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Solution Techniques
for Linear Algebraic
Equations

C.1 CRAMER’S METHOD
Cramer’s method, also known as Cramer’s rule, provides a systematic means of
solving linear equations. In practicality, the method is best applied to systems of
no more than two or three equations. Nevertheless, the method provides insight
into certain conditions regarding the existence of solutions and is included here
for that reason.

Consider the system of equations

a11x1 + a12x2 = f1

a21x1 + a22x2 = f2
(C.1)

or in matrix form

[A]{x } = { f } (C.2)

Multiplying the first equation by a22, the second by a12, and subtracting the sec-
ond from the first gives

(a11a22 − a12a21)x1 = f1a22 − f2a12 (C.3)

Therefore, if (a11a22 − a12a21) �= 0, we solve for x1 as

x1 = f1a22 − f2a12

a11a22 − a12a21
(C.4)

Via a similar procedure,

x2 = f2a11 − f1a21

a11a22 − a12a21
(C.5)
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Note that the denominator of each solution is the same and equal to the determi-
nant of the coefficient matrix

|A| =
∣
∣
∣
∣

a11 a12

a21 a22

∣
∣
∣
∣
= a11a22 − a12a21 (C.6)

and again, it is assumed that the determinant is nonzero. 
Now, consider the numerator of Equation C.4, as follows. Replace the first

column of the coefficient matrix [A] with the right-hand side column matrix { f }
and calculate the determinant of the resulting matrix (denoted [A1]) to obtain

|A1| =
∣
∣
∣
∣

f1 a12

f2 a22

∣
∣
∣
∣
= f1a22 − f2a12 (C.7)

The determinant so obtained is exactly the numerator of Equation C.4. If we sim-
ilarly replace the second column of [A] with the right-hand side column matrix
and calculate the determinant, we have

|A2| =
∣
∣
∣
∣

a11 f1

a21 f2

∣
∣
∣
∣
= f2a11 − f1a21 (C.8)

and the result of Equation C.8 is identical to the numerator of Equation C.5.
Although presented for a system of only two equations, the results are applicable
to any number of linear algebraic equations as follows:

Cramer’s rule: Given a system of n linear algebraic equations in n unknowns xi ,
i = 1, n, expressed in matrix form as

[A]{x } = { f } (C.9)

where { f } is known, solutions are given by the ratio of determinants

xi = |Ai |
|A| i = 1, n (C.10)

provided |A| �= 0.

Matrices [Ai ] are formed by replacing the ith column of the coefficient
matrix [A] with the right-hand side column matrix.

Note that, if the right-hand side { f } = {0}, Cramer’s rule gives the trivial
result {x } = {0}.

Now consider the case in which the determinant of the coefficient matrix is
0. In this event, the solutions for the system represented by Equation C.1 are,
formally,

0x1 = f1a22 − f2a12

0x2 = f2a11 − f1a21
(C.11)

Equations (C.11) must be considered under two cases:

1. If the right-hand sides are nonzero, no solutions exist, since we cannot
multiply any number by 0 and obtain a nonzero result.
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2. If the right-hand sides are 0, the equations indicate that any values of x1

and x2 are solutions; this case corresponds to the homogeneous equations
that occur if { f } = {0}. Thus, a system of linear homogeneous algebraic
equations can have nontrivial solutions if and only if the determinant of the
coefficient matrix is 0. The fact is, however, that the solutions are not just
any values of x1 and x2, and we see this by examining the determinant

|A| = a11a22 − a12a21 = 0 (C.12)

or

a11

a21
= a12

a22
(C.13)

Equation C.13 states that the coefficients of x1 and x2 in the two equations are in
constant ratio. Thus, the equations are not independent and, in fact, represent a
straight line in the x1x2 plane. There do, then, exist an infinite number of solu-
tions (x1, x2), but there also exists a relation between the coordinates x1 and x2.
The argument just presented for two equations is also general for any number of
equations. If the system is homogeneous, nontrivial solutions exist only if the
determinant of the coefficient matrix is 0. 

C.2 GAUSS ELIMINATION
In Appendix A, dealing with matrix mathematics, the concept of inverting the co-
efficient matrix to obtain the solution for a system of linear algebraic equations is
discussed. For large systems of equations, calculation of the inverse of the coeffi-
cient matrix is time consuming and expensive. Fortunately, the operation of
inverting the matrix is not necessary to obtain solutions. Many other methods are
more computationally efficient. The method of Gauss elimination is one such
technique. Gauss elimination utilizes simple algebraic operations (multiplication,
division, addition, and subtraction) to successively eliminate unknowns from a
system of equations generally described by

[A]{x} = { f } ⇒








a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann














x1

x2
...

xn







=







f1

f2
...

fn







(C.14a)

so that the system of equations is transformed to the form

[B]{x} = {g} ⇒








b11 b12 · · · b1n

0 b22 · · · b2n

0 0
. . .

...

0 0 0 bnn














x1

x2
...

xn







=







g1

g2
...

gn







(C.14b)
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In Equation C.14b, the original coefficient matrix has been transformed to upper
triangular form as all elements below the main diagonal are 0. In this form, the
solution for xn is simply gn/bnn and the remaining values xi are obtained by suc-
cessive back substitution into the remaining equations. 

The Gauss method is readily amenable to computer implementation, as de-
scribed by the following algorithm. For the general form of Equation C.13, we
first wish to eliminate x1 from the second through nth equations. To accomplish
this task, we must perform row operations such that the coefficient matrix ele-
ment ai1 = 0, i = 2, n. Selecting a11 as the pivot element, we can multiply the
first row by a21/a11 and subtract the result from the second row to obtain

a (1)
21 = a21 − a11

a21

a11
= 0

a (1)
22 = a22 − a12

a21

a11

... (C.15)

a (1)
2n = a2n − a1n

a21

a11

f (1)
2 = f2 − f1

a21

a11

In these relations, the superscript is used to indicate that the results are from op-
eration on the first column. The same procedure is used to eliminate x1 from the
remaining equations; that is, multiply the first equation by ai1/a11 and subtract
the result from the ith equation. (Note that, if ai1 is 0, no operation is required.)
The procedure results in

a (1)
i1 = 0 i = 2, n

a (1)
i j = ai j − a1 j

ai1

a11
i = 2, n j = 2, n

f (1)
i = fi − f1

ai1

a11
i = 2, n

(C.16)

The result of the operations using a11 as the pivot element are represented sym-
bolically as










a11 a12 · · · a1n

0 a(1)
22 · · · a(1)

2n

0
...

. . .
...

0 a(1)
n2 · · · a(1)

nn
















x1

x2
...

xn







=







f1

f (1)
2
...

f (1)
n







(C.17)

and variable x1 has been eliminated from all but the first equation. The procedure
next takes (newly calculated) element a (1)

22 as the pivot element and the operations



Hutton: Fundamentals of 
Finite Element Analysis

Back Matter Appendix C: Solution 
Techniques for Linear 
Algebraic Equations

© The McGraw−Hill 
Companies, 2004

C.3 LU Decomposition 467

are repeated so that all elements in the second column below a (1)
22 become 0. Car-

rying out the computations, using each successive diagonal element as the pivot
element, transforms the system of equations to the form of Equation C.14. The
solution is then obtained, as noted, by back substitution

xn = gn

bnn

xn−1 = 1

bn−1,n−1
(gn−1 − bn−1,n xn)

...

(C.18)

xi = 1

bii

(

gi −
n∑

j=i+1

bi j x j

)

The Gauss elimination procedure is easily programmed using array storage
and looping functions (DO loops), and it is much more efficient than inverting
the coefficient matrix. If the coefficient matrix is symmetric (common to many
finite element formulations), storage requirements for the matrix can be reduced
considerably, and the Gauss elimination algorithm is also simplified.

C.3 LU DECOMPOSITION
Another efficient method for solving systems of linear equations is the so-called
LU decomposition method. In this method, a system of linear algebraic equa-
tions, as in Equation C.14, are to be solved. The procedure is to decompose the
coefficient matrix [A] into two components [L] and [U ] so that 

[A] = [L][U ] =








L11 0 · · · 0
L21 L22 · · · 0
...

...
. . .

...

Ln1 Ln2 · · · Lnn















U11 U12 · · · U1n

0 U22 · · · U2n
...

...
. . .

...

0 · · · · · · Unn








(C.19)

Hence, [L] is a lower triangular matrix and [U] is an upper triangular matrix.
Here, we assume that [A] is a known n × n square matrix. Expansion of Equa-
tion C.19 shows that we have a system of equations with a greater number of
unknowns than the number of equations, so the decomposition into the LU rep-
resentation is not well defined. In the LU method, the diagonal elements of [L]
must have unity value, so that 

[L] =








1 0 · · · 0
L21 1 · · · 0
...

...
. . .

...

Ln1 Ln2 · · · 1








(C.20)
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For illustration, we assume a 3 × 3 system and write




a11 a12 a13

a21 a22 a23

a31 a32 a33



 =




1 0 0
L21 1 0
L31 L32 1









U11 U12 U13

0 U22 U23

0 0 U33



 (C.21)

Matrix Equation C.21 represents these nine equations:

a11 = U11

a12 = U12

a21 = L21U11

a22 = L21U12 + U22

a13 = U13

a31 = L31U11

a32 = L31U12 + L32U22

a23 = L21U13 + U23

a33 = L31U13 + L32U23 + U33

(C.22)

Equation C.22 is written in a sequence such that, at each step, only a single un-
known appears in the equation. We rewrite the coefficient matrix [A] and divide
the matrix into “zones” as

©1 ©2 ©3

[A] =




a11 a12 a13

a21 a22 a23

a31 a32 a33



��
�

����

�
� (C.23)

With reference to Equation C.22, we observe that the first equation corresponds
to zone 1, the next three equations represent zone 2, and the last five equations
represent zone 3. In each zone, the equations include only the elements of [A]
that are in the zone and only elements of [L ] and [U ] from previous zones and
the current zone. Hence, the LU decomposition procedure described here is also
known as an active zone method.

For a system of n equations, the procedure is readily generalized to obtain
the following results

U1i = a1i

L ii = 1

i = 1, n
(C.24)

Li1 = ai1

U11
i = 2, n (C.25)
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The remaining terms obtained from active zone i, with i ranging from 2 to n, are

Li j =
ai j −

j−1∑

m=1
LimUmj

Uj j

Uji = aji −
j−1∑

m=1

L jmUmi

i = 2, n j = 2, 3, 4, . . . , i − 1 i �= j (C.26)

Uii = aii −
i−1∑

m=1

LimUmi i = 2, n (C.27)

Thus, the decomposition procedure is straightforward and readily amenable to
computer implementation.

Now that the decomposition procedure has been developed, we return to the
task of solving the equations. As we now have the equations expressed in the
form of the triangular matrices [L ] and [U ] as

[L ][U ]{x } = { f } (C.28)

we see that the product

[U ]{x } = {z} (C.29)

is an n × 1 column matrix, so Equation C.28 can be expressed as

[L ]{z} = { f } (C.30)

and owing to the triangular structure of [L], the solution for Equation C.30 is
obtained easily as (in order)

z1 = f1

zi = fi −
i−1∑

j=1

Li j z j i = 2, n
(C.31)

Formation of the intermediate solutions, represented by Equation C.31, is gener-
ally referred to as the forward sweep.

With the zi value known from Equation C.31, the solutions for the original
unknowns are obtained via Equation C.29 as

xn = zn

Unn

xi = 1

Uii

(

zi −
n∑

j=i+1

Ui j x j

) (C.32)

The process of solution represented by Equation C.32 is known as the backward
sweep or back substitution.
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5 4 3

3 2 1456

2 1

U6, F6 U5, F5 U4, F4 U3, F3 U2, F2 U1, F1

x

Figure C.1 A system of bar elements used to illustrate the frontal
solution method.

In the LU method, the major computational time is expended in decompos-
ing the coefficient matrix into the triangular forms. However, this step need be
accomplished only once, after which the forward sweep and back substitution
processes can be applied to any number of different right-hand forcing functions
{ f }. Further, if the coefficient matrix is symmetric and banded (as is most often
the case in finite element analysis), the method can be quite efficient.

C.4 FRONTAL SOLUTION
The frontal solution method (also known as the wave front solution) is an espe-
cially efficient method for solving finite element equations, since the coefficient
matrix (the stiffness matrix) is generally symmetric and banded. In the frontal
method, assembly of the system stiffness matrix is combined with the solution
phase. The method results in a considerable reduction in computer memory re-
quirements, especially for large models.

The technique is described with reference to Figure C.1, which shows an
assemblage of one-dimensional bar elements. For this simple example, we know
that the system equations are of the form











K11 K12 0 0 0 0
K12 K22 K23 0 0 0
0 K23 K33 K34 0 0
0 0 K34 K44 K45 0
0 0 0 K45 K55 K56

0 0 0 0 K56 K66

















U1

U2

U3

U4

U5

U6







=







F1

F2

F3

F4

F5

F6







(C.33)

Clearly, the stiffness matrix is banded and sparse (many zero-valued terms). In
the frontal solution technique, the entire system stiffness matrix is not assembled
as such. Instead, the method utilizes the fact that a degree of freedom (an un-
known) can be eliminated when the rows and columns of the stiffness matrix cor-
responding to that degree of freedom are complete. In this context, eliminating a
degree of freedom means that we can write an equation for that degree of free-
dom in terms of other degrees of freedom and forcing functions. When such an
equation is obtained, it is written to a file and removed from memory. As is
shown, the net result is triangularization of the system stiffness matrix and the
solutions are obtained by simple back substitution.
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For simplicity of illustration, let each element in Figure C.1 have character-
istic stiffness k. We begin by defining a 6 × 6 null matrix [K] and proceed with
the assembly step, taking the elements in numerical order. Adding the element
stiffness matrix for element 1 to the system matrix, we obtain











k −k 0 0 0 0
−k k 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















U1

U2

U3

U4

U5

U6







=







F1

F2

F3

F4

F5

F6







(C.34)

Since U1 is associated only with element 1, displacement U1 appears in none of
the other equations and can be eliminated now. (To illustrate the effect on the
matrix, we do not actually eliminate the degree of freedom from the equations.)
The first row of Equation C.34 is

kU1 − kU2 = F1 (C.35)

and can be solved for U1 once U2 is known. Mathematically eliminating U1 from
the second row, we have











k −k 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















U1

U2

U3

U4

U5

U6







=







F1

F1 + F2

F3

F4

F5

F6







(C.36)

Next, we “process” element 2 and add the element stiffness matrix terms to the
appropriate locations in the coefficient matrix to obtain











k −k 0 0 0 0
0 k −k 0 0 0
0 −k k 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















U1

U2

U3

U4

U5

U6







=







F1

F1 + F2

F3

F4

F5

F6







(C.37)

Displacement U2 does not appear in any remaining equations and is now elimi-
nated to obtain











k −k 0 0 0 0
0 k −k 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















U1

U2

U3

U4

U5

U6







=







F1

F1 + F2

F1 + F2 + F3

F4

F5

F6







(C.38)
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In sequence, processing the remaining elements and following the elimination
procedure results in











k −k 0 0 0 0
0 k −k 0 0 0
0 0 k −k 0 0
0 0 0 k −k 0
0 0 0 0 k −k
0 0 0 0 −k k

















U1

U2

U3

U4

U5

U6







=







F1

F1 + F2

F1 + F2 + F3

F1 + F2 + F3 + F4

F1 + F2 + F3 + F4 + F5

F6







(C.39)

Noting that the last equation in the system of Equation C.39 is a constraint equa-
tion (and could have been ignored at the beginning), we observe that the proce-
dure has triangularized the system stiffness matrix without formally assembling
that matrix. If we take out the constraint equation, the remaining equations are
easily solved by back substitution. Also note that the forces are assumed to be
known.

The frontal solution method has been described in terms of one-dimensional
elements for simplicity. In fact, the speed and efficiency of the procedure are of
most advantage in large two- and three-dimensional models. The method is dis-
cussed briefly here so that the reader using a finite element software package that
uses a wave-type solution has some information about the procedure.


