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PREFACE

This book grew out of a suggestion by wilmott.com Mem-
ber ‘bayes’ for a Forum (as in ‘internet discussion
group’) dedicated to gathering together answers to

the most common quanty questions. We responded
positively, as is our wont, and the Wilmott Quantita-
tive Finance FAQs Project was born. This Forum may
be found at www.wilmott.com/faq. (There anyone may
read the FAQ answers, but to post a message you must
be a member. Fortunately, this is entirely free!) The
FAQs project is one of the many collaborations between
Members of wilmott.com.

As well as being an ongoing online project, the FAQs
have inspired the book you are holding. It includes
FAQs and their answers and also sections on common
models and formulae, many different ways to derive the
Black-Scholes model, the history of quantitative finance,
a selection of brainteasers and a couple of sections for
those who like lists (there are lists of the most popular
quant books and search items on wilmott.com). Right at
the end is an excerpt from Paul and Dominic’s Guide to
Getting a Quant Job, this will be of interest to those of
you seeking their first quant role.

FAQs in QF is not a shortcut to an in-depth knowledge
of quantitative finance. There is no such shortcut. How-
ever, it will give you tips and tricks of the trade, and
insight, to help you to do your job or to get you through
initial job interviews. It will serve as an aide memoire
to fundamental concepts (including why theory and
practice diverge) and some of the basic Black-Scholes
formulee and greeks. The subject is forever evolving,
and although the foundations are fairly robust and
static there are always going to be new products and
models. So, if there are questions you would like to see
answered in future editions please drop me an email at
paul@wilmott.com.
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2 Frequently Asked Questions In Quantitative Finance

There follows a speedy, roller-coaster of a ride
through the history of quantitative finance, passing
through both the highs and lows. Where possible I give
dates, name names and refer to the original sources.!

71827 Brown The Scottish botanist, Robert Brown, gave
his name to the random motion of small particles in a
liquid. This idea of the random walk has permeated
many scientific fields and is commonly used as the
model mechanism behind a variety of unpredictable
continuous-time processes. The lognormal random walk
based on Brownian motion is the classical paradigm for
the stock market. See Brown (1827).

7900 Bachelier Louis Bachelier was the first to quantify
the concept of Brownian motion. He developed a mathe-
matical theory for random walks, a theory rediscovered
later by Einstein. He proposed a model for equity prices,
a simple normal distribution, and built on it a model
for pricing the almost unheard of options. His model
contained many of the seeds for later work, but lay
‘dormant’ for many, many years. It is told that his thesis
was not a great success and, naturally, Bachelier’s work
was not appreciated in his lifetime. See Bachelier (1995).

7905 Einstein Albert Einstein proposed a scientific foun-
dation for Brownian motion in 1905. He did some other
clever stuff as well. See Stachel (1990).

71977 Richardson Most option models result in diffusion-
type equations. And often these have to be solved
numerically. The two main ways of doing this are Monte

1A version of this chapter was first published in New Direc-
tions in Mathematical Finance, edited by Paul Wilmott and Hen-
rik Rasmussen, John Wiley & Sons, 2002.
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Carlo and finite differences (a sophisticated version of
the binomial model). The very first use of the finite-
difference method, in which a differential equation is
discretized into a difference equation, was by Lewis
Fry Richardson in 1911, and used to solve the dif-
fusion equation associated with weather forecasting.
See Richardson (1922). Richardson later worked on the
mathematics for the causes of war.

1923 Wiener Norbert Wiener developed a rigorous the-
ory for Brownian motion, the mathematics of which was
to become a necessary modelling device for quantita-
tive finance decades later. The starting point for almost
all financial models, the first equation written down in
most technical papers, includes the Wiener process as
the representation for randomness in asset prices. See
Wiener (1923).

19505 Samuelson The 1970 Nobel Laureate in Economics,
Paul Samuelson, was responsible for setting the tone
for subsequent generations of economists. Samuelson
‘mathematized’ both macro and micro economics. He
rediscovered Bachelier’s thesis and laid the foundations
for later option pricing theories. His approach to deriva-
tive pricing was via expectations, real as opposed to the
much later risk-neutral ones. See Samuelson (1995).

19571 It Where would we be without stochastic or Ito
calculus? (Some people even think finance is only about
Itd calculus.) Kiyosi [t6 showed the relationship between
a stochastic differential equation for some independent
variable and the stochastic differential equation for a
function of that variable. One of the starting points for
classical derivatives theory is the lognormal stochastic
differential equation for the evolution of an asset. Itd’s
lemma tells us the stochastic differential equation for
the value of an option on that asset.
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In mathematical terms, if we have a Wiener process
X with increments dX that are normally distributed
with mean zero and variance dt then the increment of a
function F(X) is given by
dF 1 d*F

dF = adX +3 ﬁdt
This is a very loose definition of It6’s lemma but will
suffice. See Ito (1951).

1952 Markowitz Harry Markowitz was the first to pro-
pose a modern quantitative methodology for portfolio
selection. This required knowledge of assets’ volatili-
ties and the correlation between assets. The idea was
extremely elegant, resulting in novel ideas such as
‘efficiency’ and ‘market portfolios.” In this Modern Port-
folio Theory, Markowitz showed that combinations of
assets could have better properties than any individual
assets. What did ‘better’ mean? Markowitz quantified a
portfolio’s possible future performance in terms of its
expected return and its standard deviation. The latter
was to be interpreted as its risk. He showed how to opti-
mize a portfolio to give the maximum expected return
for a given level of risk. Such a portfolio was said to be
‘efficient.” The work later won Markowitz a Nobel Prize
for Economics but is rarely used in practice because of
the difficulty in measuring the parameters volatility, and
especially correlation, and their instability.

1963 Sharpe, Lintner and Mossin  Willilam Sharpe of Stanford,
John Lintner of Harvard and Norwegian economist Jan
Mossin independently developed a simple model for
pricing risky assets. This Capital Asset Pricing Model
(CAPM) also reduced the number of parameters needed
for portfolio selection from those needed by Markowitz’s
Modern Portfolio Theory, making asset allocation theory
more practical. See Sharpe (1963), Lintner (1963) and
Mossin (1963).
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71966 Fama FEugene Fama concluded that stock prices
were unpredictable and coined the phrase “market effi-
ciency.” Although there are various forms of market
efficiency, in a nutshell the idea is that stock market
prices reflect all publicly available information, that no
person can gain an edge over another by fair means.
See Fama (1966).

19605 Sobol’, Faure, Hammersley, Haselgrove, Halton... Many
people were associated with the definition and devel-
opment of quasi random number theory or low-
discrepancy sequence theory. The subject concerns the
distribution of points in an arbitrary number of dimen-
sions so as to cover the space as efficiently as possible,
with as few points as possible. The methodology is
used in the evaluation of multiple integrals among other
things. These ideas would find a use in finance almost
three decades later. See Sobol’ (1967), Faure (1969),

091 . °
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0 0‘.1 0‘.2 0‘.3 0.‘4 0‘.5 0.‘6 0‘.7 0.‘8 0‘.9 1‘
Figure 1-1: They may not look like it, but these dots are distributed
deterministically so as to have very useful properties.
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Hammersley and Handscomb (1964), Haselgrove (1961)
and Halton (1960).

1968 Thorp Ed Thorp’s first claim to fame was that he
figured out how to win at casino Blackjack, ideas that
were put into practice by Thorp himself and written
about in his best-selling Beat the Dealer, the “book that
made Las Vegas change its rules.” His second claim to
fame is that he invented and built, with Claude Shannon,
the information theorist, the world’s first wearable com-
puter. His third claim to fame is that he was the first to
use the ‘correct’ formulee for pricing options, formulae
that were rediscovered and originally published several
years later by the next three people on our list. Thorp
used these formulee to make a fortune for himself and
his clients in the first ever quantitative finance-based
hedge fund. See Thorp (2002) for the story behind the
discovery of the Black-Scholes formulee.

1973 Black, Scholes and Merton Fischer Black, Myron
Scholes and Robert Merton derived the Black-Scholes
equation for options in the early seventies, publish-
ing it in two separate papers in 1973 (Black & Scholes,
1973, and Merton, 1973). The date corresponded almost
exactly with the trading of call options on the Chicago
Board Options Exchange. Scholes and Merton won the
Nobel Prize for Economics in 1997. Black had died

in 1995.

The Black-Scholes model is based on geometric Brown-
ian motion for the asset price S

dS=uSdt+ oS dX.
The Black-Scholes partial differential equation for the

value V of an option is then

AV 0%V Eh%
— 4+ 30°8 — +1S— — 1V =0.
ar 27 g Tas T
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1974 Merton, again In 1974 Robert Merton (Merton, 1974)
introduced the idea of modelling the value of a company
as a call option on its assets, with the company’s debt
being related to the strike price and the maturity of
the debt being the option’s expiration. Thus was born
the structural approach to modelling risk of default,
for if the option expired out of the money (i.e. assets
had less value than the debt at maturity) then the firm
would have to go bankrupt.

Credit risk became big, huge, in the 1990s. Theory and
practice progressed at rapid speed during this period,
urged on by some significant credit-led events, such as
the Long Term Capital Management mess. One of the
principals of LTCM was Merton who had worked on
credit risk two decades earlier. Now the subject really
took off, not just along the lines proposed by Merton
but also using the Poisson process as the model for
the random arrival of an event, such as bankruptcy
or default. For a list of key research in this area see
Schoénbucher (2003).

1977 Boyle Phelim Boyle related the pricing of options
to the simulation of random asset paths. He showed
how to find the fair value of an option by generating lots
of possible future paths for an asset and then looking
at the average that the option had paid off. The future
important role of Monte Carlo simulations in finance
was assured. See Boyle (1977).

1977 Vasicek So far quantitative finance hadn’t had much
to say about pricing interest rate products. Some people
were using equity option formulee for pricing interest
rate options, but a consistent framework for interest
rates had not been developed. This was addressed by
Vasicek. He started by modelling a short-term interest
rate as a random walk and concluded that interest rate
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Time

Figure 1-2: Simulations like this can be easily used to value
derivatives.

derivatives could be valued using equations similar to
the Black-Scholes partial differential equation.

Oldrich Vasicek represented the short-term interest rate
by a stochastic differential equation of the form

dr = p(r,t) dt + o (r,t) dX.

The bond pricing equation is a parabolic partial differ-
ential equation, similar to the Black-Scholes equation.
See Vasicek (1977).

1979 Cox, Ross, Rubinstein Boyle had shown how to price
options via simulations, an important and intuitively rea-
sonable idea, but it was these three, John Cox, Stephen
Ross and Mark Rubinstein, who gave option pricing
capability to the masses.

The Black-Scholes equation was derived using stochas-
tic calculus and resulted in a partial differential
equation. This was not likely to endear it to the thou-
sands of students interested in a career in finance. At
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uS

ot vS

Figure 1-3: The branching structure of the binomial model.

that time these were typically MBA students, not the
mathematicians and physicists that are nowadays found
on Wall Street. How could MBAs cope? An MBA was

a necessary requirement for a prestigious career in
finance, but an ability to count beans is not the same as
an ability to understand mathematics. Fortunately Cox,
Ross and Rubinstein were able to distil the fundamen-
tal concepts of option pricing into a simple algorithm
requiring only addition, subtraction, multiplication and
(twice) division. Even MBAs could now join in the fun.
See Cox, Ross and Rubinstein (1979).

1979-81 Harrison, Kreps, Pliska Until these three came
onto the scene quantitative finance was the domain of
either economists or applied mathematicians. Mike Har-
rison and David Kreps, in 1979, showed the relationship
between option prices and advanced probability theory,
originally in discrete time. Harrison and Stan Pliska in
1981 used the same ideas but in continuous time. From
that moment until the mid 1990s applied mathemati-
cians hardly got a look in. Theorem, proof everywhere
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you looked. See Harrison and Kreps (1979) and Harrison
and Pliska (1981).

7986 Ho and Lee One of the problems with the Vasicek
framework for interest rate derivative products was that
it didn’t give very good prices for bonds, the simplest
of fixed income products. If the model couldn’t even
get bond prices right, how could it hope to correctly
value bond options? Thomas Ho and Sang-Bin Lee found
a way around this, introducing the idea of yield curve
fitting or calibration. See Ho and Lee (1986).

1992 Heath, Jarrow and Morton Although Ho and Lee
showed how to match theoretical and market prices for
simple bonds, the methodology was rather cumbersome
and not easily generalized. David Heath, Robert Jarrow
and Andrew Morton took a different approach. Instead
of modelling just a short rate and deducing the whole
yield curve, they modelled the random evolution of the
whole yield curve. The initial yield curve, and hence the
value of simple interest rate instruments, was an input
to the model. The model cannot easily be expressed

in differential equation terms and so relies on either
Monte Carlo simulation or tree building. The work was
well known via a working paper, but was finally pub-
lished, and therefore made respectable in Heath, Jarrow
and Morton (1992).

19905 Cheyette, Barrett, Moore, Wilmott When there are
many underlyings, all following lognormal random walks
you can write down the value of any European non
path-dependent option as a multiple integral, one dimen-
sion for each asset. Valuing such options then becomes
equivalent to calculating an integral. The usual methods
for quadrature are very inefficient in high dimensions,
but simulations can prove quite effective. Monte Carlo
evaluation of integrals is based on the idea that an inte-
gral is just an average multiplied by a ‘volume.” And
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since one way of estimating an average is by picking
numbers at random we can value a multiple integral
by picking integrand values at random and summing.
With N function evaluations, taking a time of O(/V) you
can expect an accuracy of O(1/N'/?), independent of
the number of dimensions. As mentioned above, break-
throughs in the 1960s on low-discrepancy sequences
showed how clever, non-random, distributions could
be used for an accuracy of O(1/N), to leading order.
(There is a weak dependence on the dimension.) In
the early 1990s several groups of people were simul-
taneously working on valuation of multi-asset options.
Their work was less of a breakthrough than a transfer
of technology.

They used ideas from the field of number theory

and applied them to finance. Nowadays, these low-
discrepancy sequences are commonly used for option
valuation whenever random numbers are needed. A few
years after these researchers made their work public,

a completely unrelated group at Columbia University
successfully patented the work. See Oren Cheyette
(1990) and John Barrett, Gerald Moore and Paul Wilmott
(1992).

1994 Dupire, Rubinstein, Perman and Kani Another discovery
was made independently and simultaneously by three
groups of researchers in the subject of option pricing
with deterministic volatility. One of the perceived prob-
lems with classical option pricing is that the assumption
of constant volatility is inconsistent with market prices
of exchange-traded instruments. A model is needed that
can correctly price vanilla contracts, and then price
exotic contracts consistently. The new methodology,
which quickly became standard market practice, was
to find the volatility as a function of underlying and
time that when put into the Black-Scholes equation and
solved, usually numerically, gave resulting option prices
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which matched market prices. This is what is known as
an inverse problem, use the ‘answer’ to find the coeffi-
cients in the governing equation. On the plus side, this
is not too difficult to do in theory. On the minus side the
practice is much harder, the sought volatility function
depending very sensitively on the initial data. From a
scientific point of view there is much to be said against
the methodology. The resulting volatility structure never
matches actual volatility, and even if exotics are priced
consistently it is not clear how to best hedge exotics
with vanillas so as to minimize any model error. Such
concerns seem to carry little weight, since the method
is so ubiquitous. As so often happens in finance, once a
technique becomes popular it is hard to go against the
majority. There is job safety in numbers. See Emanuel
Derman and Iraj Kani (1994), Bruno Dupire (1994) and
Mark Rubinstein (1994).

1996 Avellaneda and Paris Marco Avellaneda and Anto-
nio Paras were, together with Arnon Levy and Terry
Lyons, the creators of the uncertain volatility model
for option pricing. It was a great breakthrough for the
rigorous, scientific side of finance theory, but the best
was yet to come. This model, and many that succeeded
it, was non linear. Nonlinearity in an option pricing
model means that the value of a portfolio of contracts
is not necessarily the same as the sum of the values
of its constituent parts. An option will have a different
value depending on what else is in the portfolio with it,
and an exotic will have a different value depending on
what it is statically hedged with. Avellaneda and Paras
defined an exotic option’s value as the highest possible
marginal value for that contract when hedged with any
or all available exchange-traded contracts. The result
was that the method of option pricing also came with
its own technique for static hedging with other options.
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Prior to their work the only result of an option pricing
model was its value and its delta, only dynamic hedging
was theoretically necessary. With this new concept,
theory became a major step closer to practice. Another
result of this technique was that the theoretical price
of an exchange-traded option exactly matched its mar-
ket price. The convoluted calibration of volatility surface
models was redundant. See Avellaneda and Paras (1996).

1997 Brace, Gatarek and Musiela Although the HIM inter-
est rate model had addressed the main problem with
stochastic spot rate models, and others of that ilk, it
still had two major drawbacks. It required the existence
of a spot rate and it assumed a continuous distribution
of forward rates. Alan Brace, Dariusz Gatarek and Marek
Musiela (1997) got around both of those difficulties by
introducing a model which only relied on a discrete set
of rates, ones that actually are traded. As with the HIM
model the initial data are the forward rates so that bond
prices are calibrated automatically. One specifies a num-
ber of random factors, their volatilities and correlations
between them, and the requirement of no arbitrage then
determines the risk-neutral drifts. Although B, G and M
have their names associated with this idea many others
worked on it simultaneously.

2000 Li As already mentioned, the 1990s saw an explo-
sion in the number of credit instruments available,
and also in the growth of derivatives with multiple
underlyings. It’s not a great step to imagine contracts
depending of the default of many underlyings. Examples
of these are the ubiquitous Collateralized Debt Obliga-
tions (CDOs). But to price such complicated instruments
requires a model for the interaction of many com-
panies during the process of default. A probabilistic
approach based on copulas was proposed by David Li



7 4’ Frequently Asked Questions In Quantitative Finance

(2000). The copula approach allows one to join together
(hence the word ‘copula’) default models for individual
companies in isolation to make a model for the proba-
bilities of their joint default. The idea has been adopted
universally as a practical solution to a complicated
problem.

2002 Hagan, Kumar, Lesniewski, Woodward There has always
been a need for models that are both fast and match
traded prices well. The interest-rate model of Pat Hagan,
Deep Kumar, Andrew Lesniewski & Diana Woodward
(2002) which has come to be called the SABR (stochas-
tic, @, B, p) model is a model for a forward rate and its
volatility, both of which are stochastic. This model is
made tractable by exploiting an asymptotic approxima-
tion to the governing equation that is highly accurate in
practice. The asymptotic analysis simplifies a problem
that would otherwise have to be solved numerically.
Although asymptotic analysis has been used in financial
problems before, for example in modelling transaction
costs, this was the first time it really entered main-
stream quantitative finance.
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What are the Different Types of
Mathematics Found in Quantitative
Finance?

Short Answer

The fields of mathematics most used in quantitative
finance are those of probability theory and differen-
tial equations. And, of course, numerical methods are
usually needed for producing numbers.

Example

The classical model for option pricing can be writ-
ten as a partial differential equation. But the same
model also has a probabilistic interpretation in terms
of expectations.

Long Answer

The real-world subject of quantitative finance uses tools
from many branches of mathematics. And financial
modelling can be approached in a variety of different
ways. For some strange reason the advocates of differ-
ent branches of mathematics get quite emotional when
discussing the merits and demerits of their method-
ologies and those of their ‘opponents.’ [s this a terri-
torial thing, what are the pros and cons of martingales
and differential equations, what is all this fuss and will
it end in tears before bedtime?

Here’s a list of the various approaches to modelling
and a selection of useful tools. The distinction between a
‘modelling approach’ and a ‘tool’ will start to become clear.

Modelling approaches:

e Probabilistic
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e Deterministic
e Discrete: difference equations
e Continuous: differential equations

Useful tools:

¢ Simulations

e Approximations

e Asymptotic analysis
Series solutions
Discretization methods
Green’s functions

While these are not exactly arbitrary lists, they are
certainly open to some criticism or addition. Let’s first
take a look at the modelling approaches.

Probabilistic: One of the main assumptions about the
financial markets, at least as far as quantitative finance
goes, is that asset prices are random. We tend to think
of describing financial variables as following some ran-
dom path, with parameters describing the growth of
the asset and its degree of randomness. We effectively
model the asset path via a specified rate of growth,

on average, and its deviation from that average. This
approach to modelling has had the greatest impact over
the last 30 years, leading to the explosive growth of the
derivatives markets.

Deterministicc The idea behind this approach is that our
model will tell us everything about the future. Given
enough data, and a big enough brain, we can write
down some equations or an algorithm for predicting the
future. Interestingly, the subjects of dynamical systems
and chaos fall into this category. And, as you know,
chaotic systems show such sensitivity to initial condi-
tions that predictability is in practice impossible. This
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is the ‘butterfly effect,’ that a butterfly flapping its wings
in Brazil will ‘cause’ rainfall over Manchester. (And what
doesn’t!) A topic popular in the early 1990s, this has not
lived up to its promises in the financial world.

Discrete/Continuous: Whether probabilistic or determinis-
tic the eventual model you write down can be discrete
or continuous. Discrete means that asset prices and/or
time can only be incremented in finite chunks, whether
a dollar or a cent, a year or a day. Continuous means
that no such lower increment exists. The mathemat-
ics of continuous processes is often easier than that

of discrete ones. But then when it comes to number
crunching you have to anyway turn a continuous model
into a discrete one.

In discrete models we end up with difference equations.
An example of this is the binomial model for option
pricing. Time progresses in finite amounts, the time
step. In continuous models we end up with differential
equations. The equivalent of the binomial model in dis-
crete space is the Black—-Scholes model, which has con-
tinuous asset price and continuous time. Whether bino-
mial or Black-Scholes, both of these models come from
the probabilistic assumptions about the financial world.

Now let’s take a look at some of the tools available.

Simulations: If the financial world is random then we
can experiment with the future by running simulations.
For example, an asset price may be represented by

its average growth and its risk, so let’s simulate what
could happen in the future to this random asset. If

we were to take such an approach we would want to
run many, many simulations. There’'d be little point in
running just the one, we’d like to see a range of possible
future scenarios.
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Simulations can also be used for non-probabilistic prob-
lems. Just because of the similarities between mathe-
matical equations a model derived in a deterministic
framework may have a probabilistic interpretation.

Discretization methods: The complement to simulation
methods, there are many types of these. The best known
of these are the finite-difference methods which are
discretizations of continuous models such as Black—
Scholes.

Depending on the problem you are solving, and unless
it’s very simple, you will probably go down the sim-
ulation or finite-difference routes for your number
crunching.

Approximations: In modelling we aim to come up with a
solution representing something meaningful and use-
ful, such as an option price. Unless the model is really
simple, we may not be able to solve it easily. This is
where approximations come in. A complicated model
may have approximate solutions. And these approxi-
mate solutions might be good enough for our purposes.

Asymptotic analysis:  This is an incredibly useful technique,
used in most branches of applicable mathematics, but
until recently almost unknown in finance. The idea is
simple, find approximate solutions to a complicated
problem by exploiting parameters or variables that

are either large or small, or special in some way. For
example, there are simple approximations for vanilla
option values close to expiry.

Green’s functions: This is a very special technique that

only works in certain situations. The idea is that solu-
tions to some difficult problems can be built up from
solutions to special solutions of a similar problem.
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What is Arbitrage?

Short Answer

Arbitrage is making a sure profit in excess of the risk-
free rate of return. In the language of quantitative
finance we can say an arbitrage opportunity is a port-
folio of zero value today which is of positive value in the
future with positive probability and of negative value in
the future with zero probability.

The assumption that there are no arbitrage opportun-
ities in the market is fundamental to classical finance
theory. This idea is popularly known as ‘there’s no such
thing as a free lunch.’

Example

An at-the-money European call option with a strike of
$100 and an expiration of six months is worth $8. A
European put with the same strike and expiration is
worth $6. There are no dividends on the stock and a
six-month zero-coupon bond with a principal of $100 is
worth $97.

Buy the call and a bond, sell the put and the stock,
which will bring in $ —8 — 97 + 6 + 100 = $1. At expira-
tion this portfolio will be worthless regardless of the
final price of the stock. You will make a profit of $1
with no risk. This is arbitrage. It is an example of the
violation of put-call parity.

Long Answer

The principle of no arbitrage is one of the founda-
tions of classical finance theory. In derivatives theory
it is assumed during the derivation of the binomial
model option pricing algorithm and in the Black-Scholes
model. In these cases it is rather more complicated than
the simple example given above. In the above example
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we set up a portfolio that gave us an immediate profit,
and that portfolio did not have to be touched until
expiration. This is a case of a static arbitrage. Another
special feature of the above example is that it does not
rely on any assumptions about how the stock price
behaves. So the example is that of model-independent
arbitrage. However, when deriving the famous option-
pricing models we rely on a dynamic strategy, called
delta hedging, in which a portfolio consisting of an
option and stock is constantly adjusted by purchase
or sale of stock in a very specific manner.

Now we can see that there are several types of arbitrage
that we can think of. Here is a list and description of the
most important.

e A static arbitrage is an arbitrage that does not
require rebalancing of positions

e A dynamic arbitrage is an arbitrage that requires
trading instruments in the future, generally contingent
on market states

e A statistical arbitrage is not an arbitrage but simply a
likely profit in excess of the risk-free return (perhaps
even suitably adjusted for risk taken) as predicted by
past statistics

e Model-independent arbitrage is an arbitrage which
does not depend on any mathematical model of
financial instruments to work. For example, an
exploitable violation of put-call parity or a violation of
the relationship between spot and forward prices, or
between bonds and swaps

e Model-dependent arbitrage does require a model. For
example, options mispriced because of incorrect
volatility estimate. To profit from the arbitrage you
need to delta hedge and that requires a model

Not all apparent arbitrage opportunities can be exploited
in practice. If you see such an opportunity in quoted
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prices on a screen in front of you then you are likely to
find that when you try to take advantage of them they
just evaporate. Here are several reasons for this.

Quoted prices are wrong or not tradeable

e Option and stock prices were not quoted
synchronously

e There is a bid-offer spread you have not accounted
for

e Your model is wrong, or there is a risk factor you

have not accounted for
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What is Put-Call Parity?

Short Answer

Put-call parity is a relationship between the prices of

a European-style call option and a European-style put
option, as long as they have the same strike and expira-
tion:

Call price — Put price = Stock price
— Strike price (present valued from expiration).

Example: Stock price is $98, a European call option
struck at $100 with an expiration of nine months has
a value of $9.07. The nine-month, continuously com-
pounded, interest rate is 4.5%. What is the value of the
put option with the same strike and expiration?

By rearranging the above expression we find
Put price = 9.07 — 98 + 100 e~ 0015x0.75 — 7,75,
The put must therefore be worth $7.75.

Long Answer
This relationship,

C—P=S—Ke T,

between European calls (value C) and puts (value P)
with the same strike (K) and expiration (7") valued at
time t is a result of a simple arbitrage argument. If you
buy a call option, at the same time write a put, and sell
stock short, what will your payoff be at expiration? If
the stock is above the strike at expiration you will have
S — K from the call, 0 from the put and —S from the
stock. A total of —K. If the stock is below the strike at
expiration you will have 0 from the call, —S again from
the stock, and —(K —.5) from the short put. Again a total
of —K. So, whatever the stock price is at expiration this
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portfolio will always be worth —K, a guaranteed amount.
Since this amount is guaranteed we can discount it back
to the present. We must have

C—P-S=-Ke T
This is put-call parity.

Another way of interpreting put-call parity is in terms
of implied volatility. Calls and puts with the same strike
and expiration must have the same implied volatility.

The beauty of put-call parity is that it is a model-
independent relationship. To value a call on its own
we need a model for the stock price, in particular its
volatility. The same is true for valuing a put. But to
value a portfolio consisting of a long call and a short
put (or vice versa), no model is needed. Such model-
independent relationships are few and far between in
finance. The relationship between forward and spot
prices is one, and the relationships between bonds and
swaps is another.

In practice options don’t have a single price, they have
two prices, a bid and an offer (or ask). This means
that when looking for violations of put-call parity you
must use bid (offer) if you are going short (long) the
options. This makes the calculations a little bit messier.
If you think in terms of implied volatility then it’'s much
easier to spot violations of put-call parity. You must
look for non-overlapping implied volatility ranges. For
example, suppose that the bid/offer on a call is 22%/25%
in implied volatility terms and that on a put (same strike
and expiration) is 21%/23%. There is an overlap between
these two ranges (22-23%) and so no arbitrage opportu-
nity. However, if the put prices were 19%/21% then there
would be a violation of put-call parity and hence an easy
arbitrage opportunity. Don’t expect to find many (or,
indeed, any) of such simple free-money opportunities in



30 Frequently Asked Questions In Quantitative Finance

practice though. If you do find such an arbitrage then
it usually disappears by the time you put the trade on.
See Kamara & Miller (1995) for details of the statistics
of no-arbitrage violations.

When there are dividends on the underlying stock dur-
ing the life of the options then we must adjust the
equation to allow for this. We now find that

C — P =S — Present value of all dividends — E e "0,

This, of course, assumes that we know what the divi-
dends will be.

If interest rates are not constant then just discount the
strike back to the present using the value of a zero-
coupon bond with maturity the same as expiration of
the option. Dividends should similarly be discounted.

When the options are American, put-call parity does
not hold. This is because the short position could be
exercised against you, leaving you with some exposure
to the stock price. Therefore you don’t know what you
will be worth at expiration. In the absence of dividends
it is theoretically never optimal to exercise an American
call before expiration, whereas an American put should
be exercised if the stock falls low enough.
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What is the Central Limit Theorem
and What are its Implications for
Finance?

Short Answer

The distribution of the average of a lot of random num-
bers will be normal (also known as Gaussian) even
when the individual numbers are not normally dis-
tributed.

Example

Play a dice game where you win $10 if you throw a six,
but lose $1 if you throw anything else. The distribution
of your profit after one coin toss is clearly not normal,
it’s bimodal and skewed, but if you play the game thou-
sands of times your total profit will be approximately
normal.

Long Answer

Let X1,Xo,...,X, be a sequence of random variables
which are independent and identically distributed (i.i.d.),
with finite mean, m and standard deviation s. The sum

n
S, = in
i=1

has mean mn and standard deviation s./n. The Central
Limit Theorem says that as n gets larger the distribution
of S, tends to the normal distribution. More accurately,
if we work with the scaled quantity

— S, —mn
Sn = Zn o T
s /n
then the distribution of S, converges to the normal

distribution with zero mean and unit standard devia-
tion as n tends to infinity. The cumulative distribution



32

0.9 1

0.8

0.7 4

0.6

0.5

0.4 4

0.3 4

0.2 4

0.1

Frequently Asked Questions In Quantitative Finance

for S, approaches that for the standardized normal
distribution.

In the next figure is the distribution for the above coin-
tossing experiment.

In the figure after is what your total profit will be like
after one thousand tosses.

Your expected profit after one toss is

1 5 5
3 X10+6 ><(—1)=€~0.833.

Your variance is therefore

1 5\ 5 5\% 605
€X<10_€> +€X<_1_€) =51

-1 0 1 2 3 4 5 6 7 8 9 10

Figure 2-1: Probabilities in a simple coin-tossing experiment: one
toss.
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Figure 2-2: Probabilities in a simple coin-tossing experiment: one
thousand tosses.

so a standard deviation of ,/605/54 ~ 1.097. After one
thousand tosses your expected profit is

1000 x g ~ 833.3

and your standard deviation is

605
1000 x = ° 34.7

See how the standard deviation has grown much less
than the expectation. That’s because of the square-
root rule.

In finance we often assume that equity returns are nor-
mally distributed. We could argue that this ought to be
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the case by saying that returns over any finite period,
one day, say, are made up of many, many trades over
smaller time periods, with the result that the returns
over the finite timescale are normal thanks to the
Central Limit Theorem. The same argument could be
applied to the daily changes in exchange rate rates, or
interest rates, or risk of default, etc. We find ourselves
using the normal distribution quite naturally for many
financial processes.

As often with mathematical ‘laws’ there is the ‘legal’
small print, in this case the conditions under which the
Central Limit Theorem applies. These are as follows.

e The random numbers must all be drawn from the
same distribution

e The draws must all be independent

e The distribution must have finite mean and standard
deviation

Of course, financial data may not satisfy all of these,
or indeed, any. In particular, it turns out that if you
try to fit equity returns data with non-normal distribu-
tions you often find that the best distribution is one
that has infinite variance. Not only does it complicate
the nice mathematics of normal distributions and the
Central Limit Theorem, it also results in infinite volatil-
ity. This is appealing to those who want to produce the
best models of financial reality but does rather spoil
many decades of financial theory and practice based on
volatility as a measure of risk for example.

However, you can get around these three restrictions to
some extent and still get the Central Limit Theorem, or
something very much like it. For example, you don’t
need to have completely identical distributions. As
long as none of the random variables has too much
more impact on the average than the others then it
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still works. You are even allowed to have some weak
dependence between the variables.

A generalization that is important in finance applies to
distributions with infinite variance. If the tails of the
individual distributions have a power-law decay, |x|~17¢
with 0 < @ < 2 then the average will tend to a stable
Lévy distribution.

If you add random numbers and get normal, what hap-
pens when you multiply them? To answer this question
we must think in terms of logarithms of the random
numbers.

Logarithms of random numbers are themselves random
(let’s stay with logarithms of strictly positive numbers).
So if you add up lots of logarithms of random numbers
you will get a normal distribution. But, of course, a
sum of logarithms is just the logarithm of a product,
therefore the logarithm of the product must be normal,
and this is the definition of lognormal: the product of
positive random numbers converges to lognormal.

This is important in finance because a stock price after
a long period can be thought of as its value on some
starting day multiplied by lots of random numbers, each
representing a random return. So whatever the distribu-
tion of returns is, the logarithm of the stock price will
be normally distributed. We tend to assume that equity
returns are normally distributed, and equivalently, equi-
ties themselves are lognormally distributed.
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How is Risk Defined in Mathematical
Terms?

Short Answer

In layman’s terms, risk is the possibility of harm or loss.
In finance it refers to the possibility of a monetary loss
associated with investments.

Example

The most common measure of risk is simply standard
deviation of portfolio returns. The higher this is, the
more randomness in a portfolio, and this is seen as a
bad thing.

Long Answer
Financial risk comes in many forms:

e Market risk: The possibility of loss due to movements
in the market, either as a whole or specific
investments

e Credit risk: The possibility of loss due to default on a
financial obligation

e Model risk: The possibility of loss due to errors in
mathematical models, often models of derivatives.
Since these models contain parameters, such as
volatility, we can also speak of parameter risk,
volatility risk, etc.

e Operational risk: The possibility of loss due to
people, procedures or systems. This includes human
error and fraud

e Legal risk: The possibility of loss due to legal action
or the meaning of legal contracts

Before looking at the mathematics of risk we should
understand the difference between risk, randomness
and uncertainty, all of which are important.
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When measuring risk we often use probabilistic con-
cepts. But this requires having a distribution for the
randomness in investments, a probability density func-
tion, for example. With enough data or a decent enough
model we may have a good idea about the distribution
of returns. However, without the data, or when embark-
ing into unknown territory we may be completely in the
dark as to probabilities. This is especially true when
looking at scenarios which are incredibly rare, or have
never even happened before. For example, we may have
a good idea of the results of an alien invasion, after all,
many scenarios have been explored in the movies, but
what is the probability of this happening? When you do
not know the probabilities then you have what Knight
(1921) termed ‘uncertainty.’

We can categorize these issues, following Knight, as
follows.

1. For risk the probabilities that specified events will
occur in the future are measurable and known, i.e.,
there is randomness but with a known probability
distribution. This can be further divided.

() a priori risk, such as the outcome of the roll of a
fair die

(b) estimable risk, where the probabilities can be
estimated through statistical analysis of the past,
for example, the probability of a one-day fall of ten
percent in the S&P index

2. With uncertainty the probabilities of future events
cannot be estimated or calculated.

In finance we tend to concentrate on risk with prob-
abilities we estimate, we then have all the tools of
statistics and probability for quantifying various aspects
of that risk. In some financial models we do attempt

to address the uncertain. For example the uncertain
volatility work of Avellaneda et al. (1995). Here volatility
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is uncertain, is allowed to lie within a specified range,
but the probability of volatility having any value is not
given. Instead of working with probabilities we now
work with worst-case scenarios. Uncertainty is therefore
more associated with the idea of stress testing port-
folios. CrashMetrics is another example of worst-case
scenarios and uncertainty.

A starting point for a mathematical definition of risk is
simply as standard deviation. This is sensible because of
the results of the Central Limit Theorem (CLT), that if
you add up a large number of investments what matters
as far as the statistical properties of the portfolio are
just the expected return and the standard deviation

of individual investments, and the resulting portfolio
returns are normally distributed. The normal distribu-
tion being symmetrical about the mean, the potential
downside can be measured in terms of the standard
deviation.

However, this is only meaningful if the conditions for
the CLT are satisfied. For example, if we only have a
small number of investments, or if the investments are
correlated, or if they don’t have finite variance,...then
standard deviation may not be relevant.

Another mathematical definition of risk is semi variance,
in which only downside deviations are used in the calcu-
lation. This definition is used in the Sortino performance
measure.

Artzner et al. (1997) proposed a set of properties that a
measure of risk should satisfy for it to be sensible. Such
risk measures are called coherent.
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What
Used?

15 Value at Risk and How 15 it

Short Answer

Value at Risk, or VaR for short, is a measure of the
amount that could be lost from a position, portfolio,
desk, bank, etc. VaR is generally understood to mean
the maximum loss an investment could incur at a given
confidence level over a specified time horizon. There
are other risk measures used in practice but this is the
simplest and most common.

Example

An equity derivatives hedge fund estimates that its
Value at Risk over one day at the 95% confidence level
is $500,000. This is interpreted as one day out of 20 the
fund expects to lose more than half a million dollars.

Long Answer

VaR calculations often assume that returns are normally
distributed over the time horizon of interest. Inputs for
a VaR calculation will include details of the portfolio
composition, the time horizon, and parameters govern-
ing the distribution of the underlyings. The latter set of
parameters includes average growth rate, standard devi-
ations (volatilities) and correlations. (If the time horizon
is short you can ignore the growth rate, as it will only
have a small effect on the final calculation.)

With the assumption of normality, VaR is calculated by
a simple formula if you have a simple portfolio, or by
simulations if you have a more complicated portfolio.
The difference between simple and complicated is
essentially the difference between portfolios without
derivatives and those with. If your portfolio only con-
tains linear instruments then calculations involving
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normal distributions, standard deviations, etc. can all be
done analytically. This is also the case if the time hori-
zon is short so that derivatives can be approximated by
a position of delta in the underlying.

The simulations can be quite straightforward, albeit
rather time consuming. Simulate many realizations of
all of the underlyings up to the time horizon using
traditional Monte Carlo methods. For each realization
calculate the portfolio’s value. This will give you a dis-
tribution of portfolio values at the time horizon. Now
look at where the tail of the distribution begins, the left-
hand 5% tail if you want 95% confidence, or the 1% tail
if you are working to 99% etc.

If you are working entirely with normal distributions
then going from one confidence level to another is just
a matter of looking at a table of numbers for the stan-
dardized normal distribution, see the table below. As
long as your time horizon is sufficiently short for the
growth to be unimportant you can use the square-root
rule to go from one time horizon to another. (The VaR
will scale with the square root of the time horizon,
this assumes that the portfolio return is also normally
distributed.)

An alternative to using a parameterized model for the
underlyings is to simulate straight from historical data,
bypassing the normal-distribution assumption alto-
gether.

VaR is a very useful concept in practice for the following
reasons.

e VaR is easily calculated for individual instruments,
entire portfolios, or at any level right up to an entire
bank or fund
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Table 2.1: Degree of confidence and the
relationship with deviation from the mean.

Degree of Number of standard
confidence deviations from
the mean

99% 2.326342

98% 2.053748

97% 1.88079

96% 1.750686

95% 1.644853

90% 1.281551

e You can adjust the time horizon depending on your
trading style. If you hedge every day you may want a
one-day horizon, if you buy and hold for many
months, then a longer horizon would be relevant

¢ It can be broken down into components, so you can
examine different classes of risk, or you can look at
the marginal risk of adding new positions to
your book

e It can be used to constrain positions of individual
traders or entire hedge funds

¢ [t is easily understood, by management, by investors,
by people who are perhaps not that technically
sophisticated

Of course, there are also valid criticisms as well.

¢ It does not tell you what the loss will be beyond the
VaR value

e VaR is concerned with typical market conditions, not
the extreme events

e It uses historical data, “like driving a car by looking
in the rear-view mirror only”
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e Within the time horizon positions could change
dramatically (due to normal trading or due to
hedging or expiration of derivatives)

A common criticism of traditional VaR has been that
it does not satisfy all of certain commonsense criteria.
Artzner et al. (1997) specify criteria that make a risk
measure coherent. And VaR as described above is
not coherent.

Prudence would suggest that other risk-measurement
methods are used in conjunction with VaR, including
but not limited to, stress testing under different real
and hypothetical scenarios, including the stressing of
volatility especially for portfolios containing derivatives.

References and Further Reading
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What is CrashMetrics?

Short Answer

CrashMetrics is a stress-testing methodology for eval-
uating portfolio performance in the event of extreme
movements in financial markets. Like CAPM it relates
moves in individual stocks to the moves in one or more
indices but only during large moves. It is applicable to
portfolios of equities and equity derivatives.

Example

Your portfolio contains many individual stocks and
many derivatives of different types. It is perfectly
constructed to profit from your view on the market
and its volatility. But what if there is a dramatic fall in
the market, perhaps 5%, what will the effect be on your
P&L? And if the fall is 10%, 20%...?

Long Answer

CrashMetrics is a very simple risk-management tool for
examining the effects of a large move in the market as
a whole. It is therefore of use for studying times when
diversification does not work.

If your portfolio consists of a single underlying equity
and its derivatives then the change in its value during a
crash, §I1, can be written as

ST1 = F(55),

where F(-) is the ‘formula’ for the portfolio, meaning
option-pricing formulee for all of the derivatives and
equity in the portfolio, and §S is the change in the
underlying.
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In CrashMetrics the risk in this portfolio is measured as
the worst case over some range of equity moves:

worst-case loss = min F(5S).
—3S—<85<sSt
This is the number that would be quoted as the possible
downside during a dramatic move in the market.

This downside can be reduced by adding derivatives
to the portfolio in an optimal fashion. This is called
Platinum Hedging. For example, if you want to use
some out-of-the-money puts to make this worst case not
so bad then you could optimize by choosing A so that
the worst case of

F(8S) + AF*(8S) — |A|C

represents an acceptable level of downside risk. Here
F*(4) is the ‘formula’ for the change in value of the
hedging contract, C is the ‘cost’ associated with each
hedging contract and X is the quantity of the contract
which is to be determined. In practice there would be
many such hedging contracts, not necessarily just an
out-of-the-money put, so you would sum over all of
them and then optimize.

CrashMetrics deals with any number of underlyings
by exploiting the high degree of correlation between
equities during extreme markets. We can relate the
return on the ith stock to the return on a representative
index, x, during a crash by

3S; N

2 e,

Si !
where «; is a constant crash coefficient. For example,
if the kappa for stock XYZ is 1.2 it means that when
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the index falls by 10% XYZ will fall by 12%. The crash
coefficient therefore allows a portfolio with many under-
lyings to be interpreted during a crash as a portfolio
on a single underlying, the index. We therefore consider
the worst case of

ST = F(8S1,...,85y) = F(k1xS51, . . ., knXSN)
as our measure of downside risk.

Again Platinum Hedging can be applied when we have
many underlyings. We must consider the worst case of

M
8TT = F(k1xS1, . . ., knXSn) + Z)»ka(Kl)CSl, o KNXSN)

k=1
M
= 1kl Cry
k=1

where F is the original portfolio and the Fjs are the
available hedging contracts.

CrashMetrics is very robust because

¢ it does not use unstable parameters such as
volatilities or correlations

e it does not rely on probabilities, instead considers
worst cases

CrashMetrics is a good risk tool because

e it is very simple and fast to implement

e it can be used to optimize portfolio insurance against
market crashes

CrashMetrics is used for

e analyzing derivatives portfolios under the threat of a

crash
e optimizing portfolio insurance
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e reporting risk
e providing trading limits to avoid intolerable
performance during a crash

References and Further Reading
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What is a Coherent Risk Measure and
What are its Properties?

Short Answer

A risk measure is coherent if it satisfies certain simple,
mathematical properties. One of these properties,
which some popular measures do not possess is sub-
additivity, that adding together two risky portfolios
cannot increase the measure of risk.

Example

Artzner et al. (1997) give a simple example of traditional
VaR which violates this, and illustrates perfectly the
problems of measures that are not coherent. Portfolio
X consists only of a far out-of-the-money put with one
day to expiry. Portfolio Y consists only of a far out-of-
the-money call with one day to expiry. Let us suppose
that each option has a probability of 4% of ending up in
the money. For each option individually, at the 95% con-
fidence level the one-day traditional VaR is effectively
zero. Now put the two portfolios together and there is
a 92% chance of not losing anything, 100% less two lots
of 4%. So at the 95% confidence level there will be a
significant VaR. Putting the two portfolios together has
in this example increased the risk. “A merger does not
create extra risk” (Artzner et al., 1997).

Long Answer

A common criticism of traditional VaR has been that

it does not satisfy all of certain commonsense criteria.
Artzner et al. (1997) defined the following set of sensible
criteria that a measure of risk, p(X) where X is a set of
outcomes, should satisfy. These are as follows.

1. Sub-additivity: p(X + Y) < p(X) + p(Y). This just says
that if you add two portfolios together the total risk
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can’t get any worse than adding the two risks
separately. Indeed, there may be cancellation effects
or economies of scale that will make the risk better.

2. Monotonicity: If X < Y for each scenario then
p(X) < p(Y). If one portfolio has better values than
another under all scenarios then its risk will be
better.

3. Positive homogeneity: For all » > 0, p(AX) = Ap(X).
Double your portfolio then you double your risk.

4. Translation invariance: For all constant c,
p(X + ¢) = p(X) — c. Think of just adding cash to a
portfolio, this would come off your risk.

A risk measure that satisfies all of these is called coher-
ent. The traditional, simple VaR measure is not coherent
since it does not satisfy the sub-additivity condition.
Sub-additivity is an obvious requirement for a risk
measure, otherwise there would be no risk benefit to
adding uncorrelated new trades into a book. If you have
two portfolios X and Y then this benefit can be defined
as

pX)+ p(Y) — p(X +7Y).

Sub-additivity says that this can only be non negative.

Lack of sub-additivity is a risk measure and can be
exploited in a form of regulatory arbitrage. All a bank
has to do is create subsidiary firms, in a reverse form
of the above example, to save regulatory capital.

With a coherent measure of risk, specifically because of
its sub-additivity, one can simply add together risks of
individual portfolios to get a conservative estimate of
the total risk.

Coherent measures Straightforward, no-nonsense, standard
deviation is coherent. This is not an entirely satisfactory
measure since it does not focus on the particularly
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damaging tail events. Another measure that is coherent
is Expected Shortfall. This is calculated as the average
of all the P&Ls making up the tail percentile of interest.
Suppose we are working with the 5% percentile, rather
than quoting this number (this would be traditional
VaR) instead calculate the average of all the P&Ls in
this 5% tail.

Attribution Having calculated a coherent measure of
risk, one often wants to attribute this to smaller units.
For example, a desk has calculated its risk and wants to
see how much each trader is responsible for. Similarly,
one may want to break down the risk into contributions
from each of the greeks in a derivatives portfolio. How
much risk is associated with direction of the market,
and how much is associated with volatility exposure,
for example.

References and Further Reading
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What is Modern Portfolio Theory?

Short Answer

The Modern Portfolio Theory (MPT) of Harry Markowitz
(1952) introduced the analysis of portfolios of invest-
ments by considering the expected return and risk

of individual assets and, crucially, their interrelation-
ship as measured by correlation. Prior to this investors
would examine investments individually, build up port-
folios of favoured stocks, and not consider how they
related to each other. In MPT diversification plays an
important role.

Example

Should you put all your money in a stock that has low
risk but also low expected return, or one with high
expected return but which is far riskier? Or perhaps
divide your money between the two. Modern Portfolio
Theory addresses this question and provides a frame-
work for quantifying and understanding risk and return.

Long Answer

In MPT the return on individual assets are represented
by normal distributions with certain mean and standard
deviation over a specified period. So one asset might
have an annualized expected return of 5% and an annu-
alized standard deviation (volatility) of 15%. Another
might have an expected return of —2% and a volatility of
10%. Before Markowitz, one would only have invested in
the first stock, or perhaps sold the second stock short.
Markowitz showed how it might be possible to better
both of these simplistic portfolios by taking into account
the correlation between the returns on these stocks.

In the MPT world of N assets there are 2N + N(N — 1)/2
parameters: expected return, one per stock; standard
deviation, one per stock; correlations, between any two
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stocks (choose two from N without replacement, order
unimportant). To Markowitz all investments and all port-
folios should be compared and contrasted via a plot

of expected return versus risk, as measured by stan-
dard deviation. If we write uy to represent the expected
return from investment or portfolio A (and similarly
for B, C, etc.) and op for its standard deviation then
investment/portfolio A is at least as good as B if

na>pup and o4 <op.

The mathematics of risk and return is very simple.
Consider a portfolio, I, of N assets, with W; being
the fraction of wealth invested in the ith asset. The
expected return is then

N
un =y Wi
i=1

and the standard deviation of the return, the risk, is

N N

on= |y > WiWpjoio}

i=1 j=1

where p;; is the correlation between the ith and jth
investments, with p; = 1.

Markowitz showed how to optimize a portfolio by find-
ing the Ws giving the portfolio the greatest expected
return for a prescribed level of risk. The curve in the
risk-return space with the largest expected return for
each level of risk is called the efficient frontier.

According to the theory, no one should hold portfolios
that are not on the efficient frontier. Furthermore, if

you introduce a risk-free investment into the universe of
assets, the efficient frontier becomes the tangential line
shown below. This line is called the Capital Market Line
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Figure 2-3: Reward versus risk, a selection of risky assets and the

efficient frontier (bold).

and the portfolio at the point at which it is tangential
is called the Market Portfolio. Now, again according to
the theory, no one ought to hold any portfolio of assets
other than the risk-free investment and the Market Port-
folio.

Harry Markowitz, together with Merton Miller and
William Sharpe, was awarded the Nobel Prize for Eco-
nomic Science in 1990.

References and Further Reading

Markowitz, HM 1952 Portfolio selection. Journal of Finance 7
(D) 77-91

Ingersoll, JE Jr 1987 Theory of Financial Decision Making. Row-
man & Littlefield



5. 4' Frequently Asked Questions In Quantitative Finance

What is the Capital Asset Pricing
Model?

Short Answer

The Capital Asset Pricing Model (CAPM) relates the
returns on individual assets or entire portfolios to the
return on the market as a whole. It introduces the con-
cepts of specific risk and systematic risk. Specific risk
is unique to an individual asset, systematic risk is that
associated with the market. In CAPM investors are com-
pensated for taking systematic risk but not for taking
specific risk. This is because specific risk can be diver-
sified away by holding many different assets.

Example

A stock has an expected return of 15% and a volatility of
20%. But how much of that risk and return are related
to the market as a whole? Because the less that can
be attributed to the behaviour of the market then the
better that stock will be for diversification purposes.

Long Answer

CAPM simultaneously simplified Markowitz’s Modern
Portfolio Theory (MPT), made it more practical and
introduced the idea of specific and systematic risk.
Whereas MPT has arbitrary correlation between all
investments, CAPM, in its basic form, only links invest-
ments via the market as a whole.

CAPM is an example of an equilibrium model, as
opposed to a no-arbitrage model such as Black-Scholes.

The mathematics of CAPM is very simple. We relate the
random return on the ith investment, R;, to the random
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return on the market as a whole (or some representative
index), Ry by

Ri = a; + BiRy + €;.
The ¢; is random with zero mean and standard deviation
e;, and uncorrelated with the market return Ry, and the
other ¢;. There are three parameters associated with
each asset, «;, f; and e;. In this representation we can
see that the return on an asset can be decomposed into
three parts: a constant drift; a random part common
with the index; a random part uncorrelated with the
index, ¢;. The random part ¢; is unique to the ith asset.
Notice how all the assets are related to the index but
are otherwise completely uncorrelated.

Let us denote the expected return on the index by uy
and its standard deviation by oy. The expected return
on the ith asset is then

i = o+ Bim
and the standard deviation

/22 2
oi =+/Bioy te;.

If we have a portfolio of such assets then the return is
given by

STI N N N N
S Wik = (z w) 4Ry (Z w,»,si) P> W
i=1 i=1 i=1 i=1

From this it follows that

N N
pn = (Z W,-ai) +E[Ru] (Z W,-ﬁ,-) :

i=1 i=1
Writing

N N
an=) W and pn=) Wi,

i=1 i=1
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we have
un = an + BnE[Ru] = an + Brim.
Similarly the risk in IT is measured by

N N N
on= | > WiWipjoj +)_ Wiei.
i=1

i=1 j=1

Note that if the weights are all about the same, N~!, then
the final terms inside the square root are also O(N~1).
Thus this expression is, to leading order as N — oo,

N
> WiBi
i=1
Observe that the contribution from the uncorrelated
es to the portfolio vanishes as we increase the num-
ber of assets in the portfolio; this is the risk associated
with the diversifiable risk. The remaining risk, which is
correlated with the index, is the undiversifiable system-
atic risk.

on = om = |Brlom.

Multi-index versions of CAPM can be constructed. Each
index being representative of some important financial
or economic variable.

The parameters alpha and beta are also commonly
referred to in the hedge-fund world. Performance reports
for trading strategies will often quote the alpha and beta
of the strategy. A good strategy will have a high, pos-
itive alpha with a beta close to zero. With beta being
small you would expect performance to be unrelated
to the market as a whole and with large, positive alpha
you would expect good returns whichever way the mar-
ket was moving. Small beta also means that a strategy
should be a valuable addition to a portfolio because of
its beneficial diversification.

Sharpe shared the 1990 Nobel Prize in Economics with
Harry Markowitz and Merton Miller.
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What is Arbitrage Pricing Theory?

Short Answer

The Arbitrage Pricing Theory (APT) of Stephen Ross
(1976) represents the returns on individual assets as

a linear combination of multiple random factors. These
random factors can be fundamental factors or statistical.
For there to be no arbitrage opportunities there must
be restrictions on the investment processes.

Example

Suppose that there are five dominant causes of ran-
domness across investments. These five factors might
be market as a whole, inflation, oil prices, etc. If you
are asked to invest in six different, well diversified
portfolios then either one of these portfolios will have
approximately the same risk and return as a suitable
combination of the other five, or there will be an arbi-
trage opportunity.

Long Answer

Modern Portfolio Theory represents each asset by its
own random return and then links the returns on dif-
ferent assets via a correlation matrix. In the Capital
Asset Pricing Model returns on individual assets are
related to returns on the market as a whole together
with an uncorrelated stock-specific random component.
In Arbitrage Pricing Theory returns on investments
are represented by a linear combination of multiple
random factors, with as associated factor weighting.
Portfolios of assets can also be decomposed in this
way. Provided the portfolio contains a sufficiently large
number of assets then the stock-specific component can
be ignored. Being able to ignore the stock-specific risk
is the key to the “A” in “APT.”
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We write the random return on the ith asset as

n
Ri=oa;i+ Z ﬂj,‘ﬁj + €,
=

where the I_i’j are the factors, the as and Bs are con-
stants and ¢; is the stock-specific risk. A portfolio of
these assets has return

N N n /N B
doaRi=) awi+) (Zaiﬂji) Rj+---,
i=1 i=1

j=1 \i=1

where the --- can be ignored if the portfolio is well
diversified.

Suppose that we think that five factors are sufficient to
represent the economy. We can therefore decompose
any portfolio into a linear combination of these five
factors, plus some supposedly negligible stock-specific
risks. If we are shown six diversified portfolios we can
decompose each into the five random factors. Since
there are more portfolios than factors we can find a
relationship between (some of) these portfolios, effec-
tively relating their values, otherwise there would be
an arbitrage. Note that the arbitrage argument is an
approximate one, relating diversified portfolios, on the
assumption that the stock-specific risks are negligible
compared with the factor risks.

In practice we can choose the factors to be macro-
economic or statistical. Here are some possible macro-
economic variables.

e an index level
e GDP growth
e an interest rate (or two)
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e a default spread on corporate bonds
e an exchange rate

Statistical variables come from an analysis of a covari-
ance of asset returns. From this one extracts the factors
by some suitable decomposition.

The main differences between CAPM and APT is that
CAPM is based on equilibrium arguments to get to the
concept of the Market Portfolio whereas APT is based
on a simple approximate arbitrage argument. Although
APT talks about arbitrage, this must be contrasted with
the arbitrage arguments we see in spot versus forward
and in option pricing. These are genuine exact arbi-
trages (albeit the latter being model dependent). In APT
the arbitrage is only approximate.

References and Further Reading

Ross, S 1976 The Arbitrage Theory of Capital Asset Pricing. J.
of Economic Theory 13 341-360



Chapter 2: FAQs 6’

What is Maximum Likelihooo
Estimation?

Short Answer

Maximum Likelihood Estimation (MLE) is a statisti-
cal technique for estimating parameters in a proba-
bility distribution. We choose parameters that maxi-
mize the a priori probability of the final outcome actu-
ally happening.

Example

You have three hats containing normally distributed
random numbers. One hat’s numbers have mean of zero
and standard deviation 0.1. This is hat A. Another hat’s
numbers have mean of zero and standard deviation 1.
This is hat B. The final hat’s numbers have mean of
zero and standard deviation 10. This is hat C. You don’t
know which hat is which.

You pick a number out of one hat, it is —2.6. Which hat
do you think it came from? MLE can help you answer
this question.

Long Answer

A large part of statistical modelling concerns finding
model parameters. One popular way of doing this is
Maximum Likelihood Estimation.

The method is easily explained by a very simple ex-
ample. You are attending a maths conference. You
arrive by train at the city hosting the event. You take
a taxi from the train station to the conference venue.
The taxi number is 20,922. How many taxis are there in
the city?

This is a parameter estimation problem. Getting into
a specific taxi is a probabilistic event. Estimating the
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number of taxis in the city from that event is a question
of assumptions and statistical methodology.

For this problem the obvious assumptions to make are:

1. Taxi numbers are strictly positive integers
2. Numbering starts at one

3. No number is repeated

4. No number is skipped

We will look at the probability of getting into taxi num-
ber 20,922 when there are N taxis in the city. This
couldn’t be simpler, the probability of getting into any
specific taxi is

1

/_V.
Which N maximizes the probability of getting into taxi
number 20,922? The answer is

N = 20,922.

This example explains the concept of MLE: Choose
parameters that maximize the probability of the outcome
actually happening.

Another example, more closely related to problems

in quantitative finance is the hat example above. You
have three hats containing normally distributed random
numbers. One hat’s numbers have mean of zero and
standard deviation 0.1. This is hat A. Another hat’s
numbers have mean of zero and standard deviation 1.
This is hat B. The final hat’s numbers have mean of zero
and standard deviation 10. This is hat C.

You pick a number out of one hat, it is —2.6. Which hat
do you think it came from?

The ‘probability’ of picking the number —2.6 from hat
A (having a mean of zero and a standard deviation of
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0.1) is

1 2.62
- = ) =6 10717,
V27 0.1 xp ( 2 x 0.12>

Very, very unlikely!

(N.B. The word ‘probability’ is in inverted commas to
emphasize the fact that this is the value of the proba-
bility density function, not the actual probability. The
probability of picking exactly —2.6 is, of course, zero.)

The ‘probability’ of picking the number —2.6 from hat B
(having a mean of zero and a standard deviation of 1) is

1 2.62
R - == _1=0.014
Var 1 exp( 2 12) !

and from hat C (having a mean of zero and a standard

deviation of 10)
1 2.62
- —_=2 ) =0.039.
V27 10 exp( 2 102)

We would conclude that hat C is the most likely, since it
has the highest probability for picking the number —2.6.

We now pick a second number from the same hat, it is
0.37. This looks more likely to have come from hat B.
We get the following table of probabilities.

Hat —-2.6 0.37 Joint
A 6 107147 0.004 2 1074
B 0.014 0.372 0.005
C 0.039 0.040 0.002

The second column represents the probability of draw-
ing the number —2.6 from each of the hats, the third
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column represents the probability of drawing 0.37 from
each of the hats, and the final column is the joint prob-
ability, that is, the probability of drawing both numbers
from each of the hats.

Using the information about both draws, we can see that
the most likely hat is now B.

Now let’s make this into precisely a quant finance
problem.

Find the volatility You have one hat containing normally
distributed random numbers, with a mean of zero and a
standard deviation of o which is unknown. You draw N
numbers ¢; from this hat. Estimate o.

Q. What is the ‘probability’ of drawing ¢; from a Normal
distribution with mean zero and standard deviation o?
A Ttis

$2
! e 27
V2o
Q. What is the ‘probability’ of drawing all of the numbers
é1,¢2,...,¢n from independent Normal distributions

with mean zero and standard deviation o?
A Ttis

N 1 - ﬁ

l_[ e 202,

i V2mo
Now choose the o that maximizes this quantity. This is
easy. First take logarithms of this expression, and the

differentiate with respect to ¢ and set result equal to
Zero:

i LS~ =0
do VIO~ 5,2 2 00 ) =0
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(A multiplicative factor has been ignored here.) lLe.

N
N o1,
Y Y g =0.
o+03i=1¢'

Therefore our best guess for o is given by

1 N
2_ _ 2
o° = N Z o; .
i=1
You should recognize this as a measure of the variance.

Quants’ salaries In the figure are the results of a 2004
survey on www.wilmott.com concerning the salaries of
quants using the Forum (or rather, those answering the
question!).

This distribution looks vaguely lognormal, with distribu-

tion
1 exp [ - (InE — InEy)?
V2noE 202 ’

where F is annual earnings, o is the standard deviation
and Ej the mean. We can use MLE find o and Ey.

It turns out that the mean Ey = $133,284, with ¢ = 0.833.

If you are a professional 'quant,”
how much do you earn?
Last year I earned:

$0-50k

i 8.51 (%)
$50-100k

] 28.37 (%
$100-200k

40.43 (%]

$200-500k

1] 14.18 (%]
$500k-1MM

m 5.67 (%)
More than $1MM

n 2.84 (%)

Figure 2-4: Distribution of quants’ salaries.
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What 15 Cointegration?

Short Answer

Two time series are cointegrated if a linear combination
has constant mean and standard deviation. In other
words, the two series never stray too far from one
another. Cointegration is a useful technique for studying
relationships in multivariate time series, and provides
a sound methodology for modelling both long-run and
short-run dynamics in a financial system.

Example

Suppose you have two stocks S; and S» and you find
that S; — 3 S5, is stationary, so that this combination
never strays too far from its mean. If one day this
‘spread’ is particularly large then you would have sound
statistical reasons for thinking the spread might shortly
reduce, giving you a possible source of statistical
arbitrage profit. This can be the basis for pairs trading.

Long Answer

The correlations between financial quantities are noto-
riously unstable. Nevertheless correlations are regularly
used in almost all multivariate financial problems. An
alternative statistical measure to correlation is cointe-
gration. This is probably a more robust measure of the
linkage between two financial quantities but as yet there
is little derivatives theory based on the concept.

Two stocks may be perfectly correlated over short
timescales yet diverge in the long run, with one grow-
ing and the other decaying. Conversely, two stocks may
follow each other, never being more than a certain dis-
tance apart, but with any correlation, positive, negative
or varying. If we are delta hedging then maybe the short
timescale correlation matters, but not if we are hold-
ing stocks for a long time in an unhedged portfolio. To
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see whether two stocks stay close together we need a
definition of stationarity. A time series is stationary if
it has finite and constant mean, standard deviation and
autocorrelation function. Stocks, which tend to grow,
are not stationary. In a sense, stationary series do not
wander too far from their mean.

Testing for the stationarity of a time series X; involves a
linear regression to find the coefficients a, b and c in

X[ :aX[,1 +b+Ct

If it is found that |a| > 1 then the series is unstable.

If —1 < a < 1 then the series is stationary. If a =1 then
the series is non stationary. As with all things statistical,
we can only say that our value for a is accurate with a
certain degree of confidence. To decide whether we
have got a stationary or non-stationary series requires
us to look at the Dickey-Fuller statistic to estimate the
degree of confidence in our result. So far, so good, but
from this point on the subject of cointegration gets
complicated.

How is this useful in finance? Even though individual
stock prices might be non stationary it is possible for
a linear combination (i.e., a portfolio) to be stationary.
Can we find A;, with Z{L A; = 1, such that

N
Z)»,’Si
i=1

is stationary? If we can, then we say that the stocks are
cointegrated.

For example, suppose we find that the S&P500 is coin-

tegrated with a portfolio of 15 stocks. We can then use
these fifteen stocks to track the index. The error in this
tracking portfolio will have constant mean and standard
deviation, so should not wander too far from its average.
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This is clearly easier than using all 500 stocks for the
tracking (when, of course, the tracking error would be
Zero).

We don’t have to track the index, we could track any-
thing we want, such as €% to choose a portfolio that
gets a 20% return. We could analyze the cointegration
properties of two related stocks, Nike and Reebok, for
example, to look for relationships. This would be pairs
trading. Clearly there are similarities with MPT and
CAPM in concepts such as means and standard devi-
ations. The important difference is that cointegration
assumes far fewer properties for the individual time
series. Most importantly, volatility and correlation do
not appear explicitly.

Another feature of cointegration is Granger causality
which is where one variable leads and another lags.
This is of help in explaining why there is any dynamic
relationship between several financial quantities.

References and Further Reading

Alexander, CO 2001 Market Models. John Wiley & Sons
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What is the Kelly criterion?

Short Answer

The Kelly criterion is a technique for maximizing ex-
pected growth of assets by optimally investing a fixed
fraction of your wealth in a series of investments. The
idea has long been used in the world of gambling.

Example

You own a biased coin that will lands heads up with
probability p > % You find someone willing to bet any
amount against you at evens. They are willing to bet any
number of times. Clearly you can make a lot of money
with this special coin. You start with $1000. How much
of this should you bet?

Long Answer

Let’s work with the above example. The first observa-
tion is that you should bet an amount proportional to
how much you have. As you win and your wealth grows
you will bet a larger amount. But you shouldn’t bet too
much. If you bet all $1000 you will eventually toss a tail
and lose everything and will be unable to continue. If
you bet too little then it will take a long time for you to
make a decent amount.

The Kelly criterion is to bet a certain fraction of your
wealth so as to maximize your expected growth of wealth.

We use ¢ to denote the random variable taking value

1 with probability p and —1 with probability 1 — p and
f to denote the fraction of our wealth that we bet. The
growth of wealth after each toss of the coin is then the
random amount

In(1 + £¢).
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The expected growth rate is

pln(1+Ff)+ A —-p)In(1 -1).
This function is plotted below for p = 0.55.

This expected growth rate is maximized by the choice
f=2p—1.

This is the Kelly fraction.

A betting fraction of less than this would be a conserva-

tive strategy. Anything to the right will add volatility to

returns, and decrease the expected returns. Too far to
the right and the expected return becomes negative.

This money management principle can be applied to
any bet or investment, not just the coin toss. More

0.01 -

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

-0.01 Betting fraction

-0.02 -

-0.03 ~

-0.04 -
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generally, if the investment has an expected return of
n and a standard deviation o > u then the expected
growth for an investment fraction of f is
E[In(1 + f¢)]
which can be approximated by Taylor series
fo — 32" +---.

The Kelly fraction, which comes from maximizing this
expression, is therefore

"

f=—.

o2
In practice, because the mean and standard deviation
are rarely known accurately, one would err on the side

of caution and bet a smaller fraction. A common choice
is half Kelly.

Other money management strategies are, of course,
possible, involving target wealth, probability of ruin, etc.

References and Further Reading
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Why Hedge?

Short Answer

‘Hedging’ in its broadest sense means the reduction of
risk by exploiting relationships or correlation (or lack of
correlation) between various risky investments. The pur-
pose behind hedging is that it can lead to an improved
risk/return. In the classical Modern Portfolio Theory
framework, for example, it is usually possible to con-
struct many portfolios having the same expected return
but with different variance of returns (‘risk’). Clearly, if
you have two portfolios with the same expected return
the one with the lower risk is the better investment.

Example

You buy a call option, it could go up or down in value
depending on whether the underlying go up or down. So
now sell some stock short. If you sell the right amount
short then any rises or falls in the stock position will
balance the falls or rises in the option, reducing risk.

Long Answer
To help understand why hedge it is useful to look at the
different types of hedging.

The two main classifications Probably the most important
distinction between types of hedging is between model-
independent and model-dependent hedging strategies.

Model-independent hedging: An example of such hedg-
ing is put-call parity. There is a simple relationship
between calls and puts on an asset (when they are
both European and with the same strikes and expiries),
the underlying stock and a zero-coupon bond with the
same maturity. This relationship is completely inde-
pendent of how the underlying asset changes in value.
Another example is spot-forward parity. In neither case
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do we have to specify the dynamics of the asset, not
even its volatility, to find a possible hedge. Such model-
independent hedges are few and far between.

Model-dependent hedging: Most sophisticated finance
hedging strategies depend on a model for the underly-
ing asset. The obvious example is the hedging used in
the Black-Scholes analysis that leads to a whole the-
ory for the value of derivatives. In pricing derivatives
we typically need to at least know the volatility of the
underlying asset. If the model is wrong then the option
value and any hedging strategy could also be wrong.

Delta hedging One of the building blocks of derivatives
theory is delta hedging. This is the theoretically per-
fect elimination of all risk by using a very clever hedge
between the option and its underlying. Delta hedging
exploits the perfect correlation between the changes

in the option value and the changes in the stock price.
This is an example of ‘dynamic’ hedging; the hedge must
be continually monitored and frequently adjusted by the
sale or purchase of the underlying asset. Because of the
frequent rehedging, any dynamic hedging strategy is
going to result in losses due to transaction costs. In
some markets this can be very important.

The ‘underlying’ in a delta-hedged portfolio could be a

traded asset, a stock for example, or it could be another
random quantity that determines a price such as a risk
of default. If you have two instruments depending on the
same risk of default, you can calculate the sensitivities,
the deltas, of their prices to this quantity and then buy
the two instruments in amounts inversely proportional

to these deltas (one long, one short). This is also delta
hedging.

If two underlyings are very highly correlated you can
use one as a proxy for the other for hedging purposes.
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You would then only be exposed to basis risk. Be careful
with this because there may be times when the close
relationship breaks down.

If you have many financial instruments that are uncorre-
lated with each other then you can construct a portfolio
with much less risk than any one of the instruments
individually. With a large such portfolio you can theo-
retically reduce risk to negligible levels. Although this
isn’t strictly hedging it achieves the same goal.

Gamma hedging To reduce the size of each rehedge
and/or to increase the time between rehedges, and thus
reduce costs, the technique of gamma hedging is often
employed. A portfolio that is delta hedged is insensitive
to movements in the underlying as long as those move-
ments are quite small. There is a small error in this due
to the convexity of the portfolio with respect to the
underlying. Gamma hedging is a more accurate form of
hedging that theoretically eliminates these second-order
effects. Typically, one hedges one, exotic, say, contract
with a vanilla contract and the underlying. The quan-
tities of the vanilla and the underlying are chosen so
as to make both the portfolio delta and the portfolio
gamma instantaneously zero.

Vega hedging The prices and hedging strategies are only
as good as the model for the underlying. The key param-
eter that determines the value of a contract is the
volatility of the underlying asset. Unfortunately, this is a
very difficult parameter to measure. Nor is it usually a
constant as assumed in the simple theories. Obviously,
the value of a contract depends on this parameter,
and so to ensure that a portfolio value is insensitive to
this parameter we can vega hedge. This means that we
hedge one option with both the underlying and another
option in such a way that both the delta and the vega,
the sensitivity of the portfolio value to volatility, are
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zero. This is often quite satisfactory in practice but is
usually theoretically inconsistent; we should not use a
constant volatility (basic Black-Scholes) model to cal-
culate sensitivities to parameters that are assumed not
to vary. The distinction between variables (underlying
asset price and time) and parameters (volatility, divi-
dend yield, interest rate) is extremely important here.
It is justifiable to rely on sensitivities of prices to vari-
ables, but usually not sensitivity to parameters. To get
around this problem it is possible to independently
model volatility, etc., as variables themselves. In such a
way it is possible to build up a consistent theory.

Static hedging There are quite a few problems with delta
hedging, on both the practical and the theoretical side.
In practice, hedging must be done at discrete times
and is costly. Sometimes one has to buy or sell a pro-
hibitively large number of the underlying in order to
follow the theory. This is a problem with barrier options
and options with discontinuous payoff. On the theoreti-
cal side, the model for the underlying is not perfect, at
the very least we do not know parameter values accu-
rately. Delta hedging alone leaves us very exposed to
the model, this is model risk. Many of these problems
can be reduced or eliminated if we follow a strategy

of static hedging as well as delta hedging; buy or sell
more liquid traded contracts to reduce the cashflows in
the original contract. The static hedge is put into place
now, and left until expiry. In the extreme case where
an exotic contract has all of its cashflows matched by
cashflows from traded options then its value is given by
the cost of setting up the static hedge; a model is not
needed. (But then the option wasn’t exotic in the first
place.)

Superhedging In incomplete markets you cannot eliminate
all risk by classical dynamic delta hedging. But some-
times you can superhedge meaning that you construct
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a portfolio that has a positive payoff whatever hap-
pens to the market. A simple example of this would be
to superhedge a short call position by buying one of
the stock, and never rebalancing. Unfortunately, as you
can probably imagine, and certainly as in this example,
superhedging might give you prices that differ vastly
from the market.

Margin hedging Often what causes banks, and other
institutions, to suffer during volatile markets is not

the change in the paper value of their assets but the
requirement to suddenly come up with a large amount
of cash to cover an unexpected margin call. Examples
where margin has caused significant damage are Met-
allgesellschaft and Long Term Capital Management.
Writing options is very risky. The downside of buy-
ing an option is just the initial premium, the upside may
be unlimited. The upside of writing an option is limited,
but the downside could be huge. For this reason, to
cover the risk of default in the event of an unfavourable
outcome, the clearing houses that register and settle
options insist on the deposit of a margin by the writers
of options. Margin comes in two forms, the initial mar-
gin and the maintenance margin. The initial margin is
the amount deposited at the initiation of the contract.
The total amount held as margin must stay above a pre-
scribed maintenance margin. If it ever falls below this
level then more money (or equivalent in bonds, stocks,
etc.) must be deposited. The amount of margin that
must be deposited depends on the particular contract.
A dramatic market move could result in a sudden large
margin call that may be difficult to meet. To prevent this
situation it is possible to margin hedge. That is, set up a
portfolio such that margin calls on one part of the port-
folio are balanced by refunds from other parts. Usually
over-the-counter contracts have no associated margin
requirements and so won’t appear in the calculation.
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Crash (Platinum) hedging The final variety of hedging is
specific to extreme markets. Market crashes have at
least two obvious effects on our hedging. First of all,
the moves are so large and rapid that they cannot
be traditionally delta hedged. The convexity effect is
not small. Second, normal market correlations become
meaningless. Typically all correlations become one (or
minus one). Crash or Platinum hedging exploits the
latter effect in such a way as to minimize the worst
possible outcome for the portfolio. The method, called
CrashMetrics, does not rely on parameters such as
volatilities and so is a very robust hedge. Platinum
hedging comes in two types: hedging the paper value
of the portfolio and hedging the margin calls.

References and Further Reading
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What is Marking to Market and How
Does it Affect Risk Management in
Derivatives Trading?

Short Answer

Marking to market means valuing an instrument at the
price at which it is currently trading in the market. If
you buy an option because you believe it is undervalued
then you will not see any profit appear immediately, you
will have to wait until the market value moves into line
with your own estimate. With an option this may not
happen until expiration. When you hedge options you
have to choose whether to use a delta based on the
implied volatility or your own estimate of volatility. If
you want to avoid fluctuations in your mark-to-market
P&L you will hedge using the implied volatility, even
though you may believe this volatility to be incorrect.

Example

A stock is trading at $47, but you think it is seriously
undervalued. You believe that the value should be $60.
You buy the stock. How much do you tell people your
little ‘portfolio’ is worth? $47 or $60? If you say $47
then you are marking to market, if you say $60 you
are marking to (your) model. Obviously this is open to
serious abuse and so it is usual, and often a regulatory
requirement, to quote the mark-to-market value. If you
are right about the stock value then the profit will be
realized as the stock price rises. Patience, my son.

Long Answer

If instruments are liquid, exchange traded, then marking
to market is straightforward. You just need to know
the most recent market-traded price. Of course, this
doesn’t stop you also saying what you believe the value
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to be, or the profit you expect to make. After all, you
presumably entered the trade because you thought you
would make a gain.

Hedge funds will tell their investors their Net Asset
Value based on the mark-to-market values of the liquid
instruments in their portfolio. They may estimate future
profit, although this is a bit of a hostage to fortune.

With futures and short options there are also margins to
be paid, usually daily, to a clearing house as a safeguard
against credit risk. So if prices move against you you
may have to pay a maintenance margin. This will be
based on the prevailing market values of the futures
and short options. (There is no margin on long options
positions because they are paid for up front, from which
point the only way is up.)

Marking to market of exchange-traded instruments is
clearly very straightforward. But what about exotic or
over-the-counter (OTC) contracts? These are not traded
actively, they may be unique to you and your counter-
party. These instruments have to be marked to model.
And this obviously raises the question of which model
to use. Usually in this context the ‘model’ means the
volatility, whether in equity markets, FX or fixed income.
So the question about which model to use becomes a
question about which volatility to use.

Here are some possible ways of marking OTC contracts.

e The trader uses his own volatility. Perhaps his best
forecast going forward. This is very easy to abuse, it
is very easy to rack up an imaginary profit this way.
Whatever volatility is used it cannot be too far from
the market’s implied volatilities on liquid options with
the same underlying.
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e Use prices obtained from brokers. This has the
advantage of being real, tradeable prices, and
unprejudiced. The main drawback is that you can’t be
forever calling brokers for prices with no intention of
trading. They get very annoyed. And they won’t give
you tickets to Wimbledon anymore.

e Use a volatility model that is calibrated to vanillas.
This has the advantage of giving prices that are
consistent with the information in the market, and
are therefore arbitrage free. Although there is always
the question of which volatility model to use,
deterministic, stochastic, etc., so ‘arbitrage freeness’
is in the eye of the modeller. It can also be time
consuming to have to crunch prices frequently.

One subtlety concerns the marking method and the
hedging of derivatives. Take the simple case of a vanilla
equity option bought because it is considered cheap.
There are potentially three different volatilities here:
implied volatility; forecast volatility; hedging volatility.
In this situation the option, being exchanged traded,
would probably be marked to market using the implied
volatility, but the ultimate profit will depend on the real-
ized volatility (let’s be optimistic and assume it is as
forecast) and also how the option is hedged. Hedging
using implied volatility in the delta formula theoreti-
cally eliminates the otherwise random fluctuations in
the mark-to-market value of the hedged option port-
folio, but at the cost of making the final profit path
dependent, directly related to realized gamma along the
stock’s path.

By marking to market, or using a model-based marking
that is as close to this as possible, your losses will
be plain to see. If your theoretically profitable trade is
doing badly you will see your losses mounting up. You
may be forced to close your position if the loss gets
to be too large. Of course, you may have been right
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in the end, just a bit out in the timing. The loss could
have reversed, but if you have closed out your position
previously then tough. Having said that, human nature is
such that people tend to hold onto losing positions too
long on the assumption that they will recover, yet close
out winning positions too early. Marking to market will
therefore put some rationality back into your trading.

References and Further Reading
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What is the Efficient Markets
Hypothesis?

Short Answer

An efficient market is one where it is impossible to beat
the market because all information about securities is
already reflected in their prices.

Example

Or rather a counter-example, “I'd be a bum in the street
with a tin cup if the markets were efficient,” Warren
Buffett.

Long Answer

The concept of market efficiency was proposed by
Eugene Fama in the 1960s. Prior to that it had been
assumed that excess returns could be made by careful
choice of investments. Here and in the following the
references to ‘excess returns’ refers to profit above the
risk-free rate not explained by a risk premium, i.e., the
reward for taking risk. Fama argued that since there
are so many active, well-informed and intelligent mar-
ket participants securities will be priced to reflect all
available information. Thus was born the idea of the
efficient market, one where it is impossible to beat the
market.

There are three classical forms of the Efficient Markets
Hypothesis (EMH). These are weak form, semi-strong
form and strong form.

Weak-form efficiency In weak-form efficiency excess returns
cannot be made by using investment strategies based on
historical prices or other historical financial data. If this
form of efficiency is true then it will not be possible to
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make excess returns by using methods such as techni-
cal analysis. A trading strategy incorporating historical
data, such as price and volume information, will not
systematically outperform a buy-and-hold strategy. It is
often said that current prices accurately incorporate all
historical information, and that current prices are the
best estimate of the value of the investment. Prices will
respond to news, but if this news is random then price
changes will also be random. Technical analysis will not
be profitable.

Semi-strong form efficiency In the semi-strong form of the
EMH a trading strategy incorporating current publicly
available fundamental information (such as financial
statements) and historical price information will not sys-
tematically outperform a buy-and-hold strategy. Share
prices adjust instantaneously to publicly available new
information, and no excess returns can be earned by
using that information. Fundamental analysis will not be
profitable.

Strong-form efficiency In strong-form efficiency share prices
reflect all information, public and private, fundamental
and historical, and no one can earn excess returns.
Inside information will not be profitable.

Of course, tests of the EMH should always allow for
transaction costs associated with trading and the inter-
nal efficiency of trade execution.

A weaker cousin of EMH is the Adaptive Market Hypoth-
esis of Andrew Lo. This idea is related to behavioural
finance and proposes that market participants adapt to
changing markets, information, models, etc., in such a
way as to lead to market efficiency but in the mean-
time there may well be exploitable opportunities for
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excess returns. This is commonly seen when new con-
tracts, exotic derivatives, are first created leading to

a short period of excess profit before the knowledge
diffuses and profit margins shrink. The same is true of
previously neglected sources of convexity and there-
fore value. A profitable strategy can exist for a while
but perhaps others find out about it, or because of the
exploitation of the profit opportunity, either way that
efficiency disappears.

The Grossman-Stiglitz paradox says that if a market
were efficient, reflecting all available information, then
there would be no incentive to acquire the information
on which prices are based. Essentially the job has been
done for everyone. This is seen when one calibrates

a model to market prices of derivatives, without ever
studying the statistics of the underlying process.

The validity of the EMH, whichever form, is of great
importance because it determines whether anyone can
outperform the market, or whether successful investing
is all about luck. EMH does not require investors to
behave rationally, only that in response to news or data
there will be a sufficiently large random reaction that
an excess profit cannot be made. Market bubbles, for
example, do not invalidate EMH provided they cannot
be exploited.

There have been many studies of the EMH, and the
validity of its different forms. Many early studies con-
cluded in favour of the weak form. Bond markets and
large-capitalization stocks are thought to be highly effi-
cient, smaller stocks less so. Because of different quality
of information among investors and because of an emo-
tional component, real estate is thought of as being
quite inefficient.
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What are the Most Useful Performance
Measures?

Short Answer

Performance measures are used to quantify the results
of a trading strategy. They are usually adjusted for risk.
The most popular is the Sharpe ratio.

Example

One stock has an average growth of 10% per annum,
another is 30% per annum. You’'d rather invest in the
second, right? What if [ said that the first had a volatility
of only 5%, whereas the second was 20%, does that
make a difference?

Long Answer

Performance measures are used to determine how suc-
cessful an investment strategy has been. When a hedge
fund or trader is asked about past performance the
first question is usually “What was your return?” Later
maybe “What was your worst month?” These are both
very simple measures of performance. The more sen-
sible measures make allowance for the risk that has
been taken, since a high return with low risk is much
better than a high return with a lot of risk.

Sharpe Ratio The Sharpe ratio is probably the most
important non-trivial risk-adjusted performance measure.
It is calculated as

Sharpe ratio = rr
o

where o is the return on the strategy over some spec-
ified period, r is the risk-free rate over that period and
o is the standard deviation of returns. The Sharpe ratio
will be quoted in annualized terms. A high Sharpe ratio
is intended to be a sign of a good strategy.
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If returns are normally distributed then the Sharpe ratio
is related to the probability of making a return in excess
of the risk-free rate. In the expected return versus risk
diagram of Modern Portfolio Theory the Sharpe ratio is
the slope of the line joining each investment to the risk-
free investment. Choosing the portfolio that maximizes
the Sharpe ratio will give you the Market Portfolio. We
also know from the Central Limit Theorem that if you
have many different investments all that matters is the
mean and the standard deviation. So as long as the CLT
is valid the Sharpe ratio makes sense.

The Sharpe ratio has been criticized for attaching equal
weight to upside ‘risk’ as downside risk since the stan-
dard deviation incorporates both in its calculation. This
may be important if returns are very skewed.

Modigliani-Modigliani Measure The Modigliani-Modigliani or
M2 measure is a simple linear transformation of the
Sharpe ratio:

M2 = r + v x Sharpe

where v is the standard deviation of returns of the relevant
benchmark. This is easily interpreted as the return you
would expect from your portfolio if it were (de)leveraged
to have the same volatility as the benchmark.

Sortino Ratio The Sortino ratio is calculated in the same
way as the Sharpe ratio except that it uses the square
root of the semi-variance as the denominator measuring
risk. The semi variance is measured in the same way
as the variance except that all data points with positive
return are replaced with zero, or with some target value.

This measure ignores upside ‘risk’ completely. How-
ever, if returns are expected to be normally distributed
the semi variance will be statistically noisier than the
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variance because fewer data points are used in its cal-
culation.

Treynor Ratio The Treynor or Reward-to-variability Ratio
is another Sharpe-like measure, but now the denomin-
ator is the systematic risk, measured by the portfolio’s
beta, (see Capital Asset Pricing Model), instead of the

total risk:
—r

Treynor ratio =

In a well-diversified portfolio Sharpe and Treynor are
similar, but Treynor is more relevant for less diversified
portfolios or individual stocks.

Information Ratio The Information ratio is a different

type of performance measure in that it uses the idea

of tracking error. The numerator is the return in excess

of a benchmark again, but the denominator is the stan-

dard deviation of the differences between the portfolio

returns and the benchmark returns, the tracking error.
w—r

Information ratio = —————.
Tracking error

This ratio gives a measure of the value added by a
manager relative to their benchmark.

References and Further Reading

Modigliani, F & Modigliani, L 1997 Risk-adjusted performance.
J. Portfolio Manag. 23 (2) 45-54

Sharpe, WF 1966 Mutual Fund Performance. Journal of Business
January 119-138

Sortino FA & van der Meer, R 1991 Downside risk. J. Portfolio
Manag. 27-31

Treynor, JL 1966 How to rate management investment funds.
Harvard Business Review 43 63-75



90 Frequently Asked Questions In Quantitative Finance

What 15 a Utility Function and How 15
it Used?

Short Answer

A utility function represents the ‘worth,” ‘happiness’ or
‘satisfaction’ associated with goods, services, events,
outcomes, levels of wealth, etc. It can be used to rank
outcomes, to aggregate ‘happiness’ across individuals
and to value games of chance.

Example

You own a valuable work of art, you are going to put
it up for auction. You don’t know how much you will
make but the auctioneer has estimated the chances of
achieving certain amounts. Someone then offers you a
guaranteed amount provided you withdraw the painting
from the auction. Should you take the offer or take your
chances? Utility theory can help you make that decision.

Long Answer

The idea is not often used in practice in finance but

is common in the literature, especially economics lit-
erature. The utility function allows the ranking of the
otherwise incomparable, and is used to explain people’s
actions; rational people are supposed to act so as to
increase their utility.

When a meaningful numerical value is used to represent
utility this is called cardinal utility. One can then talk
about one thing having three times the utility of another,
and one can compare utility from person to person. If
the ordering of utility is all that matters (so that one
is only concerned with ranking of preferences, not the
numerical value) then this is called ordinal utility.

If we denote a utility function by U(W) where W is
the ‘wealth,” then one would expect utility functions to
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have certain commonsense properties. In the following ’
denotes differentiation with respect to W.

e The function U(W) can vary among investors, each
will have a different attitude to risk for example.

e U'(W) > 0: more is preferred to less. If it is a strict
inequality then satiation is not possible, the investor
will always prefer more than he has. This slope
measures the marginal improvement in utility with
changes in wealth.

e Usually U”(W) < 0: the utility function is strictly
concave. Since this is the rate of change of the
marginal ‘happiness,’ it gets harder and harder to
increase happiness as wealth increases. An investor
with a concave utility function is said to be risk
averse. This property is often referred to as the law
of diminishing returns.

The final point in the above leads to definitions for mea-
surement of risk aversion. The absolute risk aversion
function is defined as

L)

The relative risk aversion function is defined as

wuU” (W)
R =————=WA .
N =~ = WAOD

Utility functions are often used to analyze random
events. Suppose a monetary amount is associated with
the number of spots on a rolled dice. You could
calculate the expected winnings as the average of all
of the six amounts. But what if the amounts were
$1, $2, $3, $4, $5 and $6,000,000? Would the average,
$1,000,002.5, be meaningful? Would you be willing to pay
$1,000,000 to enter this as a bet? After all, you expect
to make a profit. A more sensible way of valuing this
game might be to look at the utility of each of the six
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outcomes, and then average the utility. This leads on to
the idea of certainty equivalent wealth.

When the wealth is random, and all outcomes can be
assigned a probability, one can ask what amount of
certain wealth has the same utility as the expected
utility of the unknown outcomes. Simply solve

UWe) = E[UMW)].

The quantity of wealth W, that solves this equation is
called the certainty equivalent wealth. One is therefore
indifferent between the average of the utilities of the
random outcomes and the guaranteed amount W,. As an
example, consider the above dice-rolling game, suppos-
ing our utility function is U(W) = —%e*”w. With n =1
200 +
180 -
160 -
140 -

120

100 4

Certainty equivalent

80 -

0.001

0.01 0.1 1 10 100
In(eta)

Figure 2-5: Certainty equivalent as a function of the risk-aversion
parameter for example in the text.




Chapter 2: FAQs 93

we find that the certainty equivalent is $2.34. So we
would pay this amount or less to play the game. Above
is a plot of the certainty equivalent for this example as a
function of the risk-aversion parameter . Observe how
this decreases the greater the risk aversion.
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What is Brownian Motion and What
are its Uses in Finance?

Short Answer

Brownian Motion is a stochastic process with station-
ary independent normally distributed increments and
which also has continuous sample paths. It is the most
common stochastic building block for random walks in
finance.

Example

Pollen in water, smoke in a room, pollution in a river,
are all examples of Brownian motion. And this is the
common model for stock prices as well.

Long Answer

Brownian motion (BM) is named after the Scottish
botanist who first described the random motions of
pollen grains suspended in water. The mathematics
of this process were formalized by Bachelier, in an
option-pricing context, and by Einstein. The math-
ematics of BM is also that of heat conduction and
diffusion.

Mathematically, BM is a continuous, stationary, stochas-
tic process with independent normally distributed incre-
ments. If W; is the BM at time ¢ then for every ¢, t > 0,
Wi — W; is independent of {W,:0 <u <t}, and has a
normal distribution with zero mean and variance z.

The important properties of BM are as follows.

e Finiteness: the scaling of the variance with the time
step is crucial to BM remaining finite.

e Continuity: the paths are continuous, there are no
discontinuities. However, the path is fractal, and not
differentiable anywhere.
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e Markov: the conditional distribution of W; given
information up until < ¢t depends only on W;.

e Martingale: given information up until t < ¢ the
conditional expectation of W; is W;.

e Quadratic variation: if we divide up the time 0 to ¢ in
a partition with n + 1 partition points #; = if/n then

n 2
S (W -w,,) —t

j=1

e Normality: Over finite time increments t;_; to ¢;,
Wy, — W;,_, is normally distributed with mean zero
and variance f; — t;_1.

BM is a very simple yet very rich process, extremely
useful for representing many random processes es-
pecially those in finance. Its simplicity allows calcula-
tions and analysis that would not be possible with other
processes. For example, in option pricing it results in
simple closed-form formulee for the prices of vanilla
options. It can be used as a building block for random
walks with characteristics beyond those of BM itself.
For example, it is used in the modelling of interest rates
via mean-reverting random walks. Higher-dimensional
versions of BM can be used to represent multi-factor
random walks, such as stock prices under stochas-

tic volatility.

One of the unfortunate features of BM is that it gives
returns distributions with tails that are unrealistically
shallow. In practice, asset returns have tails that are
much fatter than that given by the normal distribution
of BM. There is even some evidence that the distribu-
tion of returns have infinite second moment. Despite
this, and the existence of financial theories that do
incorporate such fat tails, BM motion is easily the
most common model used to represent random walks
in finance.
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What is Jensen’s Inequality and What
15 its Role in Finance?

Short Answer
Jensen’s Inequality states! that if f() is a convex func-
tion and x is a random variable then

E[f)] = f(E[x]).

This justifies why non-linear instruments, options, have
inherent value.

Example

You roll a die, square the number of spots you get, you
win that many dollars. For this exercise f(x) is x?, a
convex function. So E[f(x)]is 1 +2+9+ 16+ 25+ 36 =
91 divided by 6, so 15 1/6. But E[x] is 3 1/2 so f (E[x])
is 12 1/4.

Long Answer
A function f(-) is convex on an interval if for every x
and y in that interval

fOx+ A =0y) > Af(x)+ 1 = DFQY)
for any 0 < A < 1. Graphically this means that the line
joining the points (x, f(x)) and (y,f(y)) is nowhere lower
than the curve. (Concave is the opposite, simply —f is
convex.)

Jensen’s inequality and convexity can be used to explain
the relationship between randomness in stock prices
and the value inherent in options, the latter typically
having some convexity.

Suppose that a stock price .S is random and we want
to consider the value of an option with payoff P(S). We

I'This is the probabilistic interpretation of the inequality.
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could calculate the expected stock price at expiration
as E[St], and then the payoff at that expected price
P(E[ST]). Alternatively we could look at the various
option payoffs and then calculate the expected payoff
as E[P(S7)]. The latter makes more sense, and is indeed
the correct way to value options, provided the expec-
tation is with respect to the risk-neutral stock price. If
the payoff is convex then

E[P(ST)] = P(E[STD.
We can get an idea of how much greater the left-hand

side is than the right-hand side by using a Taylor series
approximation around the mean of S. Write

S=S+e,
where S = E[S], so E[e] = 0. Then
E[f(S)]=E [f(§ n e)] _E [f(S') +ef )+ 12 S + - ]
~f(S) + A (SE [62]
= F(E[S]) + L/ (E[SDE [62] .

Therefore the left-hand side is greater than the right by
approximately

L[S E [62] :

This shows the importance of two concepts

e f"(E[S]D: The convexity of an option. As a rule this
adds value to an option. It also means that any
intuition we may get from linear contracts (forwards
and futures) might not be helpful with non-linear
instruments such as options.

o E[e?]: Randomness in the underlying, and its
variance. Modelling randomness is the key to
modelling options.

The lesson to learn from this is that whenever a con-
tract has convexity in a variable or parameter, and that
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variable or parameter is random, then allowance must
be made for this in the pricing. To do this correctly
requires a knowledge of the amount of convexity and
the amount of randomness.
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What i51t6’s Lemma?

Short Answer

It6’s lemma is a theorem in stochastic calculus. It tells
you that if you have a random walk, in y, say, and a
function of that randomly walking variable, call it f(y, f),
then you can easily write an expression for the ran-
dom walk in f. A function of a random variable is itself
random in general.

Example
The obvious example concerns the random walk

dS = uS dt + oS dX

commonly used to model an equity price or exchange
rate, S. What is the stochastic differential equation for
the logarithm of S, In.S?

The answer is
d(InS) = (M - %02> dt + o dX.

Long Answer
Let’s begin by stating the theorem. Given a random
variable y satisfying the stochastic differential equation

dy = a(y, t) d + b(y, ) dX,

where dX is a Wiener process, and a function f(y, t)
that is differentiable with respect to ¢ and twice differ-
entiable with respect to y, then f satisfies the following
stochastic differential equation

of of 9%f of
df = [ = D— +1b(y,H*=— | dt + b(y,H)— dX.
<3t+a(y )3y+2 o0 3y2> +b(y )ay

Ito’s lemma is to stochastic variables what Taylor series
is to deterministic. You can think of it as a way of
expanding functions in a series in dt, just like Taylor
series. If it helps to think of it this way then you must
remember the simple rules of thumb as follows.
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1. Whenever you get dX? in a Taylor series expansion
of a stochastic variable you must replace it with dt.

2. Terms that are O(dr*/?) or smaller must be ignored.
This means that dt%, dX3, dt dX, etc. are too small to
keep.

It is difficult to overstate the importance of It6’s lemma
in quantitative finance. It is used in many of the deriva-
tions of the Black-Scholes option pricing model and
the equivalent models in the fixed-income and credit
worlds. If we have a random walk model for a stock
price S and an option on that stock, with value V (S, 1),
then It6’s lemma tells us how the option price changes
with changes in the stock price. From this follows the
idea of hedging, by matching random fluctuations in S
with those in V. This is important both in the theory of
derivatives pricing and in the practical management of
market risk.

Even if you don’'t know how to prove Itd’s lemma you
must be able to quote it and use the result.

Sometimes we have a function of more than one
stochastic quantity. Suppose that we have a function
f(y1,y2,-..,¥n,t) of n stochastic quantities and time such
that

dy; = a;(y1,¥2, .-, Yn, ) dt + b;(y1,y2, ..., ¥n, 1) dX;,

where the n Wiener processes dX; have correlations p;
then

f &

df = 8t+i= ZZZp,, ,3 W dt

i=1 j=1
n
+3 62 ax..
; Iayi i
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We can understand this (if not entirely legitimately
derive it) via Taylor series by using the rules of thumb

dX? =dt and dXdX; = p;dt.

Another extension that is often useful in finance is to
incorporate jumps in the independent variable. These
are usually modelled by a Poisson process. This is dg
such dg = 1 with probability 1 dt and is 0 with probabil-
ity 1 — A dt. Returning to the single independent variable
case for simplicity, suppose y satisfies

dy = a(y, t) dt + b(y, ) dX + J(y,t) dq

where dq is a Poisson process and J is the size of the
jump or discontinuity in y (when dg = 1) then

of of 9%f of
df = = D— +1b(y, 0> =— | dt + b(y,H)— dX
<31+a(y )8y+2 o0 3y2> +b(y )ay

+ (G +JO.0) - £y, D) dq.

And this is Ito in the presence of jumps.
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Why Does Risk-Neutral Valuation
Work?

Short Answer

Risk-neutral valuation means that you can value options
in terms of their expected payoffs, discounted from
expiration to the present, assuming that they grow on
average at the risk-free rate.

Option value = Expected present value of payoff
(under a risk-neutral random walk).

Therefore the real rate at which the underlying grows on
average doesn’t affect the value. Of course, the volatil-
ity, related to the standard deviation of the underlying’s
return, does matter. In practice, it’s usually much, much
harder to estimate this average growth than the volatil-
ity, so we are rather spoiled in derivatives, that we only
need to estimate the relatively stable parameter, volatil-
ity.2 The reason that this is true is that by hedging an
option with the underlying we remove any exposure to
the direction of the stock, whether it goes up or down
ceases to matter. By eliminating risk in this way we also
remove any dependence on the value of risk. End result
is that we may as well imagine we are in a world in
which no one values risk at all, and all tradeable assets
grow at the risk-free rate on average.

For any derivative product, as long as we can hedge it
dynamically and perfectly (supposing we can as in the
case of known, deterministic volatility and no defaults)
the hedged portfolio loses its randomness and behaves
like a bond.

2] should emphasize the word ‘relatively.” Volatility does vary
in reality, but probably not as much as the growth rate.
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Example

A stock whose value is currently $44.75 is growing on
average by 15% per annum. Its volatility is 22%. The
interest rate is 4%. You want to value a call option with
a strike of $45, expiring in two months’ time. What can
you do?

First of all, the 15% average growth is totally irrelevant.
The stock’s growth and therefore its real direction does
not affect the value of derivatives. What you can do is
simulate many, many future paths of a stock with an
average growth of 4% per annum, since that is the risk-
free interest rate, and a 22% volatility, to find out where
it may be in two months’ time. Then calculate the call
payoff for each of these paths. Present value each of
these back to today, and calculate the average over all
paths. That’s your option value.

Long Answer

Risk-neutral valuation of derivatives exploits the per-
fect correlation between the changes in the value of an
option and its underlying asset. As long as the under-
lying is the only random factor then this correlation
should be perfect. So if an option goes up in value with
a rise in the stock then a long option and sufficiently
short stock position shouldn’t have any random fluc-
tuations, therefore the stock hedges the option. The
resulting portfolio is risk free.

Of course, you need to know the correct number of the
stock to sell short. That’s called the ‘delta’ and usu-
ally comes from a model. Because we usually need a
mathematical model to calculate the delta, and because
quantitative finance models are necessarily less than
perfect, the theoretical elimination of risk by delta
hedging is also less than perfect in practice. There are
several such imperfections with risk-neutral valuation.
First, it requires continuous rebalancing of the hedge.
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Delta is constantly changing so you must always be
buying or selling stock to maintain a risk-free position.
Obviously, this is not possible in practice. Second, it
hinges on the accuracy of the model. The underlying
has to be consistent with certain assumptions, such as
being Brownian motion without any jumps, and with
known volatility.

One of the most important side effects of risk-neutral
pricing is that we can value derivatives by doing simula-
tions of the risk-neutral path of underlyings, to calculate
payoffs for the derivatives. These payoffs are then
discounted to the present, and finally averaged. This
average that we find is the contract’s fair value.

Here are some further explanations of risk-neutral pricing.

Explanation 1: If you hedge correctly in a Black-Scholes
world then all risk is eliminated. If there is no risk then
we should not expect any compensation for risk. We can
therefore work under a measure in which everything
grows at the risk-free interest rate.

Explanation 2: If the model for the asset is dS = S dt +
oS dX then the us cancel in the derivation of the Black-
Scholes equation.

Explanation 3: Two measures are equivalent if they have
the same sets of zero probability. Because zero proba-
bility sets don’t change, a portfolio is an arbitrage under
one measure if and only if it is one under all equivalent
measures. Therefore a price is non-arbitrageable in the
real world if and only if it is non-arbitrageable in the
risk-neutral world. The risk-neutral price is always non-
arbitrageable. If everything has a discounted asset price
process which is a martingale then there can be no
arbitrage. So if we change to a measure in which all the
fundamental assets, for example the stock and bond,
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are martingales after discounting, and then define the
option price to be the discounted expectation making
it into a martingale too, we have that everything is a

martingale in the risk-neutral world. Therefore there is
no arbitrage in the real world.

Explanation 4: If we have calls with a continuous dis-
tribution of strikes from zero to infinity then we can
synthesize arbitrarily well any payoff with the same
expiration. But these calls define the risk-neutral proba-
bility density function for that expiration, and so we can
interpret the synthesized option in terms of risk-neutral
random walks. When such a static replication is possi-
ble then it is model independent, we can price complex
derivatives in terms of vanillas. (Of course, the contin-
uous distribution requirement does spoil this argument
to some extent.)

It should be noted that risk-neutral pricing only works
under assumptions of continuous hedging, zero transac-
tion costs, continuous asset paths, etc. Once we move
away from this simplifying world we may find that it
doesn’t work.
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What is Girsanov’s Theorem, and Why
15 1t Important in Finance?

Short Answer

Girsanov’s theorem is the formal concept underlying
the change of measure from the real world to the risk-
neutral world. We can change from a Brownian motion
with one drift to a Brownian motion with another.

Example
The classical example is to start with
dsS = upSdt+ oS dw;

with W being Brownian motion under one measure (the
real-world measure) and converting it to

dS =rS dt+ oS dW,

under a different, the risk-neutral, measure.
Long Answer
First a statement of the theorem. Let W; be a Brownian

motion with measure P and sample space Q. If
y; is a previsible process satisfying the constraint

Ep [exp <% fOT y,2>] < oo then there exists an equivalent
measure Q on 2 such that

t
M=M+/n$
0
is a Brownian motion.

It will be helpful if we explain some of the more techni-
cal terms in this theorem.

Sample space:  All possible future states or outcomes.
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(Probability) Measure: In layman’s terms, the measure
gives the probabilities of each of the outcomes in the
sample space.

Previsible: A previsible process is one that only depends
on the previous history.

Equivalent: 'Two measures are equivalent if they have
the same sample space and the same set of ‘possibil-
ities.” Note the use of the word possibilities instead

of probabilities. The two measures can have different
probabilities for each outcome but must agree on what
is possible.

Another way of writing the above is in differential form
dW; = dW, + y; dt.

One important point about Girsanov’s theorem is its
converse, that every equivalent measure is given by

a drift change. This implies that in the Black-Scholes
world there is only the one equivalent risk-neutral mea-
sure. If this were not the case then there would be
multiple arbitrage-free prices.

For many problems in finance Girsanov theorem is not
necessarily useful. This is often the case in the world
of equity derivatives. Straightforward Black-Scholes
does not require any understanding of Girsanov. Once
you go beyond basic Black-Scholes it becomes more
useful. For example, suppose you want to derive the
valuation partial differential equations for options under
stochastic volatility. The stock price follows the real-
world processes, P,

dS = uS dt + oS dX;
and
do = a(S,o,Hdt + b(S,o,HdWX,,
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where dX; and dX, are correlated Brownian motions
with correlation p(S, 0, t).

Using Girsanov you can get the governing equation in
three steps:

1. Under a pricing measure Q, Girsanov plus the fact
that S is traded implies that

ax, =dx; — " Lar
o

and
dXy = dXy — A(S,0,t) dt,

where X is the market price of volatility risk

2. Apply Itd’s formula to the discounted option price
V(S, 0,0 =e ™ TOF(S,0,t), expanding under Q,
using the formulee for dS and dV obtained from the
Girsanov transformation

3. Since the option is traded, the coefficient of the dt
term in its Itd expansion must also be zero; this
yields the relevant equation

Girsanov and the idea of change of measure are par-
ticularly important in the fixed-income world where
practitioners often have to deal with many different
measures at the same time, corresponding to different
maturities. This is the reason for the popularity of the
BGM model and its ilk.
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What are the Greeks?

Short Answer

The ‘greeks’ are the sensitivities of derivatives prices
to underlyings, variables and parameters. They can be
calculated by differentiating option values with respect
to variables and/or parameters, either analytically, if
you have a closed-form formula, or numerically.

Example

Delta, A = % is sensitivity of option price to the stock
price. Gamma, I' = ‘?%/, is the second derivative of the
option price to the {mderlying stock, it is the sensitivity
of the delta to the stock price. These two examples are
called greek because they are members of the Greek
alphabet. Some sensitivities, such as vega = %, are
still called ‘greek’ even though they aren’t in the Greek
alphabet.

Long Answer

Delta The delta, A, of an option or a portfolio of options
is the sensitivity of the option or portfolio to the under-
lying. It is the rate of change of value with respect to
the asset:
1%

S as’
Speculators take a view on the direction of some quan-
tity such as the asset price and implement a strategy to
take advantage of their view. If they own options then
their exposure to the underlying is, to a first approxima-
tion, the same as if they own delta of the underlying.

Those who are not speculating on direction of the
underlying will hedge by buying or selling the under-
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lying, or another option, so that the portfolio delta is
zero. By doing this they eliminate market risk.

Typically the delta changes as stock price and time
change, so to maintain a delta-neutral position the num-
ber of assets held requires continual readjustment by
purchase or sale of the stock. This is called rehedg-
ing or rebalancing the portfolio, and is an example of
dynamic hedging.

Sometimes going short the stock for hedging purposes
requires the borrowing of the stock in the first place.

(You then sell what you have borrowed, buying it back
later.) This can be costly, you may have to pay a repo
rate, the equivalent of an interest rate, on the amount
borrowed.

Gamma The gamma, I', of an option or a portfolio of
options is the second derivative of the position with
respect to the underlying:

0%V

T as?
Since gamma is the sensitivity of the delta to the under-
lying it is a measure of by how much or how often
a position must be rehedged in order to maintain a
delta-neutral position. If there are costs associated
with buying or selling stock, the bid-offer spread, for
example, then the larger the gamma the larger the cost
or friction caused by dynamic hedging.

Because costs can be large and because one wants

to reduce exposure to model error it is natural to try
to minimize the need to rebalance the portfolio too
frequently. Since gamma is a measure of sensitivity of
the hedge ratio A to the movement in the underlying,
the hedging requirement can be decreased by a gamma-



172 Frequently Asked Questions In Quantitative Finance

neutral strategy. This means buying or selling more
options, not just the underlying.

Theta The theta, ©, is the rate of change of the option
price with time.
aV
0=—.
Jt
The theta is related to the option value, the delta and
the gamma by the Black-Scholes equation.

speed The speed of an option is the rate of change of
the gamma with respect to the stock price.

83

Speed = 953"

Traders use the gamma to estimate how much they will
have to rehedge by if the stock moves. The stock moves
by $1 so the delta changes by whatever the gamma is.
But that’s only an approximation. The delta may change
by more or less than this, especially if the stock moves
by a larger amount, or the option is close to the strike
and expiration. Hence the use of speed in a higher-order
Taylor series expansion.

Vegqa The vega, sometimes known as zeta or kappa,
is a very important but confusing quantity. It is the
sensitivity of the option price to volatility.

Vega = ﬂ

do

This is completely different from the other greeks since
it is a derivative with respect to a parameter and not a
variable. This can be important. It is perfectly accept-
able to consider sensitivity to a variable, which does
vary, after all. However, it can be dangerous to measure
sensitivity to something, such as volatility, which is a
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parameter and may, for example, have been assumed to
be constant. That would be internally inconsistent.

As with gamma hedging, one can vega hedge to reduce
sensitivity to the volatility. This is a major step towards
eliminating some model risk, since it reduces depen-
dence on a quantity that is not known very accurately.

There is a downside to the measurement of vega. It is
only really meaningful for options having single-signed
gamma everywhere. For example it makes sense to mea-
sure vega for calls and puts but not binary calls and
binary puts. The reason for this is that call and put
values (and options with single-signed gamma) have
values that are monotonic in the volatility: increase the
volatility in a call and its value increases everywhere.
Contracts with a gamma that changes sign may have

a vega measured at zero because as we increase the
volatility the price may rise somewhere and fall some-
where else. Such a contract is very exposed to volatility
risk but that risk is not measured by the vega.

Rho p, is the sensitivity of the option value to the inter-
est rate used in the Black-Scholes formulee:
Vv

=
In practice one often uses a whole term structure of
interest rates, meaning a time-dependent rate r(f). Rho
would then be the sensitivity to the level of the rates
assuming a parallel shift in rates at all times.

Rho can also be sensitivity to dividend yield, or foreign
interest rate in a foreign exchange option.

Charm The charm is the sensitivity of delta to time.
v
as at’
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This is useful for seeing how your hedge position will
change with time, for example up until the next time you
expect to hedge. This can be important near expiration.

Colour The colour is the rate of change of gamma with
time.
EEA%
882 ot

Vanna The Vanna is the sensitivity of delta to volatility.
a2V
3S do

This is used when testing sensitivity of hedge ratio to
volatility. It can be misleading at places where gamma
is small.

Vomma or Volga The Vomma or Volga is the second
derivative of the option value with respect to volatility.

%

o2’
Because of Jensen’s Inequality, if volatility is stochastic
the Vomma/Volga measures convexity due to random

volatility and so gives you an idea of how much to add
(or subtract) from an option’s value.

Shadow greeks The above greeks are defined in terms

of partial derivatives with respect to underlying, time,
volatility, etc. while holding the other variables/para-
meters fixed. That is the definition of a partial deriva-
tive.> But, of course, the variables/parameters might, in
practice, move together. For example, a fall in the stock

3Here derivative has its mathematical meaning of that which is
differentiated not its financial meaning as an option.
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price might be accompanied by an increase in volatility.
So one can measure sensitivity as both the underlying
and volatility move together. This is called a shadow
greek and is just like the concept of a total derivative
in, for example, fluid mechanics where one might follow
the path of a fluid particle.

References and Further Reading
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Why Do Quants Like Closed-Form
Solutions?

Short Answer
Because they are fast to compute and easy to under-
stand.

Example

The Black-Scholes formulee are simple and closed-form
and often used despite people knowing that they have
limitations, and despite being used for products for
which they were not originally intended.

Long Answer

There are various pressures on a quant when it comes
to choosing a model. What he’d really like is a model
that is

e robust: small changes in the random process for the
underlying don’t matter too much

e fast: prices and the greeks have to be quick to
compute for several reasons, so that the trade gets
done and you don’t lose out to a competitor, and so
that positions can be managed in real time as just
one small part of a large portfolio

e accurate: in a scientific sense the prices ought to be
good, perhaps matching historical data. This is
different from robust, of course

e easy to calibrate: banks like to have models that
match traded prices of simple contracts

There is some overlap in these. Fast may also mean
easy to calibrate, but not necessarily. Accurate and
robust might be similar, but again, not always.

From the scientific point of view the most important
of these is accuracy. The least important is speed. To
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the scientist the question of calibration becomes one
concerning the existence of arbitrage. If you are a hedge
fund looking for prop trading opportunities with vanillas
then calibration is precisely what you don’t want to do.
And robustness would be nice, but maybe the financial
world is so unstable that models can never be robust.

To the practitioner he needs to be able to price quickly
to get the deal done and to manage the risk. If he is

in the business of selling exotic contracts then he will
invariably be calibrating, so that he can say that his
prices are consistent with vanillas. As long as the model
isn’t too inaccurate or sensitive, and he can add a suf-
ficient profit margin, then he will be content. So to the
practitioner speed and ability to calibrate to the market
are the most important.

The scientist and the practitioner have conflicting inter-
ests. And the practitioner usually wins.

And what could be faster than a closed-form solution?
This is why practitioners tend to favour closed forms.
They also tend to be easier to understand intuitively
than a numerical solution. The Black-Scholes formulae
are perfect for this, having a simple interpretation in
terms of expectations, and using the cumulative distri-
bution function for the Gaussian distribution.

Such is the desire for simple formulee that people often
use the formulee for the wrong product. Suppose you
want to price certain Asian options based on an arith-
metic average. To do this properly in the Black-Scholes
world you would do this by solving a three-dimensional
partial differential equation or by Monte Carlo simula-
tion. But if you pretend that the averaging is geometric
and not arithmetic then often there are simple closed-
form solutions. So use those, even though they must
be wrong. The point is that they will probably be less
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wrong than other assumptions you are making, such as
what future volatility will be.

Of course, the definition of closed form is to some
extent in the eye of the beholder. If an option can be
priced in terms of an infinite sum of hypergeometric
functions does that count? Some Asian options can be
priced that way. Or what about a closed form involving
a subtle integration in the complex plane that must
ultimately be done numerically? That is the Heston
stochastic volatility model.

If closed form is so appreciated, is it worth spending
much time seeking them out? Probably not. There are
always new products being invented and new pricing
models being devised, but they are unlikely to be of
the simple type that can be solved explicitly. Chances
are that either you will have to solve these numerically,
or approximate them by something not too dissimilar.
Approximations such as Black '76 are probably your
best chance of finding closed-form solutions for new
products these days.

References and Further Reading

Black F 1976 The pricing of commodity contracts. Journal of
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magazine, May and July
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What are the Forward and Backward
Equations?

Short Answer

Forward and backward equations usually refer to the
differential equations governing the transition probabil-
ity density function for a stochastic process. They are
diffusion equations and must therefore be solved in the
appropriate direction in time, hence the names.

Example

An exchange rate is currently 1.88. What is the prob-
ability that it will be over 2 by this time next year? If
you have a stochastic differential equation model for
this exchange rate then this question can be answered
using the equations for the transition probability density
function.

Long Answer

Let us suppose that we have a random variable y evolv-
ing according to a quite general, one-factor stochastic
differential equation

dy = A(y,t) dt + B(y,t) dX.
Here A and B are both arbitrary functions of y and ¢.
Many common models can be written in this form,

including the lognormal asset random walk, and com-
mon spot interest rate models.

The transition probability density function p(y,t;y’,t)
is the function of four variables defined by

Prob(a < y < b at time ¢'|y at time f)
b
= f p(y.t:y, ) dy.
a
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This simply means the probability that the random
variable y lies between a and b at time ¢’ in the future,
given that it started out with value y at time ¢. You can
think of y and t as being current or starting values with
y' and ¢’ being future values.

The transition probability density function p(y,t;y,t)
satisfies two equations, one involving derivatives with
respect to the future state and time (y’ and t) and
called the forward equation, and the other involving
derivatives with respect to the current state and time
(v and t) and called the backward equation. These two
equations are parabolic partial differential equations not
dissimilar to the Black-Scholes equation.

The forward equation Also known as the Fokker-Planck or
forward Kolmogorov equation this is

op 92 2 d ,
_1 B(Y,t — —AQY,Hp).

or 28y/2( 0,°p) ay/( o, OHp)
This forward parabolic partial differential equation

requires initial conditions at time ¢ and to be solved
for ¢ > t.

Example: An important example is that of the distri-
bution of equity prices in the future. If we have the
random walk
dS=uSdt+ oS dX
then the forward equation becomes
op 9 9

9F _1 2¢'2py
(0°5°P) oS

S'p).
at, 2 85/2 (lu p)
A special solution of this representing a variable that
begins with certainty with value .S at time ¢ is
p(S, S, t)

1 2
1 (s y+ - Fote-n) 1202w -0
e .

oS\ /2x(t —t)

This is plotted as a function of both .S" and ¢’ below.



Chapter 2: FAQs 121

Figure 2-6: The probability density function for the lognormal ran-
dom walk evolving through time.

The backward equation Also known as the backward Kol-
mogorov equation this is

ap 92
+ (y [)2 1%

5 +AQ, t)
This must be solved backwards in t with specified final
data.

For example, if we wish to calculate the expected value
of some function F(S) at time 7 we must solve this
equation for the function p(S,t) with

p(S, 1) =F(S).

Option prices If we have the lognormal random walk for
S, as above, and we transform the dependent variable
using a discount factor according to

p(S, 6 = e TDV(S, ),

then the backward equation for p becomes an equation
for V which is identical to the Black-Scholes partial
differential equation. Identical but for one subtlety, the
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equation contains a u where Black-Scholes contains
r. We can conclude that the fair value of an option is
the present value of the expected payoff at expiration
under a risk-neutral random walk for the underlying.
Risk neutral here means replace u with r.

References and Further Reading
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Which Numerical Method Should | Use
and When?

Short Answer

The three main numerical methods in common use are
Monte Carlo, finite difference and numerical quadrature.
('m including the binomial method as just a simplistic
version of finite differences.) Monte Carlo is great for
complex path dependency and high dimensionality,
and for problems which cannot easily be written in
differential equation form. Finite difference is best for
low dimensions and contracts with decision features
such as early exercise, ones which have a differen-
tial equation formulation. Numerical quadrature is for
when you can write the option value as a multiple
integral.

Example

You want to price a fixed-income contract using the
BGM model. Which numerical method should you use?
BGM is geared up for solution by simulation, so you
would use a Monte Carlo simulation.

You want to price an option which is paid for in instal-
ments, and you can stop paying and lose the option

at any time if you think it’s not worth keeping up the
payments. This may be one for finite-difference methods
since it has a decision feature.

You want to price a European, non path-dependent con-
tract on a basket of equities. This may be recast as a
multiple integral and so you would use a quadrature
method.
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Long Answer

Finite-Difference methods

Finite-difference methods are designed for finding numer-
ical solutions of differential equations. Since we work
with a mesh, not unlike the binomial method, we will
find the contract value at all points is stock price-time
space. In quantitative finance that differential equation
is almost always of diffusion or parabolic type. The only
real difference between the partial differential equations
are the following:

Number of dimensions;
Functional form of coefficients;
Boundary/final conditions;
Decision features;

Linear or non linear.

Number of dimensions: Is the contract an option on a single
underlying or many? Is there any strong path depen-
dence in the payoff? Answers to these questions will
determine the number of dimensions in the problem. At
the very least we will have two dimensions: S or r, and
t. Finite-difference methods cope extremely well with
smaller number of dimensions, up to four, say. Above
that they get rather time consuming.

Functional form of coefficients: The main difference between
an equity option problem and a single-factor interest
rate option problem is in the functional form of the
drift rate and the volatility. These appear in the gov-
erning partial differential equations as coefficients. The
standard model for equities is the lognormal model,
but there are many more ‘standard’ models in fixed
income. Does this matter? No, not if you are solving
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the equations numerically, only if you are trying to find
a closed-form solution in which case the simpler the
coefficients the more likely you are to find a closed-
form solution.

Boundary/final conditions: In a numerical scheme the differ-
ence between a call and a put is in the final condition.
You tell the finite-difference scheme how to start. And
in finite-difference schemes in finance we start at expira-
tion and work towards the present. Boundary conditions
are where we tell the scheme about things like knock-
out barriers.

Decision features: Early exercise, instalment premiums,
chooser features, are all examples of embedded decisions
seen in exotic contracts. Coping with these numerically
is quite straightforward using finite-difference methods,
making these numerical techniques the natural ones for
such contracts. The difference between a European and
an American option is about three lines of code in a
finite-difference program and less than a minute’s coding.

Linear or non linear: Almost all finance models are lin-
ear, so that you can solve for a portfolio of options

by solving each contract at a time and adding. Some
more modern models are non linear. Linear or non lin-
ear doesn’t make that much difference when you are
solving by finite-difference methods. So choosing this
method gives you a lot of flexibility in the type of model
you can use.

Efficiency

Finite differences are very good at coping with low
dimensions, and are the method of choice if you have
a contract with embedded decisions. They are excellent
for non-linear differential equations.
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The time taken to price an option and calculate the
sensitivities to underlying(s) and time using the explicit
finite-difference method will be

0 (M=),

where M is the number of different options in the port-
folio and we want an accuracy of ¢, and d is the number
of dimensions other than time. So if we have a non-path-
dependent option on a single underlying then d = 1.
Note that we may need one piece of code per option,
hence M in the above.

Programme of study

If you are new to finite-difference methods and you
really want to study them, here is a suggested pro-
gramme of study.

o Explicit method/European calls, puts and binaries:
To get started you should learn the explicit method
as applied to the Black-Scholes equation for a
European option. This is very easy to programme and
you won’t make many mistakes.

o Explicit method/American calls, puts and binaries:
Not much harder is the application of the explicit
method to American options.

¢ Crank-Nicolson/European calls, puts and binaries:
Once you've got the explicit method under your belt
you should learn the Crank-Nicolson implicit method.
This is harder to program, but you will get a better
accuracy.

e Crank-Nicolson/American calls, puts and binaries:
There’s not much more effort involved in pricing
American-style options than in the pricing of
European-style options.

o Explicit method/path-dependent options: By now
you’ll be quite sophisticated and it’s time to price a
path-dependent contract. Start with an Asian option
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with discrete sampling, and then try a
continuously-sampled Asian. Finally, try your hand at
lookbacks.

o Interest rate products: Repeat the above programme
for non-path-dependent and then path-dependent
interest rate products. First price caps and floors and
then go on to the index amortizing rate swap.

o Two-factor explicit: To get started on two-factor
problems price a convertible bond using an explicit
method, with both the stock and the spot interest
rate being stochastic.

o Two-factor implicit: The final stage is to implement
the implicit two-factor method as applied to the
convertible bond.

Monte Carlo methods

Monte Carlo methods simulate the random behaviour
underlying the financial models. So, in a sense they
get right to the heart of the problem. Always remem-
ber, though, that when pricing you must simulate the
risk-neutral random walk(s), the value of a contract is
then the expected present value of all cashflows. When
implementing a Monte Carlo method look out for the
following:

Number of dimensions;
Functional form of coefficients;
Boundary/final conditions;
Decision features;

Linear or non linear.

again!

Number of dimensions: For each random factor you will
have to simulate a time series. It will obviously take
longer to do this, but the time will only be proportional
to number of factors, which isn’t so bad. This makes
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Monte Carlo methods ideal for higher dimensions when
the finite-difference methods start to crawl.

Functional form of coefficients: As with the finite-difference
methods it doesn’t matter too much what the drift and
volatility functions are in practice, since you won’t be
looking for closed-form solutions.

Boundary/final conditions: These play a very similar role
as in finite differences. The final condition is the payoff
function and the boundary conditions are where we
implement trigger levels etc.

Decision features: When you have a contract with embed-
ded decisions the Monte Carlo method becomes cum-
bersome. This is easily the main drawback for simula-
tion methods. When we use the Monte Carlo method
we only find the option value at today’s stock price and
time. But to correctly price an American option, say, we
need to know what the option value would be at every
point in stock price-time space. We don'’t typically find
this as part of the Monte Carlo solution.

Linear or non linear: Simulation methods also cope poorly
with non-linear models. Some models just don’t have a

useful interpretation in terms of probabilities and expec-
tations so you wouldn’t expect them to be amenable to
solution by methods based on random simulations.

Efficiency
If we want an accuracy of ¢ and we have d underlyings
then the calculation time is

0 (de**) .
It will take longer to price the greeks, but, on the pos-

itive side, we can price many options at the same time
for almost no extra time cost.
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Programme of study

Here is a programme of study for the Monte Carlo path-
simulation methods.

e European calls, puts and binaries on a single equity:
Simulate a single stock path, the payoff for an option,
or even a portfolio of options, calculate the expected
payoff and present value to price the contract.

o Path-dependent option on a single equity: Price a
barrier, Asian, lookback, etc.

e Options on many stocks: Price a multi-asset contract
by simulating correlated random walks. You'll see
how time taken varies with number of dimensions.

o Interest rate derivatives, spot rate model: This is not
that much harder than equities. Just remember to
present value along each realized path of rates before
taking the expectation across all paths.

¢ HJM model: Slightly more ambitious is the HIM
interest rate model. Use a single factor, then two
factors
etc.

e BGM model: A discrete version of HIM.

Numerical integration

Occasionally one can write down the solution of an
option-pricing problem in the form of a multiple integral.
This is because you can interpret the option value as an
expectation of a payoff, and an expectation of the payoff
is mathematically just the integral of the product of that
payoff function and a probability density function. This
is only possible in special cases. The option has to be
European, the underlying stochastic differential equation
must be explicitly integrable (so the lognormal random
walk is perfect for this) and the payoff shouldn’t usually
be path dependent. So if this is possible then pricing is
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easy... you have a formula. The only difficulty comes
in turning this formula into a number. And that’s the
subject of numerical integration or quadrature. Look out
for the following.

e Can you write down the value of an option as an
integral?

That’s it in a nutshell.

Efficiency

There are several numerical quadrature methods. But
the two most common are based on random number
generation again. One uses normally distributed num-
bers and the other uses what are called low-discrepancy
sequences. The low-discrepancy numbers are clever in
that they appear superficially to be random but don’t
have the inevitable clustering that truly random num-
bers have.

Using the simple normal numbers, if you want an accu-
racy of € and you are pricing M options the time taken

will be

(0] (Mefz) .
If you use the low-discrepancy numbers the time taken
will be

(0] (Me_l) .

You can see that this method is very fast, unfortunately
it isn’t often applicable.

Programme of study

Here is a programme of study for the numerical quadra-
ture methods.
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o European calls, puts and binaries on a single equity
using normal numbers: Very simple. You will be
evaluating a single integral.

e European calls, puts and binaries on several
underlying lognormal equities, using normal
numbers: Very simple again. You will be evaluating a
multiple integral.

e Arbitrary European, non-path-dependent payoff, on
several underlying lognormal equities, using normal
numbers: You’'ll only have to change a single
function.

e Arbitrary European, non-path-dependent payoff, on
several underlying lognormal equities, using
low-discrepancy numbers: Just change the source of
the random numbers in the previous code.

Summary

Subject FD MC Quad.
Low dimensions Good Inefficient Good
High dimensions Slow Excellent Good
Path dependent Depends Excellent Not good
Greeks Excellent Not good Excellent
Portfolio Inefficient Very good Very good
Decisions Excellent Poor V. poor
Non linear Excellent Poor V. poor
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What is Monte Carlo Simulation?

Short Answer

Monte Carlo simulations are a way of solving probabil-
istic problems by numerically ‘imagining’ many possible
scenarios or games so as to calculate statistical proper-
ties such as expectations, variances or probabilities of
certain outcomes. In finance we use such simulations to
represent the future behaviour of equities, exchange
rates, interest rates, etc. so as to either study the
possible future performance of a portfolio or to price
derivatives.

Example

We hold a complex portfolio of investments, we would
like to know the probability of losing money over the
next year since our bonus depends on us making a
profit. We can estimate this probability by simulating
how the individual components in our portfolio might
evolve over the next year. This requires us to have a
model for the random behaviour of each of the assets,
including the relationship or correlation between them,
if any.

Some problems which are completely deterministic can
also be solved numerically by running simulations, most
famously finding a value for .

Long Answer

It is clear enough that probabilistic problems can be
solved by simulations. What is the probability of tossing
heads with a coin, just toss the coin often enough and
you will find the answer. More on this and its relevance
to finance shortly. But many deterministic problems
can also be solved this way, provided you can find a
probabilistic equivalent of the deterministic problem.

A famous example of this is Buffon’s needle, a problem
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and solution dating back to 1777. Draw parallel lines
on a table one inch apart. Drop a needle, also one inch
long, onto this table. Simple trigonometry will show
you that the probability of the needle touching one of
the lines is 2/7. So conduct many such experiments to
get an approximation to 7. Unfortunately because of
the probabilistic nature of this method you will have
to drop the needle many billions of times to find =
accurate to half a dozen decimal places.

There can also be a relationship between certain types
of differential equation and probabilistic methods. Sta-
nislaw Ulam, inspired by a card game, invented this
technique while working on the Manhattan Project
towards the development of nuclear weapons. The name
‘Monte Carlo’ was given to this idea by his colleague
Nicholas Metropolis.

Monte Carlo simulations are used in financial problems
for solving two types of problems:

e Exploring the statistical properties of a portfolio of
investments or cashflows to determine quantities
such as expected returns, risk, possible downsides,
probabilities of making certain profits or losses, etc.

¢ Finding the value of derivatives by exploiting the
theoretical relationship between option values and
expected payoff under a risk-neutral random walk.

Exploring portfolio statisticc The most successful quantita-
tive models represent investments as random walks.
There is a whole mathematical theory behind these
models, but to appreciate the role they play in portfo-
lio analysis you just need to understand three simple
concepts.

First, you need an algorithm for how the most basic
investments evolve randomly. In equities this is often
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the lognormal random walk. (If you know about the
real/risk-neutral distinction then you should know that
you will be using the real random walk here.) This can
be represented on a spreadsheet or in code as how

a stock price changes from one period to the next by
adding on a random return. In the fixed-income world
you may be using the BGM model to model how inter-
est rates of various maturities evolve. In credit you may
have a model that models the random bankruptcy of a
company. If you have more than one such investment
that you must model then you will also need to repre-
sent any interrelationships between them. This is often
achieved by using correlations.

Once you can perform such simulations of the basic
investments then you need to have models for more
complicated contracts that depend on them, these are
the options/derivatives/contingent claims. For this you
need some theory, derivatives theory. This the second
concept you must understand.

Finally, you will be able to simulate many thousands,
or more, future scenarios for your portfolio and use
the results to examine the statistics of this portfolio.
This is, for example, how classical Value at Risk can be
estimated, among other things.

Pricing derivatives We know from the results of risk-
neutral pricing that in the popular derivatives theories
the value of an option can be calculated as the present
value of the expected payoff under a risk-neutral random
walk. And calculating expectations for a single contract
is just a simple example of the above-mentioned port-
folio analysis, but just for a single option and using
the risk-neutral instead of the real random walk. Even
though the pricing models can often be written as deter-
ministic partial differential equations they can be solved
in a probabilistic way, just as Stanislaw Ulam noted for
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other, non-financial, problems. This pricing methodol-
ogy for derivatives was first proposed by the actuarially
trained Phelim Boyle in 1977.

Whether you use Monte Carlo for probabilistic or deter-
ministic problems the method is usually quite simple to
implement in basic form and so is extremely popular in
practice.
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What is the Finite-0ifference Method?

Short Answer

The finite-difference method is a way of approximating
differential equations, in continuous variables, into differ-
ence equations, in discrete variables, so that they may
be solved numerically. It is a method particularly useful
when the problem has a small number of dimensions,
that is, independent variables.

Example

Many financial problems can be cast as partial dif-
ferential equations. Usually these cannot be solved
analytically and so they must be solved numerically.

Long Answer

Financial problems starting from stochastic differential
equations as models for quantities evolving randomly,
such as equity prices or interest rates, are using the
language of calculus. In calculus we refer to gradients,
rates of change, slopes, sensitivities. These mathemati-
cal ‘derivatives’ describe how fast a dependent variable,
such as an option value, changes as one of the indepen-
dent variables, such as an equity price, changes. These
sensitivities are technically defined as the ratio of the
infinitesimal change in the dependent variable to the
infinitesimal change in the independent. And we need
an infinite number of such infinitesimals to describe an
entire curve. However, when trying to calculate these
slopes numerically, on a computer, for example, we can-
not deal with infinites and infinitesimals, and have to
resort to approximations.

Technically, a definition of the delta of an option is

WV _ o VS +hD VS —hD
39S ~ h—0 2h
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where V (S, ) is the option value as a function of stock
price, S, and time, f. Of course, there may be other inde-
pendent variables. The limiting procedure in the above
is the clue to how to approximate such derivatives
based on continuous variables by differences based

on discrete variables.

The first step in the finite-difference methods is to lay
down a grid, such as the one shown in Figure 2-7.

The grid typically has equally spaced asset points, and
equally spaced time steps. Although in more sophis-

<

k t

Figure 2-7: The finite-difference grid.
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ticated schemes these can vary. Our task will be to find
numerically an approximation to the option values at
each of the nodes on this grid.

The classical option pricing differential equations are
written in terms of the option function, V(S,f), say, a
single derivative with respect to time, % the option’s
theta, the first derivative with respect to the underlying,
%, the option’s delta, and the second derivative with

respect to the underlying, 227‘2/, the option’s gamma. |
am explicitly assuming we have an equity or exchange
rate as the underlying in these examples. In the world of
fixed income we might have similar equations but just
read interest rate, r, for underlying, .S, and the ideas
carry over.

A simple discrete approximation to the partial derivative

for theta is
6 = ﬂ VS, D - V(S t -8

at 8t
where §t is the time step between grid points. Similarly,

V. V(S+48S,0-V(ES -850
TS 288

where 3S is the asset step between grid points. There
is a subtle difference between these two expressions.
Note how the time derivative has been discretized by
evaluating the function V at the ‘current’ S and ¢, and
also one time step before. But the asset derivative uses
an approximation that straddles the point S, using S +
85 and S — 8S. The first type of approximation is called a
one-sided difference, the second is a central difference.
The reasons for choosing one type of approximation
over another are to do with stability and accuracy.
The central difference is more accurate than a one-
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sided difference and tends to be preferred for the delta
approximation, but when used for the time derivative
it can lead to instabilities in the numerical scheme.
(Here I am going to describe the explicit finite-difference
scheme, which is the easiest such scheme, but is one
which suffers from being unstable if the wrong time
discretization is used.)

The central difference for the gamma is

_ 82_V V(S +385,0-2V(S,D+V(S-3S5,D
382 852 '
Slightly changing the notation so that V* is the option

1
value approximation at the ith asset step and kth time

step we can write

vk — yk-1 vk _yk
st 25 "
k k k
[~ Vi —2Vi+ V4,
852

Finally, plugging the above, together with S =i S, into
the Black-Scholes equation gives the following dis-

cretized version of the equation:
k—1 k k k
ViV, 4 1a22562 Vil =2V + Vi,

St 2 552

Vk o _yk
58 L1 vk =.
+ri 955 rV;

This can easily be rearranged to give V5! in terms

1
of VR, V¥ and V¥, as shown schematically in the

i+1 i
following figure.

In practice we know what the option value is as a func-
tion of S, and hence i, at expiration. And this allows us
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This option

value \

=——K " is calculated from |

/ these three

t

Figure 2-8: The relationship between option values in the explicit
method.

to work backwards from expiry to calculate the option
value today, one time step at a time.

The above is the most elementary form of the finite-
difference methods, there are many other more sophis-
ticated versions.

The advantages of the finite-difference methods are in
their speed for low-dimensional problems, those with
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up to three sources of randomness. They are also par-
ticularly good when the problem has decision features
such as early exercise because at each node we can
easily check whether the option price violates arbitrage
constraints.
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What is a Jump-Diffusion Model
and How Does It Affect Option Values?

Short Answer

Jump-diffusion models combine the continuous Brown-
ian motion seen in Black-Scholes models (the diffusion)
with prices that are allowed to jump discontinuously.
The timing of the jump is usually random, and this is
represented by a Poisson process. The size of the jump
can also be random. As you increase the frequency of
the jumps (all other parameters remaining the same),
the values of calls and puts increase. The prices of
binaries, and other options, can go either up or down.

Example

A stock follows a lognormal random walk. Every month
you roll a dice. If you roll a one then the stock price
jumps discontinuously. The size of this jump is decided
by a random number you draw from a hat. (This is
not a great example because the Poisson process is a
continuous process, not a monthly event.)

Long Answer

A Poisson process can be written as dg where dq is the
jump in a random variable g during time ¢ to t + dt. dq
is 0 with probability 1 — 1 dt and 1 with probability A dt.
Note how the probability of a jump scales with the time
period over which the jump may happen, dt. The scale
factor X is known as the intensity of the process, the
larger A the more frequent the jumps.

This process can be used to model a discontinuous
financial random variable, such as an equity price,
volatility or an interest rate. Although there have been
research papers on pure jump processes as financial
models it is more usual to combine jumps with classical
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Brownian motion. The model for equities, for example,
is often taken to be

dS = S dt + oS dX + (J — DS dq.

dq is as defined above, with intensity A, J — 1 is the jump
size, usually taken to be random as well. Jump-diffusion
models can do a good job of representing the real-life
phenomenon of discontinuity in variables, and capturing
the fat tails seen in returns data.

The model for the underlying asset results in a model
for option prices. This model will be an integro-
differential equation, typically, with the integral term
representing the probability of the stock jumping a
finite distance discontinuously. Unfortunately, markets
with jumps of this nature are incomplete, meaning that
options cannot be hedged to eliminate risk. In order to
derive option-pricing equations one must therefore make
some assumptions about risk preferences or introduce
more securities with which to hedge.

Robert Merton was the first to propose jump-diffusion
models. He derived the following equation for equity
option values

1%

RE% 1%
2¢2

o-S

Bt+2

957 +rS— as rv

+ AE[VIS,H - V(S, D] — A%SE [J—1]1=0.
E[-] is the expectation taken over the jump size. In
probability terms this equation represents the expected
value of the discounted payoff. The expectation being
over the risk-neutral measure for the diffusion but the
real measure for the jumps.

There is a simple solution of this equation in the special
case that the logarithm of J is Normally distributed. If
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the logarithm of J is Normally distributed with standard
deviation o’ and if we write

k=E[J—1]

then the price of a European non-path-dependent option
can be written as
=1
> e TOGT = 0)'Vis(S, £ o, 1),
n=0
In the above
2

, no
A =11+ k), 03:(72+T—t
and
nin(l1+k
e

and Vps is the Black-Scholes formula for the option
value in the absence of jumps. This formula can be inter-
preted as the sum of individual Black-Scholes values
each of which assumes that there have been n jumps,
and they are weighted according to the probability that
there will have been n jumps before expiry.

Jump-diffusion models can do a good job of capturing
steepness in volatility skews and smiles for short-dated
option, something that other models, such as stochastic
volatility, have difficulties in doing.
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What is Meant by “Complete’ and
“Incomplete’” Markets?

Short Answer

A complete market is one in which a derivative product
can be artificially made from more basic instruments,
such as cash and the underlying asset. This usually
involves dynamically rebalancing a portfolio of the
simpler instruments, according to some formula or algo-
rithm, to replicate the more complicated product, the
derivative. Obviously, an incomplete market is one in
which you can’t replicate the option with simpler instru-
ments.

Example
The classic example is replicating an equity option, a
call, say, by continuously buying or selling the equity so
that you always hold the amount

A = e PT-DN(@d)),

in the stock, where

1 X 1.2
N - —5¢
@ m/_we 24 4
and
p In(S/E) + (r —D + $0*)(T — ©)
1= .

onT —t

Long Answer

A slightly more mathematical, yet still quite easily
understood, description is to say that a complete mar-
ket is one for which there exist the same number of
linearly independent securities as there are states of the
world in the future.
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Consider, for example, the binomial model in which
there are two states of the world at the next time step,
and there are also two securities, cash and the stock.
That is a complete market. Now, after two time steps
there will be three possible states of the world, assum-
ing the binomial model recombines so that an up-down
move gets you to the same place as down-up. You might
think that you therefore need three securities for a com-
plete market. This is not the case because after the
first time step you get to change the quantity of stock
you are holding, this is where the dynamic part of the
replication comes in.

In the equity world the two most popular models for
equity prices are the lognormal, with a constant volatil-
ity, and the binomial. Both of these result in complete
markets, you can replicate other contracts in these
worlds.

In a complete market you can replicate derivatives with
the simpler instruments. But you can also turn this on
its head so that you can hedge the derivative with the
underlying instruments to make a risk-free instrument.
In the binomial model you can replicate an option from
stock and cash, or you can hedge the option with the
stock to make cash. Same idea, same equations, just
move terms to be on different sides of the ‘equals’ sign.

As well as resulting in replication of derivatives, or
the ability to hedge them, complete markets also have
a nice mathematical property. Think of the binomial
model. In this model you specify the probability of the
stock rising (and hence falling because the probabili-
ties must add to one). It turns out that this probability
does not affect the price of the option. This is a sim-
ple consequence of complete markets, since you can
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hedge the option with the stock you don’t care whether
the stock rises or falls, and so you don’t care what the
probabilities are. People can therefore disagree on the

probability of a stock rising or falling but still agree on

the value of an option, as long as they share the same

view on the stock’s volatility.

In probabilistic terms we say that in a complete mar-
ket there exists a unique martingale measure, but for
an incomplete market there is no unique martingale
measure. The interpretation of this is that even though
options are risky instruments we don’t have to specify
our own degree of risk aversion in order to price them.

Enough of complete markets, where can we find in-
complete markets? The answer is ‘everywhere.’ In
practice, all markets are incomplete because of real-world
effects that violate the assumptions of the simple models.

Take volatility as an example. As long as we have a
lognormal equity random walk, no transaction costs,
continuous hedging, perfectly divisible assets,..., and
constant volatility then we have a complete market.
If that volatility is a known time-dependent function
then the market is still complete. It is even still com-
plete if the volatility is a known function of stock price
and time. But as soon as that volatility becomes ran-
dom then the market is no longer complete. This is
because there are now more states of the world than
there are linearly independent securities. In reality,
we don’t know what volatility will be in the future so
markets are incomplete.

We also get incomplete markets if the underlying follows
a jump-diffusion process. Again more possible states
than there are underlying securities.

Another common reason for getting incompleteness
is if the underlying or one of the variables governing
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the behaviour of the underlying is random. Options
on terrorist acts cannot be hedged since terrorist acts
aren’t traded (to my knowledge at least).

We still have to price contracts even in incomplete
markets, so what can we do? There are two main ideas
here. One is to price the actuarial way, the other is to
try to make all option prices consistent with each other.

The actuarial way is to look at pricing in some average
sense. Even if you can’t hedge the risk from each option
it doesn’t necessarily matter in the long run. Because
in that long run you will have made many hundreds
or thousands of option trades, so all that really mat-
ters is what the average price of each contract should
be, even if it is risky. To some extent this relies on
results from the Central Limit Theorem. This is called
the actuarial approach because it is how the insurance
business works. You can’t hedge the lifespan of indi-
vidual policyholders but you can figure out what will
happen to hundreds of thousands of them on average
using actuarial tables.

The other way of pricing is to make options consis-
tent with each other. This is commonly used when we
have stochastic volatility models, for example, and is
also often seen in fixed-income derivatives pricing. Let’s
work with the stochastic volatility model to get inspira-
tion. Suppose we have a lognormal random walk with
stochastic volatility. This means we have two sources of
randomness (stock and volatility) but only one quan-
tity with which to hedge (stock). That’s like saying
that there are more states of the world than underly-
ing securities, hence incompleteness. Well, we know we
can hedge the stock price risk with the stock, leaving
us with only one source of risk that we can’t get rid
of. That’s like saying there is one extra degree of free-
dom in states of the world than there are securities.
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Whenever you have risk that you can’t get rid of you
have to ask how that risk should be valued. The more
risk the more return you expect to make in excess of
the risk-free rate. This introduces the idea of the mar-
ket price of risk. Technically in this case it introduces
the market price of volatility risk. This measures the
excess expected return in relation to unhedgeable risk.
Now all options on this stock with the random volatility
have the same sort of unhedgeable risk, some may have
more or less risk than others but they are all exposed to
volatility risk. The end result is a pricing model which
explicitly contains this market price of risk parameter.
This ensures that the prices of all options are consistent
with each other via this ‘universal’ parameter. Another
interpretation is that you price options in terms of the
prices of other options.
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What is Volatility?

Short Answer

Volatility is annualized standard deviation of returns. Or
is it? Because that is a statistical measure, necessarily
backward looking, and because volatility seems to vary,
and we want to know what it will be in the future, and
because people have different views on what volatility
will be in the future, things are not that simple.

Example

Actual volatility is the o that goes into the Black-Scholes
partial differential equation. Implied volatility is the
number in the Black-Scholes formula that makes a
theoretical price match a market price.

Long Answer

Actual volatility is a measure of the amount of random-
ness in a financial quantity at any point in time. It’s
what Desmond Fitzgerald calls the ‘bouncy, bouncy.’ It’s
difficult to measure, and even harder to forecast but it’s
one of the main inputs into option pricing models.

It’s difficult to measure since it is defined mathemati-
cally via standard deviations which requires historical
data to calculate. Yet actual volatility is not a historical
quantity but an instantaneous one.

Realized/historical volatilities are associated with a
period of time, actually two periods of time. We might
say that the daily volatility over the last sixty days has
been 27%. This means that we take the last sixty days’
worth of daily asset prices and calculate the volatility.
Let me stress that this has two associated timescales,
whereas actual volatility has none. This tends to be the
default estimate of future volatility in the absence of
any more sophisticated model. For example, we might
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assume that the volatility of the next sixty days is the
same as over the previous sixty days. This will give us
an idea of what a sixty-day option might be worth.

Implied volatility is the number you have to put into
the Black-Scholes option-pricing equation to get the
theoretical price to match the market price. Often said
to be the market’s estimate of volatility.

Let’s recap. We have actual volatility which is the
instantaneous amount of noise in a stock price return.
It is sometimes modelled as a simple constant, some-
times as time dependent, sometimes as stock and time
dependent, sometimes as stochastic and sometimes

as a jump process, and sometimes as uncertain, that
is, lying within a range. It is impossible to measure
exactly, the best you can do is to get a statistical esti-
mate based on past data. But this is the parameter we
would dearly love to know because of its importance in
pricing derivatives. Some hedge funds believe that their
edge is in forecasting this parameter better than other
people, and so profit from options that are mispriced in
the market.

Since you can’t see actual volatility people often rely
on measuring historical or realized volatility. This is
a backward looking statistical measure of what volatil-
ity has been. And then one assumes that there is some
information in this data that will tell us what volatility
will be in the future. There are several models for mea-
suring and forecasting volatility and we will come back
to them shortly.

Implied volatility is the number you have to put into
the Black-Scholes option-pricing formula to get the
theoretical price to match the market price. This is
often said to be the market’s estimate of volatility.
More correctly, option prices are governed by supply
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and demand. Is that the same as the market taking

a view on future volatility? Not necessarily because
most people buying options are taking a directional
view on the market and so supply and demand reflects
direction rather than volatility. But because people who
hedge options are not exposed to direction only volatil-
ity it looks to them as if people are taking a view on
volatility when they are more probably taking a view
on direction, or simply buying out-of-the-money puts
as insurance against a crash. For example, the market
falls, people panic, they buy puts, the price of puts
and hence implied volatility goes up. Where the price
stops depends on supply and demand, not on anyone’s
estimate of future volatility, within reason.

Implied volatility levels the playing field so you can
compare and contrast option prices across strikes and
expirations.

There is also forward volatility. The adjective ‘forward’ is
added to anything financial to mean values in the future.
So forward volatility would usually mean volatility, either
actual or implied, over some time period in the future.
Finally hedging volatility means the parameter that you
plug into a delta calculation to tell you how many of the
underlying to sell short for hedging purposes.

Since volatility is so difficult to pin down it is a natural
quantity for some interesting modelling. Here are some
of the approaches used to model or forecast volatility.

Econometric models: These models use various forms of
time series analysis to estimate current and future
expected actual volatility. They are typically based on
some regression of volatility against past returns and
they may involve autoregressive or moving-average com-
ponents. In this category are the GARCH type of mod-
els. Sometimes one models the square of volatility, the
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variance, sometimes one uses high-low-open-close data
and not just closing prices, and sometimes one models
the logarithm of volatility. The latter seems to be quite
promising because there is evidence that actual volatil-
ity is lognormally distributed. Other work in this area
decomposes the volatility of a stock into components,
market volatility, industry volatility and firm-specific
volatility. This is similar to CAPM for returns.

Deterministic models: The simple Black-Scholes formulae
assume that volatility is constant or time dependent.
But market data suggests that implied volatility varies
with strike price. Such market behaviour cannot be con-
sistent with a volatility that is a deterministic function
of time. One way in which the Black-Scholes world can
be modified to accommodate strike-dependent implied
volatility is to assume that actual volatility is a func-
tion of both time and the price of the underlying. This
is the deterministic volatility (surface) model. This is
the simplest extension to the Black-Scholes world that
can be made to be consistent with market prices. All it
requires is that we have o(S,¢), and the Black-Scholes
partial differential equation is still valid. The interpre-
tation of an option’s value as the present value of the
expected payoff under a risk-neutral random walk also
carries over. Unfortunately the Black-Scholes closed-
form formulee are no longer correct. This is a simple and
popular model, but it does not capture the dynamics of
implied volatility very well.

Stochastic volatility:  Since volatility is difficult to measure,
and seems to be forever changing, it is natural to model
it as stochastic. The most popular model of this type is
due to Heston. Such models often have several param-
eters which can either be chosen to fit historical data
or, more commonly, chosen so that theoretical prices
calibrate to the market. Stochastic volatility models
are better at capturing the dynamics of traded option
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prices better than deterministic models. However, differ-
ent markets behave differently. Part of this is because
of the way traders look at option prices. Equity traders
look at implied volatility versus strike, FX traders look
at implied volatility versus delta. It is therefore natu-
ral for implied volatility curves to behave differently in
these two markets. Because of this there have grown
up the sticky strike, sticky delta, etc., models, which
model how the implied volatility curve changes as the
underlying moves.

Poisson processes: There are times of low volatility and
times of high volatility. This can be modelled by volatil-
ity that jumps according to a Poisson process.

Uncertain wolatility: An elegant solution to the problem of
modelling the unseen volatility is to treat it as uncertain,
meaning that it is allowed to lie in a specified range but
whereabouts in that range it actually is, or indeed the
probability of being at any value, are left unspecified.
With this type of model we no longer get a single option
price, but a range of prices, representing worst-case
scenario and best-case scenario.
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What is the Volatility Smile?

Short Answer

Volatility smile is the phrase used to describe how the
implied volatilities of options vary with their strikes. A
smile means that out-of-the-money puts and out-of-the-
money calls both have higher implied volatilities than
at-the-money options. Other shapes are possible as well.
A slope in the curve is called a skew. So a negative skew
would be a download sloping graph of implied volatility
versus strike.

Example
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Figure 2-9: The volatility ‘smile” for one-month SP500 options,
February 2004.
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Long Answer

Let us begin with how to calculate the implied volatil-
ities. Start with the prices of traded vanilla options,
usually the mid price between bid and offer, and all
other parameters needed in the Black-Scholes formulee,
such as strikes, expirations, interest rates, dividends,
except for volatilities. Now ask the question, what volatil-
ity must be used for each option series so that the
theoretical Black-Scholes price and the market price
are the same?

Although we have the Black-Scholes formula for option
values as a function of volatility, there is no formula
for the implied volatility as a function of option value,
it must be calculated using some bisection, Newton—
Raphson, or other numerical technique for finding zeros
of a function. Now plot these implied volatilities against
strike, one curve per expiration. That is the implied
volatility smile. If you plot implied volatility against
both strike and expiration, as a three-dimensional plot,
that is the implied volatility surface. Often you will find
that the smile is quite flat for long-dated options, but
getting steeper for short-dated options.

Since the Black-Scholes formule assume constant
volatility (or with a minor change, time-dependent
volatility) you might expect a flat implied volatility plot.
This appears not to be the case from real option-price
data. How can we explain this? Here are some questions
to ask.

¢ Is volatility constant?
e Are the Black-Scholes formulee correct?
e Do option traders use the Black-Scholes formulae?

Volatility does not appear to be constant. By this we
mean that actual volatility is not constant, actual volatil-
ity being the amount of randomness in a stock’s return.
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Actual volatility is something you can try to measure
from a stock price time series, and would exist even

if options didn’t exist. Although it is easy to say with
confidence that actual volatility is not constant it is alto-
gether much harder to estimate the future behaviour of
volatility. So that might explain why implied volatility is
not constant, people believe that volatility is constant.

If volatility is not constant then the Black-Scholes for-
mulae are not correct. (Again, there is the small caveat
that the Black-Scholes formuleae can work if volatility is
a known deterministic function of time. But I think we
can also confidently dismiss this idea as well.)

Despite this, option traders do still use the
Black-Scholes formula for vanilla options. Of all the
models that have been invented, the Black-Scholes
model is still the most popular for vanilla contracts.

It is simple and easy to use, it has very few param-
eters, it is very robust. Its drawbacks are quite well
understood. But very often, instead of using models
without some of the Black-Scholes’ drawbacks, people
‘adapt’ Black-Scholes to accommodate those problems.
For example, when a stock falls dramatically we often
see a temporary increase in its volatility. How can that
be squeezed into the Black-Scholes framework? Easy,
just bump up the implied volatilities for option with
lower strikes. A low strike put option will be out of the
money until the stock falls, at which point it may be
at the money, and at the same time volatility might
rise. So, bump up the volatility of all of the out-of-
the-money puts. This deviation from the flat-volatility
Black-Scholes world tends to get more pronounced
closer to expiration.

A more general explanation for the volatility smile is
that it incorporates the kurtosis seen in stock returns.
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Stock returns are not normal, stock prices are not log-
normal. Both have fatter tails than you would expect
from normally distributed returns. We know that, theo-
retically, the value of an option is the present value of
the expected payoff under a risk-neutral random walk.
If that risk-neutral probability density function has fat
tails then you would expect option prices to be higher
than Black-Scholes for very low and high strikes. Hence
higher implied volatilities, and the smile.

Another school of thought is that the volatility smile and
skew exist because of supply and demand. Option prices
come less from an analysis of probability of tail events
than from simple agreement between a buyer and a
seller. Out-of-the-money puts are a cheap way of buying
protection against a crash. But any form of insurance is
expensive, after all those selling the insurance also want
to make a profit. Thus out-of-the-money puts are rela-
tively over priced. This explains high implied volatility
for low strikes. At the other end, many people owning
stock will write out-of-the-money call options (so-called
covered call writing) to take in some premium, perhaps
when markets are moving sideways. There will therefore
be an oversupply of out-of-the-money calls, pushing the
prices down. Net result, a negative skew. Although the
simple supply/demand explanation is popular among
traders it does not sit comfortably with quants because
it does suggest that options are not correctly priced
and that there may be arbitrage opportunities.

While on the topic of arbitrage, it is worth mentioning
that there are constraints on the skew and the smile
that come from examining simple option portfolios. For
example, rather obviously, the higher the strike of a call
option, the lower its price. Otherwise you could make
money rather easily by buying the low strike call and
selling the higher strike call. This imposes a constraint
on the skew. Similarly, a butterfly spread has to have a
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positive value since the payoff can never be negative.
This imposes a constraint on the curvature of the smile.
Both of these constraints are model independent. There
are many ways to build the volatility-smile effect into an
option-pricing model, and still have no arbitrage. The
most popular are, in order of complexity, as follows

e Deterministic volatility surface
e Stochastic volatility
e Jump diffusion

The deterministic volatility surface is the idea that
volatility is not constant, or even only a function of
time, but a known function of stock price and time,
0(S,t). Here the word ‘known’ is a bit misleading. What
we really know are the market prices of vanillas options,
a snapshot at one instant in time. We must now figure
out the correct function o (S, ) such that the theoretical
value of our options matches the market prices. This is
mathematically an inverse problem, essentially find the
parameter, volatility, knowing some solutions, market
prices. This model may capture the volatility surface
exactly at an instant in time, but it does a very poor job
of capturing the dynamics, that is, how the data change
with time.

Stochastic volatility models have two sources of ran-
domness, the stock return and the volatility. One of the
parameters in these models is the correlation between
the two sources of randomness. This correlation is typ-
ically negative so that a fall in the stock price is often
accompanied by a rise in volatility. This results in a
negative skew for implied volatility. Unfortunately, this
negative skew is not usually as pronounced as the real
market skew. These models can also explain the smile.
As a rule one pays for convexity. We see this in the
simple Black-Scholes world where we pay for gamma.
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In the stochastic volatility world we can look at the sec-
ond derivative of option value with respect to volatility,
and if it is positive we would expect to have to pay for
this convexity, that is option values will be relatively
higher wherever this quantity is largest. For a call or
put in the world of constant volatility we have

?V _ syt & dye DT D=} /2

do2 \/E o
This function is plotted in Figure 2-10 for S = 100, T —
t=1,0=0.2 r=0.05 and D= 0. Observe how it is
positive away from the money, and small at the money.
(Of course, this is a bit of a cheat because on one hand
[ am talking about random volatility and yet using a
formula that is only correct for constant volatility.)

d”2 V/d vol”2
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Figure 2-10: 9%V /302 versus strike.
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Stochastic volatility models have greater potential for
capturing dynamics, but the problem, as always, is
knowing which stochastic volatility model to choose and
how to find its parameters. When calibrated to market
prices you will still usually find that supposed constant
parameters in your model keep changing. This is often
the case with calibrated models and suggests that the
model is still not correct, even though its complexity
seems to be very promising.

Jump-diffusion models allow the stock (and even the
volatility) to be discontinuous. Such models contain
so many parameters that calibration can be instan-
taneously more accurate (if not necessarily stable
through time).
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What is GARCH?

Short Answer

GARCH stands for Generalized Auto Regressive Con-
ditional Heteroscedasticity. This is an econometric
model used for modelling and forecasting time-depen-
dent variance, and hence volatility, of stock price re-
turns. It represents current variance in terms of past
variance(s).

Example

The simplest member of the GARCH family is GARCH(1, 1)
in which the variance, v, of stock returns at time step n
is modelled by

op=1—a—Rwy+ o1+ aUn—lBE,p

where wy is the long-term variance, « and g are posi-
tive parameters, with « + 8 < 1, and B, are independent
Brownian motions, that is, random numbers drawn from
a normal distribution. The latest variance, v,, can there-
fore be thought of as a weighted average of the most
recent variance, the latest square of returns, and the
long-term average.

Long Answer

What? GARCH is one member of a large family of econo-
metric models used to model time-varying variance.
They are popular in quantitative finance because they
can be used for measuring and forecasting volatility.

It is clear from simple equity or index data that volatil-
ity is not constant. If it were then estimating it would be
very simple. After all, in finance we have what some-
times seems like limitless quantities of data. Since
volatility varies with time we would like at the very least
to know what it is right now. And, more ambitiously, we
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would like to know what it is going to be in the future,
if not precisely then perhaps know its future expected
value. This requires a model.

The simplest popular model assumes that we can get
an estimate for volatility over the next N days, in the
future, by looking at volatility over the previous N days,
the past. This moving window volatility is initially
appealing but suffers from the problem that if there
was a one-off jump in the stock price it will remain in
the data with the same weight for the next N days and
then suddenly drop out. This leads to artificially inflated
volatility estimates for a while. One way around this is
to use the second most popular volatility model, the
exponentially weighted moving average (EWMA). This
takes the form

Up = Pup—1+ (1 — ﬂ)Ri_lv

where 8 is a parameter between zero and one, and the
Rs are the returns, suitably normalized with the time
step. This models the latest variance as a weighted
average between the previous variance and the lat-
est square of returns. The larger S the more weight is
attached to the distant past and the less to the recent
past. This model is also simple and appealing, but it has
one drawback. It results in no time structure going into
the future. The expected variance tomorrow, the day
after, and every day in the future is just today’s vari-
ance. This is counterintuitive, especially at times when
volatility is at historical highs or lows.

And so we consider the third simplest model,
Un = (1 —a — Bwy + Bvn_1 +aR%_;,

the GARCH(1, 1) model. This adds a constant, long-term
variance, to the EWMA model. The expected variance, k
time steps in the future, then behaves like

Elvpir] = wo + (vn — wo)(a + B)".
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Since o + B < 1 this is exponentially decay of the aver-
age to its mean. A much nicer, more realistic, time
dependence than we get from the EWMA model.

In GARCH(p, g¢) the (p, q) refers to there being p past
variances and g past returns in the estimate:

q P P q
Up = (1 - Za,- - Z ﬁi) wo + Z Bitn—i + Zal’RlZFi'
i=1 i=1 i=1 i=1

Why? Volatility is a required input for all classical
option-pricing models, it is also an input for many asset-
allocation problems and risk estimation, such as Value
at Risk. Therefore it is very important to have a method
for forecasting future volatility.

There is one slight problem with these econometric
models, however. The econometrician develops his
volatility models in discrete time, whereas the option-
pricing quant would ideally like a continuous-time
stochastic differential equation model. Fortunately,

in many cases the discrete-time model can be rein-
terpreted as a continuous-time model (there is weak
convergence as the time step gets smaller), and so both
the econometrician and the quant are happy. Still, of
course, the econometric models, being based on real
stock price data, result in a model for the real and not
the risk-neutral volatility process. To go from one to
the other requires knowledge of the market price of
volatility risk.

How? The parameters in these models are usually deter-
mined by Maximum Likelihood Estimation applied to
the (log)likelihood function. Although this technique

is usually quite straightforward to apply there can be
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difficulties in practice. These difficulties can be associ-
ated with

e having insufficient data;

e the (log)likelihood function being very ‘flat’ with
respect to the parameters, so that the maximum is
insensitive to the parameter values;

o estimating the wrong model, including having too
many parameters (the best model may be simpler
than you think).

Family Members

Here are some of the other members of the GARCH
family. New ones are being added all the time, they are
breeding like rabbits. In these models the ‘shocks’ can
typically either have a normal distribution, a Student’s
t-distribution or a Generalized Error distribution, the
latter two having the fatter tails.

NGARCH

2

Un=(1—a—Bwy+ pop-1+« (Rn—l — VYV Un—l) .

This is similar to GARCH(1, 1) but the parameter y

permits correlation between the stock and volatility
processes.

AGARCH Absolute value GARCH. Similar to GARCH but
with the volatility (not the variance) being linear in the
absolute value of returns (instead of square of returns).

EGARCH Exponential GARCH. This models the logarithm
of the variance. The model also accommodates asym-
metry in that negative shocks can have a bigger impact
on volatility than positive shocks.
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REGARCH Range-based Exponential GARCH. This mod-
els the low to high range of asset prices over a ‘day.’

IGARCH Integrated GARCH. This is a type of GARCH
model with further constraints on the parameters.

FIGARCH Fractionally Integrated GARCH. This model
uses the fractional differencing lag operator applied

to the variance. This adds an extra parameter to the
GARCH model, and is such that it includes GARCH and
IGARCH as extremes. This model has the long memory,
slow decay of volatility as seen in practice.

FIEGARCH Fractionally Integrated Exponential GARCH.
This models the logarithm of variance and again has
the long memory, slow decay of volatility as seen in
practice.

TGARCH Threshold GARCH. This is similar to GARCH
but includes an extra term that kicks in when the shock
is negative. This gives a realistic asymmetry to the
volatility model.

PARCH Power ARCH. In this model the variance is
raised to a power other than zero (logarithm), one
(AGARCH) or two. This model can have the long mem-
ory, slow decay of volatility seen in practice.

CGARCH Component GARCH. This models variance

as the sum of two or more ‘components.” In a two-
component model, for example, one component is used
to capture short-term and another the long-term effects
of shocks. This model therefore has the long memory,
slow decay of volatility seen in practice.
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How Do | Pynamically Hedge?

Short Answer

Dynamic hedging, or delta hedging, means the continu-
ous buying or selling of the underlying asset according
to some formula or algorithm so that risk is eliminated
from an option position. The key point in this is what
formula do you use, and, given that in practice you
can’t hedge continuously, how should you hedge dis-
cretely? First get your delta correct, and this means
use the correct formula and estimates for parameters,
such as volatility. Second decide when to hedge based
on the conflicting desires of wanting to hedge as often
as possible to reduce risk, but as little as possible to
reduce any costs associated with hedging.

Example

The implied volatility of a call option is 20% but you
think that is cheap, volatility is nearer 40%. Do you put
20% or 40% into the delta calculation? The stock then
moves, should you rebalance, incurring some inevitable
transactions costs, or wait a bit longer while taking the
risks of being unhedged?

Long Answer

There are three issues, at least, here. First, what is the
correct delta? Second, if I don’t hedge very often how

big is my risk? Third, when [ do rehedge how big are

my transaction costs?

What is the correct delta? Let’s continue with the above
example, implied volatility 20% but you believe volatility
will be 40%. Does 0.2 or 0.4 go into the Black-Scholes
delta calculation, or perhaps something else? First

let me reassure you that you won’t theoretically lose



Chapter 2: FAQs ]7’

money in either case (or even if you hedge using a
volatility somewhere in the 20 to 40 range) as long as
you are right about the 40% and you hedge continu-
ously. There will however be a big impact on your P&L
depending on which volatility you input.

If you use the actual volatility of 40% then you are guar-
anteed to make a profit that is the difference between
the Black-Scholes formula using 40% and the Black-
Scholes formula using 20%.

V(S t0) = V(S,t;6),

where V(S,t; o) is the Black-Scholes formula for the call
option and o denotes actual volatility and ¢ is implied
volatility.

That profit is realized in a stochastic manner, so that
on a marked-to-market basis your profit will be random
each day. This is not immediately obvious, neverthe-
less it is the case that each day you make a random
profit or loss, both equally likely, but by expiration your
total profit is a guaranteed number that was known at
the outset. Most traders dislike the potentially large
P&L swings that you get by hedging using the forecast
volatility that they hedge using implied volatility.

When you hedge with implied volatility, even though
it is wrong compared with your forecast, you will still
make money. But in this case the profit each day is
non negative and smooth, so much nicer than when
you hedge using forecast volatility. The downside is
that the final profit depends on the path taken by the
underlying. If the stock stays close to the strike then
you will make a lot of money. If the stock goes quickly
far into or out of the money then your profit will be
small. Hedging using implied volatility gives you a nice,
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smooth, monotonically increasing P&L but at the cost of
not knowing how much money you will make.

The profit each time step is
3 (0% -5 sPriar,

where I'! is the Black-Scholes gamma using implied
volatility. You can see from this expression that as long
as actual volatility is greater than implied you will make
money from this hedging strategy. This means that you
do not have to be all that accurate in your forecast of
future actual volatility to make a profit.

How big is my hedging error? In practice you cannot hedge
continuously. The Black-Scholes model, and the above
analysis, requires continuous rebalancing or your posi-
tion in the underlying. The impact of hedging discretely
is quite easy to quantify.

When you hedge you eliminate a linear exposure to the
movement in the underlying. Your exposure becomes
quadratic and depends on the gamma of your position.
If we use ¢ to denote a normally distributed random
variable with mean of zero and variance one, then the
profit you make over a time step 6t due to the gamma
is simply

$02S%T ot ¢*.

This is in an otherwise perfect Black—Scholes world.
The only reason why this is not exactly a Black-Scholes
world is because we are hedging at discrete time inter-
vals.

The Black-Scholes models prices in the expected value
of this expression. You will recognize the 502SI" from
the Black-Scholes equation. So the hedging error is
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simply
1028 8t (¢* — D).

This is how much you make or lose between each rebal-
ancing.

We can make several important observations about
hedging error.

o It is large: it is O(8¢) which is the same order of
magnitude as all other terms in the Black-Scholes
model. It is usually much bigger than interest
received on the hedged option portfolio

e On average it is zero: hedging errors balance out

e It is path dependent: the larger gamma, the larger the
hedging errors

e The total hedging error has standard deviation of
J/8t: total hedging error is your final error when you
get to expiration. If you want to halve the error you
will have to hedge four times as often.

e Hedging error is drawn from a chi-square distribution:
that’s what ¢? is

e If you are long gamma you will lose money
approximately 68% of the time: this is chi-square
distribution in action. But when you make money it
will be from the tails, and big enough to give a mean
of zero. Short gamma you lose only 32% of the time,
but they will be large losses.

e In practice ¢ is not normally distributed: the fat tails,
high peaks we see in practice will make the above
observation even more extreme, perhaps a long
gamma position will lose 80% of the time and win
only 20%. Still the mean will be zero.

How much will transaction costs reduce my profit? To reduce
hedging error we must hedge more frequently, but
the downside of this is that any costs associated with



174

Frequently Asked Questions In Quantitative Finance

trading the underlying will increase. Can we quantify
transaction costs? Of course we can.

If we hold a short position in delta of the underlying and
then rebalance to the new delta at a time §¢ later then
we will have had to have bought or sold whatever the
change in delta was. As the stock price changes by §S
then the delta changes by 4S I'. If we assume that costs
are proportional to the absolute value of the amount of
the underlying bought or sold, such that we pay in costs
an amount « times the value traded then the expected
cost each §t will be

K(TSZ\/S_Z‘\/?|F|,
b3

where the \/g appears because we have to take the
expected value of the absolute value of a normal vari-
able. Since this happens every time step, we can adjust
the Black-Scholes equation by subtracting from it the
above divided by 6¢ to arrive at

WV 9 d Eh% 0/ 2
E‘FEO'SW-FVSE—VV—KO’S ﬁ|l"|_0

This equation is interesting for being non linear, so that
the value of a long call and a short call will be different.
The long call will be less than the Black-Scholes value
and a short call higher. The long position is worth less
because we have to allow for the cost of hedging. The
short position is even more of a liability because of costs.

Crucially we also see that the effect of costs grows
like the inverse of the square root of the time between
rehedges. As explained above if we want to halve hedg-
ing error we must hedge four times as often. But this
would double the effects of transaction costs.

In practice, people do not rehedge at fixed intervals,
except perhaps just before market close. There are
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many other possible strategies involving hedging when
the underlying or delta moves a specified amount, or
even strategies involving utility theory.
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What is Dispersion Trading?

Short Answer

Dispersion trading is a strategy involving the selling of
options on an index against buying a basket of options
on individual stocks. Such a strategy is a play on the
behaviour of correlations during normal markets and
during large market moves. If the individual assets
returns are widely dispersed then there may be little
movement in the index, but a large movement in the
individual assets. This would result in a large payoff on
the individual asset options but little to pay back on the
short index option.

Example

You have bought straddles on constituents of the SP500
index, and you have sold a straddle on the index itself.
On most days you don’t make much of a profit or loss
on this position, gains/losses on the equities balance
losses/gains on the index. But one day half of your
equities rise dramatically, and one half fall, with there
being little resulting move in the index. On this day you
make money on the equity options from the gammas,
and also make money on the short index option because
of time decay. That was a day on which the individual
stocks were nicely dispersed.

Long Answer
The volatility on an index, o7, can be approximated by

N N
612 = Z Z WiWj pijoioj,

i=1 j=1
where there are NV constituent stocks, with volatilities o,
weight w; by value and correlations p;. (I say ‘approxi-
mate’ because technically we are dealing with a sum of
lognormals which is not lognormal, but this approxima-
tion is fine.)
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If you know the implied volatilities for the individual
stocks and for the index option then you can back out
an implied correlation, amounting to an ‘average’ across
all stocks:

2 N 2 2
of — e Wio;
N N :
Doin1 Dizjm1 Willjpijoio;
Dispersion trading can be interpreted as a view on this
implied correlation versus one’s own forecast of where

this correlation ought to be, perhaps based on historical
analysis.

The competing effects in a dispersion trade are

e gamma profits versus time decay on each of the long
equity options

e gamma losses versus time decay (the latter a source
of profit) on the short index options

e the amount of correlation across the individual
equities

In the example above we had half of the equities increas-
ing in value, and half decreasing. If they each moved
more than their respective implied volatilities would
suggest then each would make a profit. For each stock
this profit would depend on the option’s gamma and the
implied volatility, and would be parabolic in the stock
move. The index would hardly move and the profit there
would also be related to the index option’s gamma.
Such a scenario would amount to there being an aver-
age correlation of zero and the index volatility being
very small.

But if all stocks were to move in the same direction the
profit from the individual stock options would be the
same but this profit would be swamped by the gamma
loss on the index options. This corresponds to a correla-
tion of one across all stocks and a large index volatility.
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Why might dispersion trading be successful?

e Dynamics of markets are more complex than can be
captured by the simplistic concept of correlation.

e Index options might be expensive because of large
demand, therefore good to sell.

e You can choose to buy options on equities that are
predisposed to a high degree of dispersion. For
example, focus on stocks which move dramatically in
different directions during times of stress. This may
be because they are in different sectors, or because
they compete with one another, or because there
may be merger possibilities.

e Not all of the index constituents need to be bought.
You can choose to buy the cheaper equity options in
terms of volatility.

Why might dispersion trading be unsuccessful?

e It is too detailed a strategy to cope with large
numbers of contracts with bid-offer spreads.

e You should delta hedge the positions which could be
costly.

e You must be careful of downside during market
crashes.
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What is Bootstrapping Using Discount
Factors?

Short Answer

Bootstrapping means building up a forward interest-
rate curve that is consistent with the market prices of
common fixed-income instruments such as bonds and
swaps. The resulting curve can then be used to value
other instruments, such as bonds that are not traded.

Example

You know the market prices of bonds with one, two
three, five years to maturity. You are asked to value a
four-year bond. How can you use the traded prices so
that your four-year bond price is consistent?

Long Answer

Imagine that you live in a world where interest rates
change in a completely deterministic way, no random-
ness at all. Interest rates may be low now, but rising
in the future, for example. The spot interest rate is the
interest you receive from one instant to the next. In this
deterministic interest-rate world this spot rate can be
written as a function of time, r(f). If you knew what this
function was you would be able to value fixed-coupon
bonds of all maturities by using the discount factor

exp (— [Tr(r)dr> ,

to present value a payment at time 7 to today, ¢.

Unfortunately you are not told what this r function is.
Instead you only know, by looking at market prices of
various fixed-income instruments, some constraints on
this r function.
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As a simple example, suppose you know that a zero-
coupon bond, principal $100, maturing in one year, is
worth $95 today. This tells us that

exp (— /[H r(t)dr> =0.95.

Suppose a similar two-year zero-coupon bond is worth
$92, then we also know that

exp (— f[HZ r(r)dr) =0.92.

This is hardly enough information to calculate the entire
r(¢) function, but it is similar to what we have to deal
with in practice. In reality, we have many bonds of dif-
ferent maturity, some without any coupons but most
with, and also very liquid swaps of various maturities.
Each such instrument is a constraint on the r(¢) func-
tion.

Bootstrapping is backing out a deterministic spot rate
function, r(#), also called the (instantaneous) forward
rate curve that is consistent with all of these liquid
instruments.

Note that usually only the simple ‘linear’ instruments
are used for bootstrapping. Essentially this means
bonds, but also includes swaps since they can be de-
composed into a portfolio of bonds. Other contracts
such as caps and floors contain an element of optional-
ity and therefore require a stochastic model for interest
rates. It would not make financial sense to assume a
deterministic world for these instruments, just as you
wouldn’t assume a deterministic stock price path for an
equity option.

Because the forward rate curve is not uniquely deter-
mined by the finite set of constraints that we encounter
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in practice, we have to impose some conditions on the
function r(%).

e Forward rates should be positive, or there will be
arbitrage opportunities

e Forward rates should be continuous (although this is
commonsense rather than because of any financial
argument)

e Perhaps the curve should also be smooth

Even with these desirable characteristics the forward
curve is not uniquely defined.

Finding the forward curve with these properties
amounts to deciding on a way of interpolating ‘between
the points,’ the ‘points’ meaning the constraints on
the integrals of the r function. There have been many
proposed interpolation techniques such as

linear in discount factors

linear in spot rates

linear in the logarithm of rates
piecewise linear continuous forwards
cubic splines

Bessel cubic spline
monotone-preserving cubic spline
quartic splines

and others.

Finally, the method should result in a forward rate func-
tion that is not too sensitive to the input data, the bond
prices and swap rates, it must be fast to compute and
must not be too local in the sense that if one input is
changed it should only impact on the function nearby.

And, of course, it should be emphasized that there is no
‘correct’ way to join the dots.
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Because of the relative liquidity of the instruments it
is common to use deposit rates in the very short term,
bonds and FRAs for the medium term and swaps for
longer end of the forward curve.

Finally, because the bootstrapped forward curve is
assumed to come from deterministic rates it is danger-
ous to use it to price instruments with convexity since
such instruments require a model for randomness, as
explained by Jensen’s Inequality.
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What is the LIBOR Market Model and
Its Principal Applications in Finance?

Short Answer

The LIBOR Market Model (LMM), also known as the
BGM or BGM/J model, is a model for the stochastic
evolution of forward interest rates. Its main strength
over other interest rate models is that it describes the
evolution of forward rates that exist, at market-traded
maturities, as opposed to theoretical constructs such as
the spot interest rate.

Example

In the LMM the variables are a set of forward rates
for traded, simple fixed-income instruments. The para-
meters are volatilities of these and correlations between
them. From no arbitrage we can find the risk-neutral
drift rates for these variables. The model is then used
to price other instruments.

Long Answer

The history of interest-rate modelling begins with deter-
ministic rates, and the ideas of yield to maturity, dur-
ation, etc. The assumption of determinism is not at all
satisfactory for pricing derivatives however, because of
Jensen’s Inequality.

In 1976 Fischer Black introduced the idea of treat-
ing bonds as underlying assets so as to use the
Black-Scholes equity option formulee for fixed-income
instruments. This is also not entirely satisfactory since
there can be contradictions in this approach. On one
hand bond prices are random, yet on the other hand
interest rates used for discounting from expiration to
the present are deterministic. An internally consistent
stochastic rates approach was needed.
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The first step on the stochastic interest rate path used
a very short-term interest rate, the spot rate, as the
random factor driving the entire yield curve. The math-
ematics of these spot-rate models was identical to that
for equity models, and the fixed-income derivatives sat-
isfied similar equations as equity derivatives. Diffusion
equations governed the prices of derivatives, and deriva-
tives prices could be interpreted as the risk-neutral
expected value of the present value of all cashflows as
well. And so the solution methods of finite-difference
methods for solving partial differential equations, trees
and Monte Carlo simulation carried over. Models of this
type are Vasicek, Cox, Ingersoll & Ross, Hull & White.
The advantage of these models is that they are easy to
solve numerically by many different methods. But there
are several aspects to the downside. First, the spot rate
does not exist, it has to be approximated in some way.
Second, with only one source of randomness the yield
curve is very constrained in how it can evolve, essen-
tially parallel shifts. Third, the yield curve that is output
by the model will not match the market yield curve. To
some extent the market thinks of each maturity as being
semi independent from the others, so a model should
match all maturities otherwise there will be arbitrage
opportunities.

Models were then designed to get around the second
and third of these problems. A second random factor
was introduced, sometimes representing the long-term
interest rate (Brennan & Schwartz), and sometimes the
volatility of the spot rate (Fong & Vasicek). This allowed
for a richer structure for yield curves. And an arbitrary
time-dependent parameter (or sometimes two or three
such) was allowed in place of what had hitherto been
constant(s). The time dependence allowed for the yield
curve (and other desired quantities) to be instanta-
neously matched. Thus was born the idea of calibration,
the first example being the Ho & Lee model.



Chapter 2: FAQs ’85

The business of calibration in such models was rarely
straightforward. The next step in the development of
models was by Heath, Jarrow & Morton (HJM) who
modelled the evolution of the entire yield curve directly
so that calibration simply became a matter of specifying
an initial curve. The model was designed to be easy to
implement via simulation. Because of the non-Markov
nature of the general HIM model it is not possible to
solve these via finite-difference solution of partial dif-
ferential equations, the governing partial differential
equation would generally be in an infinite number of
variables, representing the infinite memory of the gen-
eral HIM model. Since the model is usually solved by
simulation it is straightforward having any number of
random factors and so a very, very rich structure for
the behaviour of the yield curve. The only downside
with this model, as far as implementation is concerned,
is that it assumes a continuous distribution of maturities
and the existence of a spot rate.

The LIBOR Market Model (LMM) as proposed by Mil-
tersen, Sandmann, Sondermann, Brace, Gatarek, Musiela
and Jamshidian in various combinations and at var-
ious times, models traded forward rates of different
maturities as correlated random walks. The key advan-
tage over HJM is that only prices which exist in the
market are modelled, the LIBOR rates. Each traded for-
ward rate is represented by a stochastic differential
equation model with a drift rate and a volatility, as well
as a correlation with each of the other forward rate
models. For the purposes of pricing derivatives we work
as usual in a risk-neutral world. In this world the drifts
cannot be specified independently of the volatilities and
correlations. If there are V forward rates being modelled
then there will be N volatility functions to specify and
N(N — 1)/2 correlation functions, the risk-neutral drifts
are then a function of these parameters.
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Again, the LMM is solved by simulation with the yield
curve ‘today’ being the initial data. Calibration to the
yield curve is therefore automatic. The LMM can also
be made to be consistent with the standard approach
for pricing caps, floors and swaptions using Black 1976.
Thus calibration to volatility- and correlation-dependent
liquid instruments can also be achieved.

Such a wide variety of interest models have been
suggested because there has not been a universally
accepted model. This is in contrast to the equity world
in which the lognormal random walk is a starting point
for almost all models. Whether the LMM is a good model
in terms of scientific accuracy is another matter, but
its ease of use and calibration and its relationship with
standard models make it very appealing to practitioners.
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What i1s Meant by the ‘Value’ of a

Contract?

Short Answer

Value usually means the theoretical cost of building
up a new contract from simpler products, such as
replicating an option by dynamically buying and selling
stock.

Example
Wheels cost $10 each. A soapbox is $20. How much is a
go-cart? The value is $60.

Long Answer

To many people the value of a contract is what they
see on a screen or comes out of their pricing software.
Matters are actually somewhat more subtle than this.
Let’s work with the above soapbox example.

To the quant the value of the go-cart is simply $60, the
cost of the soapbox and four wheels, ignoring nails and
suchlike, and certainly ignoring the cost of manpower
involved in building it.

Are you going to sell the go-cart for $60? I don’t think
so. You'd like to make a profit, so you sell it for $80.
That is the price of the go-cart.

Why did someone buy it from you for $80? Clearly the
$80 must be seen by them as being a reasonable amount
to pay. Perhaps they are going to enter a go-carting
competition with a first prize of $200. Without the go-
cart they can’t enter, and they can’t win the $200. The
possibility of winning the prize money means that the
go-cart is worth more to them than the $80. Maybe they
would have gone as high as $100.



Chapter 2: FAQs ’89

This simple example illustrates the subtlety of the whole
valuation/pricing process. In many ways options are like
go-carts and valuable insight can be gained by thinking
on this more basic level.

The quant rarely thinks like the above. To him value
and price are the same, the two words often used inter-
changeably. And the concept of worth does not crop up.

When a quant has to value an exotic contract he looks
to the exchange-traded vanillas to give him some insight
into what volatility to use. This is calibration. A vanilla
trades at $10, say. That is the price. The quant then
backs out from a Black-Scholes valuation formula the
market’s implied volatility. By so doing he is assuming
that price and value are identical.

Related to this topic is the question of whether a math-
ematical model explains or describes a phenomenon.
The equations of fluid mechanics, for example, do both.
They are based on conservation of mass and momen-
tum, two very sound physical principles. Contrast this
with the models for derivatives.

Prices are dictated in practice by supply and demand.
Contracts that are in demand, such as out-of-the-money
puts for downside protection, are relatively expensive.
This is the explanation for prices. Yet the mathematical
models we use for pricing have no mention of supply
or demand. They are based on random walks for the
underlying with an unobservable volatility parameter,
and the assumption of no arbitrage. The models try

to describe how the prices ought to behave given a
volatility. But as we know from data, if we plug in our
own forecast of future volatility into the option-pricing
formulee we will get values that disagree with the market
prices. Either our forecast is wrong and the market
knows better, or the model is incorrect, or the market
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is incorrect. Commonsense says all three are to blame.
Whenever you calibrate your model by backing out
volatility from supply-demand driven prices using a
valuation formula you are mixing apples and oranges.

To some extent what the quant is trying to do is the
same as the go-cart builder. The big difference is that
the go-cart builder does not need a dynamic model
for the prices of wheels and soapboxes, his is a static
calculation. One go-cart equals one soapbox plus four
wheels. It is rarely so simple for the quant. His calcula-
tions are inevitably dynamic, his hedge changes as the
stock price and time change. It would be like a go-cart
for which you had to keep buying extra wheels during
the race, not knowing what the price of wheels would
be before you bought them. This is where the math-
ematical models come in, and errors, confusion, and
opportunities appear.

And worth? That is a more subjective concept. Quan-
tifying it might require a utility approach. As Oscar
Wilde said “A cynic is a man who knows the price of
everything but the value of nothing.”
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What is Calibration?

Short Answer

Calibration means choosing parameters in your model
so that the theoretical prices for exchange-traded con-
tracts output from your model match exactly, or as
closely as possible, the market prices at an instant in
time. In a sense it is the opposite of fitting parameters
to historical time series. If you match prices exactly
then you are eliminating arbitrage opportunities, and
this is why it is popular.

Example

You have your favourite interest rate model, but you
don’t know how to decide what the parameters in the
model should be. You realize that the bonds, swaps and
swaptions markets are very liquid, and presumably very
efficient. So you choose your parameters in the model
so that your model’s theoretical output for these simple
instruments is the same as their market prices.

Long Answer

Almost all financial models have some parameter(s)
that can’t be measured accurately. In the simplest non-
trivial case, the Black-Scholes model, that parameter is
volatility. If we can’t measure that parameter how can
we decide on its value? For if we don’t have an idea of
its value then the model is useless.

Two ways spring to mind. One is to use historical data,
the other is to use today’s price data.

Let’s see the first method in action. Examine, perhaps,
equity data to try and estimate what volatility is. The
problem with that is that it is necessarily backward
looking, using data from the past. This might not be
relevant to the future. Another problem with this is
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that it might give prices that are inconsistent with the
market. For example, you are interested in buying a
certain option. You think volatility is 27%, so you use
that number to price the option, the price you get is
$15. However, the market price of that option is $19.
Are you still interested in buying it? You can either
decide that the option is incorrectly priced or that your
volatility estimate is wrong.

The other method is to assume, effectively, that there is
information in the market prices of traded instruments.
In the above example we ask what volatility must we
put into a formula to get the ‘correct’ price of $19. We
then use that number to price other instruments. In this
case we have calibrated our model to an instantaneous
snapshot of the market at one moment in time, rather
than to any information from the past.

Calibration is common in all markets, but is usually
more complicated than in the simple example above.
Interest rate models may have dozens of parameters or
even entire functions to be chosen by matching with the
market.

Calibration can therefore often be time consuming. Cal-
ibration is an example of an inverse problem, in which
we know the answer (the prices of simple contracts)
and want to find the problem (the parameters). Inverse
problems are notoriously difficult, for example being
very sensitive to initial conditions.

Calibration can be misleading, since it suggests that
your prices are correct. For example if you calibrate a
model to a set of vanilla contracts, and then calibrate
a different model to the same set of vanillas, how do
you know which model is better? Both correctly price
vanillas today. But how will they perform tomorrow?
Will you have to recalibrate? If you use the two different
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models to price an exotic contract how do you know

which price to use? How do you know which gives the
better hedge ratios? How will you even know whether
you have made money or lost it?
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What is the Market Price of Risk?

Short Answer

The market price of risk is the return in excess of the
risk-free rate that the market wants as compensation for
taking risk.

Example

Historically a stock has grown by an average of 20% per
annum when the risk-free rate of interest was 5%. The
volatility over this period was 30%. Therefore, for each
unit of risk this stock returns on average an extra 0.5
return above the risk-free rate. This is the market price
of risk.

Long Answer

In classical economic theory no rational person would
invest in a risky asset unless they expect to beat the
return from holding a risk-free asset. Typically risk is
measured by standard deviation of returns, or volatility.
The market price of risk for a stock is measured by
the ratio of expected return in excess of the risk-free
interest rate divided by standard deviation of returns.
Interestingly, this quantity is not affected by leverage.
If you borrow at the risk-free rate to invest in a risky
asset both the expected return and the risk increase,
such that the market price of risk is unchanged. This
ratio, when suitably annualized, is also the Sharpe ratio.

If a stock has a certain value for its market price of risk
then an obvious question to ask is what is the market
price of risk for an option on that stock? In the famous
Black-Scholes world in which volatility is deterministic
and you can hedge continuously and costlessly then the
market price of risk for the option is the same as that
for the underlying equity. This is related to the concept
of a complete market in which options are redundant
because they can be replicated by stock and cash.
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In derivatives theory we often try to model quantities
as stochastic, that is, random. Randomness leads to
risk, and risk makes us ask how to value risk, that is,
how much return should we expect for taking risk. By
far the most important determinant of the role of this
market price of risk is the answer to the question, is
the quantity you are modelling traded directly in the
market?

If the quantity is traded directly, the obvious example
being a stock, then the market price of risk does not
appear in the Black-Scholes option pricing model. This
is because you can hedge away the risk in an option
position by dynamically buying and selling the under-
lying asset. This is the basis of risk-neutral valuation.
Hedging eliminates exposure to the direction that the
asset is going and also to its market price of risk. You
will see this if you look at the Black-Scholes equation.
There the only parameter taken from the stock random
walk is its volatility, there is no appearance of either its
growth rate or its price of risk.

On the other hand, if the modelled quantity is not
directly traded then there will be an explicit reference
in the option-pricing model to the market price of risk.
This is because you cannot hedge away associated risk.
And because you cannot hedge the risk you must know
how much extra return is needed to compensate for
taking this unhedgeable risk. Indeed, the market price
of risk will typically appear in classical option-pricing
models any time you cannot hedge perfectly. So expect
it to appear in the following situations:

e When you have a stochastic model for a quantity that
is not traded. Examples: stochastic volatility; interest
rates (this is a subtle one, the spot rate is not
traded); risk of default.
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e When you cannot hedge. Examples: jump models;
default models; transaction costs.

When you model stochastically a quantity that is not
traded then the equation governing the pricing of deriva-
tives is usually of diffusion form, with the market price
of risk appearing in the ‘drift’ term with respect to the
non-traded quantity. To make this clear, here is a gen-
eral example.

Suppose that the price of an option depends on the
value of a quantity of a substance called phlogiston.
Phlogiston is not traded but either the option’s payoff
depends on the value of phlogiston, or the value of phlo-
giston plays a role in the dynamics of the underlying
asset. We model the value of phlogiston as

dd = podt + 0pdXe.

The market price of phlogiston risk is 1¢. In the classical
option-pricing models we will end up with an equation
for an option with the following term

+( A )8V+ =0
122 foYer 30 o= Ul

The dots represent all the other terms that one usually
gets in a Black-Scholes-type of equation. Observe that
the expected change in the value of phlogiston, ¢, has
been adjusted to allow for the market price of phlogis-
ton risk. We call this the risk-adjusted or risk-neutral
drift. Conveniently, because the governing equation is
still of diffusive type we can continue to use Monte
Carlo simulation methods for pricing. Just remember to
simulate the risk-neutral random walk

dd = (e — Aopog) dt + 0pdXo.

and not the real one.

You can imagine estimating the real drift and volatility
for any observable financial quantity simply by looking
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at a times series of the value of that quantity. But how
can you estimate its market price of risk? Market price
of risk is only observable through option prices. This is
the point at which practice and elegant theory start to
part company. Market price of risk sounds like a way of
calmly assessing required extra value to allow for risk.
Unfortunately there is nothing calm about the way that
markets react to risk. For example, it is quite simple to
relate the slope of the yield curve to the market price
of interest rate risk. But evidence from this suggests
that market price of risk is itself random, and should
perhaps also be modelled stochastically.

Note that when you calibrate a model to market prices
of options you are often effectively calibrating the
market price of risk. But that will typically be just a
snapshot at one point in time. If the market price of risk
is random, reflecting people’s shifting attitudes from
fear to greed and back again, then you are assuming
fixed something which is very mobile, and calibration
will not work.

There are some models in which the market price of
risk does not appear because they typically involve
using some form of utility theory approach to find a
person’s own price for an instrument rather than the
market’s.
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What is the Difference Between the
Equilibrium Approach and the
No-Arbitrage Approach to Modelling?

Short Answer

Equilibrium models balance supply and demand, they
require knowledge of investor preferences and prob-
abilities. No-arbitrage models price one instrument by
relating it to the prices of other instruments.

Example

The Vasicek interest rate model can be calibrated to
historical data. It can therefore be thought of as a rep-
resentation of an equilibrium model. But it will rarely
match traded prices. Perhaps it would therefore be a
good trading model. The BGM model matches market
prices each day and therefore suggests that there are
never any trading opportunities.

Long Answer

Equilibrium models represent a balance of supply and
demand. As with models of equilibria in other, non-
financial, contexts there may be a single equilibrium
point, or multiple, or perhaps no equilibrium possible
at all. And equilibrium points may be stable such that
any small perturbation away from equilibrium will be
corrected (a ball in a valley), or unstable such that a
small perturbation will grow (a ball on the top of a hill).
The price output by an equilibrium model is supposedly
correct in an absolute sense.

Genuine equilibrium models in economics usually
require probabilities for future outcomes, and a rep-
resentation of the preferences of investors. The latter
perhaps quantified by utility functions. In practice nei-
ther of these is usually available, and so the equilibrium



Chapter 2: FAQs ’99

models tend to be of more academic than practical
interest.

No-arbitrage, or arbitrage-free, models represent the
point at which there aren’t any arbitrage profits to be
made. If the same future payoffs and probabilities can
be made with two different portfolios then the two port-
folios must both have the same value today, otherwise
there would be an arbitrage. In quantitative finance
the obvious example of the two portfolios is that of an
option on the one hand and a cash and dynamically
rebalanced stock position on the other. The end result
being the pricing of the option relative to the price of
the underlying asset. The probabilities associated with
future stock prices falls out of the calculation and pref-
erences are never needed. When no-arbitrage pricing is
possible it tends to be used in practice. The price out-
put by a no-arbitrage model is supposedly correct in a
relative sense.

For no-arbitrage pricing to work we need to have mar-
kets that are complete, so that we can price one con-
tract in terms of others. If markets are not complete and
we have sources of risk that are unhedgeable then we
need to be able to quantify the relevant market price
of risk. This is a way of consistently relating prices of
derivatives with the same source of unhedgeable risk, a
stochastic volatility for example.

Both the equilibrium and no-arbitrage models suffer
from problems concerning parameter stability.

In the fixed-income world, examples of equilibrium
models are Vasicek, CIR, Fong & Vasicek. These have
parameters which are constant, and which can be esti-
mated from time series data. The problem with these
is that they permit very simple arbitrage because the
prices that they output for bonds will rarely match
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traded prices. Now the prices may be correct based on
the statistics of the past but are they correct going for-
ward? The models of Ho & Lee and Hull & White are a
cross between the equilibrium models and no-arbitrage
models. Superficially they look very similar to the for-
mer but by making one or more of the parameters time
dependent they can be calibrated to market prices and
so supposedly remove arbitrage opportunities. But still,
if the parameters, be they constant or functions, are
not stable then we will have arbitrage. But the question
is whether that arbitrage is foreseeable. The interest
rate models of HIM and BGM match market prices each
day and are therefore even more in the no-arbitrage
camp.
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How Good 15 the Assumption of Normal
Distributions for Financial Returns?

Short Answer

The answer has to be ‘it depends.’ It depends on the
timescale over which returns are measured. For stocks
over very short timescales, intraday to several days,
the distributions are not normal, they have fatter tails
and higher peaks than normal. Over longer periods
they start to look more normal, but then over years or
decades they look lognormal.

It also depends on what you mean by ‘good.” They are
very good in the sense that they are simple distributions
to work with, and also, thanks to the Central Limit
Theorem, sensible distributions to work with since there
are sound reasons why they might appear. They are also
good in that basic stochastic calculus and [t6’s lemma
assume normal distributions and those concepts are
bricks and mortar to the quant.

Example

In Figure 2-11 is the probability density function for
the daily returns on the S&P index since 1980, scaled
to have zero mean and standard deviation of one, and
also the standardized normal distribution. The empirical
peak is higher than the normal distribution and the tails
are both fatter.

On 19th October 1987 the SP500 fell 20.5%. What is the
probability of a 20% one-day fall in the SP500? Since we
are working with over 20 years of daily data, we could
argue that empirically there will be a 20% fall in the
SPX index every 20 years or so. To get a theoretical
estimate, based on normal distributions, we must first
estimate the daily standard deviation for SPX returns.
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Figure 2-11: The standardized probability density functions for SPX
returns and the Normal distribution.

Over that period it was 0.0106, equivalent to an average
volatility of 16.9%. What is the probability of a 20% or
more fall when the standard deviation is 0.0106? This is
a staggeringly small 1.8 10~7. That is just once every

2 107 years. Empirical answer: Once every 20 years.
Theoretical answer: Once every 2 107 years. That’s how
bad the normal-distribution assumption is in the tails.

Long Answer

Asset returns are not normally distributed according to
empirical evidence. Statistical studies show that there
is significant kurtosis (fat tails) and some skewness



Chapter 2: FAQs 203

(asymmetry). Whether this matters or not depends on
several factors:

e Are you holding stock for speculation or are you
hedging derivatives?

e Are the returns independent and identically
distributed (i.i.d.), albeit non normally?

e Is the variance of the distribution finite?

e Can you hedge with other options?

Most basic theory concerning asset allocation, such

as Modern Portfolio Theory, assumes that returns are
normally distributed. This allows a great deal of analyti-
cal progress to be made since adding random numbers
from normal distributions gives you another normal
distribution. But speculating in stocks, without hedg-
ing, exposes you to asset direction; you buy the stock
since you expect it to rise. Assuming that this stock
isn’t your only investment then your main concern is
for the expected stock price in the future, and not so
much its distribution. On the other hand, if you are
hedging options then you largely eliminate exposure to
asset direction. That’s as long as you aren’t hedging too
infrequently.

If you are hedging derivatives then your exposure is
to the range of returns, not the direction. That means
you are exposed to variance, if the asset moves are
small, or to the sizes and probabilities of discontinuous
jumps. Asset models can be divided roughly speaking
into those for which the variance of returns is finite,
and those for which it is not.

If the variance is finite then it doesn’t matter too much
whether or not the returns are normal. No, more impor-
tant is whether they are i.i.d. The ‘independent’ part is
also not that important since if there is any relation-
ship between returns from one period to the next it
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tends to be very small in practice. The real question is
about variance, is it constant? If it is constant, and we
are hedging frequently, then we may as well work with
normal distributions and the Black-Scholes constant
volatility model. However, if it is not constant then
we may want to model this more accurately. Typical
approaches include the deterministic or local volatility
models, in which volatility is a function of asset and
time, o (S, f), and stochastic volatility models, in which
we represent volatility by another stochastic process.
The latter models require a knowledge or specification
of risk preferences since volatility risk cannot be hedged
just with the underlying asset.

If the variance of returns is infinite, or there are jumps
in the asset, then normal distributions and Black-Scholes
are less relevant. Models capturing these effects also
require a knowledge or specification of risk preferences.
It is theoretically even harder to hedge options in these
worlds than in the stochastic volatility world.

To some extent the existence of other traded options
with which one can statically hedge a portfolio of deriva-
tives can reduce exposure to assumptions about distri-
butions or parameters. This is called hedging model
risk. This is particularly important for market makers.
Indeed, it is instructive to consider the way market
makers reduce risk.

e The market maker hedges one derivative with
another one, one sufficiently similar as to have
similar model exposure.

e As long as the market maker has a positive
expectation for each trade, although with some model
risk, having a large number of positions he will
reduce exposure overall by diversification. This is
more like an actuarial approach to model risk.
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o If neither of the above is possible then he could
widen his bid-ask spreads. He will then only trade
with those people who have significantly different
market views from him.
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How Robust is the Black—S5choles
Model?

Short Answer
Very robust. You can drop quite a few of the assump-
tions underpinning Black-Scholes and it won'’t fall over.

Example

Transaction costs? Simply adjust volatility. Time-
dependent volatility? Use root-mean-square-average
volatility instead. Interest rate derivatives? Black '76
explains how to use the Black-Scholes formule in situa-
tions where it wasn’t originally intended.

Long Answer

Here are some assumptions that seems crucial to the
whole Black-Scholes model, and what happens when
you drop those assumptions.

Hedging is continuous: If you hedge discretely it turns out
that Black—Scholes is right on average. In other words
sometimes you lose because of discrete hedging, some-
times you win, but on average you break even. And
Black-Scholes still applies.

There are no transaction costs: If there is a cost associated
with buying and selling the underlying for hedging this
can be modelled by a new term in the Black-Scholes
equation that depends on gamma. And that term is
usually quite small. If you rehedge at fixed time inter-
vals then the correction is proportional to the absolute
value of the gamma, and can be interpreted as simply
a correction to volatility in the standard Black-Scholes
formule. So instead of pricing with a volatility of 20%,
say, you might use 17% and 23% to represent the bid-
offer spread dues to transaction costs.
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Volatility is constant: If volatility is time dependent then
the Black-Scholes formulee are still valid as long as you
plug in the ‘average’ volatility over the remaining life of
the option. Here average means the root-mean-square
average since volatilities can’t be added but variances
can.

Even if volatility is stochastic we can still use basic
Black-Scholes formulee provided the volatility process is
independent of, and uncorrelated with, the stock price.
Just plug the average variance over the option’s lifetime,
conditional upon its current value, into the formulee.

There are no arbitrage opportunities: Even if there are arbi-
trage opportunities because implied volatility is different
from actual volatility you can still use the Black-Scholes
formulee to tell you how much profit you can expect

to make, and use the delta formulee to tell you how to
hedge. Moreover, if there is an arbitrage opportunity
and you don’t hedge properly, it probably won’t have
that much impact on the profit you expect to make.

The underlying is lognormally distributed: The Black-Scholes
model is often used for interest-rate products which are
clearly not lognormal. But this approximation is often
quite good, and has the advantage of being easy to
understand. This is the model commonly referred to as
Black ’76.

There are no costs associated with borrowing stock for going short:
Easily accommodated within a Black-Scholes model, all
you need to do is make an adjustment to the risk-neutral
drift rate, rather like when you have a dividend.

Returns are normally distributed: Thanks to near-continuous
hedging and the Central Limit Theorem all you really
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need is for the returns distribution to have a finite vari-
ance, the precise shape of that distribution, its skew
and kurtosis, don’t much matter.

Black-Scholes is a remarkably robust model.

References and Further Reading
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Why is the Lognormal Distribution
Important?

Short Answer

The lognormal distribution is often used as a model
for the distribution of equity or commodity prices,
exchange rates and indices. The normal distribution
is often used to model returns.

Example
The stochastic differential equation commonly used to
represent stocks,

dS =uSdt+ oS dX

results in a lognormal distribution for S, provided p and
o are not dependent on stock price.

Long Answer

A quantity is lognormally distributed if its logarithm is
normally distributed, that is the definition of lognormal.
The probability density function is

\/% o exp (—2—;)2 (In(x) — a)2) x>0,

where the parameters a and b > 0 represent location
and scale. The distribution is skewed to the right,
extending to infinity and bounded below by zero. (The
left limit can be shifted to give an extra parameter, and
it can be reflected in the vertical axis so as to extend to
minus infinity instead.)

If we have the stochastic differential equation above
then the probability density function for S in terms of
time and the parameters is

2
1 —(ln(S/SO)—(p.—%oz)t) 1202t

—e¢
oSV 2nt

where Sj is the value of S at time ¢ = 0.
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You would expect equity prices to follow a random
walk around an exponentially growing average. So take
the logarithm of the stock price and you might expect
that to be normal about some mean. That is the non-
mathematical explanation for the appearance of the
lognormal distribution.

More mathematically we could argue for lognormality
via the Central Limit Theorem. Using R; to represent
the random return on a stock price from day i — 1 to
day i we have

S1 =501+ Ry),

the stock price grows by the return from day zero, its
starting value, to day 1. After the second day we also
have

Sy =S1(1 +R) = So(1 + R + Ry).

After n days we have

n
Sa =S| [ +RD,

i=1

£0.014
10.012
1-0.01
L0.008
t-0.006 PDF
10.004
+0.002

0.75

Time

o & Asset

Figure 2-12: The probability density function for the lognormal ran-
dom walk evolving through time.
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the stock price is the initial value multiplied by n fac-
tors, the factors being one plus the random returns.
Taking logarithms of this we get

n
In(S,) = In(SoH) + Z In(1 + R)),
i=1
the logarithm of a product being the sum of the loga-
rithms.

Now think Central Limit Theorem. If each R; is ran-
dom, then so is In(1 + R;). So the expression for In(S;)
is just the sum of a large number of random num-
bers. As long as the R; are independent and identically
distributed and the mean and standard deviation of
In(1 + R;) are finite then we can apply the CLT and con-
clude that In(S,;) must be normally distributed. Thus
Sn is normally distributed. Since here n is number of
‘days’ (or any fixed time period) the mean of In(S,) is
going to be linear in n, i.e., will grow linearly with time,
and the standard deviation will be proportional to the
square root of n, i.e., will grow like the square root of
time.

References and Further Reading
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What are Copulas and How are They
Used in Quantitative Finance?

Short Answer

Copulas are used to model joint distribution of multiple
underlyings. They permit a rich ‘correlation’ structure
between underlyings. They are used for pricing, for risk
management, for pairs trading, etc., and are especially
popular in credit derivatives.

Example

You have a basket of stocks which during normal days
exhibit little relationship with each other. We might
say that they are uncorrelated. But on days when the
market moves dramatically they all move together. Such
behaviour can be modelled by copulas.

Long Answer

The technique now most often used for pricing credit
derivatives when there are many underlyings is that of
the copula. The copula? function is a way of simplifying
the default dependence structure between many under-
lyings in a relatively transparent manner. The clever
trick is to separate the distribution for default for each
individual name from the dependence structure between
those names. So you can rather easily analyze names
one at a time, for calibration purposes, for example, and
then bring them all together in a multivariate distribu-
tion. Mathematically, the copula way of representing the
dependence (one marginal distribution per underlying,
and a dependence structure) is no different from speci-
fying a multivariate density function. But it can simplify
the analysis.

4From the Latin for ‘join.’
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The copula approach in effect allows us to readily go
from a single-default world to a multiple-default world
almost seamlessly. And by choosing the nature of the
dependence, the copula function, we can explore models
with rich ‘correlation’ structure. For example, having a
higher degree of dependence during big market moves
is quite straightforward.

Take N uniformly distributed random variables Uj, Us,
..., Uy, each defined on [0, 1]. The copula function is
defined as

C(uy,uy,...,uy) =Prob(U; <u,Us < uy,...,Uy < uy).
Clearly we have
C(uy,uy,...,0,...,uy) =0,
and
c,l,..,uy.., D) =u;

That is the copula function. The way it links many
univariate distributions with a single multivariate dis-
tribution is as follows.

Let xi1, x2,...,xy be random variables with cumulative
distribution functions (so-called marginal distributions)
of F1(x1), Fo(x2),...,Fy(xy). Combine the F's with the
copula function,

C(F](X]),Fz(Xz), - ,FN(XN)) = F(xl,.X'z, - ,.X'N)

and it’s easy to show that this function F(x,x2,...,xy)
is the same as

Pl‘Ob(X1 <x1,X2 <Xxo2,...,Xy < XN).

In pricing basket credit derivatives we would use the
copula approach by simulating default times of each of
the constituent names in the basket. And then perform
many such simulations in order to be able to analyze
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the statistics, the mean, standard deviation, distribution,
etc., of the present value of resulting cashflows.

Here are some examples of bivariate copula functions.
They are readily extended to the multivariate case.

Bivariate Normal:
C(u,v) = Ns (Nl_l(u),Nl_l(U),p), l<p<l,

where NV, is the bivariate Normal cumulative distribution
function, and N, 1 is the inverse of the univariate Normal
cumulative distribution function.

Frank:

C(uyv)=51n<1+w

T ), —00 < @ < 00.
e_

Fréchet—Hoeffoing upper bound:

C(u,v) = min(u, v).

Gumbel—Hougaaro:
0 0\1/0
C(u,v) = exp (— ((=Inw)’ + (—Inv)’) ), 1<6 < oo.

This copula is good for representing extreme value dis-
tributions.

Product:
C(u,v) = uv

One of the simple properties to examine with each of
these copulas, and which may help you decide which is
best for your purposes, is the tail index. Examine

M) = C(‘l'l’ W
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This is the probability that an event with probability
less than u occurs in the first variable given that at the
same time an event with probability less than u occurs
in the second variable. Now look at the limit of this as
u— 0,

)\L = lim —C(ll, U) .
u—0 u

This tail index tells us about the probability of both
extreme events happening together.

References and Further Reading
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What is Asymptotic Analysis and How
15 1t Used in Financial Modelling?

Short Answer

Asymptotic analysis is about exploiting a large or small
parameter in a problem to find simple(r) equations or
even solutions. You may have a complicated integral
that is much nicer if you approximate it. Or a par-
tial differential equation that can be solved if you can
throw away some of the less important terms. Some-
times these are called approximate solutions. But the
word ‘approximate’ does not carry the same technical
requirements as ‘asymptotic.’

Example

The SABR model is a famous model for a forward rate
and its volatility that exploits low volatility of volatility
in order for closed-form solutions for option prices to
be found. Without that parameter being small we would
have to solve the problem numerically.

Long Answer
Asymptotic analysis is about exploiting a large or small
parameter to find simple(r) solutions/expressions. Out-
side finance asymptotic analysis is extremely common,
and useful. For example almost all problems in fluid
mechanics use it to make problems more tractable. In
fluid mechanics there is a very important non-dimensional
parameter called the Reynolds number. This quantity is
given by

Re = 'O—UL,

"

where p is the density of the fluid, U is a typical velocity
in the flow, L is a typical lengthscale, and p is the fluid’s
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viscosity. This parameter appears in the Navier-Stokes
equation which, together with the Euler equation for
conservation of mass, governs the flow of fluids. And
this means the flow of air around an aircraft, and the
flow of glass. These equations are generally difficult to
solve. In university lectures they are solved in special
cases, perhaps special geometries. In real life during the
design of aircraft they are solved numerically. But these
equations can often be simplified, essentially approxi-
mated, and therefore made easier to solve, in special
‘regimes.” The two distinct regimes are those of high
Reynolds number and low Reynolds number. When Re
is large we have fast flows, which are essentially invis-
cid to leading order. Assuming that Re >> 1 means that
the Navier-Stokes equation dramatically simplifies, and
can often be solved analytically. On the other hand if
we have a problem where Re <« 1 then we have slow
viscous flow. Now the Navier-Stokes equation simpli-
fies again, but in a completely different way. Terms
that were retained in the high Reynolds number case
are thrown away as being unimportant, and previously
ignored terms become crucial.

Remember we are looking at what happens when a
parameter gets small, well, let’s denote it by €. (Equiv-
alently we also do asymptotic analysis for large para-
meters, but the we can just define the large parameter
to be 1/¢.) In asymptotic analysis we use the following
symbols a lot: O(), o(-) and ~. These are defined as
follows.

We say that f(e) =0(g(e)) as e¢—0

if lim @ is finite.
e—~0g(e)
We say that f(e) =0(g(e)) as € —0
if lim @ -0

e—0g(e)
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We say that f(e) ~g(e) as € — 0
f
if lim © =1
e—0 g(E)
In finance there have been several examples of asymp-
totic analysis.

Transactions costs: Transaction costs are usually a small
percentage of a trade. There are several models for the
impact that these costs have on option prices and in
some cases these problems can be simplified by per-
forming an asymptotic analysis as this cost parameter
tends to zero. These costs models are invariably non
linear.

$ABR: This model for forward rates and their volatil-
ity is a two-factor model. It would normally have to
be solved numerically but as long as the volatility of
volatility parameter is small then closed-form asymp-
totic solutions can be found. Since the model requires
small volatility of volatility it is best for interest rate
derivatives.

Fast orift and high volatility in stochastic volatility models: These
are a bit more complicated, singular perturbation prob-
lems. Now the parameter is large, representing both
fast reversion of volatility to its mean and large volatil-
ity of volatility. This model is more suited to the more
dramatic equity markets which exhibit this behaviour.
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What is a Free-boundary Problem and
What is the Optimal-Stopping Time
for an American Option?

Short Answer

A boundary-value problem is typically a differential
equation with specified solution on some domain. A
free-boundary problem is one for which that boundary
is also to be found as part of the solution. When to
exercise an American option is an example of a free-
boundary problem, the boundary representing the time
and place at which to exercise. This is also called an
optimal-stopping problem, the ‘stopping’ here referring
to exercise.

Example

Allow a box of ice cubes to melt. As they do there
will appear a boundary between the water and the

ice, the free boundary. As the ice continues to melt

so the amount of water increases and the amount of ice
decreases.

Waves on a pond is another example of a free boundary.

Long Answer

In a boundary-value problem the specification of the
behaviour of the solution on some domain is to pin
down the problem so that is has a unique solution.
Depending on the type of equation being solved we
must specify just the right type of conditions. Too few
conditions and the solution won’t be unique. Too many
and there may not be any solution. In the diffusion
equations found in derivatives valuation we must specify
a boundary condition in time. This would be the final
payoff, and it is an example of a final condition. We
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must also specify two conditions in the asset space. For
example, a put option has zero value at infinite stock
price and is the discounted strike at zero stock price.
These are examples of boundary conditions. These
three are just the right number and type of conditions
for there to exist a unique solution of the Black—-Scholes
parabolic partial differential equation.

In the American put problem it is meaningless to specify
the put’s value when the stock price is zero because the
option would have been exercised before the stock ever
got so low. This is easy to see because the European put
value falls below the payoff for sufficiently small stock.
If the American option price were to satisfy the same
equation and boundary conditions as the European then
it would have the same solution, and this solution would
permit arbitrage.

The American put should be exercised when the stock
falls sufficiently low. But what is ‘sufficient’ here?

To determine when it is better to exercise than to hold
we must abide by two principles.

e The option value must never fall below the payoff,
otherwise there will be an arbitrage opportunity.

e We must exercise so as to give the option its highest
value.

The second principle is not immediately obvious. The
explanation is that we are valuing the option from the
point of view of the writer. He must sell the option for
the most it could possibly be worth, for if he under-
values the contract he may make a loss if the holder
exercises at a better time. Having said that, we must
also be aware that we value from the viewpoint of a
delta-hedging writer. He is not exposed to direction of
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the stock. However the holder is probably not hedg-
ing and is therefore very exposed to stock direction.
The exercise strategy that is best for the holder will
probably not be what the writer thinks is best. More of
this anon.

The mathematics behind finding the optimal time to
exercise, the optimal-stopping problem, is rather tech-
nical. But its conclusion can be stated quite succinctly.
At the stock price at which it is optimal to exercise we
must have

e the option value and the payoff function must be
continuous as functions of the underlying,

e the delta, the sensitivity of the option value with
respect to the underlying, must also be continuous as
functions of the underlying.

This is called the smooth-pasting condition since it rep-
resents the smooth joining of the option value function
to its payoff function. (Smooth meaning function and its
first derivative being continuous.)

This is now a free-boundary problem. On a fixed, pre-
scribed boundary we would normally impose one condi-
tion. (For example, the above example of the put’s value
at zero stock price.) But now we don’t know where the
boundary actually is. To pin it down uniquely we impose
two conditions, continuity of function and continuity of
gradient. Now we have enough conditions to find the
unknown solution.

Free-boundary problems such as these are non linear.
You cannot add two together to get another solution.
For example, the problem for an American straddle is
not the same as the sum of the American call and the
American put.
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Although the fascinating mathematics of free-boundary
problems can be complicated, and difficult or impossible
to solve analytically, they can be easy to solve by finite-
difference methods. For example, if in a finite-difference
solution we find that the option value falls below the
payoff then we can just replace it with the payoff. As
long as we do this each time step before moving on to
the next time step then we should get convergence to
the correct solution.

As mentioned above, the option is valued by maximizing
the value from the point of view of the delta-hedging
writer. If the holder is not delta hedging but speculating
on direction he may well find that he wants to exit his
position at a time that the writer thinks is suboptimal.
In this situation there are three ways to exit:

e sell the option;
e delta hedge to expiration;
e exercise the option.

The first of these is to be preferred because the option
may still have market value in excess of the payoff.
The second choice is only possible if the holder can
hedge at low cost. If all else fails, he can always close
his position by exercising. This is of most relevance
in situations where the option is an exotic, over the
counter, contract with an early-exercise feature when
selling or delta hedging may not be possible.

There are many other contracts with decision features
that can be treated in a way similar to early exercise
as free-boundary problems. Obvious examples are con-
version of a convertible bond, callability, shout options,
choosers.
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What are Low Discrepancy Numbers?

Short Answer

Low-discrepancy sequences are sequences of num-
bers that cover a space without clustering and without
gaps, in such a way that adding another number to the
sequence also avoids clustering and gaps. They give the
appearance of randomness yet are deterministic. They
are used for numerically estimating integrals, often in
high dimensions. The best known sequences are due to
Faure, Halton, Hammersley, Niederreiter and Sobol’.

Example

You have an option that pays off the maximum of 20
exchange rates on a specified date. You know all the
volatilities and correlations. How can you find the value
of this contract? If we assume that each exchange rate
follows a lognormal random walk, then this problem
can be solved as a 20-dimensional integral. Such a high-
dimensional integral must be evaluated by numerical
quadrature, and an efficient way to do this is to use
low-discrepancy sequences.

Long Answer

Some financial problems can be recast as integrations,
sometimes in a large number of dimensions. For ex-
ample, the value of a European option on lognormal
random variables can be written as the present value
of the risk-neutral expected payoff. The expected payoff
is an integral of the product of the payoff function and
the probability density function for the underlying(s) at
expiration. If there are n underlyings then there is typ-
ically an n-dimensional integral to be calculated. If the
number of dimensions is small then there are simple
efficient algorithms for performing this calculation. In
one dimension, for example, divide the domain of inte-
gration up into uniform intervals and use the trapezium
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rule. This means evaluating the integrand at a number
of points, and as the number of function evaluations
increases so the accuracy of the method improves.

Unfortunately, in higher dimensions evaluating the
function at uniformly spaced points becomes compu-
tationally inefficient.

If the domain of integration is a unit hypercube (and, of
course, it can always be transformed into one) then the
value of the integral is the same as the average of the
function over that domain:

1 1 1 Y
/0/0 f(x)dx~N;f(xi).

Where the x; are uniformly distributed. This suggests
that an alternative method of numerical evaluation of
the integral is to select the points in the hypercube
from a uniform random distribution and then compute
their average. If N function evaluations are performed
then the method converges like O(N~1/2). This is the
Monte Carlo method of numerical integration. Although
very simple to perform it suffers from problems associ-
ated with the inevitable clustering and gapping that will
happen with randomly chosen numbers.

Clearly we would like to use a sequence of numbers that
do not suffer from the gapping/clustering problem. This
is where low-discrepancy sequences come in.

Low-discrepancy numbers exploit the Koksma-Hlawka
inequality which puts a bound on the error in the
above averaging method for an arbitrary sets of sam-
pling points x;. The Koksma-Hlawka inequality says that
if f(x) is of bounded variation V(f) then

1 1 1 N
‘fo /O £(x) d —N;f(xi)

< V(f)DTV(Xl, ey (X)N)
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where Dy (x1,...,(®X)n) is the discrepancy of the se-
quence. (This discrepancy measures the deviation from
a uniform distribution. It is calculated by looking at
how many of the sampling points can be found in sub
intervals compared with how many there would be for
a uniform distribution and then taking the worst case.)

Rather than the details, the important point concerning
this result is that the bound is a product of one term
specific to the function (its variation, which is indepen-
dent of the set of sampling points) and a term specific
to the set of sampling points (and independent of the
function being sampled). So once you have found a set
of points that is good, of low discrepancy, then it will
work for all integrands of bounded variation.

The popular low-discrepancy sequences mentioned
above have

(nNy"
<C N
where C is a constant. Therefore convergence of this
quasi Monte Carlo numerical quadrature method is
faster than genuinely random Monte Carlo.

Dy

Another advantage of these low-discrepancy sequences
is that if you collapse the points onto a lower dimension
(for example, let all of the points in a two-dimensional
plot fall down onto the horizontal axis) they will not be
repeated, they will not fall on top of one another. This
means that if there is any particularly strong depen-
dence on one of the variables over the others then the
method will still give an accurate answer because it will
distribute points nicely over lower dimensions.

Unfortunately, achieving a good implementation of
some low-discrepancy sequences remains tricky. Some
practitioners prefer to buy off-the-shelf software for
generating quasi-random numbers.
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K andom variables can be continuous or discrete
(the latter denoted below by *). Or a combination.
New distributions can also be made up using random
variables from two or more distributions.

Here is a list of distributions seen in finance (mostly),
and some words on each.

Normal or Gaussian This distribution is unbounded below
and above, and is symmetrical about its mean. It has
two parameters: a, location; b > 0 scale. Its probability
density function is given by

1 _@=a?
e 2b
V21 b

This distribution is commonly used to model equity
returns, and, indeed, the changes in many financial
quantities. Errors in observations of real phenomena
are often normally distributed. The normal distribution
is also common because of the Central Limit Theorem.

Mean
a.

Variance
b2

Lognormal Bounded below, unbounded above. It has
two parameters: a, location; b > 0 scale. Its probability
density function is given by
1 exp ( 1

V27 bx 2p?
This distribution is commonly used to model equity
prices. Lognormality of prices follows from the assumption
of normally distributed returns.

(In(x) — a)2) x> 0.



Chapter 3: The Most Popular Probability Distributions 233

0.45 q

Normal a=0
b=1
J4 1 2 3 4
.
., Lognormal a=04
' b=0.3
0.8 -
07
0.6
0s ]
0.4 -
03]
0.2
o1
0




234

0.3
0.25
0.2 q
0.15
0.1

0.05

Frequently Asked Questions In Quantitative Finance

Mean

Variance
2 B2
e2(1+b (eb _ 1)
Poisson* The random variables take non-negative integer

values only. The distribution has one parameter: a > 0.
Its probability density function is given by

e 4a*

, x=0,1,2,3,....
x!

This distribution is used in credit risk modeling, repre-
senting the number of credit events in a given time.

Mean

Poisson a=2
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Variance

Chi square Bounded below and unbounded above. It has
two parameters a > 0, the location; v, an integer, the
degrees of freedom. Its probability density function is
given by

e- (a2 X ji-l4v/2,i

>
277 NG D)

)

where I'() is the Gamma function. The chi-square distri-
bution comes from adding up the squares of v normally
distributed random variables. The chi-square distribu-
tion with one degree of freedom is the distribution of
the hedging error from an option that is hedged only
discretely. It is therefore a very important distribution
in option practice, if not option theory.

0.3 1

Chi Square a=0
025 ] b=3
0.2 4
0.15 4
0.1 4
0.05 A
0
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Mean
v+a.

Variance
2(v + 2a).

gumbel Unbounded above and below. It has two param-
eters: a, location; b > 0 scale. Its probability density
function is given by

1 ax _%5*

—e b e ©

b
The Gumbel distribution is useful for modelling extreme
values, representing the distribution of the maximum
value out of a large number of random variables drawn
from an unbounded distribution.

0.4 4

Gumbel a=-1
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0.9

0.8 q

0.7

0.6 1

0.5

0.4

0.3 q

0.2 q

0.1

Mean
a+yb,
where y is Euler’s constant, 0.577216.. ..

Variance

1
gﬂzbz.

Weibull Bounded below and unbounded above. It has
three parameters: a, location; b > 0, scale; ¢ > 0, shape.
Its probability density function is given by

c(x—a\! . x—a\°
b b exp b , X>a.
The Weibull distribution is also useful for modelling

extreme values, representing the distribution of the max-
imum value out of a large number of random variables

| Weibull a=1
b=1
c=2
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drawn from a bounded distribution. (The figure shows
a ‘humped’ Weibull, but depending on parameter values
the distribution can be monotonic.)

(42,
(1) (1)

Where I'(+) is the Gamma function.

Mean

Variance

student’s t Unbounded above and below. It has three
parameters: a, location; b > 0, scale; ¢ > 0, degrees of
freedom. Its probability density function is given by

reh) (L et
bymcT (D) (” . :

where T'(-) is the Gamma function. This distribution
represents small-sample drawings from a normal distri-
bution. It is also used for representing equity returns.

Mean

Variance

(ci2> v

Note that the nth moment only exists if ¢ > n.

Pareto Bounded below, unbounded above. It has two
parameters: a > 0, scale; b > 0 shape. Its probability
density function is given by

ba® _
—_ x>a.
s
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0.4 4
Student's t a=-1
b=1
c=2
4 3 2 1 . 0 1 2 3 4
Pareto a=1
;
b=1
0.8 -
0.6 -
0.4
0.2
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Commonly used to describe the distribution of wealth,
this is the classical power-law distribution.

Mean
ab
b—1"
Variance
a’b
Bb-2)(b-1)?"

Note that the nth moment only exists if b > n.

Uniform Bounded below and above. It has two location
parameters, a and b. Its probability density function is
given by

1
——, a<x<b.
b—a =r=

Uniform

0.8 q

0.6 q

0.4 1

0.2
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0.8 q

0.6 q

0.4

0.2

Mean
a+b
5
Variance
(b—a)?
12

Inverse normal Bounded below, unbounded above. It has
two parameters: a > 0, location; b > 0 scale. Its proba-
bility density function is given by

N2
V 2:)(367%(%0) x=0.

This distribution models the time taken by a Brownian
Motion to cover a certain distance.

Inverse normal a=1

0.5 1 1.5 2 25 3 3.5 4
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Mean
a.
Variance 3
a
b

¢amma Bounded below, unbounded above. It has three
parameters: a, location; b > 0 scale; ¢ > 0 shape. Its
probability density function is given by

L (x=a\ e
—_— e X a
br'(c) b o

where T'(-) is the Gamma function. When ¢ =1 this is
the exponential distribution and when a =0 and b =2
this is the chi-square distribution with 2c degrees of
freedom.

Gamma
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Mean
a+ bc.

Variance 9
b“c.

Logistic  This distribution is unbounded below and above.
It has two parameters: a, location; b > 0 scale. Its prob-
ability density function is given by

1 e s

b x-a\2'

b (1 n eT)
The logistic distribution models the mid value of highs
and lows of a collection of random variables, as the
number of samples becomes large.

Mean

0.3 4
Logistic a=-2

0.05 A
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Variance

1
§7T2b2.

Laplace  This distribution is unbounded below and above.
It has two parameters: a, location; b > 0 scale. Its prob-
ability density function is given by

! e_¥
2b
Errors in observations are usually either normal or
Laplace.
Mean
a.
Variance 9
2b°.
0.18
Laplace a=1
0.16
b=3
0.14 |

0.02 4
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Cauchy This distribution is unbounded below and above.
It has two parameters: a, location; b > 0 scale. Its prob-
ability density function is given by

1
X—a 2 ’
b (1 + (T) )
This distribution is rarely used in finance. It does not

have any finite moments, but its mode and median are
both a.

Beta This distribution is bounded below and above.
It has four parameters: a, location of lower limit; b >
a location of upper limit; ¢ > 0 and d > 0 shape. Its

probability density function is given by

I'(c+d)
r@Or@o® - a1

x-—atb-0"", asx<b,

Cauchy a=05

03 b=1
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Beta a=1
b=3
c=2
d=4

112 1‘.4 1‘.6 118 é 212 2‘.4 2‘.6 218

where I'(-) is the Gamma function. This distribution is
rarely used in finance.

Mean
ad + bc
c+d -’
Variance
cd(b — a)?

(c+d+D(c+d)?

Exponential Bounded below, unbounded above. It has
two parameters: a, location; b > 0 scale. Its probability
density function is given by

1 a—x

—e b Xx>a.
b

This distribution is rarely used in finance.
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0.8 1

0.6 1

0.4

0.2 q

Exponential a=0
b=1
0s i 5 2 25 3 35 4
Mean
a-+b.
Variance
b?.

Levy  Unbounded below and above. It has four param-
eters: i, a location (mean); 0 < « < 2, the peakedness;
—1 < B < 1, the skewness; v > 0, a spread. (Conven-
tional notation is used here.) This distribution has been
saved to last because its probability density function
does not have a simple closed form. Instead it must be
written in terms of its characteristic function. If P(x)

is the probability density function then the moment
generating function is given by

M(2) = /_ ” e P(x) dx,
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0.4

where i = /—1. For the Lévy distribution

In(M(2)) = inz —v*|z|* (1 — iBsgn(z) tan(wa/2)), for o # 1

or
In(M(2)) = inz — v|z| (1 + 2;tlsgn(z) ln(|z|)) , fora =1.

The normal distribution is a special case of this with
a =2 and B =0, and with the parameter v being one
half of the variance. The Lévy distribution, or Pareto
Lévy distribution, is increasingly popular in finance
because it matches data well, and has suitable fat tails.
It also has the important theoretical property of being
a stable distribution in that the sum of independent
random numbers drawn from the Lévy distribution will
itself be Lévy. This is a useful property for the distribu-
tion of returns. If you add up n independent numbers
from the Lévy distribution with the above parameters
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then you will get a number from another Lévy distri-
bution with the same « and A but with mean of n'/*y

and spread n'/v. The tail of the distribution decays like
|x|—l—a.

Mean

Variance

infinite, unless « = 2, when it is 2v.

References and further reading

Spiegel, MR, Schiller, JJ, Srinivasan, RA 2000 Schaum’s Outline
of Probability and Statistics. McGraw-Hill
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The ten different ways of deriving the Black-Scholes
equation or formula that follow use different types
of mathematics, with different amounts of complexity
and mathematical baggage. Some derivations are useful
in that they can be generalized, and some are very
specific to this one problem. Naturally we will spend
more time on those derivations that are most useful or
give the most insight. The first eight ways of deriving
the Black-Scholes equation/formulee are taken from the
excellent paper by Jesper Andreason, Bjarke Jensen and
Rolf Poulsen (1998).

In most cases we work within a framework in which
the stock path is continuous, the returns are normally
distributed, there aren’t any dividends, or transac-
tion costs, etc. To get the closed-form formulee (the
Black-Scholes formule) we need to assume that volatil-
ity is constant, or perhaps time dependent, but for
the derivations of the equations relating the greeks
(the Black-Scholes equation) the assumptions can be
weaker, if we don’t mind not finding a closed-form
solution.

In many cases, some assumptions can be dropped.
The final derivation, Black—-Scholes for accountants,
uses perhaps the least amount of formal mathematics
and is easy to generalize. It also has the advantage
that it highlights one of the main reasons why the
Black-Scholes model is less than perfect in real life. I
will spend more time on that derivation than most of
the others.

[ am curious to know which derivation(s) readers prefer.
Please email your comments to paul@wilmott.com. Also if
you know of other derivations please let me know.
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Hedging and the Partial Differential
Equation

The original derivation of the Black-Scholes partial
differential equation was via stochastic calculus, Itd’s
lemma and a simple hedging argument (Black & Scholes,
1973).

Assume that the underlying follows a lognormal ran-
dom walk

dS = uSdt+oS dX.

Use IT to denote the value of a portfolio of one long
option position and a short position in some quantity A
of the underlying:

M= V(S,t) — AS. 4.1

The first term on the right is the option and the second
term is the short asset position.

Ask how the value of the portfolio changes from time ¢
to t + dt. The change in the portfolio value is due partly
to the change in the option value and partly to the
change in the underlying:

dll =dV — A dS.

From It6’s lemma we have

E1% v 92V
dll = —dt + —dS + 1028’ —.dt — A dS.
ar T as P T s
The right-hand side of this contains two types of terms,
the deterministic and the random. The deterministic
terms are those with the dt, and the random terms are
those with the dS. Pretending for the moment that we
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know V and its derivatives then we know everything
about the right-hand side except for the value of dS,
because this is random.

These random terms can be eliminated by choosing
1%
=55
After choosing the quantity A, we hold a portfolio
whose value changes by the amount

av 92V
M=(— + 10282 — ) dt
d (at-l-zchaSz)dt

This change is completely riskless. If we have a com-
pletely risk-free change dIT in the portfolio value IT
then it must be the same as the growth we would get
if we put the equivalent amount of cash in a risk-free
interest-bearing account:

dIl = rIl dt.
This is an example of the no arbitrage principle.

Putting all of the above together to eliminate IT and A
in favour of partial derivatives of V gives

AV | 90 d?V 1%

4152627 © 4 e

ar 1277 552 TPs
the Black-Scholes equation.

—rV =0,

Solve this quite simple linear diffusion equation with the
final condition

V(S, T) =max(S - K,0)

and you will get the Black-Scholes call option formula.

This derivation of the Black-Scholes equation is perhaps
the most useful since it is readily generalizable (if not
necessarily still analytically tractable) to different under-
lyings, more complicated models, and exotic contracts.
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Martingales

The martingale pricing methodology was formalized
by Harrison and Kreps (1979) and Harrison and Pliska
(1981).!

We start again with

dS; = uS dt+ oS dW;

The W; is Brownian motion with measure P. Now intro-
duce a new equivalent martingale measure Q such that

VV;:W[—i—n[,

where n = (n—r)/o.

Under Q we have
dS; =rS dt + oS dW,.
Introduce
G; = e "TOEmax(Sr — K, 0)].

The quantity e"@~9G; is a Q-martingale and so

4(eT0G,) = are' TG,
for some process «;. Applying Itd6’s lemma,

dG; = (r + an)Gdt + oGy dW;.

This stochastic differential equation can be rewritten
as one representing a strategy in which a quantity
aG;/oS of the stock and a quantity (G — aG;/o)e"™ 0

1If my notation changes, it is because I am using the notation
most common to a particular field. Even then the changes are
minor, often just a matter of whether one puts a subscript ¢ on
a dW for example.
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of a zero-coupon bond maturing at time 7 are bought:

aGy G- %S

dG = _cdS+ T(in,)
Such a strategy is self financing because the values of
the stock and bond positions add up to G. Because
of the existence of such a self-financing strategy and
because at time t = T we have that Gr is the call payoff
we must have that G; is the value of the call before
expiration. The role of the self-financing strategy is to
ensure that there are no arbitrage opportunities.

d(e—r(Tft)).

Thus the price of a call option is
e "TDEL max(Sr — K, 0)].

The interpretation is simply that the option value is the
present value of the expected payoff under a risk-neutral
random walk.

For other options simply put the payoff function inside
the expectation.

This derivation is most useful for showing the link

between option values and expectations, as it is the
theoretical foundation for valuation by Monte Carlo
simulation.

Now that we have a representation of the option value
in terms of an expectation we can formally calculate this
quantity and hence the Black-Scholes formulee. Under Q
the logarithm of the stock price at expiration is normally
distributed with mean m = In(S)) + (r — $02) (T - ©)

and variance v? = o2(T — £). Therefore the call option
value is

2

o0 o B
) / (™% _ K) dx.
InK—m

InK—m V2
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A simplification of this using the cumulative distribution
function for the standardized normal distribution results
in the well-known call option formula.

Change of Numeraire

The following is a derivation of the Black-Scholes call
(or put) formula, not the equation, and is really just a
trick for simplifying some of the integration.

It starts from the result that the option value is
e "TDE L max(Sr — K, 0)].
This can also be written as
e TDER((Sr — KYH(S — KD,

where H(S — K) is the Heaviside function, which is zero
for S <K and 1 for S > K.

Now define another equivalent martingale measure Q'
such that

W, = W, +nt —ot.
The option value can then be written as

< [csr —K)H(S—K)]
ot ST .

where
dS; = (r + >)S dt + o Sdw,.

It can also be written as a combination of the two
expressions,

[ STH(S —
StE;@[T gT K)

Notice that the same calculation is to be performed,
an expectation of H(S — K), but under two different

] — Ke " TDEQ[H(S — K)).
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measures. The end result is the Black-Scholes formula
for a call option.

This method is most useful for simplifying valuation
problems, perhaps even finding closed-form solutions,
by using the most suitable traded contract to use for
the numeraire.

The relationship between the change of numeraire result
and the partial differential equation approach is very
simple, and informative.

First let us make the comparison between the risk-
neutral expectation and the Black-Scholes equation
as transparent as possible. When we write

e "TDE max(Sy — K, 0)]

we are saying that the option value is the present
value of the expected payoff under the risk-neutral ran-
dom walk

dS =rS dt + S dW,.

The partial differential equation

AV | 20d%V 1%

E + 30 S W + VSE
means exactly the same because of the relationship
between it and the Fokker-Planck equation. In this
equation the diffusion coefficient is always just one half
of the square of the randomness in dS. The coefficient
of 9V /dS is always the risk-neutral drift »S and the coef-
ficient of V is always minus the interest rate, —r, and
represents the present valuing from expiration to now.

—rV=0

If we write the option value as V =SV’ then we can
think of V' as the number of shares the option is equiv-
alent to, in value terms. It is like using the stock as the
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unit of currency. But if we rewrite the Black-Scholes
equation in terms of V' using

1% v’ v v’

—_— = —_— = V/
ot , at’ 825 S 39S + ¥
92V REa’d v’
d — =S 25
and 5o =255 T2
then we have
v’ a2V’ v’
— + 3028 — +(r+o 2)5 =0.

at 952
The function V' can now be 1nterpreted, using the
same comparison with the Fokker-Planck equation,
as an expectation, but this time with respect to the
random walk
dS = (r+o»)S dt + oS dw,.
And there is no present valuing to be done. Since at
expiration we have for the call option
max(St — K, 0)
St
we can write the option value as
[ ST — KYH(S —
S [( r 105 ( K)]
T

where
S; = (r + o2)S dt + o SdW,.

Change of numeraire is no more than a change of depen-
dent variable.

Local Time

The most obscure of the derivations is the one involving
the concept from stochastic calculus known as ‘local
time.” Local time is a very technical idea involving the
time a random walk spends in the vicinity of a point.
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The derivation is based on the analysis of a stop-loss
strategy in which one attempts to hedge a call by selling
one share short if the stock is above the present value
of the strike, and holding nothing if the stock is below
the present value of the strike. Although at expiration the
call payoff and the stock position will cancel each other
exactly, this is not a strategy that eliminates risk. Naively
you might think that this strategy would work, after all
when you sell short one of the stock as it passes through
the present value of the strike you will neither make nor
lose money (assuming there are no transaction costs). But
if that were the case then an option initially with strike
above the forward stock price should have zero value. So
clearly something is wrong here.

To see what goes wrong you have to look more closely
at what happens as the stock goes through the present
value of the strike. In particular, look at discrete moves
in the stock price.

As the forward stock price goes from K to K + ¢ sell one
share and buy K bonds. And then every time the stock
falls below the present value of the strike you reverse
this. Even in the absence of transaction costs, there will
be a slippage in this process. And the total slippage
will depend on how often the stock crosses this point.
Herein lies the rub. This happens an infinite number of
times in continuous Brownian motion.

If U(e) is the number of times the forward price moves
from K to K + ¢, which will be finite since ¢ is finite,
then the financing cost of this strategy is

eU(e).

Now take the limit as ¢ — 0 and this becomes the
quantity known as local time. This local-time term is
what explains the apparent paradox with the above
example of the call with zero value.
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Now we go over to the risk-neutral world to value
the local-time term, ending up, eventually, with the
Black-Scholes formula.

It is well worth simulating this strategy on a spread-
sheet, using a finite time step and let this time step get
smaller and smaller.

Parameters as Variables

The next derivation is rather novel in that it involves
differentiating the option value with respect to the
parameters strike, K, and expiration, T, instead of the
more usual differentiation with respect to the variables
S and ¢. This will lead to a partial differential equation
that can be solved for the Black-Scholes formule. But
more importantly, this technique can be used to deduce
the dependence of volatility on stock price and time,
given the market prices of options as functions of strike
and expiration. This is an idea due to Dupire (1993)
(also see Derman & Kani, 1993, and Rubinstein, 1993, for
related work done in a discrete setting) and is the basis
for deterministic volatility models and calibration.

We begin with the call option result from above
V = e " T DE2max(Sr — K, 0)],

that the option value is the present value of the risk-
neutral expected payoff. This can be written as

VK, T) =e T / max(S — K, 0)p(S*, t; S, T) dS
0

o0
_ o) f (S — KOp(S*,1%; 5, T) dS,
K

where p(S*,t*; S, T) is the transition probability density
function for the risk-neutral random walk with S* being
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today’s asset price and t* today’s date. Note that here
the arguments of V are the ‘variables’ strike, K, and
expiration, T.

If we differentiate this with respect to K we get
W _ _gra-m f ” p(S*,t:S,T)dS.
9K . 55,
After another differentiation, we arrive at this equation

for the probability density function in terms of the
option prices
o 92V
S*, t*; K, — er(Tfl )_
p( N K2
We also know that the forward equation for the tran-

sition probability density function, the Fokker—Planck
equation, is

P _ 1% 50 9

— = 5—=(0°5"p) — —(rSp).

oT = 25520 5P — 55(Sp)
Here o(S,¢) is evaluated at t = T. We also have

aV N op
& _ —r(T—t)/ _ %P 45
5T rV+e ; S K)aTdS

This can be written as
aV —rr—to [ 1 82(02521)) a(rSp)
— =7V +e (Tt )A.( (E —

aT 952 aS

x (S — K)dS.

using the forward equation. Integrating this by parts
twice we get

A4 1,—r(T—1%) 252 =y [
— =1V +ze 0“K*p +re SpdsS.
oT K
In this expression o(S,t) has S =K and t =T. After
some simple manipulations we get

) Y 4 v

— =50°K"— —rK—.

oT ~ 27 " k2 T K
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This partial differential equation can now be solved for
the Black-Scholes formulee.

This method is not used in practice for finding these
formulee, but rather, knowing the traded prices of van-
illas as a function of K and T we can turn this equation
around to find o, since the above analysis is still valid
even if volatility is stock and time dependent.

Continuous-time Limit of the
Binomial Model

Some of our ten derivations lead to the Black-Scholes
partial differential equation, and some to the idea of the
option value as the present value of the option payoff
under a risk-neutral random walk. The following simple
model does both.

In the binomial model the asset starts at S and over a
time step &t either rises to a value u x S or falls to a
value v x S, with 0 < v < 1 < u. The probability of a rise
is p and so the probability of a fall is 1 — p.

We choose the three constants u, v and p to give the
binomial walk the same drift, «, and volatility, o, as the
asset we are modelling. This choice is far from unique
and here we use the choices that result in the simplest

formulee:
u= 1+0’\/§,
v=1-0+/5t
and
1 /st
P= 2 + MZJ ’

Having defined the behaviour of the asset we are ready
to price options.
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uS

Probability of rise = p

ot vS

Figure 4-1: The model.

Suppose that we know the value of the option at the
time t + 8t. For example this time may be the expiration
of the option. Now construct a portfolio at time ¢ con-
sisting of one option and a short position in a quantity
A of the underlying. At time ¢ this portfolio has value

[I=V-—-AS,

where the option value V is for the moment unknown.
At time ¢ + &t the option takes one of two values, de-
pending on whether the asset rises or falls

Vvt oor V.
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At the same time the portfolio of option and stock
becomes either

vVt —AuS or V- — AuS.

Having the freedom to choose A, we can make the value
of this portfolio the same whether the asset rises or
falls. This is ensured if we make

VT —AuS =V~ — AvS.

This means that we should choose

A Vvt —v-
(u—v)s
for hedging. The portfolio value is then
V- AuS =Vt — ”(‘(/; _U‘)/f) =V - AUS
V- o(Vt =V7)
(u—-v)

Let’s denote this portfolio value by
IT+ 6I1.

This just means the original portfolio value plus the
change in value. But we must also have §I1 = rIT §t
to avoid arbitrage opportunities. Bringing all of these
expressions together to eliminate IT, and after some
rearranging, we get

— 1 Y+ o —
V= e YY),

where

1 rét

p=-+ \/—.
2 20

This is an equation for V given V*, and V~, the option

values at the next time step, and the parameters r

and o.

The right-hand side of the equation for V can be inter-
preted, rather clearly, as the present value of the expected
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future option value using the probabilities p’ for an up
move and 1 — p’ for a down.

Again this is the idea of the option value as the present
value of the expected payoff under a risk-neutral random
walk. The quantity p’ is the risk-neutral probability, and
it is this that determines the value of the option not
the real probability. By comparing the expressions for
p and p’ we see that this is equivalent to replacing the
real asset drift . with the risk-free rate of return r.

We can examine the equation for V in the limit as 6t — 0.
We write

V=V(S,0, Vr=V@St+s) and V- = V(uS,t+50).

Expanding these expressions in Taylor series for small
5t we find that

Vv
A~£ as 8t— 0,

and the binomial pricing equation for V becomes

W | 20’V B
-~ 2asasz+55 v =0.

This is the Black-Scholes equation.

CAPM

This derivation, originally due to Cox & Rubinstein
(1985) starts from the Capital Asset Pricing Model in
continuous time. In particular it uses the result that
there is a linear relationship between the expected
return on a financial instrument and the covariance
of the asset with the market. The latter term can be
thought of as compensation for taking risk. But the
asset and its option are perfectly correlated, so the
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compensation in excess of the risk-free rate for taking
unit amount of risk must be the same for each.

For the stock, the expected return (dividing by df) is u.
Its risk is o.

From It0 we have
92V £1%
dv = —dt 0%8% — dt + —dS.
3088 St + 55

Therefore the expected return on the option is

1[0V | 02V
Rl (A P73 S
V<8t+20 a5z TH as)

and the risk is
1 Vv
— 5_

Since both the underlying and the option must have the
same compensation, in excess of the risk-free rate, for
unit risk

1 (aV 2.¢2 92 v
w—r V(W*‘z SPeg Sas)

1
o yoSEs

Now rearrange this. The u drops out and we are left
with the Black-Scholes equation.

Utility Theory

The utility theory approach is probably one of the least
useful of the ten derivation methods, requiring that we

value from the perspective of an investor with a utility

function that is a power law. This idea was introduced

by Rubinstein (1976).
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The steps along the way to finding the Black-Scholes
formule are as follows. We work within a single-period
framework, so that the concept of continuous hedging,
or indeed anything continuous at all, is not needed.
We assume that the stock price at the terminal time
(which will shortly also be an option’s expiration) and
the consumption are both lognormally distributed with
some correlation. We choose a utility function that is

a power of the consumption. A valuation expression
results. For the market to be in equilibrium requires

a relationship between the stock’s and consumption’s
expected growths and volatilities, the above-mentioned
correlation and the degree of risk aversion in the utility
function. Finally, we use the valuation expression for an
option, with the expiration being the terminal date. This
valuation expression can be interpreted as an expecta-
tion, with the usual and oft-repeated interpretation.

A Diffusion Equation

The penultimate derivation of the Black-Scholes partial
differential equation is rather unusual in that it uses just
pure thought about the nature of Brownian motion and
a couple of trivial observations. It also has a very neat
punchline that makes the derivation helpful in other
modelling situations.

It goes like this.

Stock prices can be modelled as Brownian motion, the
stock price plays the role of the position of the ‘pollen
particle’ and time is time. In mathematical terms Brow-
nian motion is just an example of a diffusion equation.
So let’s write down a diffusion equation for the value

of an option as a function of space and time, i.e. stock
price and time, that’s V(S,t). What’s the general linear
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diffusion equation? It is

£1% 92V £1%
— 4a—+b— +cV=0.
ar T TPas te

Note the coefficients a, b and c. At the moment these
could be anything.

Now for the two trivial observations.

First, cash in the bank must be a solution of this
equation. Financial contracts don’t come any simpler
than this. So plug V = e into this diffusion equation
to get

re +0 40+ ce” =0.

Soc=-—r.

Second, surely the stock price itself must also be a
solution? After all, you could think of it as being a call
option with zero strike. So plug V = § into the general
diffusion equation. We find

0+04+b+cS=0.
So b= —cS=1S.

Putting b and ¢ back into the general diffusion equation
we find

v 8%V v

o7 4—(1852 —l—rSaS rV =0.
This is the risk-neutral Black-Scholes equation. Two
of the coefficients (those of V and 9V /3S) have been
pinned down exactly without any modelling at all. Ok,
so it doesn’t tell us what the coefficient of the second
derivative term is, but even that has a nice interpreta-
tion. It means at least a couple of interesting things.

First, if we do start to move outside the Black—-Scholes
world then chances are it will be the diffusion coefficient
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that we must change from its usual %0252 to accommo-
date new models.

Second, if we want to fudge our option prices, to mas-
sage them into line with traded prices for example, we
can only do so by fiddling with this diffusion coeffi-
cient, i.e. what we now know to be the volatility. This
derivation tells us that our only valid fudge factor is the
volatility.

Black—5Scholes for Accountants

The final derivation of the Black-Scholes equation
requires very little complicated mathematics, and
doesn’t even need assumptions about Gaussian returns,
all we need is for the variance of returns to be finite.

The Black-Scholes analysis requires continuous hedging,
which is possible in theory but impossible, and even
undesirable, in practice. Hence one hedges in some
discrete way. Let’s assume that we hedge at equal time
periods, §t. And consider the value changes associated
with a delta-hedged option.

e We start with zero cash

e We buy an option

e We sell some stock short

e Any cash left (positive or negative) is put into a
risk-free account.

We start by borrowing some money to buy the option.
This option has a delta, and so we sell delta of the
underlying stock in order to hedge. This brings in some
money. The cash from these transactions is put in the
bank. At this point in time our net worth is zero.
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---Long option
Short stock
Hedged portfolio

Figure 4-2: How our portfolio depends on S.

Our portfolio has a dependence on S as shown in
Figure 4-2.

We are only concerned with small movements in the
stock over a small time period, so zoom in on the cur-
rent stock position. Locally the curve is approximately
a parabola, see Figure 4-3.

Now think about how our net worth will change from
now to a time &t later. There are three reasons for our
total wealth to change over that period.

1. The option price curve changes
2. There is an interest payment on the money in the bank
3. The stock moves

The option curve falls by the time value, the theta mul-
tiplied by the time step:

® x §t.
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Today

Figure 4-3: The curve is approximately quadratic.

To calculate how much interest we received we need to
know how much money we put in the bank. This was

A xS

from the stock sale and
from the option purchase. Therefore the interest we
receive is

r(SA — V) ét.

Finally, look at the money made from the stock move.
Since gamma is positive, any stock price move is good
for us. The larger the move the better.

The curve in Figure 4-3 is locally quadratic, a parabola
with coefficient %F. The stock move over a time period
8t is proportional to three things:

e the volatility o
e the stock price S
e the square root of the time step

Multiply these three together, square the result because
the curve is parabolic and multiply that by %F and you
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get the profit made from the stock move as
162827 51,

Put these three value changes together (ignoring the §t
term which multiplies all of them) and set the resulting
expression equal to zero, to represent no arbitrage, and
you get

O+ 12T +r(SA - V) =0,

the Black-Scholes equation.

Now there was a bit of cheating here, since the stock
price move is really random. What we should have said
is that

%UZSZF St

is the profit made from the stock move on average.
Crucially all we need to know is that the variance of
returns is

o2S2st,

we don’t even need the stock returns to be normally
distributed. There is a difference between the square
of the stock price moves and its average value and this
gives rise to hedging error, something that is always
seen in practice. If you hedge discretely, as you must,
then Black-Scholes only works on average. But as you
hedge more and more frequently, going to the limit

8t = 0, then the total hedging error tends to zero, so
justifying the Black—Scholes model.

References and Further Reading

Andreason, J, Jensen, B & Poulsen, R 1998 Eight Valuation
Methods in Financial Mathematics: The Black-Scholes For-
mula as an Example. Math. Scientist 23 18-40



2 7 4’ Frequently Asked Questions In Quantitative Finance

Black, F & Scholes, M 1973 The pricing of options and
corporate liabilities. Journal of Political Economy 81 637-59

Cox, J & Rubinstein, M 1985 Options Markets. Prentice-Hall

Derman, E & Kani, I 1994 Riding on a smile. Risk magazine 7
(2) 32-39

Dupire, B 1994 Pricing with a smile. Risk magazine 7 (1) 18-20
Harrison, JM & Kreps, D 1979 Martingales and arbitrage in

multiperiod securities markets. Journal of Economic Theory
20 381-408

Harrison, JM & Pliska, SR 1981 Martingales and stochastic
integrals in the theory of continuous trading. Stochastic
Processes and their Applications 11 215-260

Joshi, M 2003 The Concepts and Practice of Mathematical
Finance. CUP

Rubinstein, M 1976 The valuation of uncertain income streams
and the pricing of options. Bell J. Econ. 7 407-425

Rubinstein, M 1994 Implied binomial trees. Journal of Finance
69 771-818

Wilmott, P 2006 Paul Wilmott On Quantitative Finance, second
edition. John Wiley & Sons



Chapter5

Modelsand Equations




2 7 6 Frequently Asked Questions In Quantitative Finance

Equity, Foreign Exchange and

Commodities
The lognormal random walk

The most common and simplest model is the lognormal
random walk:

dS + uS dt + oS dx.

The Black-Scholes hedging argument leads to the fol-
lowing equation for the value of non-path-dependent
contracts,

AV | 90 d?V v

— 4 508" — -D)S— —rV=0.

ot 278 e T DS
The parameters are volatility o, dividend yield D and
risk-free interest rate r. All of these can be functions of

S and/or ¢, although it wouldn’t make much sense for
the risk-free rate to be .S dependent.

This equation can be interpreted probabilistically. The
option value is

e I @ dt g (payofi(Sp)]

where St is the stock price at expiry, time T, and
the expectation is with respect to the risk-neutral ran-
dom walk

dS = r(H)S dt + (S, H)S dX.

When o, D and r are only time dependent we can write
down an explicit formula for the value of any non-path-
dependent option without early exercise (and without
any decision feature) as
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o—T(T—D) 0
E,/Zn(T—t)/o
2
% ) —2 /
—| In(S/S’ —D—50 T—t 264(T—t ds
. (inesssy+(7-D- 302 )70 120%¢ S~ s

where

1 T
T = ﬁ/f o(7)2dr,

_ 1 T
D=_— D
T—t[t (v) dt

and

1 T
F= r(r) dr.
— /] ®
The - parameters represent the ‘average’ of the para-
meters from the current time to expiration. For the
volatility parameter the relevant average is the root-
mean-square average, since variances can be summed
but standard deviations (volatilities) cannot.

The above is a very general formula which can be
greatly simplified for European calls, puts and
binaries.

Multi-dimensional lognormal random
walks

There is a formula for the value of a European non-path-
dependent option with payoff of Payoff(Sy,...,Ss) at
time T
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V=T 2 (T — ) 2 Dets) (01 - 00)

/ / Payoff(S’ s;,)

X exp (—%aT Z_loc) ds;---ds,

where

1 Si 02
= e ((8) (-0 F)r ).

¥ is the correlation matrix and there is a continuous
dividend yield of D; on each asset.

Stochastic volatility

If the risk-neutral volatility is modelled by
do = (p — 1q) dt + q dXy,

where A is the market price of volatility risk, with the
stock model still being

dS = uS dt + oS dX,

with correlation between them of p, then the option-
pricing equation is

W 2V 92V
ot STSZ+ Sqasa

+(p—Aq)——rV:0.
do

% v
1
27 202 T S%

This pricing equation can be interpreted as representing
the present value of the expected payoff under risk-neutral
random walks for both S and o. So for a call option, for
example, we can price via the expected payoff

V(S,0,0) = e "TDE2 (max(Sr — K, 0)].
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For other contracts replace the maximum function with
the relevant, even path-dependent, payoff function.

Hull % White (1987) Hull & White considered both
general and specific volatility models. They showed that
when the stock and the volatility are uncorrelated and
the risk-neutral dynamics of the volatility are unaffected
by the stock (i.e. p — g and g are independent of .S)
then the fair value of an option is the average of the
Black-Scholes values for the option, with the average
taken over the distribution of o2.

Square-root model/Heston (1993) In Heston’s model
dv = (a — bv)dt + cv/v dXs,

where v = o2. This has arbitrary correlation between
the underlying and its volatility. This is popular because
there are closed-form solutions for European options.

3/2 model
dv = (av — bv?)dt + cv®? dXo,

where v = 2. Again, this has closed-form solutions.

GARCH-diffusion In stochastic differential equation form
the GARCH(1,1) model is

dv = (a — bv)dt + cv dX».

Here v = o2.

Ornstein—Uhlenbeck process With y =logv, v = o2,

dy = (a — by)dt + ¢ dX».

This model matches real, as opposed to risk-neutral,
data well.
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Asymptotic analysis If the volatility of volatility is large
and the speed of mean reversion is fast in a stochastic
volatility model,

dS = rSdt+0SdX, and do—=P "9
€

q
dt + \/E dX,
with a correlation p, then closed-form approximate
solutions (asymptotic solutions) of the pricing equation
can be found for simple options for arbitrary functions
p —Aq and q. In the above model the ¢ represents a
small parameter. The asymptotic solution is then a
power series in /2,

Schonbucher’s stochastic implied volatility Schonbucher begins
with a stochastic model for implied volatility and
then finds the actual volatility consistent, in a no-
arbitrage sense, with these implied volatilities. This
model calibrates to market prices by definition.

Jump diffusion

Given the jump-diffusion model
aS=pSdt+oSdX+ (- 1S dg,
the equation for an option is

AV | 5082V v
— + 1028t — 1S — 1V
ar T270 gsE TRs T

+AE[V(IS, 0 — V(S, D] — A%SE [J—1]=0.

E[-] is the expectation taken over the jump size.
If the logarithm of J is Normally distributed with
standard deviation o’ then the price of a European
non-path-dependent option can be written as
oo
| ,
> Ee”\ =D (T — )" Vs (S, t; on, 1),

n=0
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where
na/z
k=E[J—-1], ¥ =x(1+k), 03=02+T .
and
nin(1 + k&
rn:r_)\.k—f‘;i_t),

and Vps is the Black-Scholes formula for the option
value in the absence of jumps.

Fixed Income

In the following we use the continuously compounded
interest convention. So that one dollar put in the bank
at a constant rate of interest r would grow exponen-
tially, e". This is the convention used outside the fixed-
income world. In the fixed-income world where interest
is paid discretely, the convention is that money grows
according to

(1+r7)",
where n is the number of interest payments, t is the

time interval between payments (here assumed con-
stant) and r’ is the annualized interest rate.

To convert from discrete to continuous use

1
r==In(1+r'7).
T

The yield to maturity (YTM) or internal rate of return (IRR)
Suppose that we have a zero-coupon bond maturing

at time T when it pays one dollar. At time ¢ it has a
value Z(t; T). Applying a constant rate of return of y
between t and T, then one dollar received at time T has
a present value of Z(¢; T) at time ¢, where

Z(t; T) = e YT,
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It follows that
InZ
Tt
Suppose that we have a coupon-bearing bond. Discount
all coupons and the principal to the present by using
some interest rate y. The present value of the bond, at
time ¢, is then

N
V =pPe YT 4 Z Cie*y(fi*l)’
i=1

where P is the principal, N the number of coupons,
C; the coupon paid on date ¢. If the bond is a traded
security then we know the price at which the bond can
be bought. If this is the case then we can calculate the
yield to maturity or internal rate of return as the value
y that we must put into the above to make V equal to
the traded price of the bond. This calculation must be
performed by some trial and error/iterative procedure.

The plot of yield to maturity against time to maturity is
called the yield curve.

Duration Since we are often interested in the sensitivity
of instruments to the movement of certain underlying
factors it is natural to ask how does the price of a bond
vary with the yield, or vice versa. To a first approxima-
tion this variation can be quantified by a measure called
the duration.

By differentiating the value function with respect to y
we find that

av —W(T—b) o —y(t;i—)
d—y:—(T—t)Pey =Y Gt — He D,
i=1
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This is the slope of the price/yield curve. The quantity
14dv

V dy

is called the Macaulay duration. (The modified dura-
tion is similar but uses the discretely compounded
rate.) The Macaulay duration is a measure of the aver-
age life of the bond.

For small movements in the yield, the duration gives a
good measure of the change in value with a change in the
yield. For larger movements we need to look at higher
order terms in the Taylor series expansion of V(y).

Convexity The Taylor series expansion of V gives

2y
av ldV 1 a“v 59) +
Vv dy 2V dy?
where 8y is a change in yield. For very small movements
in the yield, the change in the price of a bond can be
measured by the duration. For larger movements we
must take account of the curvature in the price/yield
relationship.

The dollar convexity is defined as

A% al
P (T = 0?Pe>T=D 13" Ci(t; — e 0.
i=1
and the convexity is
1d*v
Vdy?”

Yields are associated with individual bonds. Ideally we
would like a consistent interest rate theory that can be
used for all financial instruments simultaneously. The
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simplest of these assumes a deterministic evolution of a
spot rate.

The spot rate and forward rates The interest rate we consider
will be what is known as a short-term interest rate or
spot interest rate r(f). This means that the rate r(¢) is
to apply at time ¢. Interest is compounded at this rate at
each moment in time but this rate may change, generally
we assume it to be time dependent.

Forward rates are interest rates that are assumed to
apply over given periods in the future for all instruments.
This contrasts with yields which are assumed to apply
from the present up to maturity, with a different yield
for each bond.

Let us suppose that we are in a perfect world in which
we have a continuous distribution of zero-coupon bonds
with all maturities 7. Call the prices of these at time ¢,

Z(t; T). Note the use of Z for zero-coupon.

The implied forward rate is the curve of a time-dependent
spot interest rate that is consistent with the market price
of instruments. If this rate is r(7) at time ¢ then it satisfies

Z(t:T) = e~ i 7

On rearranging and differentiating this gives

H(T) = = Z(t: 7).

This is the forward rate for time T as it stands today,
time f. Tomorrow the whole curve (the dependence of r
on the future) may change. For that reason we usually
denote the forward rate at time ¢ applying at time T in
the future as F(¢; T) where

F(:T) =~ (nZ(t: 7).
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Writing this in terms of yields y(¢; T) we have
Z(t:T) = e Y&D(T-D

and so
ay
Ft; T) =y(t; -
D =y + 5>

This is the relationship between yields and forward
rates when everything is differentiable with respect to
maturity.

In the less-than-perfect real world we must do with only
a discrete set of data points. We continue to assume
that we have zero-coupon bonds but now we will only
have a discrete set of them. We can still find an implied
forward rate curve as follows. (In this I have made the
simplifying assumption that rates are piecewise con-
stant. In practice one uses other functional forms to
achieve smoothness.)

Rank the bonds according to maturity, with the shortest
maturity first. The market prices of the bonds will be
denoted by ZIM where i is the position of the bond in
the ranking.

Using only the first bond, ask the question ‘What inter-
est rate is implied by the market price of the bond?’
The answer is given by y;, the solution of

Z{w —e N (@ *[)’

_Inczih

1 —t ’
This rate will be the rate that we use for discounting
between the present and the maturity date 7; of the

first bond. And it will be applied to all instruments
whenever we want to discount over this period.

rn =
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Now move on to the second bond having maturity date
T». We know the rate to apply between now and time
T1, but at what interest rate must we discount between
dates 77 and T, to match the theoretical and market
prices of the second bond? The answer is r» which
solves the equation

Zg” = e NN-Dg12(Tp-T1)

i.e.
In (23'/2})
 TL-Ti
By this method of bootstrapping we can build up the
forward rate curve. Note how the forward rates are

applied between two dates, for which period I have
assumed they are constant.

ro =

This method can easily be extended to accommodate
coupon-bearing bonds. Again rank the bonds by their
maturities, but now we have the added complexity that
we may only have one market value to represent the
sum of several cashflows. Thus one often has to make
some assumptions to get the right number of equations
for the number of unknowns.

To price non-linear instruments, options, we need a
model that captures the randomness in rates.

Black 1976

Market practice with fixed-income derivatives is often
to treat them as if there is an underlying asset that
is lognormal. This is the methodology proposed by
Black (1976).

Bond options A simple example of Black '76 would be a
European option on a bond, as long as the maturity of
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the bond is significantly greater than the expiration of
the option. The relevant formulee are, for a call option

e "D (FN(d)) — KN(d)) ,
and for a put
e TD (—FN(~d)) + KN(d—2)),

where
_ In(F/K) + 30%(Ti— )
B oTi —t ’

g NG/ 30X(Ti— D)

2 oTi —t '

Here F is the forward price of the underlying bond at
the option maturity date 7. The volatility of this forward

price is o. The interest rate r is the rate applicable to
the option’s expiration and K is the strike.

dq

Caps and floors A cap is made up of a string of caplets
with a regular time interval between them. The payoff
for the ith caplet is max(r; — K,0) at time T;;; where r;
is the interest rate applicable from ¢ to t;»1 and K is the
strike.

Each caplet is valued under Black '76 as
e "Tir1=D (FN(dy) — KN(dy)),

where r is the continuously compounded interest rate
applicable from ¢ to T;;1, F is the forward rate from time
T; to time T, K the strike and
4 _ /K + 302(T; =0

1= /T I s
L /K — 30X (T - 1)

2 = o /T I )

where o is the volatility of the forward rate.
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The floorlet can be thought of in a similar way in terms
of a put on the forward rate and so its formula is

e "Tis17D (KN(—dy) — FN(—dy)) .

Swaptions A payer swaption, which is the right to pay
fixed and receive floating, can be modelled as a call on
the forward rate of the underlying swap. Its formula
is then

1——L1

(1+%)m o
—— e "0 (N(dr) — KN(d)
where r is the continuously compounded interest rate
applicable from ¢ to T, the expiration, F is the forward
swap rate, K the strike and

_ In(F/K) + 30T -0

e ovT —t
b In(F/K) — 3o (T - 1)
2T oJT —t ’

where o is the volatility of the forward swap rate. 7 is
the tenor of the swap and m the number of payments
per year in the swap.

The receiver swaption is then

1- om
% e "T=D(KN(~dp) — FN(~dY)).

—_

Elet

Spot rate models

The above method for pricing derivatives is not entirely
internally consistent. For that reason there have been
developed other interest rate models that are internally
consistent.
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In all of the spot rate models below we have
dr = u(r,Hdt + w(r, H)dX

as the real process for the spot interest rate. The risk-
neutral process which governs the value of fixed-income
instruments is

dr = (u — ) w)dt + w dX

where 1 is the market price of interest rate risk. In each
case the stochastic differential equation we describe is
for the risk-neutral spot rate process, not the real.

The differential equation governing the value of non-
path-dependent contracts is
1% w2 a2V
et 2w or?
The value of fixed-income derivatives can also be inter-
preted as

+ (u —Aw)——rV 0.

EZ [Present value of cashflows],

where the expectation is with respect to the risk-neutral
process

Vasicek In this model the risk-neutral process is
dr = (a — br)dt + c dX,

with a, b and ¢ being constant. It is possible for r to go
negative in this model.

There is a solution for bonds of the form exp(A(#; T) —
B(t; T)r).

Cox, Ingersoll and Ross In this model the risk-neutral pro-
cess is

dr = (a — br)dt + cr'/?dX,
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with a, b and ¢ being constant. As long as a is suffi-
ciently large this process cannot go negative.

There is a solution for bonds of the form exp(A(; T) —

B(t; T)r).

Ho and Lee In this model the risk-neutral process is
dr = a(H)dt + c dX,

with ¢ being constant. It is possible for r to go negative
in this model.

There is a solution for bonds of the form exp(A(#; T) —

B(t: T)r).

The time-dependent parameter a(f) is chosen so that
the theoretical yield curve matches the market yield
curve initially. This is calibration.

Hull and White There are Hull and White versions of the
above models. They take the forms

dr = (a(t) — b(Hr) dt + c(HdX,
or
dr = (a(t) — b(H)r) dt + c(H)r'/?dX.

The functions of time allow various market data to be
matched or calibrated.

There are solutions for bonds of the form exp(A(t; T) —

B(t: T)r).

Black—Karasinski In this model the risk-neutral spot-rate
process is

d(Inr) = (a(®) — b(®) Inr) dt + c(H)dX.

There are no closed-form solutions for simple bonds.
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Two-factor models

In the two-factor models there are two sources of ran-
domness, allowing a much richer structure of theoretical
yield curves than can be achieved by single-factor mod-
els. Often, but not always, one of the factors is still the
spot rate.

Brennan and Schwartz In the Brennan & Schwartz model
the risk-neutral spot rate process is

dr = (a1 + bi(l — r))dt + o1r dXi
and the long rate satisfies

dl = l(ay — bor + col)dt + o9l dX>.

Fong and Vasicek Fong & Vasicek consider the following
model for risk-neutral variables

dr = a(F — Ndt + /& dX;
and
dt = bE — £)dt + c\/E dX,.

Thus they model the spot rate, and ¢ the square root of
the volatility of the spot rate.

Longstaff and Schwartz Longstaff & Schwartz consider the
following model for risk-neutral variables

dx = a(x — x)dt + /x dX,
and

dy = b(y — y)dt + /y dXa,
where the spot interest rate is given by

r=cx+dy.
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Hull and White The risk-neutral model
dr = () —u— yr)dt + cdXy
and
du = —au dt + b dX»

is a two-factor version of the one-factor Hull & White.
The function n(¢) is used for fitting the initial yield
curve.

All of the above, except for the Brennan & Schwartz
model, have closed-form solutions for simple bonds in
terms of the exponential of a linear function of the two
variables.

The market price of risk as a random factor Suppose that we
have the two real random walks

dr = u dt + w dX;
and
d) = p dt+ g dX,

where A is the market price of r risk. The zero-coupon
bond pricing equation is then
3z | ,9%Z 3z ,0%Z

W AW T2 e

0z 9z
— W) — — Q) — —rZ =0.
=)+ (P hag) s —Z =0

Since the market price of risk is related to the slope
of the yield curve as the short end, there is only one
unobservable in this equation, ;.

SABR

The SABR (stochastic, «, 8, p) model by Hagan, Kumar,
Lesniewski & Woodward (2002) is a model for a forward
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rate, F, and its volatility, «, both of which are stochastic:
dF = oFfdX; and do = va dXs.

There are three parameters, 8, v and a correlation p.
The model comes into its own because it is designed
for the special case where the volatility @ and volatility
of volatility, v, are both small. In this case there are
relatively simple closed-form approximations (asymp-
totic solutions). The model is therefore most relevant
for markets such as fixed income, rather than equity.
Equity markets typically have large volatility making the
model unsuitable.

The models calibrates well to simple fixed-income instru-
ments of specified maturity, and if the parameters are
allowed to be time dependent then a term structure can
also be fitted.

Heath, Jarrow and Morton

In the Heath, Jarrow & Morton (HIM) model the evo-
lution of the entire forward curve is modelled. The
risk-neutral forward curve evolves according to

dF(t; T)=m(, T)dt+v(t,T)dX.
Zero-coupon bonds then have value given by
ZtT)=e f[TF(l;s)ds’

the principal at maturity is here scaled to $1. A hedging
argument shows that the drift of the risk-neutral process
for F cannot be specified independently of its volatility
and so

T
m(t, T) = v(t, T)/[ v(t,s) ds.

This is equivalent to saying that the bonds, which are
traded, grow at the risk-free spot rate on average.
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A multi-factor version of this results in the following
risk-neutral process for the forward rate curve

N

T N
dF(t,T) = (Z vi(t, T) / vi(t,s) ds) di+ ) vi(t,T) dXi.
t i=1

i=1
In this the dX; are uncorrelated with each other.

Brace, Gatarek and Musiela

The Brace, Gatarek & Musiela (BGM) model is a discrete
version of HIM where only traded bonds are modelled
rather than the unrealistic entire continuous yield curve.

If Zi(6) = Z(t; T;) is the value of a zero-coupon bond,
maturing at T;, at time ¢, then the forward rate applic-
able between T; and T;;; is given by

1/ Z
Fi=—(—-1
l T<Zi+1 )7

where t = T;;1 — T;. Assuming equal time period between
all maturities we have the risk-neutral process for the
forward rates are given by

{ oiFitp;i
dF; = (; #fé oiF; dt + o;F; dX;.

Modelling interest rates is then a question of the func-
tional forms for the volatilities of the forward rates o;
and the correlations between them p;;.

Prices as expectations

For all of the above models the value of fixed-income
derivatives can be interpreted as

EZ [Present value of cashflows],
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where the expectation is with respect to the risk-neutral
process(es). The ‘present value’ here is calculated path-
wise. If performing a simulation for valuation purposes
you must discount cashflows for each path using the
relevant discount factor for that path.

Credit

Credit risk models come in two main varieties, the struc-
tural and the reduced form.

Structural models

Structural models try to model the behaviour of the firm
so as to represent the default or bankruptcy of a com-
pany in as realistic a way as possible. The classical work
in this area was by Robert Merton who showed how to
think of a company’s value as being a call option on its
assets. The strike of the option being the outstanding
debt.

Merton assumes that the assets of the company A follow
a random walk

dA = pA dt + oA dX.

If V is the current value of the outstanding debt, allow-
ing for risk of default, then the value of the equity
equals assets less liabilities:

S=A-V.

Here S is the value of the equity. At maturity of this
debt

SA,T) =max(A—-D,0) and V(A,T)=min(D,A),
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where D is the amount of the debt, to be paid back at
time T.

If we can hedge the debt with a dynamically changing
quantity of equity then the Black-Scholes hedging argu-
ment applies and we find that the current value of the
debt, V, satisfies

1%

92V v
at

+rA— —1rA =0

1 242
A 9A

subject to
V(A, T) = min(D, A)

and exactly the same partial differential equation for the
equity of the firm S but with

S(A, T) = max(A — D, 0).

The problem for S is exactly that for a call option, but
now we have S instead of the option value, the under-
lying variable is the asset value A and the strike is

D, the debt. The formula for the equity value is the
Black-Scholes value for a call option.

Reduced form

The more popular approach to the modelling of credit
risk is to use an instantaneous risk of default or hazard
rate, p. This means that if at time ¢ the company has not
defaulted then the probability of default between times ¢
and ¢t + dt is p dt. This is just the same Poisson process
seen in jump-diffusion models. If p is constant then this
results in the probability of a company still being in
existence at time T, assuming that it wasn’t bankrupt at
time ¢, being simply

e P(T=D),
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If the yield on a risk-free, i.e. government bond, with
maturity T is r then its value is

e—r(T—t).

If we say that an equivalent bond on the risky company
will pay off 1 if the company is not bankrupt and zero

otherwise then the present value of the expected payoff
comes from multiplying the value of a risk-free bond by
the probability that the company is not in default to get

e TT=0 5 o=P(T=0 _ o=(+p)(T—0).

So to represent the value of a risky bond just add a
credit spread of p to the yield on the equivalent risk-free
bond. Or, conversely, knowing the yields on equivalent
risk-free and risky bonds one can estimate p the implied
risk of default.

This is a popular way of modelling credit risk because
it is so simple and the mathematics is identical to that
for interest rate models.
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n the following formulae

1 . P
N = o [ et
J In(S/K) + (r — D+ 3o®)(T - 0
| =

oNT —t

and

J In(S/K) + (r — D — 3o2)(T — 0
2= oT —t A
The formulee are also valid for time-dependent o, D and
r, just use the relevant ‘average’ as explained in the
previous chapter.

Warning

The greeks which are ‘greyed out’ in the following can
sometimes be misleading. They are those greeks which
are partial derivatives with respect to a parameter (o, r
or D) as opposed to a variable (S and ¢) and which are
not single signed (i.e. always greater than zero or always
less than zero). Differentiating with respect a parameter,
which has been assumed to be constant so that we can
find a closed-form solution, is internally inconsistent.
For example, dV/do is the sensitivity of the option price
to volatility, but if volatility is constant, as assumed in
the formula, why measure sensitivity to it? This may
not matter if the partial derivative with respect to the
parameter is of one sign, such as 9V /do for calls and
puts. But if the partial derivative changes sign then
there may be trouble. For example, the binary call has
a positive vega for low stock prices and negative vega
for high stock prices, in the middle vega is small, and
even zero at a point. However, this does not mean that
the binary call is insensitive to volatility in the middle.
It is precisely in the middle that the binary call value is
very sensitive to volatility, but not the level, rather the
volatility skew.
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Table 6.1: Formulae for European call.

307

Call

Payoff
Value V
Black-Scholes value

v
Delta 9

Sensitivity to underlying

22V

Gamma
BN

Sensitivity of delta to
underlying
%
Theta 5
Sensitivity to time
3y
983
Sensitivity of gamma to
underlying

Speed

a2V

Charm ERET

Sensitivity of delta to time

3V
a2 ot

Colour

Sensitivity of gamma to time

v
o’

Sensitivity to volatility

Rho (1) %Y

ar

Vega

Sensitivity to interest rate

Rho (D) &%

Sensitivity to dividend yield

22y
39S do
Sensitivity of delta to

volatility

Vanna

52
Volga/Vomma %
do

Sensitivity of vega to volatility

max(S — K, 0)
Se=DT=DN(dy) — Ke " T=DN(dy)

e—D(T—[)N(dl)

e DT-DN/(ap)

_0Se DT-OnN'@a))

oSV/T—t

2y T—t

+ DSN(dy)e=P(T=D

—rKe " T=DN(dy)

e DT-DN/(ap)

0252(T-n)

x (dl +am)

De~PT=DON(dy) +e~PT=ON'(dy)

(

2T-D "~ oJT—t

dy

r—D

e DT-DN/(ap)

><<D+

oSV/T—t

l-djdy  dj(r—D)
270

oNT—t )

SVT —te=P(T-DN'(dy)

K(T - He " T=ON(dy)

—(T = HSe~ DT =D N(ay)

_D(T— d
_e D(T [)N/(dl)%

ST —te~DT-ON (dy) 1%
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Table 6.2: Formula for European put.

Put
Payoff max(K —S,0)
Value V —SeDT=DN(—d)) + Ke " T=ON(—dy)
Black-Scholes value
Delta 3% e DT-DN@) - 1
Sensitivity to underlying
2 =D(T-D N/ q
22V e N
Gamma 352 ST
Sensitivity of delta to
underlying
. —D(T—H) /¢
av _oSe N'(-dp) - —D(T—1t)
Thet.a. {)[ 4 v DSN(—dp)e
Sensitivity to time +rKe " T =DN(—dy)
3 ~D(T—0)p/ (4.
v B \KCIY) JT=1
Speed 953 SZSET ) X (dl +ovT t)
Sensitivity of gamma to
underlying
52
Charm 2.V De DT =D (N(d)) — 1) + e PT-DN/(a))
P . do _ r-D
Sensitivity of delta to time x (72(T—1) T/T_—t>
.3 =D(T-0) N
a3y e @p
Colour 352 o SSTT
- 1-dydy _ dy(r—D)
Serfsmwty of gamma to x (D+ ) P )
time
Vega 2V SVT —te=PDT-DN'(a))
Sensitivity to volatility
Rho () 2V —K(T — e "T=DN(~dy)
Sensitivity to interest rate
Rho (D) & (T = HSe= DT -ON(—ay)
Sensitivity to dividend yield
92 _D(T— d
Vanna d’S(}/{T —e~DT-ON'(dy) Z
Sensitivity of delta to
volatility
52
Volga/Vomma ‘; g SVT = te‘D(T_’)N’(dl)dl”ﬂ
o

Sensitivity of vega to
volatility
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Table 6.3: Formulee for European binary call.

Binary Call
Payoff 1 if S > K otherwise 0
Value V e "T=DN(dy)
Black-Scholes value
av e "T=DN (ay)
Delta 3¢ By,
Sensitivity to underlying
2 —r(T—-t) ’
Gamma 22V _e N (dy)
252 5282(T—1)
Sensitivity of delta to
underlying
Theta 2V re*r(Z”)N(dz) +e " T=DN'(dy)
P ; 1 _ _r=D
Sensitivity to time X (2({7—_% a«/ﬁ)
3 —r(T=DN'(dy) 1—dyd.
7V _e . V4 _ e )
Speed 353 S2S3 ) x | —2dy + T
Sensitivity of gamma to
underlying
22 —r(T=D N/ (4. 1-dyd do(r—D
a2y e (d9) 1dy | da(r—D)
Charm ;o757 oSVT—t "tarn T our
Sensitivity of delta to time
Colour %ISV _M rdy + 2di+dy  _y-D_
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time
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Table 6.4: Formule for European binary put.

Binary Put

Payoff

Value V
Black-Scholes value
Delta 2¥

S
Sensitivity to underlying
22v
52
Sensitivity of delta to
underlying
Theta 2V
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3
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v

952 ot
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Things to Look Out for in Exotic
Contracts

There are six important features to look out for in exotic
contracts. Understanding these features will help you
price a contract. These features are as follows.

. Time dependence

. Cashflows

. Path dependence

. Dimensionality

. Order

. Embedded decisions

S UL WN =

If you can classify an exotic contract according to these
characteristics you will be able to determine the following.

e What kind of pricing method should best be used
e Whether you can re-use some old code

e How long it will take you to code it up

e How fast it will eventually run

Time dependence is when the terms of an exotic contract
specify special dates or periods on or during which
something happens, such as a cashflow, or early exercise,
or an event is triggered. Time dependence is first on our
list of features, since it is a very basic concept.

e Time dependence in an option contract means that
our numerical discretization may have to be lined up
to coincide with times at, or periods during which,
something happens.

e This means that our code will have to keep track of
time, dates, etc. This is not difficult, just annoying.
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Cashflows are when money changes hands during the life
of the contract (as opposed to an initial premium or a

final payoff). When there is a cashflow the value of the

contract will instantaneously jump by the amount of the
cashflow.

e When a contract has a discretely paid cashflow you
should expect to have to apply jump conditions. This
also means that the contract has time dependence,
see above.

e Continuously paid cashflows mean a modification,
although rather simple, to the governing equation.

Path dependence is when an option has a payoff that
depends on the path taken by the underlying asset, and
not just the asset’s value at expiration. Path dependency
comes in two varieties, strong and weak.

Strong path dependent contracts have payoffs that
depend on some property of the asset price path in
addition to the value of the underlying at the present
moment in time; in the equity option language, we can-
not write the value as V(S,f). The contract value is

a function of at least one more independent variable.
Strong path dependency comes in two forms, discretely
sampled and continuously sampled, depending on
whether a discrete subset of asset prices is used or

a continuous distribution of them.

e Strong path dependency means that we have to work
in higher dimensions. A consequence of this is that
our code may take longer to run.

Weak path dependence is when a contract does depend
on the history of the underlying but an extra state
variable is not required. The obvious example is a bar-
rier option.
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e Weak path dependency means that we don’t have to
work in higher dimensions, so our code should be
pretty fast.

Dimensionality refers to the number of underlying inde-
pendent variables. The vanilla option has two indepen-
dent variables, S and ¢, and is thus two dimensional. The
weakly path-dependent contracts have the same number
of dimensions as their non-path-dependent cousins.

We can have two types of three-dimensional problem.
The first type of problem that is three dimensional is
the strongly path-dependent contract. Typically, the
new independent variable is a measure of the path-
dependent quantity on which the option is contin-
gent. In this case, derivatives of the option value with
respect to this new variable are only of the first order.
Thus the new variable acts more like another time-like
variable.

The second type of three-dimensional problem occurs
when we have a second source of randomness, such as
a second underlying asset. In the governing equation
we see a second derivative of the option value with
respect to each asset. We say that there is diffusion in
two dimensions.

e Higher dimensions means longer computing time.

e The number of dimensions we have also tells us what
kind of numerical method to use. High dimensions
mean that we probably want to use Monte Carlo, low
means finite difference.

The order of an option refers to options whose payoff,
and hence value, is contingent on the value of another
option. The obvious second-order options are compound
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options, for example, a call option giving the holder the
right to buy a put option.

e When an option is second or higher order we have to
solve for the first-order option, first. We thus have a
layer cake, we must work on the lower levels and the
results of those feed into the higher levels.

e This means that computationally we have to solve
more than one problem to price our option.

Embedded decisions are when the holder or the writer has
some control over the payoff. They may be able to
exercise early, as in American options, or the issuer may
be able to call the contract back for a specified price.

When a contract has embedded decisions you need an
algorithm for deciding how that decision will be made.
That algorithm amounts to assuming that the holder

of the contract acts to make the option value as high
as possible for the delta-hedging writer. The pricing algo-
rithm then amounts to searching across all possible
holder decision strategies for the one that maximizes
the option value. That sounds hard, but approached cor-
rectly is actually remarkably straightforward, especially
if you use the finite-difference method. The justification
for seeking the strategy that maximizes the value is that
the writer cannot afford to sell the option for anything
less, otherwise he would be exposed to ‘decision risk.’
When the option writer or issuer is the one with the
decision to make then the value is based on seeking the
strategy that minimizes the value.

e Decision features mean that we’d really like to price
via finite differences.

e The code will contain a line in which we seek the
best price, so watch out for > or < signs.
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Examples

Accrual is a generic term applied to contracts in which an
amount gradually builds up until it is paid off in a lump sum.
An example would be an accrual range note in which for
every day that some underlying is within a specified range

a specified amount is accrued, to eventually be paid off in a
lump sum on a specified day. As long as there are no decision
features in the contract then the accrual is easily dealt with
by Monte Carlo simulation. If one wants to take a partial
differential approach to modelling then an extra state variable
will often be required to keep track of how much money has
been accrued.

American option is one where the holder has the right to
exercise at any time before expiration and receive the payoff.
Many contracts have such early exercise American features.
Mathematically, early exercise is the same as conversion of a
convertible bond. These contracts are priced assuming that
the holder exercises so as to give the contract its highest
value. Therefore a comparison must be made between the
value of the option assuming you don’t exercise and what
you would get if you immediately exercised. This makes finite
differences a much more natural numerical method for pricing
such contracts than Monte Carlo.

Asian option is an option whose payoff depends on the aver-
age value of the underlying during some period of the option’s
life. The average can be defined in many ways, as an arith-
metic or geometric mean, for example, and can use a large
set of data points in a continuously sampled Asian or only

a smaller set, in the discretely sampled Asian. In an Asian
tail the averaging only occurs over a short period before
option expiration. There are closed-form formulee for some of
the simpler Asian options based on geometric averages, and
approximations for others. Otherwise they can be priced using
Monte Carlo methods, or sometimes by finite differences.
Because the average of an asset price path is less volatile
than the asset path itself these options can be cheaper than
their equivalent vanillas, but this will obviously depend on the
nature of the payoff. These contracts are very common in the
commodity markets because users of commodities tend to be
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exposed to prices over a long period of time, and hence their
exposure is to the average price.

Asset swap is the exchange of one asset for interest payments
for a specified period.

Balloon option is an option where the quantity of option
bought will increase if certain conditions are met, such as
barriers being triggered.

Barrier option has a payoff that depends on whether or not a
specified level of the underlying is reached before expiration.
In an ‘out’ option if the level is reached (triggered) then

the option immediately becomes worthless. In an ‘in’ option
the contract is worthless unless the level is triggered before
expiration. An ‘up’ option is one where the trigger level is
above the initial price of the underlying and a ‘down’ option
is one where the trigger level is below the initial price of the
underlying. Thus one talks about contracts such as the ‘up-
and-in call’ which will have the same payoff as a call option
but only if the barrier is hit from below. In these contracts
one must specify the barrier level, whether it is in or out,
and the payoff at expiration. A double barrier option has both
an upper and a lower barrier. These contracts are bought
by those with very specific views on the direction of the
underlying, and its probability of triggering the barrier. These
contracts are weakly path dependent. There are formulse

for many types of barrier option, assuming that volatility is
constant. For more complicated barrier contracts or when
volatility is not constant these contracts must be valued using
numerical methods. Both Monte Carlo and finite differences
can be used but the latter is often preferable.

Basis swap is an exchange of floating interest payments of
one tenor for floating interest payments of another tenor,

a six-month rate for a two-year rate for example. Since the
two payments will generally move together if the yield curve
experiences parallel shifts the basis swap gives exposure to
non-parallel movements in the yield curve such as flatten-
ing or steepening. More generally basis swap refers to any
exchange in which the two floating rates are closely related,
and therefore highly correlated.
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Basket option has a payoff that depends on more than one
underlying. A modest example would be an option that gives
you at expiration the value of the higher performing out of
two stocks. Another example would be a contract that pays
the average of the values of 20 stocks at expiration provided
that value is above a specified strike level. These contracts
can be valued straightforwardly by Monte Carlo simulation as
long as there is no early exercise feature. You would not use
finite-difference methods because of the high dimensionality.
If the contract is European, non path dependent with all of
the underlyings following lognormal random walks with con-
stant parameters then there is a closed-form formula for the
value of the contract, and this can be calculated by numerical
integration (quadrature). Basket options are popular in for-
eign exchange for those with exposure to multiple exchange
rates. They can also be used as options on your own index.
Although pricing these contracts can be theoretically straight-
forward they depend crucially on the correlation between
the underlyings. These correlations can be very difficult to
estimate since they can be quite unstable.

Bermudan option is one where the holder has the right to
exercise on certain dates or periods rather than only at
expiration (European exercise) or at any time (American
exercise). Bermudan options cannot be worth less than their
European equivalent and cannot be worth more than their
American equivalent.

Binary option has a payoff that is discontinuous. For example
a binary call pays off a specified amount if the underlying ends
above the strike at expiration and is otherwise worthless. A
one-touch pays off the specified amount as soon as the strike
is reached, it can be thought of as an American version of the
European binary. These contracts are also called digitals.

Break/Cancellable forward is a forward contract, usually FX,
where the holder can terminate the contract at certain times
if they so wish.

Coupe option is a periodic option in which the strike gets reset
to the worst of the underlying and the previous strike. Similar
to a cliquet option, but cheaper.
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Call option is an option to buy the underlying asset for a
specified price, the strike or exercise price, at (European)

or before (American) a specified data, the expiry or expira-
tion. The underlying can be any security. They are bought to
benefit from upward moves in the underlying, or if volatility
is believed to be higher than implied. In the latter case the
buyer would delta hedge the option to eliminate exposure
to direction. Calls are written for the opposite reasons, of
course. Also a holder of the underlying stock might write a
call to gain some premium in a market where the stock is
not moving much. This is called covered call writing. Simulta-
neous buying of the stock and writing a call is a buy-write
strategy. For calls on lognormal underlyings in constant

or time-dependent volatility worlds there are closed-form
expressions for prices. With more complicated underlyings or
volatility models these contracts can be priced by Monte Carlo
or finite difference, the latter being more suitable if there is
early exercise.

Other contracts may have call features or an embedded call.
For example, a bond may have a call provision allowing the
issuer to buy it back under certain conditions at specified
times. If the issuer has this extra right then it may decrease
the value of the contract, so it might be less than an equiva-
lent contract without the call feature. Sometimes the addition
of a call feature does not affect the value of a contract,
this would happen when it is theoretically never optimal

to exercise the call option. The simplest example of this is
an American versus a European call on a stock without any
dividends. These both have the same theoretical value since
it is never optimal to exercise early.

Cap is a fixed-income option in which the holder receives a
payment when the underlying interest rate exceeds a specified
level, the strike. This payment is the interest rate less the
strike. These payments happen regularly, monthly, or quarterly
etc., as specified in the contract, and the underlying interest
rate will usually be of the same tenor as this interval. The
life of the cap will be several years. They are bought for
protection against rises in interest rates. Market practice is to
quote prices for caps using the Black 76 model. A contract
with a single payment as above is called a caplet.
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Chooser option is an option on an option, therefore a second-
order option. The holder has the right to decide between
getting a call or a put, for example, on a specified date. The
expiration of these underlying options is further in the future.
Other similar contracts can be readily imagined. The key to
valuing such contracts is the realization that the two (or more)
underlying options must first be valued, and then one values
the option on the option. This means that finite-difference
methods are the most natural solution method for this kind
of contract. There are some closed-form formulee for simple
choosers when volatility is at most time dependent.

Cliquet option is a path-dependent contract in which amounts
are locked in at intervals, usually linked to the return on some
underlying. These amounts are then accumulated and paid off
at expiration. There will be caps and/or floors on the locally
locked-in amounts and on the global payoff. Such contracts
might be referred to as locally capped, globally floored, for
example. These contracts are popular with investors because
they have the eternally appreciated upside participation and
the downside protection, via the exposure to the returns and
the locking in of returns and global floor. Because of the
locking in of returns and the global cap/floor on the sum of
returns, these contracts are strongly path dependent. Typically
there will be four dimensions, which may in special cases

be reduced to three via a similarity reduction. This puts

the numerical solution on the Monte Carlo, finite difference
border. Neither are ideal, but neither are really inefficient
either. Because these contracts have a gamma that changes
sign, the sensitivity is not easily represented by a simple vega
calculation. Therefore, to be on the safe side, these contracts
should be priced using a variety of volatility models so as to
see the true sensitivity to the model.

Constant Maturity Swap (CMS) is a fixed-income swap. In the
vanilla swap the floating leg is a rate with the same maturity
as the period between payments. However, in the CMS the
floating leg is of longer maturity. This apparently trivial differ-
ence turns the swap from a simple instrument, one that can
be valued in terms of bonds without resort to any model, into
a model-dependent instrument.
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Collateralized Debt Obligation (€P0) is a pool of debt instru-
ments securitized into one financial instrument. The pool
may consist of hundreds of individual debt instruments.
They are exposed to credit risk, as well as interest risk,

of the underlying instruments. CDOs are issued in several
tranches which divide up the pool of debt into instruments
with varying degrees of exposure to credit risk. One can buy
different tranches so as to gain exposure to different levels of
loss.

The aggregate loss is the sum of all losses due to default. As
more and more companies default so the aggregate loss will
increase. The tranches are specified by levels, as percentages
of notional. For example, there may be the 0-3% tranche, and
the 3-7% tranche etc. As the aggregate loss increases past
each of the 3%, 7%, etc. hurdles so the owner of that tranche
will begin to receive compensation, at the same rate as the
losses are piling up. You will only be compensated once your
attachment point has been reached, and until the detachment
point. The pricing of these contracts requires a model for the
relationship between the defaults in each of the underlying
instruments. A common approach is to use copulas. However,
because of the potentially large number of parameters needed
to represent the relationship between underlyings, the corre-
lations, it is also common to make simplifying assumptions.
Such simplifications might be to assume a single common
random factor representing default, and a single parameter
representing all correlations.

Collateralized Debt Obligation Squared (CPO?) is a CDO-like con-
tract in which the underlyings are other CDOs instead of being
the simpler risky bonds.

Collateralized Mortgage Obligation (CMO) is a pool of mortgages
securitized into one financial instrument. As with CDOs there
are different tranches allowing investors to participate in dif-
ferent parts of the cashflows. The cashflows in a mortgage
are interest and principal, and the CMOs may participate in
either or both of these depending on the structure. The dif-
ferent tranches may correspond to different maturities of the
underlying mortgages, for example. The risk associated with
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CMOs are interest rate risk and prepayment risk, therefore it
is important to have a model representing prepayment.

Compound option is an option on an option, such as a call on a
put which would allow the holder the right to buy a specified
put at a later date for a specified amount. There is no element
of choice in the sense of which underlying option to buy (or

sell).

Contingent premium option is paid for at expiration only if
the option expires in the money, not up front. If the option
expires below the strike, for a call, then nothing is paid, but
then nothing is lost. If the asset is just slightly in the money
then the agreed premium is paid, resulting in a loss for the
holder. If the underlying ends up significantly in the money
then the agreed premium will be small relative to the payoff
and so the holder makes a profit. This contract can be valued
as a European vanilla option and a European digital with the
same strike. This contract has negative gamma below the
strike (for a call) and then positive gamma at the strike and
above, so its dependence on volatility is subtle. The holder
clearly wants the stock to end up either below the strike (for
a call) or far in the money. A negative skew will lower the
price of this contract.

Convertible bond is a bond issued by a company that can,
at the choosing of the holder, be converted into a speci-
fied amount of equity. When so converted the company will
issue new shares. These contracts are a hybrid instrument,
being part way between equity and debt. They are appealing
to the issuer since they can be issued with a lower coupon
than straight debt, yet do not dilute earnings per share. If
they are converted into stock that is because the company
is doing well. They are appealing to the purchaser because
of the upside potential with the downside protection. Of
course, that downside protection may be limited because
these instruments are exposed to credit risk. In the event of
default the convertible bond ranks alongside debt, and above
equity.

These instruments are best valued using finite-difference meth-
ods because that takes into account the optimal conversion
time quite easily. One must have a model for volatility and
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also risk of default. It is common to make risk of default
depend on the asset value, so the lower the stock price the
greater the probability of default.

Credit Default Swap (CPS) is a contract used as insurance
against a credit event. One party pays interest to another for
a prescribed time or until default of the underlying instrument.
In the event of default the counterparty then pays the princi-
pal in return. The CDS is the dominant credit derivative in the
structured credit market. The premium is usually paid period-
ically (quoted in basis points per notional). Premium can be
an up-front payment, for short-term protection. On the credit
event, settlement may be the delivery of the reference asset in
exchange for the contingent payment or settlement may be in
cash (that is, value of the instrument before default less value
after, recovery value). The mark-to-market value of the CDS
depends on changes in credit spreads. Therefore they can be
used to get exposure to or hedge against changes in credit
spreads. To price these contracts one needs a model for risk
of default. However, commonly, one backs out an implied risk
of default from the prices of traded CDSs.

Diff(erential) swap is an interest rate swap of floating for fixed
or floating, where one of the floating legs is a foreign inter-
est rate. The exchange of payments are defined in terms of a
domestic notional. Thus there is a quanto aspect to this instru-
ment. One must model interest rates and the exchange rate,
and as with quantos generally, the correlation is important.

Digital option is the same as a binary option.

Extendible option/swap is a contract that can have its ex-
piration date extended. The decision to extend may be at
the control of the writer, the holder or both. If the holder has
the right to extend the expiration then it may add value to
the contract, but if the writer can extend the expiry it may
decrease the value. There may or may not be an additional
premium to pay when the expiration is extended. These con-
tracts are best valued by finite-difference means because the
contract contains a decision feature.

Floating Rate Note (FRN) is a bond with coupons linked to a
variable interest rate issued by a company. The coupon will



318

Frequently Asked Questions In Quantitative Finance

typically have a spread in excess of a government interest
rate, and this spread allows for credit risk. The coupons
may also have a cap and/or a floor. The most common
measure of a floating interest rate is the London Interbank
Offer Rate or LIBOR. LIBOR comes in various maturities,
one month, three month, six month, etc., and is the rate

of interest offered between Eurocurrency banks for fixed-term
deposits.

Floor is a fixed-income option in which the holder receives
a payment when the underlying interest rate falls below a
specified level, the strike. This payment is the strike less the
interest rate. These payments happen regularly, monthly, or
quarterly etc., as specified in the contract, and the underlying
interest rate will usually be of the same tenor as this interval.
The life of the floor will be several years. They are bought for
protection against falling interest rates. Market practice is to
quote prices for floors using the Black '76 model. A contract
with a single payment as above is called a floorlet.

Forward is an agreement to buy or sell an underlying, typi-
cally a commodity, at some specified time in the future. The
holder is obliged to trade at the future date. This is in con-
trast to an option where the holder has the right but not the
obligation. Forwards are OTC contracts. They are linear in the
underlying and so convexity is zero, meaning that the volatil-
ity of the commodity does not matter and a dynamic model is
not required. The forward price comes from a simple, static,
no-arbitrage argument.

Forward Rate Agreement (FRA) is an agreement between two
parties that a specified interest rate will apply to a specified
principal over some specified period in the future. The value
of this exchange at the time the contract is entered into is
generally not zero and so there will be a transfer of cash from
one party to the other at the start date.

Forward-start option is an option that starts some time in the
future. The strike of the option is then usually set to be the
value of the underlying on the start date, so that it starts
life as an at-the-money option. It is also possible to have
contracts that begin in or out of the money by a specified
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amount. Although the option comes into being at a specified
date in the future it is usually paid for as soon as the contract
is entered into. In a Black-Scholes world, even with time-
dependent volatility, these contracts have simple closed-form
formulee for their values. Provided the strike is set to be a
certain fraction of the underlying at the start date then the
value of a vanilla call or put at that start date is linear in the
price of the underlying, and so prior to the start date there is
no convexity. This means that forward-start options are a way
of locking in an exposure to the volatility from the option’s
start date to the expiration.

Future is an agreement to buy or sell an underlying, typically
a commodity, at some specified time in the future. The holder
is obliged to trade at the future date. The difference between
a forward and a future is that forwards are OTC and futures
are exchange traded. Therefore futures have standardized
contract terms and are also marked to market on a daily basis.
Being exchange traded they also do not carry any credit risk
exposure.

Hawai’ian option is a cross between Asian and American.

Himalayan option is a multi-asset option in which the best
performing stock is thrown out of the basket at specified
sampling dates, leaving just one asset in at the end on which
the payoff is based. There are many other, similar, mountain
range options.

HYPER option High Yielding Performance Enhancing Reversible
options are like American options but which you can exercise
over and over again. On each exercise the option flips from
call to put or vice versa. These can be priced by introducing
a price function when in the call state and another when in
the put state. The Black-Scholes partial differential equation
is solved for each of these, subject to certain optimality con-
straints.

Index amortizing rate swap is just as a vanilla swap, an agree-
ment between two parties to exchange interest payments on
some principal, usually one payment is at a fixed rate and
the other at a floating rate. However, in the index amortizing
rate swap the size of the principal decreases, or amortizes,
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according to the value of some financial quantity or index
over the life of the swap. The level of this principal may be
determined by the level of an interest rate on the payments
dates. Or the principal may be determined by a non-fixed
income index. In the first example we would only need a fixed-
income model, in the second we would also need a model
for this other quantity, and its correlation with interest rates.
In an index amortizing rate swap the principal typically can
amortize on each payment date. On later payment dates this
principal can then be amortized again, starting from its cur-
rent level at the previous payment date and not based on

its original level. This makes this contract very path depen-
dent. The contract can be priced in either a partial differential
equation framework based on a one- or two-factor spot-rate
based model, or using Monte Carlo simulations and a Libor
market-type model.

Interest rate swap is a contract between two parties to ex-
change interest on a specified principal. The exchange may
be fixed for floating or floating of one tenor for floating of
another tenor. Fixed for floating is a particularly common form
of swap. These instruments are used to convert a fixed-rate
loan to floating, or vice versa. Usually the interval between the
exchanges is set to be the same as the tenor of the floating
leg. Furthermore, the floating leg is set at the payment date
before it is paid. This means that each floating leg is equiv-
alent to a deposit and a withdrawal of the principal with an
interval of the tenor between them. Therefore all the floating
legs can be summed up to give one deposit at the start of
the swap’s life and a withdrawal at maturity. This means that
swaps can be valued directly from the yield curve without
needing a dynamic model. When the contract is first entered
into the fixed leg is set so that the swap has zero value. The
fixed leg of the swap is then called the par swap rate and is
a commonly quoted rate. These contracts are so liquid that
they define the longer-maturity end of the yield curve rather
than vice versa.

Inverse floater is a floating-rate interest-rate contract where
coupons go down as interest rates go up. The relationship is
linear (up to any cap or floor) and not an inverse one.
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Knock-in/out option are types of barrier option for which the
payoff is contingent on a barrier level being hit/missed before
expiration.

LIBOR-in-arrears swap is an interest rate swap but one for
which the floating leg is paid at the same time as it is set,
rather than at the tenor later. This small difference means
that there is no exact relationship between the swap and
bond prices and so a dynamic model is needed. This amounts
to pricing the subtle convexity in this product.

Lookback option is a path-dependent contract whose payoff
depends on the maximum or minimum value reached by the
underlying over some period of the option’s life. The maxi-
mum/minimum may be sampled continuously or discretely,
the latter using only a subset of asset prices over the option’s
life. These contracts can be quite expensive because of the
extreme nature of the payoff. There are formulee for some
of the simpler lookbacks, under the assumption of a lognor-
mal random walk for the underlying and non-asset-dependent
volatility. Otherwise they can be valued via finite-difference
solution of a path-dependent partial differential equation in
two or three dimensions, or by Monte Carlo simulation.

Mortgage Backed Security (MBS) is a pool of mortgages that
have been securitized. All of the cashflows are passed on to
investors, unlike in the more complex CMOs. The risks inher-
ent in MBSs are interest rate risk and prepayment risk, since
the holders of mortgages have the right to prepay. Because
of this risk the yield on MBSs should be higher than yields
without prepayment risk. Prepayment risk is usually modelled
statistically, perhaps with some interest rate effect. Holders
of mortgages have all kinds of reasons for prepaying, some
rational and easy to model, some irrational and harder to
model but which can nevertheless be interpreted statistically.

Outperformance option is an option where the holder gets the

best performing out of two or more underlyings at expiration.
This option can be valued theoretically in a lognormal random
walk, constant parameter world, since it is not path dependent
and there is a closed-form solution in terms of a multiple inte-
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gral (in the same number of dimensions as there are underly-
ings). This amounts to a numerical quadrature problem which
is easily achieved by Monte Carlo or quasi Monte Carlo meth-
ods. The theory may be straightforward but the practice is not
since the price will depend on the correlations between all of
the underlyings, and these parameters are usually quite fickle.

Parisian option is a barrier option for which the barrier
feature (knock in or knock out) is only triggered after the
underlying has spent a certain prescribed time beyond the
barrier. The effect of this more rigorous triggering criterion
is to smooth the option value (and delta and gamma) near
the barrier to make hedging somewhat easier. It also makes
manipulation of the triggering, by manipulation of the underly-
ing asset, much harder. In the classical Parisian contract the
‘clock’ measuring the time outside the barrier is reset when
the asset returns to within the barrier. In the Parisian contract
the clock is not reset but continues ticking as long as the
underlying is beyond the barrier. These contracts are strongly
path dependent and can be valued either by Monte Carlo sim-
ulation or by finite-difference solution of a three-dimensional
partial differential equation.

Pass through is a security which collects payments on various
underlying securities and then passes the amounts on to
investors. They are issued by Special Purpose Vehicles and
can be made to avoid appearing on balance sheets. This
achieves a variety of purposes, some rather nefarious.

Passport option is a call option on the trading account of an
individual trader, giving the holder the amount in his account
at the end of the horizon if it is positive, or zero if it is
negative. For obvious reasons they are also called perfect
trader options. The terms of the contract will specify what the
underlying is that the trader is allowed to trade, his maximum
long and short position, how frequently he can trade and for
how long. To price these contracts requires a small knowledge
of stochastic control theory. The governing partial differential
equation is easily solved by finite differences. Monte Carlo
would be quite difficult to implement for pricing purposes.
Since the trader very quickly moves into or, more commonly,
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out of the money, the option is usually hedged with vanilla
options after a while.

Put option is the right to sell the underlying stock. See the
‘Call Option’ since comments about pricing methodology,
embedded features etc. are equally applicable. Deep out-of-
the-money puts are commonly bought for protection against
large downward moves in individual stocks or against market
crashes. These out-of-the-money puts therefore tend to be
quite expensive in volatility terms, although very cheap in
monetary terms.

Quanto is any contract in which cashflows are calculated
from an underlying in one currency and then converted to
payment in another currency. They can be used to eliminate
any exposure to currency risk when speculating in a foreign
stock or index. For example, you may have a view on a UK
company but be based in Tokyo. If you buy the stock you
will be exposed to the sterling/yen exchange rate. In a quanto
the exchange rate would be fixed. The price of a quanto will
generally depend on the volatility of the underlying and the
exchange rate, and the correlation between the two.

Rainbow option is any contract with multiple underlyings. The
most difficult part of pricing such an option is usually knowing
how to deal with correlations.

Range note is a contract in which payments are conditional
upon an underlying staying within (or outside) a specified
range of values.

Ratchet is a feature that periodically locks in profit.

Repo is a repurchase agreement. It is an agreement to sell
some security to another party and buy it back at a fixed date
and for a fixed amount. The price at which the security is
bought back is greater than the selling price and the difference
implies an interest rate called the repo rate. Repos can be
used to lock in future interest rates.

Reverse repo is the borrowing of a security for a short period
at an agreed interest rate.
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Straddle is a portfolio consisting of a long call and a long put
with the same strike and expiration. Such a portfolio is for
taking a view on the range of the underlying or volatility.

Strangle is a portfolio of a call and a put, the call having

a higher strike than the put. It is a volatility play like the
straddle but is cheaper. At the same time it requires the
underlying to move further than for a straddle for the holder
to make a profit.

STRIPS stands for Separate Trading of Registered Interest
and Principal of Securities. The coupons and principal of
normal bonds are split up, creating artificial zero-coupon
bonds of longer maturity than would otherwise be available.

Swap is a general term for an over-the-counter contract in
which there are exchanges of cashflows between two parties.
Examples would be an exchange of a fixed interest rate for
a floating rate, or the exchange of equity returns and bond
returns, etc.

Swaption is an option on a swap. It is the option to enter into
the swap at some expiration date, the swap having predefined
characteristics. Such contracts are very common in the fixed-
income world where a typical swaption would be on a swap of
fixed for floating. The contract may be European so that the
swap can only be entered into on a certain date, or American
in which the swap can be entered into before a certain date
or Bermudan in which there are specified dates on which the
option can be exercised.

Total Return Swap (TRS) is the exchange of all the profit or
loss from a security for a fixed or floating interest payment.
Periodically, one party transfers the cashflows plus any posi-
tive value change of a reference asset to the other party,
this includes interest payments, appreciation, coupons, etc.,
while the other party pays a fixed or floating rate, probably
with some spread. The difference between a total return swap
and a default swap is that a default swap simply transfers
credit risk, by reference to some designated asset whereas

a total return swap transfers all the risks of owning the des-
ignated asset. Total return swaps were among the earliest
credit derivatives. TRSs existed before default swaps, but now
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default swaps are the more commonly traded instruments. The
maturity is typically less than the maturity of the underlying
instrument. A TRS therefore provides a means of packaging
and transferring all of the risks associated with a reference
obligation, including credit risk. TRSs are more flexible than
transactions in the underlyings. For example, varying the terms
of the swap contract allows the creation of synthetic assets
that may not be otherwise available. The swap receiver never
has to make the outlay to buy the security. Even after posting
collateral and paying a high margin, the resulting leverage and
enhanced return on regulatory capital can be large.

Variance swap is a swap in which one leg is the realized vari-
ance in the underlying over the life of the contract and the
other leg is fixed. This variance is typically measured using
regularly spaced data points according to whatever variance
formula is specified in the term sheet. The contract is popular
with both buyers and sellers. For buyers, the contract is a
simple way of gaining exposure to the variance of an asset
without having to go to all the trouble of dynamically delta
hedging vanilla options. And for sellers it is popular because it
is surprisingly easy to statically hedge with vanilla options to
almost eliminate model risk. The way that a variance swap is
hedged using vanillas is the famous ‘one over strike squared
rule.” The variance swap is hedged with a continuum of vanilla
options with the quantity of options being inversely propor-
tional to the square of their strikes. In practice, there does
not exist a continuum of strikes, and also one does not go all
the way to zero strike (and an infinite quantity of them).

The volatility swap is similar in principle, except that the pay-
off is linear in the volatility, the square root of variance. This
contract is not so easily hedged with vanillas. The difference
in prices between a volatility swap and a variance swap can
be interpreted via Jensen’s Inequality as a convexity adjust-
ment because of volatility of volatility. The VIX volatility index
is a representation of SP500 30-day implied volatility inspired
by the one-over-strike-squared rule.
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’ he following are the dozen most popular quant
books in the wilmott.com bookshop since December
2001.

Paul Wilmott Introduces Quantitative
Finance by Paul Wilmott

“The style is pedagogical and yet very lively and easygoing. As
only great teachers can, Wilmott makes even the most obtuse
mathematics seem easy and intuitive.” Marco Avellaneda

Publisher John Wiley & Sons
Publication date 2001
Format Paperback + CD
ISBN 0471498629

An introductory text for students based on the three-volume
research-level book PWOQF2, see below. The book covers
much of the foundation material for students approaching the
subject from an applied mathematician’s perspective. There
are chapters on derivatives, portfolio management, equity and
fixed income, as well as the numerical methods of Monte Carlo
simulation, the binomial method and finite-difference methods.
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Paul Wilmott On Quantitative
Finance by Paul Wilmott

“Paul Wilmott On Quantitative Finance, Second Edition, is even
better than his unsurpassed First Edition. He combines the
insights of an incisive theorist with his extensive practical
experience. His teaching style is clear and entertaining. |
recommend the book to everyone in the ‘quant’ community,
from beginner to expert, both for learning and for reference.”
Ed Thorp

Publisher John Wiley & Sons
Publication date 2006

Format Hardback, three volumes in slip case, + CD
ISBN 0470018704

QUANTITATIVE
FINANCE

A research-level book containing the tried and trusted tech-
niques, the analysis of models and data, and cutting-edge
material. Contains models and research that cannot be found
in other textbooks.
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Advanced Modelling in Finance Using
Excel and VBA by Mary Jackson and
Mike Staunton

Publisher John Wiley & Sons
Publication date 2001
Format Hardback + CD
ISBN 0471499226

MARY JACKSON
4. MIKE STAUNTON

=

The book adopts a step-by-step approach to understanding
the more sophisticated aspects of Excel macros and VBA
programming, showing how these programming techniques can
be used to model and manipulate financial data, as applied to
equities, bonds and options. The book is essential for financial
practitioners who need to develop their financial modelling
skill sets as there is an increase in the need to analyze and
develop ever more complex ‘what if’ scenarios.
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Option Valuation under Stochastic
Volatility by Alan Lewis

“This exciting book is the first one to focus on the pervasive
role of stochastic volatility in option pricing. Since options
exist primarily as the fundamental mechanism for trading
volatility, students of the fine art of option pricing are advised
to pounce.” Peter Carr

Publisher Finance Press
Publication date 2000
Format Paperback

ISBN 0967637201

Option Valuation

Stochastic
Volatility

This book provides an advanced treatment of option pric-
ing for traders, money managers, and researchers. Providing
largely original research not available elsewhere, it covers the
new generation of option models where both the stock price
and its volatility follow diffusion processes.

These new models help explain important features of real-
world option pricing that are not captured by the Black-
Scholes model. These features include the ‘smile’ pattern and
the term structure of implied volatility. The book includes
Mathematica code for the most important formulee and many
illustrations.
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The Concepts and Practice of
Mathematical Finance by Mark Joshi

“Mark Joshi’s work is one of the most thoughtful books in
applied finance [ know. It is both intuitive and mathematically
correct and it deals with very deep concepts in derivatives
pricing while keeping the treatment simple and readily under-
standable.” Riccardo Rebonato

Publisher Cambridge University Press
Publication date 2003

Format Hardback

ISBN 0521823552

The CONCepts
and Practice of
Mathematical
Finance

M.S. Joshi

Uniquely, the book includes extensive discussion of the ideas
behind the models, and is even-handed in examining various
approaches to the subject. Thus, each pricing problem is
solved using several methods. Worked examples and exercises,
with answers, are provided in plenty, and computer projects
are given for many problems. The author brings to this book
a blend of practical experience and rigorous mathematical
background, and supplies here the working knowledge needed
to become a good quantitative analyst.
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C++ Design Patterns and Derivatives
Pricing by Mark Joshi

“This book is thought-provoking and rewarding. Even for
the less experienced programmer, the presentation is readily
accessible, and the coded examples can be directly used to

solve real-life problems.” Journal of the American Statistics
Association, Ana-Maria Matache

Publisher Cambridge University Press
Publication date 2004

Format Hardback

ISBN 0521832357

C++ Design
Patterns and
Derivatives
Pricing

Mark Joshi

Design patterns are the cutting-edge paradigm for
programming in object-oriented languages. Here they are
discussed, for the first time in a book, in the context of
implementing financial models in C++.

Assuming only a basic knowledge of C++ and mathematical
finance, the reader is taught how to produce well-designed,
structured, re-usable code via concrete examples. Each ex-
ample is treated in depth, with the whys and wherefores of
the chosen method of solution critically examined.
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Heard on the Street by Timothy Crack

Publisher Timothy Crack
Publication date 2004
Format Paperback

ISBN 0970055234

The book contains over 140 quantitative questions collected
from actual investment banking, investment management, and
options trading job interviews. The interviewers use the same
questions year after year and here they are! These questions
come from all types of interviews (corporate finance, sales and
trading, quantitative research, etc), but they are especially likely
in quantitative capital markets job interviews. The questions
come from all levels of interviews (undergraduate, MBA, PhD),
but they are especially likely if you have, or almost have,
an MBA. The questions cover pure quantitative/logic, financial
economics, derivatives, and statistics. Each quantitative question
in the book is accompanied by a very detailed solution and by
helpful advice.

The latest edition also includes about 120 non-quantitative
actual interview questions.
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Monte Carlo Methods in Finance by
Peter Jickel

“Few expert practitioners also have the academic expertise to
match Peter Jackel’s in this area, let alone take the trouble to
write a most accessible, comprehensive and yet self-contained
text.” Carol Alexander

Publisher John Wiley & Sons
Publication date 2002
Format Hardback

ISBN 047149741X

Monte Carlo Methods in Finance adopts a practical flavour
throughout, the emphasis being on financial modelling and
derivatives pricing. Numerous real-world examples help the
reader foster an intuitive grasp of the mathematical and
numerical techniques needed to solve particular financial
problems. At the same time, the book tries to give a detailed
explanation of the theoretical foundations of the various meth-
ods and algorithms presented.
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Credit Derivatives Pricing Models by
Philipp Schonbucher

“Philipp Schonbucher is one of the most talented researchers
of his generation. He has taken the credit derivatives world by
storm.” Paul Wilmott

Publisher John Wiley & Sons
Publication date 2003
Format Hardback

ISBN 0470842911

Credit Derivatives Pricing Models provides an extremely com-
prehensive overview of the most current areas in credit risk
modeling as applied to the pricing of credit derivatives. As one
of the first books to uniquely focus on pricing, this title is also
an excellent complement to other books on the application of
credit derivatives. Based on proven techniques that have been
tested time and again, this comprehensive resource provides
readers with the knowledge and guidance to effectively use
credit derivatives pricing models.
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Principles of Financial Engineering by
Salih Neftci

“This is the first comprehensive hands-on introduction to
financial engineering. Neftci is enjoyable to read, and finds a
natural balance between theory and practice.” Darrell Duffie

Publisher Academic Press
Publication date 2004
Format Hardback

ISBN 0125153945
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On a topic where there is already a substantial body of
literature, Salih Neftci succeeds in presenting a fresh, orig-
inal, informative, and up-to-date introduction to financial
engineering. The book offers clear links between intuition
and underlying mathematics and an outstanding mixture of
market insights and mathematical materials. Also included are
end-of-chapter exercises and case studies.
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Options, Futures, and Other
Derivatives by John Hull

Publisher Prentice Hall
Publication date 2005
Format Hardback

ISBN 0131499084

FUTURES,

OTHER DERIVATIVES

] E Huwt

For advanced undergraduate or graduate business, economics,
and financial engineering courses in derivatives, options and
futures, or risk management. Designed to bridge the gap
between theory and practice, this successful book contin-
ues to impact the college market and is regarded as ‘the
bible’ in trading rooms throughout the world. This edition has
been completely reworked from beginning to end to improve
presentation, update material, and reflect recent market devel-
opments. Though nonessential mathematical material has been
either eliminated or moved to end-of-chapter appendices, the
concepts that are likely to be new to many readers have been
explained carefully, and are supported by numerical examples.
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The Complete Guide to Option Pricing
Formulas by Espen Gaarder Haug

“The truth of the matter is that if | am being so positive about
this book, it’s because I know for a fact that it has saved lives
more than once.” Alireza Javaheri

Publisher McGraw-Hill Professional
Publication date 1997

Format Hardback

ISBN 0786312408

ESPEN GAARDER HAUG

The Complete Guide To

When pricing options in today’s fast-action markets, expe-
rience and intuition are no longer enough. To protect your
carefully planned positions, you need precise facts and tested
information that has been proven time and again.

The Complete Guide to Option Pricing Formulas is the first
and only authoritative reference to contain every option tool
you need, all in one handy volume: Black-Scholes, two asset
binomial trees, implied trinomial trees, Vasicek, exotics.

Many important option pricing formulee are accompanied by
computer code to assist in their use, understanding, and
implementation.
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The following are some of the most common search
words or phrases on wilmott.com, and a few com-
ments on each. If other people want to know about
these, then maybe you should too.

American option  An option which can be exercised at any time
of the holder’s choosing prior to expiration. See page 310.

Arbitrage Arbitrage is the making of a totally riskless profit in
excess of the risk-free rate of return. See page 25.

Asian option An option whose payoff depends on the average
value of the underlying asset over some time period prior to
expiration. See page 310.

Asset swap  The exchange of two investments, or the cashflows
to those investments, between two parties.

Barrier option  An option which either comes into being or
becomes worthless if a specified asset price is reached before
expiration. See page 311.

Base correlation A correlation used in a CDO model to repre-
sent the relationship between all underlyings from zero up to
a given detachment point. For example, the 0-3% and a 3-6%
tranches are separate instruments but between them one can
price a 0-6% tranche and so back out an implied correlation
from 0-6%, that is the base correlation. See page 315.

Basket A collection of financial instruments. In a basket
option the payoff depends on the behaviour of the many
underlyings. See page 312.

Bermudan swaption An option to enter into a swap that may
be exercised on any of a specified number of dates.

C++ An enhanced version of the C programming language
developed by Bjarne Stroustrup in 1983. The enhancements
include classes, virtual functions, multiple inheritance, tem-
plates, etc.
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Calibration Determining parameters (possibly state and time
dependent) such that one’s theoretical prices match traded
prices. Also called fitting. This is a static process using a
snapshot of prices. Calibration does not typically involve
looking at the dynamics or time series of the underlying. See
page 191.

Callable A contract which the issuer or writer can buy back
(call). The amount he has to pay and the dates on which he
can exercise this right will be specified in the contract.

Cap A fixed-income contract paying the holder when the
underlying interest rate exceeds a specified level. See page 313.

CP0 A Collateralized Debt Obligation is a pool of debt instru-
ments securitized into one financial instrument. See page 315.

CPs A Credit Default Swap is a contract used as insurance
against a credit event. One party pays interest to another for
a prescribed time or until default of the underlying instrument.
See page 317.

CFA Chartered Financial Analyst. A professional designation
offered by the CFA Institute for successfully completing three
examinations. The syllabus includes aspects of corporate and
quantitative finance, economics and ethics.

CMS Constant Maturity Swap is a fixed-income swap in which
one leg is a floating rate of a constant maturity (from the date
it is paid). A convexity adjustment is required for the pricing
of these instruments. See page 314.

Convertible An instrument that can be exchanged for another
of a different type. A convertible bond is a bond that can be
turned into stock at a time of the holder’s choosing. This gives
an otherwise simple instrument an element of optionality. See
page 316.

Convexity Related to the curvature in the value of a derivative
(or its payoff) with respect to its underlying. A consequence
of Jensen’s Inequality for convex functions together with
randomness in an underlying is that convexity adds value to
a derivative. A positive convexity with respect to a random
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underlying or parameters increases the derivative’s value,
a negative convexity decreases value. In equity derivatives
convexity is known as gamma.

Copula A function used to combine many univariate distri-
butions to make a single multivariate distribution. Often used
to model relationships between many underlying in credit
derivatives. See page 212.

Correlation Covariance between two random variables divided
by both of their standard deviations. It is a number between
(and including) minus one and plus one that measures the
amount of linear relationship between the two variables. Cor-
relation is a parameter in most option-pricing models in which
there are two or more random factors. However, the parame-
ter is often highly unstable.

CQF Certificate in Quantitative Finance, a part-time qualifi-
cation offered by Wilmott and 7city Learning which teaches
the more practical aspects of quantitative finance, including
modelling, data analysis, implementation of the models and,
crucially, focuses on which models are good and which aren’t.

Default probability The probability of an entity defaulting

or going bankrupt. A concept commonly used in credit risk
modelling where it is assumed that default is a probabilistic
concept, rather than a business decision. Pricing credit instru-
ments then becomes an exercise in modelling probability of
default, and recovery rates. See page 295.

Delta The sensitivity of an option to the underlying asset.
See page 110.

Digital An option with a discontinuous payoff. See page 312.

Dispersion  The amount by which asset, typically equity,
returns are independent. A dispersion trade involves a bas-
ket of options on single stocks versus the opposite position in
an option on a basket of stocks (an index).

Duration The sensitivity of a bond to an interest rate or yield.
It can be related to the average life of the bond.
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Exotic A contract that is made to measure, or bespoke, for a
client and which does not exist as an exchange-traded instru-
ment. Since it is not traded on an exchange it must be priced
using some mathematical model. See pages 305-325.

Expected loss The average loss once a specified threshold
has been breached. Used as a measure of Value at Risk. See
page 48.

Finite difference A numerical method for solving differential
equations wherein derivatives are approximated by differ-
ences. The differential equation thus becomes a difference
equation which can be solved numerically, usually by an
iterative process.

Gamma The sensitivity of an option’s delta to the underlying.
Therefore it is the second derivative of an option price with
respect to the underlying. See page 111.

GARCH Generalized Auto Regressive Conditional Hetero-
scedasticity, an econometric model for volatility in which the
current variance depends on the previous random increments.

Hedge To reduce risk by exploiting correlations between finan-
cial instruments. See page 73.

Hybrid An instrument that exhibits both equity and fixed-
income characteristics, and even credit risk. An example would
be a convertible bond. Pricing such instruments requires
knowledge of models from several different areas of quantita-
tive finance.

Implied Used as an adjective about financial parameters
meaning that they have been deduced from traded prices.
For example, what volatility when put into the Black-Scholes
formula gives a theoretical price that is the same as the mar-
ket price? This is the implied volatility. Intimately related to
calibration.

Lévy A probability distribution, also known as a stable
distribution. It has the property that sums of independent
identically distributed random variables from this distribution
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have the same distribution. The normal distribution is a spe-
cial case. Of interest in finance because returns data matches
this distribution quite well. See page 231.

LIBOR London Interbank Offered Rate. An interest rate at
which banks offer to lend funds to other banks in the London
wholesale money market. It is quoted at different maturities.
Being a standard reference rate it is often the underlying
interest rate in OTC fixed-income contracts.

Market maker Someone who gives prices at which he will
buy or sell instruments, in the hope of making a profit on the
difference between the bid and offer prices. They are said to
add liquidity to the market.

MBS A Mortgage Backed Security is a pool of mortgages that
have been securitized. See page 321.

Mean reversion The returning of a quantity to an average level.
This is a feature of many popular interest rate and volatility
models, which may exhibit randomness but never stray too
far from some mean.

Monte Carlo A name given to many methods for solving
mathematical problems using simulations. The link between

a probabilistic concept, such as an average, and simulations is
clear. There may also be links between a deterministic prob-
lem and a simulation. For example, you can estimate = by
throwing darts at a square, uniformly distributed, and count-
ing how many land inside the inscribed circle. It should be 7 /4
of the number thrown. To get six decimal places of accuracy
in 7 you would have to throw approximately 10'% darts, this
is the downside of Monte Carlo methods, they can be slow.

Normal distribution A probability distribution commonly used
to model financial quantities. See page 201.

PPE Partial differential equation, as its name suggest an
equation (there must be an ‘equals’ sign), involving derivatives
with respect to two or more variables. In finance almost all
PDEs are of a type known as parabolic, this includes the
famous heat or diffusion equation. See page 20.



Chapter 9: Popular Search Words 34’7

Quantlib  Definition taken from www.quantlib.org: “QuantLib
is a free/open-source library for modeling, trading, and risk
management in real-life.”

Quanto Any contract in which cashflows are calculated from
an underlying in one currency and then converted to payment
in another currency. See page 323.

Regression  Relating a dependent and one or more independent
variables by a relatively simple function.

Risk  The possibility of a monetary loss associated with
investments. See page 36.

Risk neutral Indifferent to risk in the sense that a return in
excess of the risk-free rate is not required by a risk-neutral
investor who takes risks. To price derivatives one can imagine
oneself in a world in which investors are risk neutral. Options
are then priced to be consistent with the market prices of
the underlying and future states of the world. This is because
the risk premium on the stock is already incorporated into
its current price, and the price of risk for the option and its
underlying should be the same. Working in a risk-neutral world
is a shortcut to that result. See page 103.

SABR An interest rate model, by Pat Hagan, Deep Kumar,
Andrew Lesniewski and Diane Woodward, that exploits asymp-
totic analysis to make an otherwise intractable problem
relatively easy to manage. See page 292.

Skew The slope of the graph of implied volatility versus
strike. A negative skew, that is a downward slope going from
left to right, is common in equity options.

S$mile The upward curving shape of the graph of implied
volatility versus strike. A downward curving profile would be
a frown.

Sobol” A Russian mathematician responsible for much of the
important breakthroughs in low-discrepancy sequences, now
commonly used for simulations in finance. See page 225 and
www.broda.co.uk.
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Stochastic Random. The branch of mathematics involving the
random evolution of a quantities usually in continuous time
commonly associated with models of the financial markets and
derivatives. To be contrasted with deterministic.

Structured products Contracts designed to meet the specific
investment criteria of a client, in terms of market view, risk
and return.

Swap A general term for an over-the-counter contract in
which there are exchanges of cashflows between two parties.
See page 324.

Swaptions An option on a swap. They are commonly Bermu-
dan exercise. See page 324.

VaR Value at Risk, an estimate of the potential downside
from one’s investments. See pages 40 and 48.

Variance swap A contract in which there is an exchange of the
realized variance over a specified period and a fixed amount.
See page 325.

Volatility The annualized standard deviation of returns of
an asset. The most important quantity in derivatives pricing.
Difficult to estimate and forecast, there are many competing
models for the behaviour of volatility. See page 151.

Yield curve A graph of yields to maturity versus maturity (or
duration). Therefore a way of visualizing how interest rates
change with time. Each traded bond has its own point on the
curve.

Esoterica And finally, some rather more exotic word or phrase
searches, without any descriptions:

Art of War, Atlas Shrugged; Background check; Bloodshed;
Bonus; Deal or no deal; Death; Depression; Drug test; Female;
Gay; How to impress; James Bond; Lawsuit; Lonely; Sex; Suit;
Test; The; Too old

From this final list one should be able to build up a personal-
ity profile of the typical quant.
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The following Brainteasers have all been taken from
wilmott.com. They are all the type of questions
you could easily face during a job interview. Some

of these questions are simple calculation exercises,
often probabilistic in nature reflecting the importance of
understanding probability concepts, some have a ‘trick’
element to them, if you can spot the trick you can solve
them, otherwise you will struggle. And some require
lateral, out of the box, thinking.

The Questions

Russian roulette 1 have a revolver which holds up to six
bullets. There are two bullets in the gun, in adjacent
chambers. | am going to play Russian roulette (on my
own!), I spin the barrel so that I don’t know where the
bullets are and then pull the trigger. Assuming that I
don’t shoot myself with this first attempt, am I now bet-
ter off pulling the trigger a second time without spinning
or spin the barrel first?

(Thanks to pusher.)

Matching birthdays You are in a room full of people,
and you ask them all when their birthday is. How
many people must there be for there to be a greater
than 50% chance that at least two will share the same
birthday?

(Thanks to baghead.)

Another one about birthdays At a cinema the manager
announces that a free ticket will be given to the first per-
son in the queue whose birthday is the same as some-
one in line who has already bought a ticket. You have
the option of getting in line at any position. Assuming
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that you don’t know anyone else’s birthday, and that
birthdays are uniformly distributed throughout a 365-
day year, what position in line gives you the best chance
of being the first duplicate birthday?

(Thanks to amit7ul.)

Biased coins You have n biased coins with the kth coin
having probability 1/(2k + 1) of coming up heads. What
is the probability of getting an odd number of heads in
total?

(Thanks to FV.)

Two heads When flipping an unbiased coin, how long do
you have to wait on average before you get two heads
in a row? And more generally, how long before n heads
in a row.

(Thanks to MikeM.)

Balls in a bag Ten balls are put in a bag based on the
result of the tosses of an unbiased coin. If the coin
turns up heads, put in a black ball, if tails, put in a
white ball. When the bag contains ten balls hand it to
someone who hasn’t seen the colours selected. Ask
them to take out ten balls, one at a time with replace-
ment. If all ten examined balls turn out to be white,
what is the probability that all ten balls in the bag are
white?

(Thanks to mikebell.)

Sums of uniform random variables The random variables xi,
X2, X3,... are independent and uniformly distributed
over zero to one. We add up n of them until the sum
exceeds one. What is the expected value of n?

(Thanks to balaji.)
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Minimum and maximum correlation If X, Y and Z are three
random variables such that X and Y have a correlation
of 0.9, and Y and Z have correlation of 0.8, what are
the minimum and maximum correlation that X and Z
can have?

(Thanks to jiantao.)

Airforce One  One hundred people are in line to board
Airforce One. There are exactly 100 seats on the plane.
Each passenger has a ticket. Each ticket assigns the
passenger to a specific seat. The passengers board the
aircraft one at a time. GW is the first to board the plane.
He cannot read, and does not know which seat is his,
so he picks a seat at random and pretends that it is his
proper seat.

The remaining passengers board the plane one at a
time. If one of them finds their assigned seat empty,
they will sit in it. If they find that their seat is already
taken, they will pick a seat at random. This contin-
ues until everyone has boarded the plane and taken
a seat.

What is the probability that the last person to board
the plane sits in their proper seat?

(Thanks to Wilbur.)

Hit-and-run taxi There was a hit-and-run incident involv-
ing a taxi in a city in which 85% of the taxis are green
and the remaining 15% are blue. There was a witness to
the crime who says that the hit-and-run taxi was blue.
Unfortunately this witness is only correct 80% of the
time. What is the probability that it was indeed a blue
car that hit our victim?

(Thanks to orangeman44.)
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Annual returns Every day a trader either makes 50% with
probability 0.6 or loses 50% with probability 0.4. What is
the probability the trader will be ahead at the end of a
year, 260 trading days? Over what number of days does
the trader have the maximum probability of making
money?

(Thanks to Aaron.)

Dice game You start with no money and play a game in
which you throw a dice over and over again. For each
throw, if 1 appears you win $1, if 2 appears you win $2,
etc. but if 6 appears you lose all your money and the
game ends. When is the optimal stopping time and what
are your expected winnings?

(Thanks to ckec226.)

7100 kg of berries You have 100 kg of berries. Ninety-nine
percent of the weight of berries is water. Time passes
and some amount of water evaporates, so our berries
are now 98% water. What is the weight of berries now?

Do this one in your head.
(Thanks to NoDoubts.)

Urban planning There are four towns positioned on the
corners of a square. The towns are to be joined by
a system of roads such that the total road length is
minimized. What is the shape of the road?

(Thanks to quantie.)

Closer to the edge or the centre? You have a square and a ran-
dom variable that picks a random point on the square
with a uniform distribution. What is the probability that
a randomly selected point is closer to the center than
to the edge?

(Thanks to OMD.)



35 4’ Frequently Asked Questions In Quantitative Finance

Snowflake Start with an equilateral triangle. Now stick on
to the middle of each side equilateral triangles with side
one third of the side of the original triangle. This gives

you a Star of David, with six points. Now add on to the
sides of the six triangles yet smaller triangles, with side
one third of the ‘parent’ triangle and so on ad infinitum.
What are the perimeter and area of the final snowflake?

(Thanks to Gerasimos.)

The d0ors There are one hundred closed doors in a cor-
ridor. The first person who walks along the corridor
opens all of the doors. The second person changes the
current state of every second door starting from the
second door by opening closed doors and closing open
doors. The third person who comes along changes the
current state of every third door starting from the third
door. This continues until the 100th person. At the end
how many doors are closed and how many open?

(Thanks to zilch.)

Two thirds of the average Everyone in a group pays $1

to enter the following competition. Each person has

to write down secretly on a piece of paper a number
from zero to 100 inclusive. Calculate the average of all
of these numbers and then take two thirds. The winner,
who gets all of the entrance fees, is the person who gets
closest to this final number. The players know the rule
for determining the winner, and they are not allowed to
communicate with each other. What number should you
submit?

(Thanks to knowtorious and the Financial Times.)

Ones and zeros Show that any natural number has a mul-
tiple whose decimal representation only contains the
digits 0 and 1. For example, if the number is 13, we get
13 x 77 = 1001.

(Thanks to idgregorio.)
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Bookworm There is a two-volume book set on a shelf,
the volumes being side by side, first then second. The
pages of each volume are two centimeters thick and
each cover is two millimeters thick. A worm has nibbled
the set, perpendicularly to the pages, from the first page
of the first volume to the last page of the second one.
What is the length of the path he has nibbled?

(Thanks to Vito.)

Compensation A number of quants are at dinner, and
start discussing compensation. They want to calculate
the average compensation among themselves, but are
too embarrassed to disclose their own salaries. How
can they determine the average compensation of their
group? They do not have pens or paper or any other
way of writing down their salaries.

(Thanks to Arroway.)

Einstein’s brainteaser There are five houses of five differ-
ent colours. In each house lives a person of a different
nationality. Those five people drink different drinks,
smoke cigarettes of a different brand and have a differ-
ent pet. None of them has the same pet, smokes the
same cigarette or drinks the same drink.

We know:

The Englishman lives in the red house.

The Swede has a dog as a pet.

The Dane drinks tea.

The green house is on the left of the white one.

The person who lives in the green house drinks
coffee.

The person who smokes Pall Mall raises birds.

e The owner of the yellow house smokes Dunhill.

e The man who lives in the house that is in the middle
drinks milk.
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e The Norwegian lives in the first house.

e The man who smokes Blends lives next to the one
who has cats.

e The man who raises horses lives next to the one who

smokes Dunhill.

The man who smokes Bluemaster drinks beer.

The German smokes Prince.

The Norwegian lives next to the blue house.

The man who smokes Blends is neighbour of the one

who drinks water.

Question: Who has the fish?
(Thanks to NoDoubts.)

Gender ratio A country is preparing for a possible future
war. The country’s tradition is to send only males into
battle and so they want to increase the proportion of
males to females in the population through regulating
births. A law is passed that requires every married
couple to have children and they must continue to have
children until they have a male.

What effect do you expect this law to have on the
makeup of the population?

(Thanks to Wilbur.)

Aircraft armour Where should you reinforce the armour
on bombers? You can’t put it everywhere because it will
make the aircraft too heavy. Suppose you have data for
every hit on planes returning from their missions, how
should you use this information in deciding where to
place the armour reinforcement?

(Thanks to Aaron.)
Ages of three children A census taker goes to a house,

a woman answers the door and says she has three
children. The census taker asks their ages and she says
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that if you multiply their ages, the result is 36. He says
he needs more info so she tells him that the total of
their ages is the address of the building next door. He
goes and looks, then comes back and says he still needs
more information. She tells him that she won’t answer
any more questions because her eldest child is sleeping
upstairs and she doesn’t want to wake him.

What are the children’s ages?
(Thanks to tristanreid.)

Ants on a circle  You have a circle with a number of ants
scattered around it at distinct points. Each ant starts
walking at the same speed but in possibly different
directions, either clockwise or anticlockwise. When two
ants meet they immediately change directions, and then
continue with the same speed as before. Will the ants
ever, simultaneously, be in the same positions as when
they started out?

(Thanks to OMD.)

Four switches and a lightbulb Outside a room there are four
switches, and in the room there is a lightbulb. One of
the switches controls the light. Your task is to find out
which one. You cannot see the bulb or whether it is on
or off from outside the room. You may turn any number
of switches on or off, any number of times you want.
But you may only enter the room once.

(Thanks to Tomfr.)

Turnover In a dark room there is a table, and on this
table there are 52 cards, 19 face up, 33 face down. Your
task is to divide the cards into two groups, such that in
each group there must be the same number of face up
cards. You can’t switch on a light, ask a friend for help,
all the usual disalloweds. Is this even possible?

(Thanks to golftango and Bruno Dupire.)
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Muddy faces A group of children are playing and some of
them get mud on their foreheads. A child cannot tell if
he has mud on his own forehead, although he can see
the mud on the foreheads of any other muddy children.
An adult comes to collect the children and announces
that at least one of the children has a dirty forehead,
and then asks the group to put up their hand if they
know that they have mud on their forehead. How can
each child determine whether or not their forehead is
muddy without communicating with anyone else?

(Thanks to weaves.)

Pirate puzzle There are 10 pirates in a rowing boat. Their
ship has just sunk but they managed to save 1000 gold
doubloons. Being greedy bastards they each want all the
loot for themselves but they are also democratic and
want to make the allocation of gold as fair as possible.
But how?

They each pick a number, from one to 10, out of a hat.
Each person in turn starting with number one, decides
how to divvy up the loot among the pirates in the boat.
They then vote. If the majority of pirates approve of the
allocation then the loot is divided accordingly, other-
wise that particular pirate is thrown overboard into the
shark-infested sea. In the latter case, the next pirate in
line gets his chance at divvying up the loot. The same
rules apply, and either the division of the filthy lucre
gets the majority vote or the unfortunate soul ends up
in Davy Jones’s locker.

Question, how should the first pirate share out the
spoils so as to both guarantee his survival and get a
decent piece of the action?
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The Answers
Russian roulette

I have a revolver which holds up to six bullets. There
are two bullets in the gun, in adjacent chambers. I am
going to play Russian roulette (on my own!), I spin the
barrel so that I don’t know where the bullets are and
then pull the trigger. Assuming that I don’t shoot myself
with this first attempt, am [ now better off pulling the
trigger a second time without spinning or spin the barrel
first?

(Thanks to pusher.)

Solution

This is a very typical, simple probability Brainteaser.
It doesn’t require any sophisticated or lateral thought.
Just pure calculation.

Whenever you spin the barrel you clearly have a two
in six, or one in three chance of landing on a chamber
containing a bullet.

If you spin and pull the trigger on an empty chamber,
what are the chances of the next chamber containing
a bullet? You are equally likely to be at any one of the
four empty chambers but only the last of these is adja-
cent to a chamber containing a bullet. So there is now a
one in four chance of the next pull of the trigger being
fatal. Conclusion is that you should not spin the barrel.
After surviving two pulls of the trigger without spinning
the barrel the odds become one in three again, and

it doesn’t matter whether you spin or not (at least it
doesn’t matter in a probabilistic sense). After surviving
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that ‘shot’ it becomes fifty-fifty and if you are successful
four times in a row then the next shot will definitely
be fatal.

Matching birthdays

You are in a room full of people, and you ask them all
when their birthday is. How many people must there be
for there to be a greater than 50% chance that at least
two will share the same birthday?

(Thanks to baghead.)

Solution

This is a classic, simple probability question that is
designed to show how poor is most people’s perception
of odds.

As with many of these type of questions it is easier to
ask what are the chances of two people not having the
same birthday. So suppose that there are just the two
people in the room, what are the chances of them not
having the same birthday? There are 364 days out of 365
days that the second person could have, so the proba-
bility is 364/365. If there are three people in the room
the second must have a birthday on one of 364 out of
365, and the third must have one of the remaining 363
out of 365. So the probability is then 364 x 363/3652.
And so on. If there are n people in the room the proba-
bility of no two sharing a birthday is

364!
(365 — n)!3657- 1"
So the question becomes, what is the smallest n for

which this is less than one half? And the answer to this
is 23.
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Another one about birthdays

At a cinema the manager announces that a free ticket
will be given to the first person in the queue whose
birthday is the same as someone in line who has already
bought a ticket. You have the option of getting in line
at any position. Assuming that you don’t know anyone
else’s birthday, and that birthdays are uniformly dis-
tributed throughout a 365-day year, what position in line
gives you the best chance of being the first duplicate
birthday?

(Thanks to amit7ul.)

Solution
This is solved by an application of Bayes’ theorem.

Prob (AN B) = Prob (A|B) Prob (B).

You need to calculate two probabilities, first the proba-
bility of having the same birthday as someone ahead of
you in the queue given that none of them has a dupli-
cate birthday, and second the probability that none of
those ahead of you have duplicate birthdays. If there are
n people ahead of you then we know from the previous
birthday problem that the second probability is

364!
(365 — n)!3657-1"
The first probability is simply n/365. So you want to
maximize
n 364!
(365 — n)!3657°

This is shown as a function of n below. It is maximized
when n =19 so you should stand in the 20th place.

This maximizes your chances, but they are still small at
only 3.23%.
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Biased coins

You have n biased coins with the kth coin having
probability 1/(2k 4+ 1) of coming up heads. What is the
probability of getting an odd number of heads in total?

(Thanks to FV.)

Solution
I include this as a classic example of the induction
method. Use p, to denote the required probability.

After n — 1 tosses there is a probability p,_; that there
have been an odd number of heads. And therefore a
probability of 1 — p,_; of there having been an even
number of heads. To get the probability of an even
number of heads after another toss, n in total, you mul-
tiply the probability of an odd number so far by the
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probability of the next coin being tails and add this to
the product of the probability of an even number and
the probability of getting a head next:

1
>+(1—pn71)—.

Pn = Pn-1 (1_ M1

2n+1

This becomes

B 2n—1 n 1
Prn=Prty T T o1
Now we just have to solve this difference equation, with
the starting value that before any tossing we have zero
probability of an odd number, so pg = 0. If we write
Pn = an/(2n + 1) then the difference equation for a,
becomes the very simple

anp =danp-1+ 1.

The solution of this with ay = 0 is just n and so the
required probability is

n
2n+1°

Pn =

Two heads

When flipping an unbiased coin, how long do you have
to wait on average before you get two heads in a row?
And more generally, how long before n heads in a row.

(Thanks to MikeM.)

Solution

It turns out that you may as well solve the general prob-
lem for n in a row. Let NV, be the number of tosses
needed to get n heads in the row. It satisfies the recur-
sion relationship

No = (N1 + 1)+ 3 (Na + 14+ Np).
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This is because with probability % we get the required
head, and with probability % we get a tail and will have
to start the whole thing anew. Therefore we obtain

Np = 2N,_1 + 2.
This has solution
N, =21 2,

This means six tosses on average to get two heads in
a row.

Balls in a bag

Ten balls are put in a bag based on the result of the
tosses of an unbiased coin. If the coin turns up heads,
put in a black ball, if tails, put in a white ball. When the
bag contains ten balls hand it to someone who hasn’t
seen the colours selected. Ask them to take out ten
balls, one at a time with replacement. If all ten examined
balls turn out to be white, what is the probability that
all ten balls in the bag are white?

(Thanks to mikebell.)

Solution

This is a test of your understanding of conditional prob-
ability and Bayes’ theorem again. First a statement of
Bayes’ theorem.

Prob(B|A)Prob(A)
Prob(B)

Prob(A|B) =

Prob(A) is the probability of A, without any information
about B, this is unconditional probability. Prob(A|B)
means probability of A with the extra information
concerning B, this is a conditional probability.
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In the balls example, A is the event that all of the balls
in the bag are white, B is the event that the balls
taken out of the bag are all white. We want to find
Prob(A|B).

Clearly, Prob(A) is just 3 !0 = 0.000976563. Trivially
Prob(B|A) is 1. The probability that we take 10 white
balls out of the bag is a bit harder. We have to look at
the probability of having n white balls in the first place
and then picking, after replacement, 10 white. This is
then Prob(B). It is calculated as

10

10! 1 n 10
———— 5 (77 ) =0.01391303.
gn!(lo_n)g 210 (1()) 0.01391303

And so the required probability is 0.000976563/0.01391303
=0.0701905. Just over 7%.

Sums of uniform random variables

The random variables xi, x2, x3,... are independent and
uniformly distributed over zero to one. We add up n of
them until the sum exceeds one. What is the expected

value of n?

(Thanks to balaji.)

Solution

There are two steps to finding the solution. First what
is the probability of the sum of n such random vari-
ables being less than one. Second, what is the required
expectation.

There are several ways to approach the first part. One
way is perhaps the most straightforward, simply calcu-
late the probability by integrating unit integrand over
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the domain in the upper right ‘quadrant’ between the
point (0,0,...,0) and the plane x; +x2 + ... +x, = 1.
This is just

1 l—xl l—xl —X9 lfxl—xz—mfxnfl
/ / / / 1 dxp,...dxs dxy dx.
0 Jo 0 0

After doing several of the inner integrals you will find
that the answer is simply 1.

From this it follows that the probability that the sum
goes over one for the first time on the nth random
variable is

(-3) (G-

The required expectation is the sum of n(n—1)/n! =
1/(n — 2)! from two to infinity, or equivalently the sum
of 1/n! for n zero to infinity. And this is our answer, e.

Minimum and maximum correlation

If X, Y and Z are three random variables such that

X and Y have a correlation of 0.9, and Y and Z have
correlation of 0.8, what are the minimum and maximum
correlation that X and Z can have?

(Thanks to jiantao.)
Solution
The correlation matrix

1 pxy pxz
exy 1 pyz
pxz pyz 1

must be positive semi definite. A bit of fooling around
with that concept will result in the following
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constraints

—Ja = 03 - o2 + pxvovz

< pxz < \/(1 — 031 = p3) + pxypyz.

For this particular example we have 0.4585 < pyxy <
0.9815. It is interesting how small the correlation can be,
less than one half, considering how high the other two
correlations are. Of course, if one of the two correla-
tions is exactly one then this forces the third correlation
to be the same as the other.

Airforce One

One hundred people are in line to board Airforce One.

There are exactly 100 seats on the plane. Each passen-

ger has a ticket. Each ticket assigns the passenger to a
specific seat. The passengers board the aircraft one at a
time. GW is the first to board the plane. He cannot read,
and does not know which seat is his, so he picks a seat
at random and pretends that it is his proper seat.

The remaining passengers board the plane one at a
time. If one of them finds their assigned seat empty,
they will sit in it. If they find that their seat is already
taken, they will pick a seat at random. This continues
until everyone has boarded the plane and taken a seat.

What is the probability that the last person to board
the plane sits in their proper seat?

(Thanks to Wilbur.)
Solution

Sounds really complicated, because of all the people
who could have sat in the last person’s seat before
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their turn. Start by considering just two people, GW and
you. If GW sits in his own seat, which he will do 50%
of the time, then you are certain to get your allocated
seat. But if he sits in your seat, again with 50% chance,
then you are certain to not get the right seat. So a priori
result, 50% chance. Now if there are three people, GW
either sits in his own seat or in your seat or in the
other person’s seat. The chances of him sitting in his
own seat or your seat are the same, and in the former
case you are certain to get your correct seat and in
the latter you are certain to not get it. So those two
balance out. If he sits in the other person’s seat then
it all hinges on whether the other person then sits in
GW’s seat or yours. Both equally likely, end result 50-50
again. You can build on this by induction to get to the
simple result that it is 50-50 whether or not you sit in
your allocated seat.

Hit-and-run taxi

There was a hit-and-run incident involving a taxi in a
city in which 85% of the taxis are green and the remain-
ing 15% are blue. There was a witness to the crime who
says that the hit-and-run taxi was blue. Unfortunately
this witness is only correct 80% of the time. What is the
probability that it was indeed a blue car that hit our
victim?

(Thanks to orangeman44.)

Solution
A classic probability question that has important conse-
quences for the legal and medical professions.

Suppose that we have 100 such incidents. In 85 of these
the taxi will have been green and 15 blue, just based
on random selection of taxi colour. In the cases where
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the taxi was green the witness will mistakenly say that
the car is blue 20% of the time, i.e. 17 times. In the 15
blue cases the witness will correctly say blue 80% of
the time, i.e. 12 times. So although there were only 15
accidents involving a blue taxi there were 29 reports of
a blue taxi being to blame, and most of those (17 out of
29) were in error. These are the so-called false positives
one gets in medical tests.

Now, given that we were told it was a blue taxi, what is
the probability that it was a blue taxi? That is just 12/29
or 41.4%.

Annual returns

Every day a trader either makes 50% with probability 0.6
or loses 50% with probability 0.4. What is the probability
the trader will be ahead at the end of a year, 260 trading
days? Over what number of days does the trader have
the maximum probability of making money?

(Thanks to Aaron.)

Solution

This is nice one because it is extremely counterintuitive.
At first glance it looks like you are going to make money
in the long run, but this is not the case.

Let n be the number of days on which you make 50%.
After 260 days your initial wealth will be multiplied by

1.5" 0.5260-",
So the question can be recast in terms of finding n for
which this expression is equal to 1:

260In0.5 2601In2

M= 005 —mi5 - In3 o404
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The answer to the first question is then what is the
probability of getting 165 or more ‘wins’ out of 260
when the probability of a ‘win’ is 0.6. The answer to this
standard probability question is just over 14%.

The average return per day is
1 —exp(0.6ln1.5+0.4In0.5) = —3.34%.

The probability of the trader making money after one
day is 60%. After two days the trader has to win on
both days to be ahead, and therefore the probability is
36%. After three days the trader has to win at least two
out of three, this has a probability of 64.8%. After four
days, he has to win at least three out of four, probability
47.52%. And so on. With an horizon of N days he would
have to win at least NIn2/In3 (or rather the integer
greater than this) times. The answer to the second part
of the question is therefore three days.

As well as being counterintuitive, this question does
give a nice insight into money management and is
clearly related to the Kelly criterion. If you see a ques-
tion like this it is meant to trick you if the expected
profit, here 0.6 x 0.5+ 0.4 x (—0.5) = 0.1, is positive
with the expected return, here —3.34%, negative.

Dice game

You start with no money and play a game in which you
throw a dice over and over again. For each throw, if 1
appears you win $1, if 2 appears you win $2, etc. but if
6 appears you lose all your money and the game ends.
When is the optimal stopping time and what are your
expected winnings?

(Thanks to ckc226.)
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Solution

Suppose you have won an amount S so far and you
have to decide whether to continue. If you roll again
you have an expected winnings on the next throw of

1 1 1 1 1 1 15-S

6X1+6X2+6X3+6X4+6XS—EXSZT

So as long as you have less than 15 you would continue.
The expected winnings is harder.

You will stop at 15, 16, 17, 18 and 19. You can’t get to
20 because that would mean playing when you have 15,
and throwing a five. So we must calculate the probabili-
ties of reaching each of these numbers without throwing
a six. At this point we defer to our good friend Excel.
A simple simulation of the optimal strategy yields an
expected value for this game of $6.18.

100 kg of berries

You have 100 kg of berries. Ninety-nine percent of
the weight of berries is water. Time passes and some
amount of water evaporates, so our berries are now
98% water. What is the weight of berries now?

Do this one in your head.
(Thanks to NoDoubts.)

Solution

The unexpected, yet correct, answer is 50 kg. It seems
like a tiny amount of water has evaporated so how can
the weight have changed that much?

There is clearly 1 kg of solid matter in the berries. If
that makes up two percent (100 less 98%) then the total
weight must be 50 kg.
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Urban planning

There are four towns positioned on the corners of a
square. The towns are to be joined by a system of roads
such that the total road length is minimized. What is the
shape of the road?

(Thanks to quantie.)

Solution

One is tempted to join the towns with a simple crossroad
shape but this is not optimal. Pythagoras and some basic
calculus will show you that the arrangement shown in the
figure is better, with the symmetrically placed crosspiece
in the middle of the ‘H’ shape having length 1 — 1/3.
Obviously there are two such solutions.

Closer to the edge or the centre?

You have a square and a random variable that picks a
random point on the square with a uniform distribution.
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What is the probability that a randomly selected point
is closer to the center than to the edge?

(Thanks to OMD.)

Solution

Many people will think that the required probability is
the same as the probability of landing in the circle with
diameter half the side of the square. But this is not the
case. The line separating closer to centre from closer to
edge is a parabola. The answer is

3/2

(—1—{—\/5)2-{—;(3—2\/5) .

Snowflake

Start with an equilateral triangle. Now stick on to the
middle of each side equilateral triangles with side one
third of the side of the original triangle. This gives you
a Star of David, with six points. Now add on to the sides
of the six triangles yet smaller triangles, with side one
third of the ‘parent’ triangle and so on ad infinitum.
What are the perimeter and area of the final snowflake?

(Thanks to Gerasimos.)

Solution

First count how many sides there are as a function of

number of iterations. Initially there are three sides, and
then 3 x 4. Every iteration one side turns into four. So

there will be 3 4" after n iterations. The length of each
side is one third what it was originally. Therefore after
n iterations the perimeter will be

5)

multiplied by the original perimeter. It is unbounded as
n tends to infinity.
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The area increases by one third after the first iteration.
After the second iteration you add an area that is num-
ber of sides multiplied by area of a single small triangle
which is one ninth of the previously added triangle.

If we use A, to be the area after n iterations (when
multiplied by the area of initial triangle) then

1 4 n—1
A=A, 1+ g <§) .

So
1n 4\ 8
Ap=1+ = — ) ==
n=1+3) (9) 5
i=0
The final calculation exploits the binomial expansion.

This is the famous Koch snowflake, first described in
1904, and is an example of a fractal.

The doors

There are one hundred closed doors in a corridor. The
first person who walks along the corridor opens all

of the doors. The second person changes the current
state of every second door starting from the second
door by opening closed doors and closing open doors.
The third person who comes along changes the current
state of every third door starting from the third door.
This continues until the 100th person. At the end how
many doors are closed and how many open?

(Thanks to zilch.)

Solution

This is a question about how many divisors a number
has. For example the 15th door is divisible by one,
three, five and fifteen. So it will be opened, closed,
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opened, closed. Ending up closed. What about door 37?
Thirty seven is only divisible by one and 37. But again
it will end up closed. Since only squares have an odd
number of divisors we have to count how many squares
there are from one to 100. Of course, there are only 10.

Two thirds of the average

Everyone in a group pays $1 to enter the following com-
petition. Each person has to write down secretly on a
piece of paper a number from zero to 100 inclusive.
Calculate the average of all of these numbers and then
take two thirds. The winner, who gets all of the entrance
fees, is the person who gets closest to this final number.
The players know the rule for determining the winner,
and they are not allowed to communicate with each
other. What number should you submit?

(Thanks to knowtorious and the Financial Times.)

Solution
This is a famous economics experiment, which examines
people’s rationality among other things.

If everyone submits the number 50, say, then the win-
ning number would be two thirds of 50, so 33. Perhaps
one should therefore submit 33. But if everyone does
that the winning number will be 22. Ok, so submit that
number. But if everyone does that... You can see where
this leads. The stable point is clearly zero because if
everyone submits the answer zero then two thirds of
that is still zero, and so zero is the winning number.
The winnings get divided among everyone and there
was no point in entering in the first place.

In discussions about this problem, people tend to carry
through the above argument and either quickly conclude
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that zero is ‘correct’ or they stop the inductive process
after a couple of iterations and submit something around
20. It may be that the longer people have to think about
this, the lower the number they submit.

This is a nice problem because it does divide people
into the purely rational, game-theoretic types, who pick
zero, and never win, and the more relaxed types, who
just pick a number after a tiny bit of thought and do
stand a chance of winning.

Personal note from the author: The Financial Times ran
this as a competition for their readers a while back.
(The prize was a flight in Concorde, so that dates it
a bit. And the cost of entry was just the stamp on a
postcard.)

I organized a group of students to enter this competi-
tion, all submitting the number 99 as their answer (it
wasn’t clear from the rules whether 100 was included).
A number which could obviously never win. The pur-
pose of this was twofold, a) to get a mention in the
paper when the answer was revealed (we succeeded)
and b) to move the market (we succeeded in that

as well).

There were not that many entries (about 1,500 if I
remember rightly) and so we were able to move the
market up by one point. The FT printed the distribution
of entries, a nice exponentially decaying curve with a
noticeable ‘blip’ at one end! The winner submitted the
number 13.

I didn’t tell my students this, but I can now reveal that I
secretly submitted my own answer, with the purpose of
winning. .. my submission was 12. Doh!
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Ones and zeros

Show that any natural number has a multiple whose
decimal representation only contains the digits 0 and 1.
For example, if the number is 13, we get 13 = 1001.

(Thanks to idgregorio.)

Solution

Consider the n+ 1 numbers 1, 11, 111, 1111, etc. Two of
them will be congruent modulo n. Subtract the smaller
one from the bigger one. You will get a number contain-
ing only Os and 1s.

Bookworm

There is a two-volume book set on a shelf, the volumes
being side by side, first then second. The pages of each
volume are two centimeters thick and each cover is two
millimeters thick. A worm has nibbled the set, perpen-
dicularly to the pages, from the first page of the first
volume to the last page of the second one. What is the
length of the path he has nibbled?

(Thanks to Vito.)

Solution

Just four millimeters. Think about where the first page
of the first volume and the last page of the second
volume will be relative to each other.

Compensation

A number of quants are at dinner, and start dis-
cussing compensation. They want to calculate the
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average compensation among themselves, but are too
embarrassed to disclose their own salaries. How can
they determine the average compensation of their
group? They do not have pens or paper or any other
way of writing down their salaries.

(Thanks to Arroway.)

Solution

One of the quants adds a random number to his salary.
The total he then whispers to his neighbour on the
right. This person adds his own salary to the number
he was given, and whispers it to the person on his right.
This continues all around the table until we get back
to the first quant who simply subtracts his random
number from the total and divides by the number of
quants at the table. That is the average compensation
of the group.

Einstein’s brainteaser

There are five houses of five different colours. In each
house lives a person of a different nationality. Those
five people drink different drinks, smoke cigarettes of a
different brand and have a different pet. None of them
has the same pet, smokes the same cigarette or drinks
the same drink.

We know:

The Englishman lives in the red house.

The Swede has a dog as a pet.

The Dane drinks tea.

The green house is on the left of the white one.
The person who lives in the green house drinks
coffee.

The person who smokes Pall Mall raises birds.
e The owner of the yellow house smokes Dunbhill.
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e The man who lives in the house that is in the middle
drinks milk.

e The Norwegian lives in the first house.

e The man who smokes Blends lives next to the one
who has cats.

e The man who raises horses lives next to the one who

smokes Dunhill.

The man who smokes Bluemaster drinks beer.

The German smokes Prince.

The Norwegian lives next to the blue house.

The man who smokes Blends is neighbour of the one

who drinks water.

Question: Who has the fish?
(Thanks to NoDoubts.)

Solution

This was a question posed by Einstein who said that
98% of people can’t solve it. More likely 98% of people
can’t be bothered. And in these days of Su Doku, the
percentage of people who can solve it will be higher.

Oh, and the answer is the German.

(Historical note: Smoking was something that the poor
and the uneducated used to do. For an explanation of
the process, see Newhart, R. ‘Introducing tobacco to civ-
ilization’. “What you got for us this time, Walt. .. you got
another winner for us? Tob-acco... er, what’s tob-acco,
Walt? It’s a kind of leaf, huh... and you bought eighty
tonnes of it?!l... Let me get this straight, Walt... you've
bought eighty tonnes of leaves?... This may come as a
kind of a surprise to you Walt but... come fall in Eng-
land, we’re kinda upto our... It isn’t that kind of leaf,
huh?... Oh!, what kind is it then... some special kind
of food?... not exactly?... Oh, it has a lot of different
uses. .. Like... what are some of the uses, Walt?... Are
you saying ‘snuff’, Walt?... What’s snuff?... You take a
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pinch of tobacco... (ha ha ha)... and you shove it up
your nose... (ha ha ha)... and it makes you sneeze?...
(ha ha ha)... Yeh, I imagine it would, Walt! Hey, Gold-
enrod seems to do it pretty well over here! It has other
uses though, huh?... you can chew it!... Or put it in a
pipel... or you can shred it up... and put it in a piece
of paper... (ha ha ha)... and roll it up... (ha ha ha)...
don’t tell me, Walt, don’t tell me... (ha ha ha)... you
stick it in your ear, right? (ha ha ha)... Oh!... between
your lips!... Then what do you do, Walt?... (ha ha ha)...
you set fire to it!... (ha ha ha) Then what do you do,
Walt?... (ha ha ha)... You inhale the smoke, huh!...
(ha ha ha) You know, Walt. .. it seems you can stand
in front of your own fireplace and have the same thing
going for you!”)

Gender ratio

A country is preparing for a possible future war. The
country’s tradition is to send only males into battle
and so they want to increase the proportion of males
to females in the population through regulating births.
A law is passed that requires every married couple to
have children and they must continue to have children
until they have a male.

What effect do you expect this law to have on the
makeup of the population?

(Thanks to Wilbur.)
Solution

A bit of a trick question, this, and open to plenty of
interesting discussion.

The obvious answer is that there is no effect on the
gender ratio. However, this would only be true under
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certain assumptions about the distribution of the sexes
of offspring among couples. Consider a population in
which each couple can only ever have boys or only
ever have girls. Those who have boys could stop after
one child, whereas those who have girls can never stop
having children, with the end result being more girls
than boys. (Of course, this might not matter since

the goal is for there to be more males, there is no
requirement on the number of females.) And if there

is any autocorrelation between births this will also have
an impact. If autocorrelation is one, so that a male child
is always followed by a male, and a female by a female,
then the ratio of males to females decreases, but with a
negative correlation the ratio increases.

Aircraft armour

Where should you reinforce the armour on bombers?
You can’t put it everywhere because it will make the
aircraft too heavy. Suppose you have data for every hit
on planes returning from their missions, how should
you use this information in deciding where to place the
armour reinforcement?

(Thanks to Aaron.)

Solution

The trick here is that we only have data for aircraft that
survived. Since hits on aircraft are going to be fairly
uniformly distributed over all places that are accessible
by gunfire one should place the reinforcements at pre-
cisely those places which appeared to be unharmed in
the returning aircraft. They are the places where hits
would be ‘fatal.” This is a true Second World War story
about the statistician Abraham Wald who was asked
precisely this.
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Ages of three children

A census taker goes to a house, a woman answers the
door and says she has three children. The census taker
asks their ages and she says that if you multiply their
ages, the result is 36. He says he needs more info so she
tells him that the total of their ages is the address of the
building next door. He goes and looks, then comes back
and says he still needs more information. She tells him
that she won’t answer any more questions because her
eldest child is sleeping upstairs and she doesn’t want to
wake him.

What are the children’s ages?
(Thanks to tristanreid.)

Solution
First suitably factorize 36: (1,1,36), (1,4,9), (1,2,18),
1,3,12), (1,6,6), (2,3,6), (2,2,9), (3,3,9).

When the census taker is unable to decide from the
information about nextdoor’s house number we know
that nextdoor must be number 13, because both (1,6,6)
and (2,2,9) add up to 13. All of the other combina-
tions give distinct sums. Finally the mother refers to
the ‘eldest child,” and this rules out (1,6,6) because the
two older children have the same age. Conclusion the
ages must be two, two and nine.

Caveat: (1,6,6) is technically still possible because one
of the six-year olds could be nearing seven while the
other has only just turned six.

Antson a circle

You have a circle with a number of ants scattered
around it at distinct points. Each ant starts walking
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at the same speed but in possibly different directions,
either clockwise or anticlockwise. When two ants meet
they immediately change directions, and then continue
with the same speed as before. Will the ants ever,
simultaneously, be in the same positions as when they
started out?

(Thanks to OMD.)

Solution

What are the chances of that happening? Surely all that
bouncing around is going to shuffle them all up. Well,
the answer, which you’'ve probably now guessed, is
that, yes, they do all end up at the starting point. And
the time at which this happens (although there may be
earlier times as well) is just the time it would take for
one ant to go around the entire circle unhindered. The
trick is to start by ignoring the collisions, just think of
the ants walking through each other. Clearly there will
then be a time at which the ants are in the starting pos-
itions. But are the ants in their own starting positions?
This is slightly harder to see, but you can easily con-
vince yourself, and furthermore at that time they will
also be moving in the same direction they were to start
with (this is not necessarily true of earlier times at
which they may all be in the starting positions).

Four switches and a lightbulb

Outside a room there are four switches, and in the
room there is a lightbulb. One of the switches controls
the light. Your task is to find out which one. You cannot
see the bulb or whether it is on or off from outside the
room. You may turn any number of switches on or off,
any number of times you want. But you may only enter
the room once.

(Thanks to Tomfr.)
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Solution
The trick is to realize that there is more to the bulb
than light.

Step one: turn on lamps 1 and 2, and go and have
some coffee. Step two: turn off 1 and turn on 3, then
go quickly into the room and touch the lamp.

It is controlled by switch 1 if it is hot and dark, 2 if it is
hot and light, 3 if it cold and light, 4 if it cold and dark.

Turnover

In a dark room there is a table, and on this table there
are 52 cards, 19 face up, 33 face down. Your task is

to divide the cards into two groups, such that in each
group there must be the same number of face up cards.
You can’t switch on a light, ask a friend for help, all the
usual disalloweds. Is this even possible?

(Thanks to golftango and Bruno Dupire.)

Solution
An elegant lateral thinking puzzle, with a simple solution.

Move any 19 cards to one side and turn them all over.
Think about it!

The use of an odd number, 19 in this case, can be seen
as either a clue or as a red herring suggesting that the
task is impossible.

Muddy faces

A group of children are playing and some of them get
mud on their foreheads. A child cannot tell if he has
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mud on his own forehead, although he can see the
mud on the foreheads of any other muddy children. An
adult comes to collect the children and announces that
at least one of the children has a dirty forehead, and
then asks the group to put up their hand if they know
that they have mud on their forehead. How can each
child determine whether or not their forehead is muddy
without communicating with anyone else?

(Thanks to weaves.)

Solution
If there is only one child with mud on their forehead
they will immediately know it because all of the other
children are clean. He will therefore immediately raise
his hand.

If there are two children with muddy foreheads they
will not immediately raise their hands because they will
each think that perhaps the adult is referring to the
other child. But when neither raises their hand both
will realize that the other is thinking the same as them
and therefore both will raise their hands.

Now if their are three muddy children they will follow
a similar line of thinking but now it will take longer for
them all to realize they are muddy. And so on for an
arbitrary number of muddy children.

To make this work we really need something to divide
time up into intervals, a bell perhaps, because no doubt
not all children will be thinking at quite the same speed!

Pirate puzzle

There are 10 pirates in a rowing boat. Their ship has
just sunk but they managed to save 1000 gold dou-
bloons. Being greedy bastards they each want all the
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loot for themselves but they are also democratic and
want to make the allocation of gold as fair as possible.
But how?

They each pick a number, from one to 10, out of a hat.
Each person in turn starting with number one, decides
how to divvy up the loot among the pirates in the boat.
They then vote. If the majority of pirates approve of the
allocation then the loot is divided accordingly, other-
wise that particular pirate is thrown overboard into the
shark-infested sea. In the latter case, the next pirate in
line gets his chance at divvying up the loot. The same
rules apply, and either the division of the filthy lucre
gets the majority vote or the unfortunate soul ends up
in Davy Jones’s locker.

Question, how should the first pirate share out the
spoils so as to both guarantee his survival and get a
decent piece of the action?

Solution

This is obviously one of those questions where you
have to work backwards, inductively, to the solution for
10 pirates. Along the way we’ll see how it works for an
arbitrary number of pirates.

Let’s start with two pirates, with 1000 doubloons to
share. Pirate 2 gets to allocate the gold. Unless he gives
it all to Pirate 1 the vote will be 50:50 and insufficient to
save him. Splash! We are assuming here that an equal
split of votes isn’t quite enough to count as a majority.
So he gives Pirate 1 the entire hoard, and prays that he
lives. (Of course, Pirate 1 could say hard luck and dump
Pirate 2 overboard and still keep the money.)

Now on to the three-pirate case. In making his alloca-
tion Pirate 3 must consider what would happen if he
loses the vote and there are just two pirates left. In
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other words, he should make his allocation so that it is
preferred to the next scenario by sufficient numbers of
pirates to ensure that he gets a favourable vote.

Pirate 3 allocates 1000 to himself and nothing to the
others. Obviously Pirate 3 will vote for this. And so will
Pirate 2, if he votes against in the hope of getting some
loot he will find himself in the two-pirate situation... in
which case he could easily end up over the side.

Pirate 3 Pirate 2 Pirate 1
0 1000
1000 0 0

Now to four pirates. Pirate number 3 is not going to vote
for anything number 4 says because he wants Pirate 4
in the deep. So there’s no point in giving him any share
at all. Pirates 2 and 1 will vote for anything better than
the zero they’d get from the three-pirate scenario, so he
gives them one each and 998 to himself.

Pirate 4 Pirate 3 Pirate 2 Pirate 1
1000 0
1000 0 0
998 0 1 1

With five pirates similar logic applies. Pirate 4 gets zero.
Then Pirate 5 needs to get two votes from the remaining
three pirates. What is the cheapest way of doing this?
He gives one to Pirate 3 and two to either of Pirates 2
and 1. Pirate 5 gets the remaining 997.

Pirate 5 Pirate 4 Pirate 3 Pirate 2 Pirate 1
1000
1000 0
998 0 1
997 0 1 2/0 0/

N =){=}

Pirate 6 needs four votes to ensure survival, his own
plus three others. He'll never get Pirate 5 so he needs
three votes from Pirates 4, 3, 2 and 1. Pirate 4 is cheap,
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he only needs 1 doubloon. But how to get two votes
from the remaining Pirates 3, 2 and 1?

There are clearly several options here. And we are
going to have to think carefully about the actions of
the Pirates when faced with uncertainty.

Imagine being Pirate 2 when Pirate number 6 is allocat-
ing the gold. Suppose he gives you zero, what do you
do? You may as well vote against, because there is a
chance that on the next round you will get two doub-
loons. If Pirate 6 gives you two doubloons you should
vote in favour. Things cannot be improved on the next
round but may get worse. If given one doubloon now,
what should you do? Next round you will either get zero
or two. A tricky choice. And a possibly personal one.

But it is up to Pirate 6 to make sure you are not faced
with that tricky decision which may result in his expul-
sion from the boat.

The conclusion is that Pirate 6 should give two
doubloons to any of Pirates 3, 2 and 1. It doesn’t matter

which.
Pirate 6 Pirate 5 Pirate 4 Pirate 3 Pirate 2 Pirate 1
1000: 0
1000 0 0
998 0 1 1
997 0 1 2/0 0/2
995 0 1 2/2/0 2/0/2 0/2/2

On Pirate 7’s turn he will give zero to Pirate 6, one to
Pirate 5 and two to any of Pirates 4 down to 1, again it
doesn’t matter which two, they will both now vote in

his favour.
Pirate 7 Pirate 6 Pirate 5 Pirate 4 Pirate 3 Pirate 2 Pirate 1
1000 0
1000 0 0
998 0 1 1
997 0 1 2/0 0/2
995 0 1 2/2/0 2/0/2 0/2/2
995 0 1| Two doubloons to any two of these four
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Now we settle down into a rhythm. Here’s the entire
allocation table.

Pirate 10 | Pirate 9 Pirate 8 Pirate 7 Pirate 6 Pirate 5 Pirate 4 Pirate 3 Pirate 2 Pirate 1
1000

1000|
998 0
997 0 1 2/ 0/
995 0 i _2/2/0 _2/07/ 0/2/
995 0| 1| Two doubloons to any two of these four

993] 0 1] Two doubloons to_any three of these five

993 0] 1] _Two doubloons to any three of these six

991 0| 1 Two doubloons to any four of these seven

This Brainteaser is particularly relevant in quantitative
finance because of the backward induction nature of
the solution. This is highly reminiscent of the binomial
model in which you have to calculate today’s option
price by working backwards from expiration by consid-
ering option prices at different times.

Another of these backward induction types is the
famous Brainteaser, the unexpected hanging. In this
problem we have a prisoner who has been condemned
to be executed in ten days’ time and an unusually
considerate executioner. The executioner wants the
prisoner to suffer as little mental anguish as possible
during his last days and although the prisoner knows
that sometime in the next ten days he will be executed
he doesn’t know when. If the executioner can surprise
him then the prisoner will be able to enjoy his last few
days, at least relatively speaking. So, the executioner’s
task is to wake the prisoner up one morning and exe-
cute him but must choose the day so that his visit was
not expected by the prisoner.

Let’s see how to address this problem by induction
backwards from the last of the ten days. If the prisoner
has not been executed on one of the first nine days then
he goes to bed that night in no doubt that tomorrow he
will be woken by the executioner and hanged. So he
can’t be executed on the last day, because it clearly
wouldn’t be a surprise. Now, if he goes to bed on the
night of the eighth day, not having been executed during
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the first eight days then he knows he can’t be executed
on the last day because of the above, and so he knows
that he must be executed tomorrow, day nine. Therefore
it won’t be a surprise and therefore the execution can’t
happen on the ninth day either. We have ruled out the
last two days, and by working backwards we can rule
out every one of the ten days.

On day four the prisoner is awoken by the executioner,
and hanged. Boy, was he surprised!

Where did our backward induction argument go wrong?
Ok, now I can tell you that this brainteaser is called the
unexpected hanging paradox. There have been many
explanations for why the prisoner’s logic fails. For
example, because the prisoner has concluded that he
can’t be hanged then to surprise him is rather simple.
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Paul & Dominic’s Guide
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l f you enjoyed this book, and are looking for a job in
quantitative finance, you might be interested in Paul
& Dominic’s Guide to Getting a Quant Job. To whet your
appetite there follows the opening sections of version
1.0 of this famous guide. For details on how to get the
full guide email paul@wilmott.com.

Introduction

This guide is for people looking for their first or second
job in Quant Finance, the theory being that after a few
years you ought to know most of this stuff.

Making a difference If the hiring process is working well,
the people seen by the bank will be roughly the same
quality and from comparable backgrounds. Thus you
need to stand out in order to win. We speak to a lot
of recruiting managers, and we find that the difference
between the one who got the job, and the person who
came second is often very small for the employer, but
obviously rather more important for you.

You have to walk a line between standing out, and not
seeming too much for them to handle.

Understand the process Interviewing people is a major indus-
try all by itself, multiply the number of applicants by the
number of interviews they attend and you sometimes
wonder how any useful work ever gets done. Certainly
this thought occurs to interviewers on a regular basis.
They want it to end, soon, and although it is impor-
tant to get the right people almost no one enjoys the
process, and this is made worse by the fact that >80%
of the work is wasted on those you never hire. Thus

a core objective must be to make life as easy for the
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interviewer as possible. This means turning up on time,
but not too early, being flexible on interview times, and
trying to be pleasant.

What you need to prove

e You are smart

e You can work with people

e You can get things done

e You can manage yourself and your time
e You are committed to this line of work

Kissing frogs Like trying to find a prince by kissing frogs,
you have to accept that it is rare for your first attempt
to succeed, so you must be prepared for a long haul,
and to pursue multiple options at the same time. This
means applying to several banks, and not being deterred
by failure to get into a particular firm.

Writinga CV

A CV is not some passive instrument that simply tells a
recruiter why he should interview you, it also to some
extent sets the agenda for the questions you will get
when they meet you. Thus it is important to choose
what you disclose as a balance between what you think
they want and the areas in which you are confident
answering questions.

Read the job specification You should think how you can
present your skills and experience so as to be as close
a match as possible. At one level this might sound
obvious, but you should be aware that in many banks
your CV will not be read by the hiring manager at all.
Although at P&D we've actually done this stuff, it is
often the case that CVs are filtered by people with little
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or no skills in finance. Often they resort to looking for
keywords. Thus you should not rely upon them working
out that if you have done subject X, you must have skills
Y and Z. If you believe those skills are critical for this
job, then make sure this can easily be spotted. Read the
specification carefully, and if they specifically ask for a
skill or experience, then include whatever you can to
illustrate your strengths. If you believe particular skills
to be critical mention them in your covering letter as
well (or if you believe the headhunter is especially dim).

Make sure you can be contacted Make sure your contact
details are reliable and that you regularly monitor the
relevant email account(s) and telephones. It is sad when
someone’s CV shows great promise, but they don’t
respond in time to be interviewed. If you are at uni-
versity, be aware that your current email address may
stop working soon after you complete your course.
GMail is to be preferred over Yahoo for personal email
address.

Get it checked Have your CV and covering letter proof
read by a native English speaker. This is important
because people really do judge your ability by how
you express yourself. Quant Finance is an international
sport, with speakers of every language, and the ability
to communicate difficult ideas is important, and if you
can’t get the name of your university correct, it makes
one wonder if you can explain your views on jump dif-
fusion. Also CVs use a particular style of English, which
is subtly different from the one you learned in school.
As there are a lot more applicants than jobs, the early
stages are optimized to filter out those who stand no
chance of getting in. Thus you must take consider-
able care to make sure you don’t fail at an early stage
because of trivial errors.
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Covering letter In your covering email, mention where
you saw the advertisement, and importantly which job
you are applying for. If you don’t say which job you are
applying for, you are relying upon the person receiving
it to guess correctly. That does not always happen, and
the larger the firm, the lower the probability, and at the
very least it makes their lives harder which is not the
way to start the relationship.

A good format for a covering letter is to respond to the
job specification point by point. State your ability to
handle each item, together with why you think you can
do it. This makes your CV more digestible, and shows
that you are serious about the application.

Opinion is divided about whether you should have some
“statement of intent.” If you can think of something
useful to say here, by all means put it, but be aware
that a lot of new entrants to the market ‘“want to pursue
a career in finance with a leading firm.”

Above we emphasize getting your CV checked, and this
applies especially to the covering letter. Some managers
discard the CV unread if the letter is sloppy.

Fouts and layout Some things ON YOUR cV are
important, and you may want tO draw their attention
to them. Do not do this excessively. It is really irritat-
ing. The only time breaking THIS rule nas worked to
our knowledge Was a hardcore programmer who
learned the POSstscript language that PCs use to
talk directly to printers and he developed A pro-
gram that printed his CV @S concentric spirals of text
in varying size. Viewed on SCreen it would slowly

spin. YES, Dominic hired him.
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If youre not prepared to spend at least a month
learning reverse Polish notation, use a standard

template. (StiCk to two main font families, a sanserif,
such as Arial, for large headings, and a serif font, such
as Times, for main body text.)

PPF Make a PDF if possible. These have a more pro-
fessional feel than Word documents, they do not have
virus problems (yet) and they retain original fonts and
layout. Whatever software you use, print it out to make
sure that what you see is really what you get. Perhaps
view on and print from another PC to double check.

Name Give your document a name that will be meaning-
ful to the recruiter. Call it YourNameHere.pdf and not
CV.pdf in the spirit of making it easier for the recruiter.
It’s not nice to have a large number of files with the
same name, and it’s actually quite easy to get your CV
written over by the CV someone else who also called

it CV.

Dates Make sure your dates “join up” as much as
possible. Some people in the recruitment process worry
about gaps.

Be honest If you claim skills in some area, it’'s a good
bet that you will be asked questions about it. The CV
should be a fair and positive statement of what you
have to offer. No one expects you to share your history
of skin diseases, but you're going to be expected to
back the talk with action.

Show that you can do things By this point in your life you've
soaked up a lot of information, and acquired skills,
which is, of course, good. But a big question in the
inquisitor’s mind is whether you can translate this into
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real actions that are finished, complete and correct. One
can pass most exams by getting answers wrong, but by
showing good working, and an understanding of the
principles. However, banks aren’t really all that happy
if you lose a pile of money by getting ‘“nearly” the right
answer, where you put a minus where it should have
been a plus. They like to see projects where you've
started, worked to a goal and completed without having
to have your hand held. This is a big reason why they
like PhDs since it’s a powerful argument that you can
complete things. However, if you're going for a PhD-level
job, you still have to beat others who have reached that
level.

Projects completed are good, and you should be pre-
pared to answer questions on them. The people who
interview you will often have your sort of academic
background, so these questions may be deep.

You may have changed direction in your career, and
you should be prepared to answer why you made any
given choice. It is important to be able to show that you
didn’t just “give up” on an area when it got tough.

Interests and hobbies Several of the people you meet will
want to understand what sort of personality you have,
or indeed whether you actually have one.

In finance you spend more of your waking hours with
your colleagues than the person you marry, so it is
good to present yourself as interesting as well as smart.
They all want to feel you can work with others, so the
cliché of “reading, walking and listening to music,” don’t
really cut it. Certainly you shouldn’t fake an interest in
something, but do try to find something with which
you can speak with a little passion. One candidate had
somehow acquired a formal qualification in stage com-
bat. Although it’s relatively rare for quants to need to
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fight each other with swords, it’s the sort of thing that
catches people’s eyes, and can make a crucial differ-
ence. It also gives the non-specialist people who you
will meet something they can talk to you about.

Last job first In your CV your most recent/current
employment should stand out and be relevant to the
job for which you are applying. Someone reading your
CV may never get beyond this one piece of information.
Make sure your dates are correct. As part of the pre-
employment screen at most banks, they check your
past employment, and people have had offers withdrawn
because of mistakes on this.

Paul & Pominic When applying to P&D, we also like to
see a simple list of the various skills you have acquired,
together with some estimate of how good you are. If
you're new to QF then it won’t be obvious which are
most important, that’s our job, so include as many as
possible.

Multiple CVs Finally, there is no reason why you should
have only one CV. Presumably your entire life doesn’t
fit on two pages, so you can turn out a variety that each
emphasize different aspects of your experience and
education. You may take this as an exercise to work
out the optimal number of variants, and you will quickly
find out that it is not one. This is made more acute by
the fact that failed CVs get little if any feedback. Think
of it as shooting in the dark. If you don’t hear a scream
when you fire in one direction, you aim somewhere else.

Finding banks In this document, we use the term “bank”
for the firm you want to work for. It is of course the

case that quants work for many types of outfit, including
brokers, the government, hedge funds, insurers, thrifts,
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consultancies, building societies, and of course in the
case of P&D, for a headhunting firm. The wilmott.com
website mentions any number of firms, and before you
approach anyone it’s good to do a few searches so that
you know the nature of the target.

If you're still linked with your college then it has many
resources to help you. Most have a careers office with
directories of banks, and they will have some con-
tacts with banks in that country. The library will have
directories, and of course there is Google and Yahoo for
getting a list of targets. All large firms have entry-level
programmes of some form, and you can relatively easily
find a good number to apply for. At this stage numbers
are important, since the ratio of new entrants to the
market to jobs is quite high

Interviews

Be Prepared Before you go for the interview, find out the
names of the people you are seeing, and do a Google on
their name, as well as the bank/business unit you are
joining. Try to avoid the error made by one candidate
who could not understand why the interviewer was

so interested in one part of her thesis. The candidate
had quoted papers by the interviewer, but somehow
managed to fail connecting the interviewer’s name with
the paper.

Be Confident Almost no one at banks actually enjoys
interviewing people, some even see it as a form of pun-
ishment. That means they only interview you if there’s
a good chance they will want to hire you. Most people
who are considered for any job never even get a first
interview.



4’ 00 Frequently Asked Questions In Quantitative Finance

Be punctual This shouldn’t need saying. If you can’t be
on time for your interview how can they expect you to
put in 12-hour days? If you are going to be late (and
assuming it was unavoidable) telephone ahead with an
accurate ETA. The best strategy is to schedule having
a coffee before the interview, a little caffeine and sugar
may well help, and this is a useful time buffer. Probably
the worst bit about being late is not what it does to
the interviewer, but what it does to you. The idea is to
present yourself as cool, smart and in control. If you've
been stressed out dealing with transport you knock a
few points off your performance.

Set traps Although some questions are set in advance,
most interviewers like to drill down based upon your
answers. Thus you should try to mention areas where
you feel confident in answering hard questions. This
is best done subtly, by phrases like ‘“this is quite like
X, but the answer is Y,” where X is a bastion of your
competence; or by saying thoughtfully “this isn’t like
X at all,” if you feel you are being drawn into an area
where you will sink.

Show you can do things We mention this in the CV section,
and here’s a chance to “casually” drop in things you've
done that show you can dig in and finish the job. It’s OK
to mention problems you overcame, and the lessons you
learned from initial difficulties. Good managers are scep-
tical of people who claim to glide effortlessly through
life, and don’t want to be there when such a person
hits a rock. Practical ability is therefore something that
you will need to demonstrate a little more than theory.
You wouldn’t have reached this point if you didn’t have
a respectable record for absorbing theory, so the next
step is to see if you can apply what you've learned.
When asked your motivation for moving into finance,
it's worth asking yourself if this is a reason.
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Questions for the interviewer It is a good idea to have a
question thought out in advance—it makes you look
interested in the position. You have two objectives

when they ask if you have questions for them.

Getting the message across A question can be a good way
of bringing in things you want them to know, or to
emphasize a point you want them to remember. You
can ask the importance of your experience in MC, C++
or PDEs to the work you’d be doing. This gets the
message across, either as a reminder or to bring it to
their notice.

Find out more about the job Good questions are on the
direction for the team over the next year, and how your
work would help them get where they want to be. It
shows interest, and may give a better insight into what
you really will be doing. Although they are interviewing
you, it is also the case that they are selling the job

to you, since they want you to accept if they offer.

So it’'s up to you to work out whether it’s a good job
or not.

Remember, do not ask things that you should already
know. You should discuss the job and the bank as much
as you can with your recruiting consultant ahead of the
interview and consult websites and any recruitment
brochures. You don’t want to give the interviewer the
impression that you aren’t interested enough in their
bank to find out about it before the interview. Interview-
ers often say that this is the thing that really irritates
them most at interviews. Instead, it is good to preface
a question with a statement about some achievement
that the bank is proud of (i.e., talks about at length on
their website or in recruitment materials) e.g., “‘l know
your office won the International Finance Press Award
for Being a Bank last year, but could you tell me...”
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Appearance

Good clothes It is entirely possible that in your interview
process that every person you meet is not wearing a
suit, some may not have shaved. That doesn’t make

it wise for you to turn up in “smart casual.” How you
look is not a big deal for quants, you're being paid to
think. However, some people do get remembered for the
wrong reason, and it can undermine your application a
little. You should feel comfortable, and if that means

a bit of perfume or good cufflinks then that’s fine, but
see below

Neatness is good More important than colour of cloth or
design of tie, is the general impression of being in con-
trol of how you look. This means wearing it well, and
being ordered in your appearance. It is worth checking
this before you go into the bank.

Colours  Black is the new black. White is nice for shirts
and for no other visible item of clothing. Shoes should
be clean and preferably black for men, and muted tones
for women. A particular issue for women is the poor
workmanship in most of their shoes. Do not attempt to
walk long distances in new shoes that hurt your feet
so badly they bleed (we know one person who stained
the carpet with her blood). Make sure your clothes
fit—badly fitting clothes do not look presentable and if
your trousers are too tight you (and everyone else) will
find this distracts from the matter at hand. There are
some complexions that are generally complemented by
certain colours, and apparently in some circles “brown”
is seen as a colour for your clothing. It is not; it merely
says things about you that are never said to your face.



Chapter 11: Paul & Dominic’s Guide to Getting a Quant Joh 4’03

Dark blue is good as well.
Ties are best boring, novelty is bad.

Another reason for white shirts is that they don’t show
sweat, some colours do this terribly and it’s not the
image you want to project. A good shirt doesn’t crease
badly in wear.

Jewellery This will never help you get a job, no matter
how expensive or fashionable. Thus if you have any
doubt at all, don’t wear it. If you're female and you
have some brooch or bracelet, that’s fine, but there’s
no upside for a man at all in bling. Cufflinks of course
are fine, as long as they are not ‘“‘novelty” —you have
no idea as to the sense of humour your interviewer may
have; he may not have one at all. Some banking people
spend quite appalling amounts on their watches, so
don’t even try to compete.

Perfume and aftershave Feel free to smell nice, but make
sure that it’s not too strong.

Make-up The following is for women. If you're a male
reader, you really should not be reading this paragraph
and we are rather concerned that you are. Unless you
really never wear make-up, a small amount is a good
idea. Again, this gives the impression that you are mak-
ing an effort and will possibly counter the deadening
effect of all the monochrome clothing you are wear-
ing. It should be discreet (i.e. no bright colours) and
presentable rather than intending to make you look
prettier. There are jobs that you can obtain by being
attractive, but they are rarely fun and never intellec-
tually rewarding. Any make-up should always be well
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applied—if you can’t get eyeliner on straight, don’t put
it on, and never wear nail polish if there is any chance
it will chip before the interview.

What People Get Wrong

Zeroth law of holes When you find yourself in a hole, stop
digging. You will be asked questions for which you can’t
think of any answer at all. Some interviewers make the
questions harder until that point is reached. The trick
is to cut your losses. With any luck they will just move
on, unless it’s a critical topic. Of course if it’s critical
then it’'s game over anyway. What you must avoid is
wasting time wandering like the lost spirit of ignorance
over a vast formless expanse of your incompetence. A
good response is to look them in the eye after a little
thought, then simply say “don’t know, sorry.”

The exception to this are the “all the tea in China” ques-
tions where you are asked to estimate some quantity
like the number of bull testicles consumed by McDon-
alds customers per year. You aren’t expected to know
the answer to these, indeed knowing it would seem
rather strange. They want to see how well you can
estimate an unknown quantity and how you think.

But the biggest hole catches people who get very ner-
vous when things go wrong. This is about the most
negative personality defect you might have in a bank.
When you realize you've said something dumb, stop,
say something like “let me think about that for a sec-
ond,” and correct yourself. Make the pause work for
you. Think the answer through, and show that you are
capable of recovering. Remember that no one can talk
about things at the edge of their competence for 4-5
hours without saying something silly. You don’t have
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to be defect free, but self knowledge and recovery will
score you vital points.

Sleep reqularly, sleep often Probably the most common
error we've seen is not getting enough sleep the night
before. As we said earlier, the difference between you
and your competitors is tiny, and losing a small percent-
age of your thinking ability through being tired has an
exponential effect on your probability of getting a job.
Hours in a bank can be quite hard, so it’s really not a
good idea to mention feeling tired. Not only will they not
be impressed, but if you get drawn into a conversation
about how it degrades your performance it won’t end
well. Conversely, a cup of coffee doesn’t do any harm,
but we have seen people who clearly had drunk rather
too much, and it didn’t work well for them.

Make eye contact You need to make sure you look at your
interrogators, they can smell fear. No need to stare at
them, just remind yourself to look at them when they or
you are speaking.

Apply for the right job You may feel you are unique indi-
vidual, and an obvious match for the job. Sadly, that
turns out not to be the case. If you are applying for

a job called “Henchman to Assistant Quant’s Minion—
PD0701067,” then do try to include that in your applica-
tion, prominently. If you don’t include this, then you are
critically dependant upon whoever opens your applica-
tion guessing

Don’t send a blue €V Just don’t, OK?

Barbarians The word barbarian comes from the ancient
Greeks who took anyone who didn’t speak Greek as
making “bar bub bar” noises, like a drunk Homer Simp-
son, not Barbarian as in the icy commanding tones of
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Governor Schwarzenegger. Although Dr Simpson has
enjoyed careers as an astronaut, rock star and nuclear
engineer, few of us would hire him as a quant. It’s
important to get the right balance between gushing

at people so fast that they have trouble following you,
or being too quiet. You should try to practise looking
at the reaction of people talking to you, and if the inter-
viewer is clearly trying to move on, you usually should
let them. If you think of the conversation style used
when first meeting someone you find attractive, you
won’t go far wrong. (Just remember it’s a first date.)

It is also the case that no one wants to discriminate
against those who aren’t English speakers. This is good,
but means that if you aren’t understood they may just
skip over what you say, rather than pass comment on
your accent. This is especially true when having a tele-
phone interview where you will not get visual feedback,
and the sound quality is degraded.

Read your €V Make sure that your CV is correct. A
surprisingly large number have dates that are clearly
wrong, or that by accident give the wrong impression.
These worry interviewers a lot, and if your dates don’t
match, this can lose you an offer when they do the
basic background check on all employees. Also read it
to work out which questions it might provoke them to
ask, “Why did you pick X?” “I see you've done a lot of
Y, here’s a hard question about it.”

Mobile phone interviews We're old people (>35), and thus
sometimes use quaint 'phone technology which involves
long wires physically connecting us to a huge ancient
Unix computer miles away (yes, we still use miles). A
typical quant has done enough physics to know that you
can actually talk down copper wires rather than a 1 mm
thick cell phone that has more processing capacity than
its owner.
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Sadly, the quality of cell phone speech is hideously
degraded, and on many systems you can’t both talk at
the same time. This is occasionally awkward when both
speakers have the same first language, but if both have
English as second language neither comes out of the
conversation impressed with the other.

Do not attempt to do a phone interview on a cell phone.

Focus Forging a rapport with the interviewer is a good
thing, but some interviews drift off topic as the people
involved chat. However, there is a time budget for each
interview, and most managers have specific objectives
in checking your ability. If they don’t get covered it can
hurt your progress to the next stage. Although it is the
interviewer’s responsibility to get things done, it’s your
problem if he doesn’t. This is where the politeness we
mention elsewhere is important. When you feel that time
is moving against you, ask to make sure that everything
they need to know is covered.

Asking questions Actually there are stupid questions. Bad
questions are ones which embarrass the interviewer, or
force them into corners, that’s their job. Do not try to
score points off the interviewer, either you fail and look
silly, or worse still, you succeed. It’s a bad idea to bring
up any screw-ups that the bank has been involved in,
or where the manager has to admit that he hasn’t read
your CV.

Buzzwords Your interrogator will often come from a sim-
ilar background to you, but even within maths and
physics there are many specializations that are mutually
incomprehensible. You're just emerging from a disci-
pline where you think in terms of these names and
equations and it’s easy to emit a stream of noises that
your interviewer can barely understand. It’s actually
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worse if they are from a similar background, since they
may feel embarrassed to ask what you actually mean.
You lose points here. But it is generally polite to enquire
about the background of your audience when asked to
explain some part of your work. This both shows con-
sideration, and prevents you making this error.

Show some market insight This doesn’t mean you have to
know the ticker symbols of all SP500 stocks, but it does
mean you should be able to comment on the reliabil-
ity of models, what are their common pitfalls and how
the quant and the trader might communicate about
this. If you can quantify some practical phenomenon
that is rarely discussed in academic literature then you
will impress. (Tip: Because banks are often delta hedg-
ing, everything usually boils down to gamma and/or
volatility.)

It is also worth reading The Economist before the inter-
view. Some interviewers are keen to see if you have
awareness of the world in general. The Economist may
disturb some people since it covers other countries and
has no astrology column or coverage of golf.

Brainteasers There are several different types of brain-
teasers you might get asked, all designed to test how
your mind works under pressure, and to try and gauge
how smart you are, rather than how much you have
learned.

¢ Straightforward calculation. Example: How many
trailing zeros are there in 100 factorial?

o Lateral thinking. Example: Several coworkers would
like to know their average salary. How can they
calculate it, without disclosing their own salaries?

e Open to discussion. Example: What’s the probability
that a quadratic function has two real roots?
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o Off the wall. Example: How many manhole covers are
there within the M25?

Work through the Brainteaser Forum on wilmott.com. You
can practice for IQ tests, and the more you do, the better
your score. Brainteasers are no different. And you’d be
surprised how often the same questions crop up.

It’s worth having a few numbers at your fingertips for
the “manhole covers.” One manager recently told us
in rather despairing tones of the stream of candidates
who didn’t have even a rough approximation to the
population of the country they were born and educated
in. Several put the population of Britain between 3 and
5 million (it’s around 60 million). A good trick when
“estimating” is to pick numbers with which it is easy to
do mental arithmetic. Sure you can multiply by 57, but
why expose yourself to silly arithmetic errors.

In many types of question, they want to hear your
train of thought, and have simply no interest in the
actual answer. Thus you need to share your thoughts
about how you get to each stage. You also should ‘‘san-
ity check” your answers at each step, and make sure
they're aware you're doing it. This is a soft skill that’s
very important in financial markets where the money
numbers you are manipulating are rather larger than
your credit card bill.

At entry level we also see people being asked what we
call “teenage maths.” You've probably been focusing
on one area of maths for some years now, and to get
this far you’'ve probably been good at it. However some
banks will ask you to do things like prove Pythagoras’
theorem, calculate = to a few decimal places, or prove
that the sum of N numbers is N(N + 1)/2. That last fact
being surprisingly useful in brainteasers.
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Be polite  Your mother told you this would be important
one day, this is the day. “Please,” “thank you,” and
actually looking as if you are listening are good things.
Fidgeting, playing with your tie, or looking like you'd
rather be somewhere else aren’t polite. Standing when
people come into the room is good. Occasionally you
will find it appropriate to disagree, this is good, but get
in the habit of using phrases like “I'm not sure if that’s
the case, perhaps it is...”

You can’t just wake up one day and be polite on a whim.
(Hint: “Pretty Woman” is fiction, we know this for a fact.)
Without practice, it may even come over as sarcasm. In
some languages ‘“please” and “‘thank you” are implied in
the context of the sentence, and that habit can spill over
into English. Break that habit, break it now.

Practise sounding positive about things.

Of the things you can change between now and your
interview, this one may have the biggest payback. If
you've been doing calculus for a decade, you aren’t
going to improve much in a week. However, you become
better at presenting yourself as someone who’s easy to
work with.

This is so important because your team will spend more
waking hours together than most married couples, and

senior people want to know you will “fit in.” Like much
of this whole process it’s a game. No one really cares if
you have a deep respect for your fellow man, but if you
can emulate it well under pressure it’s a difference that
makes no difference.

Be True to yourself You are selling yourself, so obviously
you will be putting a positive spin on things. However,
this is a career, not a job. If you feel the job may really
not be what you want, then it’s important that you think
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that through. If in the interview you hear something
that sounds bad, ask about it. This does not have to
be confrontational; you can use phrases like “How does
that work out in practice?”” and ‘“What sort of flexibility
is there to choose the work?” when told you’re going to
be counting buttons for the first six months.

Do not sound as if you work for Accenture Even if you do
work for Accenture or Arthur Andersen, you don’t want
to sound like you do. Avoid the sort of management
speak that resembles Dilbert cartoons. A common type
of interview question is of the form: “You find that
something has gone terribly wrong, what would you do
about it.” An Accenture answer is “I would see it as a
challenge that would allow me to work as a good team
player, as part of the global synergy”; or perhaps you
might respond ‘I will grasp the opportunity to show
excellent leadership in integrity” which is interview
suicide.

This part may sound quite silly, but there is a grow-
ing trend for some universities to have formal coaching
in interview technique. In theory this should be very
useful. In theory. The real practice is rather scary. It
frustrates interviewers a lot to be faced with an obvi-
ously bright candidate who parrots clichés that some
consultant has fed into him. We say at the beginning
that you need to stand out, and given that the people
you are competing with may well include people from
your institution, it does you very little good.

By all means listen to these people, but take it with a

pinch of salt. When you know little about the process,

it’s easy to give too much weight to the few things you
get told.

Interview overlap It is tempting to schedule lots of inter-
views as close together as possible, because travel does
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eat into your budget. You should be very conservative
about the amount of time you allow for each interview.
It’s not easy to get a manager to speed up his process
because you want to get across town to talk to one of
his competitors. The worry about time, just like late-
ness, can reduce your effectiveness, so make sure this
doesn’t come up.

To be continued ...

More

To find out more about this quant-job guide
please send either of us an email (Dominic
Connor, dominic@pauldominic.com, or Paul Wilmott,
paul@wilmott.com) or visit www.quantguides.com.

And if you are looking for a quant job, visit www.
pauldominic.com and send us your CV.
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