ(Y)
 3. Positive homogeneity. For any positive real number c, ρ(cX) = cρ(X)
 4. Translational invariance. For any real number c, ρ(X + c) ≤ ρ(X) − c

where X and Y are random variables. In words, these properties can be interpreted 
as: (1) If there are only positive returns, then the risk should be nonpositive; (2) the 
risk of a portfolio of two assets should be less than or equal to the sum of the risks of 
the individual assets; (3) if the portfolio is increased c times, the risk becomes c times 
larger; and (4) cash or another risk-free asset does not contribute to portfolio risk.
 Interestingly, standard deviation, a very popular risk measure, is not coherent—it 
violates the monotonicity property. It does, however, satisfy subadditivity, which 
is considered one of the most important properties. The four properties required 
for coherence are actually quite restrictive: when taken together, they rule out a 
number of other popular risk measures as well. For example, semideviation-type risk 
measures violate the subadditivity condition.
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 CVaR1–ε(Rp) = E(–Rp|–Rp ≥ VaR1–ε (Rp))

Therefore, CVaR measures the expected amount of losses in the tail of the 
distribution of possible portfolio losses, beyond the portfolio VaR. In the lit-
erature, this risk measure is also referred to as expected shortfall,78 expected 
tail loss (ETL), and tail VaR. As with VaR, the most commonly considered 
values for (1 – ε) are 90%, 95%, and 99%.

Mean-CVaR Optimization

In this subsection we develop a model for mean-CVaR optimization.  Here, 
the objective is to maximize expected return subject to that the portfolio 
risk, measured by CVaR, is no larger than some value. Mathematically, we 
can express this as 

 
max

w
w′μμ

subject to

 CVaR1 – ε(w) ≤ c0

along with any other constraints on w (represented by w ∈ Cw), where μ 
represents the vector of expected returns, and c0 is a constant denoting the 
required level of risk.

Before we formulate the mean-CVaR optimization problem, we need 
some useful mathematical properties of the CVaR measure. To this end, let 
us denote by w the N-dimensional portfolio vector such that each compo-
nent wi equals the number of shares held in asset i. Furthermore, we denote 
by y a random vector describing the uncertain outcomes (also referred to as 
market variables) of the economy. We let the function f(w,y) (also referred 
to as the loss function) represent the loss associated with the portfolio vec-
tor w. Note that for each w the loss function f(w,y) is a one-dimensional 
random variable. We let p(y) be the probability associated with scenario y. 

Now, assuming that all random values are discrete, the probability that 
the loss function does not exceed a certain value γ is given by the cumulative 
probability

 Ψ( , ) ( )
( , ) }

w y
y w y

γ
γ

=
≤

∑ p
f{

78Strictly speaking, expected shortfall is defi ned in a different way, but is shown to 
be equivalent to CVaR (see Carlo Acerbi and Dirk Tasche, “On the Coherence of 
Expected Shortfall,” Journal of Banking and Finance, 26 (2002), pp. 1487–1503).
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Using this cumulative probability, we see that

 
VaR1 1− = ≥ −ε γ γ ε( ) min{ ( , ) }w wΨ

Since CVaR of the losses of portfolio w is the expected value of the 
losses conditioned on the losses being in excess of VaR, we have that

 

CVaR E f f VaR

p f
1 1− −= >

=
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The continuous equivalents of these formulas are
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We note that in the continuous case it holds that Ψ(w,γ) = 1 – ε and there-
fore the denominator

 p
f VaR

( )
{ ( , ) ( )}

y
y w y w> −

∑
1 ε

in the discrete version of CVaR becomes ε in the continuous case. 
Moreover, we see that
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In other words, CVaR is always at least as large as VaR, but as we men-
tioned above, CVaR is a coherent risk measure, whereas VaR is not. It can 
also be shown that CVaR is a concave function and, therefore, has a unique 
minimum. However, working directly with the above formulas turns out 
to be somewhat tricky in practice as they involve the VaR function (except 
for those rare cases when one has an analytical expression for VaR). Fortu-
nately, a simpler approach was discovered by Rockefellar and Uryasev.79 

Their idea is that the function 

 F f p d
f

ε
γ

ξ ξ ε ξ( , ) ( ( , ) ) ( )
( , )

w w y y y
w y

= + −−

≥
∫1

can be used instead of CVaR. Specifi cally, they proved the following three 
important properties: 

Property 1. Fε(w,ξ) is a convex and continuously differentiable function 
in ξ.

Property 2. VaR1 – ε(w) is a minimizer of Fε(w,ξ).
Property 3. The minimum value of Fε(w,ξ) is CVaR1 – ε(w). 

In particular, we can fi nd the optimal value of CVaR1 – ε(w) by solving 
the optimization problem

 min ( , )
,w

w
ξ ε ξF

Consequently, if we denote by (w*, ξ*) the solution to this optimiza-
tion problem, then Fε(w*, ξ*) is the optimal CVaR. In addition, the optimal 
portfolio is given by w* and the corresponding VaR is given by ξ*. In other 
words, in this fashion we can compute the optimal CVaR without fi rst cal-
culating VaR. 

In practice, the probability density function p(y) is often not available, 
or is very diffi cult to estimate. Instead, we might have T different scenarios 
Y = {y1, …, yT} that are sampled from the probability distribution or that 
have been obtained from computer simulations. Evaluating the auxiliary 
function Fξ(w, ξ) using the scenarios Y, we obtain

 F T fY
i

i

T

ε ξ ξ ε ξ( , ) max( ( , ) , )w w y= + −− −

=
∑1 1

1

0

79See Stanislav Uryasev, “Conditional Value-at-Risk: Optimization Algorithms and 
Applications,” Financial Engineering News, 14 (2000), pp. 1–5; and R. Tyrrell 
Rockefellar and Stanislav Uryasev, “Optimization of Conditional Value-at-Risk,” 
Journal of Risk, 2 (2000), pp. 21–41.
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Therefore, in this case the optimization problem

 
min ( )

w
wCVaR1−ε

takes the form

 min max( ( , ) , )
,w

w y
ξ
ξ ε ξ+ −− −

=
∑1 1

1

0T f i
i

T

Replacing max(f(w, yi) – ξ, 0) by the auxiliary variables zi along with 
appropriate constraints, we obtain the equivalent optimization problem

 minξ ε+ − −

=
∑1 1

1

T zi
i

T

subject to

 zi ≥ 0, i = 1, …, T

 zi ≥ f(w,yi ) – ξ, i = 1, …, T

along with any other constraints on w, such as no short-selling constraints 
or any of the constraints we discussed previously in this chapter. Under the 
assumption that f(w,y) is linear in w,80 the above optimization problem is 
linear and can therefore be solved very effi ciently by standard linear pro-
gramming techniques.81 

The formulation discussed previously can be seen as an extension of 
calculating the GMV and can be used as an alternative when the underlying 
asset return distribution is asymmetric and exhibits fat tails. 

Moreover, the representation of CVaR given by the auxiliary function 
Fε(w, ξ) can be used in the construction of other portfolio optimization 
problems. For example, the mean-CVaR optimization problem

80This is typically the case as the loss function in the discrete case is chosen to be

 
f w xi i i

i

N

( , ) ( )w y y= − −
=
∑

1

where xi is the current price of security i.
81See, for example, Chapter 9 in Frank J. Fabozzi, Sergio M. Focardi, Petter N. 
Kolm, and Dessislava Pachamanova, Robust Portfolio Optimization and Manage-
ment  (Hoboken, NJ: John Wiley & Sons, 2007) for a discussion of numerical opti-
mization techniques used in portfolio management.
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max

w
w′μμ

subject to

 CVaR1 – ε(w) ≤ c0

along with any other constraints on w (represented by w ∈ Cw), where μ 
represents the vector of expected returns, and c0 is a constant denoting the 
required level of risk, would result in the following approximation

 
max

w
w′μμ

subject to

 

ξ ε+ ≤

≥ =
≥ −

− −

=
∑1 1

1
0

0 0 1

T z c

z T

z f

i
i

T

i

i i

, ,...,

( , )w y ξξ, ,...,0 1=
∈

T

w Cw

To illustrate the mean-CVaR optimization approach, we discuss an 
example from Palmquist, Uryasev, and Krokhmal.82 They considered two-
week returns for all the stocks in the S&P 100 Index over the period July 
1, 1997 to July 8, 1999 for scenario generation. Optimal portfolios were 
constructed by solving the preceding mean-CVaR optimization problem for 
a two-week horizon for different levels of confi dence. In Exhibit 8.3 we 
see three different mean-CVaR effi cient frontiers corresponding to (1 – ε) = 
90%, 95%, and 99%. The two-week rate of return is calculated as the ratio 
of the optimized portfolio value divided by the initial value, and the risk is 
calculated as the percentage of the initial portfolio value that is allowed to 
be put at risk. In other words, when the risk is 7% and (1 – ε) is 95%, this 
means that we allow for no more than a 7% loss of the initial value of the 
portfolio with a probability of 5%. We observe from the exhibit that as the 
CVaR constraint decreases (i.e., the probability increases) the rate of return 
increases. 

It can be shown that for a normally distributed loss function, the mean-
variance and the mean-CVaR frameworks generate the same effi cient fron-
tier. However, when distributions are nonnormal these two approaches are 

82Pavlo Krokhmal, Jonas Palmquist, and Stanislav Uryasev, “Portfolio Optimiza-
tion with Conditional Value-At-Risk Objective and Constraints,” Journal of Risk, 
4 (2002), pp. 11–27.
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signifi cantly different. On the one hand, in the mean-variance approach risk 
is defi ned by the variance of the loss distribution, and because the variance 
incorporates information from both the left as well as the right tail of the 
distribution, both the gains and losses are contributing equally to the risk. 
On the other hand, the mean-CVaR methodology only involves the part of 
the tail of the distribution that contributes to high losses. 

In Exhibit 8.4 we can see a comparison between the two approaches for 
(1 – ε) = 95%. The same data set is used as in the previous illustration. We 
note that in return/CVaR coordinates, as expected, the mean-CVaR effi cient 
frontier lies above the mean-variance effi cient frontier. In this particular 
example, the two effi cient frontiers are close to each other and are similarly 
shaped. Yet with the inclusion of derivative assets such as options and credit 
derivatives, this will no longer be the case.83

83Nicklas Larsen, Helmut Mausser, and Stanislav Uryasev, “Algorithms for Opti-
mization of Value-at-Risk,” in P. Pardalos and V. K. Tsitsiringos (eds.), Financial 
Engineering, e-commerce and Supply Chain (Boston: Kluwer Academic Publishers, 
2002), pp. 129–157.

EXHIBIT 8.3 Effi cient Frontiers of Different Mean-CVaR Portfolios
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Source: Pavlo Krokhmal, Jonas Palmquist, and Stanislav Uryasev, “Portfolio Opti-
mization with Conditional Value-At-Risk Objective and Constraints,” The Journal 
of Risk 4, no. 2 (2002), p. 21. This copyrighted material is reprinted with permis-
sion from Incisive Media Plc, Haymarket House, 28-29 Haymarket, London, SW1Y 
4RX, United Kingdom.
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SUMMARY

Markowitz quantifi ed the concept of diversifi cation through the statisti-
cal notion of covariance between individual securities, and the overall 
standard deviation of a portfolio.
The basic assumption behind modern portfolio theory is that an inves-
tor’s preferences can be represented by a function (utility function) of 
the expected return and the variance of a portfolio.
The basic principle underlying modern portfolio theory is that for a 
given level of expected return a rational investor would choose the 
portfolio with minimum variance from among the set of all possible 
portfolios. We presented three equivalent formulations: (1) the minimum 
variance formulation; (2) the expected return maximization formula-
tion; and (3) the risk aversion formulation.
Minimum variance portfolios are called mean-variance effi cient port-
folios. The set of all mean-variance effi cient portfolios is called the 

■

■

■

■

EXHIBIT 8.4 Comparison Mean-CVaR95% and Mean-Variance Effi cient Portfolios
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effi cient frontier. The effi cient frontier with only risky assets has a 
parabolic shape in the expected return/standard deviation coordinate 
system.
The portfolio on the effi cient frontier with the smallest variance is called 
the global minimum variance portfolio.
The mean-variance problem results in an optimization problem referred 
to as a quadratic program.
With the addition of a risk-free asset, the effi cient frontier becomes a 
straight line in the expected return/standard deviation coordinate sys-
tem. This line is called the capital market line.
The tangency point of the effi cient frontier with only risky assets and 
the capital market line is called the tangency portfolio.
The market portfolio is the portfolio that consists of all assets avail-
able to investors in the same proportion as each security’s market 
value divided by the total market value of all securities. Under certain 
assumptions it can be shown that the tangency portfolio is the same as 
the market portfolio.
The excess expected return of the market portfolio (the expected return 
of the market portfolio minus the risk-free rate) divided by the standard 
deviation of the market portfolio is referred to as the equilibrium mar-
ket price of risk.
The capital market line expresses that the expected return on a portfolio 
is equal to the risk-free rate plus a portfolio specifi c risk premium. The 
portfolio specifi c risk premium is the market price of risk multiplied by 
the risk (standard deviation) of the portfolio.
Some of the most common constraints used in practice are no short-
selling constraints, turnover constraints, maximum holding constraints, 
and tracking error constraints. These constraints can be handled in a 
straightforward way by the same type of optimization algorithms used 
for solving the mean-variance problem.
Integer constraints or constraints of combinatorial nature are more dif-
fi cult to handle and require more specialized optimization algorithms. 
Some examples of these types of constraints are minimum holding con-
straints, transaction size constraints, cardinality constraints (number of 
securities permitted in the portfolio), and round lot constraints.
The sample means and covariances of fi nancial return series are easy to 
calculate, but may exhibit signifi cant estimation errors.
Serial correlation or autocorrelation is the correlation of the return of 
a security with itself over successive time intervals. Heteroskedasticity 
means that variances/covariances are not constant but changing over 
time. 
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In practical applications, it is important to correct the covariance esti-
mator for serial correlation and heteroskedasticity.
The sample covariance estimator can be improved by increasing the 
sampling frequency. This is not the case for the sample expected return 
estimator, whose accuracy can only be improved by extending the length 
of the sample.
The mean-variance framework only takes the fi rst two moments, the 
mean and the variance, into account. When investors have preferences 
beyond the fi rst two moments, it is desirable to extend the mean-variance 
framework to include higher moments.
Two different types of risk measures can be distinguished: dispersion 
and downside measures.
Dispersion measures are measures of uncertainty. In contrast to down-
side measures, dispersion measures consider both positive and negative 
deviations from the mean, and treat those deviations as equally risky.
Some common portfolio dispersion approaches are mean standard 
deviation, mean-variance, mean absolute deviation, and mean absolute 
moment.
Some common portfolio downside measures are Roy’s safety-fi rst, semi-
variance, lower partial moment, Value-at-Risk, and Conditional Value-
at-Risk.
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CHAPTER 9
Portfolio Optimization: 

Bayesian Techniques and 
the Black-Litterman Model 

Investment policies constructed using inferior estimates, such as sample means 
and sample covariance matrices, typically perform very poorly in practice. 

Besides introducing spurious changes in portfolio weights each time the port-
folio is rebalanced, this undesirable property also results in unnecessary turn-
over and increased transaction costs. These phenomena are not necessarily a 
sign that portfolio optimization does not work, but rather that the modern 
portfolio theory framework is very sensitive to the accuracy of inputs. 

There are different ways to address this issue. On the estimation side, 
one can try to produce more robust estimates of the input parameters for 
the optimization problems. This is most often achieved by using estima-
tors that are less sensitive to outliers, and possibly, other sampling errors, 
such as Bayesian and shrinkage estimators. On the modeling side, one can 
constrain portfolio weights, use portfolio resampling, or apply robust or 
stochastic optimization techniques to specify scenarios or ranges of values 
for parameters estimated from data, thus incorporating uncertainty into the 
optimization process itself.1 

The outline of the chapter is as follows. First, we provide a general over-
view of some of the common problems encountered in mean-variance opti-
mization before we turn our attention to shrinkage estimators for expected 
returns and the covariance matrix. Within the context of Bayesian estima-
tion, we focus on the Black-Litterman model. We derive the model using 
so-called mixed estimation from classical econometrics. Introducing a simple 
cross-sectional momentum strategy, we then show how we can combine this 

1Interestingly, some new results suggest that the two approaches are not necessarily 
disjoint, and in some cases may lead to the same end result; see Bernd Scherer, “How 
Different Is Robust Optimization Really?” Journal of Asset Management, 7 (2007), 
pp. 374–387.
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strategy with market equilibrium using the Black-Litterman model in the 
mean-variance framework to rebalance the portfolio on a monthly basis.  

PRACTICAL PROBLEMS ENCOUNTERED IN 
MEAN-VARIANCE OPTIMIZATION

The simplicity and the intuitive appeal of portfolio construction using mod-
ern portfolio theory have attracted signifi cant attention both in academia 
and in practice. Yet, despite considerable effort, it took many years until 
portfolio managers started using modern portfolio theory for managing real 
money. Unfortunately, in real world applications there are many problems 
with it, and portfolio optimization is still considered by many practitioners 
to be diffi cult to apply. In this section we consider some of the typical prob-
lems encountered in mean-variance optimization. In particular, we elaborate 
on: (1) the sensitivity to estimation error; (2) the effects of uncertainty in 
the inputs in the optimization process; and (3) the large data requirement 
necessary for accurately estimating the inputs for the portfolio optimization 
framework. We start by considering an example illustrating the effect of 
estimation error.

Example: The True, Estimated, and Actual Effi cient Frontiers

Broadie introduced the terms true frontier, estimated frontier, and actual 
frontier to refer to the effi cient frontiers computed using the true expected re-
turns (unobservable), estimated expected returns, and true expected returns 
of the portfolios on the estimated frontier, respectively.2 In this example, 
we refer to the frontier computed using the true, but unknown, expected 
returns as the true frontier. Similarly, we refer to the frontier computed us-
ing estimates of the expected returns and the true covariance matrix as the 
estimated frontier. Finally, we defi ne the actual frontier as follows: We take 
the portfolios on the estimated frontier and then calculate their expected re-
turns using the true expected returns. Since we are using the true covariance 
matrix, the variance of a portfolio on the estimated frontier is the same as 
the variance on the actual frontier. 

From these defi nitions, we observe that the actual frontier will always lie 
below the true frontier. The estimated frontier can lie anywhere with respect 
to the other frontiers. However, if the errors in the expected return estimates 
have a mean of zero, then the estimated frontier will lie above the true 

2Mark Broadie, “Computing Effi cient Frontiers Using Estimated Parameters,” An-
nals of Operations Research: Special Issue on Financial Engineering 45, nos. 1–4 
(December 1993), pp. 21–58.
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frontier with extremely high probability, particularly when the investment 
universe is large. We look at two cases considered by Ceria and Stubbs:3

Using the covariance matrix and expected return vector from Idzorek,4 
they randomly generate a time series of normally distributed returns 
and compute the average to use as estimates of expected returns. Using 
the expected-return estimate calculated in this fashion and the true 
covariance matrix, they generate an estimated effi cient frontier of risk 
versus expected return where the portfolios were subject to no-shorting 
constraints and the standard budget constraint that the sum of portfolio 
weights is one. Similarly, Ceria and Stubbs compute the true effi cient 
frontier using the original covariance matrix and expected return vec-
tor. Finally, they construct the actual frontier by computing the expected 
return and risk of the portfolios on the estimated frontier with the true 
covariance and expected return values. These three frontiers are illus-
trated in Exhibit 9.1. 
Using the same estimate of expected returns, Ceria and Stubbs also gen-
erate risk versus expected return where active holdings of the assets are 
constrained to be ±3% of the benchmark holding of each asset. These 
frontiers are illustrated in Exhibit 9.2. 

We observe that the estimated frontiers signifi cantly overestimate the 
expected return for any risk level in both types of frontiers. More impor-
tantly, we note that the actual frontier lies far below the true frontier in both 
cases. This shows that the optimal mean-variance portfolio is not neces-
sarily a good portfolio, that is, it is not mean-variance effi cient. Since the 
true expected return is not observable, we do not know how far the actual 
expected return may be from the expected return of the mean-variance opti-
mal portfolio, and we end up holding an inferior portfolio.

Sensitivity to Estimation Error
In a portfolio optimization context, securities with large expected returns 
and low standard deviations will be overweighted and conversely, securities 
with low expected returns and high standard deviations will be underweight-
ed. Therefore, large estimation errors in expected returns and/or variances/

3We are grateful to Axioma Inc. for providing us with this example. Previously, it has 
appeared in Sebastian Ceria and Robert A. Stubbs, “Incorporating Estimation Er-
rors into Portfolio Selection: Robust Portfolio Construction,” Axioma, Inc., 2005.
4Thomas M. Idzorek, “A Step-By-Step Guide to the Black-Litterman Model: Incor-
porating User-Specifi ed Confi dence Levels,” Research Paper, Ibbotson Associates, 
Chicago, 2005.

1.

2.

c09-Bayesian.indd   363c09-Bayesian.indd   363 1/6/10   11:34:04 AM1/6/10   11:34:04 AM



364 QUANTITATIVE EQUITY INVESTING

EXHIBIT 9.1 Markowitz Effi cient Frontiers

15 20 25 30 35 40 45 50
Risk (%)

E
xp

ec
te

d 
R

et
ur

n 
(%

)

15.0

12.5

10.0

7.5

5.0
Estimated Markowitz Frontier

True Frontier

Actual Markowitz Frontier

Source: Figure 2 in Sebastian Ceria and Robert A. Stubbs, “Incorporating Estima-
tion Errors into Portfolio Selection: Robust Portfolio Construction,” Axioma, Inc., 
2005, p. 6. This fi gure is reprinted with the permission of Axioma, Inc.

EXHIBIT 9.2 Markowitz Benchmark-Relative Effi cient Frontiers
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2005, p. 7. This fi gure is reprinted with the permission of Axioma, Inc.
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covariances introduce errors in the optimized portfolio weights. For this rea-
son, people often cynically refer to optimizers as error maximizers.

Uncertainty from estimation error in expected returns tends to have 
more infl uence than in the covariance matrix in a mean-variance optimiza-
tion.5 The relative importance depends on the investor’s risk aversion, but as 
a general rule of thumb, errors in the expected returns are about 10 times 
more important than errors in the covariance matrix, and errors in the vari-
ances are about twice as important as errors in the covariances.6 As the risk 
tolerance increases, the relative impact of estimation errors in the expected 
returns becomes even more important. Conversely, as the risk tolerance 
decreases, the impact of errors in expected returns relative to errors in the 
covariance matrix becomes smaller. From this simple rule, it follows that the 
major focus should be on providing good estimates for the expected returns, 
followed by the variances. In this chapter we discuss shrinkage techniques 
and the Black-Litterman model in order to mitigate estimation errors.

Constraining Portfolio Weights
Several studies have shown that the inclusion of constraints in the mean-
variance optimization problem leads to better out-of-sample performance.7 
Practitioners often use no short-selling constraints or upper and lower 
bounds for each security to avoid overconcentration in a few assets. Gupta 
and Eichhorn suggest that constraining portfolio weights may also assist in 
containing volatility, increase realized effi ciency, and decrease downside risk 
or shortfall probability.8

5See, Michael J. Best and Robert R. Grauer, “The Analytics of Sensitivity Analysis for 
Mean-Variance Portfolio Problems,” International Review of Financial Analysis, 1 
(1992), pp. 17–37; and Michael J. Best and Robert R. Grauer, “On the Sensitivity of 
Mean-Variance-Effi cient Portfolios to Changes in Assets Means: Some Analytical and 
Computational Results,” Review of Financial Studies, 4 (1991), pp. 315–342.
6Vijay K. Chopra and William T. Ziemba, “The Effect of Errors in Means, Variances, 
and Covariances on Optimal Portfolio Choice,” Journal of Portfolio Management, 19 
(1993), pp. 6–11; and Jarl G. Kallberg and William T. Ziemba, “Misspecifi cation in 
Portfolio Selection Problems,” in G. Bamberg and K. Spremann (eds.), Risk and Capital: 
Lecture Notes in Economics and Mathematical Systems (New York: Springer, 1984).
7See, for example, Peter A. Frost and James E. Savarino, “For Better Performance: 
Constrain Portfolio Weights,” Journal of Portfolio Management, 15 (1988), pp. 
29–34; Vijay K. Chopra, “Mean-Variance Revisited: Near-Optimal Portfolios and 
Sensitivity to Input Variations,” Russell Research Commentary, December 1991; and 
Robert R. Grauer, and Frederick C. Shen, “Do Constraints Improve Portfolio Perfor-
mance?” Journal of Banking and Finance, 24 (2000), pp. 1253–1274.
8Francis Gupta and David Eichhorn, “Mean-Variance Optimization for Practitioners 
of Asset Allocation,” Chapter 4 in Frank J. Fabozzi (ed.), Handbook of Portfolio 
Management (Hoboken, NJ: John Wiley & Sons, 1998).
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Jagannathan and Ma provide a theoretical justifi cation for these 
observations.9 Specifi cally, they show that the no short-selling constraints 
are equivalent to reducing the estimated asset covariances, whereas upper 
bounds are equivalent to increasing the corresponding covariances. For 
example, stocks that have high covariance with other stocks tend to receive 
negative portfolio weights. Therefore, when their covariance is decreased 
(which is equivalent to the effect of imposing no short-selling constraints), 
these negative weights disappear. Similarly, stocks that have low covari-
ances with other stocks tend to get overweighted. Hence, by increasing 
the corresponding covariances the impact of these overweighted stocks 
decreases.

Furthermore, Monte Carlo experiments performed by Jagannathan and 
Ma indicate that when no-short-sell constraints are imposed, the sample 
covariance matrix has about the same performance (as measured by the 
global minimum variance (GMV) portfolio) as a covariance matrix estima-
tor constructed from a factor structure.

Care needs to be taken when imposing constraints for robustness and 
stability purposes. For example, if the constraints used are too tight, they 
will completely determine the portfolio allocation—not the forecasts. 

Instead of providing ad hoc upper and lower bounds on each secu-
rity, as proposed by Bouchaud, Potters, and Aguilar one can use so-called 
diversifi cation indicators that measure the concentration of the portfolio.10 
These diversifi cation indicators can be used as constraints in the portfolio 
construction phase to limit the concentration to individual securities. The 
authors demonstrate that these indicators are related to the information 
content of the portfolio in the sense of information theory.11 For example, 
a very concentrated portfolio corresponds to a large information content 
(as we would only choose a very concentrated allocation if our informa-
tion about future price fl uctuations is perfect), whereas an equally weighted 
portfolio would indicate low information content (as we would not put “all 
the eggs in one basket” if our information about future price fl uctuations 
is poor).

9Ravi Jagannathan and Tongshu Ma, “Risk Reduction in Large Portfolios: Why 
Imposing the Wrong Constraints Helps,” Journal of Finance, 58 (2003), pp. 1651–
1683.
10Jean-Philippe Bouchaud, Marc Potters, and Jean-Pierre Aguilar, “Missing Infor-
mation and Asset Allocation,” Working Paper, Science & Finance, Capital Fund 
Management, 1997.
11The relationship to information theory is based upon the premise that the diversifi -
cation indicators are generalized entropies. See, Evaldo M. F. Curado and Constanti-
no Tsallis, “Generalized Statistical Mechanics: Connection with Thermodynamics,” 
Journal of Physics A: Mathematical and General, 24 (1991), pp. L69–L72, 1991.
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Importance of Sensitivity Analysis

In practice, in order to minimize dramatic changes due to estimation error, 
it is advisable to perform sensitivity analysis. For example, one can study 
the results of small changes or perturbations to the inputs from an effi cient 
portfolio selected from a mean-variance optimization. If the portfolio cal-
culated from the perturbed inputs drastically differ from the fi rst one, this 
might indicate a problem. The perturbation can also be performed on a 
security by security basis in order to identify those securities that are the 
most sensitive. The objective of this sensitivity analysis is to identify a set of 
security weights that will be close to effi cient under several different sets of 
plausible inputs.

Issues with Highly Correlated Assets

The inclusion of highly correlated securities is another major cause for in-
stability in the mean-variance optimization framework. For example, high 
correlation coeffi cients among common asset classes are one reason why 
real estate is popular in optimized portfolios. Real estate is one of the few 
asset classes that has a low correlation with other common asset classes. But 
real estate in general does not have the liquidity necessary in order to imple-
ment these portfolios and may therefore fail to deliver the return promised 
by the real estate indexes.

The problem of high correlations typically becomes worse when the 
correlation matrix is estimated from historical data. Specifi cally, when the 
correlation matrix is estimated over a slightly different period, correlations 
may change, but the impact on the new portfolio weights may be drastic. In 
these situations, it may be a good idea to resort to a shrinkage estimator or 
a factor model to model covariances and correlations. 

Incorporating Uncertainty in the Inputs into the Portfolio Allocation Process

In the classical mean-variance optimization problem, the expected returns 
and the covariance matrix of returns are uncertain and have to be estimated. 
After the estimation of these quantities, the portfolio optimization problem 
is solved as a deterministic problem—completely ignoring the uncertainty in 
the inputs. However, it makes sense for the uncertainty of expected returns 
and risk to enter into the optimization process, thus creating a more realistic 
model. Using point estimates of the expected returns and the covariance ma-
trix of returns, and treating them as error-free in portfolio allocation, does 
not necessarily correspond to prudent investor behavior.
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The investor would probably be more comfortable choosing a portfolio 
that would perform well under a number of different scenarios, thereby also 
attaining some protection from estimation risk and model risk. Obviously, 
to have some insurance in the event of less likely but more extreme cases 
(e.g., scenarios that are highly unlikely under the assumption that returns 
are normally distributed), the investor must be willing to give up some of 
the upside that would result under the more likely scenarios. Such an inves-
tor seeks a robust portfolio, that is, a portfolio that is assured against some 
worst-case model misspecifi cation. The estimation process can be improved 
through robust statistical techniques such as shrinkage and Bayesian estima-
tors discussed later in this chapter. However, jointly considering estimation 
risk and model risk in the fi nancial decision-making process is becoming 
more important.

The estimation process frequently does not deliver a point forecast (that 
is, one single number), but a full distribution of expected returns. Recent 
approaches attempt to integrate estimation risk into the mean-variance 
framework by using the expected return distribution in the optimization. 
A simple approach is to sample from the return distribution and average 
the resulting portfolios (Monte Carlo approach).12 However, as a mean-
variance problem has to be solved for each draw, this is computationally 
intensive for larger portfolios. In addition, the averaging does not guarantee 
that the resulting portfolio weights will satisfy all constraints. 

Introduced in the late 1990s by Ben-Tal and Nemirovski13 and El Gha-
oui and Lebret,14 the robust optimization framework is computationally 
more effi cient than the Monte Carlo approach. This development in opti-
mization technology allows for effi ciently solving the robust version of the 
mean-variance optimization problem in about the same time as the classical 
mean-variance optimization problem. The technique explicitly uses the dis-
tribution from the estimation process to fi nd a robust portfolio in one single 
optimization. It thereby incorporates uncertainties of inputs into a deter-

12See, for example, Richard O. Michaud, Effi cient Asset Management: A Practical 
Guide to Stock Portfolio Optimization and Asset Allocation (Oxford: Oxford Uni-
versity Press, 1998); Philippe Jorion, “Portfolio Optimization in Practice,” Financial 
Analysts Journal, 48 (1992), pp. 68–74; and Bernd Scherer, “Portfolio Resampling: 
Review and Critique,” Financial Analysts Journal, 58 (2002), pp. 98–109.
13Aharon Ben-Tal and Arkadi S. Nemirovski, “Robust Convex Optimization,” 
Mathematics of Operations Research, 23 (1998), pp. 769–805; and Aharon Ben-
Tal and Arkadi S. Nemirovski, “Robust Solutions to Uncertain Linear Programs,” 
Operations Research Letters, 25 (1999), pp. 1–13.
14Laurent El Ghaoui and Herve Lebret, “Robust Solutions to Least-Squares Prob-
lems with Uncertain Data,” SIAM Journal Matrix Analysis with Applications, 18 
(1997), pp. 1035–1064.
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ministic framework. The classical portfolio optimization formulations such 
as the mean-variance portfolio selection problem, the maximum Sharpe 
ratio portfolio problem, and the value-at-risk (VaR) portfolio problem all 
have robust counterparts that can be solved in roughly the same amount of 
time as the original problem.15 In Chapter 10 we discuss robust portfolio 
optimization in more detail.

Large Data Requirements

In classical mean-variance optimization, we need to provide estimates of 
the expected returns and covariances of all the securities in the investment 
universe considered. Typically, however, portfolio managers have reliable 
return forecasts for only a small subset of these assets. This is probably one 
of the major reasons why the mean-variance framework has not been ad-
opted by practitioners in general. It is simply unreasonable for the portfolio 
manager to produce good estimates of all the inputs required in classical 
portfolio theory. 

We will see later in this chapter that the Black-Litterman model provides 
a remedy in that it blends any views (this could be a forecast on just one or 
a few securities, or all them) the investor might have with the market equi-
librium. When no views are present, the resulting Black-Litterman expected 
returns are just the expected returns consistent with the market equilibrium. 
Conversely, when the investor has views on some of the assets, the resulting 
expected returns deviate from market equilibrium.

SHRINKAGE ESTIMATION 

It is well known since Stein’s seminal work that biased estimators often yield 
better parameter estimates than their generally preferred unbiased coun-
terparts.16 In particular, it can be shown that if we consider the problem of 
estimating the mean of an N-dimensional multivariate normal variable (N 
> 2), X N∈ ( , )μμ ΣΣ  with known covariance matrix ΣΣ , the sample mean μ̂μ  is 
not the best estimator of the population mean μμ  in terms of the quadratic 
loss function

 L( , ˆ ) ( ˆ ) ( ˆ )μμ μμ μμ μμ μμ μμ= − ′ −−ΣΣ 1

15See, for example, Donald Goldfarb and Garud Iyengar, “Robust Portfolio Selection 
Problems,” Mathematics of Operations Research, 28 (2003), pp. 1–38.
16Charles Stein, “Inadmissibility of the Usual Estimator for the Mean of Multivari-
ate Normal Distribution,” Proceedings of the Third Berkeley Symposium on Math-
ematical Statistics and Probability, 1 (1956), pp. 197–206.
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For example, the so-called James-Stein shrinkage estimator

 ˆ ( ) ˆμμ μμJS w w= − +1 0μ ιι

has a lower quadratic loss than the sample mean, where

 w
N

T
= −

− ′ −
⎛
⎝⎜

⎞
⎠⎟

min ,
( ˆ ) ( ˆ )

1
2

0 0μμ μμμ μιι ΣΣ ιι−−11

and ι = [1,1,…,1]′. Moreover, T is the number of observations, and μ0 is 
an arbitrary number. The vector μ0ι and the weight w are referred to as the 
shrinkage target and the shrinkage intensity (or shrinkage factor), respec-
tively. Although there are some choices of μ0 that are better than others, 
what is surprising with this result is that it could be any number! This fact 
is referred to as the Stein paradox.

In effect, shrinkage is a form of averaging different estimators. The 
shrinkage estimator typically consists of three components: (1) an estimator 
with little or no structure (like the sample mean above); (2) an estimator with 
a lot of structure (the shrinkage target); and (3) the shrinkage intensity. The 
shrinkage target is chosen with the following two requirements in mind. First, 
it should have only a small number of free parameters (robust and with a lot 
of structure). Second, it should have some of the basic properties in common 
with the unknown quantity being estimated. The shrinkage intensity can be 
chosen based on theoretical properties or simply by numerical simulation.

Probably the most well-known shrinkage estimator17 used to estimate 
expected returns in the fi nancial literature is the one proposed by Jorion,18 
where the shrinkage target is given by μgι with

 
μg =

′
′

−

−

ιι ΣΣ μμ
ιι ΣΣ ιι

1

1

ˆ

and

 
w

N
N T g g

= +
+ + − ′ −−

2
2 1( ˆ ) ( ˆ )μμ ιι ΣΣ μμ ιιμ μ

We note that μg is the return on the GMV portfolio discussed in Chapter 
8. Several studies document that for the mean-variance framework: (1) the 

17Many similar approaches have been proposed. For example, see Jobson and Korkie, 
“Putting Markowitz Theory to Work” and Frost and Savarino, “An Empirical Bayes 
Approach to Effi cient Portfolio Selection.”
18Philippe Jorion, “Bayes-Stein Estimation for Portfolio Analysis,” Journal of Finan-
cial and Quantitative Analysis, 21 (1986), pp. 279–292.
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variability in the portfolio weights from one period to the next decrease; 
and (2) the out-of-sample risk-adjusted performance improves signifi cantly 
when using a shrinkage estimator as compared to the sample mean.19

We can also apply the shrinkage technique for covariance matrix estima-
tion. This involves shrinking an unstructured covariance estimator toward 
a more structured covariance estimator. Typically the structured covariance 
estimator only has a few degrees of freedom (only a few nonzero eigenval-
ues) as motivated by Random Matrix Theory (see Chapter 2).

For example, as shrinkage targets, Ledoit and Wolf20 suggest using the 
covariance matrix that follows from the single-factor model developed by 
Sharpe21 or the constant correlation covariance matrix. In practice the 
single-factor model and the constant correlation model yield similar results, 
but the constant correlation model is much easier to implement. In the case 
of the constant correlation model, the shrinkage estimator for the covari-
ance matrix takes the form

 ˆ ˆ ( ) ˆΣΣ ΣΣ ΣΣLW CCw w= + −1

where Σ̂Σ  is the sample covariance matrix, and Σ̂ΣCC  is the sample covari-
ance matrix with constant correlation. The sample covariance matrix with 
constant correlation is computed as follows. 

First, we decompose the sample covariance matrix according to

 Σ̂Σ ΛΛ ΛΛ= ′C

19See, for example, Michaud, “The Markowitz Optimization Enigma: Is ‘Optimized’ 
Optimal?”; Jorion, “Bayesian and CAPM Estimators of the Means: Implications for 
Portfolio Selection”; and Glen Larsen, Jr. and Bruce Resnick, “Parameter Estimation 
Techniques, Optimization Frequency, and Portfolio Return Enhancement,” Journal 
of Portfolio Management, 27 (2001), pp. 27–34.
20Olivier Ledoit and Michael Wolf, “Improved Estimation of the Covariance Matrix 
of Stock Returns with an Application to Portfolio Selection,” Journal of Empirical 
Finance, 10 (2003), pp. 603–621; and Olivier Ledoit and Michael Wolf, “Honey, 
I Shrunk the Sample Covariance Matrix,” Journal of Portfolio Management, 30 
(2004), pp. 110–119.
21William F. Sharpe, “A Simplifi ed Model for Portfolio Analysis,” Management Sci-
ence, 9 (1963), pp. 277–293. Elton, Gruber, and Urich proposed the single factor 
model for purposes of covariance estimation in 1978. They show that this approach 
leads to: (1) better forecasts of the covariance matrix; (2) more stable portfolio alloca-
tions over time; and (3) more diversifi ed portfolios. They also fi nd that the average 
correlation coeffi cient is a good forecast of the future correlation matrix. See Edwin J. 
Elton, Martin J. Gruber, and Thomas J. Urich, “Are Betas Best?” Journal of Finance, 
33 (1978), pp. 1375–1384.
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where ΛΛ  is a diagonal matrix of the volatilities of returns and C is the 
sample correlation matrix, that is,

 

C =

⎡
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⎢
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−
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1 1
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Second, we replace the sample correlation matrix with the constant cor-
relation matrix

 

CCC =

⎡
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where ρ̂  is the average of all the sample correlations, in other words

 
ˆ

( )
ˆρ ρ=

− = +=
∑∑2

1 11N N ij
j i

N

i

N

The optimal shrinkage intensity can be shown to be proportional to a con-
stant divided by the length of the history, T.22

22Although straightforward to implement, the optimal shrinkage intensity, w, is a bit 
tedious to write down mathematically. Let us denote by ri,t the return on security i 
during period t, 1 ≤ i ≤ N, 1 ≤ t ≤ T,

 r
T

ri i t
t

T

=
=
∑1

1
,  and ˆ ( )( ), ,σ ij i t i

t

T

j t jT
r r r r=

−
− −

=
∑1

1 1

Then the optimal shrinkage intensity is given by the formula

 
w

T
= { }⎧

⎨
⎩

⎫
⎬
⎭

max ,min
ˆ

,0 1
κ

where

 
ˆ

ˆ ˆ
ˆ

κ π
γ

= − c

and the parameters π̂ , ĉ , γ̂  are computed as follows. First, π̂  is given by

 ˆ ˆ
,

π π=
=
∑ ij
i j

N

1

where

 
ˆ ( )( ) ˆ

, ,π σij i t i j t j ij
t

T

T
r r r r= − − −( )

=
∑1 2

1
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In their two articles, Ledoit and Wolf compare the empirical out-of-sam-
ple performance of their shrinkage covariance matrix estimators with other 
covariance matrix estimators, such as the sample covariance matrix, a statis-
tical factor model based on the fi rst fi ve principal components, and a factor 
model based on the 48 industry factors as defi ned by Fama and French.23 
The results indicate that when it comes to computing a GMV portfolio, their 
shrinkage estimators are superior compared to the others tested, with the con-
stant correlation shrinkage estimator coming out slightly ahead. Interestingly 
enough, it turns out that the shrinkage intensity for the single-factor model 
(the shrinkage intensity for the constant coeffi cient model is not reported) is 
fairly constant throughout time with a value around 0.8. This suggests that 
there is about four times as much estimation error present in the sample cova-
riance matrix as there is bias in the single-factor covariance matrix.

THE BLACK-LITTERMAN MODEL

In the Black-Litterman model an estimate of future expected returns is based 
on combining market equilibrium (e.g., the CAPM equilibrium) with an 
investor’s views. As we will see, the Black-Litterman expected return is a 
shrinkage estimator where market equilibrium is the shrinkage target and 
the shrinkage intensity is determined by the portfolio manger’s confi dence in 
the model inputs. We will make this statement precise later in this section. 
Such views are expressed as absolute or relative deviations from equilibrium 
together with confi dence levels of the views (as measured by the standard 
deviation of the views).

Second, ĉ  is given by

 ˆ ˆ
ˆ

ˆ / ˆ ˆ ˆ
,c ii

i

N

i
i j

N

jj ii ii jj= + +
= =

≠

∑ ∑π ρ ρ ρ ϑ ρ
1 1 2 iii jj jj ii/ ˆ ˆ

,ρ ϑ( )
where

 
ˆ ( ) ˆ ( )(, , , ,ϑ σii ij i t i ii i t i j tT
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Finally, γ̂  is given by

 γ̂ = −C CCC F

2

where ⋅ F  denotes the Frobenius norm defi ned by

 
A F ij

i j

N

a=
=
∑ 2

1,

23Eugene F. Fama and Kenneth R. French, “Industry Costs of Equity,” Journal of 
Financial Economics, 43 (1997), pp. 153–193.
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The Black-Litterman expected return is calculated as a weighted aver-
age of the market equilibrium and the investor’s views. The weights depend 
on (1) the volatility of each asset and its correlations with the other assets 
and (2) the degree of confi dence in each forecast. The resulting expected 
return, which is the mean of the posterior distribution, is then used as input 
in the portfolio optimization process. Portfolio weights computed in this 
fashion tend to be more intuitive and less sensitive to small changes in the 
original inputs (i.e., forecasts of market equilibrium, investor’s views, and 
the covariance matrix). 

The Black-Litterman model can be interpreted as a Bayesian model. 
Named after the English mathematician Thomas Bayes, the Bayesian 
approach is based on the subjective interpretation of probability. A prob-
ability distribution is used to represent an investor’s belief on the probability 
that a specifi c event will actually occur. This probability distribution, called 
the prior distribution, refl ects an investor’s knowledge about the probabil-
ity before any data are observed. After more information is provided (e.g., 
data observed), the investor’s opinions about the probability might change. 
Bayes’ rule is the formula for computing the new probability distribution, 
called the posterior distribution. The posterior distribution is based on 
knowledge of the prior probability distribution plus the new data. A pos-
terior distribution of expected return is derived by combining the forecast 
from the empirical data with a prior distribution.

The ability to incorporate exogenous insight, such as a portfolio man-
ager’s judgment, into formal models is important: such insight might be the 
most valuable input used by the model. The Bayesian framework allows 
forecasting systems to use such external information sources and subjective 
interventions (i.e., modifi cation of the model due to judgment) in addition to 
traditional information sources such as market data and proprietary data.

Because portfolio managers might not be willing to give up control to 
a black box, incorporating exogenous insights into formal models through 
Bayesian techniques is one way of giving the portfolio manager better control 
in a quantitative framework. Forecasts are represented through probability 
distributions that can be modifi ed or adjusted to incorporate other sources 
of information deemed relevant. The only restriction is that such additional 
information (i.e., the investor’s views) be combined with the existing model 
through the laws of probability. In effect, incorporating Bayesian views into 
a model allows one to rationalize subjectivity within a formal, quantitative 
framework. “[T]he rational investor is a Bayesian,” as Markowitz noted.24

24See page 57 in Harry M. Markowitz, Mean-Variance Analysis in Portfolio Choice 
and Capital Markets (Cambridge, MA: Basil Blackwell, 1987).
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Derivation of the Black-Litterman Model

The basic feature of the Black-Litterman model that we discuss in this and 
the following sections is that it combines an investor’s views with the market 
equilibrium. Let us understand what this statement implies. In the classical 
mean-variance optimization framework an investor is required to provide 
estimates of the expected returns and covariances of all the securities in the 
investment universe considered. This is of course a humongous task, given 
the number of securities available today. Portfolio and investment manag-
ers are very unlikely to have a detailed understanding of all the securities, 
companies, industries, and sectors that they have at their disposal. Typically, 
most of them have a specifi c area of expertise that they focus on in order to 
achieve superior returns.

This is probably one of the major reasons why the mean-variance 
framework has not been adopted among practitioners in general. It is sim-
ply unrealistic for the portfolio manager to produce reasonable estimates 
(besides the additional problems of estimation error) of the inputs required 
in classical portfolio theory.

Furthermore, many trading strategies used today cannot easily be turned 
into forecasts of expected returns and covariances. In particular, not all trad-
ing strategies produce views on absolute return, but rather just provide relative 
rankings of securities that are predicted to outperform/underperform other 
securities. For example, considering two stocks, A and B, instead of the abso-
lute view, “the one-month expected return on A and B are 1.2% and 1.7% 
with a standard deviation of 5% and 5.5%, respectively,” while a relative view 
may be of the form “B will outperform A with half a percent over the next 
month” or simply “B will outperform A over the next month.” Clearly, it is 
not an easy task to translate any of these relative views into the inputs required 
for the modern portfolio theoretical framework. We now walk through and 
illustrate the usage of the Black-Litterman model in three simple steps.

Step 1: Basic Assumptions and Starting Point

One of the basic assumptions underlying the Black-Litterman model is that 
the expected return of a security should be consistent with market equilibrium 
unless the investor has a specifi c view on the security.25 In other words, an in-
vestor who does not have any views on the market should hold the market.26

25Fischer Black and Robert Litterman, Asset Allocation: Combining Investor Views 
with Market Equilibrium, Goldman, Sachs & Co., Fixed Income Research, Septem-
ber 1990.
26A predecessor to the Black-Litterman model is the so-called Treynor-Black model. 
In this model, an investor’s portfolio is shown to consist of two parts (1) a passive 
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Our starting point is the CAPM model: 

 E(Ri) – Rf = βi(E(RM) – Rf)

where E(Ri), E(RM), and Rf are the expected return on security i, the ex-
pected return on the market portfolio, and the risk-free rate, respectively. 
Furthermore,

 β
σi

i M

M

R R
=

cov( , )
2

where σM
2  is the variance of the market portfolio. Let us denote by wb = 

(wb1, …, wbN)′ the market capitalization or benchmark weights, so that with 
an asset universe of N securities27 the return on the market can be written as

 R w RM bj j
j

N

=
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Then by the CAPM, the expected excess return on asset i, Πi = E(Ri) – Rf, 
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We can also express this in matrix-vector form as28

portfolio/positions held purely for the purpose of mimicking the market portfolio, 
and (2) an active portfolio/positions based on the investor’s return/risk expectations. 
This somewhat simpler model relies on the assumption that returns of all securities 
are related only through the variation of the market portfolio (Sharpe’s Diagonal 
Model). See Jack L. Treynor and Fischer Black, “How to Use Security Analysis to 
Improve Portfolio Selection,” Journal of Business, 46 (1973) pp. 66–86.
27For simplicity, we consider only equity securities. Extending this model to other 
assets classes such as bonds and currencies is fairly straightforward.
28Two comments about the following two relationships are of importance:

As it may be diffi cult to accurately estimate expected returns, practitioners use 
other techniques. One is that of reverse optimization also referred to as the 
technique of implied expected returns. The technique simply uses the expression 
ΠΠ ΣΣ= δ w  to calculate the expected return vector given the market price of risk 
δ, the covariance matrix ΣΣ , and the market capitalization weights w. The tech-
nique was fi rst introduced by Sharpe and Fisher; see William F. Sharpe, “Imput-

1.
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 ΠΠ ΣΣ= δ w

where we defi ne the market price of risk as

 δ
σ

=
−E R RM f

M
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the expected excess return vector
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The true expected returns μμ  of the securities are unknown. However, 
we assume that our previous equilibrium model serves as a reasonable esti-
mate of the true expected returns in the sense that

 ΠΠ μμ εε εε ΣΣΠΠ ΠΠ= + , ( , )∼ N 0 τ

for some small parameter τ << 1. We can think about τΣΣ  as our confi dence 
in how well we can estimate the equilibrium expected returns. In other 

ing Expected Returns from Portfolio Composition,” Journal of Financial and 
Quantitative Analysis, 9 (1974), pp. 463–472; and Lawrence Fisher, “Using 
Modern Portfolio Theory to Maintain an Effi ciently Diversifi ed Portfolio,” Fi-
nancial Analysts Journal, 31 (1975), pp. 73–85; and is an important component 
of the Black-Litterman model.
We note that E(RM) – Rf is the market risk premium (or the equity premium) of 
the universe of assets considered. As pointed out by Herold and Idzorek; see Ulf 
Herold, “Computing Implied Returns in a Meaningful Way,” Journal of Asset 
Management, 6 (2005), pp. 53–64, and Thomas M. Idzorek, “A Step-By-Step 
Guide to the Black-Litterman Model: Incorporating User-Specifi ed Confi dence 
Levels”; using a market proxy with different risk-return characteristics than the 
market capitalization weighted portfolio for determining the market risk pre-
mium may lead to nonintuitive expected returns. For example, using a market 
risk premium based on the S&P 500 for calculating the implied equilibrium 
return vector for the NASDAQ 100 should be avoided.

2.
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words, a small τ implies a high confi dence in our equilibrium estimates and 
vice versa. 

According to portfolio theory, because the market portfolio is on the 
effi cient frontier, as a consequence of the CAPM an investor will be hold-
ing a portfolio consisting of the market portfolio and a risk-free instrument 
earning the risk-free rate. But let us now see what happens if an investor has 
a particular view on some of the securities.

Step 2: Expressing an Investor’s Views

Formally, K views in the Black-Litterman model are expressed as a K-
dimensional vector q with

 q P q q= +μμ εε εε ΩΩ, ( , )∼ N 0

where P is a K × N matrix (explained in the following example) and ΩΩ  is a 
K × K matrix expressing the confi dence in the views. In order to understand 
this mathematical specifi cation better, let us take a look at an example.

Let us assume that the asset universe that we consider has fi ve stocks 
(N = 5) and that an investor has the following two views:

Stock 1 will have a return of 1.5%. 
Stock 3 will outperform Stock 2 by 4%.

We recognize that the fi rst view is an absolute view whereas the second one 
is a relative view. Mathematically, we express the two views together as
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The fi rst row of the P matrix represents the fi rst view, and similarly, the sec-
ond row describes the second view. In this example, we chose the weights of 
the second view such that they add up to zero, but other weighting schemes 
are also possible. For instance, the weights could also be chosen as some 
scaling factor times one over the market capitalizations of the stock, some 
scaling factor times one over the stock price, or other variations thereof. We 
come back to these issues later in this section when we discuss how to incor-
porate time-series based strategies and cross-sectional ranking strategies.

1.
2.
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We also remark at this point that the error terms ε1, ε2 do not explic-
itly enter into the Black-Litterman model—but their variances do. Quite 
simply, these are just the variances of the different views. Although in some 
instances they are directly available as a by-product of the view or the strat-
egy, in other cases they need to be estimated separately. For example,

 ΩΩ =
⎡

⎣
⎢

⎤

⎦
⎥

1 0

0 1

2

2

%

%

corresponds to a higher confi dence in the views, and conversely,

 ΩΩ =
⎡

⎣
⎢

⎤

⎦
⎥

5 0

0 7

2

2

%

%

represents a much lower confi dence in the views. We discuss a few differ-
ent approaches in choosing the confi dence levels below. The off-diagonal 
elements of ΩΩ  are typically set to zero. The reason for this is that the error 
terms of the individual views are most often assumed to be independent of 
one another.

Step 3: Combining an Investor’s Views with Market Equilibrium

Having specifi ed the market equilibrium and an investor’s views separately, 
we are now ready to combine the two together. There are two different, but 
equivalent, approaches that can be used to arrive to the Black-Litterman 
model. We will describe a derivation that relies upon standard econometrical 
techniques, in particular, the so-called mixed estimation technique described 
by Theil.29 The approach based on Bayesian statistics has been explained in 
some detail by Satchell and Scowcroft.30

Let us fi rst recall the specifi cation of market equilibrium

 ΠΠ μμ εε εε ΣΣΠΠ ΠΠ= + , ( , )∼ N 0 τ

and the one for the investor’s views

 q P q q= +μμ εε εε ΩΩ, ( , )∼ N 0

We can stack these two equations together in the form

29Henri Theil, Principles of Econometrics (New York: John Wiley & Sons, 1971).
30Stephen Satchell and Alan Scowcroft, “A Demystifi cation of the Black-Litterman 
Model: Managing Quantitative and Traditional Portfolio Construction,” Journal of 
Asset Management, 1 (2000), pp. 138–150.
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 y X V= + ∼μμ εε εε, ( , )N 0

where

 y
q

X
I

P
V=

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

ΠΠ ττΣΣ
ΩΩ

, ,

with I denoting the N × N identity matrix. We observe that this is just a 
standard linear model for the expected returns μμ . Calculating the General-
ized Least Squares (GLS) estimator for μμ , we obtain

 

ˆ ( )

( )

μμ

ττΣΣ
ΩΩ

ΙΙ

BL = ′ ′

′[ ] ⎡
⎣
⎢

⎤

⎦
⎥

− − −

−

−

X V X X V y

= I P

1 1 1

1

1 ΠΠΠΠ
ττΣΣ

ΩΩ
ΠΠ⎡

⎣
⎢
⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ ′[ ] ⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦

−
−

−

1
1

1
I P

q
( )

⎥⎥

= ′[ ] ⎡
⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ ′[ ]

−

−

−
−

I P
P

I P
( ) ( )ττΣΣ
ΩΩ

ττΣΣ1

1

1
1ΠΠΠΠ

ΩΩ

ττΣΣ ΩΩ ττΣΣ ΠΠ++ ΩΩ

−

− − − −

⎡

⎣
⎢

⎤

⎦
⎥

= + ′⎡⎣ ⎤⎦ ′

1

1 1 1 1

q

P P P( ) ( ) −−⎡⎣ ⎤⎦
1q

The last line in the above formula is the Black-Litterman expected returns 
that blend the market equilibrium with the investor’s views. 

Some Remarks and Observations

Following are some comments in order to provide a better intuitive under-
standing of the formula. We see that if the investor has no views (that is, 
q = =ΩΩ 0 ) or the confi dence in the views is zero, then the Black-Litterman 
expected return becomes μ̂μ ΠΠBL = . Consequently, the investor will end up 
holding the market portfolio as predicted by the CAPM. In other words, the 
optimal portfolio in the absence of views is the defi ned market. 

If we were to plug return targets of zero or use the available cash rates, 
for example, into an optimizer to represent the absence of views, the result 
would be an optimal portfolio that looks very much different from the mar-
ket. The equilibrium returns are those forecasts that in the absence of any 
other views will produce an optimal portfolio equal to the market portfolio. 
Intuitively speaking, the equilibrium returns in the Black-Litterman model 
are used to center the optimal portfolio around the market portfolio.

By using q P q= +μμ εε , we have that the investor’s views alone imply the 
estimate of expected returns ˆ ( )μμ = ′ ′−P P P q1 . Since P P P P I( )′ ′ =−1  where I is 
the identity matrix, we can rewrite the Black-Litterman expected returns in 
the form
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 ˆ ( ) ( ) ˆμμ ττΣΣ ΩΩ ττΣΣ ΠΠ ΩΩ μμBL = + ′⎡⎣ ⎤⎦ + ′⎡⎣ ⎤− − − − −1 1 1 1 1P P P P ⎦⎦

Now we see that the Black-Litterman expected return is a confi dence weight-
ed linear combination of market equilibrium Π and the expected return μ̂μ  
implied by the investor’s views. The two weighting matrices are given by

 
w P P

w Pq

ΠΠ ττΣΣ ΩΩ ττΣΣ

ττΣΣ ΩΩ

= + ′⎡⎣ ⎤⎦

= + ′

− − − −

− −

( ) ( )

( )

1 1 1 1

1 1PP P P⎡⎣ ⎤⎦ ′
− −1 1ΩΩ

where

 
w w IqΠΠ + =

In particular, ( )ττΣΣ −1  and ′ −P PΩΩ 1  represent the confi dence we have in 
our estimates of the market equilibrium and the views, respectively. There-
fore, if we have low confi dence in the views, the resulting expected returns 
will be close to the ones implied by market equilibrium. Conversely, with 
higher confi dence in the views, the resulting expected returns will deviate 
from the market equilibrium implied expected returns. We say that we tilt 
away from market equilibrium. 

It is straightforward to show that the Black-Litterman expected returns 
can also be written in the form

 ˆ ( ) ( )μμ ΠΠ ΣΣ ΩΩ ττ ΣΣ ΠΠBL = + ′ + ′ −−τ P P P q P1

where we now immediately see that we tilt away from the equilibrium with 
a vector proportional to ΣΣ ΩΩ ττ ΣΣ ΠΠ′ + ′ −−P P P q P( ) ( )1 .

We also mention that the Black-Litterman model can be derived as a 
solution to the following optimization problem:

 ˆ arg min ( ) ( ) ( ) (μμ ΠΠ μμ ΣΣ ΠΠ μμ ττ μμ ΩΩ μμ
μμBL = − ′ − + − ′ −− −1 1q P q P )){ }

From this formulation we see that μ̂μBL  is chosen such that it is simultane-
ously as close to ΠΠ , and Pμ is as close to q as possible. The distances are 
determined by ΣΣ−1  and ΩΩ−1 . Furthermore, the relative importance of the 
equilibrium versus the views is determined by τ. For example, for τ large 
the weight of the views is increased, whereas for τ small the weight of the 
equilibrium is higher. Moreover, we also see that τ is a redundant parameter 
as it can be absorbed into ΩΩ .
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382 QUANTITATIVE EQUITY INVESTING

It is straightforward to calculate the variance of the Black-Litterman 
combined estimator of the expected returns by the standard sandwich for-
mula, that is,

 
var( ˆ ) ( )

( )

μμ

ττΣΣ ΩΩ

BL = ′

= + ′⎡⎣ ⎤⎦

− −

− − −

X V X

P P

1 1

1 1 1

The most important feature of the Black-Litterman model is that it uses 
the mixed estimation procedure to adjust the entire market equilibrium 
implied expected return vector with an investor’s views. Because security 
returns are correlated, views on just a few assets will, due to these correla-
tions, imply changes to the expected returns on all assets. Mathematically 
speaking, this follows from the fact that although the vector q can have 
dimension K << N, ′ −P ΩΩ 1  is an N × K matrix that propagates the K views 
into N components, ′ −P qΩΩ 1 . This effect is stronger the more correlated the 
different securities are. In the absence of this adjustment of the expected 
return vector, the differences between the equilibrium expected return and 
an investor’s forecasts will be interpreted as an arbitrage opportunity by a 
mean-variance optimizer and result in portfolios concentrated in just a few 
assets (“corner solutions”). Intuitively, any estimation errors are spread out 
over all assets, making the Black-Litterman expected return vector less sen-
sitive to errors in individual views. This effect contributes to the mitigation 
of estimation risk and error maximization in the optimization process.

Practical Considerations and Extensions

In this subsection we discuss a few practical issues in using the Black-Litterman 
model. Specifi cally, we discuss how to incorporate factor models and cross-
sectional rankings in this framework. Furthermore, we also provide some 
ideas on how the confi dences in the views can be estimated in cases where 
these are not directly available.

It is straightforward to incorporate factor models in the Black-Litterman 
framework. Let us assume we have a factor representation of the returns of 
some of the assets, that is

 R i Ii i i i= + + ∈α εFββ ,

where I N⊂ { , , , }1 2 … . Typically, from a factor model it is easy to obtain an 
estimate of the residual variance, var(εi). In this case, we set 

 q
i I

i
i=

+ ∈⎧
⎨
⎩

α Fββ ,

,0 otherwise
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and the corresponding confi dence 

 ω
ε

ii
i i I2

0
=

∈⎧
⎨
⎩

var( ),

, otherwise

The P matrix is defi ned by

 

p
i I

p i j

ii

ij

=
∈⎧

⎨
⎩

= ≠

1

0

0

,

,

,

otherwise

Of course in a practical implementation we would omit rows with zeros.
Many quantitative investment strategies do not a priori produce 

expected returns, but rather just a simple ranking of the securities. Let us 
consider a ranking of securities from best to worst (from an outperform-
ing to an underperforming perspective, etc.). For example, a value manager 
might consider ranking securities in terms of increasing book-to-price ratio 
(B/P), where a low B/P would indicate an undervalued stock (potential to 
increase in value) and high B/P an overvalued stock (potential to decrease in 
value). From this ranking we form a long-short portfolio where we purchase 
the top half of the stocks (the group that is expected to outperform) and we 
sell short the second half of stocks (the group that is expected to underper-
form). The view q in this case becomes a scalar, equal to the expected return 
on the long-short portfolio. The confi dence of the view can be decided from 
backtests, as we describe next. Further, here the P matrix is a 1 × N matrix 
of ones and minus ones. The corresponding column component is set to one 
if the security belongs to the outperforming group, or minus one if it belongs 
to the underperforming group.

In many cases we may not have a direct estimate of the expected return 
and confi dence (variance) of the view. There are several different ways to 
determine the confi dence level.

One of the advantages of a quantitative strategy is that it can be back-
tested. In the case of the long-short portfolio strategy discussed previously, 
we could estimate its historical variance through simulation with historical 
data. Of course, we cannot completely judge the performance of a strategy 
going forward from our backtests. Nevertheless, the backtest methodology 
allows us to obtain an estimate of the Black-Litterman view and confi dence 
for a particular view/strategy.

Another approach of deriving estimates of the confi dence of the view 
is through simple statistical assumptions. To illustrate, let us consider the 
second view in the preceding example: “Stock 3 will outperform Stock 2 
by 4%.” If we don’t know its confi dence, we can come up with an estimate 
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384 QUANTITATIVE EQUITY INVESTING

for it from the answers to a few simple questions. We start asking ourselves 
with what certainty we believe the strategy will deliver a return between 3% 
and 5% (4% ± α where α is some constant, in this case α = 1%). Let us say 
that we believe there is a chance of two out of three that this will happen, ²�₃ 
≈ 67%. If we assume normality, we can interpret this as a 67% confi dence 
interval for the future return to be in the interval [3%, 5%]. From this con-
fi dence interval we calculate that the implied standard deviation is equal 
to about 0.66%. Therefore, we would set the Black-Litterman confi dence 
equal to (0.66%)2 = 0.43%. 

Some extensions to the Black-Litterman model have been derived. For 
example, Satchel and Scowcroft propose a model where an investor’s view 
on global volatility is incorporated in the prior views by assuming that τ is 
unknown and stochastic.31 Idzorek introduces a new idea for determining 
the confi dence level of a view.32 He proposes that the investor derives his 
confi dence level indirectly by fi rst specifying his confi dence in the tilt away 
from equilibrium (the difference between the market capitalization weights 
and the weights implied by the view alone). Qian and Gorman describe a 
technique based on conditional distribution theory that allows an investor 
to incorporate his views on any or all variances.33 

Of course other asset classes beyond equities and bonds can be incor-
porated into the Black-Litterman framework.34 Some practical experiences 
and implementation details have been described by Bevan and Winkelman35 
and He and Litterman.36 A Bayesian approach, with some similarity to the 
Black-Litterman model, to portfolio selection using higher moments has 
been proposed by Harvey, et al.37

31Satchel and Scowcroft, “A Demystifi cation of the Black-Litterman Model: Manag-
ing Quantitative and Traditional Portfolio Construction.”
32Idzorek, “A Step-By-Step Guide to the Black-Litterman Model: Incorporating User-
Specifi ed Confi dence Levels.”
33Edward Qian and Stephen Gorman, “Conditional Distribution in Portfolio Theo-
ry,” Financial Analysts Journal, 57 (2001), pp. 44–51.
34See, for example, Fischer Black and Robert Litterman, “Global Asset Allocation 
with Equities, Bonds, and Currencies,” Fixed Income Research, Goldman Sachs, 
1991; and Robert Litterman, Modern Investment Management: An Equilibrium Ap-
proach (Hoboken, NJ: John Wiley & Sons, 2003).
35Andrew Bevan and Kurt Winkelmann, “Using the Black-Litterman Global Asset 
Allocation Model: Three Years of Practical Experience,” Fixed Income Research, 
Goldman Sachs, 1998.
36Guangliang He and Robert Litterman, “The Intuition Behind Black-Litterman 
Model Portfolios,” Investment Management Division, Goldman Sachs, 1999.
37Campbell R. Harvey, John C. Liechty, Merril W. Liechty, and Peter Mueller, “Port-
folio Selection with Higher Moments,” Duke University, Working Paper, 2003.
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The Black-Litterman Model: An Example

In this section we provide an illustration of the Black-Litterman model by 
combining a cross-sectional momentum strategy with market equilibrium. 
The resulting Black-Litterman expected returns are subsequently fed into 
a mean-variance optimizer. We start by describing the momentum strategy 
before we turn to the optimized strategy.

A Cross-Sectional Momentum Strategy 

Practitioners and researchers alike have identifi ed several ways to success-
fully predict security returns based on the past history returns. Among these 
fi ndings, perhaps the most popular ones are those of momentum and rever-
sal strategies.

The basic idea of a momentum strategy is to buy stocks that have per-
formed well and to sell the stocks that have performed poorly with the hope 
that the same trend will continue in the near future. This effect was fi rst 
documented in academic literature by Jegadeesh and Titman38 in 1993 for 
the U.S. stock market and has thereafter been shown to be present in many 
other international equity markets.39 The empirical fi ndings show that stocks 
that outperformed (underperformed) over a horizon of 6 to 12 months will 
continue to perform well (poorly) on a horizon of 3 to 12 months to follow. 
Typical backtests of these strategies have historically earned about 1% per 
month over the following 12 months.

Many practitioners rely on momentum strategies—both on shorter as 
well as longer horizons. Short-term strategies tend to capitalize on intraday 
buy and sell pressures, whereas more intermediate and long-term strategies 
can be attributed to over- and underreaction of prices relative to their fun-
damental value as new information becomes available.40

Momentum portfolios tend to have high turnover so transaction and 
trading costs become an issue. Most studies show that the resulting profi ts 
of momentum strategies decrease if transaction costs are taken into account. 
For example, Korajczyk and Sadka, taking into account the different costs 
of buying and short-selling stocks, report that depending on the method 

38Narasimhan Jegadeesh and Sheridan Titman, “Returns to Buying Winners and 
Selling Losers: Implications for Stock Market Effi ciency,” Journal of Finance, 48 
(1993), pp. 65–91.
39K. Geert Rouwenhorst, “International Momentum Strategies,” Journal of Finance, 
53 (1998), pp. 267–283.
40Kent D. Daniel, David Hirshleifer, and Avanidhar Subrahmanyam, “Investor Psy-
chology and Security Market Under- and Overreactions,” Journal of Finance, 53 
(1998), pp. 1839–1885.
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of measurement and the particular strategy, profi ts between 17 to 35 basis 
points per month (after transaction costs) are achievable.41

While researchers seem to be in somewhat of an agreement on the 
robustness and pervasiveness of the momentum phenomenon, the debate is 
still ongoing on whether the empirical evidence indicates market ineffi ciency 
or if it can be explained by rational asset pricing theories. This discussion 
is beyond the scope of this book. Instead, we provide an illustration of a 
simple cross-sectional momentum strategy using the country indexes from 
the MSCI World Index.42

The cross-sectional momentum portfolio is constructed at a point in 
time t (“today”) and held for one month. We sort the countries based on 
their “one-day lagged” past nine-month return normalized by their indi-
vidual volatilities. In other words, the ranking is based on the quantity

 z
P P

Pt i
t i t i

t
,

, ,=
−− − −

−

1 day 1 day 9 months

1 day−− ⋅9 months,i iσ

where Pt – 1 day, i, Pt – 1 day – 9 months, i and σi denote the prices of security i at one 
day before t, one day and nine months before t, and the volatility of security 
i, respectively. After the ranking, the securities in the top half are assigned 
a weight of

 wi
i

=
⋅

1
σ κ

where κ is a scaling factor chosen such that the resulting annual portfolio 
volatility is at a desirable level. In this example, we set it equal to 20%.43 
Similarly, the securities in the bottom half are assigned a weight of

 wi
i

=
⋅

1
σ κ

We make the portfolio weights a function of the individual volatilities in 
order not to overweight the most volatile assets. This is not a zero cost long-
short portfolio as the portfolio weights do not sum up to zero. It is straight-
forward to modify the weighting scheme to achieve a zero cost portfolio, 
but for our purposes this does not matter and will not signifi cantly change 

41Robert A. Korajczyk and Ronnie Sadka, “Are Momentum Profi ts Robust to Trad-
ing Costs?” Journal of Finance, 59 (2004), pp. 1039–1082.
42A more detailed description of the data is provided in Appendix A.
43κ can be estimated from past portfolio returns at each time of rebalancing. Typi-
cally, it’s value does not change signifi cantly from period to period.
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the results. The results from this simple momentum strategy are given in 
Exhibits 9.3 through 9.6.44 

The momentum strategy outperforms the index on both an alpha and 
a Sharpe ratio basis. The Sharpe ratio of the strategy over the full period is 
0.88 versus 0.62 for the index. The full period-annualized alpha is 11.7%, 
consistent with the standard results in the momentum literature. We also see 
that the beta of the strategy is very low, only 0.05 for the full sample. The 
realized correlation between the momentum strategy and the index is 3.5%. 
In other words, this momentum strategy is more or less market neutral. 

It turns out that this particular implementation has an average monthly 
portfolio turnover of 23.7% with a cross-sectional standard deviation of 
9.3%. The United Kingdom has the highest average turnover (40.6%) and 
New Zealand has the lowest (10.8%). For a real-world implementation it 
would therefore be important to consider the impact of transaction costs.      

44The fi rst portfolio is constructed in January 1981, as we need the previous nine-
month return in order to perform the ranking.

EXHIBIT 9.3 Growth of Equity for the Momentum Strategy and the 
MSCI World Index
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388 QUANTITATIVE EQUITY INVESTING

An Optimized Cross-Sectional Momentum Strategy

In the previous section we introduced a simple cross-sectional momen-
tum strategy. In this section we demonstrate how it can be combined with 
market equilibrium in a portfolio optimization framework by using the 
Black-Litterman model.

In this case, we only have one view—the momentum strategy. We use the 
approach described earlier where we discussed the “practical considerations 
and extensions” to specify the parameters for the Black-Litterman view. 

The covariance matrices needed for the portfolio optimization are cal-
culated from daily historical data with weighting (monthly decay parameter 
of d = 0.95) and with the correction for autocorrelation of Newey and West 
(2 lags).45 We choose τ = 0.1 for the Black-Litterman model.

After computing the implied Black-Litterman expected returns, we use 
the risk aversion formulation introduced in Chapter 8 of the mean-variance 

45This particular covariance matrix estimator is described in Chapter 8.

EXHIBIT 9.4 A Comparison of the Annualized Volatility of the Momentum 
Strategy and the Index

c09-Bayesian.indd   388c09-Bayesian.indd   388 1/6/10   11:34:13 AM1/6/10   11:34:13 AM



389

EX
HI

BI
T 

9.
5 

Su
m

m
ar

y 
St

at
is

ti
cs

 o
f 

th
e 

M
om

en
tu

m
 S

tr
at

eg
y

St
ar

t
D

at
e

E
nd

 
D

at
e

M
ea

n
V

ol
at

ili
ty

Sh
ar

pe
R

at
io

Sk
ew

K
ur

to
si

s
M

in
M

ax
A

lp
ha

B
et

a

1s
t 

Q
tr

Ja
n-

81
D

ec
-8

5
23

.0
%

19
.4

%
1.

18
0.

12
2.

82
–1

0.
4%

17
.1

%
11

.7
%

0.
25

2n
d 

Q
tr

Ja
n-

86
D

ec
-9

1
22

.1
%

21
.7

%
1.

02
0.

50
4.

90
–1

4.
9%

21
.8

%
14

.3
%

0.
06

3r
d 

Q
tr

Ja
n-

92
D

ec
-9

7
26

.9
%

20
.9

%
1.

29
–0

.0
9

4.
87

–1
8.

8%
20

.2
%

22
.3

%
–0

.0
2

4t
h 

Q
tr

Ja
n-

98
M

ay
-0

4
3.

7%
20

.8
%

0.
18

0.
54

3.
33

–1
3.

1%
16

.9
%

–0
.1

%
–0

.0
5

1s
t 

H
al

f
Ja

n-
81

D
ec

-9
1

22
.5

%
20

.6
%

1.
09

0.
36

4.
23

–1
4.

9%
21

.8
%

12
.9

%
0.

12

2n
d 

H
al

f
Ja

n-
92

M
ay

-0
4

14
.8

%
21

.1
%

0.
70

0.
23

3.
82

–1
8.

8%
20

.2
%

10
.7

%
–0

.0
3

Fu
ll

Ja
n-

81
M

ay
-0

4
18

.4
%

20
.9

%
0.

88
0.

29
4.

01
–1

8.
8%

21
.8

%
11

.7
%

0.
05

N
ot

e:
 T

he
 c

ol
um

ns
 M

ea
n,

 V
ol

at
ili

ty
, S

ha
rp

e 
R

at
io

, a
nd

 A
lp

ha
 a

re
 th

e 
an

nu
al

iz
ed

 m
ea

n 
re

tu
rn

s,
 v

ol
at

ili
ti

es
, S

ha
rp

e 
ra

ti
os

, a
nd

 a
lp

ha
s 

of
 th

e 
po

rt
fo

lio
 o

ve
r 

th
e 

di
ff

er
en

t p
er

io
ds

. M
in

 a
nd

 M
ax

 a
re

 th
e 

da
ily

 m
in

im
um

 a
nd

 m
ax

im
um

 p
or

tf
ol

io
 r

et
ur

ns
, r

es
pe

ct
iv

el
y.

 S
ke

w
 a

nd
 K

ur
to

si
s 

ar
e 

ca
lc

ul
at

ed
 a

s 
th

e 
th

ir
d 

an
d 

fo
ur

th
 n

or
m

al
iz

ed
 c

en
te

re
d 

m
om

en
ts

. A
lp

ha
s 

an
d 

be
ta

s 
ar

e 
ca

lc
ul

at
ed

 u
si

ng
 o

ne
-m

on
th

 L
IB

O
R

.

c09-Bayesian.indd   389c09-Bayesian.indd   389 1/6/10   11:34:13 AM1/6/10   11:34:13 AM



390

EX
HI

BI
T 

9.
6 

Su
m

m
ar

y 
St

at
is

ti
cs

 o
f 

th
e 

M
SC

I 
W

or
ld

 I
nd

ex

St
ar

t
D

at
e

E
nd

 
D

at
e

M
ea

n
V

ol
at

ili
ty

Sh
ar

pe
R

at
io

Sk
ew

K
ur

to
si

s
M

in
M

ax

1s
t 

Q
tr

Ja
n-

81
D

ec
-8

5
10

.2
%

11
.5

%
0.

88
–0

.2
9

2.
70

–7
.6

%
7.

7%

2n
d 

Q
tr

Ja
n-

86
D

ec
-9

1
13

.2
%

16
.4

%
0.

81
–0

.2
1

4.
05

–1
4.

6%
12

.8
%

3r
d 

Q
tr

Ja
n-

92
D

ec
-9

7
9.

6%
9.

8%
0.

98
0.

62
3.

28
–3

.9
%

9.
5%

4t
h 

Q
tr

Ja
n-

98
M

ay
-0

4
2.

9%
17

.2
%

0.
17

0.
17

3.
49

–1
2.

3%
16

.0
%

1s
t 

H
al

f
Ja

n-
81

D
ec

-9
1

11
.8

%
14

.3
%

0.
83

–0
.2

1
4.

22
–1

4.
6%

12
.8

%

2n
d 

H
al

f
Ja

n-
92

M
ay

-0
4

6.
1%

14
.1

%
0.

43
0.

15
4.

32
–1

2.
3%

16
.0

%

Fu
ll

Ja
n-

81
M

ay
-0

4
8.

8%
14

.2
%

0.
62

–0
.0

2
4.

22
–1

4.
6%

16
.0

%

N
ot

e:
 T

he
 c

ol
um

ns
 M

ea
n,

 V
ol

at
ili

ty
, 

an
d 

Sh
ar

pe
 R

at
io

 a
re

 t
he

 a
nn

ua
liz

ed
 m

ea
n 

re
tu

rn
s,

 v
ol

at
ili

ti
es

, 
an

d 
Sh

ar
pe

 r
at

io
s 

of
 t

he
 i

nd
ex

 o
v e

r 
th

e 
di

ff
er

en
t 

pe
ri

od
s.

 M
in

 a
nd

 M
ax

 a
re

 t
he

 d
ai

ly
 m

in
im

um
 a

nd
 m

ax
im

um
 I

nd
ex

 r
et

ur
ns

, r
es

pe
ct

iv
el

y.
 S

ke
w

 a
nd

 K
ur

to
si

s 
ar

e 
ca

lc
ul

at
ed

 a
s 

th
e 

th
ir

d 
an

d 
fo

ur
th

 n
or

m
al

iz
ed

 c
en

te
re

d 
m

om
en

ts
.

c09-Bayesian.indd   390c09-Bayesian.indd   390 1/6/10   11:34:13 AM1/6/10   11:34:13 AM



Portfolio Optimization: Bayesian Techniques and the Black-Litterman Model  391

optimization problem with a risk aversion coeffi cient of λ = 2 (calibrated to 
achieve about the same volatility as the index) to calculate the optimal port-
folio weights and rebalance the portfolio monthly. Before rebalancing at the 
end of each month, we calculate the realized portfolio return and its vola-
tility. Results and summary statistics are presented in Exhibits 9.7 through 
9.9. A comparison with the MSCI World Index is given in Exhibit 9.6.

The optimized strategy has a full sample Sharpe ratio of 0.92 versus 
0.62 for the index and an alpha of 8.3%. We observe that in the last quar-
ter the Sharpe ratio and the alpha of the strategy were negative, largely 
due to the general downturn in the market during that period. In contrast 
to the standalone momentum strategy that we discussed in the previous 
section, since the optimized strategy is a blend of momentum and market 
equilibrium, its resulting correlation with the index is signifi cantly differ-
ent from zero. For example, the full sample correlation with the index in 
this case is 0.36.46

46One possibility to decrease the correlation of the strategy with the index is to im-
pose zero β constraints.

EXHIBIT 9.7 Growth of Equity of the Optimized Strategy and the 
MSCI World Index

Growth of Equity
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392 QUANTITATIVE EQUITY INVESTING

Albeit rudimentary, this illustration shows that it is possible to use 
portfolio theory and mean-variance optimization in the design of profi table 
investment strategies. The standard textbook version of the mean-variance 
optimization typically underperforms an equally weighted portfolio and 
the GMV portfolio. The main issue here is that the classical mean-variance 
approach is very sensitive to small changes of the expected returns of the 
securities. The mixed estimation procedure used in the computation of the 
Black-Litterman implied expected returns by blending an investor’s views 
with market equilibrium is, in practice, an effective way to mitigate estima-
tion errors. Simply speaking, the Black-Litterman model manages to spread 
out any estimation errors in individual views over all assets and thereby 
makes the resulting expected returns more robust to estimation risk.

EXHIBIT 9.8 Monthly Portfolio Volatility of the Optimized Strategy Compared to 
Monthly Volatility of the MSCI World Index
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394 QUANTITATIVE EQUITY INVESTING

SUMMARY

Classical mean-variance optimization is sensitive to estimation error 
and small changes in the inputs.
We pointed out four different approaches to make the classical mean-
variance framework more robust: (1) improve the accuracy of the 
inputs; (2) use constraints for the portfolio weights; (3) use portfolio 
resampling to calculate the portfolio weights; and (4) apply the robust 
optimization framework to the portfolio allocation process. This chap-
ter focused on (1) and (2). 
Typically, errors in the expected returns are about 10 times more impor-
tant than errors in the covariance matrix, and errors in the variances are 
about twice as important as errors in the covariances.
Estimates of expected return and covariances can be improved by using 
shrinkage estimation. Shrinkage is a form of averaging different estima-
tors. The shrinkage estimator typically consists of three components: 
(1) an estimator with little or no structure; (2) an estimator with a lot of 
structure (the shrinkage target); and (3) the shrinkage intensity. 
Jorion’s shrinkage estimator for the expected return shrinks toward the 
return of the global minimum variance portfolio.
The sample covariance matrix should not be used as an input to the 
mean-variance problem. By shrinking it toward the covariance matrix 
with constant correlations, its quality will be improved.
The Black-Litterman model combines an investor’s views with the mar-
ket equilibrium. 
The Black-Litterman expected return is a confi dence weighted linear 
combination of market equilibrium and the investor’s views. The con-
fi dence in the views and in market equilibrium determines the relative 
weighting.
Factor models as well as simple ranking models can be simultaneously 
incorporated into the Black-Litterman model.

■

■

■

■

■

■

■

■

■
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CHAPTER 10
Robust Portfolio Optimization

Uncertainty in the inputs to a portfolio optimization problem (for example, 
the expected returns and their variances and covariances) can be mod-

eled directly in the optimization process. Robust optimization is an intuitive 
and effi cient way to describe this form of uncertainty. 

In the optimization literature, the term robust optimization has been 
used to describe several different concepts, and is therefore a little confus-
ing. Usually, however, robust optimization refers to an area of optimization 
whose roots are in the robust control engineering literature. It deals with 
making optimization models robust with respect to constraint violations by 
solving so-called robust counterparts of these problems for appropriately 
defi ned uncertainty sets for the uncertain parameters. These robust counter-
parts are in fact worst-case formulations of the original problem in terms of 
deviations of the parameters from their nominal values; however, typically 
the worst-case scenarios are defi ned in clever ways that do not lead to overly 
conservative formulations.

We can only speculate as to why robust portfolio modeling is not more 
widely used by practitioners in the fi nancial community. Probably, a major 
reason for this is that the technique is relatively new and is considered too 
technical. The implementation, however, is frequently straightforward, and 
has a comparable level of computational complexity to that of the original, 
nonrobust formulation. In this chapter, we show explicitly how the tech-
nique can be applied. 

First, we discuss the robust versions of the mean-variance portfolio 
optimization problem when uncertainty is assumed to be present only in 
the expected return estimates. We show several ways of modeling the uncer-
tainty, based on factor models and Bayesian statistics. We then extend the 
model to include uncertainty in the asset return covariance matrix. We con-
clude this section with a discussion of important considerations when using 
robust modeling techniques in practice, and present an example of a robust 
version of the mean-variance optimization problem.

This chapter is co-authored with Dessislava Pachamanova.
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396 QUANTITATIVE EQUITY INVESTING

ROBUST MEAN-VARIANCE FORMULATIONS

We recall that the classical mean-variance problem introduced in Chapter 
8 is

 
max

. .
w

s t

′ − ′

′ =

μμ ΣΣ

ιι

w w w

w

λ

1

where ι = [1,1, …, 1]′. In this optimization problem μμ ΣΣ, , ,λ  and w denote 
the expected return, asset return covariance matrix, risk aversion coeffi -
cient, and portfolio weights, respectively.

As discussed in more detail in Chapter 9, the estimation error in the 
forecasts may signifi cantly infl uence the resulting optimized portfolio 
weights. A study by Black and Litterman1 demonstrated that small changes 
in the expected returns, in particular, had a substantial impact. It follows 
that if the estimation errors in expected returns are large—which is often the 
case in practice—they will signifi cantly infl uence the optimal allocation. For 
practical applications, it is therefore crucial to incorporate the uncertainty 
about the accuracy of estimates in the portfolio optimization process.

Uncertainty in Expected Return Estimates

An easy way to incorporate uncertainty caused by estimation errors is to 
require that the investor be protected if the estimated expected return μ̂i  
for each asset is around the true expected return μi. The error from the esti-
mation can be assumed to be not larger than some small number δi  > 0. A 
simple choice for the uncertainty set for μμ  is the “box”

 
U i Ni i iδ μ μ δ( ˆ ) ˆ , , ,μμ μμ= − ≤ ={ }1 …

The δi’s could be specifi ed by assuming some confi dence interval around 
the estimated expected return. For example, if expected returns are esti-
mated using simulation (in which case the Central Limit Theorem applies)2 
or if asset returns are assumed to follow a normal distribution, then a 95% 
confi dence interval for μi can be obtained by setting δ σi i T= 1 96. / , where 
T is the sample size used in the estimation. 

1Fischer Black and Robert Litterman, “Global Portfolio Optimization,” Financial 
Analysts Journal, 48 (1992), pp. 28–43.
2The Central Limit Theorem states that under mild assumptions, the mean of a sam-
ple of independent and identically distributed observations from any distribution 
follows an approximately normal distribution with mean equal to the actual mean 
of the original distribution and standard deviation equal to the standard deviation of 
the original distribution divided by the square root of the sample size.
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Robust Portfolio Optimization  397

The robust formulation of the mean-variance problem under the pre-
ceding assumption on μ̂i  is 

 
max ˆ

. .
w

w w w w

w

′ − ′ − ′

′ =

μμ δδ ΣΣ

ιι

λ

s t 1

This formulation is in fact obvious without any involved mathematics. 
If the weight of asset i in the portfolio is negative, the worst-case expected 
return for asset i is μi + δi (we lose the largest amount possible). If the weight 
of asset i in the portfolio is positive, then the worst-case expected return for 
asset i is μi – δi (we gain the smallest amount possible). Note that μiwi – δi iw  
equals (μi – δi)wi if the weight wi is positive and (μi + δi)wi if the weight wi is 
negative. Therefore, the mathematical expression in the objective agrees with 
our intuition: it tries to minimize the worst-case expected portfolio return. 
In this robust version of the mean-variance formulation, assets whose mean 
return estimates are less accurate (have a larger estimation error δi) are penal-
ized in the objective function, and will tend to have smaller weights in the 
optimal portfolio allocation. We note that this problem has the same compu-
tational complexity as the nonrobust mean-variance formulation.3

To gain some additional insight, let us rewrite the robust formulation as

 
max( ˆ )

. .

,w w w w w

w

μμ μμ ΣΣ

ιι
δδ− ′ − ′

′ =

λ

s t 1

where

 
μμδδ,

( )

( )
w =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

sign

sign

w

wN N

1 1δ

δ
�

3There are two well-known techniques for making this optimization problem solver-
friendly by getting rid of the absolute value of the vector of weights w, and thus con-
verting it into a standard quadratic optimization problem. One is to introduce a new 
variable, ψ, to replace the absolute value. The problem can be then rewritten as 

max ˆ

. .
,w

w w w

w
ψψ
μμ δδ ψψ ΣΣ

ιι

′ − ′ − ′

′ =
≥

λ

ψ
s t

i

1
ww w i Ni i i; ψ ≥ − =, , ,1 …

Another way is to write w as a difference of two nonnegative variables w+ and w–, 
and replace occurrences of w  by w+ + w–. The optimization problem becomes

max ˆ )

. .
, ,w w w

w w w w w

w
+ –

+ –′ − ′ + − ′

′ =

μμ δδ (( ΣΣ

ιι

λ

s t 1
w w w w w+ – + –= − ≥ ≥, ,0 0
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398 QUANTITATIVE EQUITY INVESTING

Here sign(.) is the sign function (that is, sign(x) = 1 when x ≥ 0 and sign(x) 
= –1 when x < 0). In this reformulation of the problem we see that robust 
optimization is related to statistical shrinkage, and the original expected 
return vector is shrunk to ˆ

,μμ μμδδ− w .
By using the equality

 w w w
w

w

w

w

w

w
i i i i

i

i
i

i

i

i
i

i

sign( )δ δ δ= =

we can rewrite the problem as

 
max ˆ ˆ

. .
w

w w w w w

w

′ − ′ − ′

′ =

μ λ ΣΣ

ιι

Δ

s t 1

where

 

ŵ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

w

w

w

w
N

N

1

1

�

and 

 
ΔΔ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

δ

δ

1

�

N

Observe that this problem is yet another modifi cation of the classi-
cal mean-variance problem. In particular, a risk-like term ˆ ˆ′w wΔΔ  has been 
added to the classical formulation. This term can be interpreted as a risk 
adjustment performed by an investor who is averse to estimation error. The 
exact form of the investor’s estimation error aversion is specifi ed by the 
magnitude of the deltas.

One can defi ne many other uncertainty sets for the expected returns 
vector μμ . While more general uncertainty sets lead to more complicated 
optimization problems, the basic intuition and interpretation remain the 
same. For instance, consider the uncertainty set

 Uδ δ( ˆ ) ( ˆ ) ( ˆ )μμ μμ μμ μμ μμ μμμμ= − ′ − ≤{ }−Σ 1 2
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It captures the idea that the investor would like to be protected in instances 
in which the total scaled deviation of the realized average returns from the 
estimated returns is within δ.4 The derivation of the robust formulation with 
this uncertainty set is a bit more involved, but we show it next for illustra-
tive purposes.

Similarly to the fi rst example of modeling uncertainty in expected return 
estimates, we ask ourselves what the worst estimates of the expected returns 
would be, and how we would allocate the portfolio in this case. Mathemati-
cally, this can be expressed as 

 
max min

.

{ ( ˆ ) ( ˆ ) }w
w w w

μμ μμ μμ μμ μμ μμμμ

μμ ΣΣ
∈ − ′ − ≤−

′ − ′
Σ 1 2δ

λ

s tt. ′ =w ιι 1

This problem is called the robust counterpart, or the max-min problem, 
and is not in a form that can be input into a standard optimization solver. 
We need to solve the inner problem fi rst while holding the vector of weights 
w fi xed, and compute the worst expected portfolio return over the set of 
possible values for μμ :

 
min

. . ( ˆ ) ( ˆ )

μμ

μμ

μμ ΣΣ

μμ μμ ΣΣ μμ μμ

′ − ′

− ′ − ≤−

w w wλ

δs t 1 2

The Lagrangian of this problem takes the form

 L( , ) ( ( ˆ ) ( ˆ ))μμ μμ ΣΣ μμ μμ ΣΣ μμ μμμμγ λ γ δ= ′ − ′ − − − ′ −−w w w 2 1

Differentiating this with respect to μμ , we obtain the fi rst-order condition 

 w + − =−2 01γΣΣ μμ μμμμ ( ˆ )

and therefore the optimal value of μμ  is

 μμ μμ ΣΣμμ*= −ˆ 1
2γ

w

The optimal value of γ can be found by maximizing the Lagrangian 
after substituting the expression for the worst-case μμ , that is,

4This kind of uncertainty set scales the distances between the estimated and the pos-
sible values for the expected returns by the variability (standard deviation) in the 
estimates. This uncertainty set ensures that the total budget of tolerance to uncer-
tainty, δ, is distributed evenly among expected return estimates that have different 
variability.
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400 QUANTITATIVE EQUITY INVESTING

 max ( , )
γ

γ λ
γ

γδ
≥

= ′ − ′ − ′ −
0

21
4

L μμ μμ ΣΣ ΣΣμμw w w w w

After solving the fi rst-order condition, we obtain

 γ
δ

*= ′1
2

w wΣΣμμ

Finally, by substituting the expression for γ* in the Lagrangian, we obtain 
the robust problem

 
max

. .
w

w w w w w

w

′ − ′ − ′

′ =

μμ ΣΣ ΣΣ

ιι
μμλ δ

s t 1

Just as in the previous problem, we interpret the term δ ′w wΣΣμμ  as the 
penalty for estimation risk, where δ refl ects the degree of the investor’s aver-
sion to estimation risk. We remark that the uncertainty set used here can be 
interpreted as an N-dimensional confi dence region for the parameter vector 
μ̂μ , defi ned by the estimation error covariance matrix ΣΣμμ .5

It is not immediately obvious how one can estimate ΣΣμμ . Note that ΣΣμμ  is 
the covariance matrix of the errors in the estimation of the expected (aver-
age) returns. Thus, if a portfolio manager forecasts 5% active return over 
the next time period, but gets 1%, he cannot argue that there was a 4% 
error in his expected return—the actual error would consist of both an esti-
mation error in the expected return and the inherent volatility in actual 
realized returns. In fact, critics of the approach have argued that the realized 
returns typically have large stochastic components that dwarf the expected 
returns, and hence estimating ΣΣμμ  accurately from historical data is very 
hard, if not impossible.6 

In theory, if returns in a given sample of size T are independent and 
identically distributed, then ΣΣμμ  equals (1/T) · ΣΣ, where ΣΣ is the covariance 
matrix of asset returns as before. However, experience seems to suggest that 
this may not be the best method in practice. One issue is that this approach 
applies only in a world in which returns are stationary. Another important 
issue is whether the estimate of the asset covariance matrix Σ itself is reli-
able if it is estimated from a sample of historical data. As we explained in 

5In some references, the term ′w wΣΣμμ  is replaced by ΣΣμμ
1 2/ w , where .  denotes the 

l2 (Euclidean, elliptic) norm of a vector. The two expressions are equivalent, but 
′w wΣΣμμ  makes it evident that the new penalty term involves the standard error of 

the estimate, and is therefore easier to interpret.
6Jyh-Huei Lee, Dan Stefek, and Alexander Zhelenyak, “Robust Portfolio Optimiza-
tion—A Closer Look,” MSCI Barra Research Insights report, June 2006.
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Chapter 8, computing a meaningful asset return covariance matrix requires 
a large number of observations—many more observations than the number 
of assets in the portfolio—and even then the sample covariance matrix may 
contain large estimation errors that may produce poor results in the mean-
variance optimization. One approach when suffi cient data are not available 
for computing the covariance matrix for all securities in the portfolio is to 
compute the estimation errors in expected returns at a factor (e.g., industry, 
country, sector) level, and use their variances and covariances in the estima-
tion error covariance matrix for the individual asset returns. 

Several approximate methods for estimating ΣΣμμ  have been found to 
work well in practice.7 For example, it has been observed that simpler esti-
mation approaches, such as using just the diagonal matrix containing the 
variances of the estimates (as opposed to the complete error covariance 
matrix), frequently provide most of the benefi t in robust portfolio optimiza-
tion. In addition, standard approaches for estimating expected returns, such 
as Bayesian statistics and regression-based methods,8 can produce estimates 
for the estimation error covariance matrix in the process of generating the 
estimates themselves. Practical ways to compute an effective estimation 
error covariance matrix include least squares regression models, the James-
Stein estimator, and the Black-Litterman model.9 We describe some of these 
techniques next.

Least Squares Regression Models

If expected returns are estimated based on linear regression, then one can 
calculate an estimate of the error covariance matrix from the regression er-
rors. Let us assume we have the factor model for the returns

 r V f= + ′ +μμ εε

This can be rewritten as

 y Axi i i= + εε

for every asset i or, more generally, as

 Y AX= + εε

7Robert Stubbs and Pamela Vance, “Computing Return Estimation Error Matrices 
for Robust Optimization,” Report, Axioma, April 2005.
8See Chapter 2 for coverage of regression analysis.
9For more details, refer to Stubbs and Vance, “Computing Return Estimation Error 
Matrices for Robust Optimization.”
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402 QUANTITATIVE EQUITY INVESTING

where 

Y = [y1,…,yN] is a T × N matrix of T return data observations for N 
assets

A = [1,f1,…,fM] is a T × (M + 1) matrix of factor realizations
X = [μ, x1, …,xM]′ is an (M + 1) ¥ N matrix of regression coeffi cients

If a portfolio manager decomposes the expected return forecast into 
factor-specifi c and asset-specifi c returns, then he is concerned about the 
standard error covariance matrix for the intercept term μ. This covariance 
matrix can be used as an estimate for ΣΣμμ . The matrix of estimation errors 
for the response corresponding to the factor realizations ( ,..., )f fτ τ1 ∈M

MR  is 
given by

 ′ ′ − ′ −⎧
⎨
⎩

⎫
⎬
⎭

−f XX f Y AX Y AXτ τ( ) ( ) ( )1 1
T

where f f fτ τ τ= ′1( , ,..., ) .1 M
10

10To see why let us consider the linear regression model

 y Ni i i i= ′ +z ββ ε ε σ, ~ ( , )0 2

where i = 1, …, N. The least squares estimate of β is given by

 
ˆ ( )ββ = ′ −zz zy1

Let us assume we want to forecast the response and determine the associated 
forecasting error for the factor realizations (predictor) z0. Let us assume that y0, 
where y0 0= ′ +z0ββ ε , is the true value, whereas the forecasting model gives us ˆ ˆy0 = ′z0ββ. 
Therefore, the forecasting error is given by

 
e y y0 0 0 0= − = ′ − +ˆ ( ˆ )z0 ββ ββ ε

and its variance is

 

Var e Var

E

( ) ( ( ˆ))

(( ˆ)(

0
2

0

2
0

= + ′ −

= + ′ − −

σ

σ

z

z

ββ ββ

ββ ββ ββ ˆ̂ )')

(( ) ( ) )

ββ

εεεε

z

z zz z z zz z
0

2
0

1 1
0

2

= + ′ ′ ′ ′ ′

=

− −σ

σ

E

++ ′ ′ −σ2
0

1
0z zz z( )

where we used that ˆ ( )ββ ββ εε= + ′ ′−zz z1 . The forecasting variance therefore depends 
on two separate terms: (1) the fi rst term is associated with the residual from the 
regression, and (2) the second term we defi ne as the estimation error. To use this 
formula we need an estimate for σ2. This can be obtained from observations
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The James-Stein Estimator

The James-Stein estimator of expected returns is computed as a weighted 
average of the sample average returns (computed from a sample of size T) 
and a shrinkage target of μ0

 ˆ ( ) ˆμμ μμ μμJS w w= − +1 0

The special form of the James-Stein shrinkage estimator proposed by 
Jorion11 (named the Bayes-Stein estimator) is based on Bayesian methodol-
ogy. The shrinkage target μ0 for the Bayes-Stein estimator is computed as 

 μμ ΣΣ
ΣΣ ιι

μμ0

1

1= ′
′

−

−

ι
ι

ˆ

where ΣΣ  is the real covariance matrix of the N returns. This matrix is un-
known in practice, but one can replace ΣΣ  in the previous equation by

 Σ̂Σ = −
− −
T

T N
1

3
S

and S is the usual sample covariance matrix. The variance of the Bayes-Stein 
estimator for the expected returns is given by12 

 var( ˆ )
( )

μμ ΣΣ ΣΣ ιιιι
ιι ΣΣιιBS T T T

= +
+

+
+ +

′
′

1
1τ

τ
τ

and can be used as an estimate for the error covariance matrix ΣΣμμ . The pa-
rameter t is a scalar that describes the confi dence in the precision of estima-
tion of the covariance matrix ΣΣ . Namely, the Bayes-Stein estimator assumes 
that the prior of the expected returns is the normal distribution with mean 
μ0 and covariance matrix ( / )1 τ ΣΣ . 

 

y

yT T T T

1 1 1 1= ′ +

= ′ +

z

z

ββ

ββ

ε

ε
�

(or in matrix form Y = ZB + E), by the standard formula

 
ˆ ( ) ( )σ2 1= − ′ −

T
Y ZB Y ZB

11Philippe Jorion, “Bayes-Stein Estimation for Portfolio Analysis,” Journal of Finan-
cial and Quantitative Analysis, 21 (1986), pp. 279–292.
12See Philippe Jorion, “Bayes-Stein Estimation for Portfolio Analysis.”

c10-RobustPortOpt.indd   403c10-RobustPortOpt.indd   403 1/6/10   11:33:43 AM1/6/10   11:33:43 AM



404 QUANTITATIVE EQUITY INVESTING

The Black-Litterman Model

As we explained in Chapter 9, the Black-Litterman model for estimating 
expected returns combines the market equilibrium with an investor’s views. 
The formula for the estimate is a weighted sum of the two estimates of ex-
pected returns

 ˆ ( ) ( ) ( )μμ ττΣΣ ΩΩ ττΣΣ ΠΠ ττΣΣ ΩΩBL = + ′⎡⎣ ⎤⎦ + + ′− − − − − −1 1 1 1 1P P P 11 1 1P P P⎡⎣ ⎤⎦ ′[ ]− −ΩΩ μμ

or, equivalently,

 ˆ ( ) ( )μμ ττΣΣ ΩΩ ττΣΣ ΠΠ ΩΩBL = + ′⎡⎣ ⎤⎦ + ′⎡⎣ ⎤⎦
− − − − −1 1 1 1 1P P P q

where

ΣΣ  is the N × N covariance matrix of returns
Π is [Π1, …, ΠN]′ which is the vector of expected excess returns, com-
puted from an equilibrium model such as the CAPM
τ is a scalar that represents the confi dence in the estimation of the mar-
ket prior
q is a K-dimensional vector of K investor views
P is a K × N matrix of investor views
Ω is a K × K matrix expressing the confi dence in the investor’s views
Frequently, the matrix Ω is assumed to be diagonal, that is, investor 
views are assumed to be independent

As we showed in Chapter 9, the covariance of the Black-Litterman esti-
mator of expected returns is 

 ( )ττΣΣ ΩΩ− − −
+ ′⎡⎣ ⎤⎦1 1 1

P P

This covariance matrix can be used as an approximation for the estimation 
error covariance matrix ΣΣμμ .

Uncertainty in Return Covariance Matrix Estimates

Mean-variance portfolio optimization is less sensitive to inaccuracies in the 
estimate of the covariance matrix ΣΣ  than it is to estimation errors in expect-
ed returns. Nonetheless, insurance against uncertainty in these estimates can 
be incorporated at not too large a cost. Most generally, the robust mean-
variance portfolio optimization problem can then be formulated as
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max min{ } max{ }

. .

w
w w w

w

μμ ΣΣμμ ΣΣ

μμ ΣΣ
∈ ∈

′ − ′{ }
′
U U

s t

λ

ιιιι = 1

where Uμμ  and UΣΣ  denote the uncertainty sets of expected returns and co-
variances, respectively.

A few different methods for modeling uncertainty in the covariance 
matrix are used in practice. Some are superimposed on top of factor mod-
els for returns, while others consider confi dence intervals for the individual 
covariance matrix entries. Benefi ts for portfolio performance have been 
observed even when the uncertainty set UΣΣ  is defi ned simply as a collection 
of several possible scenarios for the covariance matrix.13 The latter defi ni-
tion of uncertainty set results in the introduction of several constraints in 
the optimization problem, each of which corresponds to a scenario for the 
covariance matrix, that is, the size of the optimization problem does not 
increase signifi cantly.14

Factor Models

If we assume a standard factor model for returns 

 r V f= + ′ +μμ εε

then the covariance matrix of returns ΣΣ  can be expressed as 

 ΣΣ = ′ +V FV D

where

V = the matrix of factor loadings
F = the covariance matrix of factor returns
D = the diagonal matrix of error term variances

It is assumed that the vector of residual returns ε  is independent of the vec-
tor of factor returns f, and that the variance of μ is zero. 

The statistical properties of the estimate of V naturally lead to an uncer-
tainty set of the kind

13Eranda Dragoti-Cela, Peter Haumer, and Raimund Kovacevic, “Applying Robust 
Optimization to Account for Estimation Risk in Dynamic Portfolio Selection,” 
Manuscript, FSC (Financial Soft Computing), Siemens AG, Vienna, Austria, 2006.
14See Chapter 10 in Frank J. Fabozzi, Petter N. Kolm, Dessislava Pachamanova, and 
Sergio M. Focardi, Robust Portfolio Optimization and Management  (Hoboken, NJ: 
John Wiley & Sons, 2007).

c10-RobustPortOpt.indd   405c10-RobustPortOpt.indd   405 1/6/10   11:33:43 AM1/6/10   11:33:43 AM
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 S i Nv i G i= = + ≤ ={ : , , , , }V V V W W0 1ρ …

where Wi denotes the i-th column of W, and 

 w w GwG = ′

is the Euclidean (elliptic) norm of w with respect to a symmetric positive 
defi nite matrix G.15 If we assume also that the estimates of expected returns 
belong to an interval uncertainty set

 U i Ni i iδ μ μ δ( ˆ ) { ˆ , , , }μμ μμ= − ≤ = 1 …

we can formulate the resulting robust optimization problem as the second-
order cone problem (SOCP)16 

 

max ( )

. .

, , , , , , ,w
w

ψψ
μμ δδ ψψ

v t s
v

s t

κ τ η
λ κ′ − ′ − +

2

1
1

1 2D w

w

/

−
⎡

⎣
⎢

⎤

⎦
⎥ ≤ +

′

κ
κ

ιι ==
≥ ≥ − =

1

1ψ ψi i i iw w i N; , , ,…

m

τ κ

η

+ ′ ≤ −

≤

t ιι v

l
1

aax ( )H

where 

M = the number of factors in the factor model
QLQ′ = the spectral decomposition of H = G–1/2FG–1/2 (recall that G was 

the matrix used for defi ning the norm in the uncertainty set for 
the factor loadings matrix V)

L = a diagonal matrix with elements l1,…,lM (lmax is the maximum 
of these elements)

s = Q′H1/2G1/2V0w

15There is a natural way to defi ne the matrix G that is related to probabilistic guar-
antees on the likelihood that the actual realization of the uncertain coeffi cients will 
lie in the ellipsoidal uncertainty set Sv. Specifi cally, the defi nition of the matrix G can 
be based on the data used to produce the estimates of the regression coeffi cients of 
the factor model.
16Donald Goldfarb and Garud Iyengar, “Robust Portfolio Selection Problems,” 
Mathematics of Operations Research, 28 (2003), pp. 1–38.
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Constraints such as 

 
2

1
1

1 2D w/

−
⎡

⎣
⎢

⎤

⎦
⎥ ≤ +

κ
κ

are SOCP constraints. The norm ⋅  simply requires taking a square root of 
the sum of the squared terms of the elements of the vector 

 
2

1

1 2D w/

−
⎡

⎣
⎢

⎤

⎦
⎥κ

Some specialized SOCP software may require the constraint to be input in 
this form, and will be more effi cient if the SOCP structure is explicitly stated. 
However, if a general-purpose modeling language or nonlinear solver is used, 
this constraint can be rewritten as a general nonlinear constraint, namely,17

 4 1 11 2 1 2 2′ ′ + − ≤ +w D D w( ) ( )/ / κ κ

Confi dence Intervals for the Entries of the Covariance Matrix

Instead of using uncertainty sets based on estimates from a factor model, 
one can specify intervals for the individual elements of the covariance ma-
trix of the kind 

 ΣΣ ΣΣ ΣΣ≤ ≤

If we assume that the estimates of expected returns vary in intervals 

 U i Ni i iδ μ μ δ( ˆ ) { ˆ , , , }μμ μμ= − ≤ = 1 …

short sales are not allowed (i.e., w ≥ 0), and the matrix ΣΣ  is positive semi-
defi nite (which means that the upper bound matrix derived from data is a 
well-defi ned covariance matrix), the resulting optimization problem is very 

17In some circumstances, one can raise both sides of an SOCP constraint to the sec-
ond power, and obtain an equivalent quadratic constraint. This is the case here: the 
SOCP constraint

4 1 11 2 1 2 2′ ′ + − ≤ +w D D w( ) ( )/ / κ κ

is equivalent to the convex quadratic constraint w′Dw ≤ κ. However, in general, 
quadratic and SOCP constraints are not automatically equivalent. It is therefore 
usually safer to input SOCP constraints directly into a nonlinear solver, without 
trying to convert them to quadratic constraints fi rst.
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408 QUANTITATIVE EQUITY INVESTING

simple to formulate. We just need to replace μ by μμ δδ+  and ΣΣ  by ΣΣ  in the 
mean-variance formulation, as the expression

 max( ˆ )
w

w w wμμ δδ ΣΣ+ ′ − ′λ

in fact equals 

 
max min{ } max{ }

w
w w w

μμ ΣΣμμ ΣΣ

μμ ΣΣ
∈ ∈

′ − ′{ }U U
λ

under the preceding conditions.18

In the general case, the formulation of the robust counterpart is not as 
trivial, but remains a convex problem. The resulting optimization problem 
is in fact a semidefi nite program (SDP). More precisely, assuming as before 
that the estimates of expected returns vary in intervals 

 U i Ni i iδ μ μ δ( ˆ ) { ˆ , , , }μμ μμ= − ≤ = 1 …

the robust formulation of the mean-variance optimization problem is

 

max ˆ , ,
, , , ,–w w w+

′ − ′ + − −( )+ −Λ Λ
μμ δδ (( )) ΛΛ ΣΣ ΛΛ ΣΣw w w λ

ss t. .

,=

′ =
−+ −

w

w w w

ιι 1

ww w+ −≥ ≥
≥ ≥

0 0

0 0

,

,ΛΛ ΛΛ
ΛΛ ΛΛ−

′
⎡

⎣
⎢

⎤

⎦
⎥

w

w 1
0�

where the notation A B,  for two symmetric matrices A, B stands for 
“Tr(AB),” the trace of the matrix product AB. Tr(AB) is equal to the sum of 
the diagonal elements of the matrix product AB.19

18See R. Tutuncu and M. Koenig, “Robust Asset Allocation,” Annals of Operations 
Research, 132 (2004), pp. 157–187.
19The notation A B,  is typically used to denote the inner product of A and B. In 
this case, we are dealing with an inner product on the space of symmetric matrices, 
defi ned as the trace of the product of two matrices A and B. The trace of a symmetric 
matrix X with N rows and N columns is mathematically defi ned as

Xii
i

N

=
∑

1

that is, it is the sum of the elements of the main diagonal (left to right). It is easy to 
see that the trace of the product of two matrices A and B can be expressed as

Tr( ) ( ) ( ) ( )AB AB B= =
= ==
∑ ∑∑ii
i

N

ij ji
j

N

i

N

1 11

A
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We explained earlier the part of the robust formulation that is related to 
uncertainty in expected returns. In order to demystify the derivation of robust 
counterparts of optimization problems that are SDPs, we show how one 
would derive the terms related to the uncertainty in the covariance matrix.

As before, we start by asking ourselves what the worst-case value for 
the portfolio variance ′w wΣΣ  would be if the estimates of the covariance 
matrix ΣΣ  vary in intervals ΣΣ ΣΣ ΣΣ≤ ≤ . For any fi xed vector of portfolio 
weights w, we can fi nd it by solving the optimization problem

 

max

. .
ΣΣ

ΣΣ

ΣΣ ΣΣ ΣΣ
ΣΣ

′

≤ ≤

w w

s t

0�

We use “≥, ≤” to denote component-wise inequality, and “ � ” to denote 
positive semidefi niteness of a matrix.20

The previous problem is a semidefi nite program (SDP).21 The dual prob-
lem of this semidefi nite program is 

 

min ,

. .
, ,w

Z ww

Z

ΛΛ ΛΛ
ΛΛ,,ΣΣ ΛΛ ΣΣ

ΛΛ ΛΛ

−

− + − − ′s t

� 00 0 0, ,ΛΛ ΛΛ≥ ≥

where ΛΛ  and ΛΛ  are the dual variables associated with the constraints 
Σ Σ≤  and Σ Σ≤ , respectively, and Z is the explicit dual slack variable. 
This problem can be rewritten as

 

min ,

. .
, ,w

ww
ΛΛ ΛΛ

ΛΛ,,ΣΣ ΛΛ ΣΣ

ΛΛ ΛΛ
ΛΛ

−

− − ′
≥

s t � 0

00 0,ΛΛ ≥

The constraint ΛΛ ΛΛ− + ′ww � 0  can be recast into a so-called linear matrix 
inequality (LMI) form which is understood by SDP solvers by using Schur 
complements22 resulting in

20A matrix X is positive semidefi nite, that is, X � 0 , if and only if z′Xz ≥ 0 for every 
real vector z.
21See Chapter 9 in Fabozzi, Kolm, Pachamanova, and Focardi, Robust Portfolio 
Optimization and Management (Hoboken, NJ: John Wiley & Sons, 2007). 
22In linear algebra, the Schur complement of a block of a square matrix D in a larger 
square matrix M,
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min ,

. .

, ,w

w

w 1

ΛΛ ΛΛ
ΛΛ,,ΣΣ ΛΛ ΣΣ

ΛΛ ΛΛ

−

−
′

⎡

⎣
⎢

⎤

⎦
⎥s t � 0

ΛΛ ΛΛ≥ ≥0 0,

Notice that the variable ΣΣ  is not present in the preceding optimization 
problem. However, the optimal values of the dual problem will be at least 
as large as the optimal value of the primal problem. Therefore, one can use 
the expression

 min ,
, ,w ΛΛ ΛΛ

ΛΛ,,ΣΣ ΛΛ ΣΣ−

instead of the expression 

 max
ΣΣ

ΣΣ′w w

in the robust mean-variance problem formulation (all of the constraints, of 
course, will have to be preserved in the formulation as well). This leads to 
the robust SDP formulation we provided previously.

SDPs are more diffi cult to solve than SOCPs, but are still convex prob-
lems for which interior point methods and bundle methods for large-scale 
(sparse) problems have been developed. Effi cient SDP routines such as 
SeDuMi23 (for use with MATLAB) are now available, and many modeling 
languages make it straightforward to solve an SDP problem. 

M
A B

C D
=
⎡

⎣
⎢

⎤

⎦
⎥

is defi ned as the expression A – BD–1C. Recognizing Schur complements in nonlinear 
expressions is frequently a key to formulating diffi cult nonlinear optimization 
problems as computationally tractable SDPs. In particular, if we have a constraint of 
the kind Q(x) – S(x)R(x)–1S(x)′ �  0 where x is a vector of variables, and if both Q(x) 
– S(x)R(x)–1S(x)′ �  0 and R(x) �  0, then we can express the constraint as the LMI

Q x S x

S x R x

( ) ( )

( ) ( )′
⎡

⎣
⎢

⎤

⎦
⎥ � 0

Note that if Q(x) is a scalar, then we have the nonlinear constraint Q(x) – S(x)R(x)–1

S(x)′ ≥ 0 in which the positive semidefi niteness sign �  is replaced by an inequality 
sign ≥.
23Jos F. Sturm, “Using SeDuMi 1.02, A MATLAB Toolbox for Optimization over 
Symmetric Cones,” Optimization Methods and Software, 11–12 (1999), pp. 625–
653; see also SeDuMi’s offi cial site at http://sedumi.mcmaster.ca/ for tutorials and 
free downloads.
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USING ROBUST MEAN-VARIANCE 
PORTFOLIO OPTIMIZATION IN PRACTICE

As we saw in the examples earlier in this section, the computational com-
plexity of the robust formulations of the classical portfolio optimization 
problems is not a real issue. Robust optimization does, however, come at the 
cost of additional modeling effort. The important question is whether this 
effort is worthwhile. In other words, what are the benefi ts of incorporating 
uncertainty in the optimization process?

Critics have argued that robust optimization does not provide more 
benefi t than, for instance, shrinkage estimators that combine the minimum 
variance portfolio with a speculative investment portfolio. Indeed, under 
certain conditions (short sales allowed, ellipsoidal uncertainty model for 
expected return estimates, error covariance matrix estimated as ( / )1 T ΣΣ ), 
it can be shown that the optimal portfolio weights using robust optimi-
zation are a linear combination of the weights of the minimum variance 
portfolio24 and a mean-variance effi cient portfolio with speculative demand, 
and thus the implied expected return is equivalent to the expected return 
obtained using a shrinkage estimator with certain weights.25 Robust opti-
mization thus appears to offer a less transparent way to express investor 
preferences and tolerance to uncertainty than other approaches, such as 
shrinkage estimators and Bayesian methods, in which the shrinkage weights 
can be defi ned explicitly. In the general case, however, robust optimization 
is not necessarily equivalent to shrinkage estimation. They are particularly 
different in the presence of additional portfolio constraints. Furthermore, 
as we illustrated in this chapter, robust optimization can be used to account 
for uncertainty in parameters other than expected asset returns, making its 
relationship with Bayesian methods diffi cult to establish.

It can be argued that a diffi culty with assessing the benefi ts of the robust 
optimization approach is that its performance is highly dependent on the 
choice (or calibration) of the model parameters, such as the aversion to the 
estimation error δ. However, this issue is no different from the calibration of 
standard parameters in the classical portfolio optimization framework, such 
as the length of the estimation period and the risk aversion coeffi cient. These 
and other parameters need to be determined subjectively. 

We remark that other modeling devices such as Bayesian estimation (for 
example, James-Stein shrinkage estimators and the Black-Litterman model) 
have similar issues. In particular, for shrinkage estimators, the portfolio 
24The minimum variance portfolio is independent of investor preferences or expected 
returns.
25See, for example, Bernd Scherer, “Can Robust Portfolio Optimisation Help to Build 
Better Portfolios?” Journal of Asset Management, 7 (2007), pp. 374–387.
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manager needs to determine which shrinkage target to use and the size of the 
shrinkage parameter. In the Black-Litterman model, he needs to provide his 
confi dence in equilibrium as well as his confi dence in each individual view. 
These quantities are most often derived from subjective assumptions—or 
from the experience of the portfolio manager.

An advantage of the robust optimization approach is that the parameter 
values in the robust formulation can be matched to probabilistic guarantees. 
For example, if the estimates of the expected asset returns are assumed to 
be normally distributed, then there is an ω% chance that the true expected 
returns will fall in the ellipsoidal set around the manager’s estimates μ̂μ ,

 Uδ δ( ˆ ) ( ˆ ) ( ˆ )μμ μμ μμ μμ μμ μμμμ= − ′ − ≤{ }−Σ 1 2

if δ2 is assigned the value of the ωth percentile of a χ2 distribution with 
degrees of freedom equal to the number of assets in the portfolio. More 
generally, if the expected returns are assumed to belong to any possible 
probability distribution, then assigning 

 δ ω
ω

= −1

guarantees that the estimates fall in the uncertainty set Uδ ( ˆ )μμ  with prob-
ability at least ω%.26,27  

Dealing with Conservatism: The Zero Net Alpha-Adjustment

Traditional uncertainty sets are frequently modifi ed so that they can serve 
a particular purpose, or so that they deliver increased robustness over clas-
sical portfolio optimization without being too conservative. It has been 
observed in practice that the standard robust mean-variance formulation 
with ellipsoidal uncertainty specifi cation for expected return estimates 
sometimes results in portfolio allocations that are too pessimistic. Of 
course, we can always make a formulation less pessimistic by considering 
a smaller uncertainty set. For the ellipsoidal uncertainty set, we can achieve 
this by decreasing the radius of the ellipsoid. However, there is a recent 
trend among practitioners to apply more structured restrictions. Here we 

26Laurent El Ghaoui, Maksim Oks, and Francois Oustry, “Worst-Case Value-at-Risk 
and Robust Portfolio Optimization: A Conic Optimization Approach,” Operations 
Research, 51 (2003), pp. 543–556.
27We note that in practice sometimes these theoretical estimates may be too conser-
vative. Often, however, this can be detected and adjusted by explicit calibration of 
model parameters to historical data.

c10-RobustPortOpt.indd   412c10-RobustPortOpt.indd   412 1/6/10   11:33:46 AM1/6/10   11:33:46 AM



Robust Portfolio Optimization  413

discuss a technique that has been observed to work particularly well in the 
practice of robust portfolio expected return modeling. The idea is to incor-
porate a zero net alpha-adjustment into the robust optimization problem.28

Recall that the traditional robust counterpart tries to fi nd the optimal 
solution so that constraints containing uncertain coeffi cients are satisfi ed for 
the worst-case realization of the uncertain parameters. In particular, when 
trying to make a portfolio optimization problem robust with respect to 
errors in expected return estimates, we make the assumption that all of the 
actual realizations of expected returns could be worse than their expected 
values. Thus, the net adjustment in the expected portfolio return will always 
be downwards. While this leads to a more robust problem than the original 
one, in many instances it may be too pessimistic to assume that all estima-
tion errors go against us. It may therefore be more reasonable, in practice, 
to assume that at least some of the true realizations may be above their 
expected values. For example, we may make the assumption that there are 
approximately as many realizations above the estimated values as there are 
realizations below the estimated values. This condition can be incorporated 
in the portfolio optimization problem by adding a constraint to, say, the 
ellipsoidal uncertainty set used for the expected returns. Namely, instead of 
the uncertainty set

 Uδ δ( ˆ ) ( ˆ ) ( ˆ )μμ μμ μμ μμ μμ μμμμ= − ′ − ≤{ }−Σ 1 2

we can consider

 Uδ

δ
( ˆ )

( ˆ ) ( ˆ )

( ˆ )
μμ μμ

μμ μμ μμ μμ

ιι μμ μμ
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− ′ − ≤

′ − =

⎧
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⎪

⎩

−Σ 1 2
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⎫
⎬
⎪

⎭⎪

for some invertible matrix D. When D = I, where I is the identity matrix, the 
total net adjustment to the expected returns is zero, that is, the adjustment 
in the expected portfolio return is zero.

It can be shown then—by using the procedure that involves optimization 
duality as we did earlier, but with somewhat more complicated uncertainty 
set restrictions—that the expected return vector in the portfolio optimiza-
tion problem, ′μμ w , should be replaced by

 ′ − −
′ ′

′ ′⎛
⎝⎜

⎞
⎠⎟

ˆ
/

μμ ΣΣ
ΣΣ ιι

ΣΣ ιιιι ΣΣμμ
μμ

μμ μμw
D D

D D wδ
ι

1
1 2

28Sebastian Ceria and Robert Stubbs, “Incorporating Estimation Errors into Portfo-
lio Selection: Robust Portfolio Construction,” Axioma, Inc., 2005. 
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instead of

 ′ −ˆ /μμ ΣΣμμw wδ 1 2

as was the case with the simple ellipsoidal uncertainty set. Therefore, the 
zero net alpha-adjustment can be thought of as the standard robust mean-
variance formulation with a modifi ed covariance matrix of estimation errors.

There can be further variations on the zero net adjustment idea. For 
example, instead of restricting the adjustment of the expected return esti-
mates, we can restrict their standard deviations. Namely, we can impose 
the requirement that every standard deviation of upward adjustment in the 
expected returns is offset by an equal downward adjustment of one stan-
dard deviation. To do this, it suffi ces to choose 

 D = L–1

where LL′ = ΣΣμμ  is the Cholesky decomposition of the covariance matrix of 
expected return estimates.

Similarly, if we would like to achieve a zero net adjustment in the vari-
ance of the expected return estimates, we can select

 D = −ΣΣμμ
1

It can be shown that the zero net adjustment has the desired effect on 
portfolio weights—that is, it does not make the portfolio unnecessarily con-
servative in terms of expected return. If an asset’s portfolio weight is above 
the weight that asset would have in the portfolio that simply minimizes the 
estimation error in expected returns, that asset’s expected return (alpha) 
gets adjusted downward. Conversely, if an asset’s portfolio weight is below 
the weight that asset would have in the portfolio that simply minimizes the 
estimation error in expected returns, that asset’s expected return (alpha) gets 
adjusted upward. This type of adjustment has proven to be very effective in 
practice.

In Exhibit 9.1 in Chapter 9, we reported results from Ceria and Stubbs29 
that showed how different the true, the estimated, and the actual Markow-
itz effi cient frontiers can be. Exhibit 10.1 shows their results on the effect 
of making expected returns robust with respect to estimation error on the 
effi cient portfolio frontiers, where the robust effi cient frontier is generated 
by using the zero net alpha adjustment with D = I. The estimated Markowitz 
and the estimated robust frontier both overestimate the true frontier. How-
29Ceria and Stubbs, “Incorporating Estimation Errors into Portfolio Selection: Ro-
bust Portfolio Construction.”
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ever, both the estimated and the actual realized robust effi cient frontiers are 
closer to the true effi cient frontier. 

Robust optimization is, unfortunately, not a panacea.  From a behav-
ioral and decision-making point of view, few individuals have max-min 
preferences. Indeed, max-min preferences describe the behavior of decision 
makers who face great ambiguity and thus make choices consistent with the 
belief that the worst possible outcomes are highly likely. 

By using robust portfolio optimization formulations, investors are likely 
to trade off the optimality of their portfolio allocation in cases in which 
nature behaves as they predicted for protection against the risk of inaccurate 
estimation. Therefore, investors using the technique should not expect to do 
better than classical optimization when estimation errors have little impact, 
or when typical scenarios occur. They should, however, expect insurance in 
scenarios in which their estimates deviate from the actual realized values 
by up to the amount they have prespecifi ed in the modeling process. Some 
tests with simulated and real market data indicate that robust optimization, 

EXHIBIT 10.1 Robust Effi cient Frontiers
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Source: Figure 4 in Sebastian Ceria and Robert Stubbs, “Incorporating Estimation 
Errors into Portfolio Selection: Robust Portfolio Construction,” Axioma, Inc., 2005, 
p. 14. This copyrighted material is reprinted with permission from the authors.
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when inaccuracy is assumed in the expected return estimates, outperforms 
classical mean-variance optimization in terms of total excess return a large 
percentage (70% to 80%) of the time.30 Other tests have not been as con-
clusive.31 The factor that accounts for much of the difference is how the 
uncertainty in parameters is modeled. Therefore, fi nding a suitable degree 
of robustness and an appropriate defi nition of uncertainty set can have a 
signifi cant impact on portfolio performance.

Independent tests by practitioners and academics using both simu-
lated and market data appear to confi rm that robust optimization gener-
ally results in more stable portfolio weights; that is, that it eliminates the 
extreme corner solutions resulting from traditional mean-variance optimi-
zation. This fact has implications for portfolio rebalancing in the presence 
of transaction costs and taxes, as transaction costs and taxes can add sub-
stantial expenses when the portfolio is rebalanced. Depending on the par-
ticular robust formulations employed, robust mean-variance optimization 
also appears to improve worst-case portfolio performance, and results in 
smoother and more consistent portfolio returns. Finally, by preventing large 
swings in positions, robust optimization frequently makes better use of the 
turnover budget and risk constraints.

SOME PRACTICAL REMARKS ON ROBUST PORTFOLIO 
OPTIMIZATION MODELS

The discussion in the previous sections leads to the question: So which ap-
proach is best for modeling fi nancial portfolios? The short answer is: it de-
pends. It depends on the size of the portfolio, the type of assets and their 
distributional characteristics, the portfolio strategies and trading styles in-
volved, and existing technical and intellectual infrastructure, among others. 
Sometimes it makes sense to consider a combination of several techniques, 
such as a blend of Bayesian estimation and robust portfolio optimization. 
This is an empirical question; indeed, the only way to fi nd out is through 
extensive research and testing. To offer some guidance in this regard, we 
provide a simple step-by-step checklist for robust quantitative portfolio 
management:32

30Ceria and Stubbs, “Incorporating Estimation Errors into Portfolio Selection: Ro-
bust Portfolio Construction.”
31Lee, Stefek, and Zhelenyak, “Robust Portfolio Optimization—A Closer Look.”
32By no means do we claim that this list is complete or that it has to be followed 
religiously. It is simply provided as a starting point and general guidance for the 
quantitative portfolio manager.
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Risk forecasting: develop an accurate risk model.
Return forecasting: construct robust expected return estimates.
Classical portfolio optimization: start with a simple framework.
Mitigate model risk:

Minimize estimation risk through the use of robust estimators.
Improve the stability of the optimization framework through robust 
optimization.

Extensions.

In general, the most diffi cult item in this list is to calculate robust 
expected return estimates. Developing profi table trading strategies (“α gen-
eration”) is notoriously hard, but not impossible. It is important to remember 
that modern portfolio optimization techniques and fancy mathematics are 
not going to help much if the underlying trading strategies are subpar.

Implicit in this list is that for each step it is important to perform thor-
ough testing in order to understand the effect of changes and new additions 
to the model. It is not unusual that quantitative analysts and portfolio 
managers will have to revisit previous steps as part of the research and 
development process. For example, it is important to understand the inter-
play between forecast generation and the reliability of optimized portfolio 
weights. Introducing a robust optimizer may lead to more reliable, and 
often more stable, portfolio weights. However, how to make the optimi-
zation framework more robust depends on how expected return and risk 
forecasts are produced. Therefore, one may have to refi ne or modify basic 
forecast generation. Identifying the individual and the combined contribu-
tion of different techniques is crucial in the development of a successful 
quantitative framework.

Minimizing estimation risk and improving the robustness of the optimi-
zation framework can be done in either order, or sometimes at the same time. 
The goal of both approaches is of course to improve the overall reliability 
and performance of the portfolio allocation framework. Some important 
questions to consider here are: When/why does the framework perform well 
(poorly)? How sensitive is it to changes in inputs? How does it behave when 
constraints change? Are portfolio weights intuitive—do they make sense? 
How high is the turnover of the portfolio?

Many extensions are possible, starting from the simple framework of 
portfolio optimization. Such extensions include—the introduction of trans-
action costs models, complex constraints (e.g., integer constraints such as 
round lotting), different risk measures (e.g., downside risk measures, higher 
moments), dynamic and stochastic programming for incorporating inter-
temporal dependencies. Often these are problem specifi c and have to be 
dealt with on a case-by-case basis. 

1.
2.
3.
4.

a.
b.

5.
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SUMMARY

Robust portfolio optimization incorporates uncertainty directly into 
the optimization process. The uncertain parameters in the optimization 
problem are assumed to vary in prespecifi ed uncertainty sets that are 
selected based on statistical techniques and probabilistic guarantees. 
Making the portfolio optimization process robust with respect to uncer-
tainty in the parameters is not very expensive in terms of computational 
cost, but it may result in a worse objective value. This can be corrected 
by using “smart” uncertainty sets for parameters that do not make the 
expected portfolio return too conservative. 
There is evidence that robust optimization may reduce portfolio turn-
over and transaction costs, improve worst-case performance, and lead 
to increased and more stable returns in the long run. 
A simple step-by-step checklist for robust quantitative portfolio man-
agement: 
1. Risk forecasting: develop an accurate risk model.
2. Return forecasting: construct robust expected return estimates.
3. Classical portfolio optimization: start with a simple framework.
4. Mitigate model risk:

a. Minimize estimation risk through the use of robust estimators.
b. Improve the stability of the optimization framework through robust 

optimization.
5. Extensions.

■

■

■

■
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CHAPTER 11
Transaction Costs and 

Trade Execution

T rading is an integral component of the investment process. A poorly 
executed trade can eat directly into portfolio returns. This is because 

fi nancial markets are not frictionless and transactions have a cost associated 
to them. Costs are incurred when buying or selling securities in the form of, 
for example, brokerage commissions, bid-ask spreads, taxes, and market 
impact costs. 

In recent years, portfolio managers have started to more carefully con-
sider transaction costs. Partly, this is due to the fl at performance of equities, 
often just in the single digits, after the period in the 1990s where the stock 
market returned about 20% per year. In a sideway market, portfolio man-
agers become more careful about the costs that their trades and decisions 
bring about. If portfolio returns can be increased by 100 to 200 basis points 
(bps) by reducing trading costs, that can translate into a sizable amount, 
especially during tougher years. Consider for example a $1 billion equity 
fund that has an annual turnover of 100%.1 Transaction costs in the order 
of 40 basis points per trade for this fund would result in an annual turnover 
cost of $8 million ($1 billion × 1 × 0.004 × 2).

The literature on market microstructure, analysis and measurement of 
transaction costs, and market impact costs on institutional trades is rapidly 
expanding.2 One way of describing transaction costs is to categorize them in 
terms of explicit costs such as brokerage and taxes, and implicit costs, which 
include market impact costs, price movement risk, and opportunity cost. 

1By turning over a security is meant both buying and later selling the security. This 
amounts to two transactions.
2See, for example, Ian Domowitz, Jack Glen, and Ananth Madhavan, “Liquidity, 
Volatility, and Equity Trading Costs Across Countries and Over Time,” Interna-
tional Finance 4, no. 2 (2001), pp. 221–255; and Donald B. Keim and Ananth Mad-
havan, “The Costs of Institutional Equity Trades,” Financial Analysts Journal 54, 
no. 4 (July/August 1998) pp. 50–69.
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Market impact cost is, broadly speaking, the price an investor has to pay for 
obtaining liquidity in the market, whereas price movement risk is the risk 
that the price of an asset increases or decreases from the time the investor 
decides to transact in the asset until the transaction actually takes place. 

Opportunity cost is the cost suffered when a trade is not executed. 
Another way of seeing transaction costs is in terms of fi xed costs versus 
variable costs. Whereas commissions and trading fees are fi xed—bid-ask 
spreads, taxes, and all implicit transaction costs are variable.

In this chapter, we will fi rst present a simple taxonomy of trading costs. 
The specifi cation is not new and has appeared in several forms in the lit-
erature before.3 We then discuss the linkage between transaction costs and 
liquidity as well as the measurement of these quantities.

Portfolio managers and traders need to be able to effectively model the 
impact of trading costs on their portfolios and trades. In particular, if possible, 
they would like to minimize the total transaction costs. To address these issues 
we introduce several approaches for the modeling of transaction costs.

A TAXONOMY OF TRANSACTION COSTS 

Probably the easiest way to describe transaction costs is to categorize 
them in terms of fi xed versus variable transaction costs, and explicit ver-
sus implicit transaction costs as shown below as suggested by Kissell and 
Glantz:4

Fixed Variable

Explicit Commissions
Fees

Bid-Ask Spreads
Taxes

Implicit Delay Cost
Price Movement Risk
Market Impact Costs
Timing Risk
Opportunity Cost

3See Robert Kissell and Morton Glantz, Optimal Trading Strategies (New York: 
AMACOM, 2003); Bruce M. Collins and Frank J. Fabozzi, “A Methodology for 
Measuring Transaction Costs,” Financial Analysts Journal 47 (1991), pp. 27–36; An-
anth Madhavan, “Market Microstructure: A Survey,” Journal of Financial Markets 3 
(2000), pp. 205–258; and The Transaction Cost Challenge (New York: ITG, 2000).
4Kissell and Glantz, Optimal Trading Strategies.
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Fixed transaction costs are independent of factors such as trade size and 
market conditions.5 In contrast, variable transaction costs depend on some 
or all of these factors. In other words, while the fi xed transaction costs are 
“what they are,” portfolio managers and traders can seek to reduce, opti-
mize, and effi ciently manage the variable transaction costs. 

Explicit transaction costs are those costs that are observable and known 
up front such as commissions, fees, and taxes. Implicit transaction costs, on 
the other hand, are nonobservable and not known in advance. Examples of 
transaction costs in this category are market impact and opportunity cost. 
In general, the implicit costs make up the dominant part of the total transac-
tion costs.

Explicit Transaction Costs

Trading commissions and fees, taxes, and bid-ask spreads are explicit trans-
action costs. Explicit transaction costs are also referred to as observable 
transaction costs.

Commissions and Fees

Commissions are paid to brokers to execute trades.6 Normally, commissions 
on securities trades are negotiable. Fees charged by an institution that holds 
the securities in safekeeping for an investor are referred to as custodial fees. 
When the ownership over a stock is transferred, the investor is charged a 
transfer fee.

Taxes

The most common taxes are capital gains tax and tax on dividends. The tax 
law distinguishes between two types of capital gains taxes: short-term and 
long-term. The former is according to the investor’s tax bracket, whereas the 
latter currently stands at 15%.7 In the United States, the tax law as of this 
writing requires that an asset must be held for at least one full year to qual-
ify for the lower long-term capital gains rate. Tax planning is an important 

5However, we emphasize that different exchanges and trading networks may have 
different fi xed costs. Furthermore, the fi xed costs may also be different depending 
upon whether a trade is an agency trade or a principal trade.
6For a more detailed discussion of commissions, see Alan D. Biller, “A Plan Sponsor’s 
Guide to Commissions,” Chapter 10 in Frank J. Fabozzi (ed.), Pension Fund Investment 
Management: Second Edition (Hoboken, NJ: John Wiley & Sons, 1997).
7There have been proposals to increase this rate in 2009.
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component of many investment strategies, but this topic is outside the scope 
of this book.8

Bid-Ask Spreads

The distance between the quoted sell and buy order is called the bid-ask 
spread. The bid-ask spread is the immediate transaction cost that the mar-
ket charges anyone for the privilege of trading. High immediate liquidity is 
synonymous with small spreads. We can think about the bid-ask spread as 
the price charged by dealers for supplying immediacy and short-term price 
stability in the presence of short-term order imbalances. Dealers act as a 
buffer between the investors that want to buy and sell, and thereby provide 
stability in the market by making sure a certain order is maintained. In 
negotiated markets such as the New York Stock Exchange (NYSE), market-
makers and dealers maintain a certain minimum inventory on their books. 
If the dealer is unable to match a buyer with a seller (or vice versa), he has 
the capability to take on the exposure on his book. 

However, the bid-ask spread does not necessarily represent the best 
prices available, and the half spread is, therefore, not always the minimal 
cost for immediate buy or sell executions. Certain price improvements are 
possible and occur, for example, because:

NYSE specialists fi ll the incoming market orders at improved prices.9

The market may have moved in favor during the time it took to route 
the order to the market center (a so-called lucky saving).
The presence of hidden liquidity.10

Buy and sell orders can be crossed.11

8Although historically tax planning has only been part of the investment strategies of 
institutions and wealthy individuals, this is no longer the case. In recent years, there 
is a trend in the mutual fund industry to provide greater availability to tax effi cient 
mutual funds as the demand for tax effi cient vehicles for individual investors has 
increased. See, for example, Brad M. Barber and Terrance Odean, “Are Individual 
Investors Tax Savvy? Evidence from Retail and Discount Brokerage Accounts,” 
Journal of Public Economics 88, no. 1–2 (2004), pp. 419–442.
9See, for example, Lawrence E. Harris and Venkatesh Panchapagesan, “The Infor-
mation Content of the Limit Order Book: Evidence from NYSE Specialist Trading 
Decisions,” Journal of Financial Markets 8 (2005), pp. 25–67.
10For example, on electronic communications networks (ECNs) and on NASDAQ, 
although it is possible to view the limit order book, a signifi cant portion of the book 
cannot be seen. This is referred to as hidden or discretionary orders.
11A cross order is an offsetting or noncompetitive matching of the buy order of one 
investor against the sell order of another investor. This practice is permissible only 
when executed in accordance with the Commodity Exchange Act, CFTC regulations, 

■

■

■

■
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The bid-ask spread is misleading as a true liquidity measure because 
it only conveys the price for small trades. For large trades, due to market 
impact, as we will see, the actual price will be quite different. We will elabo-
rate more on the linkage between liquidity, trading costs, and market impact 
costs later in this chapter and in Chapter 12. 

Implicit Transaction Costs

Investment delay, market impact cost, price movement risk, market tim-
ing, and opportunity cost are implicit transaction costs. Implicit transaction 
costs are also referred to as nonobservable transaction costs.

Investment Delay

Normally, there is a delay between the time when the portfolio manager 
makes a buy/sell decision of a security and when the actual trade is brought 
to the market by a trader. If the price of the security changes during this 
time, the price change (possibly adjusted for general market moves) rep-
resents the investment delay cost, or the cost of not being able to execute 
immediately. We note that this cost depends on the investment strategy. For 
example, modern quantitative trading systems that automatically submit an 
electronic order after generating a trading decision are exposed to smaller 
delay costs. More traditional approaches where investment decisions fi rst 
have to be approved by, for example, an investment committee, exhibit 
higher delay costs. Some practitioners view the investment delay cost as 
part of the opportunity cost discussed later in this chapter.

Market Impact Costs

The market impact cost of a transaction is the deviation of the transaction 
price from the market (mid) price12 that would have prevailed had the trade 
not occurred. The price movement is the cost, the market impact cost, for 
liquidity. We note that the market impact of a trade can be negative if, for 
example, a trader buys at a price below the no-trade price (i.e., the price 
that would have prevailed had the trade not taken place). In general, liquid-
ity providers experience negative costs while liquidity demanders will face 
positive costs.

and the rules of the particular market. See, for example, Joel Hasbrouck, George 
Sofi anos, and Deborah Sosebee, “New York Stock Exchange Systems and Trading 
Procedures,” Working Paper 93-01, New York Stock Exchange, 1993, pp. 46–47.
12Since the buyer buys at the ask and the seller sells at the bid, this defi nition of mar-
ket impact cost ignores the bid/ask spread which is an explicit cost.
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We distinguish between two different kinds of market impact costs, 
temporary and permanent. Total market impact cost is computed as the sum 
of the two. The temporary market impact cost is of transitory nature and 
can be seen as the additional liquidity concession necessary for the liquidity 
provider (e.g., the market maker) to take the order, inventory effects (price 
effects due to broker/dealer inventory imbalances), or imperfect substitution 
(for example, price incentives to induce market participants to absorb the 
additional shares). 

The permanent market impact cost, however, refl ects the persistent 
price change that results as the market adjusts to the information content 
of the trade. Intuitively, a sell transaction reveals to the market that the 
security may be overvalued, whereas a buy transaction signals that the secu-
rity may be undervalued. Security prices change when market participants 
adjust their views and perceptions as they observe news and the information 
contained in new trades during the trading day. 

Traders can decrease the temporary market impact by extending the 
trading horizon of an order. For example, a trader executing a less urgent 
order can buy/sell his position in smaller portions over a period and make 
sure that each portion only constitutes a small percentage of the average 
volume. However, this comes at the price of increased opportunity costs, 
delay costs, and price movement risk. We will discuss this issue in more 
detail later in Chapter 12.

Market impact costs are often asymmetric; that is, they are different for 
buy and sell orders. For instance, Bikker and Spierdijk estimated the market 
impact costs from a data sample consisting of 3,728 worldwide equity trades 
executed during the fi rst quarter of 2002 at the Dutch pension fund Alge-
meen Burgerlijk Pensioenfonds (ABP).13 The trades, of which 1,963 were 
buys and 1,765 sales, had a total transaction value of €5.7 billion. They con-
cluded that the temporary and persistent price effects of buy orders were 7.2 
basis points and 12.4 basis points, respectively. For sell orders, on the other 
hand, these price effects were –14.5 basis points and –16.5 basis points.

This and many other empirical studies suggest that market impact costs 
are generally higher for buy orders. Nevertheless, while buying costs might 
be higher than selling costs, this empirical fact is most likely due to observa-
tions during rising/falling markets, rather than any true market microstruc-
ture effects. For example, a study by Hu shows that the difference in market 
impact costs between buys and sells is an artifact of the trade benchmark.14 

13Jacob A. Bikker, Laura Spierdijk, and Pieter Jelle van der Sluis, “Market Impact 
Costs of Institutional Equity Trades,” Journal of International Money and Finance 
(2007), 26(6), pp. 974–1000.
14Gang Hu, “Measures of Implicit Trading Costs and Buy-Sell Asymmetry,” Journal 
of Financial Markets (to appear), 2008.
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(We discuss trade benchmarks later in this chapter.) When a pretrade measure 
is used, buys (sells) have higher implicit trading costs during rising (falling) 
markets. Conversely, if a posttrade measure is used, sells (buys) have higher 
implicit trading costs during rising (falling) markets. In fact, both pretrade 
and posttrade measures are highly infl uenced by market movement, whereas 
during- or average-trade measures are neutral to market movement. 

Despite the enormous global size of equity markets, the impact of trad-
ing is important even for relatively small funds. In fact, a sizable fraction of 
the stocks that compose an index might have to be excluded or their trading 
severely limited. For example, RAS Asset Management, which is the asset 
manager arm of the large Italian insurance company RAS, has determined 
that single trades exceeding 10% of the daily trading volume of a stock cause 
an excessive market impact and have to be excluded, while trades between 
5% and 10% need execution strategies distributed over several days.15

To appreciate the impact of these restrictions on portfolio management 
strategies, Exhibit 11.1 illustrates the distribution of trading volume in the 
MSCI Europe in the period September–December 2004 below €5 million, 
€7.5 million, and €10 million.

According to RAS Asset Management estimates, in practice funds man-
aged actively with quantitative techniques and with market capitalization in 
excess of €100 million can operate only on the fraction of the market above 
the €5 million, splitting trades over several days for stocks with average 
daily trading volume in the range from €5 million to €10 million. They can 
freely operate only on two thirds of the stocks in the MSCI Europe. 

Price Movement Risk

In general, the stock market exhibits a positive drift that gives rise to price 
movement risk. Similarly, individual stocks, at least temporarily, trend up 
or down. A trade that goes in the same direction as the general market or 
an individual security is exposed to price risk. For example, when a trader is 

15Private communication RAS Asset Management.

EXHIBIT 11.1 Distribution of Trading Volumes in the MSCI Europe in the 
Three-Month Period Ending December 16, 2004 

Average Daily
Trading Volume

< €5 million

Average Daily
Trading Volume
< €7.5 million

Average Daily
Trading Volume

< €10 million

Percentage of stocks in 
the MCSI Europe

17.76% 24.33% 33.75%

Data courtesy of RAS Asset Management.
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buying in a rising market, he might pay more than he initially anticipated to 
fully satisfy the order. In practice, it can be diffi cult to separate price move-
ment risk from the market impact cost. Typically, the price movement risk 
for a buy order is defi ned as the price increase during the time of the trade 
that is attributed to the general trend of a security, whereas the remaining 
part is market impact costs.

Market Timing Costs

The market timing costs are due to the movement in the price of a secu-
rity at the time of the transaction that can be attributed to other market 
participants or general market volatility. Market timing cost is higher for 
larger trades, in particular when they are divided into smaller blocks and 
traded over a period of time. Practitioners often defi ne market timing costs 
to be proportional to the standard deviation of the security returns times the 
square root of the time anticipated in order to complete the transaction.

Opportunity Costs 

The cost of not transacting represents an opportunity cost. For example, 
when a certain trade fails to execute, the portfolio manager misses an op-
portunity. Commonly, this cost is defi ned as the difference in performance 
between a portfolio manager’s desired investment and his actual investment 
after transaction costs. Opportunity costs are in general driven by price risk 
or market volatility. As a result, the longer the trading horizon, the greater 
the exposure to opportunity costs. 

Identifying Transaction Costs: An Example16

We now consider an example to highlight the key cost components of an 
equity trade. Following the completion of an institutional trade, suppose 
that the ticker tape for XYZ stock reveals that 6,000 shares of XYZ stock 
were purchased at $82.00.

Although 6,000 XYZ shares were bought, Exhibit 11.2 indicates what 
may have happened behind the scenes—beginning with the initial security 
selection decision by the manager (the investment idea), to the release of 

16This illustration is similar to the example provided in Wayne H. Wagner and Mark 
Edwards, “Implementing Investment Strategies: The Art and Science of Investing,” 
Chapter 11 in Frank J. Fabozzi (ed.), Active Equity Portfolio Management (Hobo-
ken, NJ: John Wiley & Sons, 1998). The example used here is taken from Frank J. 
Fabozzi and James L. Grant, Equity Portfolio Management (Hoboken, NJ: John 
Wiley & Sons, 1999), pp. 309–310.
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the buy order by the equity trader, to the subsequent trade execution by the 
broker (the essential elements of trading implementation).

We can assess the cost of trading XYZ stock as follows. The commis-
sion charge is the easiest to identify—namely, $0.045 per share, or $270 on 
the purchase of 6,000 shares of XYZ stock. 

Since the trade desk did not release the order to buy XYZ stock until it 
was selling for $81, the assessed trader timing cost is $1 per share. Also, the 
market impact cost is $1 per XYZ share traded, as the stock was selling for 
$81 when the order was received by the broker—just prior to execution of 
the 6,000 XYZ shares at $82.

 The opportunity cost—resulting from unexecuted shares—of the equity 
trade is more diffi cult to estimate. Assuming that the movement of XYZ 
stock price from $80 to $88 can be largely attributed to information used 
by the equity manager in his security selection decision, it appears that the 
value of the investment idea to purchase XYZ stock was 10% ($88/$80 – 1) 
over a 15-day trading interval. Since 40% of the initial buy order on XYZ 
stock was “left on the table,” the opportunity cost of not purchasing 4,000 
shares of XYZ stock is 4% (10% × 40%).

The basic trading cost illustration in Exhibit 11.2 suggests that without 
effi cient management of the equity trading process, it is possible that the 
value of the manager’s investment ideas (gross alpha) is impacted negatively 
by sizable trading costs in addition to commission charges, including trader 
timing, price or market impact cost, and opportunity cost. Moreover, trad-
ing cost management is especially important in a world where active equity 
managers are hard pressed to outperform a simple buy and hold approach 
such as that employed in a market index fund. 

LIQUIDITY AND TRANSACTION COSTS

Liquidity is created by agents transacting in the fi nancial markets when they 
buy and sell securities. Market makers and brokers/dealers do not create li-

EXHIBIT 11.2 XYZ Trade Decomposition

Equity manager wants to buy 10,000 shares of XYZ at current price of $80.
Trade desk releases 8,000 shares to broker when price is $81.
Broker purchases 6,000 shares of XYZ stock at $82 plus $0.045 (per share) 
commission.
XYZ stock jumps to $85, and remainder of order is canceled.
15 days later the price of XYZ stock is $88.

Source: Exhibit 1 in Chapter 11 of Frank J. Fabozzi and James L. Grant, Equity 
Portfolio Management (Hoboken, NJ: John Wiley & Sons, 1999), p. 309. 
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quidity; they are intermediaries who facilitate trade execution and maintain 
an orderly market. 

Liquidity and transaction costs are interrelated. A highly liquid market 
is one were large transactions can be immediately executed without incur-
ring high transaction costs. In an indefi nitely liquid market, traders would 
be able to perform very large transactions directly at the quoted bid-ask 
prices. In reality, particularly for larger orders, the market requires traders 
to pay more than the ask when buying, and to receive less than the bid when 
selling. As we discussed previously, this percentage degradation of the bid-
ask prices experienced when executing trades is the market impact cost.

The market impact cost varies with transaction size: the larger the trade 
size the larger the impact cost. Impact costs are not constant in time, but 
vary throughout the day as traders change the limit orders that they have in 
the limit order book. A limit order is a conditional order; it is executed only 
if the limit price or a better price can be obtained. For example, a buy limit 
order of a security XYZ at $60 indicates that the assets may be purchased 
only at $60 or lower. Therefore, a limit order is very different from a market 
order, which is an unconditional order to execute at the current best price 
available in the market (guarantees execution, not price). With a limit order 
a trader can improve the execution price relative to the market order price, 
but the execution is neither certain nor immediate (guarantees price, not 
execution).

Notably, there are many different limit order types available such as peg-
ging orders, discretionary limit orders, IOC orders, and fl eeting orders. For 
example, fl eeting orders are those limit orders that are canceled within two 
seconds of submission. Hasbrouck and Saar fi nd that fl eeting limit orders 
are much closer substitutes for market orders than for traditional limit 
orders.17 This suggests that the role of limit orders has changed from the 
traditional view of being liquidity suppliers to being substitutes for market 
orders.

At any given instant, the list of orders sitting in the limit order book 
embodies the liquidity that exists at a particular point in time. By observ-
ing the entire limit order book, impact costs can be calculated for different 
transaction sizes. The limit order book reveals the prevailing supply and 
demand in the market.18 Therefore, in a pure limit order market we can 

17Joel Hasbrouck and Gideon Saar, “Technology and Liquidity Provision: The Blur-
ring of Traditional Defi nitions,” Journal of Financial Markets (2008).
18Note that even if it is possible to view the entire limit order book it does not give 
a complete picture of the liquidity in the market. This is because hidden and discre-
tionary orders are not included. For a discussion on this topic, see Laura A. Tuttle, 
“Hidden Orders, Trading Costs and Information,” Working Paper, Ohio State Uni-
versity, 2002.
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obtain a measure of liquidity by aggregating limit buy orders (representing 
the demand) and limit sell orders (representing the supply).19 

We start by sorting the bid and ask prices, p pk1
bid bid, ,…  and p pl1

ask ask, ,… , 
(from the most to the least competitive) and the corresponding order quanti-
ties q qk1

bid bid, ,…  and q ql1
ask ask, ,… .20 We then combine the sorted bid and ask 

prices into a supply and demand schedule according to Exhibit 11.3. For 
example, the block ( , )p q2 2

bid bid  represents the second best sell limit order with 
price p2

bid  and quantity q2
bid .

19Ian Domowitz and Xiaoxin Wang, “Liquidity, Liquidity Commonality and Its 
Impact on Portfolio Theory,” Smeal College of Business Administration, Pennsyl-
vania State University, 2002; Thierry Foucault, Ohad Kadan, and Eugene Kandel, 
“Limit Order Book As a Market for Liquidity,” Review of Financial Studies 18, no. 
4 (2005), pp. 1171–1217.
20In this chapter, we diverge slightly from the notation used elsewhere in this book. 
Instead, we use the notation that is common in the trading and transaction cost lit-
erature and denote price by p, order quantity by q, and trade size by Q (or V).

EXHIBIT 11.3 The Supply and Demand Schedule of a Security

Source: Figure 1A on page 38 in Ian Domowitz and Xiaoxin Wang, “Liquidity, 
Liquidity Commonality and Its Impact on Portfolio Theory,” Smeal College of Busi-
ness Administration, Pennsylvania State University, 2002. 
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430 QUANTITATIVE EQUITY INVESTING

We note that unless there is a gap between the bid (demand) and the ask 
(supply) sides, there will be a match between a seller and buyer, and a trade 
would occur. The larger the gap, the lower the liquidity and the market par-
ticipants’ desire to trade. For a trade of size Q, we can defi ne its liquidity as 
the reciprocal of the area between the supply and demand curves up to Q 
(i.e., the “dotted” area in Exhibit 11.3).

However, few order books are publicly available and not all markets are 
pure limit order markets. In 2004, the NYSE started selling information on 
its limit order book through its new system called the NYSE OpenBook®. 
The system provides an aggregated real-time view of the exchange’s limit-
order book for all NYSE-traded securities.21 

 In the absence of a fully transparent limit order book, expected market 
impact cost is the most practical and realistic measure of market liquidity. It 
is closer to the true cost of transacting faced by market participants as com-
pared to other measures such as those based upon the bid-ask spread.

MARKET IMPACT MEASUREMENTS AND EMPIRICAL FINDINGS

The problem with measuring implicit transaction costs is that the true mea-
sure, which is the difference between the price of the stock in the absence of 
a money manager’s trade and the execution price, is not observable. Further-
more, the execution price is dependent on supply and demand conditions 
at the margin. Thus, the execution price may be infl uenced by competitive 
traders who demand immediate execution or by other investors with simi-
lar motives for trading. This means that the execution price realized by an 
investor is the consequence of the structure of the market mechanism, the 
demand for liquidity by the marginal investor, and the competitive forces of 
investors with similar motivations for trading.

There are many ways to measure transaction costs. However, in general 
this cost is the difference between the execution price and some appropriate 
benchmark, a so-called fair market benchmark. The fair market benchmark 
of a security is the price that would have prevailed had the trade not taken 
place, the no-trade price. Since the no-trade price is not observable, it has to 
be estimated. Practitioners have identifi ed three different basic approaches 
to measure the market impact:22

21NYSE and Securities Industry Automation Corporation, NYSE OpenBook®, Ver-
sion 1.1, 2004.
22Bruce M. Collins and Frank J. Fabozzi, “A Methodology for Measuring Transac-
tion Costs,” Financial Analysts Journal 47 (1991), pp. 27–36; Louis K. C. Chan 
and Joseph Lakonishok, “Institutional Trades and Intraday Stock Price Behavior,” 
Journal of Financial Economics 33 (1993), pp. 173–199; and Fabozzi and Grant, 
Equity Portfolio Management.
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Pretrade measures use prices occurring before or at the decision to trade 
as the benchmark, such as the opening price on the same-day or the 
closing price on the previous day.
Posttrade measures use prices occurring after the decision to trade as 
the benchmark, such as the closing price of the trading day or the open-
ing price on the next day.
Same-day or average measures use average prices of a large number 
of trades during the day of the decision to trade, such as the volume-
weighted average price (VWAP) calculated over all transactions in the 
security on the trade day.23

The volume-weighted average price is calculated as follows. Suppose 
that it was a trader’s objective to purchase 10,000 shares of stock XYZ. 
After completion of the trade, the trade sheet showed that 4,000 shares were 
purchased at $80, another 4,000 at $81, and fi nally 2,000 at $82. In this 
case, the resulting VWAP is (4,000 × 80 + 4,000 × 81 + 2,000 × 82)/10,000 
= $80.80.

We denote by χ the indicator function that takes on the value 1 or –1 
if an order is a buy or sell order, respectively. Formally, we now express the 
three types of measures of market impact (MI) as follows

 MIpre
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where pex, ppre, and ppost denote the execution price, pretrade price, and post-
trade price of the stock, and k denotes the number of transactions in a 
particular security on the trade date. Using this defi nition, for a stock with 
market impact MI the resulting market impact cost for a trade of size V, 
MIC, is given by 

 MIC = MI · V

23Strictly speaking, VWAP is not the benchmark here but rather the transaction 
type.

1.

2.

3.
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It is also common to adjust market impact for general market move-
ments. For example, the pretrade market impact with market adjustment 
would take the form

 MIpre

ex

pre

ex

pre
= −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

p
p

p

p
M

M

χ

where pM
ex  represent the value of the index at the time of the execution, and  

pM
pre  the price of the index at the time before the trade. Market adjusted 

market impact for the posttrade and same-day trade benchmarks are calcu-
lated in an analogous fashion.

The above three approaches to measure market impact are based upon 
measuring the fair market benchmark of stock at a point in time. Clearly, 
different defi nitions of market impact lead to different results. Which one 
should be used is a matter of preference and is dependent on the appli-
cation at hand. For example, Elkins/McSherry, a fi nancial consulting fi rm 
that provides customized trading costs and execution analysis, calculates a 
same-day benchmark price for each stock by taking the mean of the day’s 
open, close, high, and low prices. The market impact is then computed as 
the percentage difference between the transaction price and this benchmark. 
However, in most cases VWAP and the Elkins/McSherry approach lead to 
similar measurements.24

As we analyze a portfolio’s return over time an important question to 
ask is whether we can attribute good/bad performance to investment profi ts/
losses or to trading profi ts/losses. In other words, in order to better under-
stand a portfolio’s performance it can be useful to decompose investment 
decisions from order execution. This is the basic idea behind the implemen-
tation shortfall approach.25

In the implementation shortfall approach we assume that there is a sep-
aration between investment and trading decisions. The portfolio manager 
makes decisions with respect to the investment strategy (i.e., what should 
be bought, sold, and held). Subsequently, these decisions are implemented 
by the traders.

By comparing the actual portfolio profi t/loss (P/L) with the performance 
of a hypothetical paper portfolio in which all trades are made at hypotheti-
cal market prices, we can get an estimate of the implementation shortfall. 

24John Willoughby, “Executions Song,” Institutional Investor 32, no. 11 (1998), pp. 
51–56; and Richard McSherry, “Global Trading Cost Analysis,” mimeo, Elkins/Mc-
Sherry Co., Inc., 1998.
25Andre F. Perold, “The Implementation Shortfall: Paper Versus Reality,” Journal of 
Portfolio Management 14 (1998), pp. 4–9.
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For example, with a paper portfolio return of 6% and an actual portfolio 
return of 5%, the implementation shortfall is 1%.

There is considerable practical and academic interest in the measure-
ment and analysis of international trading costs. Domowitz, Glen, and Mad-
havan26 examine international equity trading costs across a broad sample of 
42 countries using quarterly data from 1995 to 1998. They fi nd that the 
mean total one-way trading cost is 69.81 basis points. However, there is an 
enormous variation in trading costs across countries. For example, in their 
study the highest was Korea with 196.85 basis points whereas the lowest 
was France with 29.85 basis points. Explicit costs are roughly two-thirds of 
total costs. However, one exception to this is the United States where the 
implicit costs are about 60% of the total costs. 

Transaction costs in emerging markets are signifi cantly higher than 
those in more developed markets. Domowitz, Glen, and Madhavan argue 
that this fact limits the gains of international diversifi cation in these coun-
tries explaining in part the documented home bias of domestic investors.

In general, they fi nd that transaction costs declined from the middle of 
1997 to the end of 1998, with the exception of Eastern Europe. It is interest-
ing to notice that this reduction in transaction costs happened despite the 
turmoil in the fi nancial markets during this period. A few explanations that 
Domowitz et al. suggest are that (1) the increased institutional presence has 
resulted in a more competitive environment for brokers/dealers and other 
trading services; (2) technological innovation has led to a growth in the use 
of low-cost electronic crossing networks (ECNs) by institutional traders; 
and (3) soft dollar payments are now more common. 

FORECASTING AND MODELING MARKET IMPACT

In this section we describe a general methodology for constructing fore-
casting models for market impact. These types of models are very useful 
in predicting the resulting trading costs of specifi c trading strategies and in 
devising optimal trading approaches.

As we discussed previously, the explicit transaction costs are relatively 
straightforward to estimate and forecast. Therefore, our focus in this section 
is to develop a methodology for the implicit transaction costs, and more 
specifi cally, market impact costs. The methodology is a linear factor based 
approach where market impact is the dependent variable. We distinguish 

26Ian Domowitz, Jack Glen, and Ananth Madhavan, “International Equity Trading 
Costs: A Cross-Sectional and Time-Series Analysis,” Technical Report, Pennsylva-
nia State University, International Finance Corp., University of Southern California, 
1999.
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between trade-based and asset-based independent variables or forecasting 
factors.

Trade-Based Factors

Some examples of trade-based factors include:

Trade size
Relative trade size
Price of market liquidity
Type of trade (information or noninformation trade) 
Effi ciency and trading style of the investor
Specifi c characteristics of the market or the exchange
Time of trade submission and trade timing
Order type

Probably the most important market impact forecasting variables are 
based on absolute or relative trade size. Absolute trade size is often mea-
sured in terms of the number of shares traded, or the dollar value of the 
trade. Relative trade size, on the other hand, can be calculated as number of 
shares traded divided by average daily volume, or number of shares traded 
divided by the total number of shares outstanding. Note that the former can 
be seen as an explanatory variable for the temporary market impact and the 
latter for the permanent market impact. In particular, we expect the tempo-
rary market impact to increase as the trade size to the average daily volume 
increases because a larger trade demands more liquidity. 

Each type of investment style requires a different need for immediacy.27 
Technical trades often have to be traded at a faster pace in order to capital-
ize on some short-term signal and therefore exhibits higher market impact 
costs. In contrast, more traditional long-term value strategies can be traded 
more slowly. These types of strategies can in many cases even be liquidity 
providing, which might result in negative market impact costs. 

Several studies show that there is a wide variation in equity transaction 
costs across different countries.28 Markets and exchanges in each country 
are different, and so are the resulting market microstructures. Forecast-

27Donald B. Keim and Ananth Madhavan, “Transaction Costs and Investment Style: 
An Inter-Exchange Analysis of Institutional Equity Trades,” Journal of Financial 
Economics 46 (1997), pp. 265–292.
28See Domowitz, Glen, and Madhavan, “Liquidity, Volatility, and Equity Trading 
Costs Across Countries and Over Time,” and Chiraphol N. Chiyachantana, Pankaj 
K. Jain, Christine Jian, and Robert A. Wood, “International Evidence on Institutional 
Trading Behavior and Price Impact,” Journal of Finance 59 (2004), pp. 869–895.
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ing variables can be used to capture specifi c market characteristics such as 
liquidity, effi ciency, and institutional features. 

The particular timing of a trade can affect the market impact costs. For 
example, it appears that market impact costs are generally higher at the 
beginning of the month as compared to the end of it.29 One of the reasons 
for this phenomenon is that many institutional investors tend to rebalance 
their portfolios at the beginning of the month. Because it is likely that many 
of these trades will be executed in the same stocks, this rebalancing pattern 
will induce an increase in market impact costs. The particular time of the 
day a trade takes place does also have an effect. Many informed institu-
tional traders tend to trade at the market open as they want to capitalize on 
new information that appeared after the market close the day before.

As we discussed earlier in this chapter, market impact costs are asym-
metric. In other words, buy and sell orders have signifi cantly different 
market impact costs. Separate models for buy and sell orders can there-
fore be estimated. However, it is now more common to construct a model 
that includes dummy variables for different types of orders such as buy/sell 
orders, market orders, limit orders, and the like.

Asset-Based Factors

Some examples of asset-based factors are:

Price momentum
Price volatility 
Market capitalization
Growth versus value
Specifi c industry or sector characteristics

For a stock that is exhibiting positive price momentum, a buy order is li-
quidity demanding and it is, therefore, likely that it will have higher market 
impact cost than a sell order. 

Generally, trades in high volatility stocks result in higher permanent 
price effects. It has been suggested by Chan and Lakonishok30 and Smith et 
al.31 that this is because trades have a tendency to contain more information 
29F. Douglas Foster and S. Viswanathan, “A Theory of the Interday Variations in 
Volume, Variance, and Trading Costs in Securities Markets,” Review of Financial 
Studies 3 (1990), pp. 593–624.
30Louis K. C. Chan and Joseph Lakonishok, “Institutional Equity Trading Costs: 
NYSE versus Nasdaq,” Journal of Finance 52 (1997), pp. 713–735.
31Brian F. Smith, D. Alasdair, S. Turnbull, and Robert W. White, “Upstairs Market 
for Principal and Agency Trades: Analysis of Adverse Information and Price Ef-
fects,” Journal of Finance 56 (2001), pp. 1723–1746.
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when volatility is high. Another possibility is that higher volatility increases 
the probability of hitting and being able to execute at the liquidity provid-
ers’ price. Consequently, liquidity suppliers display fewer shares at the best 
prices to mitigate adverse selection costs.

Large-cap stocks are more actively traded and therefore more liquid 
in comparison to small-cap stocks. As a result, market impact cost is nor-
mally lower for large-caps.32 However, if we measure market impact costs 
with respect to relative trade size (normalized by average daily volume, for 
instance) they are generally higher. Similarly, growth and value stocks have 
different market impact cost. One reason for that is related to the trading 
style. Growth stocks commonly exhibit momentum and high volatility. This 
attracts technical traders that are interested in capitalizing on short-term 
price swings. Value stocks are traded at a slower pace and holding periods 
tend to be slightly longer.

Different market sectors show different trading behaviors. For instance, 
Bikker and Spierdijk show that equity trades in the energy sector exhibit 
higher market impact costs than other comparable equities in nonenergy 
sectors.33 

A Factor-Based Market Impact Model

One of the most common approaches in practice and in the literature in 
modeling market impact is through a linear factor model of the form

 MIt i i t
i

I

x= + +
=
∑α β ε

1

where α, βi are the factor loadings and xi are the factors. Frequently, the 
error term εt is assumed to be independently and identically distributed. 
Recall that the resulting market impact cost of a trade of (dollar) size V is 
then given by MICt = MIt · V. However, extensions of this model including 
conditional volatility specifi cations are also possible. By analyzing both the 
mean and the volatility of the market impact, we can better understand and 
manage the trade-off between the two. For example, Bikker and Spierdijk 
use a specifi cation where the error terms are jointly and serially uncorrelated 
with mean zero, satisfying

32Keim and Madhavan, “Transaction Costs and Investment Style,” and Laura Spi-
erdijk, Theo Nijman, and Arthur van Soest, “Temporary and Persistent Price Effects 
of Trades in Infrequently Traded Stocks,” Working Paper, Tilburg University and 
Center, 2003.
33Bikker, Spierdijk, and van der Sluis, “Market Impact Costs of Institutional Equity 
Trades.”
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 Var( ) expε γ δt j j
j

J

z= +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∑

1

where γ, δj, and zj are the volatility, factor loadings, and factors, respec-
tively. 

Although the market impact function is linear, this of course does not 
mean that the dependent variables have to be. In particular, the factors in 
the previous specifi cation can be nonlinear transformations of the descrip-
tive variables.

Consider, for example, factors related to trade size (e.g., trade size and 
trade size to daily volume). It is well known that market impact is nonlinear 
in these trade size measures. One of the earliest studies in this regard was 
performed by Loeb,34 who showed that for a large set of stocks the market 
impact is proportional to the square root of the trade size, resulting in a 
market impact cost proportional to V³�₂. Typically, a market impact function 
linear in trade size will underestimate the price impact of small- to medium-
sized trades whereas larger trades will be overestimated. 

Chen, Stanzl, and Watanabe suggest to model the nonlinear effects of 
trade size (dollar trade size V) in a market impact model by using the Box-
Cox transformation;35 that is,

 MI( )V
V

t b b
t

b
t

b

= +
−

+α β
λ

ε
λ 1

where t and τ represent the time of transaction for the buys and the sells, 
respectively. In their specifi cation, they assumed that εt and ετ are inde-
pendent and identically distributed with mean zero and variance σ2. The 
parameters αb, βb, λb, αs, βs, and λs were then estimated from market data 
by nonlinear least squares for each individual stock. We remark that λb, 
λs ∈ [0,1] in order for the market impact for buys to be concave and for 
sells to be convex. 

In their data sample (NYSE and Nasdaq trades between January 1993 
and June 1993), Chen et al. report that for small companies the curvature 
parameters λb, λs are close to zero, whereas for larger companies they are 
not far away from 0.5. Observe that for λb = λs = 1 market impact is linear 
in the dollar trade size. Moreover, when λb = λs = 0 the impact function is 
logarithmic by the virtue of
34Thomas F. Loeb, “Trading Costs: The Critical Link between Investment Informa-
tion and Results,” Financial Analysts Journal 39, no. 3 (1983), pp. 39–44.
35Zhiwu Chen, Werner Stanzl, and Masahiro Watanabe, “Price Impact Costs and the 
Limit of Arbitrage,” Yale School of Management, International Center for Finance, 
2002.
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 lim ln( )
λ

λ

λ
λ

→

− =
0

1V

As just mentioned, market impact is also a function of the characteris-
tics of the particular exchange where the securities are traded as well as of 
the trading style of the investor. These characteristics can also be included in 
the general specifi cation outlined previously. For example, Keim and Mad-
havan proposed the following two different market impact specifi cations36

MI OTC Up= + + + + + + +α β χ β β β β β χ ε1 2 3 4

2

5

3

6

1
p

q q q

where
χOTC is a dummy variable equal to one if the stock is an OTC traded 
stock or zero otherwise
p is the trade price
q is the number of shares traded over the number of shares outstand-
ing
χUp is a dummy variable equal to one if the trade is done in the upstairs37 
market or zero otherwise

MI (MCap)Nasdaq Tech= + + + + + +α β χ β β β β χ1 2 3 4 5

1
q

p
ln ββ χ ε6 Index +

where 
χNASDAQ is a dummy variable equal to one if the stock is traded on NAS-
DAQ or zero otherwise
q is the number of shares traded over the number of shares outstanding,
MCap is the market capitalization of the stock
p is the trade price
χTech is a dummy variable equal to one if the trade is a short-term techni-
cal trade or zero otherwise

36Donald B. Keim and Ananth Madhavan, “Transactions Costs and Investment Style: 
An Inter-Exchange Analysis of Institutional Equity Trades,” Journal of Financial 
Economics 46 (1997), pp. 265–292; and Donald B. Keim and Ananth Madhavan, 
“The Upstairs Market for Large-Block Transactions: Analysis and Measurement of 
Price Effects,” Review of Financial Studies 9 (1996), pp. 1–36.
37A securities transaction not executed on the exchange but completed directly by 
a broker in-house is referred to as an upstairs market transaction. Typically, the 
upstairs market consists of a network of trading desks of the major brokerages and 
institutional investors. The major purpose of the upstairs market is to facilitate large 
block and program trades.

1.

2.

c11-TransCosts.indd   438c11-TransCosts.indd   438 1/6/10   11:32:14 AM1/6/10   11:32:14 AM



Transaction Costs and Trade Execution  439

χIndex is a dummy variable equal to one if the trade is done for a portfolio 
that attempts to closely mimic the behavior of the underlying index or 
zero otherwise

These two models provide good examples for how nonlinear transforma-
tions of the underlying dependent variables can be used along with dummy 
variables that describe specifi c market or trade characteristics. 

Several vendors and broker/dealers such as MSCI Barra38 and ITG39 
have developed commercially available market impact models. These are 
sophisticated multimarket models that rely upon specialized estimation tech-
niques using intraday data or tick-by-tick transaction-based data. However, 
the general characteristics of these models are similar to the ones described 
in this section.

We emphasize that in the modeling of transaction costs it is important 
to factor in the objective of the trader or investor. For example, one market 
participant might trade just to take advantage of price movement and hence 
will only trade during favorable periods. His trading cost is different from 
an investor who has to rebalance a portfolio within a fi xed time period and 
can therefore only partially use an opportunistic or liquidity searching strat-
egy. In particular, this investor has to take into account the risk of not com-
pleting the transaction within a specifi ed time period. Consequently, even if 
the market is not favorable, he may decide to transact a portion of the trade. 
The market impact models described previously assume that orders will be 
fully completed and ignore this point.

INCORPORATING TRANSACTION COSTS IN 
ASSET-ALLOCATION MODELS

Standard asset-allocation models generally ignore transaction costs and 
other costs related to portfolio and allocation revisions. However, the effect 
of transaction costs is far from insignifi cant. On the contrary, if transaction 
costs are not taken into consideration, they can eat into a signifi cant part of 
the returns. Whether transaction costs are handled effi ciently or not by the 
portfolio or fund manager can therefore make all the difference in attempt-
ing to outperform the peer group or a particular benchmark.

The typical asset-allocation model consists of one or several forecast-
ing models for expected returns and risk. Small changes in these forecasts 
can result in reallocations which would not occur if transaction costs had 

38Nicolo G. Torre and Mark J. Ferrari, “The Market Impact Model,” Barra Research 
Insights.
39“ITG ACE—Agency Cost Estimator: A Model Description,” 2003, www.itginc.com.
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been taken into account. Therefore, it is to be expected that the inclusion of 
transaction costs in asset-allocation models will result in a reduced amount 
of trading and rebalancing.

In this section we demonstrate how transaction costs models can be 
incorporated into standard asset-allocation models. For simplicity, we will 
use the mean-variance model to describe the basic approach. However, it is 
straightforward to extend this approach into other frameworks.

In 1970, Pogue gave one of the fi rst descriptions of an extension of the 
mean-variance framework that included transaction costs.40 Several other 
authors including, for example, Schreiner,41 Adcock and Meade,42 Lobo, 
Fazel, and Boyd,43 Mitchell and Braun,44 have provided further extensions 
and modifi cations to this basic approach. These formulations can be sum-
marized by the mean-variance risk aversion formulation with transaction 
costs, given by

 max
w

w w w′ − ′ − ⋅μμ ΣΣλ λTC TC

subject to ι′w = 1, ι = [1,1,…,1]′ where TC denotes a transaction cost pen-
alty function and λTC a transaction cost aversion parameter. In other words, 
the objective is to maximize expected return less the cost of risk and trans-
action costs. The transaction costs term in the utility function introduces 
resistance or friction in the rebalancing process that makes it costly to reach 
the mean-variance portfolio, which would have been the result had transac-
tion costs not been taken into account. We can imagine that as we increase 
the transaction costs, at some point it will be optimal to keep the current 
portfolio. 

Transaction costs models can involve complicated nonlinear functions. 
Although there exists software for general nonlinear optimization problems, 
the computational time required for solving such problems is often too long 

40Gerry A. Pogue, “An Extension of the Markowitz Portfolio Selection Model to In-
clude Variable Transactions’ Costs, Short Sales, Leverage Policies and Taxes,” Jour-
nal of Finance 25, no. 5 (1970), pp. 1005–1027.
41John Schreiner, “Portfolio Revision: A Turnover-Constrained Approach,” Finan-
cial Management 9, no. 1 (Spring 1980), pp. 67–75.
42Christopher J. Adcock and Nigel Meade, “A Simple Algorithm to Incorporate 
Transaction Costs in Quadratic Optimization,” European Journal of Operational 
Research 79, no. 1 (1994), pp. 85–94.
43Miguel Sousa Lobo, Maryam Fazel, and Stephen Boyd, “Portfolio Optimization 
with Linear and Fixed Transaction Costs and Bounds on Risk,” Annals of Opera-
tions Research 152, no. 1 (2007), pp. 376–394.
44John E. Mitchell and Stephen Braun, “Rebalancing an Investment Portfolio in the 
Presence of Transaction Costs,” Technical Report, Department of Mathematical Sci-
ences, Rensselaer Polytechnic Institute, 2002.
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for realistic investment management applications, and the quality of the 
solution is frequently not guaranteed. Very effi cient and reliable software 
is available, however, for linear and quadratic optimization problems. It 
is therefore common in practice to approximate a complicated nonlinear 
optimization problem by simpler problems that can be solved quickly. In 
particular, portfolio managers frequently employ approximations of the 
transaction cost penalty function in the mean-variance framework.45

One of the most common simplifi cations to the transaction cost penalty 
function is to assume that it is a separable function dependent only on the 
portfolio weights w, or more specifi cally on the portion to be traded x = 
w – w0, where w0 is the original portfolio and w is the new portfolio after 
rebalancing. Mathematically, we can express this as

 TC TC( ) ( )x =
=
∑ i i
i

N

x
1

where TCi is the transaction cost function for security i and xi is the portion 
of security i to be traded. The transaction cost function TCi is often param-
eterized as a quadratic function of the form

 TCi i i x i i i ix x x
i

( ) { }= ⋅ + +≠α χ β γ0

2

where the coeffi cients αi, βi, and γi may be different for each asset, and χ{ }xi≠0  
is the indicator function that is equal to one when xi ≠ 0 and zero otherwise.

When all αi = 0, the resulting optimization problem is a quadratic opti-
mization problem of the form

 max ( )
w

w w w′ − ′ − ′ + ′μμ ΓΓλ λ βΣ TC x x x

subject to the usual constraints, where β′ = (β1, …,βN) and 
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45See, for example, Andre F. Perold, “Large-Scale Portfolio Optimization,” Manage-
ment Science 30, no. 10 (1984), pp. 1143–1160; and Hiroshi Konno and Annista 
Wijayanayake, “Portfolio Optimization Problem under Concave Transaction Costs 
and Minimal Transaction Unit Constraints,” Mathematical Programming and Fi-
nance 89, no. 2 (2001), pp. 233–250.
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In particular, as this is a quadratic optimization problem, it can be solved 
with exactly the same software that is capable of solving the classical mean-
variance optimization problem. 

Alternatively, piecewise-linear approximations to transaction cost func-
tion models can be used. An example of a piecewise-linear function of trans-
action costs for a trade of size t of a particular security is illustrated in 
Exhibit 11.4. The transaction cost function illustrated in the graph assumes 
that the rate of increase of transaction costs (refl ected in the slope of the 
function) changes at certain threshold points. For example, it is smaller in 
the range 0% to 15% of some reference volume (Vol) than in the range 15% 
to 40%. Mathematically, the transaction cost function in Exhibit 11.4 can 
be expressed as

 

TC( )

,

x

s x

=
1 0 ≤≤ ≤ ⋅

⋅ + − ⋅
x

s s x

0 15

0 15 0 151 2

.

( . ( .

Vol

Vol) Vol), Vol0 15 0 40. .⋅ ≤ ≤ ⋅x VVol

Vol) Vol) Vols s s x1 2 30 15 0 25 0 40( . ( . ( .⋅ + ⋅ + − ⋅ )), Vol Vol0 40 0 55. .⋅ ≤ ≤ ⋅

⎧

⎨
⎪

⎩
⎪ x

where s1, s2, s3 are the slopes of the three linear segments on the graph.
Including piecewise-linear functions for transaction costs in the objec-

tive function of the mean-variance (or any general mean-risk) portfolio 

EXHIBIT 11.4 An Example of Modeling Transaction Costs (TC) as a Piecewise-
Linear Function of Trade Size t

0

TC

0.15 · Vol 0.40 · Vol 0.55 · Vol Trade Amount (t)
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optimization problem is straightforward.46 We can introduce new decision 
variables that correspond to the number of pieces in the piecewise-linear 
approximation of the transaction cost function (in this case, there are three 
linear segments, so we introduce variables y1, y2, y3), and write the penalty 
term in the objective function for an individual asset as

 
λTC( )s y s y s y1 1 2 2 3 3⋅ + ⋅ + ⋅

If there are N assets in the portfolio, the total transaction cost will be the 
sum of the transaction costs for each individual asset. That is, the penalty 
term becomes

 λTC i i i i i i
i

N

s y s y s y( ), , , , , ,1 1 2 2 3 3
1

⋅ + ⋅ + ⋅
=
∑

In addition, one needs to specify the following constraints on the new deci-
sion variables:

0 ≤ y1,i ≤ 0.15 · Voli

0 ≤ y2,i ≤ 0.25 · Voli

0 ≤ y3,i ≤ 0.15 · Voli

Note that because of the increasing slopes of the linear segments and the 
goal of minimizing that term in the objective function, the optimizer will 
never set the decision variable corresponding to the second segment, y2,i, 
to a number greater than 0 unless the decision variable corresponding to 
the fi rst segment, y1,i, is at its upper bound. Similarly, the optimizer would 
never set y3,i to a number greater than 0 unless both y1,i and y2,i are at their 
upper bounds. This set of constraints allows us to compute the total traded 
amount of asset i as y1,i + y2,i + y3,i.

Of course, one also needs to link the traded amount of asset i to the 
optimal portfolio allocation. This is done by adding another set of con-
straints. We introduce variables zi, one for each asset in the portfolio, that 
would represent the amount traded (but not the direction of the trade), and 
would be nonnegative. Then, we would require that 

 zi = y1,i + y2,i + y3,i   for each asset i

46See, for example, Dimitris Bertsimas, Christopher Darnell, and Robert Soucy, 
“Portfolio Construction through Mixed-Integer Programming at Grantham, Mayo, 
Van Otterloo and Company,” Interfaces 29, no. 1 (1999), pp. 49–66.
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and also that zi equals the change in the portfolio holdings of asset i. The 
latter condition is imposed by writing the constraint

 z w wi i i= − 0,

where w0,i and wi are the initial and the fi nal amount of asset i in the port-
folio, respectively.47 

Despite their apparent complexity, piecewise-linear approximations for 
transaction costs are very solver-friendly, and save time (relative to nonlinear 
models) in the actual portfolio optimization. Although modeling transaction 
costs this way requires introducing new decision variables and constraints, 
the increase in the dimension of the portfolio optimization problem does not 
affect signifi cantly the running time or the performance of the optimization 
software, because the problem formulation is easy. 

INTEGRATED PORTFOLIO MANAGEMENT: 
BEYOND EXPECTED RETURN AND PORTFOLIO RISK

Equity trading should not be viewed separately from equity portfolio man-
agement. On the contrary, the management of equity trading costs is an 
integral part of any successful investment management strategy. In this con-
text, MSCI Barra points out that superior investment performance is based 
on careful consideration of four key elements:48 

Forming realistic return expectations.
Controlling portfolio risk.
Effi cient control of trading costs.
Monitoring total investment performance.

Unfortunately, most discussions of equity portfolio management focus solely 
on the relationship between expected return and portfolio risk—with little 
if any emphasis on whether the selected securities in the optimal or target 
portfolio can be acquired in a cost effi cient manner. 
47This constraint can be written in an equivalent, more optimization solver-friendly 
form, namely, 

zi ≥ wi – w0,i

zi ≥ –(wi – w0,i)
48The trading cost factor model described in this section is based on MSCI Barra’s 
Market Impact Model™. A basic description of the model is covered in a three-part 
newsletter series. See Nicolo Torre, “The Market Impact Model™,” Equity Trading: 
Research, Barra Newsletters 165–167 (Barra, 1998).

1.
2.
3.
4.
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To illustrate the seriousness of the problem that can arise with sub-
optimal portfolio decisions, Exhibit 11.5 highlights the typical versus ideal 
approach to (equity) portfolio management. In the typical approach (top 
portion of Exhibit 11.5), portfolio managers engage in fundamental and/
or quantitative research to identify investment opportunities—albeit with a 
measure of investment prudence (risk control) in mind. Upon completion, 
the portfolio manager reveals the list of securities that form the basis of the 
target portfolio to the senior trader. At this point, the senior trader informs 
the portfolio manager of certain nontradable positions—which causes the 
portfolio manager to adjust the list of securities either by hand or some 
other ad hoc procedure. This, in turn, causes the investor’s portfolio to be 
suboptimal.

Exhibit 11.5 also shows that as the trader begins to fi ll the portfolio 
with the now suboptimal set of securities, an additional portfolio imbalance 
may occur as market impact costs cause the prices of some securities to 
“run away” during trade implementation. It should be clear that any ad hoc 
adjustments by the trader at this point will in turn build a systematic imbal-
ance in the investor’s portfolio—such that the portfolio manager’s actual 
portfolio will depart permanently from that which would be effi cient from 
a return-risk and trading cost perspective.

A better approach to equity portfolio management (lower portion of 
Exhibit 11.5) requires a systematic integration of portfolio management 

EXHIBIT 11.5 Typical versus Ideal Portfolio Management

Source: Figure 4 in Nicolo Torre, “The Market Impact Model™—First in a Series: 
The Market Impact Problem,” Equity Trading: Research, Barra Newsletters 165 
(Barra, 1998), pp. 7–8. 
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and trading processes. In this context, the returns forecast, risk estimates, 
and trading cost program are jointly combined in determining the optimal 
investment portfolio. In this way, the portfolio manager knows up front if 
(complete) portfolio implementation is either not feasible or is too expensive 
when accounting for trading costs.

Accordingly, the portfolio manager can incorporate the appropriate 
trading cost information into the portfolio construction and risk control 
process—before the trading program begins. The portfolio manager can 
then build a portfolio of securities whereby actual security positions are 
consistent with those deemed to be optimal from an integrated portfolio 
context.

SUMMARY

Trading and execution are integral components of the investment pro-
cess. A poorly executed trade can eat directly into portfolio returns 
because of transaction costs.
Transaction costs are typically categorized in two dimensions: fi xed 
costs versus variable costs, and explicit costs versus implicit costs. 
In the fi rst dimension, fi xed costs include commissions and fees. Bid-ask 
spreads, taxes, delay cost, price movement risk, market impact costs, 
timing risk, and opportunity cost are variable trading costs. 
In the second dimension, explicit costs include commissions, fees, bid-
ask spreads, and taxes. Delay cost, price movement risk, market impact 
cost, timing risk, and opportunity cost are implicit transaction costs.
Implicit costs make up the larger part of the total transaction costs. 
These costs are not observable and have to be estimated.
Liquidity is created by agents transacting in the fi nancial markets by 
buying and selling securities.
Liquidity and transaction costs are interrelated: In a highly liquid mar-
ket, large transactions can be executed immediately without incurring 
high transaction costs.
A limit order is an order to execute a trade only if the limit price or a 
better price can be obtained. 
A market order is an order to execute a trade at the current best price 
available in the market.
In general, trading costs are measured as the difference between the 
execution price and some appropriate fair market benchmark. The fair 
market benchmark of a security is the price that would have prevailed 
had the trade not taken place.

■

■

■

■

■

■

■

■

■

■
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Typical forecasting models for market impact costs are based on a sta-
tistical factor approach. Some common trade-based factors are: trade 
size, relative trade size, price of market liquidity, type of trade, effi ciency 
and trading style of the investor, specifi c characteristics of the market or 
the exchange, time of trade submission, trade timing, and order type. 
Some common asset-based factors are: price momentum, price volatil-
ity, market capitalization, growth versus value, and specifi c industry/
sector characteristics.
Transaction costs models can be incorporated into standard asset-allocation 
models such as the mean-variance framework.
Effi cient equity portfolio management requires a systematic integration 
of trading costs management, trading execution, and portfolio manage-
ment.

■

■

■
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CHAPTER 12
Investment Management and 

Algorithmic Trading

T echnology continues to have an increasingly signifi cant impact on how 
securities are traded in today’s markets. Many trading fl oors have been 

replaced by electronic trading platforms and more than a third of the trad-
ing volume in the United States can be attributed to algorithmic trading. 
Every large broker-dealer provides algorithmic trading services to their 
institutional clients in order to assist their trading. The algorithms used by 
institutional investors, hedge funds, and many other market participants are 
used to make trading decisions about the timing, price, and size of trades, 
with the objective of reducing risk-adjusted costs.

In a broad sense, the term algorithmic trading is used to describe trad-
ing in an automated fashion according to a set of rules. It is often used 
interchangeably with statistical trading or statistical arbitrage, which may 
or may not be automated, but is based on signals derived from statistical 
analyses or models. Smart order routing, program trading, and rules-based 
trading are some of the other terms associated with algorithmic trading. 
More recently, the range of functions and activities associated with algorith-
mic trading has grown to include market impact modeling, execution risk 
analytics, cost aware portfolio construction, and the use of market micro-
structure effects. 

In this chapter, we fi rst explain the basic ideas of market impact and 
optimal execution from both the sell- and buy-side perspectives. We then 
provide an overview of the most popular algorithmic trading strategies. We 
close the chapter with a discussion on the “high-frequency arms race” and 
the impact of algorithmic trading on the markets. 

This chapter draws from Petter N. Kolm and Lee Maclin, “Algorithmic Trading,” 
to appear in Rama Cont (ed.), Encyclopedia of Quantitative Finance, John Wiley & 
Sons, 2010.
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MARKET IMPACT AND THE ORDER BOOK

The limit order book contains resting limit orders. These orders rest in the 
book and provide liquidity as they wait to be matched with nonresting 
orders, which represent a demand for liquidity. The three most common 
types of nonresting orders are marketable limit orders, market orders, and 
fi ll-or-kill orders.

The bid side of the limit book contains resting bids to buy a certain 
number of shares of stock at a certain price. The offer side contains resting 
offers to sell a certain number of shares of stock at a certain price.

A market order is a demand for an immediate execution of a certain 
number of shares at the best possible price. To get the best possible price, 
a market order sweeps through one side of the limit order book—starting 
with the best price—matching against resting orders until the full quantity 
of the market order is fi lled or the book is completely depleted. 

Unlike a market order, a marketable limit order can be executed only 
at a specifi ed price or better. For example, a marketable limit order to buy 
100 shares at $90.01 can match with a resting limit order to sell 200 shares 
at $90.00. The trade print—the price at which the trade would take place—
would be $90.00.

The following examples illustrate how market orders to sell interact 
with resting limit orders to buy. 

Exhibit 12.1 shows the idealized market impact of a two hundred share 
market order to sell. The horizontal and vertical axes display the time and 
price, respectively. 

EXHIBIT 12.1 Idealized Market Impact Model Showing Sell of 200 Shares
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The bid side of the limit order book contains bids to buy a certain 
number of shares of stock at a certain price. Resting limit orders—orders 
that sit in the order book—are said to provide liquidity by mitigating the 
market impact of orders that must be fi lled immediately. The state of the 
book establishes a pre-trade equilibrium (1), which is disturbed by a market 
order to sell 200 shares (2). Market orders must be fi lled immediately, and 
therefore represent a demand for liquidity.

As the sell order depletes the bid book by matching with limit orders 
to buy, it obtains an increasingly less favorable (lower) trade price, result-
ing in the trade print (3). Assuming no other trading activity, over time 
liquidity providers replenish the bid book to (4), which is the post-trade 
equilibrium.

The difference between (4) and (1) is an information-based effect called 
permanent market impact. It is the market’s response to information that 
a market participant has decided not to own 200 shares of this stock. This 
effect is typically modeled as immediate and linear in total number of shares 
executed. Huberman and Stanzl1 show that, if the effect were not linear 
and immediate, buying and selling at two different rates could produce an 
arbitrage profi t.

The difference between (4) and (3) is called temporary market impact. 
The trader who initiated the trade is willing to obtain a less favorable fi ll 
price (3) to get his trade done immediately. This cost of immediacy is typi-
cally modeled as a linear or square root function. Under the assumption 
of square root impact, with all other factors held constant, a trade of 200 
shares executed over the same period of time as a trade of 100 shares would 
have square root of two times more temporary impact per share.

Exhibit 12.2 shows what would happen if the same trader were willing to 
wait sometime between trades. The trade print from Exhibit 12.1 is shown as 
a shaded line (1). As in Exhibit 12.1, a pre-trade equilibrium (2) is disturbed 
by a 100 share market order to sell (3). As the market order depletes the bid 
book by matching with limit orders to buy, it obtains a fi ll price (4). Over time 
(5), liquidity providers refi ll the bid book with limit orders to buy. But the new 
post-trade equilibrium (6) is lower than the pre-trade equilibrium because it 
incorporates the information of the executed market order. 

Our trader then places another market sell order for 100 shares (6) and 
obtains a trade print (7). Over time the temporary impact—(8) minus (7)—
decays and results in a new post-trade equilibrium (8). As the permanent 
impact is assumed to be linear and immediate, the post-trade equilibrium is 
shown to be the same for one order of 200 shares as it is for two orders of 
100 shares each. 
1Gur Huberman and Werner Stanzl, “Price Manipulation and Quasi-Arbitrage,” 
Econometrica 72, no. 4 (2004), pp. 1247–1275.
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EXHIBIT 12.2 Idealized Market Impact Model Showing Two Sells of 100 Shares Each
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OPTIMAL EXECUTION

While our trader waits between trades (5), he incurs price risk—the risk that 
his execution will be less favorable due to the random movement of prices. 
In this context, a shortfall is the difference between the effective execution 
price and the arrival price—the prevailing price at the start of the execu-
tion period. If we use the variance of shortfall as a proxy for risk, a trader’s 
aversion to risk establishes a risk/cost trade-off. In the fi rst scenario, he 
pays a higher cost—the difference between (8) and (1)—to eliminate risk. 
In the second scenario, he pays a lower cost—the average of the differences 
between (8) and (4), and (8) and (7)—but takes on a greater dispersion of 
shortfalls associated with the waiting time between trades (5). This is the 
trade-off considered in the seminal paper of Almgren and Chriss.2

Risk aversion increases a trader’s sense of urgency and makes it attrac-
tive to pay some premium to reduce risk. The premium the trader pays is 
in the form of higher temporary market impact. All other factors held con-
stant, a higher expected temporary market impact encourages slower trad-
ing, while a higher expected risk or risk aversion encourages faster trading.

Risk aversion embodies the notion that people dislike risk. For a risk-
averse agent, the utility of a fair game, u(G), is less than the utility of having 
the expected value of the game, E(u(G)), with certainty. The degree of risk 
2Robert Almgren and Neil Chriss, “Optimal Execution of Portfolio Transactions,” 
Journal of Risk 3, no. 2 (2000), pp. 5–39.
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aversion may be captured by the risk aversion parameter λ, which is used 
to translate risk into a certain dollar cost equivalent—the smallest certain 
dollar amount that would be accepted instead of the uncertain payoff from 
the fair game. For an agent with quadratic utility the certain dollar cost 
equivalent is given by E(G) – λVar(G). Hence, his degree of risk aversion 
is characterized by the family of risk/return pairs with the same constant 
trade-off between expected return and risk. An annualized target return and 
standard deviation imply a risk aversion, and may be translated to a risk 
aversion parameter of the type used in some optimal execution algorithms.

Another factor that infl uences the decision to trade more quickly or 
more slowly is the expectation of price change. For the purpose of execu-
tion, a positive alpha is an expectation of profi ts per share per unit time for 
unexecuted shares. A faster execution captures more of the profi ts associated 
with this expectation of price change. A negative alpha is the expectation 
of losses per share per unit time for unexecuted shares. A slower execution 
incurs less of the losses associated with this expectation of price change. 

For example, a trader has positive alpha if he expects prices to move lower 
while he is executing his sell orders. He may choose to front-weight his trade 
schedule—execute more rapidly at the beginning of the execution period—to 
obtain better execution prices. Similarly, a seller who believes that prices are 
moving higher may back-weight his trade schedule or delay the execution.

The general form of the optimal execution problem is fi nding the best 
trade-off between the effects of risk, market impact, and alpha by mini-
mizing risk-adjusted costs relative to a prespecifi ed benchmark. Common 
benchmarks are volume weighted average price (VWAP) and arrival price 
(the price prevailing at the beginning of the execution period).

The fi rst formulations of this problem go back to the seminal papers of 
Bertsimas and Lo,3 and Almgren and Chriss.4 Assuming a quadratic utility 
function, a general formulation of this problem takes the form 

 min ( ( )) ( ( ))
x t t

t

E C x Var C x+ λ

where C(xt) is the cost of deviating from the benchmark. The solution is 
given by the trade schedule xt that represents the number of shares that re-
mains to buy/sell at time t. The trader’s optimal trade schedule is a function 
of his level of risk aversion—λ ≥ 0—which determines his urgency to trade, 
and dictates the preferred trade-off between execution cost and risk. 

In the following two subsections we describe the sell- and buy-side per-
spectives of the typical arrival price optimal execution models. 

3Dimitris Bertsimas and Andrew W. Lo, “Optimal Control of Execution Costs,” 
Journal of Financial Markets 1, no. 1 (1998), pp. 1–50.
4Almgren and Neil, “Optimal Execution of Portfolio Transactions.”
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The Sell-Side Perspective

The typical optimal execution model uses arrival price as a benchmark and 
balances the trade-off between market impact, price risk, and opportunity 
cost. Alpha is assumed to be greater than or equal to zero, which means that 
delaying execution may carry an associated opportunity cost, but does not 
carry an expectation of profi t. The optimal strategy lies somewhere between 
two extremes: (1) trade everything immediately at a known cost, or (2) re-
duce market impact by spreading the order into smaller trades over a longer 
horizon at the expense of increased price risk and opportunity cost.

Bertsimas and Lo5 proposed an algorithm for the optimal execution 
problem that fi nds the minimum expected cost of trading over a fi xed period 
of time for a risk neutral trader, λ = 0, facing an environment where price 
movements are assumed to be serially uncorrelated. 

Almgren and Chriss6 extended this concept using quadratic utility to 
embody the trade-off between expected cost and price risk. The more aggres-
sive (passive) trade schedules incur higher (lower) market impact costs and 
lower (higher) price risk. Similar to classical portfolio theory, as λ varies the 
resulting set of points (Var (λ), E(λ)) traces out the effi cient frontier of opti-
mal trading strategies. The two extreme cases λ = 0 and λ → ∞ correspond 
to the minimum impact strategy—trading at a constant rate throughout the 
execution period—and the minimum variance strategy—a single execution 
of the entire target quantity at the start of the execution period. 

Let us consider selling X shares, that is, we want x0 = X and xT = 0. 
Under the assumptions that asset prices follow an arithmetic Brownian 
motion, permanent impact is immediate and linear in total shares executed, 
and temporary impact is linear in the rate of trading, the solution of the 
Almgren and Chriss model is

 x X
T t

Tt = −sinh( ( ))
sinh( )

κ
κ

where

 κ λσ
η

=
2

Here σ and η represent stock volatility and linear temporary market impact cost.
Note that the solution is effectively a decaying exponential X exp(–κt) 

adjusted such that xT = 0. It does not depend on the permanent market 
impact, consistent with the discussion in the previous section. The urgency 

5Bertsimas and Lo, “Optimal Control of Execution Costs.” 
6Almgren and Chriss, “Optimal Execution of Portfolio Transactions.” 
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of trading is embodied in κ. This parameter determines the speed of liquida-
tion independent of the order size X. For a higher risk aversion parameter or 
volatility—for example, representing increased perceived risk—the speed of 
trading increases as well. We also see that for a higher expected temporary 
market impact cost, the speed of trading decreases.

IMPACT MODELS

An impact model is used to predict changes in price due to trading activ-
ity. This expectation of price change may be used to inform execution and 
portfolio construction decisions. Several well-known models have been 
proposed. The models by Hasbrouck,7 Lillo et al.,8 and Almgren et al. are 
examples.9

Almgren et al. use a proprietary data set obtained from Citigroup’s 
equity trading desk in which a trade’s direction (buyer or seller initiated) is 
known. Note that for most public data sets, trade direction is not available 
and has to be estimated by a classifi cation algorithm. Classifi cation errors 
in algorithms such as Lee and Ready,10 and Ellis, Michaely, and O’Hara11 
introduce a bias that produces an overestimate of the true trading cost.

In Almgren et al., trades serve as a proxy for trading imbalance. The 
authors assume that, sometime after the complete execution of a parent 
order, only permanent impact remains. This allows them to separate impact 
into its temporary and permanent components.

The model parameters can then be calculated from a regression, giving 
the following results. First, permanent impact cost is linear in trade size and 
volatility. Second, temporary impact cost is linear in volatility and roughly 
proportional to the square root—Almgren et al. fi nd a power ³⁄₅—of the 
fraction of volume represented by one’s own trading during the period of 
execution. Hence, for a given rate of trading, a less volatile stock with large 
average daily volume has the lowest temporary impact costs.

7Joel Hasbrouck, “Measuring the Information Content of Stock Trades,” Journal of 
Finance 46, no. 1 (1991), pp. 179–207.
8Lillo Fabrizio, J. Doyne Farmer, and Rosario N. Mantegna, “Master Curve for 
Price-Impact Function,” Nature 421, no. 6919 (2003), p. 129.
9Robert Almgren, Chee Thum, Emmanuel Hauptmann, and Hong Li, “Equity Mar-
ket Impact,” Risk 18, no. 7 (2005), pp. 57–62.
10Charles M. C. Lee and Mark J. Ready, “Inferring Trade Direction from Intraday 
Data,” Journal of Finance 46, no. 2 (1991), pp. 733–746.
11Katrina Ellis, Roni Michaely, and Maureen O’Hara, “The Accuracy of Trade Clas-
sifi cation Rules: Evidence from Nasdaq,” Journal of Financial and Quantitative 
Analysis 35, no. 4 (2000), pp. 529–551.
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The Buy-Side Perspective

Optimal execution algorithms have less value to a typical portfolio manager 
if analyzed separately from the corresponding returns earned by his trad-
ing strategy. In fact, high transaction costs are not bad per se—they could 
simply prove to be necessary for generating superior returns. At present, the 
typical sell side perspective of algorithmic trading does not take expectation 
of profi ts or the client’s portfolio objectives into account. Needless to say, 
this is an important component of execution.

The decisions of the trader and the portfolio manager are based on dif-
ferent objectives. The trader decides on the timing of the execution, break-
ing large parent orders into a series of child orders that, when executed 
over time, represent the correct trade-off between opportunity cost, market 
impact, and risk. The trader sees only the trading assets, whereas the portfo-
lio manager sees the entire portfolio, which includes both the trading assets 
and the static—nontrading—positions. 

The portfolio manager’s task is to construct a portfolio by optimizing 
the trade-off between opportunity cost, market impact, and risk for the 
full set of trading and nontrading assets. In general, the optimal execution 
framework described by Almgren and Chriss is not appropriate for the port-
folio manager.

Engle and Ferstenberg12 proposed a framework that unites these objec-
tives by combining optimal execution and classical mean-variance optimization 
models. In their model, trading takes place at discrete time intervals as the port-
folio manager rebalances his portfolio holdings wt at times t = 0, 1, …, T sub-
ject to changing expected returns, μμt, and risk (as measured by the covariance 
matrix of returns), ΩΩt, until he reaches the portfolio that refl ects his fi nal view

 wT T T= −1
2

1

λ
ΩΩ μμ

The joint dynamic optimization problem has the form
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12Robert F. Engle and Robert Ferstenberg, “Execution Risk,” Journal of Portfolio 
Management 33, no. 2 (2007), pp. 34–44.
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where τ τt t t= ( )ΔΔw  is the temporary market impact function (for simplicity 
of exposition we ignore permanent impacts). This is a dynamic program-
ming problem that has to be solved by numerical techniques.

Each one of the three terms in the objective function above has an intui-
tive interpretation. The fi rst term represents the standard mean-variance 
optimization problem. The second term corresponds to the optimal execu-
tion problem. The third term is the covariance between the remaining shares 
to be traded and the fi nal position. In the single asset case, the third term 
is positive (negative) for buying (selling) orders, which implies that risk is 
reduced (increased). If this term is ignored, which occurs when portfolio 
allocation and optimal execution are performed separately, then the mea-
surement of total risk is biased.

POPULAR ALGORITHMIC TRADING STRATEGIES

A small number of execution strategies have become de facto standards and 
are offered by most technology providers, banks, and institutional broker/
dealers. However, even among these standards, the large number of input 
parameters makes it diffi cult to compare execution strategies directly.

Typically, a strategy is motivated by a theme, or style of trading. The 
objective is to minimize either absolute or risk-adjusted costs relative to a 
benchmark. For strategies with mathematically defi ned objectives, an opti-
mization is performed to determine how to best use the strategy to maxi-
mize a trader’s or portfolio manager’s utility. A trade schedule—or trajec-
tory—is planned for strategies with a target quantity of shares to execute. 
The order placement engine—sometimes called the microtrader—translates 
from a strategy’s broad objectives to individual orders. User defi ned input 
parameters control the trade schedule and order placement strategy.

In this section we review some of the most common algorithmic trading 
strategies. 

Volume-Weighted Average Price

Six or seven years ago, the volume weighted average price (VWAP) execution 
strategy represented the bulk of algorithmic trading activity. Currently, it is 
second in popularity only to arrival price. The appeal of benchmarking to 
VWAP is that the benchmark is easy to compute and intuitively accessible. 

The typical parameters of a VWAP execution are the start time, the end 
time, and the number of shares to execute. Additionally, optimized forms of 
this strategy require a choice of risk aversion. 
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The most basic form of VWAP trading uses a model of the fractional 
daily volume pattern over the execution period. A trade schedule is calcu-
lated to match this volume pattern. For example, if the execution period is 
one day, and 20% of a day’s volume is expected to be transacted in the fi rst 
hour, a trader using this basic strategy would trade 20% of his target accu-
mulation or liquidation in the fi rst hour of the day. Since the daily volume 
pattern has a U shape—with more trading in the morning and afternoon and 
less in the middle of the day—the volume distribution of shares executed in 
a VWAP pattern would also have this U shape. 

VWAP is an ideal strategy for a trader who meets all of the following 
criteria:

His trading has little or no alpha during the execution period. 
He is benchmarked against the volume weighted average price. 
He believes that market impact is minimized when his own rate of trad-
ing represents the smallest possible fraction of all trading activity.
He has a set number of shares to buy or sell.

Deviation from these criteria may make VWAP strategies less attractive. 
For example, market participants who trade over the course of a day and 
have strong positive alpha may prefer a front-weighted trajectory, such as 
those that are produced by an arrival price strategy.

The period of a VWAP execution is most typically a day or a large frac-
tion of a day. Basic VWAP models predict the daily volume pattern using 
a simple historical average of fractional volume. Several weeks to several 
months of data are commonly used. However, this forecast is noisy. On 
any given day, the actual volume pattern deviates substantially from its his-
torical average, complicating the strategy's objective of minimizing its risk-
adjusted cost relative to the VWAP benchmark. Some models of fractional 
volume attempt to increase the accuracy of volume pattern prediction by 
making dynamic adjustments to the prediction based on observed trading 
results throughout the day.

Several variations of the basic VWAP strategy are common. The ideal 
VWAP user (as defi ned previously) can lower his expected costs by increas-
ing his exposure to risk relative to the VWAP benchmark. For example, 
assuming an alpha of zero, placing limit orders throughout the execution 
period and catching up to a target quantity with a market order at the end 
of the execution period will lower expected cost while increasing risk. This 
is the highest risk strategy. Continuously placing small market orders in 
the fractional volume pattern is the lowest risk strategy, but has a higher 
expected cost. For a particular choice of risk aversion, somewhere between 

■

■

■

■
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the highest and lowest risk strategies, is a compromise optimal strategy that 
perfectly balances risk and costs. 

For example, a risk-averse VWAP strategy might place one market order 
of 100 shares every 20 seconds while a less risk-averse strategy might place 
a limit order of 200 shares, and, 40 seconds later, place a market order for 
the difference between the desired fi ll of 200 and the actual fi ll (which may 
have been smaller). The choice of the average time between market orders 
in a VWAP execution implies a particular risk aversion.

For market participants with a positive alpha, a frequently used rule-of-
thumb optimization is compressing trading into a shorter execution period. 
For example, a market participant may try to capture more profi ts by doing 
all of his VWAP trading in the fi rst half of the day instead of taking the 
entire day to execute.

In another variant of VWAP—guaranteed VWAP—a broker commits 
capital to guarantee his client the VWAP price in return for a predetermined 
fee. The broker takes on a risk that the difference between his execution 
and VWAP will be greater than the fee he collects. If institutional trading 
volume and individual stock returns were uncorrelated, the risk of guaran-
teed VWAP trading could be diversifi ed away across many clients and many 
stocks. In practice, managing a guaranteed VWAP book requires some com-
plex risk calculations that include modeling the correlations of institutional 
trading volume.

Time-Weighted Average Price

The time-weighted average price execution strategy (TWAP) attempts to 
minimize market impact costs by maintaining an approximately constant 
rate of trading over the execution period. With only a few parameters—start 
time, end time, and target quantity—TWAP has the advantage of being the 
simplest execution strategy to implement. As with VWAP, optimized forms 
of TWAP may require a choice of risk aversion. Typically, the VWAP or ar-
rival price benchmarks are used to gauge the quality of a TWAP execution. 
TWAP is hardly ever used as its own benchmark.

The most basic form of TWAP breaks a parent order into small child 
orders and executes these child orders at a constant rate. For example, a 
parent order of 300 shares with an execution period of 10 minutes could be 
divided into three child orders of 100 shares each. The child orders would 
be executed at the 3:20, 6:40, and 10:00 minute marks. Between market 
orders, the strategy may place limit orders in an attempt to improve execu-
tion quality.
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An ideal TWAP user has almost the same characteristics as an ideal 
VWAP user, except that he believes that the lowest trading rate—not the 
lowest participation rate—incurs the lowest market impact costs.

TWAP users can benefi t from the same type of optimization as VWAP 
users by placing market orders less frequently, and using resting limit orders 
to attempt to improve execution quality.

Participation 

The participation strategy attempts to maintain a constant fractional trading 
rate. That is, its own trading rate as a fraction of the market’s total trading 
rate should be constant throughout the execution period. If the fractional 
trading rate is maintained exactly, participation strategies cannot guarantee 
a target fi ll quantity. 

The parameters of a participation strategy are the start time, end time, 
fraction of market volume the strategy should represent, and max number 
of shares to execute. If the max number of shares is specifi ed, the strategy 
may complete execution before the end time. Along with VWAP and TWAP, 
participation is a popular form of nonoptimized strategies, though some 
improvements are possible with optimization. 

VWAP and arrival price benchmarks are often used to gauge the quality 
of a participation strategy execution. The VWAP benchmark is particularly 
appropriate because the volume pattern of a perfectly executed participa-
tion strategy is the market’s volume pattern during the period of execution. 
An ideal user of participation strategies has all of the same characteristics as 
an ideal user of VWAP strategies, except that he is willing to forego certain 
execution to maintain the lowest possible fractional participation rate.

Participation strategies do not use a trade schedule. The strategy’s 
objective is to participate in volume as it arises. Without a trade schedule, a 
participation strategy can’t guarantee a target fi ll quantity. The most basic 
form of participation strategies waits for trading volume to show up on the 
tape, and follows this volume with market orders. For example, if the target 
fractional participation rate is 10%, and an execution of 10,000 shares is 
shown to have been transacted by other market participants, a participation 
strategy would execute 1,000 shares in response.

Unlike a VWAP trading strategy, which for a given execution may expe-
rience large deviations from an execution period’s actual volume pattern, 
participation strategies can closely track the actual—as opposed to the pre-
dicted—volume pattern. However, close tracking has a price. In the preced-
ing example, placing a market order of 1,000 shares has a larger expected 
market impact than slowly following the market’s trading volume with 
smaller orders. An optimized form of the participation strategy amortizes 
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the trading shortfall over some period of time. Specifi cally, if an execution 
of 10,000 shares is shown to have been transacted by other market par-
ticipants, instead of placing 1,000 shares all at once, a 10% participation 
strategy might place 100 share orders over some period of time to amortize 
the shortfall of 1,000 shares. The result is a lower expected shortfall, but a 
higher dispersion of shortfalls.

Market-on-Close

The market-on-close strategy is popular with market participants who either 
want to minimize risk-adjusted costs relative to the closing price of the day, 
or want to manipulate—game—the close to create the perception of a good 
execution. The ideal market-on-close user is benchmarked to the close of the 
day and has low or negative alpha. The parameters of a market-on-close ex-
ecution are the start time, the end time, and the number of shares to execute. 
Optimized forms of this strategy require a risk-aversion parameter.

When market-on-close is used as an optimized strategy, it is similar in 
its formulation to an arrival price strategy. However, with market-on-close, 
a back-weighted trade schedule incurs less risk than a front-weighted one. 
With arrival price, an infi nitely risk averse trader would execute everything 
in the opening seconds of the execution period. With market-on-close, an 
infi nitely risk averse trader would execute everything at the closing seconds 
of the day. For typical levels of risk aversion, some trading would take place 
throughout the execution period. As with arrival price optimization, posi-
tive alpha increases urgency to trade and negative alpha encourages delayed 
execution.

In the past, market-on-close strategies were used to manipulate—or 
game—the close, but this has become less popular as the use of VWAP and 
arrival price benchmarks have increased. Gaming the close is achieved by 
executing rapidly near the close of the day. The trade print becomes the 
closing price or very close to it, and hence shows little or no shortfall from 
the closing price benchmark. The true cost of the execution is hidden until 
the next day when temporary impact dissipates and prices return to a new 
equilibrium.

Arrival Price

The arrival price strategy—also called the implementation shortfall strat-
egy—attempts to minimize risk-adjusted costs using the arrival price bench-
mark. Arrival price optimization is the most sophisticated and popular of 
the commonly used algorithmic trading strategies.

The ideal user of arrival price strategies has the following characteristics.
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He is benchmarked to the arrival price.
He is risk averse and knows his risk-aversion parameter.
He has high positive or high negative alpha.
He believes that market impact is minimized by maintaining a constant 
rate of trading over the maximum execution period while keeping trade 
size small.

Most implementations are based on some form of the risk-adjusted cost 
minimization introduced by Almgren and Chriss13 that we discussed earlier. 
In the most general terms, an arrival price strategy evaluates a series of trade 
schedules to determine which one minimizes risk-adjusted costs relative to 
the arrival price benchmark. As discussed in the section on optimal execu-
tion, under certain assumptions, this problem has a closed form solution. 

The parameters in an arrival price optimization are alpha, number of 
shares to execute, start time, end time, and a risk aversion parameter. For 
buyers (sellers) positive (negative) alpha encourages faster trading. For both 
buyers and sellers, risk encourages faster trading, while market impact costs 
encourage slower trading. 

For traders with positive alpha, the feasible region of trade schedules 
lies between the immediate execution of total target quantity and a constant 
rate of trading throughout the execution period. 

A more general form of arrival price optimization allows for both buy-
ers and sellers to have either positive or negative alpha. For example, under 
the assumption of negative alpha, shares held long and scheduled for liq-
uidation are—without considering one’s own trading—expected to go up 
in price over the execution period. This would encourage a trader to delay 
execution or stretch out trading. Hence, the feasible region of solutions that 
account for both positive and negative alpha includes back-weighted as well 
as front-weighted trade schedules.

Other factors that necessitate back-weighted trade schedules in an 
arrival price optimization are expected changes in liquidity and expected 
crossing opportunities. For example, an expectation of a cross later in the 
execution period may provide enough cost savings to warrant taking on 
some price risk and the possibility of a compressed execution if the cross 
fails to materialize. Similarly, if market impact costs are expected to be 
lower later in the execution period, a rational trader may take on some risk 
to obtain this cost savings.

A variant of the basic arrival price strategy is adaptive arrival price. A 
favorable execution may result in a windfall in which an accumulation of a 
large number of shares takes place at a price signifi cantly below the arrival 

13Almgren and Chriss, “Optimal Execution of Portfolio Transactions.” 

■
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■
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price. This can happen by random chance alone. Almgren and Lorenz14 
demonstrated that a risk-averse trader should use some of this windfall to 
reduce the risk of the remaining shares. He does this by trading faster and 
thus incurring a higher market impact. Hence, the strategy is adaptive in 
that it changes its behavior based on how well it is performing.

Crossing

Though crossing networks have been around for some time, their use 
in algorithmic trading strategies is a relatively recent development. The 
idea behind crossing networks is that large limit orders—the kind of or-
ders that may be placed by large institutional traders—are not adequately 
protected in a public exchange. Simply displaying large limit orders in 
the open book of an electronic exchange may leak too much information 
about institutional traders’ intentions. This information is used by pro-
spective counter-parties to trade more passively in the expectation that 
time constraints will force traders to replace some or all of large limit 
orders with market orders. In other words, information leakage encour-
ages gaming of large limit orders. Crossing networks are designed to limit 
information leakage by making their limit books opaque to both their 
clients and the general public.

A popular form of cross is the mid-quote cross, in which two counter-
parties obtain a mid-quote fi ll price. The mid-quote is obtained from a ref-
erence exchange, such as the NYSE or other public exchange. Regulations 
require that the trade is then printed to a public exchange to alert other 
market participants that it has taken place. The cross has no market impact 
but both counterparties pay a fee to the crossing network. These fees are 
typically higher than the fees for other types of algorithmic trading because 
the market impact savings are signifi cant while the fee is contingent on a 
successful cross.

More recently, crossing networks have offered their clients the ability to 
place limit orders in the crossing networks’ dark books. Placing a limit order 
in a crossing network allows a cross to occur only at a certain price. This 
makes crossing networks much more like traditional exchanges, with the 
important difference that their books are opaque to market participants.

To protect their clients from price manipulation, crossing networks 
implement antigaming logic. As previously explained, opaqueness is itself 
a form of antigaming, but there are other strategies. For example, some 
crossing networks require orders above a minimum size, or orders that will 

14Robert Almgren and Julian Lorenz, “Adaptive Arrival Price,” in Brian R. Bruce 
(ed.), Algorithmic Trading III: Precision, Control, Execution (London: Euromoney 
Institutional Investor, 2007), pp. 59–66.
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remain in the network longer than a minimum time commitment. Other 
networks will cross only orders of similar size. This prevents traders from 
pinging—sending small orders to the network to determine which side of 
the network’s book has an order imbalance. 

Another approach to antigaming prevents crosses from taking place 
during periods of unusual market activity. The assumption is that some of 
this unusual activity is caused by traders trying to manipulate the spread in 
the open markets to get a better fi ll in a crossing network. 

Some networks also attempt to limit participation by active traders, 
monitoring their clients’ activities to see if their behavior is more consistent 
with normal trading than with gaming.

There are several different kinds of crossing networks. A continuous 
crossing network constantly sweeps through its book in an attempt to match 
buy orders with sell orders. A discrete crossing network specifi es points in 
time when a cross will take place, say every half hour. This allows market 
participants to queue up in the crossing network just prior to a cross instead 
of committing resting orders to the network for extended periods of time. 
Some crossing networks allow scraping—a one-time sweep to see if a single 
order can fi nd a counterparty in the crossing network’s book—while others 
allow only resting orders.

In automated crossing networks, resting orders are matched according 
to a set of rules, without direct interaction between the counterparties. In 
negotiated crossing networks, the counterparties fi rst exchange indications 
of interest, then negotiate price and size via tools provided by the system.

Some traditional exchanges now allow the use of invisible orders, rest-
ing orders that sit in their order books but are not visible to market par-
ticipants. These orders are also referred to as dark liquidity. The difference 
between these orders and those placed in a crossing network is that tradi-
tional exchanges offer no special antigaming protection.

Private dark pools are collections of orders that are not directly avail-
able to the public. For example, a bank or pension manager might have 
enough order fl ow to maintain an internal order book that, under special 
circumstances is exposed to external scraping by a crossing network or 
crossing aggregator. 

A crossing aggregator charges a fee for managing a single large order 
across multiple crossing networks. Order placement and antigaming rules 
differ across networks, making this task fairly complex. A crossing aggrega-
tor may also use information about historical and real-time fi lls to direct 
orders. For example, failure to fi ll a small resting buy order in a crossing net-
work may betray information of a much larger imbalance in the network’s 
book. This makes the network a more attractive destination for future sell 
orders. In general, the management of information across crossing networks 
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should give crossing aggregators higher fi ll rates than exposure to any indi-
vidual network.

Crossing lends itself to several optimization strategies. Longer expo-
sure to a crossing network increases the chances of an impact-free fi ll, but 
also increases the risk of a large and compressed execution if an order fails 
to obtain a fi ll. Finding an optimal exposure time is one type of crossing 
optimization. A more sophisticated version of this approach is solving for 
a trade-out, a schedule for trading shares out of the crossing network into 
the open markets. As time passes and a cross is not obtained, the strategy 
mitigates the risk of a large, compressed execution by slowly trading parts 
of the order into the open markets.

Other Algorithms

Two other algorithms are typically included in the mix of standard algorith-
mic trading offerings. The fi rst is liquidity seeking where the objective is to 
soak up available liquidity. As the order book is depleted, trading slows. As 
the order book is replenished, trading speeds up. 

The second algorithm is fi nanced trading. The idea behind this strategy 
is to use a sale to fi nance the purchase of a buy with the objective of obtain-
ing some form of hedge. This problem has all of the components of a full 
optimization. For example, if, after a sell, a buy is executed too quickly, it 
will obtain a less favorable fi ll price. On the other hand, executing a buy leg 
too slowly increases the tracking error between the two components of the 
hedge and increases the dispersion of costs required to complete the hedge.

WHAT IS NEXT? 

The average trade size for IBM, as reported in the Trade and Quote (TAQ) 
database, declined from 650 shares in 2004 to 240 shares in 2007. Falling 
trade sizes are evidence of the impact of algorithmic trading. Large, infre-
quent portfolio rebalancing and trading are being replaced by small delta 
continuous trading.

The antithesis of the small delta continuous trading approach is embodied 
in the idea of lazy portfolios, in which portfolios are rebalanced infrequently 
to reduce market impact costs. The fi rst argument against lazy portfolios is 
that as time passes, the weights drift further and further away from optimal 
target holdings, in both alpha and risk dimensions. Second, use of an optimizer 
after long holding periods tends to produce large deviations from current 
holdings. When executed—often relatively quickly—these deviations result 
in signifi cant market impact costs.
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Engle and Ferstenberg15 show that to correctly measure risk we must 
take both existing positions and unexecuted shares into account. This idea 
unites execution risk with portfolio risk. Portfolio construction and optimal 
execution are similarly united by incorporating market impact costs directly 
into the portfolio construction process. 

Ideally, the portfolio manager would like to solve a problem similar in 
nature to the multiperiod consumption-investment problem,16 that in addi-
tion takes market impact costs and changing probability distributions for 
a large universe of securities into account. This dynamic portfolio or small 
delta continuous trading problem represents the next step in the evolution 
of institutional money management. However, it presents some mathemati-
cal and computational challenges. As has been pointed out by Sneddon,17 
dynamic portfolio problem differs in several important ways from the clas-
sical multiperiod consumption-investment problem. First, the return proba-
bility distributions change throughout time. Second, the objective functions 
for active portfolio management do not depend on predicted alpha/risk, but 
rather on realized return/risk. Finally, the dynamics of the model may be far 
more complex. Grinold18 provides an elegant and analytically tractable but 
greatly simplifi ed model. Kolm and Maclin19 describe a full-scale simulation-
based framework that incorporates realistic constraints and a transaction 
cost model. 

Other efforts of ongoing research in algorithmic trading are extending 
market microstructure and optimal execution models to futures, options, 
and fi xed-income products. These initiatives follow the dominant theme 
of algorithmic trading, the creation of a unifi ed view, an all encompassing 
framework for the entire trading process, including modeling, portfolio con-
struction, risk analytics, and execution across all tradable asset classes.

15Engle and Ferstenberg, “Execution Risk.” 
16Robert C. Merton, “Lifetime Portfolio Selection under Uncertainty: The Continu-
ous-Time Case,” Review of Economics and Statistics 51, no. 3 (1969), pp. 247–
257.
17Leigh Sneddon, “The Dynamics of Active Portfolios,” Westpeak Global Advisors, 2005.
18Richard Grinold , “Dynamic Portfolio Analysis,” Journal of Portfolio Manage-
ment 34, no. 1 (2007), p. 12–26.
19Petter N. Kolm and Lee Maclin, “A Practical Method for Dynamic Portfolio Op-
timization,” Working Paper, New York, Courant Institute, New York University, 
2009.
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SOME COMMENTS ABOUT THE HIGH-FREQUENCY 
ARMS RACE20

An often-quoted—but unattributed—fact is that a one millisecond reduc-
tion in latency is worth about $100 million per year for some exchanges and 
high-frequency trading fi rms. Needless to say, this is a substantial amount of 
money. Why are companies willing to pay these large sums of money?

The main argument is that by being faster they can react to changes 
in the market before everyone else, thereby gaining an advantage. Their 
competitive advantage arises from being able to process and disseminate 
information sooner and faster than other market participants. This so-called 
millisecond game involves using anything from faster computers located as 
close to the exchanges as possible,21 to the usage of highly specialized com-
puter codes where, for example, the message packet sizes have been opti-
mized.

These sophisticated high-frequency trading fi rms, representing about 
2% of the approximately 20,000 trading fi rms in the United States, are 
believed to be responsible for almost three-quarters of all U.S. equity trad-
ing volume. These businesses include hundreds of the most secretive prop 
shops, proprietary trading desks at the major investment banks, and maybe 
about 100 or so of the most sophisticated hedge funds.22 The TABB Group 
estimates that total annual profi ts of these high-frequency trading fi rms were 
about $21 billion in 2009.23 

Algorithmic traders are liquidity providers that profi t from the spread 
(about a cent) and the rebate (also referred to as the maker taker fee). 
Liquidity providers that post orders to buy or sell at fi xed prices are offered 
a rebate from the exchange if their quotes result in trades. Today, most mar-
kets offer rebates as a form of volume discount to attract high-frequency 
traders. For example, in July 2009 Direct Edge paid a rebate of 0.25 cents 
per share to subscribing fi rms that provide liquidity and charged liquidity 
takers a fee of 0.28 cents. 

20The area of algorithmic and high-frequency trading has been rapidly developing 
over the last few years, and is continuing to do so. The facts and comments reported 
in this section are based on the information available as of the time of the writing of 
this book. As this landscape is continuing to change and evolve, so may the facts and 
results presented in this section.
21This practice is referred to as colocation. As of August 2009, at NASDAQ about 
100+ fi rms colocated their servers at a rate of about $7,000 per rack and month.
22Rob Iati, “The Real Story of Trading Software Espionage,” Advanced Trading, 
July 10, 2009. 
23Larry Tabb and Robert Iati, “Equity Trading in Transition: New Business Models 
for a Brave New World,” Tabb Group, 2009.
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Every time the exchange receives an updated quote the fastest fi rms are 
able to receive that information and update their quotes accordingly before 
anyone else. Therefore, they have a greater chance of having their liquidity 
providing order executed. The successful execution provides them with a 
small gain that includes the spread (if any) and the rebate. 

Latency

Certainly, one part of being faster means reducing latency. While latency 
is a very important component of high-frequency trading, there is no com-
mon and agreed-upon defi nition. A defi nition is to consider the so-called 
end-to-end latency, also referred to as total latency, which consists of two 
components: (1) exchange latency, and (2) member latency. The former is 
the latency associated with the price discovery and dissemination from the 
exchange, while the latter refers to the time it takes to get the information to 
and processing it at the fi rm. These two components can in turn be further 
broken down into the following steps: 

Price dissemination and distribution at the exchange.
Transmission of price information from the exchange to the fi rm. 
Preparation of the order at the fi rm. 
Distribution of the order to the exchange. 
Place the order in order book.
Order acknowledgment from the exchange. 
Final report on the order execution from the exchange.

A survey conducted by Greene and Robin,24 concluded that the tim-
ings for each one of the previous steps varies quite a bit from exchange to 
exchange, and from fi rm to fi rm. The results from the survey are as follows: 
(1) 500 microseconds–5 milliseconds,25 (2) 4–5 milliseconds, (3)+(4) around 

24James Greene and Peter Robin, “The Competitive Landscape for Global Exchang-
es: What Exchanges Must Do to Meet User Expectations,” Cisco Internet Business 
Solutions Group, 2008. The authors interviewed 40 senior executives representing 
a broad cross-section from buy and sell-side fi rms and exchanges/alternative trad-
ing systems such as AllianceBernstein, Cantor Fitzgerald/eSpeed, Credit Suisse, D.E. 
Shaw, Deutsche Börse, E*TRADE, Goldman Sachs, Highbridge Capital, HSBC Se-
curities, ISE, ITG, Lehman Brothers, London Stock Exchange (LSE), Madoff Invest-
ment Securities, Morgan Stanley, and the New York Stock Exchange (NYSE). The 
exchanges that the participants were asked to rank and comment upon were CME, 
Deutsche Börse, Euronext, ISE, LSE, NASDAQ, NYSE, and TSE.
25NASDAQ (1 millisecond), BATS Trading (400–500 microseconds), LSE (2 mil-
liseconds), NYSE (2–5 milliseconds), Deutsche Börse (2 milliseconds).

1.
2.
3.
4.
5.
6.
7.
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100 milliseconds,26 (5) 5–25 milliseconds,27 and (6) 500 microseconds–2 
milliseconds.28 The study did not address (7).

An important part of latency is the remote location data transfers. These 
transfers are typically between the fi rm and the exchange, but may involve other 
parties as well (or multiple exchanges). With the current technology available 
these transfers can be done in about 7 milliseconds between New York and 
Chicago, and in about 35 milliseconds between the West and East coasts.29

High-Frequency Trading and Liquidity

The most critical component of an exchange is to be able to provide mar-
ket participants with liquidity. For the purposes of this discussion, we can 
loosely defi ne liquidity as: (1) the ability to trade quickly without signifi cant 
price changes, and (2) the ability to trade large volumes without signifi cant 
price changes. 

At the time of the writing of this chapter, there is an ongoing debate 
both in the technical as well as popular press whether algorithmic and high-
frequency traders enhance market effi ciency and provide increased liquidity.

Decreasing latency changes the competitive factors in the demand and 
supply of liquidity and how quotes are updated to refl ect public informa-
tion. As a consequence of business profi t incentives, algorithmic traders con-
sume liquidity when it is cheap and supply liquidity when it is expensive, 
thereby smoothing out liquidity over time. This in turn facilitates moving 
price toward its effi cient price as the algorithmic traders compete by trying 
to provide the best quotes.

Henderschott, Jones, and Menkveld30 show that increased algorithmic 
trading leads to narrower quoted and effective spreads for large-cap stocks. 

26According to the study, some fi rms reported that they can handle prices within 2–3 
milliseconds.
27Average/median execution times: LSE (8–14 milliseconds), NYSE (10–25 millisec-
onds), NASDAQ (15 milliseconds), BATS Trading (5 milliseconds). However, the 
study reports that outliers can be up to 250–500 milliseconds for execution.
28This is a confi rmation that the order has been received at the exchange, and not 
necessarily that it has been placed on the book: BATS Trading (500 microseconds), 
LSE (1 millisecond), NASDAQ (1 millisecond), NYSE (2 milliseconds).
29These are one-way transfers as reported by John Barr, “Low Latency: What’s It All 
About?” 451 Market Insight Service, 2008. At the speed of light it would take about 
11 milliseconds at the shortest distance from the East Coast to the West Coast (this 
is 2,092 miles or 3347 kilometers, and is from (approximately) Jacksonville, FL to 
San Diego, CA. The speed of light is 299.792458 kilometers/millisecond.
30Terrence J. Hendershott, Charles M. Jones, and Albert J. Menkveld, “Does Algo-
rithmic Trading Improve Liquidity?” (April 26, 2008). WFA 2008 paper; received 
the WFA NYSE-Euronext award for best paper in equity trading.
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The narrower spreads result from a decrease in the amount of price discov-
ery associated with trades (i.e., a decrease in adverse selection).

Interestingly, the authors suggest that the revenues of liquidity suppliers 
also increase with algorithmic trading. This is consistent with that algorith-
mic liquidity suppliers have a form of market power as they introduce their 
new algorithms and are able to capture some of the surplus for themselves.

High-frequency and algorithmic traders are often accused for the recent 
increase in market volatility. A recent study by Riordan and Henderschott31 
in the 30 DAX stocks on the Deutsche Börse seems to indicate the opposite. 
In particular, the authors fi nd no evidence that algorithmic traders demand-
ing liquidity during times of low liquidity increased volatility. In addition, 
they also show that when algorithmic traders do not supply liquidity, there 
is no impact on volatility.

Obviously, there are physical limitations as to how much latency can 
be decreased. Standard arguments of economic theory suggest that over 
time through competition the profi t margins of high-frequency trading will 
decrease. Most players will at some point have about the same technological 
infrastructure, but not necessarily the same algorithms. As in many other 
areas, it will come down to who has the best (the “smartest”) algorithms. 
It is believed by some that the true edge in high-frequency trading already 
is coming from the usage of superior algorithms —that are not always the 
fastest—but that are able to make the better decisions.

SUMMARY

Algorithmic trading is used to describe trading in an automated fashion 
according to a set of rules. Smart order routing, program trading, and 
rules-based trading are other terms associated with algorithmic trading.
We distinguish two forms of market impact: an information-based 
effect called permanent market impact, and an order book-based effect 
referred to as temporary market impact. The temporary market impact 
is due to the depletion of limit orders in the order book. Its size depends 
on how long it takes to replenish the order book. 
The shortfall is the difference between the effective execution price and 
the arrival price (the price at the start of the execution).
Optimal execution algorithms determine the optimal trade trajectory 
by optimizing a trade-off between execution cost and risk. The Almgren 
and Chriss model minimizes expected shortfall minus a risk aversion 
coeffi cient times the variance of shortfall.

31Ryan Riordan and Terrence Hendershott, “Algorithmic Trading and Information,” 
Working Paper, 2009.

■
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An impact model is used to predict changes in price due to trading 
activity.
The decisions of the trader and the portfolio manager are based on 
different objectives. The trader decides on the timing of the execution, 
breaking large parent orders into child orders that represent the optimal 
trade-off between opportunity cost, market impact, and risk. 
The portfolio manager’s task is to construct a portfolio by optimizing 
the trade-off between opportunity cost, market impact, and risk for the 
full set of trading and nontrading assets. 
The trader sees only the trading assets, whereas the portfolio manager 
sees the entire portfolio, which includes both the trading assets and the 
static—nontrading—positions. Therefore, the standard optimal execu-
tion framework is in general not appropriate for the portfolio manager.
Some well-established sell-side algorithmic trading strategies include: 
volume weighted average price (VWAP), time-weighted average price 
(TWAP), participation, Market-on-Close, arrival price (also called 
implementation shortfall), and crossing.
The dynamic portfolio and small delta continuous trading problems 
refer to multiperiod models that optimize the trade-off between oppor-
tunity cost, market impact, alpha decay, and risk (or a subset thereof) 
for the full set of trading and nontrading assets.
The high-frequency arms race and the millisecond game refer to the 
increased competition in the high-frequency and algorithmic trading 
space to reduce latency in order to be faster than other market partici-
pants, thereby obtaining a trading and informational advantage.
Latency can be broken down into the following seven components: (1) 
price dissemination and distribution at the exchange, (2) transmission of 
price information from the exchange to the fi rm, (3) preparation of the 
order at the fi rm, (4) distribution of the order to the exchange, (5) place 
the order in order book, (6) order acknowledgment from the exchange, 
and (7) fi nal report on the order execution from the exchange.

■

■

■

■

■

■

■

■
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APPENDIX A
Data Descriptions and 

Factor Defi nitions

Some of the examples throughout this book use different data sets, includ-
ing the MSCI World Index and its individual constituents, one-month 

LIBOR, and the Compustat Point-In-Time and IBES Consensus databases. 
In this appendix we provide an overview and summary statistics of these 
data sets. In addition, in Chapters 6 and 7 we use several value, quality, 
growth, and momentum factors. In this appendix we provide detailed defi -
nitions of these factors.

THE MSCI WORLD INDEX

We obtained daily levels and returns of the MSCI World Index and all 
its constituents along with market capitalization weights over the period 
1/1/1980 through 5/31/2004 directly from Morgan Stanley Capital Inter-
national, Inc.1 The levels and returns are given from the perspective of an 
investor in the United States.

The MSCI World Index is a free fl oat-adjusted market capitalization 
index that is designed to measure global developed market equity perfor-
mance. As of December 2004, the MSCI World Index consisted of the 
following 23 constituents (developed market country indexes): Australia, 
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, 
Hong Kong, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, 
Portugal, Singapore, Spain, Sweden, Switzerland, the United Kingdom, and 
the United States. Other constituents that were part of the index at some 
point throughout the time period January 1980 through May 2004 were 
Malaysia, Mexico, and South African Gold Mines. 

1We would like to thank Morgan Stanley Capital International, Inc., http://www.msci.
com, for providing us with the data set. In particular, we thank Nicholas G. Keyes 
for preparing and for answering all our questions in regards to the data set.
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The different constituents of the index as of January in the years 1985, 
1995, and 2004 along with their market capitalization in billions of U.S. 
dollars and percentage weight, and their ranking (in terms of market capi-
talization) are displayed in Exhibit A.1. We observe that the relative rank-
ings among the different countries have been relatively stable throughout 
time. Nevertheless, the total market capitalization of the MSCI World Index 
has grown from about $1.8 trillion as of January 1985 to $17.4 trillion as 
of May 2004. Details about how the country indexes are constructed are 
available in the MSCI Standard Methodology Book.2

In Exhibits A.2, A.3, and A.4, we display some basic statistical proper-
ties of the data set. For simplicity, as all of the constituents that were part 
of the index as of May 2004 also were part of the index in January 1988, 
we only display statistics calculated over this period. The statistics are cal-
culated over the full period as well as over each half; the fi rst half is January 
1988 through December 1994, and the second half is January 1995 through 
May 2004.

We report the mean returns, return volatilities, and Sharpe ratios in 
annual terms. The minimum return (Min) and the maximum return (Max) 
are all in daily terms. The skew and kurtosis are calculated as the third 
and fourth normalized centered moments. The defi nition of the Sharpe ratio 
used in this book is the annualized mean return divided by the annualized 
volatility for the period under consideration.

We observe that the performance of the MSCI World Index as well as 
for most of its constituents was very good over the period considered. The 
average annual mean return for the index over the full period was 6.4% 
with an annual volatility of 12.9%. The average mean return in the fi rst 
and the second halves were virtually the same (6.4% versus 6.3%), but the 
volatility increased from 11.1% to 14.0%. The individual country returns 
over the full sample range from 1.1% (Japan) to 13.7% (Finland), whereas 
volatilities range from 16.0% (Canada) to 33.2% (Finland). 

If we rank the performance of individual countries in terms of their Sharpe 
ratio, Denmark and Switzerland (both with 0.65) come out ahead followed 
by the United States (0.62). Interestingly enough, comparing the rankings 
between the two periods based on the Sharpe ratio, we see that there is virtu-
ally no persistence at all. Indeed, the Spearman rank correlation coeffi cient 
(the correlation between the rankings of the two periods) is –0.07.

 There is signifi cant time variation in volatilities. Exhibit A.5 demon-
strates this fact for some of the countries in the sample, showing the one-
year rolling standard deviation for the MSCI World Index, Singapore, Spain, 
Sweden, Switzerland, the United Kingdom, and the United States.
2MSCI Standard Methodology Book, Morgan Stanley Capital International Inc., 
May 11 version, 2004.

AppendixA.indd   474AppendixA.indd   474 1/6/10   11:36:21 AM1/6/10   11:36:21 AM



475

EX
HI

BI
T 

A.
1 

M
ar

ke
t 

C
ap

it
al

iz
at

io
n 

W
ei

gh
ts

 o
f 

th
e 

M
SC

I 
W

or
ld

 I
nd

ex
 a

nd
 I

ts
 C

on
st

it
ue

nt
s 

as
 o

f 
th

e 
Fi

rs
t 

B
us

in
es

s 
D

ay
 in

 J
an

ua
ry

 in
 t

he
 

Y
ea

rs
 1

98
5,

 1
99

5,
 a

nd
 2

00
4

19
85

19
95

20
04

$U
S 

(b
ill

io
n)

Pe
rc

en
t

R
an

k
$U

S 
(b

ill
io

n)
Pe

rc
en

t
R

an
k

$U
S 

(b
ill

io
n)

Pe
rc

en
t

R
an

k

W
or

ld
1,

76
5.

1
10

0.
00

7,
65

0.
8

10
0.

00
17

,4
16

.4
10

0.
00

A
us

tr
al

ia
27

.8
1.

57
6

12
5.

1
1.

63
10

37
3.

6
2.

15
9

A
us

tr
ia

0.
8

0.
05

20
18

.0
0.

23
20

16
.0

0.
09

22

B
el

gi
um

7.
6

0.
43

15
49

.3
0.

64
16

77
.5

0.
45

15

C
an

ad
a

71
.7

4.
06

4
17

1.
1

2.
24

7
46

3.
9

2.
66

7

D
en

m
ar

k
3.

6
0.

20
17

35
.3

0.
46

17
55

.5
0.

32
17

Fi
nl

an
d

26
.7

0.
35

18
12

2.
8

0.
71

13

Fr
an

ce
23

.1
1.

31
9

26
5.

6
3.

47
5

72
7.

6
4.

18
4

G
er

m
an

y
49

.1
2.

78
5

30
0.

1
3.

92
4

53
0.

8
3.

05
6

G
re

ec
e

33
.3

0.
19

20

H
on

g 
K

on
g

14
.7

0.
83

12
13

6.
5

1.
78

9
11

8.
5

0.
68

14

Ir
el

an
d

12
.5

0.
16

23
54

.1
0.

31
18

It
al

y
15

.1
0.

85
10

10
2.

9
1.

34
12

28
5.

3
1.

64
10

Ja
pa

n
36

7.
5

20
.8

2
2

2,
14

5.
7

28
.0

4
2

1,
57

6.
7

9.
05

3

M
al

ay
si

a
10

5.
6

1.
38

11

M
ex

ic
o

1.
7

0.
10

19

N
et

he
rl

an
ds

25
.7

1.
46

8
16

7.
9

2.
19

8
38

0.
8

2.
19

8

AppendixA.indd   475AppendixA.indd   475 1/6/10   11:36:21 AM1/6/10   11:36:21 AM



476

EX
HI

BI
T 

A.
1 

(C
on

ti
nu

ed
)

19
85

19
95

20
04

$U
S 

(b
ill

io
n)

Pe
rc

en
t

R
an

k
$U

S 
(b

ill
io

n)
Pe

rc
en

t
R

an
k

$U
S 

(b
ill

io
n)

Pe
rc

en
t

R
an

k

N
ew

 Z
ea

la
nd

   
  1

7.
3

  0
.2

3
21

   
  1

5.
8

  0
.0

9
23

N
or

w
ay

   
 2

.7
  0

.1
5

18
   

  1
9.

9
  0

.2
6

19
   

  3
5.

7
  0

.2
0

19

Po
rt

ug
al

   
  2

6.
5

  0
.1

5
21

Si
ng

ap
or

e
  1

4.
7

  0
.8

4
11

   
  5

6.
8

  0
.7

4
15

   
  6

0.
4

  0
.3

5
16

So
ut

h 
A

fr
ic

an
 G

ol
d 

M
in

es
  1

2.
4

  0
.7

0
13

   
  1

3.
6

  0
.1

8
22

Sp
ai

n
   

 7
.0

  0
.4

0
16

   
  7

4.
3

  0
.9

7
14

   
27

1.
3

  1
.5

6
11

Sw
ed

en
  1

1.
8

  0
.6

7
14

   
  7

6.
1

  1
.0

0
13

   
16

7.
7

  0
.9

6
12

Sw
it

ze
rl

an
d

  2
6.

4
  1

.4
9

  7
   

21
5.

0
  2

.8
1

  6
   

54
5.

0
  3

.1
3

  5

U
ni

te
d 

K
in

gd
om

13
1.

2
  7

.4
3

  3
   

73
1.

1
  9

.5
6

  3
1,

90
6.

4
10

.9
5

  2

U
ni

te
d 

St
at

es
95

0.
4

53
.8

5
  1

2,
78

4.
6

36
.4

0
  1

9,
57

1.
3

54
.9

6
  1

AppendixA.indd   476AppendixA.indd   476 1/6/10   11:36:21 AM1/6/10   11:36:21 AM



Data Descriptions and Factor Defi nitions  477

EXHIBIT A.2 Statistics of Daily Returns over the Period January 1988 through 
May 2004

Mean
(%)

Volatility
(%)

Sharpe 
Ratio Rank Skew Kurtosis

Min
(%)

Max
(%)

World   6.4 12.9 0.49   6 –0.06   6.19   –5.1   4.9

Australia   7.3 17.6 0.42 15 –0.20   6.02   –8.5   7.7

Austria   7.7 19.1 0.41 17 –0.17   9.68 –12.6   9.7

Belgium   8.3 18.1 0.46   8   0.31   9.19   –8.6   9.1

Canada   7.2 16.0 0.45   9 –0.54   9.73   –9.3   5.4

Denmark 11.9 18.1 0.65   1 –0.25   6.16   –9.0   7.0

Finland 13.7 33.2 0.41 16 –0.14   9.76 –18.2 17.3

France 10.5 19.9 0.53   5 –0.13   5.89   –9.7   7.6

Germany   9.4 22.5 0.42 14 –0.29   7.87 –12.9   7.3

Greece 12.7 29.9 0.43 13   0.30   8.54 –11.1 17.3

Hong Kong 11.5 26.3 0.44 11 –0.47 20.42 –23.0 17.4

Ireland   8.7 19.3 0.45 10 –0.14   6.94   –7.5   7.2

Italy   6.4 22.3 0.29 21 –0.12   5.88 –10.5   6.9

Japan   1.1 23.2 0.05 24   0.41   7.41   –8.1 13.1

Netherlands   9.2 18.7 0.49   7 –0.14   7.20   –8.1   6.8

New Zealand   2.8 22.1 0.13 23 –0.14 10.16 –14.6 11.7

Norway   9.2 21.3 0.43 12 –0.26   8.23 –11.6 10.3

Portugal   2.8 18.6 0.15 22 –0.03   8.63   –9.6   9.2

Singapore   7.6 21.0 0.36 20   0.21 11.76 –10.2 12.6

Spain   8.4 21.1 0.40 19 –0.05   7.02 –10.6   9.6

Sweden 13.5 25.0 0.54   4   0.07   7.00   –9.3 12.1

Switzerland 11.6 17.9 0.65   2 –0.14   7.08   –9.0   7.0

United Kingdom   6.8 16.9 0.40 18 –0.04   5.52   –5.2   7.5

United States 10.1 16.1 0.62   3 –0.14   7.24   –6.7   5.8

Note: The columns Mean, Volatility, and Sharpe Ratio are the annualized mean 
returns, volatilities, and Sharpe ratios of each country index. Rank is the numerical 
rank based on each country’s Sharpe ratio. Min and Max are the daily minimum and 
maximum returns, respectively. Skew and Kurtosis are calculated as the third and 
fourth normalized centered moments.
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478 QUANTITATIVE EQUITY INVESTING

EXHIBIT A.3 Statistics of Daily Returns over the Period January 1988 through 
December 1994

Mean
(%)

Volatility
(%)

Sharpe
Ratio Rank Skew Kurtosis

Min
(%)

Max
(%)

World   6.4 11.1   0.57 12   0.04   7.70   –5.1   4.9

Australia   9.0 17.4   0.51 14 –0.43   5.98   –8.5   4.5

Austria 11.2 21.2   0.53 13 –0.08 11.80 –12.6   9.7

Belgium 10.2 15.8   0.64   7   0.32 12.84   –8.6   8.5

Canada   2.7 10.6   0.25 19 –0.35   5.08   –3.8   3.2

Denmark 13.2 17.4   0.76   5 –0.28   7.97   –9.0   7.0

Finland   5.7 21.7   0.26 18   0.08   5.86   –7.9   7.3

France 11.4 17.8   0.64   8 –0.30   7.93   –9.7   7.6

Germany 12.1 20.1   0.61 10 –0.77 14.54 –12.9   7.3

Greece 15.7 31.9   0.49 16   0.51 10.29 –11.1 17.3

Hong Kong 20.3 24.1   0.84   3 –2.28 37.08 –23.0   8.6

Ireland 10.1 19.8   0.51 15   0.01   7.49   –7.5   7.2

Italy   3.0 22.2   0.14 21 –0.29   7.12 –10.5   6.9

Japan   4.3 22.6   0.19 20   0.47   8.53   –8.1 11.4

Netherlands 11.7 13.6   0.87   2 –0.46   6.11   –6.4   3.4

New Zealand   2.2 22.7   0.10 22   0.02   7.83 –10.0   8.4

Norway 13.1 22.4   0.59 11 –0.15   9.09 –11.6 10.3

Portugal –3.1 19.3 –0.16 24   0.06 12.10   –9.6   9.2

Singapore 18.8 16.2   1.16   1 –0.52 11.49   –9.1   5.5

Spain   1.2 19.1   0.06 23 –0.20 11.16 –10.6   9.6

Sweden 13.2 21.0   0.63   9   0.05   7.59   –9.3   8.3

Switzerland 13.4 17.0   0.79   4 –0.41   8.47   –9.0   6.5

United Kingdom   6.8 16.1   0.42 17   0.09   6.13   –5.2   7.5

United States   9.0 12.6   0.71   6 –0.55   9.30   –6.5   3.8

Note: The columns Mean, Volatility, and Sharpe Ratio are the annualized mean 
returns, volatilities, and Sharpe ratios of each country index. Rank is the numerical 
rank based on each country’s Sharpe ratio. Min and Max are the daily minimum and 
maximum returns, respectively. Skew and Kurtosis are calculated as the third and 
fourth normalized centered moments.
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Data Descriptions and Factor Defi nitions  479

EXHIBIT A.4 Statistics of Daily Returns over the Period January 1995 through 
May 2004

Mean
(%)

Volatility
(%)

Sharpe
Ratio Rank Skew Kurtosis

Min
(%)

Max
(%)

World   6.3 14.0   0.45   9 –0.09   5.39   –4.4   4.7

Australia   6.1 17.7   0.35 16 –0.03   6.05   –6.8   7.7

Austria   5.2 17.3   0.30 20 –0.29   5.11   –6.1   4.0

Belgium   6.9 19.7   0.35 15   0.30   7.57   –6.2   9.1

Canada 10.6 19.0   0.56   4 –0.54   8.11   –9.3   5.4

Denmark 10.9 18.7   0.58   3 –0.22   5.10   –6.1   5.7

Finland 19.7 39.7   0.50   7 –0.17   7.99 –18.2 17.3

France   9.8 21.3   0.46   8 –0.06   4.93   –6.1   6.1

Germany   7.4 24.1   0.31 18 –0.08   5.18   –7.5   7.1

Greece 10.5 28.2   0.37 14   0.07   6.11   –9.4   8.8

Hong Kong   4.9 27.8   0.18 21   0.42 13.03 –12.9 17.4

Ireland   7.6 19.0   0.40 11 –0.28   6.44   –7.5   6.1

Italy   8.9 22.3   0.40 10   0.01   4.97   –6.9   6.9

Japan –1.3 23.7 –0.06 24   0.38   6.70   –6.9 13.1

Netherlands   7.2 21.7   0.33 17 –0.06   6.18   –8.1   6.8

New Zealand   3.2 21.7   0.15 22 –0.28 12.18 –14.6 11.7

Norway   6.3 20.5   0.31 19 –0.37   7.20   –9.0   7.5

Portugal   7.1 18.1   0.39 12 –0.10   5.23   –6.3   5.2

Singapore –0.7 24.0 –0.03 23   0.41 10.40 –10.2 12.6

Spain 13.7 22.5   0.61   1   0.01   5.18   –6.2   7.3

Sweden 13.7 27.6   0.50   6   0.07   6.32   –9.2 12.1

Switzerland 10.2 18.5   0.55   5   0.02   6.29   –6.9   7.0

United Kingdom   6.8 17.5   0.39 13 –0.11   5.15   –5.1   5.4

United States 10.8 18.3   0.59   2 –0.03   6.05   –6.7   5.8

Note: The columns Mean, Volatility, and Sharpe Ratio are the annualized mean 
returns, volatilities, and Sharpe ratios of each country index. Rank is the numerical 
rank based on each country’s Sharpe ratio. Min and Max are the daily minimum and 
maximum returns, respectively. Skew and Kurtosis are calculated as the third and 
fourth normalized centered moments.
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480 QUANTITATIVE EQUITY INVESTING

EXHIBIT A.5 One-Year Rolling Volatility (Standard Deviation) of the MSCI World 
Index, Singapore, Spain, Sweden, Switzerland, United Kingdom, and the United States

The correlation matrix for the full period is given in Exhibit A.6. Cor-
relations between the different countries range from 0.01 (United States and 
Italy) to 0.76 (Canada and the Netherlands). We would therefore expect 
there to be some benefi ts of diversifi cation.

Also, the correlations exhibit time variation. For example, in Exhibit 
A.7 the two-year rolling correlations of United States with Germany, Hong 
Kong, Italy, Japan, and the Netherlands are depicted. Note that while some 
correlations have increased (United States versus Germany) others have 
decreased (United States versus Hong Kong). In fact, a further analysis of 
this data set shows that the correlations between the different countries have 
actually decreased over time whereas the volatilities have increased. This 
result is consistent with several academic studies.3 If we perform a decompo-
3See, for example, Richard O. Michaud, Gary L. Bergstrom, Ronald D. Frashure, 
and Brian K. Wolahan, “Twenty Years of International Equity Investing,” Journal of 
Portfolio Management 23, no. 1 (Fall 1996), pp. 9–22; and William N. Goetzmann, 
Lingfeng Li, and K. Geert Rouwenhorst, “Long-Term Global Market Correlations,” 
Journal of Business 78, no. 1, pp. 1–38, 2005.
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482 QUANTITATIVE EQUITY INVESTING

sition of the correlation throughout the sample, we fi nd that about half the 
benefi ts of diversifi cation available today to the international investor are 
due to the increasing number of available markets, and the other half is due 
to the lower average correlation among the different markets.

ONE-MONTH LIBOR

In some examples in this book we use one-month LIBOR.4 LIBOR, which 
stands for the London Interbank Offered Rate, is one of the most widely 
used benchmarks for short-term interest rates. It is the variable interest rate 
at which banks can borrow funds from each other in the London interbank 
market. The one-month LIBOR is depicted in Exhibit A.8.

4British Bankers’ Association, http://www.bbalibor.com.

EXHIBIT A.7 Two-Year Rolling Correlations of United States with Germany, Hong 
Kong, Italy, Japan, and the Netherlands

U.S. vs. France
U.S. vs. Germany
U.S. vs. Hong Kong
U.S. vs. Italy
U.S. vs. Japan
U.S. vs. Netherlands

Rolling 2-Year Correlation
1.0

0.8

0.6

0.4

0.2

0.0

–0.2
01/01/85 01/01/90 01/01/95 01/01/00 01/01/05
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EXHIBIT A.8 One-Month LIBOR

THE COMPUSTAT POINT-IN-TIME, 
IBES CONSENSUS DATABASES AND FACTOR DEFINITIONS

The factors used in Chapters 6 and 7 were constructed on a monthly basis 
with data from the Compustat Point-In-Time and IBES Consensus data-
bases. Our sample includes all stocks contained in the Russell 1000 index 
over the period December 31, 1989 to December 31, 2008. 

The Compustat Point-In-Time database5 contains quarterly fi nancial 
data from the income, balance sheet, and cash fl ow statements for active 
and inactive companies. This database provides a consistent view of histori-
cal fi nancial data, both reported data and subsequent restatements, the way 
it appeared at the end of any month. Using this data allows the researcher 
to avoid common data issues such as survivorship and look-ahead bias. The 
data is available from March 1987.

5http://www.compustat.com.
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484 QUANTITATIVE EQUITY INVESTING

The Institutional Brokers Estimate System (IBES) database6 provides 
actual earnings from companies and estimates of various fi nancial measures 
from sell-side analysts. The estimated fi nancial measures include estimates 
of earnings, revenue/sales, operating profi t, analyst recommendations, and 
other measures. The data is offered on a summary (consensus) level or 
detailed (analyst-by-analyst) basis. The U.S. data covers reported earnings 
estimates and results since January 1976.

The factors used in Chapters 6 and 7 are defi ned as follows.7

Value Factors

Operating Income Before Depreciation to Enterprise Value = EBITDA/EV

where 

 EBITDA = Sales LTM (Compustat Item 2)
– Cost of goods Sales LTM (Compustat Item 30)
– SG&A Exp (Compustat Item 1)

and

EV = [Long-Term Debt (Compustat Item 51) 
+ Common Shares Outstanding (Computstat Item 61) 
× Price (PRCCM) – Cash (Compustat Item 36)]

Book to price = Stockholders’ Equity Total (Computstat Item 60)
÷ [Common Shares Outstanding (Computstat Item 59) 
× Price (PRCCM)]

Sales to price = Sales LTM (Computstat Item 2)
÷ [Common Shares Outstanding (Computstat Item 61) 
× Price (PRCCM)]

Quality Factors

Share repurchase = [Common Shares Outstanding (Computstat Item 61) 
 – Common Shares Outstanding (Computstat Item 61) from 12 months ago]
 ÷ Common Shares Outstanding (Computstat Item 61) from 12 months ago

6http://www.thomsonreuters.com.
7LTM refers to the last four reported quarters.
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Data Descriptions and Factor Defi nitions  485

Asset Turnover = Sales LTM (Computstat Item 2)/[(Assets (Computstat Item 44)
  – Assets (Computstat Item 44) from 12 months ago)/ 2]

Return on Invested Capital = Income/Invested Capital 

where 

Income = Income Before Extra Items LTM (Computstat Item 8) 
+ Interest Expense LTM (Computstat Item 22) 
+ Minority Interest Expense LTM (Computstat Item 3)

and 

Invested Capital = Common Equity (Computstat Item 59) 
+ Long-Term Debt (Computstat Item 51) 
+ Minority Interest (Computstat Item 53) 
+ Preferred Stock (Computstat Item 55)

Debt to Equity = Total Debt/Stockholder’s Equity

where 

Total Debt = [Debt in Current Liabilities (Computstat Item 45) 
+ Long-Term Debt – Total (Computstat Item 51)]

and

Stockholder’s Equity = Stockholder’s Equity (Computstat Item 60)

Chg Debt to Equity = (Total Debt – Total Debt from 12 months ago)
÷ [(Stockholder’s Equity 
+ Stockholder’s Equity from 12 months ago)/2]

Growth

Revisions = [Number of UP Revisions (IBES item NUMUP) 
– Number of Down Revisions (IBES item NUMDOWN)]
÷ Number of Estimates Revisions (IBES item NUMEST)

Growth of Fiscal Year 1 and Fiscal Year 2 Earnings Estimates 
= Consensus Mean of FY2 (IBES item MEAN FY2)

÷ Consensus Mean of FY1 (IBES item MEAN FY1) – 1
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486 QUANTITATIVE EQUITY INVESTING

Momentum

Momentum = Total return of last 11 months excluding the most returns 
from the most recent month.

Summary Statistics

Exhibit A.9 contains monthly summary statistics of the factors defi ned pre-
viously. Factor values greater than the 97.5 percentile or less than the 2.5 
percentile are considered outliers. We set factor values greater than the 97.5 
percentile value to the 97.5 percentile value, and factor values less than the 
2.5 percentile value to the 2.5 percentile value, respectively. 

EXHIBIT A.9 Summary Statistics

Mean
Standard
Deviation Median

25 
Percentile

75 
Percentile

EBITDA/EV 0.11 0.06 0.11 0.07 0.15 

Book to price 0.46 0.30 0.40 0.24 0.62 

Sales to price 0.98 0.91 0.69 0.36 1.25 

Share repurchase 0.03 0.09 0.00 –0.01 0.03 

Asset Turnover 1.83 1.89 1.46 0.64 2.56 

Return on Invested Capital 0.13 0.11 0.11 0.07 0.17 

Debt to Equity 0.97 1.08 0.62 0.22 1.26 

Change in Debt to Equity 0.10 0.31 0.01 –0.04 0.17 

Revisions –0.02 0.33 0.00 –0.17 0.11 

Growth of Fiscal Year 1 
and Fiscal Year 2 Earn-
ings Estimates 

0.37 3.46 0.15 0.09 0.24 

Momentum 13.86 36.03 11.00 –7.96 31.25 
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APPENDIX B
Summary of Well-Known Factors 

and Their Underlying 
Economic Rationale

 

Dividend Yield

Economic rationale: Investors prefer to immediately receive receipt of their 
investment returns.

References:
Ray Ball, “Anomalies in Relationships Between Securities’ Yields and 

Yield-Surrogates,” Journal of Financial Economics, 6 (1978), pp. 103–126.

Value

Economic rationale: Investors prefer stocks with low valuations.

References:
Kent Daniel and Sheridan Titman, “Evidence on the Characteristics of 

Cross-Sectional Variation in Stock Returns,” Journal of Finance, 52 
(1997), pp. 1–33.

Jennifer Conrad, Michael Cooper, and Gautam Kaul, “Value versus Glam-
our,” Journal of Finance, 58 (2003), pp. 1969–1996.

Eugene F. Fama and Kenneth R. French, “The Cross-Section of Expected 
Stock Returns,” Journal of Finance, 47 (1992), pp. 427–466.

Eugene F. Fama and Kenneth R. French, “Common Risk Factors in the 
Returns on Stocks and Bonds,” Journal of Financial Economics, 33 
(1993), pp. 3–56.

Eugene F. Fama and Kenneth R. French, “Multifactor Explanations of Asset 
Pricing Anomalies,” Journal of Finance, 51 (1996), pp. 55–84.
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488 QUANTITATIVE EQUITY INVESTING

Size (Market Capitalization)

Economic rationale: Smaller companies tend to outperform larger compa-
nies.

References:
Rolf W. Banz, “The Relationship Between Return and Market Value of Com-

mon Stocks,” Journal of Financial Economics, 9 (1981), pp. 3–18.
Josef Lakonishok, Andrei Shleifer, and Robert W. Vishny, “Contrarian In-

vestment, Extrapolation, and Risk,” Journal of Finance, 49 (1994), pp. 
1541–1578.

Asset Turnover

Economic rationale: This measure evaluates the productivity of assets em-
ployed by a fi rm. Investors believe higher turnover correlates with higher 
future return.

References:
Patricia M. Fairfi eld and Teri Lombardi Yohn, “Using Asset Turnover and 

Profi t Margin to Forecast Changes in Profi tability,” Review of Account-
ing Studies, 6 (2001), pp. 371–385.

Earnings Revisions

Economic rationale: Positive analysts’ revisions indicate stronger business 
prospects and earnings for a fi rm.

References:
Kent L. Womack, “Do Brokerage Analysts’ Recommendations Have Invest-

ment Value?” Journal of Finance, 51 (1996), pp. 137–167.
Harrison Hong, Terence Lim, and Jeremy C. Stein, “Bad News Travels Slow-

ly: Size, Analyst Coverage and the Profi tability of Momentum Strate-
gies,” Journal of Finance, Vol. 55, Issue 1, Feb. 2000, pp. 265–295.

Narasimhan Jegadeesh, Joonghyuk Kim, Susan D. Krische, and Charles 
M. C. Lee, “Analyzing the Analysts: When Do Recommendations Add 
Value? “Journal of Finance, 59 (2004), pp. 1083–1124.

Growth of Fiscal Year 1 and Fiscal Year 2 Earnings Estimates

Economic rationale: Investors are attracted to companies with growing 
earnings.
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References:
Robert D. Arnott, “The Use and Misuse of Consensus Earnings,” Journal of 

Portfolio Management, 11 (1985), pp. 18–27.
Gary A. Benesh and Pamela P. Peterson, “On the Relation Between Earnings 

Changes, Analysts’ Forecasts and Stock Price Fluctuation,” Financial 
Analysts Journal, (1986), pp 29–39.

Momentum

Economic rationale: Investors prefer stocks that have had good past per-
formance.

References:
Narasimhan Jegadeesh, “Evidence of Predictable Behavior of Security Re-

turns,” Journal of Finance, 45 (1990), pp. 881–898.
Narasimhan Jegadeesh and Sheridan Titman, “Returns to Buying Winners 

and Selling Losers: Implications for Stock Market Effi ciency,” Journal 
of Finance, 48 (1993), pp. 65–91.

Return Reversal

Economic rationale: Stocks overreact to information, that is, stocks with 
the highest returns in the current month tend to earn lower returns the fol-
lowing month.

References:
Narasimhan Jegadeesh, “Evidence of Predictable Behavior of Security Re-

turns,” Journal of Finance, 45 (1990), pp. 881–89.

Idiosyncratic Risk

Economic rationale: Stocks with high idiosyncratic risk in the current month 
tend to have lower returns the following month

References:
Andrew Ang, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang, “The 

Cross-Section of Volatility and Expected Returns,” Journal of Finance 
61 (2006), pp. 259–299.
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490 QUANTITATIVE EQUITY INVESTING

Earnings Surprises

Economic rationale: Investors like positive earnings surprises and dislike 
negative earnings surprises

References:
Ray Ball and Philip Brown, “An Empirical Evaluation of Accounting Income 

Numbers,” Journal of Accounting Research, 6 (1968), pp. 159–177.
Dan Givoly and Josef Lakonishok, “The Information Content of Financial 

Analysts’ Earnings Forecasts,” Journal of Accounting and Economics, 
1 (1979), pp. 165–185.

Victor Bernard and Jacob Thomas, “Post-Earnings-Announcement Drift: 
Delayed Price Response or Risk Premium?” Journal of Accounting Re-
search, 27 (1989), pp. 1–48.

Victor Bernard and Jacob Thomas, “Evidence that Stock Prices Do Not 
Fully Refl ect the Implications of Current Earnings for Future Earnings,” 
Journal of Accounting and Economics, Vol. 13, 1990, pp. 305–340.

Narasimhan Jegadeesh and Joshua Livnat, “Revenue Surprises and Stock 
Returns,” Journal of Accounting and Economics, 41 (2006), pp. 147–
171.

Accounting Accruals

Economic rationale: Companies with earnings that have a large cash com-
ponent tend to have higher future returns.

References:
Richard G. Sloan, “Do Stock Prices Fully Refl ect Information in Accruals 

and Cash Flows about Future Earnings?” The Accounting Review, 71 
(12996), pp. 289–315.

Corporate Governance

Economic rationale: Firms with better corporate governance tend to have 
higher fi rm value, higher profi ts, higher sales growth, lower capital expendi-
tures, and fewer corporate acquisitions.

References:
Michael C. Jensen and William H. Meckling, “Theory of the Firm: Mana-

gerial Behavior Agency Costs, and Ownership Structure,” Journal of 
Financial Economics, 3 (1976), pp 305–360.
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Executive Compensation Factors

Economic rationale: Firms that align compensation with shareholders inter-
est tend to outperform.

References:
Paul A. Gompers, Joy L. Ishii, and Andrew Metrick, “Corporate Gover-

nance and Equity Prices,” Quarterly Journal of Economics, 118 (2003), 
pp. 107–155

Holthausen, R., D. Larcker, and R. Sloan, “Annual Bonus Schemes and the 
Manipulation of Earnings,” Journal of Accounting and Economics, 19 
(1995), pp. 29–74.

David Yermack, ”Good Timing: CEO Stock Option Awards and Company 
News Announcements,” Journal of Finance, 52 (1997), pp. 449–476.

John E. Core, Robert W. Holthausen, and David F. Larcker, “Corporate 
Governance, Chief Executive Offi cer Compensation, and Firm Perfor-
mance,” Journal of Financial Economics, 51 (1999), pp. 371–406.

Accounting Risk Factors

Economic rationale: Companies with lower accounting risk tend to have 
higher future returns.

References:
David Burgstahler and Ilia Dichev, “Earnings Management to Avoid Earn-

ings Decreases and Losses,” Journal of Accounting and Economics, 24 
(1997), pp. 99–126.

Siew Hong Teoh, Ivo Welch, and T. J. Wong, “Earnings Management and 
the Underperformance of Seasoned Equity Offerings,” Journal of Fi-
nancial Economics, 50 (1998), pp. 63–99.

Douglas J. Skinner and Richard G. Sloan, “Earnings Surprises, Growth Ex-
pectations and Stock Returns, or, Don’t Let a Torpedo Stock Sink Your 
Portfolio,” Review of Accounting Studies, 7 ( 2002), pp. 289–312.
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APPENDIX C 
Review of Eigenvalues 

and Eigenvectors

In this appendix, we will provide a review of eigenvalues and eigenvectors, 
as well as the SWEEP operator.

The eigenvalues and the eigenvectors of a generic N × N square matrix 
A are those numbers and those non-zero vectors that satisfy the equation

 Ax = λx

The eigenvalues are the roots of the characteristic equation 
det A N−( ) =λI 0 . There are at most N distinct eigenvalues and eigenvectors. 
In general, eigenvalues can be real or complex numbers. If an eigenvalue is 
a complex number, then its complex conjugate is also an eigenvalue. Two or 
more eigenvalues and eigenvectors might coincide. If the matrix A is positive 
semidefi nite, that is, if the condition ′ ≥ ∀x Ax x0,  holds, then its eigenval-
ues are all real non-negative numbers. In fact, ′ = ′ ≥x Ax x xλ 0. Covariance 
matrices are positive semidefi nite and therefore their eigenvalues are real but 
can be zero, and two or more can coincide. 

Suppose the eigenvalues λi are all real, distinct, and non-zero. Let us 
arrange the eigenvalues in a diagonal matrix 

 
ΛΛ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

λ

λ

1 0 0

0 0

0 0

�

N

and the corresponding eigenvectors hi in a matrix

 
H h h= ⎡⎣ ⎤⎦1 N
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494 QUANTITATIVE EQUITY INVESTING

As Ah hi i i= λ , the matrix relationships AH H= ΛΛ  and H AH− =1 ΛΛ  hold. 
We say that we have diagonalized the matrix A. If we premultiply H by the 
matrix

 

ΛΛ− =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
2

1
0 0

0 0

0 0
1

1λ

λ

�

N

then ΛΛ ΛΛ ΛΛ− − −=
1
2

1
2 1( )  and ( ) ( )ΛΛ ΛΛ− − − =

1
2

1
21H A H IN . 

THE SWEEP OPERATOR

The Sweep operator greatly simplifi es the notation of linear regression. Con-
sider an N × N matrix A. We defi ne the operation of sweeping A on its kth 
diagonal element, SWEEP(k)A = B as the mapping A B�  defi ned by

 

B
A

B
A

A
i k k

B
A

kk
kk

ik
ik

kk

th

kj
k

=

= − ≠ ( )

=

1

, column

jj

kk

th

ij ij
ik kj

kk

A
j k j

B A
A A

A
i k

,

, ,

row≠ ( )

= − ≠ j k≠

If B1 = SWEEP(k1)A, B2 = SWEEP(k2)B1, …, B = SWEEP(kr)Br–1, we 
write B = SWEEP(k1, …, kr)A. The following property holds:

 If A
B C

E
=

⎡

⎣
⎢

⎤

⎦
⎥D

 where B, C, D, E are matrices of dimension

 (r×r), (r×s), (s×r), (s×s), s + r = N

respectively, then
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SWEEP

SW

1 2
1 1

1 1
, , ,… r( ) =

− −
⎡

⎣
⎢

⎤

⎦
⎥

− −

− −A
B B C

DB E DB C

EEEP r r r s+ + +( ) =
− −⎡

⎣
⎢

− −

− −1 2
1 1

1 1
, , ,… A

B CE D CE

E D E

⎤⎤

⎦
⎥

The SWEEP operator allows us to express the quantities in a linear 
regression in a compact way,

 SWEEP 1 2
1

, , ,… N( ) ′ ′
′ ′

⎡

⎣
⎢

⎤

⎦
⎥ = ′( )

′

−R R R f

Rf f f
R R ββ

ββ DD

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

The SWEEP operator is a highly versatile  statistical operators that is 
used in

Least squares (ordinary, generalized, multiple regression, and the gen-
eral linear model)
Multivariate analysis of variance
All possible regressions

The SWEEP operator provides an intuition for most inversion opera-
tions because each element of the matrix being operated on is readily iden-
tifi able and has statistical meaning. 

■

■

■
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Absence of arbitrage principle, 176
Accounting accruals factor, 490
Accounting risk factors, 491
Actual frontier, 362–363, 414–415
Adaptive arrival price strategy, 462–463
Adaptive market hypothesis, 2, 244
Adaptive modeling, 7–8
Add-On database (Compustat), 254
ADF (augmented Dickey-Fuller) test, 

138, 171
ADV (average daily volume), and turn-

over constraints, 328
Aitken’s estimator, 75
Akaike information criterion (AIC):

data driven approach, 296
estimation of number of lags, 138

Algorithmic trading:
arrival price, 461–463
crossing networks, 463–465
description of, 449
fi nanced trading, 465
liquidity seeking, 465
market-on-close, 461
participation strategy, 460–461
strategies for, 457
time-weighted average price, 459–460
volume-weighted average price, 

457–459
Alpha models and factors, see Factor-

based trading strategies
Analysis of data, and factor-based trad-

ing strategies, 261–266
Approximate factor models of returns, 

221–222
Arbitrage Pricing Theory (APT), 219
Arrival price strategy, 461–463
Arrow-Pratt risk aversion index, 321

Asset allocation in portfolio construc-
tion, 325

Asset-allocation models:
estimation of inputs for, 333–342
transaction costs in, 439–444

Asset-based factors in market impact 
forecasting, 435–436

Asset turnover factor, 488
Asymmetric market impact costs, 424, 

435
Augmented Dickey-Fuller (ADF) test, 

138, 171
Autocorrelation:

covariance matrix estimation and, 340
distributional properties of residuals 

and, 139
Automated crossing networks, 464
Automatic problem-solving, 162
Autoregressive models:

autoregressive conditional heterosce-
dastic type, 55

autoregressive distributed lag type, 
140–141

stable vector autoregressive processes, 
110–114

See also Variance autoregressive 
(VAR) models

Average daily volume (ADV), and turn-
over constraints, 328

Averages, bias in, 167–170

Backfi lling of data, 254
Backtesting of strategies, 306–309, 

383–384
Bayesian approach to modeling:

analysis of univariate AR(1) model, 
186–188
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Bayesian approach to modeling (Cont.)
analysis of VAR model, 188–191
Bayes’ theorem, 184–185
description of, 374
model risk in, 186
statistics, 182–184
See also Black-Litterman model

Bayesian information criterion (BIC):
data driven approach, 296
estimation of number of lags, 138

Bayes-Stein estimator, 403
Bayes’ theorem, 184–185
BD (breakdown) bound, 85
Beane, Billy, 44
Behavioral modeling, 21–22
Benchmark exposure constraints, 329
Benchmarks:

algorithmic trading strategies and, 457
trade, and market impact costs, 

424–425
Best linear unbiased estimator (BLUE):

estimation of regression coeffi cients, 
74–75

GLS estimator as, 75
sample mean as, 336

Beta, estimation of, 95–96
Bias:

in averages, 167–170
in samples, 165–167
survivorship type, 165–166, 255, 257

Bias in data:
factor-based trading strategies, 

250–251, 254, 255, 257
portfolio optimization, 340, 342
See also Data quality issues

BIC (Bayesian information criterion):
data driven approach, 296
estimation of number of lags, 138

Bid-ask spreads, 422–423
Black-Litterman model:

combining investor views with mar-
ket equilibrium, 379–380, 404

cross-sectional momentum strategy, 
385–394

data requirements and, 369
derivation of, 375–385
expressing investor views, 378–379

overview of, 373–375
robust portfolio optimization, 404, 

411–412
BLUE, see Best linear unbiased estimator
Breakdown (BD) bound, 85
Bridging principles, 182
Buy-side perspective, 456–457

Canonical correlation analysis (CCA), 
151–152

Canonical correlations, interpretation 
of, 149

Capital Asset Pricing Model (CAPM), 
as factor model, 219

Capital gains taxes, 421
Capital market line (CML), 323–326
Cardinality constraints, 331–333
CART (classifi cation and regression 

trees), 22, 96–98
Causality, 156–157
CCA (canonical correlation analysis), 

151–152
Central Limit Theorem, 396
Certain dollar cost equivalent, 453
Changing laws objection to using 

mathematics in fi nance, 7–8
Classifi cation and regression trees 

(CART), 22, 96–98
CLF (concentrated likelihood func-

tion), 144–149
Clustering models, 155–156
CML (capital market line), 323–326
Coarse graining, 179
Coherent risk measures, 350
Cointegrated and integrated variables, 

114–120
Cointegrating relationships, 226
Cointegration models, 22
Combined and integer constraints, 

330–333
Commissions, explicit transaction 

costs, 421
Common variation in residuals, 

279–281
Companion matrix:

defi nition of, 122
estimation with eigenvalues of, 154–155
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Company characteristics, and factor 
construction, 253–266

Company publications:
data quality issues, 255, 258
as source for factors, 252

Complete data, 208
Compustat data:

description of, 254, 483
templates, 257

Concentrated likelihood function 
(CLF), 144–149

Conditional entropy, 180–181
Conditional Value-at-Risk (CVaR) 

measure:
description of, 350–351
mean-CVaR optimization, 351–357

Confi dence intervals, 407–410
Conjugate prior, 185
Constraints:

combined and integer, 330–333
estimation error effects, 365–366
linear and quadratic, 327–330

Continuous crossing networks, 464
Corporate governance factor, 490
Correlation, see Autocorrelation; Serial 

correlation
Correlation and covariance, see Cova-

riance and correlation
Cost of immediacy, 451
Costs, see Market impact costs; Oppor-

tunity costs; Transaction costs
Covariance and correlation:

estimation of, 52–55, 90–96
overview of, 49–51
Random Matrix Theory, 55–61

Covariance matrix estimators:
sample estimators, 334, 335–340
uncertainty in inputs, 400–401, 

404–411
Covariance matrix of observations, 

203–204
Covariance stationary series, 103
Cowles Commission causality, 156–

157
Crossing aggregators, 464
Crossing networks, 463–465
Cross orders, 422–423

Cross-sectional characteristics:
analysis of factor data, 262–266
categories of factors, 245

Cross-sectional data, categories of 
data, 253

Cross-sectional models:
econometric considerations for, 

279–281
evaluation of factor premiums, 

270–278
factor models, 278–287
Fama-MacBeth regression and, 

281–282
model construction, 295–306

Cross-sectional momentum strategy, 
385–394

Custodial fees, 421
CVaR (Conditional Value-at-Risk) 

measure:
description of, 350–351
mean-CVaR optimization, 351–357

Dark liquidity, 464
Data:

backfi lling of, 254
complete, 208
cross-sectional, 253
fully pooled, 192
incomplete, 208
irregularly spaced, models of, 156
panel, 253

Data analysis, and factor-based trading 
strategies, 261–266

Data driven approach, 296–297
Data frequency issues:

implementing estimators and, 
341–342

pitfalls in selection of data frequency, 
173–174

Data quality issues:
factor-based trading strategies, 248, 

253–261
portfolio optimization, 340–342
See also Bias in data

Data sets:
Compustat Add-On database, 254
Compustat Point-in-Time, 483
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Data sets (Cont.)
Compustat US database, 255, 257
IBES, 484
Lipper, 33
MSCI World Index, 473–482
one-month LIBOR, 482–483
Worldscope Global database, 

257–258
Decision making by human agents, 6
Decision trees, classifi cation and regres-

sion trees, 96–98
Demeaned processes, estimation of, 

132–134
Design matrix, 69
Diagnostics, regression, 80–83
Dickey-Fuller (DF) test, 138, 152
Differential equations, 161, 173
Diffuse prior, 185
Discrete crossing networks, 464
Discretionary orders, 422, 428
Dispersion measures, 342–344
Distributional properties of residuals, 139
Diversifi cation:

benefi ts of, 313–314
diversifi cation indicators, 365
VAR risk measure and, 350

Downside measures, 344–351
Dynamic factor models:

factor analysis and, 234–239
of integrated processes, 226–227
overview of, 222–226
principal components analysis and, 

228–234

Earnings growth factor:
information coeffi cients, 285
performance evaluation, 288–295

Earnings revisions factor, 488
Earnings surprises factor, 490
EBITDA/EV factor, see Enterprise value 

(EBITDA/EV) factor
Econometrics, see Financial economet-

rics
Economy:

as engineered artifact, 8
as machine, 1

Econophysics movement, 320

Effi cient frontiers:
defi nition of, 315, 319
mean-CVaR optimization, 355–356
of optimal trading, 454
optimization overview, 315–316
optimization with risk-free asset, 

323–324
problems encountered in optimiza-

tion, 362–363
Effi cient market theory (EMT), 

243–244
Eigenvalues, 493–494
Eigenvectors, 493–494
EM (expectation maximization) algo-

rithm, 208–213
Empirical Bayesian Statistics, 184
EMT (effi cient market theory), 

243–244
Engineering:

science and, 161–163
theory and, 159–161
See also Financial engineering

Enterprise value (EBITDA/EV) factor:
data analysis, 262, 263
data quality issues, 255–256
information coeffi cients example, 

284–285
performance evaluation, 288–295
portfolio sorts, 273, 274

Entropy, 179–181
Equilibrium market price of risk, 326
Equity forecasting models and factors, 

see Factor-based trading strategies
Ergodic processes, 4, 102
Error correction form of VAR models, 

116–118
Error maximizers, use of term, 365
Errors:

estimation error effects, 362–367, 
396

use of term, 109–110
E-step of EM algorithm, 211–212
Estimated frontier, 362–363, 414–415
Estimation errors in portfolio optimiza-

tion, 362–367, 396
Execution price, transaction cost mea-

surement, 430
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Executive compensation factors, 491
Expectation maximization (EM) algo-

rithm, 208–213, 341
Expected returns:

estimation of inputs, 333–337
expected return maximization formu-

lation, 321
uncertainty in inputs, 396–404

Explicit transaction costs, 419, 
421–423

Exponentially weighted moving aver-
age (EWMA), 54

Extreme value theory (EVT), 15, 16

Factor analysis:
determining number of factors in fac-

tor model, 217–218
dynamic factor models and, 234–239
expectation maximization algorithm, 

208–213
overview of, 205–206
via maximum likelihood, 206–208
via principal components, 213–218

Factor-based trading strategies:
analysis of data, 261–266
backtesting, 306–309
defi nition of factors, 245–247
desirable properties of factors, 248, 

251
development of strategies, 247–249
effi cient market theory, 243–244
evaluation of factor premiums, 

270–278
factor models, 278–287
model construction, 295–306
performance evaluation of factors, 

288–295
risk to, 249–251
sources for factors, 251–253
working with data, 253–261

Factor mimicking portfolio (FMP), 271
Factor models:

Black-Letterman model and, 382–
383

CAPM as, 219
description of, 195
dynamic, 222–239

factor-based trading strategies, 
278–287

factor model approach, 297–298
Intertek European study of 2003, 

13–14
linear, 196–201, 436–437
market impact forecasting, 436–439
normal, 204
risk factor constraints, 328–329
robust portfolio optimization, 

405–407
static, 196–205
strict, 201–202, 221
use of, 204–205

Factor models of returns:
approximate, 221–222
overview of, 219–220
size of samples and uniqueness of fac-

tors, 220–221
Factor portfolios, 286–287
Factor premiums, evaluation of, 

270–278
Factors:

accounting accruals, 490
accounting risk, 491
adjustment methods for, 259–260
asset-based, 435–436
asset turnover, 488
categories of, 245
corporate governance, 490
defi nition of, 245–247
earnings revisions, 488
earnings surprises, 490
executive compensation, 491
growth, 485, 488–489
idiosyncratic risk, 489
momentum, 486, 489
monthly summary statistics, 486
performance evaluation of, 288–295
quality, 484–485
return reversal, 489
size, 488
trade-based, 434–435
use of term, 195–196
value, 484, 487
yield, 487

Fair market benchmark, 430–432
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Fama-MacBeth (FM) regressions:
for cross-sectional regressions of 

returns on factors, 281–282
example of, 286
monthly coeffi cients from, 291, 

293–294
Fat-tailed distributions, 39
Feasible GLS (FGLS), 76
Feasible set, 315
Fees, explicit transaction costs, 421
Finance:

nonlinear models in, 22, 155–156
as quantitative, 1, 2

Financed trading, 465
Finance economic theory, treating as 

mathematical science, 3–8
Finance theory, 159
Financial econometrics:

autocorrelation and distributional 
properties of residuals, 139

causality, 156–157
classifi cation and regression trees, 

96–98
covariance and correlation, 49–61
estimation of nonstationary VAR 

models, 141–151
estimation of number of lags, 137–139
estimation of stable VAR models, 

120–137
estimation with canonical correla-

tions, 151–152
estimation with eigenvalues of com-

panion matrix, 154–155
estimation with principal component 

analysis, 153–154
historical notes, 47–49
integrated and cointegrated variables, 

114–120
multivariate regression, 76–78
nonlinear models in fi nance, 155–156
quantile regressions, 78–80
regression diagnostics, 80–83
regressions and projections, 61–76
robust estimation of regressions, 

83–96
stable vector autoregressive pro-

cesses, 110–114

stationary ARDL models, 140–141
stochastic processes, 101–102
time series, 102–110

Financial engineering:
defi nition of, 159
product design and, 163–164

Financial modeling, learning approach 
to, 164–165

Fixed transaction costs, 420, 421
FMP (factor mimicking portfolio), 271
FM regressions, see Fama-MacBeth 

regressions
Forecasting models:

factor use and, 245
for market impact costs, 433–439

Fractionability of investments, 332
Frequency domain, time series in, 

107–109
Frequentist interpretation of probabil-

ity, 182
Fully automated quant investment 

process, 38
Fully pooled data, 192
Fundamental risk, 249
Fund fl ows, Intertek study of 2007, 

32–34
Funding risk, 250

Garman-Klass estimators, 342
Gaussian white noise, 132, 134–137
Gauss-Markov theorem, 70, 75
Generalized dynamic factor model, 225
Generalized least squares (GLS) prin-

ciple, 75–76
Global minimum variance (GMV) 

portfolio, 316
Granger causality, 156–157
Gross error sensitivity, 86
Growth factors, 485, 488–489
Guaranteed volume-weighted average 

price, 459

Hat matrix, 91
Heteroskedasticity:

as common variation source, 279–280
covariance matrix estimation and, 

340
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Heuristic approach, 298–299
Hidden factors, 198
Hidden orders, 422, 428
Hidden qualitative variables objection 

to using mathematics in fi nance, 6
High-frequency trading:

latency and, 468–469
liquidity and, 469–470
overview of, 467–468

Highly correlated assets, issues with, 367
Holding constraints, 328, 331, 332
Horizon risk, 250
Huber weighting function, 92–93
Hybrid approach to fi nancial model-

ing, 165

IBES (Institutional Brokers Estimate 
System) database, 262, 484

IC (infl uence curve), 85–87
IC (information coeffi cients), 282–285, 

291, 292
Idiosyncratic risk factor, 489
Impact models:

buy-side perspective, 456–457
description of, 455

Imperfect substitution, 424
Implementation risk, 250
Implementation shortfall approach, 

432–433, 461–463
Implicit transaction costs:

description of, 419, 420, 423–426
forecasting model for, 433–439

Incomplete data, 208
Infl uence curve (IC), 85–87
Information coeffi cients (IC), 282–285, 

291, 292
Information ratios, for portfolio sorts, 

277
Information theory approach to model 

risk, 177–182
Input parameters, 457
In-sample methodologies, 307–308
Institutional Brokers Estimate System 

(IBES) database, 262, 484
Instrumental variables, 76
Integer and combined constraints, 

330–333

Integrated and cointegrated variables, 
114–120

Integrated portfolio management, and 
transaction costs, 444–446

Integrated processes, dynamic factor 
models of, 226–227

Integrity of data, see Data quality 
issues

Intelligent fi nance, 44
Interquartile range (IQR), 90
Intertek European study of 2003:

description of, 25
factor models, 13–14
integration of information, 16–17
performance of models, 11–12
risk management, 15–16
role for models, 9–10
use of multiple models, 12–13
value-based models, 14–15

Intertek study of 2006:
description of, 17–19
diffusion of models, 23–24
modeling methodologies, 19–22
optimization, 23
role for models, 19

Intertek study of 2007:
barriers to entry in business, 42–44
description of, 25
fund fl ows, 32–34
implementing quant processes, 36–38
model-driven investment strategies, 

impact of, 25–26
objectives for implementing quantita-

tive process, 40–42
performance improvement, 30–32
performance issues, 26–30
quantitative processes, oversight, and 

overlay, 34–36
risk management, 38–40

Inventory effects, 424
Invertibility and autoregressive repre-

sentations, 106–107
Investment delay cost, implicit transac-

tion costs, 423
Invisible orders, 464
IQR (interquartile range), 90
Irregularly spaced data, models of, 156
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James-Stein shrinkage estimator, 370, 
403, 411–412

Johansen trace and maximum eigen-
value tests, 171

Kronecker product, 122

Lags, estimation of number of, 137–139
Large data sets, pitfalls in choosing 

from, 170–173
Latency, and high-frequency trading, 

468–469
Latent factors or variables, 198
Lazy portfolios, 465
LCCA (level canonical correlation 

analysis), 151–152
Learning approach to fi nancial model-

ing, 164–165
Least median of squares (LMedS) esti-

mator, 88, 89
Least squares (LS) estimation:

asymptotic distribution of estimators, 
131–132

multivariate, 124–131
unrestricted, 142–143

Least squares (LS) estimators, 87–88, 
91, 95–96

Least squares (LS) principle, 67
Least squares regression models, 

401–402
Least trimmed of squares (LTS) estima-

tor, 88, 89, 96
Leinweber, David, 1–2
L-estimators, 87
Level canonical correlation analysis 

(LCCA), 151–152
Leveraged portfolios, 324
Leverage points, 91
LIBOR (London Interbank Offered 

Rate), one-month, 482–483
Limit order book, 450–452
Limit orders, 428–430
Linear and quadratic constraints, 

327–330
Linear factor models:

description of, 196–200
empirical indeterminacy of, 200–201

in market impact forecasting, 
436–437

Linear regression, regression as proba-
bilistic model, 63–69

Lipper data, 33
Liquidity:

asset-based factors and, 435–436
crisis in, 30
defi nition of, 250
high-frequency trading and, 469–470
resting limit orders and, 451
transaction costs and, 423–424, 

427–430
Liquidity concession, 424
Liquidity risk, 250
Liquidity seeking, 465
Liquidity traders, 467
LMedS (least median of squares 

(LMedS) estimator, 88, 89
Lo, Andrew, 2
Local shift sensitivity, 86
London Interbank Offered Rate 

(LIBOR), one-month, 482–483
Long-only constraints, 327
Look-ahead bias, factor-based trading 

strategies, 255
Lower partial moment risk measure, 

347–348
LS estimation, see Least squares (LS) 

estimation
LS (least squares) estimators, 87–88, 

89, 96
LS (least squares) principle, 67

Macroeconomic infl uences, categories 
of factors, 245

MAD (mean absolute deviation), 
89–90, 343–344

MAM (mean-absolute moment), 344
Marčenko-Pastur law, 57–59
Market impact, 450–452
Market impact costs:

defi nition of, 420
as implicit transaction costs, 423–425
market impact forecasting, 433–439
market impact measurement, 

430–433
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Market-on-close strategy, 461
Market orders, 428, 450
Market portfolio, 323
Market risk, estimation of, 95–96
Market risk premium, 377
Market timing costs, implicit transac-

tion costs, 426
Markowitz, Harry, 15
Markowitz effi cient frontiers, see Effi -

cient frontiers
Mathematical science, treating fi nance 

economic theory as, 3–8
Maximum eigenvalue test, 149–150, 

152, 171
Maximum likelihood estimation (MLE) 

principle, and factor analysis, 
206–208

Maximum likelihood (ML) estimators, 
87, 134–137, 143–149

Mean absolute deviation (MAD), 
89–90, 343–344

Mean-absolute moment (MAM), 344
Mean-standard deviation, 343
Mean-variance optimization, see Port-

folio optimization
Median absolute deviation (MAD), 

89–90
Median estimator, 89
M-estimators, 86–87, 91–92
Microtraders, 457
MI estimators, 150–151
Minimum holding constraints, 331, 332
Misspecifi cation risk, 250
Mixed estimation techniques:

description of, 379
importance as feature, 383

MLE (maximum likelihood estima-
tion) principle, and factor analysis, 
206–208

ML (maximum likelihood) estimators, 
87, 134–137, 143–149

Model averaging, 191–192
Model-driven investment strategies, 

impact of, 25–26
Model misspecifi cation, 250
Model risk:

Bayesian approach to, 186

defi nition of, 11, 175, 250
information theory approach to, 

177–182
shrinkage approach to, 191–192
sources of, 175–177

Modern portfolio theory, see Portfolio 
optimization

Momentum, 14
Momentum factor:

description of, 486, 489
information coeffi cients, 284–285
performance evaluation, 288–295

Momentum modeling, 20–21
Momentum strategy, cross-sectional, 

385–394
Monotonic relation (MR) test, 

277–278
MSCI World Index data set, 473–482
M-step of EM algorithm, 213
Multicollinearity, as inference problem, 

281
Multiple models, use of:

Intertek European study of 2003, 
12–13

Multiple regression, 67
Multivariate least squares (LS) estima-

tion, 124–131
Multivariate regression, 67, 76–78
Multivariate stochastic processes, 102
Multivariate time series, 102–103
Myopic behavior, 314

Negative alpha, 453
Negotiated crossing networks, 464
Negotiated markets, bid-ask spreads 

in, 422
Newey-West corrections, 340
Noise trader risk, 249–250
Nonlinear dynamics, 5
Nonlinear models in fi nance, 22, 

155–156
Nonlinear state-space models, 7
Normal factor models, 204
No-trade price, estimation of, 430–432

OLS (Ordinary Least Squares) method, 
67, 70–76, 78
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Opportunity costs:
defi nition of, 420
estimation of, 427
as implicit transaction costs, 426

Optimal execution:
description of, 452–453
sell-side perspective, 454–455

Optimization approach:
econometric forecasting and, 

163–164
Intertek study of 2006, 23
overview of, 299–300, 301
See also Portfolio optimization

Optimization techniques, 287. See also 
Portfolio optimization

Option pricing literature, 342
Order placement engines, 457
Ordinary Least Squares (OLS) method, 

67, 70–76, 78
Orthogonality conditions, 68, 72
Orthogonalization, factor adjustment 

methods, 259–260
Outliers:

detection and management of, 
260–261

properties of factors, 250
Out-of-sample methodologies, 307–308
Overdifferencing, 115
Overfi tting, 164–165
Overlay, fundamental, 35–36

Panel data, categories of data, 253
Participation strategy, 460–461
PCA, see Principal component analysis
Performance evaluation:

of factors, 288–295
of quantitative approach, 26–30

Performance of models:
in Intertek European study of 2003, 

11–12
in Intertek study of 2007, 30–32

Permanent market impact, 451
Piecewise-linear approximations, 

442–445
Pitfalls:

in choosing from large data sets, 
170–173

in selection of data frequency, 173–174
See also Bias

Point-In-Time database (Compustat), 
483

Portfolio management, approaches to, 
164–165

Portfolio optimization:
alternative risk measures, 342–357
backtesting and, 306–308
Black-Litterman model and, 373–394
classical framework for, 317–321
constraints use, 327–333, 365–366
estimation error effects, 362–367, 

396
estimation of inputs, 333–342
estimation of shrinkage, 366–373, 

403, 411–412
overview of, 313–317
problems encountered in, 361, 

362–369
with risk-free asset, 321–327
See also Robust portfolio optimiza-

tion
Portfolios of estimators, 339–340
Portfolio sorts, 270–278
Positive alpha, 453
Posterior distribution, in Bayesian 

approach, 374
Posterior probability, 185
Posttrade measures, 431–432
Pretrade measures, 431–432
Price movement risk:

description of, 420
implicit transaction costs, 425–426

Principal component analysis (PCA):
dynamic factor models and, 228–234
estimation with, 153–154
factor analysis via, 213–218

Principal components, 229
Prior distribution, in Bayesian 

approach, 374
Prior probability, 185
Private dark pools, 464
Probability:

frequentist interpretation of, 182
prior and posterior, 185
subjectivistic interpretation of, 183

index.indd   506index.indd   506 1/6/10   11:35:51 AM1/6/10   11:35:51 AM



Index 507

Probability distribution, in Bayesian 
approach, 374

Problem-solving, automatic, 162
Product design, and engineering, 

163–164

Quadratic and linear constraints, 
327–330

Quadratic mixed integer program 
(QMIP), and round lot constraints, 
333

Quadratic program:
description of, 319
round lot constraints and, 333

Qualitative and quantitative robust-
ness, 84–85

Quality factors, 484–485
Quality of data, see Data quality issues
Quantile regressions, 78–80
Quantitative equity investment:

challenges for, 44–46
description of, 17
skepticism of, 1–2

Quantitative equity management:
Intertek European study of 2003, 

9–17
Intertek study of 2006, 17–24
Intertek study of 2007, 25–44
skepticism of, 1–2

Quantitative processes:
description of, 34–36
implementing, 36–38
objectives for implementing, 40–42

Random coeffi cient models, 192–193
Random matrix model (RMM), 56
Random Matrix Theory (RMT), 55–61
Recursive out-of-sample test, 307
Regime-shifting models, 156, 177
Regression analysis, 20
Regressions:

classifi cation and regression trees, 
96–98

estimation of coeffi cients, 69–74, 
90–96

multivariate, 67, 76–78
as probabilistic model, 61–69

quantile, 78–80
regression diagnostics, 80–83
relaxing of assumptions, 74–76
robust estimation of, 83–96

Rejection point, 86
Residuals:

autocorrelation and distributional 
properties of, 139

common variation in, 279–281
use of term, 109–110

Resistant beta, 95
Resistant estimators, 85–87
R-estimators, 87
Return premiums, evaluation of, 

270–278
Return reversal factor, 489
Returns, see Factor models of returns
Returns, expected

estimation of inputs, 333–337
expected return maximization formu-

lation, 321
uncertainty in inputs, 396–404

Reverse optimization, 377
Revisions factor:

data analysis, 262–264
performance evaluation, 288–295
portfolio sorts, 273–275

Reweighted least squares (RLS) estima-
tor, 88–89

Reweighted least squares (RLS) proce-
dure, 92

Risk:
determining market risk premium, 377
estimation of inputs, 333–342
estimation of market risk, 95–96
price movement type, 420, 425–426
to trading strategies, 249–251
See also Model risk

Risk aversion formulation, 321
Risk aversion parameter, 452–453
Risk factor constraints, 328–329
Risk-free asset, portfolio optimization 

with, 321–327
Risk management:

Intertek European study of 2003, 
15–16

Intertek study of 2007, 38–40
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Risk measures:
dispersion measures, 342–344
downside measures, 344–351
mean-CVaR optimization, 351–357

Risk minimization formulation, 318
Risk models:

factor-based trading strategies and, 
308

factor models as, 204–205
Risk premia:

estimation of, 96
portfolio optimization and, 326

RLS (reweighted least squares) estima-
tor, 88–89

RLS (reweighted least squares) proce-
dure, 92

RMM (random matrix model), 56
RMT (Random Matrix Theory), 55–61
Robust counterpart problem, 399
Robust estimation:

of the center, 89
of regressions, 90–96
robust statistics, 83–90
of the spread, 89–90

Robust portfolio optimization:
benefi ts of, 411–412, 415–416
checklist for, 416–417
defi nition of, 395
overview of, 368–369, 395
uncertainty in covariance matrix 

estimates, 404–411
uncertainty in expected return esti-

mates, 396–404
zero net alpha-adjustment, 412–416

Robust statistics, 83–90
Role for models:

Intertek European study of 2003, 
9–10

Intertek study of 2006, 19
Round lot constraints, 332–333
Roy’s safety-fi rst risk measure, 

345–346
Russell 1000:

backtesting of strategies, 308
EBITDA/EV factor, 255–256
portfolio constraints and, 327, 329

Sabermetrics, 44
Safety-fi rst risk measures, 344–351
Same-day measures, 431–432
Sample biases, 165–167
Sample mean estimator, estimation of 

inputs, 335–337, 340
Science, and engineering, 161–163
SDP (semidefi nite program), 408–410
Second-order cone problem (SOCP), 

406–407, 410
Seemingly unrelated regression (SUR) 

model, 77–78, 114
Selection bias, 166
Sell-side perspective, 454–455
Semidefi nite program (SDP), 408–410
Semivariance risk measure, 347
Sensitivity analysis, importance of, 367
Separation property, 324–325
Serial correlation:

as common variation source, 279–280
covariance matrix estimation and, 340

Share repurchase factor:
data analysis, 265–266
performance evaluation, 288–295
portfolio sorts, 275–277

Shortfall, 452
Shrinkage approach to model risk, 

191–192
Shrinkage estimators:

James-Stein, 370, 403, 411–412
overview of, 369–373
portfolio performance and, 339–340

Singular value decomposition of design 
matrix, 215–217

Size factor, 488
Small delta continuous trading, 465, 466
SOCP (second-order cone problem), 

406–407
Sorts, portfolio, 270–278
Sources:

for factors, 251–253
of model risk, 175–177

S&P 500:
classifi cation and regression trees, 98
portfolio constraints and, 327, 329

“Spiked” covariance model, 60–61
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Split-sample method, 307–308
Stable vector autoregressive processes, 

110–114
Standard deviation, coherence as con-

cern, 350–351
Standardization, factor adjustment 

methods, 259
Static factor models, 196–205
Stationary processes, 101–102
Statistical factors, categories of factors, 

245
Statistical (algorithmic) trading

arrival price, 461–463
crossing networks, 463–465
description of, 449
fi nanced trading, 465
liquidity seeking, 465
market-on-close, 461
participation strategy, 460–461
strategies for, 457
time-weighted average price, 459–

460
volume-weighted average price, 

457–459
Statistics, robust, 83–90
Stein paradox, 370
Stochastic processes, 101–102, 199
Stock selection models and factors, see 

Factor-based trading strategies
Strict factor models, 201–202, 221
Student’s t-test use, 271, 277
Studies of quantitative equity manage-

ment:
2003 Intertek European Study, 9–17
Intertek study of 2006, 17–24
Intertek study of 2007, 25–44

Subjectivistic interpretation of prob-
ability, 183

SUR (seemingly unrelated regression) 
model, 77–78, 114

Survivorship bias:
description of, 165–166
factor-based trading strategies, 255, 

257
Sweep operator, 494–495
Symbolic dynamics, 179

Tangency portfolio, 323
Taxes, explicit transaction costs, 421–422
Temporary market impact, 451
Tests:

augmented Dickey-Fuller (ADF), 138, 
171

Dickey-Fuller (DF), 138, 152
maximum eigenvalue, 149–150, 152, 

171
monotonic relation (MR), 277–278
recursive out-of-sample, 307
Student’s t-test, 271, 277

Theorems:
Bayes, 184–185
Central Limit, 396
Gauss-Markov, 70

Theoretical approach to fi nancial mod-
eling, 165

Theory:
Arbitrage Pricing, 219
effi cient market, 243–244
engineering and, 159–161
extreme value, 15, 16
fi nance, 159
fi nance economic, 3–8
information, 177–182
Random Matrix, 55–61
Vapnik Chervonenkis, 181–182

Threshold constraints, 331, 332, 333
Time series:

description of, 102–103
errors and residuals, 109–110
invertibility and autoregressive repre-

sentations, 106–107
representation in frequency domain, 

107–109
representation of time series, 

103–106
time series data category, 253
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