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ABSTRACT

A fuzzy restriction may be visualized as an elastic con-

straint on the values that may be assigned to a variable. In

terms of such restrictions, the meaning of a proposition of

the form "x is P," where x is the name of an object and P is

a fuzzy set, may be expressed as a relational assignment

equation of the form R(A(x)) = P, where A(x) is an implied

attribute of x, R is a fuzzy restriction on x, and P is the

unary fuzzy relation which is assigned to R. For example,

"Stella is young," where young is a fuzzy subset of the real

line, translates into R(Age(Stella)) = young.

The calculus of fuzzy restrictions is concerned, in the

main, with (a) translation of propositions of various types

into relational assignment equations, and (b) the study of

transformations of fuzzy restrictions which are induced by

linguistic modifiers, truth-functional modifiers, composi-

tions, projections and other operations. An important appli-

cation of the calculus of fuzzy restrictions relates to what

might be called approximate reasoning, that is, a type of

reasoning which is neither very exact nor very inexact. The
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main ideas behind this application are outlined and illustra-

ted by examples.

I. INTRODUCTION

During the past decade, the theory of fuzzy sets has

developed in a variety of directions, finding applications in

such diverse fields as taxonomy, topology, linguistics, auto-

mata theory, logic, control theory, game theory, information

theory, psychology, pattern recognition, medicine, law, deci-

sion analysis, system theory and information retrieval.

A common thread that runs through most of the applica-

tions of the theory of fuzzy sets relates to the concept of a

fuzzy restriction — that is, a fuzzy relation which acts as an

elastic constraint on the values that may be assigned to a

variable. Such restrictions appear to play an important role

in human cognition, especially in situations involving con-

cept formation, pattern recognition, and decision-making in

fuzzy or uncertain environments.

As its name implies, the calculus of fuzzy restrictions

is essentially a body of concepts and techniques for dealing

with fuzzy restrictions in a systematic fashion. As such, it

may be viewed as a branch of the theory of fuzzy relations,

in which it plays a role somewhat analogous to that of the

calculus of probabilities In probability theory. However, a

more specific aim of the calculus of fuzzy restrictions is to

furnish a conceptual basis for fuzzy logic and what might be

called approximate reasoning [1], that is, a type of reason-

ing which is neither very exact nor very inexact. Such rea-

soning plays a basic role in human decision-making because it

provides a way of dealing with problems which are too complex

for precise solution. However, approximate reasoning is more
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than a method of last recourse for coping with insurmountable

complexities. It is, also, a way of simplifying the perfor-

mance of tasks in which a high degree of precision is neither

needed nor required. Such tasks pervade much of what we do

on both conscious and subconscious levels.

What is a fuzzy restriction? To illustrate its meaning

in an informal fashion, consider the following proposition

(in which italicized words represent fuzzy concepts):

Tosi is young (1.1)

Ted has gray hair (1.2)

Sakti and Kapali are approximately equal

in height. (1.3)

Starting with (1.1), let Age (Tosi) denote a numerically-

valued variable which ranges over the interval [0,100]. With

this interval regarded as our universe of discourse U, young

may be interpreted as the label of a fuzzy subset1 of U which

is characterized by a compatibility function, myoung, of the

form shown in Fig. 1.1. Thus, the degree to which a numerical

age, say u = 28, is compatible with the concept of young is

0.7, while the compatibilities of 30 and 35 with young are 0.5

and 0.2, respectively. (The age at which the compatibility

takes the value 0.5 is the crossover point of young.) Equiva-

lently, the function myoung may be viewed as the membership

function of the fuzzy set young, with the value of myoung at

u representing the grade of membership of u in young.

Since young is a fuzzy set with no sharply defined boun-

daries, the conventional interpretation of the proposition

"Tosi is young," namely, "Tosi is a member of the class of

young men," is not meaningful if membership in a set is

1A summary of the basic properties of fuzzy sets is presented
in the Appendix.
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interpreted in its usual mathematical sense. To circumvent

this difficulty, we shall view (1.1) as an assertion of a

restriction on the possible values of Tosi's age rather than

as an assertion concerning the membership of Tosi in a class

of individuals. Thus, on denoting the restriction on the

age of Tosi by R(Age(Tosi)), (1.1) may be expressed as an

assignment equation

R(Age(Tosi)) = young (1.4)

in which the fuzzy set young (or, equivalently, the unary

fuzzy relation young) is assigned to the restriction on the

variable Age(Tosi). In this instance, the restriction

R(Age(Tosi)) is a fuzzy restriction by virtue of the fuzzi-

ness of the set young.

Using the same point of view, (1.2) may be expressed as

R(Color(Hair(Ted))) = gray (1.5)

Thus, in this case, the fuzzy set gray is assigned as a value

to the fuzzy restriction on the variable Color(Hair(Ted)).

In the case of (1.1) and (1.2), the fuzzy restriction
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has the form of a fuzzy set or, equivalently, a unary fuzzy

relation. In the case of (1.3), we have two variables to

consider, namely, Height(Sakti) and Height(Kapali). Thus, in

this instance, the assignment equation takes the form

R(Height(Sakti), Height(Kapali)) = approximately equal

(1.6)

in which approximately equal is a binary fuzzy relation

characterized by a compatibility matrix mapproximately equal
(u,v) such as shown in Table 1.2.

Thus, if Sakti's height is 5'8 and Kapali's is 5'10, then the

degree to which they are approximately equal is 0.9.

The restrictions involved in (1.1), (1.2) and (1.3) are

unrelated in the sense that the restriction on the age of

Tosi has no bearing on the color of Ted's hair or the height

of Sakti and Kapali. More generally, however, the restric-

tions may be interrelated, as in the following example.

u is small (1.7)

u and v are approximately equal (1.8)

In terms of the fuzzy restrictions on u and v, (1.7)

and (1.8) translate into the assignment equations

R(u) = small (1.9)

R(u,v) = approximately equal (1.10)
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where R(u) and R(u,v) denote the restrictions on u and (u,v),

respectively.

As will be shown in Section 2, from the knowledge of a

fuzzy restriction on u and a fuzzy restriction on (u,v) we

can deduce a fuzzy restriction on v. Thus, in the case of

(1.9) and (1.10), we can assert that

R(v)= R(u) ° R(u,v) = small ° approximately equal (1.11)

where ° denotes the composition2 of fuzzy relations.

The rule by which (1.11) is inferred from (1.9) and

(1.10) is called the compositional rule of inference. As

will be seen in the sequel, this rule is a special case of a

more general method for deducing a fuzzy restriction on a

variable from the knowledge of fuzzy restrictions on related

variables.

In what follows, we shall outline some of the main ideas

which form the basis for the calculus of fuzzy restrictions

and sketch its application to approximate reasoning. For

convenient reference, a summary of those aspects of the

theory of fuzzy sets which are relevant to the calculus of

fuzzy restrictions is presented in the Appendix.

2. CALCULUS OF FUZZY RESTRICTIONS

The point of departure for our discussion of the calcu-

lus of fuzzy restrictions is the paradigmatic proposition1

p ∆=  x is P (2.1)

which is exemplified by

2If A is a unary fuzzy relation in U and B is a binary fuzzy
relation in U x V, the membership function of the composi-
tion of A and B is expressed by mA ° B(v) = Vu(mA(u) LmB(u,v),
where Vu denotes the supremum over u ε U. A more detailed
discussion of the composition of fuzzy relations may be
found in [2] and [3].

1The symbol ∆=  stands for "denotes" or "is defined to be."
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x is a positive integer (2.2)

Soup is hot (2.3)

Elvira is blond (2.4)

If P is a label of a nonfuzzy set, e.g., P ∆=  set of

positive integers, then "x is P," may be interpreted as "x

belongs to P," or, equivalently, as "x is a member of P."

In (2.3) and (2.4), however, P is a label of a fuzzy set,

i.e., P ∆=  hot and P ∆=  blond. In such cases, the interpreta-

tion of "x is P," will be assumed to be characterized by what

will be referred to as a relational assignment equation.

More specifically, we have

Definition 2.5 The meaning of the proposition

p ∆=  x is P (2.6)

where x is a name of an object (or a construct) and P is a

label of a fuzzy subset of a universe of discourse U, is ex-

pressed by the relational assignment equation

R(A(x)) = P (2.7)

where A is an implied attribute of x, i.e., an attribute

which is implied by x and P; and R denotes a fuzzy restric-

tion on A(x) to which the value P is assigned by (2.7). In

other words, (2.7) implies that the attribute A(x) takes

values in U and that R(A(x)) is a fuzzy restriction on the

values that A(x) may take, with R(A(x)) equated to P by the

relational assignment equation.

As an illustration, consider the proposition "Soup is

hot." In this case, the implied attribute is Temperature and

(2.3) becomes

R(Temperature(Soup)) = hot (2.8)

with hot being a subset of the interval [0,212] defined by,

say, a compatibility function of the form (see Appendix)

mhot(u) = S(u; 32,100,200) (2.9)

Thus, if the temperature of the soup is u = 100°, then the
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degree to which it is compatible with the fuzzy restriction

hot is 0.5, whereas the compatibility of 200° with hot is

unity. It is in this sense that R(Temperature(Soup)) plays

the role of a fuzzy restriction on the soup temperature which

is assigned the value hot, with the compatibility function of

hot serving to define the compatibilities of the numerical

values of soup temperature with the fuzzy restriction hot.

In the case of (2.4), the implied attribute is

Color(Hair), and the relational assignment equation takes

the form

R(Color(Hair(Elvira))) = blond (2.10)

There are two important points that are brought out by

this example. First, the implied attribute of x may have a

nested structure, i.e., may be of the general form

Ak(Ak-1( ... A2(A1(x)) ...)); (2.11)

and second, the fuzzy set which is assigned to the fuzzy

restriction (i.e., blond) may not have a numerically-valued

base variable, that is, the variable ranging over the uni-

verse of discourse U. In such cases, we shall assume that

P is defined by exemplification, that is, by pointing to spe-

cific instances of x and indicating the degree (either numeri-

cal or linguistic) to which that instance is compatible with

P. For example, we may have mblond(June) = 0.2,

mblond(Jurata) = very high, etc. In this way, the fuzzy set

blond is defined in an approximate fashion as a fuzzy subset

of a universe of discourse comprised of a collection of in-

dividuals U = {x}, with the restriction R(x) playing the

role of a fuzzy restriction on the values of x rather than

on the values of an implied attribute A(x).2 (In the sequel,

2A more detailed discussion of this and related issues may
be found in [3], [4] and [5].
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we shall write R(x) and speak of the restriction on x rather

than on A(x) not only in those cases in which P is defined by

exemplification but also when the implied attribute is not

identified in an explicit fashion.)

So far, we have confined our attention to fuzzy restric-

tions which are defined by a single proposition of the form

"x is P." In a more general setting, we may have n constit-

uent propositions of the form

xi is Pi, i = 1,...,n (2.12)

in which Pi is a fuzzy subset of Ui, i = 1,...,n. In this

case, the propositions "xi is Pi," i = 1,...,n, collectively

define a fuzzy restriction on the n-ary object (x1,...,xn).

The way in which this restriction depends on the Pi is dis-

cussed in the following.

The Rules of Implied Conjunction and Maximal Restriction

For simplicity we shall assume that n = 2, with the con-

stituent propositions having the form

x is P (2.13)

y is Q (2.14)

where P and Q are fuzzy subsets of U and V, respectively.

For example,

Georgia is very warm (2.15)

George is highly intelligent (2.16)

or, if x = y,

Georgia is very warm (2.17)

Georgia is highly intelligent (2.18)

The rule of implied conjunction asserts that, in the ab-

sence of additional information concerning the constituent

propositions, (2.13) and (2.14) taken together imply the com-

posite proposition "x is P and y is Q;" that is,

{x is P, y is Q} ⇒ x is P and y is Q (2.19)
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Under the same assumption, the rule of maximal restric-

tion asserts that

x is P and y is Q ⇒ (x,y) is P x Q (2.20)

and, if x = y,

x is P and x is Q ⇒ x is P > Q (2.21)

where P x Q and P > Q denote, respectively, the cartesian

product and the intersection of P and Q.3

The rule of maximal restriction is an instance of a more

general principle which is based on the following properties

of n-ary fuzzy restrictions.

Let R be a n-ary fuzzy relation in U1 x ... x Un which is

characterized by its membership (compatibility) function

mR(u1,...,un) Let q = (I1,...,1k) be a subsequence of the

index sequence (1,...,n) and let q' denote the complementary

subsequence (j1,...,jl). (E.g., if n = 5 and q = (2, 4, 5),

then q' = (1,3).). Then, the projection of R on

U(q) 
∆=  Ui1

 x ... x Uik
 is a fuzzy relation, Rq, in U(q) whose

membership function is related to that of R by the expression

mRq
(Uil

,...,Uik
) Vu(q')

mR(u1,...,un) (2.22)

where the right-hand member represents the supremum of

(u1,...,un) over the u's which are in u(q').

If R is interpreted as a fuzzy restriction on (u1,...,un)

in U1x ... xUn, then its projection on Uil
x ... xUik

, Rq, consti-

tutes a marginal restriction which is induced by R in U(q).

Conversely, given a fuzzy restriction Rq in U(q), there exist

fuzzy restrictions in U1 x ... x Un whose projection on U(q)

3The cartesian product of P and Q is a fuzzy subset of U x V
whose membership function is expressed by m

PxQ
(u,v) =

mp(U) ` mQ(v). The membership function of P > Q is given by
mp > Q(u) = mp(U) ` mQ(u). The symbol ` stands for min.
(See the Appendix for more details.)
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is Rq. From (2.22), it follows that the largest
4 of these

restrictions is the cylindrical extension of Rq, denoted by

  Rq, whose membership function is given by

m
  Rq

 (u1,...,un) mRq
 (uil

,...,uik
) (2.23)

and whose base is R. (  Rq is referred to as the cylindrical

extension of Rq because the value of m
  Rq

 at any point

(
  
u1
',...,

  
un') is the same as at the point (u1,...,un) so long

as 
    
m1
'
l
 = uil

,...,
  
ui
'
k
 Uik

)

Since   Rq is the largest restriction in U1 x ... x Un
whose base is Rq, It follows that

R ,   Rq1
(2.24)

for all q, and hence that R satisfies the containment

relation

R ,   Rq1 
>   Rq2 

> ... > Rqr
(2.25)

which holds for arbitrary index subsequences q1,...,qr Thus,

if we are given the marginal restrictions Rql
,...,Rqr

, then

the restriction

RMAX(Rq1
,...,Rqr

) ∆=    Rq1 
> ... >   Rq2

(2.26)

is the maximal (i.e., least restrictive) restriction which is

consistent with the restrictions Rql
,...,Rqr

. It is this

choice of RMAX given Rql
,...,Rqr

 that constitutes a general

selection principle of which the rule of maximal restriction

is a special case.5

By applying the same approach to the disjunction of two

propositions, we are led to the rule

4A fuzzy relation R in U is larger than S (in U) iff
mR(u) ≥ mS(u) for all u in U.

5A somewhat analogous role in the case of probability dis-
tributions is played by the minimum entropy principle of
E. Jaynes and M. Tribus [6], [7].
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x is P or y is Q ⇒ (x,y) is   P +   Q (2.27)

or, equivalently,

x is P or y is Q ⇒ (x,y) is (P' x Q')' (2.28)

where P' and Q' are the complements of P and Q, respectively,

and + denotes the union.6

As a simple illustration of (2.27), assume that

U = 1 + 2 + 3 + 4

and that

P ∆=  small ∆=  1/1 + 0.6/2 + 0.2/3 (2.29)

large ∆=  0.2/2 + 0.6/3 + 1/4 (2.30)

Q ∆=  very large = 0.04/2 + 0.36/3 + 1/4 (2.31)

Then

P' = 0.4/2 + 0.8/3 + 1/4 (2.32)

Q' = 1/1 + 0.96/2 + 0.64/3

and

  P +   Q = (P' x Q')' = 1/((1,1) + (1,2) + (1,3) + (1,4)

(2.33)

+ (2,4) + (3,4) + (4,4)) +

0.6/((2,1) + (2,2) + (2,3))

+ 0.3/((3,1) + (3,2))+ 0.36/((3,3)

+ (4,3)) + 0.04/(4,2)

Conditional Propositions

In the case of conjunctions and disjunctions, our in-

tuition provides a reasonably reliable guide for defining

the form of the dependence of R(x,y) on R(x) and R(y). This

is less true, however, of conditional propositions of the

form

p ∆=  If x is P then y is Q else y is S (2.34)

6The membership function of P' is related to that of P by
mp'(u) = 1 - mp(u). The membership function of the union
of P and Q is expressed by mp+Q(u) = mp(u) ~ mQ(u), where
~ denotes max.
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and

q ∆=  If x is P then y is Q (2.35)

where P is a fuzzy subset of U, while Q and S are fuzzy

subsets of V.

With this qualification, two somewhat different defini-

tions for the restrictions induced by p and q suggest them-

selves. The first, to which we shall refer as the maximin

rule of conditional propositions, is expressed by

If x is P then y is Q else y is S ⇒ (x,y) is

P x Q + P' x S, (2.36)

which implies that the meaning of P is expressed by the re-

lational assignment equation

R(x,y) = P x Q + P' x S (2.37)

The conditional proposition (2.35) may be interpreted as

a special case of (2.34) corresponding to S = V. Under this

assumption, we have

If x is P then y is Q ⇒ (x,y) is P x Q + P' x V (2.38)

As an illustration, consider the conditional proposition

p ∆=  If Maya is tall then Turkan is very tall (2.39)

Using (2.38), the fuzzy restriction induced by p is de-

fined by the relational assignment equation

R(Height(Maya), Height(Turkan)) = tall x very tall +

+ not tall x V

where V might be taken to be the interval [150,200] (in

centimeters), and tall and very tall are fuzzy subsets of V

defined by their respective compatibility functions (see

Appendix)

mtall = S(160, 170, 180) (2.40)

and

mvery tall = S
2(160, 170, 180) (2.41)

in which the argument u is suppressed for simplicity.



L.A. ZADEH

14
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

An alternative definition, to which we shall refer as

the arithmetic rule of conditional propositions, is expressed

by

If x is P then y is Q else y is S ⇒ (x,y) is

((P x V @ U x Q) + (P' x V @ U x S))' (2.42)

or, equivalently and more simply,

If x is P then y is Q else y is S ⇒ (x,y) is

(  P' !   Q) > (  P !   S) (2.43)

where ! and @ denote the bounded-sum and bounded-difference

operations,7 respectively;   P and   Q are the cylindrical exten-

sions of P and Q; and + is the union. This definition may

be viewed as an adaptation to fuzzy sets of Lukasiewicz's

definition of material implication in Laleph1
 logic, namely

[8]

v(r → s) ∆=  min(1,1 - v(r) + v(s)) (2.44)

where v(r) and v(s) denote the truth-values of r and s,

respectively, with 0 # v(r) # 1, 0 # v(s) # 1.

In particular, if S is equated to V, then (2.43) reduces to

If x is P then y is Q ⇒ (x,y) is (  P' !   Q) (2.45)

Note that in (2.42), P x V and U x Q are the cylindrical ex-

tensions,   P and   Q, of P and Q, respectively.

Of the two definitions stated above, the first is some-

what easier to manipulate but the second seems to be in clo-

ser accord with our intuition. Both yield the same result

when P, Q and S are nonfuzzy sets.

As an illustration, in the special case where x = y and

P = Q, (2.45) yields

7The membership functions of the bounded-sum and-difference
of P and Q are defined by mP ! Q(u) = min(1, mp(u) + mQ(u))
and mp @ Q(u) = max(0, mp(u) - mQ(u), u ε U, where + denotes
the arithmetic sum.
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If x is P then x is P ⇒ x is (P'! P) (2.46)

x is V

which implies, as should be expected, that the proposition in

question induces no restriction on x. The same holds true,

more generally, when P , Q.

Modification of Fuzzy Restrictions

Basically, there are three distinct ways in which a fuz-

zy restriction which is induced by a proposition of the form

p ∆=  x is P

may be modified.

First, by a combination with other restrictions, as in

r ∆=  x is P and x is Q (2.47)

which transforms P into P > Q.

Second, by the application of a modifier m to P, as in

Hans is very kind (2.48)

Maribel is highly temperamental (2.49)

Lydia is more or less happy (2.50)

in which the operators very, highly and more or less modify

the fuzzy restrictions represented by the fuzzy sets kind,

temperamental and happy, respectively.

And third, by the use of truth-values, as in

(Sema is young) is very true (2.51)

in which very true is a fuzzy restriction on the truth-value

of the proposition "Sema is young."

The effect of modifiers such as very, highly, extremely,

more or less, etc., is discussed in greater detail In [9],

[10] and [11]. For the purposes of the present discussion,

it will suffice to observe that the effect of very and more

or less may be approximated very roughly by the operations

CON (standing for CONCENTRATION) and DIL (standing for

DILATION) which are defined respectively by



L.A. ZADEH

16
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

    
CON(A) = (mA(u))

2 / u
U∫ (2.52)

and

    

DIL(A) = (mA(u)
U∫ )0.5 / u (2.53)

where A is a fuzzy set in U with membership function mA, and

    
A = mA(u) / uU∫ (2.54)

is the integral representation of A. (See the Appendix.)

Thus, as an approximation, we assume that

very A = CON(A) (2.55)

and

more or less A = DIL(A) (2.56)

For example, if

young = 
    

(1 + ( u
30
)2)−1

0

100
∫ / u (2.57)

then

very young = 
    

(1 + ( u
30
)2)−2

0

100
∫ / u (2.58)

and

more or less young = 
    

(1 + ( u
30
)2)−0.5

0

100
∫ / u (2.59)

The process by which a fuzzy restriction is modified by

a fuzzy truth-value is significantly different from the point

transformations expressed by (2.55) and (2.56). More speci-

fically, the rule of truth-functional modification, which de-

fines the transformation in question, may be stated in sym-

bols as

(x is Q) is t ⇒ x is 
    
m
Q
–1 ° t (2.60)

where t is a linguistic truth-value (e.g., true, very true,
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false, not very true, more or less true, etc.); 
    
m
Q
–1 is a re-

lation inverse to the compatibility function of A, and 
    
m
Q
–1

° t

is the composition of the nonfuzzy relation 
    
m
Q
–1 with the

unary fuzzy relation T. (See footnote 2 in Section 1 for the

definition of composition.)

As an illustration, the application of this rule to the

proposition

(Sema is young) is very true (2.61)

yields

Sema is 
    
m
young
–1

 ° very true (2.62)

Thus, if the compatibility functions of young and very true

have the form of the curves labeled myoung1
 and mvery true

in Fig. 2.1, then the compatibility function of myoung ° very

true is represented by the curve myoung2
. The ordinates of

myoung2
 can readily be determined by the graphical procedure

illustrated in Fig. 2.1.

The important point brought out by the foregoing dis-

cussion is that the association of a truth-value with a
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proposition does not result in a proposition of a new type;

rather, it merely modifies the fuzzy restriction induced by

that proposition In accordance with the rule expressed by

(2.60). The same applies, more generally, to nested propo-

sitions of the form

(...(((x is P1) is t1) is t2)...is tn) (2.63)

in which t1...tn are linguistic or numerical truth-values.

It can be shown8 that the restriction on x which is induced

by a proposition of this form may be expressed as

x is Pn+1
where

Pk+1 =
    
m
kP
–1 ° tk, k = 1, 2, ..., n (2.64)

3. APPROXIMATE REASONING (AR)

The calculus of fuzzy restrictions provides a basis for

a systematic approach to approximate reasoning (or AR, for

short) by interpreting such reasoning as the process of ap-

proximate solution of a system of relational assignment equa-

tions. In what follows, we shall present a brief sketch of

some of the main ideas behind this interpretation.

Specifically, let us assume that we have a collection of

objects x1,...,xn, a collection of universes of discourse

U1,...,Un, and a collection, {Pr}, of propositions of the

form

Pr 
∆=  (xr1

, xr2
, ..., xrk

) is Pr, r = 1,...,N (3.1)

8A more detailed discussion of this and related issues may
be found in [4].
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in which Pr is a fuzzy relation in Ur1
 x ... x Urk

.1 E.g.,

P1 
∆=  x1 is small (3.2)

P2 
∆=  x1 and x2 are approximately equal (3.3)

in which U1 = U2 
∆=  (-`,`); small is a fuzzy subset of the

real line (-`,`); and approximately equal is a fuzzy binary

relation in (-`,`) x (-`,`).

As stated in Section 2, each Pr in {Pr} may be trans-

lated into a relational assignment equation of the form

R(Ar1
(Xr1

),...,Ark
(xrk

)) = Pr , r = 1,...,N (3.4)

where Ari is an implied attribute of xri, i = 1,...,k, (with

k dependent on r). Thus, the collection of propositions{pr}

may be represented as a system of relational assignment equa-

tions (3.4).

Let   Pr be the cylindrical extension of Pr, that is,

  Pr = Pr x Us1
 x ... x Usl

(3.5)

where the index sequence (s1,...,Sl) is the complement of the
index sequence (r1,...,rk) (i.e., if n = 5, for example, and

(r1, r2, r3) = (2,4,5), then (s1,s2) = (1,3)).

By the rule of the implied conjunction, the collection

of propositions {Pr} induces a relational assignment equation

of the form

R(A1(x1),..., An(xn))   P1>...>  PN (3.6)

which subsumes the system of assignment equations (3.4). It

is this equation that forms the basis for approximate infer-

ences from the given propositions P1,..., PN.

Specifically, by an inference about (xr1
,...,xrk

) from

1In some cases, the proposition "(Xr1,...,Xrk) is Pr," may
be expressed more naturally in English as "xr1 and ... xrk
are Pr."
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{Pr}, we mean the fuzzy restriction resulting from the pro-

jection of P ∆=    P1 >...>   PN on Ur1 x... x Urk. Such an infer-

ence will, in general, be approximate in nature because of

(a) approximations in the computation of the projection of P;

and/or (b) linguistic approximation to the projection of P by

variables whose values are linguistic rather than numerical.2

As a simple illustration of (3.6), consider the propo-

sitions

x1 is P1 (3.7)

x1 and x2 are P2 (3.8)

In this case, (3.6) becomes

R(A(x1),A(X2)) =   P1 > P2 (3.9)

and the projection of   P1 > P2 on U2 reduces to the composi-

tion of P1 and P2. In this way, we are led to the composi-

tional rule of inference which may be expressed in symbols as

X1 is P1 (3.10)

x1 and x2 are P2
________________
X2 is P1 ° P2

or, more generally,

x1 and x2 are P1 (3.11)

x2 and x3 are P2
________________
x1 and x3 are P1 ° P2

in which; the respective inferences are shown below the hori-

zontal line.

2A linguistic variable is a variable whose values are words
or sentences in a natural or artificial language. For ex-
ample, Age is a linguistic variable if its values are as-
sumed to be younq. not younq, very younq, more or less young,
etc. A more detailed discussion of linguistic variables may
be found in [3], [4] and [11]. (See also Appendix.)
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As a more concrete example, consider the propositions

x1 is small (3.12)

x1 and x2 are approximately equal (3.13)

where

U1 = U2 
∆=  1 + 2 + 3 + 4 (3.14)

small ∆=  1/1 + 0.6/2 + 0.2/3 (3.15)

and

approximately equal = 1/((1,1) + (2,2) + (3,3) + (4,4))

(3.16)

+ 0.5/((1,2) + (2,1) + (2,3) +

(3,2) + (3,4) + (4,3))

In this case, the composition small ° approximately

equal may be expressed as the max-min product of the rela-

tion matrices of small and approximately equal. Thus

small ° approximately equal = [1 0.6 0.2 0] °

= [1 0.6 0.5 0.2] (3.17)

and hence the fuzzy restriction on x2 is given by

R(x2) = 1/1 + 0.6/2 + 0.5/3 + 0.2/4 (3.18)

Using the definition of more or less (see (2.56)),a

rough linguistic approximation to (3.18) may be expressed as

LA(1/1 + 0.6/2 + 0.5/3 + 0.2/4) = more or less small

(3.19)

where LA stands for the operation of linguistic approximation.

In this way, from (3.12) and (3.13) we can deduce the approxi-

mate conclusion

x is more or less small (3.20)
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which may be regarded as an approximate solution of the rela-

tional assignment equations

R(x1) = small (3.21)

and

R(x1,x2) = approximately equal (3.22)

Proceeding in a similar fashion in various special cases,

one can readily derive one or more approximate conclusions

from a given set of propositions, with the understanding that

the degree of approximation in each case depends on the defi-

nition of the fuzzy restrictions which are induced by the

propositions in question. Among the relatively simple ex-

amples of such approximate inferences are the following.

x1 is close to x2 (3.23)

x2 is close to x3
_________________

x1 is more or less close to x3

Most Swedes are tall (3.24)

Nils is a Swede

____________________

It is very likely that Nils is tall

Most Swedes are tall (3.25)

Most tall Swedes are blond

Karl is a Swede

__________________________

It is very likely that Karl is tall and it is

more or less (very likely) that Karl is blond.

It should be noted that the last two examples involve

a fuzzy quantifier, most, and fuzzy linguistic probabilities

very likely and more or less (very likely). By defining most

as a fuzzy subset of the unit interval, and tall as a fuzzy

subset of the interval [150,200], the proposition p ∆=  Most
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Swedes are tall induces a fuzzy restriction on the distribu-

tion of heights of Swedes, from which the conclusion "It is

very likely that Nils is tall," follows as a linguistic ap-

proximation. The same applies to the last example, except

that the probability very likely is dilated in the consequent

proposition because of the double occurrence of the quanti-

fier most among the antecedent propositions. The goodness of

the linguistic approximation in these examples depends essen-

tially on the degree to which very likely approximates to

most.

A more general rule of inference which follows at once

from (2.45) and (3.10) may be viewed as a generalization of

the classical rule of modus ponens. This rule, which will be

referred to as the compositional modus ponens, is expressed

by

x is P (3.26)

If x is Q then y is S

_____________________

y is P ° (  Q !   S)

where ! is the bounded-sum operation,   Q' is the cylindrical

extension of the complement of Q, and   S is the cylindrical

extension of S. Alternatively, using the maximin rule for

conditional propositions (see (2.36)), we obtain

x is P (3.27)

If x is Q then y is S

_____________________

y is P ° (Q x S +   Q')

where + is the union and   Q' 
∆=  Q' x V.

Note 3.28. If P = Q and P and S are nonfuzzy, both

(3.26) and) (3.27) reduce to the classical modus ponens
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x is P (3.29)

If x is P then y is S

_____________________

y is S

However, if P = Q and P is fuzzy, we do not obtain (3.29)

because of the interference effect of the implied part of the

conditional proposition "If x is P then y is S," namely "If

x is P' then y is V."  As a simple illustration of this ef-

fect, let U = 1 + 2 + 3 + 4 and assume that

P = 0.6/2 + 1/3 + 0.5/4 (3.30)

and

and both (3.26) and (3.27) yield

y = 0.5/1 + 1/2 + 0.6/3 + 0.6/4 (3.34)

which differs from S at those points at which mS(v) is below

0.5.

The compositional form of the modus ponens is of use

in the formulation of fuzzy algorithms and the execution of

fuzzy instructions [11]. The paper by S. K. Chang [12] and

the recent theses by Fellinger [13] and LeFaivre [14] pre-

sent a number of interesting concepts relating to such in-

structions and contain many illustrative examples.
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4. CONCLUDING REMARKS

In the foregoing discussion, we have attempted to convey

some of the main ideas behind the calculus of fuzzy restric-

tions and its application to approximate reasoning. Although

our understanding of the processes of approximate reasoning

is quite fragmentary at this juncture, it is very likely that,

in time, approximate reasoning will become an important area

of study and research in artificial intelligence, psychology

and related fields.
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APPENDIX

Fuzzy Sets — Notation, Terminology and Basic Properties

The symbols U, V, W,..., with or without subscripts,

are generally used to denote specific universes of discourse,

which may be arbitrary collections of objects, concepts or

mathematical constructs. For example, U may denote the set

of all real numbers; the set of all residents in a city; the

set of all sentences in a book; the set of all colors that

can be perceived by the human eye, etc.

Conventionally, if A is a fuzzy subset of U whose ele-

ments are u1,...,un, then A is expressed as

A = {u1,...,un} (A1)

For our purposes, however, it is more convenient to express

A as

A = u1 + ...+ un (A2)

or

A = 
  

ui
i=1

n

∑ (A3)

with the understanding that, for all i,j,

ui + uj = uj + ui (A4)

and

ui + ui = ui (A5)

As an extension of this notation, a finite fuzzy subset

of U is expressed as

F = miui +...+ mnun (A6)

or, equivalently, as

F = m1/u1 +...+ mn/un (A7)
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where the mi, i=1,..., n, represent the grades of membership

of the ui in F. Unless stated to the contrary, the mi are

assumed to lie in the interval [0,1], with 0 and 1 denoting

no membership and full membership, respectively.

Consistent with the representation of a finite fuzzy

set as a linear form in the ui, an arbitrary fuzzy subset of

U may be expressed in the form of an integral

    

F = mF u( ) / u
U
∫ (A8)

in which mF : U → [0,1] is the membership or, equivalently,

the compatibility function of F; and the integral 
  U
∫  denotes

the union (defined by (A28)) of fuzzy singletons mF(u)/u

over the universe of discourse U.

The points in U at which mF(U) > 0 constitute the

support of F. The points at which mF(U) = 0.5 are the

crossover points of F.

Example A9. Assume

U = a + b + c + d (A1O)

Then, we may have

A = a + b + d (A11)

and

F = 0.3a + 0.9b + d (A12)

as nonfuzzy and fuzzy subsets of U, respectively.

If

U = 0 + 0.1 + 0.2 +...+ 1 (A13)

then a fuzzy subset of U would be expressed as, say,

F = 0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1 (A14)

If U = [0,1], then F might be expressed as
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F =
0

1
∫ 1

1 + u2
/ 2 (A15)

which means that F is a fuzzy subset of the unit interval

[0,1] whose membership function is defined by

    

mF(u)=
1

1 + u2
(A16)

In many cases, it is convenient to express the membership

function of a fuzzy subset of the real line in terms of a

standard function whose parameters may be adjusted to fit a

specified membership function in an approximate fashion. Two

such functions, of the form shown in Fig. A1, are defined

below.

s(u; a,b,g) = 0 for u # a (A17)

= 2 
    

u − a

g − a






2

for a # u # b

= 1 - 2 
    

u − a

g − a






2

for b # u # g

=1 for u $ g

p(u; b,g) = S(u; g-b, g -
    

b

2
, g) for u # g (A18)

= 1 - S(u; g, g + 
    

b

2
, y + b) for u > g

In S(u; a, b, g), the parameter b, b = 
    

a + g

2 , is the

crossover point. In p(u; b,g), b is the bandwidth, that is,

the separation between the crossover points of p, while g is

the point at which p is unity.

In some cases, the assumption that mF is a mapping from

U to [0,1] may be too restrictive, and it may be desirable

to allow mF to take values in a lattice or, more particularly,
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in a Boolean algebra [15], [16], [17]. For most purposes,

however, it is sufficient to deal with the first two of the

following hierarchy of fuzzy sets.

Definition A19. A fuzzy subset, F, of U is of type 1

if its membership function, mF, is a mapping from U to [0,1];

and F is of type n, n = 2,3,..., if mF is a mapping from U

to the set of fuzzy subsets of type n-1. For simplicity, it

will always be understood that F is of type 1 if it is not

specified to be of a higher type.

Example A20. Suppose that U is the set of all nonnega-

tive integers and F is a fuzzy subset of U labeled small

integers. Then F is of type 1 if the grade of membership of

a generic element u in F is a number in the interval [0,1],

e.g.,

msmall integers(u) = (1 + (  
u
5
)2)-1 u = 0,1,2,... (A21)

On the other hand, F is of type 2 if for each u in U, mF(u)

is a fuzzy subset of [0,1] of type 1, e.g., for u = 10,

msmall integers(10) = low (A22)

where low is a fuzzy subset of [0,1] whose membership function

is defined by, say,

mlow(v) = 1 - S(v; 0, 0.25, 0.5), v ε [0,1] (A23)

which implies that

low = 
  0

1
∫ (1 - S(v; 0, 0.25, 0.5))/v (A24)

If F is a fuzzy subset of U, then its a-level-set, Fa,

is a nonfuzzy subset of U defined by ([18])

Fa = {u|mF(u) $ } (A25)

for 0 < a # 1.
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If U is a linear vector space, the F is convex iff for

all l ε [0,1] and all u1, u2 in U,

mF (lui + (1 - l)U2) $ min(mF (u1),mF (u2)) (A26)

In terms of the level-sets of F, F is convex iff the Fa are

convex for all a ε (0,1].1

The relation of containment for fuzzy subsets F and G of

U is defined by

F , G ⇔ mF(u) # mG(u),  u ε U (A27)

Thus, F is a fuzzy subset of G if (A27) holds for all u in U.

Operations on Fuzzy Sets

If F and G are fuzzy subsets of U, their union, F < G,

intersection, F > G, bounded-sum, F ! G, and bounded-

difference, F @ G, are fuzzy subsets of U defined by

F < G ∆=  
  U
∫  mF(U) ~ mG(U)/u (A28)

F > G = 
  U
∫  mF(u) ` mG(u)/u (A29)

F ! G = 
  U
∫ 1 ` (mF(u) + mG(u))/u (A30)

F @ G = 
  U
∫ 0 ~ (mF(u) ~ mG(u))/u (A31)

where ~ and ` denote max and min, respectively. The comple-

ment of F is defined by

F' = 
  U
∫ F(u))/u (A32)

or, equivalently,

F' = U @ F (A33)

1This definition of convexity can readily be extended to
fuzzy sets of type 2 by applying the extension principle
(see (A75)) to (A26).
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It can readily be shown that F and G satisfy the identities

(F > G)' = F' < G' (A34)

(F < G)' = F' > G' (A35)

(F ! G)' = F' @ G (A36)

(F @ G)' = F' ! G (A37)

and that F satisfies the resolution identity [2]

F = 
  0

1
∫  aFa (A38)

where Fa is the a-level-set of F; aFa is a set whose member-

ship function is maFa
 amFa

, and 
  0

1
∫  denotes the union of

the aF, with a ε (0,1].

Although it is traditional to use the symbol < to denote

the union of nonfuzzy sets, in the case of fuzzy sets it is

advantageous to use the symbol + in place of < where no con-

fusion with the arithmetic sum can result. This convention

is employed in the following example, which is intended to

illustrate (A28), (A29), (A30), (A31) and (A32).

Example A39. For U defined by (A10) and F and G ex-

pressed by

F = 0.4a + 0.9b + d (A40)

G = 0.6a + 0.5b (A41)

we have

F + G = 0.6a + 0.9b + d (A42)

F > G = 0.4a + 0.5b (A43)

F ! G = a + b + d (A44)

F @ G = 0.4b + d (A45)

F' = 0.6a + 0.1b + c (A46)
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The linguistic connectives and (conjunction) and or

(disjunction) are identified with > and +, respectively.

Thus,

F and G ∆=  F > G (A47)

and

F or G ∆=  F + G (A48)

As defined by (A47) and (A48), and and or are implied

to be noninteractive in the sense that there is no "trade-

off" between their operands. When this is not the case, and

and or are denoted by <and> and <or>, respectively, and are

defined in a way that reflects the nature of the trade-off.

For example, we may have

F <and> G ∆=  
  U
∫  mF(u) mG(u)/u (A49)

F <or> ∆=  
  U
∫  (mF(u) + mG(u) - mF(u) mG(u)/u (A5O)

whose + denotes the arithmetic sum. In general, the inter-

active versions of and and or do not possess the simplifying

properties of the connectives defined by (A47) and (A48),

e.g., associativity, distributivity, etc. (See [4].)

If a is a real number, then Fa is defined by

Fa ∆=  
  U
∫ (mF(n))

a/u (A51)

For example, for the fuzzy set defined by (A40), we have

F = 0.16a + 0.81b + d (A52)

and

F1/2 = 0.63a + 0.95b + d (A53)

These operations may be used to approximate, very roughly,
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to the effect of the linguistic modifiers very and more or

less. Thus,

very F ∆=  F2 (A54)

and

more or less F ∆=  F1/2 (A55)

If F1,..., Fn are fuzzy subsets of U1,..., Un, then the

cartesian product of F1,..., Fn is a fuzzy subset of U1 x..

.x Un defined by

F1 x ... x Fn = ∫ (mF1(u1)`...` mFn(un))/(u1,...,un)

(A56)

U1 x...xUn

As an illustration, for the fuzzy sets defined by (A40) and

(A41), we have

FxG = (0.4a + 0.9b + d) x (0.6a + 0.5b) (A57)

= 0.4/(a,a) + 0.4/(a,b) + 0.6/(b,a)

+ 0.5/(b,b) + 0.6/(d,a) + 0.5/(d,b)

which is a fuzzy subset of (a + b + c + d)x(a + b + c + d).

Fuzzy Relations

An n-ary fuzzy relation R in U1 x... x Un is a fuzzy

subset of U1 x... x Un. The projection of R on Ui1
 x... x Uik

,

where (i1,...,ik) is a subsequence of (1,...,n), is a relation

in Ui1 x... x Uik defined by

Proj R on Ui1 x...x Uik
∆= ∫ ~uj1,...,Ujl mR(u1,...,un)/(u1,...,un)

Ui1
 x...x Uik (A58)

where (j1,...,jl) is the sequence complementary to (i1,...,ik)
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(e.g., if n = 6 then (1,3,6) is complementary to (2,4,5)), and

~uj1
 ujl

 denotes the supremum over Ui1
x...x Ujl

.

If R is a fuzzy subset of Uj1
,...,Uik

, then its

cylindrical extension in U1 x...x Un is a fuzzy subset of

U1 x...x Un defined by

  R =

    

mR(ui1,...,uik ) / (u1,...,un)∫
U1 x...xU1

(A59)

In terms of their cylindrical extensions, the composition

of two binary relations R and S (in U1 x U2 and U2 x U3,

respectively) is expressed by

R ° S = Proj   R >   S on U1 x U3 (A60)

where   R and   S are the cylindrical extensions of R and S in

U1 x U2 x U3. Similarly, if R is a binary relation in U1 x

U2 and S is a unary relation in U2, their composition is

given by

R ° S = Proj R >   S on U1 (A61)

Example A62. Let R be defined by the right-hand member

of (A57) and

S = 0.4a + b + 0.8d (A63)

Then

Proj R on U1 (
∆= a + b + c + d) = 0.4a + 0.6b + 0.6d (A64)

and

R ° S = 0.4a + 0.5b + 0.5d (A65)

Linguistic Variables

Informally, a linguistic variable, x, is a variable
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whose values are words or sentences in a natural or artifi-

cial language. For example, if age is interpreted as a

linguistic variable, then its term-set, T (x), that is, the

set of its linguistic values, might be

T(age) = young + old + very young + not young + (A66)

very old + very very young +

rather young + more or less young +... .

where each of the terms in T(age) is a label of a fuzzy

subset of a universe of discourse, say U = [0,100].

A lingiustic variable is associated with two rules:

(a) a syntactic rule, which defines the well-formed sentences

in T(x); and (b) a semantic rule, by which the meaning of

the terms in T(x) may be determined. If X is a term in

T(x), then its meaning (in a denotational sense) is a subset

of U. A primary term in T(x) is a term whose meaning is a

primary fuzzy set, that is, a term whose meaning must be

defined a priori, and which serves as a basis for the com-

putation of the meaning of the nonprimary terms in T(x).

For example, the primary terms in (A66) are young and old,

whose meaning might be defined by their respective compati-

bility functions myoung and mold. From these, then, the

meaning - or, equivalently, the compatibility functions - of

the non-primary terms in (A66) may be computed by the appli-

cation of a semantic rule. For example, employing (A54) and

(A55), we have

mvery young = (myoung)
2 (A67)

mmore or less old = (mold)
1/2 (A68)

mnot very young = 1 – (myoung)
2 (A69)
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For illustration, plots of the compatibility functions of

these terms are shown in Fig. A2.

The Extension Principle

Let f be a mapping from U to V. Thus,

v = f(u) (A70)

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F = m1u1 +...+ mnun (A71)

or,more generally,

F = 
  U
∫ mF(u)/u (A72)

By the extension principle [3], the image of F under f is

given by

f(F) = m1 f(u1) +...+ mn f(un) (A73)

or, more generally,
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f(F) = 
  U
∫  mF(u)/f(u) (A74)

Similarly, if f is a mapping from U x V to W, and F and

G are fuzzy subsets of U and V, respectively, then

f(F,G) = 
  W
∫ (mF(u) ` mG(v))/f(u,v) (A75)

Example A76. Assume that f is the operation of squaring.

Then, for the set defined by (A14), we have

f(0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1) = 0.3/0.25 + 0.6/0.49

+ 0.8/0.81 + 1/1

(A77)

Similarly, for the binary operation ~ ( ∆=  max),we have

(0.9/0.1 + 0.2/0.5 + 1/1) ~ (0.3/0.2 + 0.8/0.6)

= 0.3/0.2 + 0.2/0.5 + 0.8/1 (A78)

+ 0.8/0.6 + 0.2/0.6

It should be noted that the operation of squaring in (A77)

is different from that of (A51) and (A52).



.
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1. INTRODUCTION 

In our daily life, we oftenencounter situations where we 

shall not always need the exact and detailed information to 

execute the intended behavior. For instance, let us suppose 

the case where a person asks the way in a strange place. For 

example, he will receive such an instruction as: "go straight 

on this way and turn right at the signal, then you could 

find the spot after about a few minutes walk." Then he could 

get to the spot without trouble, if the instruction is true. 

However, if we want to make a machine execute such an in- 

struction as mentioned above, just then we shall find it 

difficult to do. 

In the real world, as a matter of fact, many ill-defined 

and inexact instructions, that is, the so-called fuzzy 

instructions exist which we want to translate and execute by 

a machine. Therefore, the execution of fuzzy instructions 

using a machine is of much interest and very useful in a wide 

variety of problems relating to pattern recognition, control, 

artificial intelligence, linguistics, information retrieval 

and decision processes involved in psychological, economical 

and social fields. 

In this paper, a generalized automaton is proposed as 

an abstract model for a fuzzy machine which can translate 

and execute fuzzy programs and several methods which trans- 

late a given sequence of fuzzy instructions into another 



42
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

K. TANAKA AND M. MIZUMOTO

sequence of precise instructions called a machine program 

are also discussed. 

In addition, the practical application is presented in 

a few interesting examples to demonstrate the usefulness of 

the foregoing proposal. 

2. GENERALIZED FUZZY MACHINES 

A finite-state automaton has been taken up as a fuzzy 

machine model which executes a fuzzy program by S. K. Chang 

[1]. 

Here formulated is an extended fuzzy machine based on 

a generalized automaton and a few procedures for execution 

of fuzzy programs are also presented. 

Definition 1. A generalized machine M is a system 

given by 

M = (k,X,ψ,x ,T,V) (1) 0 

where (i) K is a finite set of machine instructions. 

(ii) X is a finite set of internal states. 

(iii) ψ is a function such that 

ψ: X x K x X → V (2) 

and is called a state transition function. 

The value of ψ, ψ(x,µ,x') « V, designates a weight 

value controlling the transition from a state x 

to a new state x' for a given machine instruction 

µ . 

(iv) x is an initial state in X. 
0 

(v) T is a finite set of final states and is a subset 

of X. 

(vi) V is a space of weight (or grade) controlling the 

state transition. 
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In the present paper an "L-fuzzy automaton" with the 

weight space defined in the lattice ordered semigroup is 

considered as a general machine. Several machines are also 

derived from L-fuzzy automata as their specific examples 

[2], [6]. 

Let us now define V = (L,v,*,0,I) in a lattice ordered 

semigroup L. where v and * denote a least upper bound in L 

and an operation of semigroup, respectively; and 0 and I 

denote zero (least element) and identity (greatest element), 

respectively. Then the state transition of L-fuzzy automata 

can be formulated as follows. For a given string of machine 

instructions µ = µ µ ...µ in K* where K* denotes a set of 
1 2 n 

all finite strings over K, the state transition function at 

each step of the machine instruction will be ψ(x , µ , x ) 0 1 1 , 

ψ(x µ x ) .. ψ(x µ , x ). Then the state of the L- 
1
, 

2
, 

2 
,. , 

n-1
, 

n n 
fuzzy automaton is said to transit from x through x one by 0 n 
one by the string of machine instruction µ and the weight 

(or grade) corresponding to this state transition is simply 

given by 

ψ(x ψ x )*ψ(x µ x ) *...*ψ(x , µ , x ) (3) 0, 1, 1 1, 2, 2 n-1 n n 

Thus the domain X x K x X of the state transition 

function ψ will be extended to X x K* x X and the weight 

(or grade) of the state transition for any input string µ = 

µ µ ...µ « K* can be given recursively as 
1 2 n 

I for x = x' 
ψ(x, e, x') = (4) 

0 for x ≠ x' 

ψ(x µ x') = v [ψ(x µ x )*ψ(x µ x )* , , , 1, 1 1, 2, 2 
x x ,...,x 1, 2 n-1 
... *ψ(x µ , x')] (5) n-1, n 

where e denotes a null string. 
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Note: For the following algebraic structure of V, various 

types of automata can be derived as specific cases of 

L-fuzzy automata. 

(i) For V = ([0,1], max, min, 0, 1), fuzzy automata 

can be obtained. 

(ii) For V = ({0,1}, max, min, 0, 1), nondeterministic 

automata can be obtained. 

(iii) For V = ({0,1}, max, min, 0, 1), deterministic 

automata can be obtained under the constraint as 

follows: there exists x' uniquely such that 

ψ(x, µ, x') = 1 for each pair of x and µ. 

(iv) For V = ([0,1], +, x, 0, 1), probabilistic 

automata can be obtained under the constraint such 

that Σ (x, µ, x') = 1. 
x'«X 

D

^

efinition 2. A generalized fuzzy machine is a system 

M = (Σ, M, W) (6) 

where (i) Σ is a finite set of fuzzy instructions and each 

fuzzy instruction σ is a function such that i 

σ : X x K → W (7) i 

(ii) M is a generalized automaton defined by 

Definition 1. 

(iii) W is a space of weight (or grade) with respect 

to the selection of a machine instruction µ . The i 
value of σ (x , µ ) « W designates the weight (or i i i 
grade) of selecting the machine instruction µ when a 

^ i 
generalized fuzzy machine M associated with a general- 

ized automaton M in the state of x has received a i 
fuzzy instruction σ . i 
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2.1. Fuzzy Machines Derived From Deterministic Automata 

This is the case where a deterministic automaton is 

chosen as an example of generalized machine M. 

(a) For W = [0,1], a fuzzy-deterministic machine similar 

to that of S. K. Chang can be derived, where 

σ (x , µ ) = min[f(x , σ , µ ), λ(x , σ , µ )] i i i i i i i i i 

shows the grade of selecting the machine instruction µ , i 
when the machine M is in the state of x and receives the i 
fuzzy instruction σ . Here note that f(? ) and λ(? ) in the 

i 
above equation represent the feasibility function and the 

performance function, respectively [1]. 

(b) For W = [0,1], a probabilistic-deterministic machine 

can be derived under the condition that 

Σ σ (x , µ ) = 1 for every σ « Σ and x « X. i i i i i 
µi 

This condition shows that a machine instruction µ is i 
selected in a probabilistic way when the machine is in the 

state of x and receives a fuzzy instruction of σ . i i 
(c) For W = {0,1} can be obtained a nondeterministic- 

deterministic machine, where σ (x , µ ) = 1 or σ (x , µ ) = i i i i i i 
0. 

The equation of σ (x , µ ) = 1 shows that a machine i i i 
instruction µ is selected in a nondeterministic way when i 
the machine is in the state x and receives a fuzzy instruc- i 
tion σ . i 

2.2. Another Type of Fuzzy Machines Derived From Various 
Classes of Automata 

A variety of generalized fuzzy machines will be derived 

from various classes of automata. 
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For W = [0,1] and V = [0,1] can be exemplified the 

generalized fuzzy machines enumerated as below. 

Fuzzy-fuzzy machine; Fuzzy-probabilistic machine; 

Fuzzy-nondeterministic machine; Fuzzy-deterministic 

machine; Probabilistic-fuzzy machine; Probabilistic- 

probabilistic machine; Probabilistic-nondeterministic 

machine; Probabilistic-deterministic machine; 

Nondeterministic-fuzzy machine; Nondeterministic- 

probabilistic machine; Nondeterministic-nondeterministic 

machine; Nondeterministic-deterministic machine 

Note: The fuzzy machine defined by S. K. Chang is equivalent 

to a fuzzy-deterministic machine and that of Jakubowski [3] 

is equivalent to a fuzzy-nondeterministic machine. 

Definition 3. A sequence of fuzzy instructions of 

σ , σ ,...,σ « Σ is called an elementary fuzzy program 
1 2 n 

σ = σ σ ... σ « Σ* and a fuzzy program is a regular ex- 
1 2 n 

pression over Σ. If every machine instruction µ is feasible i 
with respect to the every situation of the machine M and 

the state of the machine will transit successively from x 0 
through x , that is, if n 

σ (x µ ) = w ψ(x µ x ) = v 1 0, 1 1 0, 1, 1 1 
(8) 

σ (x µ ) = w ψ(x µ x ) = v 2 1, 
.
2
......

2
............

1
..
,
..

2
..
, 2 2 

σ (x µ ) = w ψ(x , µ , x ) = v , n n-1, n n n-1 n n n 

then the fuzzy program σ is sa
^
id to be executable with 

respect to the fuzzy machine M and the machine program µ is 

said to be an execution of the fuzzy program σ . This state- 

ment will be represented in the form as 

x (σ µ )x (σ µ )x x (σ , µ )x 0 1, 1 1 2, 2 2 n-1 n n n ... . (9) 
w v w v w v 1 1 2 2 n n 
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Definition 4. Let the weight (w,v) be defined by 

(w v) = (w ? w ? ... ? w , v *v * ... * v ) (10) , 1 2 n 1 2 n 

where the marks ? and * denote the operation on the weight 

space W and V, respectively. Then the fuzzy program σ is 

said to be executable with the weight (w,v) if (w,v) . (0,0). 

Example 1: Let the operation ? on W = [0,1] be min (Λ) 

and the operation * on V = {0,1} be min or x(product). Then 

the generalized fuzzy machine will be a fuzzy-nondetermin- 

istic machine described previously and the corresponding 

weight (w,v) is given by 

(w,v) = (w ` w ` ... ̀ w , 1), 1 2 n 

when the fuzzy program σ is feasible. The 1 on the right 

side of the above expression means that ψ(x , µ x ) = 0 1, 1 
ψ(x µ x ) = = ψ(x µ , x ) = 1. 1, 2, 2 ... n-1, n n 

Example 2: Let the operation ? on W = [0,1] be min and 

the operation * on V = [0,1] be x(product). Then the gener- 

alized fuzzy machine will be a fuzzy-probabilistic machine 

and the corresponding weight (w,v) is given by 

(w v) = (w ` w ` ` w v x v x x v ). , 1 2 ... n, 1 2 ... n 

3. EXECUTION PROCEDURE OF FUZZY PROGRAMS 

As one particular way of executing fuzzy programs using 

a finite state machine, Chang has given the way called 

simple execution procedure which selects the machine instruc- 

tion µ with the highest grade w = σ(x , µ ) with respect i i i-1 i 
to the fuzzy instruction σ at each step i. i 

In this paper discussed is a more general way of exe- 

cuting fuzzy programs by making use of the generalized fuzzy 

machine described previously. The reason why the machine is 

to be given with such a generality as mentioned above with 
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regard to not only the selection of the machine instruction, 

but also the mode of state transition will be easily approved 

in the following example. Suppose that a person has received 

such a fuzzy instruction as, for instance, "come to the 

school at about 9:30 a.m.". Then he will make up his mind 

to come to the school just on 9 :20 a.m. This corresponds to 

the selection of a machine instruction. In fact, however, he 

will not be able to come to the school just on 9:20 a.m. as 

usual, but his arrival will shift slightly from 9:20 a.m. 

This may be interpreted as corresponding to the state transi- 

tion. Thus, the generality of the state transition given 

to the machine will enlarge the executability of the fuzzy 

programs. 

Furthermore, in such a case where the state aimed at 

(for instance, arrival to the destination in the example of 

simulation of human drivers) can not be attained, there will 

be needed to alter the way of selecting either the machine 

instruction or the state transition. That is to say, if a 

fuzzy instruction is received by the machine in any state, 

the machine instruction will be selected in a certain way 

and the state of the machine will change according to a cer- 

tain manner. Then, if the state after the transition is not 

equivalent to the state aimed at, the successive transition 

will occur step by step according to the same manner as above 

until the attainment of the state aimed at. In this case, if 

the successive state will not be available, the machine in- 

struction is updated and the same procedure is repeated for 

the same fuzzy instruction. If there is no machine instruc- 

tion available for the given fuzzy instruction, a back- 

tracking procedure will be introduced. That is to say, the 

available machine instruction must be selected to the fuzzy 

instruction of one step prior to the last one and the desired 
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state must be searched according to the same procedure 

described above. 

The following Figure 1 shows the flow chart of the above 

mentioned procedure for execution of an elementary fuzzy 

program σ = σ σ ... σ by making use of a generalized fuzzy 
^ 

1 2 n 
machine M given by Equation (6). The way of selecting the 

machine inst ruction and that of transition of the state, 

which is labeled as 1 and 2 in Figure 1, respectively, 

will differ depending on the class of a generalized machine 

chosen. Then let us now explain that in detail. 

3.1 Selection of Machine Instruction 

^ (a) In case of fuzzy selection, the machine M selects 

the machine instruction µ « K(i, x(i-1)) with the highest 

grade at each step of the fuzzy instruction σ such that i 

σ (x(i-1),µ) ^ σ (x(i-1), µ') (11) i i 

for all other µ' in K. 

^ (b) In case of probabilistic selection, the machine M 

selects the machine instruction µ « K(i, x(i-1)) with the 

probability p at each step of the fuzzy instruction σ in i 
proportion to the fuzzy grade σ (x(i-1),µ) such that i 

σ (x(i-1),µ) i p = (12) 
Σσ (x(i-1),µ') i 
µ'«K(i, x(i-1)) 

(c) In case of nondeterministic selection, the machine 

instruction µ is chosen in K(i, x(i-1)) in a nondeterministic 

manner. 

3.2 State Transition 

(a) In case of fuzzy transition, the state of the 

machine transits from x(i-1) to x such that 
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ψ(x(i-1), µ(i), x) ^ ψ(x(i-1), µ(i), x') (13) 

for all other x' « X(i, x(i-1), µ(i)). 

(b) In case of probabilistic transition, the state of 

the machine transits to x from x(i-1) with the probability p, 

where 

ψ(x(i-1) µ(i) x) p = , , (14) Σ ψ(x(i-1), µ (i), x')
. 

x'«X(i, x(i-1), µ(i)) 

(c) In case of nondeterministic transition, the state of 

the machine transits from x(i-1) to x(i) in X(i, x(i-1), µ(i)) 

in a nondeterministic way. 

(d) In case of deterministic transition, the state 

available for the machine is uniquely determined depending 

on the property of its state transition function ψ. 

4. SIMULATION OF HUMAN DRIVER'S BEHAVIOR 

A simulation was conducted so as to experiment the pro- 

cedures for executing a fuzzy program by the use of either a 

fuzzy-deterministic machine or a probabilistic-deterministic 

machine. 

Let the fuzzy instructions for a driver by the following 

five kinds: 

(i) σ (L) : Go about L meters, (ii) σ : Turn right, go R 
(iii) σ : Turn left, (iv) σ* : Go straight, (15) L go 
(v) σ : Until ~ {~} , 

Preceding to the execution of these fuzzy instructions, 

each of them has to be rewritten as a sequence of the fol- 

lowing three kinds of quasi- fuzzy instructions, i.e., 
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(i) σ : Go ahead one step (ii) σ : Turn right, , R go (16) 
(iii) σ : Turn left, 

L 
by making use of the three methods of MAX-method, PROB-method 

and *.-method for rewriting. The quasi-fuzzy instructions 

thus obtained are then interpreted by the MAX-method into the 

eight kinds of machine instructions which are composed of the 

elementary movements given by the eight directions. 

4.1. Fuzzy Instructions, Quasi-fuzzy Instructions, and 
Quasi-internal States 

A computer experiment was made to simulate the behavior 

of a driver who is directed the way by a sequence of fuzzy 

instructions. The initial position (the coordinates and the 

direction) is given and a typical set of fuzzy driving in- 

structions and a set of quasi-fuzzy instructions are shown 

respectively by (15) and (16) mentioned previously. 

Assuming the quasi-fuzzy instructions just as the 

machine instructions, the execution procedure discussed in 

the Section 3 can now be available to rewrite the fuzzy in- 

structions into a sequence of the quasi-fuzzy instructions. 

The internal state of a fuzzy machine is given as a pair 

of the coordinate and the direction with respect to each 

position of the driver on a digitized map shown in Figure 7. 

However, let us now introduce the notion of a quasi-internal 

state so as to reduce the number of the internal states. The 

roads on the map are classified according to the shape of the 

node and the branch, and the quasi-internal state of the 

fuzzy machine is designated as a pair of the shape of the 

node or the branch on the map and the direction of the driver 

as shown in Figure 4. 

Then let us compose an evaluation table for selecting a 

machine instruction at each step of the quasi-fuzzy 
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instruction and the quasi-internal state as follows. Let 

the machine instructions be assigned by the following eight 

instructions of µj's(j=1,2,...,8) where µj denotes the in- 

struction with respect to the j-th direction in Figure 7. If 

the evaluation value Φ(β,s) defined below is given for 

selecting a machine instruction, the evaluation table can be 

made for a given pair (β,s) of a quasi-fuzzy instruction β

and a quasi internal-state s as shown in Figure 4. 

0, if there is no machine instruction 
available Φ(β,s) = . 

i, if µ is available. (17) i 
ixl0+j, if µ is more available than µ . i j 

where the last equation means that the grade of selecting 

the machine instruction µ is higher than that of selecting i 
µj when the fuzzy machine is in the quasi-internal state s, 

i.e., β(s, µ ) . β(s, µ ). i j 

4.2. Execution Procedures of Fuzzy Instructions 

There are two cases of giving fuzzy instructions, that 

is, (a) the case where fuzzy instructions are given step by 

step, and (b) the case where a sequence of fuzzy instructions 

is given a priori. A practical example of (a) is supposed 

to be the case where a fellow passenger gives the fuzzy in- 

struction step by step to the driver who has to memorize all 

the past fuzzy instructions given at each step as well as the 

past fuzzy instructions given at each step as well as the 

present one and has to judge and behave by himself. On the 

other hand, the case of (b) will be illustrated by such an 

example that the driver is given a note showing a route and 

he can know the state of the route beforehand. 

Let us consider the execution procedure of, for instance, 

a fuzzy instruction as "Go about L meters" given in the 
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expression (15). The idea of "about L meters" may be dealt 

with the concept of a fuzzy set and it will be characterized 

by a membership function as shown in Figure 2. The mode of 

selection of the distance for a fuzzy instruction named "Go 

about L meters" willbe specified by the following three types. 

1 Type 1 where a threshold α is set and the distance 

with the highest grade of membership among all the dis- 

tances whose grades of membership are larger than α is 

selected. 

2 Type 2 where the distance is selected with the pro- 

bability proportional to the grade of membership which 

is larger than a specified threshold α. 

3 Type 3 where any distance whose grade of membership 

is larger than a specific threshold α is permissible. 

Here let the fuzzy instruction be given in the same way 

as in the case of (a) mentioned previously, and let us dis- 

cuss in more detail on the execution procedures for this case. 

[a-1] MAX-Method 
A set of fuzzy instructions named "Go about L meters" 

can be specified by the membership function. Here, setting 

a threshold α(1 $ α $ 0), the membership function w(<) is 

truncated at. a point η where w(η) = α and at another point 

η' where w(η') = α as shown in Figure 2. 

The driver goes ahead η meters without condition. Upon 

arriving at < = η he selects the distance with the highest 

grade of membership in the interval [η,η']. If it is not 

available, the distance with the second highest grade is 

selected. Such a method is designated MAX-Method and η is 

named a "Lowest Bound." 

[a-2] PROB-Method 

The fuzzy instruction is chosen with a probability p(<) 
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which is proportional to the grade of membership w(<) in the 

interval [η,η']. This method is called PROB-Method. 

[a-3] *-Method 

The drivers goes ahead step by step to the point where 

the next instruction will be executable. This is named *-Me- 

thod and is a specific type of 3 mentioned previously. 

In the next section, we shall present an example of simu- 

lation of human drivers to whom the driving instructions are 

given step by step as in the case of (a). 

4.3 Simulation of Human Driver's Behavior Directed by Fuzzy 
Instructions 

In our example, the map is digitized as shown in Fig. 7, 

where the unit scale of the coordinates is equal to 10 meters, 

the direction allowable to the driver is quantized in the 

eight directions and the symbols on the map are illustrated in 

Fig. 3. The initial position is given by a triplet (x, y; d), 

where (x, y) is the coordinates of the initial position of the 

driver and d indicates the direction of the driver. 

The procedure to rewrite a fuzzy instruction into a quasi- 

fuzzy instruction is as follows. 
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(i) "Go about L meters" σ (L) go 
The fuzzy instruction σ (L) is divided into two instruc- 

go 
η Y-η η

tions such as σ (L) and σ (L), where σ (L) is the in- go go go 
struction such that the driver goes on until the lowest bound 

Y-ηη meters and σ (L) is the instruction such that the dri- 
go η

ver goes Y - η meters.* Here note that σ (L) is executed go 
by the η times of quasi-fuzzy instruction σ named "Go ahead go Y-η
one step", σ (L) is executed by the Y - η times of σ , go go 
and Y is determined by making use of one of the MAX-Method, 

PROB-Method and *-Method. 

Hereupon the membership function for the set named "Go 

about L meters" is given by the following equation (18), 

w(<) 1 (18) =
<-L 21 + ( ) a 

where a = kL (1 . k . 0), (19) 

k may seem to denote a "Parameter Representing Distance-Sense " 

in the meaning that the driver is said to be sensitive to dis- 

tance when k is small. 

(ii) "Turn right" σR 
(iii) "Turn left" σL 

σ and σ are both found also in the quasi-fuzzy instruc- 
R L 

tions defined already. 

(iv) "Go straight" σ * go 
σ * can be assumed to be the succession of the quasi- 
go 

fuzzy instruction σ named "Go ahead one step" until the next 
go 

State-testing Fuzzy Instruction such as σ , σ and σ{~} in our R L 
case will be executable. 

(v) "Until ~" σ{~} 

This fuzzy instruction is rather regarded as a state- 

* In our experiment, one step is made equal to one meter. 
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testing instruction and does not need to be converted into a 

quasi-fuzzy instruction. The interpretation of this instruc- 

tion is to examine whether the present location of the driver 

is coincident with the destination or not by comparing the 

present coordinate with that of the destination stored in the 

machine. Fig. 3 shows a table of the destination to be stored 

in the machine. 

. 

Thus the five kinds of fuzzy instructions are converted 

into a sequence of the three kinds of quasi-fuzzy instructions 

in (16). 

Then the machine instruction µ (i=1,2,...,8) which is i 
really executable in the machine is selected by reference to 

the evaluation value Φ(β, s) accompanied with the pair of the 



58
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

K. TANAKA AND M. MIZUMOTO

present quasi-fuzzy instruction β and the quasi-internal state 

s depending on the present position of the driver. The fol- 

lowing Fig. 4 gives such an evaluation table where the inte- 

ger of two figures shows that the machine instruction indi- 

cated by the second order figure is more preferable than that 

in the first order, and the integer of only one figure shows 

that the machine instruction indicated by that figure can be 

executable. 

After all, summarizing the above argument, the execution 

procedure for a simulation of human driver's behavior direc- 

ted by fuzzy instruction is illustrated by the flow chart 

shown in Fig. 5. 

4.4 Computer Simulation Example for Human Driver's Behavior 

Let such a sequence of fuzzy instructions as shown in 

Fig. 6 be given to a driver. This instruction means that (i) 

the driver starts from the point (50, 55), (ii) turns left 

at the branch point of y = 31, (iii) stops in the bank at 

(43, 24), (iv) turns right at the crossing of (40, 21), 

(v) drops in the restaurant at (40,15), (vi) and then goes on 

until the school at (10, 5) after turning left at the three- 

fork of (40, 5). 

The computer simulation executed by the respective method 

of MAX-, PROB- and *-Method for the sequence of fuzzy instruc- 

tions given above is exemplified in Figures 7, 8, and 9. 

As can be seen from Figures 7, 8, and 9, the MAX-Method 

is most efficient to get to the destination, while the PROB- 

Method causes the driver to loiter around the same point and 

the *-Method lets him try such points as seem not to be con- 

cerned. 

Such relative qualities of the three methods as mentioned 

above are supposed to be true from some results of simulation 

conducted with respect to some different kind of sequences of 
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fuzzy instructions and various values of parameter represen- 

ting distance-sense. 

5. SIMULATION OF CHARACTER GENERATION 

Let us now consider the process that a child starts to 

learn how to write characters and he will be good at writing. 

At the beginning, he is taught to write characters by his 

parents or his teachers. As is usual with this case, the 

teacher will teach him how to write a character in a rough 

way without measuring length, inclination and other features 

of strokes in the character or will set him a copy of a cor- 

rect character. The above statement may seem to show that a 

child learns how to write a character based on a kind of rough 

rather than complete and correct informations about the char- 

acter. 

Thus a child writes a character following the instruc- 

tions of his teacher, and then his teacher lets him correct 

the character by giving such ambiguous instructions as "make 

here a little shorter", "write round a little" and so on. 
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Through repeated practice in this manner, the child will grad- 

ually become to be able to write the characters in a correct 

way. 

In this chapter, we shall conduct a computer simulation 

of the process of human learning stated above by making use of 

the concept of fuzzy program and learning algorithm. Let us 

provide the four kinds of fuzzy instruction as follows. 
(i) Start (to write) from a point nearby (x, y). 

(ii) Turn by about ρ degrees. 

(iii) Draw about K steps. 

(iv) If the end point is not close to (x', y') 

then do "Back-up". 

Then let us adopt the following three types of procedure for 

executing a fuzzy program composed of the fuzzy instructions 

given above. 

(I) MAX-Method, 

(II) PROB-Method with Simple Modification, (21) 

(III) PROB-Method with Reinforced Modification. 

5.1 Execution Procedures of Fuzzy Instructions 

The execution procedure of a fuzzy program for generating 

a character will be similar in general to that in a simula- 

tion of human driver. However, there exists a slight dis- 

crepancy that fuzzy instructions in this case are converted 

directly into machine instructions while those in a simula- 

tion of human drivers are translated into machine instructions 

after converting once into quasi-fuzzy instructions. 

As a matter of fact, in the latter case there exist some 

constraints that the driver has to go ahead step by step 
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looking up the destination on the map and that he can not 

start to walk from quite a different point from the present 

location, but he must go on the road consequtively without 

skip. On the other hand, in the former case there is no con- 

straint excepting the space limit for writing a character and 

also there is no necessity for drawing a line step by step. 

Therefore, in a simulation of human driver, if there is a fuz- 

zy instruction which is not executable, the driver is forced 

to turn back to that previous to the present fuzzy instruction, 

while in a generation of a character there is no such a con- 

straint but the interpretation may proceed from any instruc- 

tion which is not always previous to the present instruction. 

This matter may seem to correspond to the fact that if there 

is an incorrect portion in a character, we can erase that por- 

tion and rewrite it in a correct way. 
The mode to select the machine instruction is specified 

as follows in the same way as in the simulation of human 

drivers, that is, 

(a) MAX-Method 

(b) PROB-Method 

(c) Non-deterministic Method. 

In case where a fuzzy instruction is not executable, the 

following Back-up procedures are provided. 

(1) Turn back to the fuzzy instruction previous to the 

present one. 

(2) Turn back to the fuzzy instruction corresponding to 

the machine instruction with the lowest grade of 

membership in a series of machine instructions se- 

lected consequtively up to now. 

(3) The "Back-up" procedure is the same as (2). How- 

ever, as for the selection of the machine instruc- 

tion corresponding to the fuzzy instruction to which 
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"Back-up" was done, the machine instruction with 

the higher grade of membership than before is to be 

selected, though in (2) the selection is made with- 

out constraint as above. 

Procedure (1) is the same as used in a simulation of human 

driver. Procedure (2) is available to the case where correc- 

tion is made from the worst portion in a character written. 

And procedure (3) is used in the case where we try to re- 

write better than before. 
By combining the selection mode of machine instructions 

with the "Back-up" methods, there can be obtaine.d a variety 
of execution procedures of a fuzzy program. For instance, 

combining the MAX-Method (a) with the Back-up Method (1), we 

can obtain the MAX-Method in Equation (22) and also, com- 

bining the PROB-Method (b) with the Back-up Method (1), we 

can obtain the PROB-Method as discussed in the previous chap- 

ter. 

In this chapter, as is shown in Equation (21), let us use 

the MAX-Method, PROB-Method with Simple Modification which is 

a combination of (b) and (2), and PROB-Method with Reinforced 

Modification which is a combination of (b) and (3). 

5.2 Simulation of Character Generation 

A sypical set of fuzzy instructions for generating, for 

example, a character "A" is given in Fig. 10. The meaning of 

this sequence is illustrated in Fig. 11, where the mark of 

wavy underline "x" shows that x is approximate to x and the 
~ ~ 

degree of an angle measured anti-clockwise is positive and 

that measured clockwise is negative. And also the instruc- 

tion named "TURN BY" indicates to turn by ρ degrees from the 

present direction. 
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Plotted is in Figs. 12, 13, and 14, respectively, an ex- 

ample of simulation for generating a character, say, "A" by 

making use of the three types of execution procedures of fuz- 

zy instructions shown in Equation (21). The only one condi- 

tional statement among the fuzzy instructions for generation 

of a character "A" is No. 10 in Fig. 10. If this condition is 

not satisfied, then "Back-up" is to be conducted. From Figs. 

12, 13, and 14 we can see how "Back-up" is conducted in the 

respective method. 

As is suggested from those figures, the execution of fuz- 

zy programs employing the MAX-Method does not consume much 
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time in general if the parameters in the fuzzy instructions 

are correct. The reason is as follows. There is no contraint 

in the case of character generation unlike the case of simula- 

tion of driver's behavior where the driver is subject to some 

restriction depending on the road and others. Therefore the 

machine instructions selected in this case are equivalent to 

such parameters as coordinate, angle, number of steps and so 

on in the fuzzy instruction. On the other hand, the MAX-Method 

is not adequate to generation of characters in a free way. 

Form the fact that human does not always write the completely 

same character, this method may be said to be not so much 

suitable for character generation. 

The PROB-Method with Simple Modification will be able to 

generate characters most freely. However, it consumes much 

time to execute fuzzy programs, because there is a possibility 

to select the machine instruction with a lower grade of mem- 

bership than the previous one when the "Back-up" is conducted. 

Finally, the PROB-Method with Reinforced Modification may 

seem to be the best one comparing with the other two methods 
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stated above. In fact, this method does not consume so much 

time to execute fuzzy programs and besides can generate char- 

acters fairly freely, because the machine instruction with a 

higher grade of membership than the previous one is to be se- 

lected compulsory when a "Back-up" occurred. 

5.3 Character Generation with Learning Process 

Incorrect portions of a character generated by a fuzzy 

program will usually be corrected also by "fuzzy correcting 

instructions." If there remain still incorrect portions in 

the character thus corrected, the same procedure will be re- 

peated again and again. In this case, however, it should be 

suggested that the fuzzy program will be able to generate the 

more correct character faster than usual through a learning 

process which is encountered always in human study of writing. 

5.3.1 Fuzzy Instruction for Correction & Learning 
Algorithm 

Let the fuzzy instructions for correcting bad portions of 

a character be composed of the following instructions (a) - 

(h) and the following adjectives (i) - (k). 

(a) LONG, (b) SHORT, (c) ANTICLOCKWISE, (d) CLOCKWISE, 

(e) RIGHT, (f) LEFT, (g) UP, (h) DOWN 

(i) VERY, (j) LITTLE, (k) MUCH 

The learning algorithm used in this simulation is a 

linear reinforcement rule given by Equation (22). 

w (x) = λw (x) + (1 - λ)χ (22) 
n+1 n n 

where w denotes the grade of a parameter x at the n-th learn- 
n 

ing stage which is involved in the membership function speci- 

fying a fuzzy instruction and 0 % λ % 1. 

1, if x is adequate, 

χn = 
0, if x is not adequate, 

that is, if the parameter x (such as, say, a stroke length or 
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a stroke inclination, etc) modified by fuzzy correcting in- 

structions is assumed to be adequate by the teacher, χ = 1 n 
and if it is assumed to be not adequate, χ = 0. n 

In practice, bad portions of a character displayed on a 

graphic unit are corrected by fuzzy correcting instructions 

through a light pen as shown in Fig. 16. After cleaning out 

all of bad portions, the character thus corrected is displayed 

again and the instruction named "GOOD" is pointed out by a 

light pen if there is no bad portion. 

It should be noticed that, in the present case, the ini- 

tial fuzzy instructions for character generation are modified 

through learning process under supervision of the fuzzy in- 

structions which is given to correct bad portions of a char- 

acter. 

5.3.2 Simulation of Learning Process 

The fuzzy program to generate a character "B" is as shown 

in Fig. 15. Fig. 16 exemplifies the character "B" generated 

by the execution of this program by making use of the PROB- 

Method with Reinforced Modification. 

Let us now correct bad portions of the character "B" thus 

displayed. This is simply performed as follows. By applying 

the fuzzy correcting instructions, the grade of membership of 

the fuzzy instructions given originally can be updated so as 

to generate the more correct character. This updating proce- 

dure is just a learning process and its algorithm is based on 

a linear reinforcement rule. On the lefthand side of Fig. 16 

are shown the fuzzy correcting instructions used and Fig. 17 

demonstrates the corrected character "B" by learning correc- 

tion mentioned above. 

Of course, the simulation has been performed also in the 

two cases of MAX-Method and PROB-Method with Simple Modifica- 

tion other than PROB-Method with Reinforced Modification 
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Summarizing those simulation results, the following com-

parison can be obtained. The MAX-Method is not adequate to

generate a character written freely while the number of cor-

rection procedures is small and it can generate a character

as directed by the program. The PROB-Method with Simple Modi-

fication has a merit to be able to generate a freely-written

character excepting that it requires a large number of cor-

rection procedures and not so enough learning effect can be

expected. Contrary to the above two methods, the PROB-Method

with Reinforced Modification may seem to be the best way be-

cause it can generate a fairly free character and none the

less enough learning effect can be expected by a fairly few

correction procedures.

6.  CONCLUSION

In this paper, as an abstract model of a machine for the

execution of fuzzy programs, a generalized fuzzy machine has

been formulated from which a variety of fuzzy machines have

been introduced.
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Several methods of execution of fuzzy programs have been 

investigated by making use of the fuzzy machines introduced 

above. It has been pointed out that there exist three ways 

such as fuzzy- , probabilistic- and nondeterministic way de- 

pending on the specific character of the respective fuzzy ma- 

chine with repsect to the way of selecting a machine instruc- 

tion to a given fuzzy instruction and the way of state transi- 

tion. Thereby, a unified survey for various execution methods 

of fuzzy programs can be obtained. 

In addition, as some application examples using the pre- 

sented methods for execution of fuzzy programs, the two simu- 

lation experiments such as human driver's behavior and char- 

acter generation with learning process have been discussed. 

As the conclusion of this simulation, it has been found that 

in case of human driver's behavior the MAX-Method is best and 

in case of character generation the PROB-Method with Rein- 

forced Modification is most favorable. 

As a topic for further discussion, there remains an in- 

vestigation of interpretation and execution methods of the 

more complicated fuzzy programs by making use of the concept 

of fuzzy semantics [4] as well as that of fuzzy algorithm [5]. 
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ABSTRACT 

Some basic properties of fuzzy relations are reviewed, 

and generalized to the case where the underlying set is a 

fuzzy set. Fuzzy analogues of several basic graph-theoretic 

concepts (e.g., bridges and trees) are defined, and some of 

their properties are established. 

1. INTRODUCTION 

Fuzzy relations on a set S -- i.e., mappings from SxS 

into [0,1] -- have been studied by Zadeh [1-2] and by Tamura, 

et al. [3]; they are also discussed in detail by Kaufmann [4]. 

In particular, fuzzy analogs have been defined for the (ir-) 

reflexivity, (anti-)symmetry, and transitivity properties of 

relations; in terms of these, fuzzy analogs of equivalence and 

order relations have been introduced. 

In the first part of the present paper, some of these 

ideas are reviewed, and it is shown how one can generalize 

them to fuzzy relations "on" a fuzzy subset of the given set 

S, rather than on S itself. 

In the second part of the paper, graph terminology is 

i�ntroduced, and fuzzy analogs of several basic graph-theoretic 
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concepts are defined, including subgraphs; paths and connec- 

tedness; cliques; bridges and cutnodes; forests and trees. 

Much more could be done along these lines; it is hoped that 

this paper will serve to stimulate further work on fuzzified 

graph theory. 

2. FUZZY RELATIONS ON FUZZY SETS 

Let S be a set. We recall that a fuzzy subset of S is a 

mapping σ : S → [0,1] which assigns to each element x « S a de- 

gree of membership, 0 # σ(x) # 1. Similarly, a fuzzy rela- 

tion on S is a fuzzy subset of SxS, i.e., a mapping µ : SxS 

→ [0,1] which assigns to each ordered pair of elements (x,y) 

a degree of membership, 0 # µ(x,y) # 1. In the special 

cases where σ and µ can only take on the values 0 and 1, they 

become the characteristic functions of an ordinary subset of 

S and an ordinary relation on S, respectively. 

If T ⊆ S is a subset of S, and R ⊆ SxS a relation on S, 

then R is a relation on T provided that (x,y) « R implies 

X « T and y « T for all x,y. Let τ and ρ be the characteristic 

functions of T and R, respectively ; then this condition can 

be restated as 

ρ(x,y) = 1 implies τ (x) = τ (y) = 1 for all x,y in S 

This is readily equivalent to 

ρ(x,y) # τ (x) ̀ τ (y) for all x,y in S, 

`where means "inf". 

Returning to the general case where σ is a fuzzy subset 

of S and µ a fuzzy relation on S, we shall say that µ is a 

fuzzy relation on σ if 

µ(x,y) # σ(x) ̀ σ(y) for all x,y in S. 
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In other words, for µ to be a fuzzy relation on σ, we require 

that the degree of membership of a pair of elements never ex- 

ceed the degree of membership of either of the elements them- 

selves. (If we think of the elements as nodes in a graph, 

and of the pairs as arcs (see Section 6), this amounts to 

requiring that the "strength" of an arc can never exceed the 

strengths of its end nodes.) 

Proposition 2.1. For a given fuzzy subset σ of S, the 

strongest fuzzy relation on S that is a fuzzy relation on σ

is µ , defined by σ

µ (x,y) = σ(x) ` σ(y) for all x,y in S. // σ

Proposition 2.2. For a given fuzzy relation µ on S, the 

weakest fuzzy subset of S on which µ is a fuzzy relation is 

σ , defined by µ

σ (x) = sup [µ(x,y) ~ µ(y,x)] for all x in S, µ y«S 

where ~ means "sup".// 

For any t, 0 # t # 1, the set 

σ = {x«S | σ(x) $ t} 
t 

is a subset of S, and the set 

µ = {(x,y) « SxS | µ(x,y) $ t} 
t 

is a relation on S. Using this notation, we can state 

Proposition 2.3. Let µ be a fuzzy relation on σ, and 

let 0 # t # 1; then µ is a relation on σ . t t 
Proof: For any pair (x,y) « µ we have t # µ(x,y) 

t 
# σ(x) ̀ σ(y). Thus σ(x) and σ(y) each $ t, and so are in 

σ .// t 

3. COMPOSITION OF FUZZY RELATIONS 

Let µ and ν be fuzzy relations on σ. By the composite 
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of µ and ν is meant the fuzzy set µ + ν defined by 

(µ +ν)(x z) = sup [µ(x,y) ̀ ν (y,z)] for all x,z in S. , y«S 

(Other definitions of composition of fuzzy relations will be 

discussed below; the present definition is called max-min 

composition.) 

Proposition 3.1. µ+ν is a fuzzy relation on σ. 

P f F 11 h ( ) # σ( ) ( ) d `roo : or a x,y,z we ave µ x,y x σ y an 

ν( ) # σ( ) σ( ) Th s `y,z y z . u 

µ(x y) ν (y z) # σ(x) ̀ σ(y) ` σ(z) # σ(x) ̀ σ(z) , ` , 

for every y, so that 

(µ +ν)(x,z) = sup [µ(x,y) ` ν (y,z)] # σ(x) ̀ σ(z) y«S 

for all x,z.// 

It is well known that composition of fuzzy relations is 

associative, i.e., for all µ,ν,ρ we have µ + (ν + ρ) = (µ +ν) + ρ. 

We can thus uniquely define the powers of a fuzzy relation 
1 2 3 2 as µ = µ, µ = µ +µ, µ = µ + µ = µ + µ + µ, and so on. We shall 

also define 

∞ k µ = sup µ . k=1,2,... 

Finally, it is convenient to define 

0 µ (x,y) = 0 if x ≠ y 

for all x,y in S. 
0 µ (x,x) = σ(x) 

Proposition 3.2. For all t, 0 # t # 1, we have (µ +ν) t 
= µ + ν . t t 

Proof: The following statements are all equivalent: 

a) (x,z) « (µ+ ν) 
t 

b) (µ+ ν)(x,z) $ t 

c) µ(x,y) ` ν (y,z) $ t for some y « S 
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d) µ(x,y) $ t and ν (y,z) $ t 

e) (x,y) « µ and (y,z) « ν
t t 

f) (x,z) « µ + ν (by definition of composition 
t t 

of ordinary relations).// 

Proposition 3.3. If µ # ν and λ # ρ, then µ+ λ # ν + ρ. 

Proof: (µ+ λ)(x,z) = sup [µ(x,y) ` λ(y,z)] y«S 
# sup [ν (x,y)` ρ(y,z)] = (ν + ρ)(x,z) for all x,z in S.// y«S 

Other definitions of composition of fuzzy relations are 

sometimes used. For example, we can define the max-prod and 

max-av composites of µ and ν, respectively, by 

(µ + ν)(x,z) + sup [µ(x,y) ? ν (y,z)] . y«S 
1 

(µ + ν)(x,z) =
_ 

sup [µ(x y) + (ν(y z)] + 2 y«S , , 

Note that 

µ +.ν # µ + ν # µ +ν for any µ.ν. 
+ 

Such alternative definitions seem, in many cases, to be 

more intuitively appealing than the max-min definition. For 

example, with the max-min composite, if we can find a y that 

is strongly µ-related to x and strongly ν-related to z, 
1 1 1 1 e g µ(x y) = ν (y z) = _ we have (µ + ν)(x,z) $

_ ` _ = _ , . ., , , 2, 2 2 2 
i.e., x and z are just as strongly (µ + ν)-related to each 

other. This may seem counterintuitive; just because there 

is a y that is closely similar to both x and z, it should not 

follow that x and z are just as similar to each other. Here 

the max-prod composite would give a more plausible result, 
1 1 1 namely (µ + ν)(x z) _ 

?
_ = _ . . , 2 2 4 . 

On the other hand, many useful properties of the max-min 

composite fail to hold for the alternative definitions. For 

example, Propositions 3.1-2 are true for max-prod, but not 

for max-av, though Proposition 3.3 is true for both. As we 

shall see below, however, many other properties of the 



82
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

AZRIEL ROSENFELD

max-min composite hold for max-av but not for max-prod. We 

shall continue to use max-min as our basic definition. It 

would be of interest to formulate conditions on a definition 

of composition that would be both necessary and sufficient 

for the various properties to hold -- in particular, to 

determine the greatest (or least) composition that satisfies 

a given property. 

4. REFLEXIVITY AND SYMMETRY 

Let µ be a fuzzy relation on σ. We call µ reflexive if 

µ(x,x) = σ(x) for all x«S. 

(This generalizes the usual definition, which requires 

µ(x,y) = 1 for all x.) 

Proposition 4.1. If µ is reflexive, then µ(x,y) #

µ(x,x) and µ(y,x) # µ(x,x) for all x,y in S. 

Proof: µ(x,y) # σ(x) ̀ σ(y) # σ(x) = µ(x,x).// 

Proposition 4.2. If µ is a reflexive fuzzy relation on 

σ, then for any 0 # t # 1, µ is a reflexive relation on σ . t t 
Proof: For all x«σ we have t # σ(x) = µ(x,x), so that 

t 

(x,x) « µ .// t 

Proposition 4.3. If µ is reflexive, then for any ν we 

have 

µ +ν $ ν and ν + µ $ ν. 

Proof: (µ + ν)(x z) = sup [µ(x,y) ̀ ν (y,z)] $ µ(x,x)`, y«S 
ν (x,z) = σ(x) ` ν (x,z). But ν (x,z) # σ(x)` σ(x) ; hence 

( ) ( ) ( ) h h d ( ν)( ) `σ x ν x,z = ν x,z , so t at we ave prove µ + x,z 

$ ν (x,z) for all x,z in S.// 

Corollary 4.4. If µ is reflexive, µ # µ + µ.// 
0 1 2 ∞Corollary 4.5. If µ is reflexive, µ # µ # µ #...# µ .// 
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0 1 Corollary 4.6. If µ is reflexive, µ (x,x) = µ (x,x) = 
2 ∞µ (x,x) = ... = µ (x,x) = σ(x).// 

Proposition 4.7. If µ and ν are reflexive, so is µ + ν . 

Proof: (µ + ν)(x,x) = sup [µ(x,y) ̀ ν (y,x)] $ µ(x,x)`y«S 
ν (x,x) = σ(x) ` σ(x) = σ(x).// 

Propositions 4.3 and 4.7 do not hold for the max-prod 

composition, but they do hold for the max-av composition. 

We call µ symmetric if µ(x,y) = µ(y,x) for all x,y in 

S. It is clear that if µ is symmetric, so is µ for any 
t 

threshold t. Note that the symmetry property does not 

depend on the choice of fuzzy subset σ, unlike reflexivity. 

Proposition 4.8. If µ and ν are symmetric, then µ + ν

is symmetric if and only if µ + ν = ν + µ. 

Proof: µ + ν symmetric means 

sup [µ(x,y) ` ν (y,z)] = sup [µ(z y) ̀ ν (y x)] y«S y«S , , 

for all x,z, while µ + ν = µ + ν means 

sup [µ(x,y) ` ν (y,z)] = sup [ν (x,y)` µ(y,z)] y«S y«S 

for all x,z. 

If µ and ν are symmetric, the two right-hand sides are 

equal.// 

Corollary 4.9. If µ is symmetric, so is every power 

of µ.// 

These last results would hold for any definition of composi- 

tion that is based on a commutative operation on [0,1]. 

5. TRANSITIVITY 

We call µ transitive if µ + µ # µ. Note that, like 

symmetry, this property does not depend on σ. Readily, 
k ∞transitivity implies µ # µ for all k, so that µ # µ. It is 

∞also easily seen that, for any µ, µ is transitive. 
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Proposition 5.1. If µ is symmetric and transitive, then 

µ(x,y) # µ(x,x) for all x,y in S. 

Proof: µ(x x) $ (µ + µ)(x,x) = sup [µ(x,y) ̀ µ(y,x)] , y«S 
= sup µ(x,y).// y«S 

Proposition 5.2. If µ is a transitive relation on σ, 

then for any 0 # t # 1, µ is a transitive relation on σ . t t 
Proof: µ(x,z) $ (µ + µ)(x,z) $ µ(x,y) ̀ µ(y,z) for any 

x,y and z; hence µ(x,y) $ t and µ(y,z) $ t imply µ(x,z) $ t.// 

Proposition 5.3. If µ is transitive and ν, ρ each # µ , 

then ν + ρ # µ . 

Proof: (ν + ρ)(x z) =- sup [ν (x,y) ` ρ(y,z)] #, y«S 
sup [µ(x,y) ̀ µ(y,z)] = (µ + µ)(x,z) # µ(x,z) for all x,z.// 

y«S 
Corollary 5.4. If µ is transitive, ν is reflexive, and 

ν # µ, then ν + µ = ν + µ = µ. 

Proof: Propositions 4.3 and 5.3.// 

Corollary 5.5. If µ is reflexive and transitive, then 

µ + µ = µ.// 
Corollary 5.6. If µ is reflexive and transitive, then 

0 1 2 ∞µ # µ = µ =...= µ .// 

Proposition 5.7. If µ and ν are transitive, and µ + ν

= µ + ν, then µ + ν is transitive. 

Proof: By associativity and by the fact that µ and ν

commute, we have (µ + ν) + (µ + ν) = (µ + µ) + (ν + ν) # µ + ν (the 

last step uses Proposition 3.3).// 

Propositions 5.1 and 5.2 hold for the max-av composition, 

but not for max-prod; Propositions 5.3 and 5.7 hold for both 

(but the corollaries hold only for max-av). On the other 

hand, the max-av (and max-min) definitions of transitivity 

impose severe restrictions on the values that the fuzzy re- 

lation can take on. In particular, suppose thatµ is sym- 

metric and (max-min) transitive; let x,y,z be any three 

elements of S, and suppose -- without loss of generality -- 
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that µ(x,z) # µ(x,y) # µ(y,z). Then by transitivity we have 

µ(x,z) $ (µ + µ)(x,z) $ µ(x,y) ̀ µ(y,z) = µ(x,y). 

Thus µ(x,z) = µ(x,y) -- i.e., for any three elements of S, 

the degrees of relatedness of the two less related pairs must 

be equal. The situation is even worse for the max-av defini- 

tion, where we have 

1 µ(x z) $ (µ + µ)(x,z) $ _[µ(x,y) + µ(y,z)], , 2 

which together with µ(x,z) # µ(x,y) # µ(y,z) implies that 

all three must be equal! For max-prod, on the other hand, 

we have only 

µ(x,z) $ µ(x,y) ? µ(y,z) 

and no two of the µ's need be equal; however, the smallest 

must be at least equal to the square of the next smallest. 

6. FUZZY GRAPHS 

Any relation R ⊆ SxS on a set S can be regarded as de- 

fining a graph with node set S and arc set R. Similarly, any 

fuzzy relation µ : SxS → [0,1] can be regarded as defining a 

weighted graph, or fuzzy graph, where the arc (x,y) « SxS 

has weight µ(x,y) « [0,1]. In this and the following sections 

we shall use graph terminology, and introduce fuzzy analogs 

of several basic graph-theoretic concepts. For simplicity, 

we will consider only undirected graphs -- i.e., we assume 

that our fuzzy relation is symmetric, so that all arcs can be 

regarded as unordered pairs of nodes. (We will never need 

to consider loops, i.e., arcs of the form (x,x) ; we can 

assume, if we wish, that our fuzzy relation is reflexive.) 

Formally, a fuzzy graph G = (σ,µ) is a pair of functions 

σ : S → [0,1] and µ : SxS → [0,1], where for all x,y in S we 
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have µ(x,y) # σ(x) ̀ σ(y). The fuzzy graph H = (τ ,ν) is 

called a (partial) fuzzy subgraph of G if 

τ (x) # σ(x) for all x«S 

and ν (x,y) # µ(x,y) for all x,y « S. 

For any threshold t, 0 # t # 1, if we let σ = {x«S |t 
) σ(x) $ t}, and µ = {(x,y) « SxS |µ(x,y $ t}, then as seen 

t 
earlier, we have µ ⊆ σ x σ , so that (σ ,µ ) is a graph 

t t t t t 
with the node set σ and arc set µ . t t 

Proposition 6.1. If 0 # u # v # 1, then (σ ,µ ) is a v v 
subgraph of (σ ,µ ).// u u 

Proposition 6.2. If (τ ,ν) is a fuzzy subgraph of (σ,µ), 

then for any threshold t, 0 # t # 1, (τ ,ν ) is a subgraph t t 
of (σ ,µ ).// 

t t 
We say that the fuzzy subgraph (τ ,ν) spans the fuzzy 

graph (σ,µ) if τ (x) = σ(x) for all x. In this case, the two 

graphs have the same fuzzy node set; they differ only in the 

arc weights. 

For any fuzzy subset τ of σ, i.e., such that τ (x) # σ(x) 

for all x, the fuzzy subgraph of (σ,µ) induced by τ is the 

maximal fuzzy subgraph of (σ,µ) that has fuzzy node set τ . 

Evidently, this is just the fuzzy graph (τ ,ν), where 

ν (x,y) = τ (x) ` τ (y) ̀ σ(x,y) for all x,y « S. 

We will assume from now on that the underlying set S of 

a fuzzy graph is always finite. 

7. PATHS AND CONNECTEDNESS 

A path ρ in a fuzzy graph is a sequence of distinct 

nodes x x x such that µ(x x ) . 0, 1 # i # n; here 0, 1,..., n i-1, i 
n $ 0 is called the length of ρ. The consecutive pairs 

(x x ) are called the arcs of the path. The strength of 
i-1

, 
i 



87
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

AZRIEL ROSENFELD

) n ( `ρ is defined as µ x ,x . In other words, the strength 
i=1 i-1 i 

of a path is defined to be the weight of the weakest arc 

of the path. If the path has length 0, it is convenient to 

define its strength to be σ (x ). We call ρ a cycle if x = 0 0 
x and n $ 3. n 

Two nodes that are joined by (i.e., are the first and 

last nodes of) a path are said to be connected. It is evi- 

dent that "connected" is a reflexive, symmetric relation, 

and it is readily seen to be transitive also. In fact, 
∞

clearly x and y are connected if and only if µ (x,y) . 0. 

The equivalence classes of nodes under this relation are 

called connected components of the given fuzzy graph; they 

are just its maximal connected fuzzy subgraphs. A strongest 
∞

path joining any two nodes x,y has strength µ (x,y) ; we shall 

sometimes refer to this as the strength of connectedness 

between the nodes. 

Proposition 7.1. If (τ,ν) is a fuzzy subgraph of (σ,µ), 
∞ ∞

then for all x,y in S we have ν (x,y) # µ (x,y).// 

One could attempt to define the "distance" between x and 

y as the length of the shortest strongest path between them. 

This "distance" is, in fact, symmetric and positive definite 

(by our definition of a fuzzy graph, no path from x to x can 

have strength greater than σ(x), which is the strength of the 

path of length 0). However, it is not triangular, as we see 

from the example 
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Here any path from x to y or from y to z has strength # _1 
2 
, 

since it must involve either arc (x,y) or arc (y,z) ; thus the 

shortest strongest paths between them have length 1. On the 

other hand, there is a path from x to z, through a and b, 

that has length 3 and strength 1. Thus d(x,z) = 3 . 1+1 = 

d(x,y) + d(y,z) in this case. 

A better notion of distance in a fuzzy graph can be de- 

fined as follows: For any path ρ = x ,...,x , define the 
0 n 

µ-length of ρ as the sum of the reciprocals of ρ's arc 
weights, i.e., 

n 1 
< ∑(ρ) = µ(x ,x ) i=1 i-1 i 

If n = 0, we define <(ρ) = 0. Clearly, for n $ 1 we have 

< (ρ) $ 1. For any two nodes x,y, we can now define their 

µ-distance δ(x,y) as the smallest µ-length of any path from 
x to y. 

Proposition 7.2. δ(x,y) is a metric. 

Proof: a) δ(x,y) = 0 if and only if x = y, since 

<(ρ) = 0 if and only if ρ has length 0. 

(b) δ (x,y) = δ(y,x), since the reversal of a path is 

a path, and µ is symmetric. 

(c) δ(x,z) # δ(x,y) + δ(y,z), since the concatenation 

of a path from x to y and a path from y to z is a path from 

x to z, and < is additive for concatenation of paths.// 

In the non-fuzzy case, < (ρ) is just the length n of ρ, since 

all the µ's are 1. Hence δ(x,y) becomes the usual defini- 

. tion of distance, i.e., the length of the shortest path be- 

tween x and y. 

8. CLUSTERS 

In ordinary graphs, there are several ways of defining 
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"clusters" of nodes. One approach is to call the set C of 

nodes a cluster of order k if 

a) For all nodes x,y in C we have d(x,y) # k 

b) For all nodes z «/ C we have d(z,w) . k for some 

w « C. 

where d(a,b) is the length of a shortest path between a and 

b. In other words, in a k-cluster C, every pair of nodes 

are within distance k of each other, and C is maximal with 

respect to this property -- i.e., no node outside C is within 

distance k of every node in C. 

When k=1, a k-cluster is called a clique; it is a 

maximal complete subgraph -- i.e., a maximal subgraph in 

which each pair of nodes is joined by an arc. At the other 

extreme, if we let k → ∞, a k-cluster becomes a connected 

component -- i.e., a maximal subgraph in which each pair of 

nodes is joined by a path (of any length). 

These ideas can be generalized to fuzzy graphs as 

follows: In G = (σ,µ), we can call C ⊆ S a fuzzy cluster of 

order k if 

k k inf µ (x,y) . sup (inf µ (w z)) 
«/ 

, x,y«C z C w«C 

Note that C is an ordinary subset of S, not a fuzzy subset. 
k If G is an ordinary graph, we have µ (a,b) = 0 or 1 for all 

a and b; hence this definition reduces to 
k a) µ (x,y) = 1 for all x,y in C 
k b) µ (w,z) = 0 for all z«/ C and some w«C 

which is the same as the definition above. 

In fact, the k-clusters obtained using this definition 

are just ordinary cliques in graphs obtained by thresholding 

the kth power of the given fuzzy graph. Indeed, let C be a 
k fuzzy k-cluster, and let inf µ (x,y) = t. If we thres- x y«C k , 

hold µ (and σ) at t, we obtain an ordinary graph in which C 
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is now an ordinary clique. 

9. BRIDGES AND CUTNODES 

Let G = (σ,µ) be a fuzzy graph, let x,y be any two dis- 

tinct nodes, and let G' be the fuzzy subgraph of G obtained 

by deleting the arc (x,y) ; i.e., G' = (σ,µ') where 

µ'(x,y) = 0; µ' = µ for all other pairs. 

∞ ∞We say that (x,y) is a bridge in G if µ' (u,v) , µ (u,v) for 

some u,v -- in other words, if deleting the arc (x,y) reduces 

the strength ofconnectedness between some pair of nodes. 

Evidently, (x,y) is a bridge if and only if there exist u,v 

such that (x,y) is an arc of every strongest path from u to v. 

Theorem 9.1. The following statements are equivalent: 

a) (x,y) is a bridge 
∞b) µ' (x,y) , µ(x,y) 

c) (x,y) is not the weakest arc of any cycle 
∞Proof: If (x,y) is not a bridge, we must have µ' (x,y) 

∞
= µ (x,y) $ µ(x,y) ; thus (b) implies (a). If (x,y) is a 

weakest arc of a cycle, then any path involving arc (x,y) 

can be converted into a path not involving (x,y) but atleast 

as strong, by using the rest of the cycle as a path from x 

to y; thus (x,y) cannot be a bridge, so that (a) implies (c). 
∞

If µ' (x,y) $ µ(x,y), there is a path from x to y, not 

involving (x,y), that has strength $ µ(x,y), and this path 

together with (x,y) forms a cycle of which (x,y) is a weakest 

arc; thus (c) implies (b).// 
* Let w be any node, and let G be the fuzzy subgraph of 

* G obtained by deleting the node w; i.e., G is the fuzzy sub- 
* graph induced by σ , where 

* σ (w) = 0; σ = σ for all other nodes. 
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* * * * Note that in G = (σ ,µ ) we must have µ (w,z) = 0 for all z. 
*∞ ∞We say that w is a cutnode in G if µ (u,v) , µ (u,v) for 

some u,v (other than w) -- in other words, if deleting the 

node w reduces the strength of connectedness between some 

other pair of nodes. Evidently, w is a cutnode if and only 

if there exist u,v, distinct from w, such that w is on every 

strongest path from u to v. 

G is called nonseparable (or sometimes: a block) if it 

has no cutnodes. It should be pointed out that a block may 

have bridges (this cannot happen for non-fuzzy graphs). For 

example, in 

arc (x,y) is a bridge, since its deletion reduces the 
1 strength of connectedness between x and y from 1 to _. How- 2 

ever, it is easily verified that no node of this fuzzy graph 

is a cutnode. 

If between every two nodes x,y of G there exist two 

strongest paths that are disjoint (except for x,y themselves), 

G is evidently a block. This is analogous to the "if" of the 

non-fuzzy graph theorem that G is a block (with at least 

three nodes) if and only if every two nodes of G lie on a 

common cycle. The "only if", on the other hand, does not 

hold in the fuzzy case, as the example just given shows. 

10. FORESTS AND TREES 

We recall that a (non-fuzzy) graph that has no cycles is 

called acyclic, or a forest; and a connected forest is called 
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a tree. We shall call a fuzzy graph a forest if the graph 

consisting of its nonzero arcs is a forest, and a tree if 

this graph is also connected. 

More generally, we call the fuzzy graph G = (σ,µ) a 

fuzzy forest if it has a fuzzy spanning subgraph F = (σ,ν) 

which is a forest, where for all arcs (x,y) not in F (i.e., 
∞such that ν (x,y) = 0), we have µ(x,y) , ν (x,y). In other 

words, if (x,y) « G but «/ F, there is a path in F between x 

and y whose strength is greater that µ(x,y). It is clear 

that a forest is a fuzzy forest. 

For example, the following are fuzzy forests: 

but the following are not: 

If G is connected, readily so is F (any arc of a path in 

G is either in F, or can be diverted through F). In this 

case we call G a fuzzy tree. The examples of fuzzy forests 

given above are all fuzzy trees. 

Note that if we replaced , by # in the definition, 

then even 
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would be a fuzzy forest, since it has subgraphs such as 

Theorem 10.1. G is a fuzzy forest if and only if, in 

any cycle of G, there is an arc (x,y) such that µ(x,y) ,
∞µ' (x,y), where the prime denotes deletion of the arc (x,y) 

from G. 

Proof: To see "if", let (x,y) be an arc, belonging to 

a cycle, which has the property of the theorem and for which 

µ(x,y) is smallest. (If there are no cycles, G is a forest 

and we are done.) If we delete (x,y), the resulting fuzzy 

subgraph satisfies the path property of a fuzzy forest. If 

there are still cycles in this graph, we can repeat the 

process. Note that at each stage, no previously deleted arc 

is stronger than the arc being currently deleted; hence the 

path guaranteed by the property of the theorem involves only 

arcs that have not yet been deleted. When no cycles remain, 

the resulting fuzzy subgraph is a forest F. Let (x,y) not 

be an arc of F; thus (x,y) is one of the arcs that we deleted 

in the process of constructing F, and there is a path from 

x to y that is stronger than µ(x,y) and that does not involve 

(x,y) nor any of the arcs deleted prior to it. If this path 

involves arcs that were deleted later, it can be diverted 

around them using a path of still stronger arcs; if any of 

these were deleted later, the path can be further diverted; 

and so on. This process eventually stabilizes with a path 

consisting entirely of arcs of F. Thus G is a fuzzy forest. 

Conversely, if G is a fuzzy forest, let ρ be any cycle; 

then some arc (x,y) of ρ is not in F. Thus by definition of 
∞ ∞

a fuzzy forest we have µ(x,y) , ν (x,y) # µ' (x,y), which 
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proves "only if".// 

Note that if G is connected, so is the constructed F in 

the first part of the proof, since no step of the construc- 

tion disconnects. 

Proposition 10.2. If there is at most one strongest 

path between any two nodes of G, then G must be a fuzzy 

forest. 

Proof: If not, by Theorem 10.1 there would be a cycle 

ρ in G such that, for all arcs (x,y) of ρ, we have µ(x,y) $
∞µ' (x,y) ; thus (x,y) itself constitutes a strongest path 

from x to y. If we choose (x,y) to be a weakest arc of ρ, it 

follows that the rest of ρ is also a strongest path from x 

to y, contradiction.// 

The converse of Proposition 10.2 is false; G can be a 

fuzzy forest and still have multiple strongest paths between 

nodes. This is because the strength of a path is that of its 

weakest arc, and as long as this arc lies in F, there is 

little constraint on the other arcs. For example, the fuzzy 

graph 

is a fuzzy forest; here F consists of all arcs except (a,y). 

The strongest paths between x and y have strength 1/4, due to 

the arc (x,a) ; both x, a, b, y and x, a, y are such paths, 

where the former lies in F but the latter does not. 

Proposition 10.3. If G is a fuzzy forest, the arcs of 

F are just the bridges of G. 

Proof: An arc (x,y) not in F is certainly not a bridge, 
∞ ∞

since µ(x,y) , ν (x,y) # µ' (x,y). Conversely, let (x,y) 
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be an arc in F. If it were not a bridge, we would have a 

path ρ from x to y, not involving (x,y), of strength $ µ(x,y). 

This path must involve arcs not in F, since F is a forest and 

has no cycles. However, by definition, any such arc (u ,v ) i i 
can be replaced by a path ρ in F of strength . µ(u,v). Now i 
ρ cannot involve (x,y), since all its arcs are strictly 
i 

stronger than µ(u,v) $ µ(x,y). Thus by replacing each (u ,v ) i i 
by ρ , we can construct a path in F from x to y that does not 

i 
involve (x,y), giving us a cycle in F, contradiction.// 

By this last proposition, if G is a fuzzy forest, its 

spanning forest F is unique. 
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1. INTRODUCTION 

In order to make clear the logical foundation of infor- 

mation science approaches, we have introduced three coordinate 

systems in our previous monograph [25] and paper [29]. The 

first coordination is concerned with three logical aspects of 

information structure: (a) objectivity, (b) subjectivity and 

(c) practices, while the second coordination is concerned 

with three aspects of information function: (α) cognition, 

(β) direction and (γ ) evaluation. By picking up and re- 

arranging the eighteen notions explained in the first and 

the second coordinations, we define the third coordination 

regarding the three principal aspects of subjective attitudes 

of information usage for feasibility of existence: (III ) 
1 

control aspect, (III ) evolution (eizon) aspect, and (III ) 
2 3 

creation aspect. In three coordinations there are eighteen 

fundamental notions such as (a ) pattern, (a ) chaos (a ) 
1 2 

, 
3 

transformation; (b ) operation (b ) adaptation (b ) 
1 

, 
2 

, 
3 

strategy; (c ) optimalization, (c ) stability, (c ) learning; 1 2 3 
(α ) deduction (α ) induction (α ) abduction; (β ) control 1 , 2 , 3 1 , 

(β ) eizon, (β ) creation; (γ ) efficiency (γ ) reliability 2 3 1 , 2 , 

(γ ) plasticity, as shown in Table 1. 
3 

So far as shown in Table 1, these fundamental notions 

are given in linguistic expressions. Nevertheless it ought 

to be noted that we have illustrated these notions in con- 

nection with various mathematical formulations which can be 
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found in the area of cybernetics, information theory, control 

theories, automata theories, and documentation science, as 

shown in our papers and monographs [24], [25], [28], [31], 

[32]. In fact the eighteen fundamental notions as well as 

nine coordinate aspects mentioned above have originated from 

these areas which are closely connected with mathematical 

science approaches based upon the various mathematical models. 

At the same time there is a certain advantage for appealing 

to some literal and hence non-mathematical expressions, which, 

at the same time involve a certain disadvantage in the sense 

that some sort of vagueness could be inherited in these 

literal expressions, The situation should be recognized to 

be worth while to deep considerations on the real reasons 

why some kinds of vagueness are being in fact involved. 

Moreover, we should appreciate the merits which some sort of 

vagueness and fuzziness could bring with themselves, 

This paper aims to analyze some aspects of vagueness 

which have been appearing in the realm of generalized logics 

which we propose to call informative logics, and to make 

some assertions as our proposal to investigate a new direc- 

tion for fuzziness concept in developing information science 
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approaches. 

2. INFORMATIVE LOGICS 

The purpose of this section is to explain the reason 

why we want to introduce the notion of informative logics 

and to show some possible advantages that can be expected by 

preparing a general framework of the logics covering three 

coordinate systems shown in Section 1. Let us start with a 

few observations to be emphasized in preparing our informa- 

tion science approaches. 

Observation 2.1. Information science approaches aim 

at establishing a unified scientific discipline which is 

valid for various phenomena connected with information 

processing; that is, (i) production of information, (ii) 

transformation of information, (iii) storage and retrieval of 

information, and (iv) circulation and usage of information. 

Observation 2.2. These information processing phenomena 

can be found in biological existences, social lives of human 

beings, as well as in machines manufactured by human beings. 

Observation 2.3. Information science has been developed 

on the base of technological innovations on information 

processing technologies including (c ) computer technology 1 , 

(c ) communication technology and (c ) control technology 
2 

, 
3 

in each of which the notion of information (I ) has been 
1 

shown to work as the indispensable common currency through 

which they can be organized into a system S as their inte- 

gration (I ). 
3 

Observation 2.4. From the view point of information 

functions, there are three aspects which we have shown in 

the second coordination enunciated in Section 1, namely (C) 

cognition, (D) direction, and (E) evaluation. These aspects 

of information function can be designated as (I ) intelligence 2 
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in a broad sense. In combining Observations 2,3 and 2.4, we 

may present the following graphic representations shown in 

Figure 1. 

In conclusion we can assert that these four observations 

just made lead us to the recognition that the notions of (I ) 2 
intelligence, (I ) integration are indispensable in our in- 

3 
formation science approaches, besides the two notions (I ) 1 
information and (S) system. 

2.1. Intelligence Aspects and Informative Logics 

We would like to point out some substantial achievements 

in the specific areas of scientific researches with which 

the present author has been intimately concerned as a math- 

ematician and/or as a statistician, who has been led into 

the investigations on information science in views of these 

achievements [17-24] in the specific areas of scientific 

researches. 

(1) The logic of deduction. It is well known that the 

predominant direction of developments in this connection has 

been realized in symbolic logics, which, in fact, has been 

recently formulated in the realm of automata theory. 

(2) The logic of induction. It is one of the most re-

markable features of this century that the logic of induction 

has been formulated as testing hypothesis in a strict mathe- 

matical formulation in statistical sciences, due to the out- 

standing contributions by R. A. Fisher [8], J. Neyman [45], 

and A. Wald [64], among others. 

(3) The logic of abduction. We are now so much 
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conscious of the fact that the principle (α ) has not yet 
3 

fully developed in contrast with the former two (α ) and (α ), 
1 2 

except achievements by a few authors such as Moles [41], 

beyond the current theories of logics. Nevertheless, at 

least so far as Japanese scientific circles are concerned, 

there have been a few remarkable achievements given by sev- 

eral scholars such as K. Ichikawa [12] in equivalent trans- 

formational thinking theory and techniques known as KJ- 

method, field science [14] and problem-solving methodologies 

[15] in general, and also M. Nakayama [41], [43] referring 

to neuronic models and recently to "Zen" philosophy. The 

author of the present paper refers to the process of system 

formation in his monograph, Kitagawa [25], in order to 

understand the abduction procedure advocated by Kawakita [13]. 

We also show its connection with the logic of design [26], 

with particular reference to Japanese classical architecture 

principles. There is also a systematic study of heuristics 

which has been intensively done by Nakamura group in Nagoya 

University and which has a profound implication to abduction 

logics, as explained in Oda [46]. 

(4) The logic of dialectics. In our previous monograph, 

Kitagawa [27], on long range scientific planning in Japan, 

we have referred to the notion of feedback principle to be 

inherited in promoting scientific researches, This idea of 

ours is fundamental to our own studies in statistical infer- 

ence processes [17] as well as in statistical control pro- 

cesses [18], which are strictly belonging to statistical 

sciences with special reference to statistical quality 

controls, response surface analysis, sample surveys and 

designs of experiments. 

The reason why we have hitherto mentioned some specific 

and concrete achievements belonging to certain areas of 
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individual sciences as having some connection with the two 

types of the logics (3) and (4) is based upon our intention 

to promote an investigation of these two logics in the 

following way: 

(i) to formulate a certain type of logical space which 

yields us a general framework to discuss the logical impli- 

cations of not only the above mentioned achievements but 

also of those to be expected in the future in connection 

with information science approaches. 

(ii) to locate in our logical space all the fundamental 

notions in Table 1 which we have found to be indispensable 

in information science approaches. 

(iii) to keep in our logical space the germs from 

which further development of information science can be ex- 

pected to realize. 

In fact, according to our intension we have introduced 

a new terminology called informative space in our monograph 

[25]. The three coordinate systems explained in Section 1 

of the present paper are embedded in this informative space. 

Our principal attitutdes for introducing the informative 

logics can be explained in the following two points. 

Assertion 2.1. We shall proceed step by step to the 

rigorous formulation of the fundamental notions of infor- 

mative logics, on the basis of definite achievements obtained 

in various areas of information science approaches. 

Assertion 2.2. We shall pick up the vagueness that are 

inherited in the literal expressions of the fundamental 

notions of informative logics, and we shall make an analysis 

of the vagueness in order to find out the procedures of how 

to manage them. 
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2.2. Integration Aspects in System Formation 

In order to explain the integration aspects in system 

formation, which are crucial in information science ap- 

proaches, we shall enunciate the five fundamental principles 

being adopted for this purpose, which we have enunciated in 

our monograph [25]. 

1. The principle of cutting. This principle is so 

fundamental in our logic because without any application of 

this principle one can not pick up any object of his con- 

cerns from the totality of the world existence. In fact, 

the principle of cutting is used to classify and to analyze 

the totality of the world existence. 

2. The principle of self-conservation. The parts 

separated from the choastic totality of world existence, 

which have been obtained in virtue of application of the 

principle of cutting, should be stable existences, that is, 

they should satisfy the principle of self-conservation, be- 

cause otherwise no existence can be secured either as real 

existences or as concepts. It is to be noted that these 

two principleS of cutting and self-conservation are the basis 

for defining the notion of set. 

3. The principle of construction. In general, there 

are a set of transformations {T ;σ ∈ Σ} which can be applied σ
to each of the following arrays and to their combinations. 

(a) Sequential arrays (b) Parallel arrays. 

4. The principle of integration. Besides the principle 

of construction which serves to an analysis of the system, 

there is another type of the principle called the principle 

of integration which is complementary to an analysis of the 

system and which serves to organize the system in an integra- 

tive way. The following two methods are basically important 
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in realizing the principle of integration in system forma- 

tion. 

(c) Black box method (d) The feedback principle 

5. The principle of multitude. The multitude to be 

observed in a system derives fundamentally from the following 

three sources (e)-(f)-(g) and manifest itself in the output 

set (h). 

(e) Multitude of inputs 

(f) Variability of each transformation 

(g) Multitude of transformation set 

(h) Multitude of outputs 

3. MECHANICAL INTELLIGENCE AND GENETIC EPISTEMOLOGY 

In order to make clearer the key ideas underlying in 

our introduction of informative logics, it may be adequate 

to refer to some of our previous works [25], [26], [29], [30], 

[31]. We shall summarize our viewpoints in the following 

five observations. 

Observation 3.1. We share the same views with J. Piaget 

[47], [48], to the effect that (a) intelligence constitutes 

the state of equilibrium towards which tend all the succes- 

sive adaptations of a sensori-motor and congnitive nature, as 

well as all the assimilatory and accomodatory interactions 

between the organism and the environment, that (b) intelli- 

gence itself does not consist of an isolated and sharply 

differentiated class of cognitive processes, and that (c) 

the machanism of transition from one level of intelligence 

to another one is an equilibration process. 

Observation 3.2. The general framework of genetic 

epistemology due to J. Piaget [47] has its correspondence 

to our formulation of logic of information science in the 
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following sense: 

(i) Each of the three key notions in setting up the in- 

telligence of the lower level such as (a') environment, (b') 

organisms, and (c') action is a prototype of each of the 

three constituent axes of the first coordination, (a) objec- 

tivity, (b) subjectivity, and (c) practices, respectively. 

(ii) Each of the two main features of organisms, cog- 

nition and affections, is the origin of structuration and 

valuation. In our formulation of the logics of information, 

the information structure is formulated in the framework of 

the first coordination, and it can be recognized as an ob- 

jective realization of the three cognitive functions of 

information, namely (α) cognition given in the second 

coordination. On the other hand, valuation based upon 

affective life of organism is objectively described by means 

of two information function, namely, (β) direction and (γ ) 

evaluation in the second coordination. 

(iii) The notion of biological adaptation explained by 

Piaget [47], [48] in connection with development of intelli- 

gence, which implies three features (i) assimulation, (ii) 

accomodation and (iii) equilibration, can be considered as a 

prototype of each of three fundamental notions of feasibility 

of existence as the usages of informtion, namely (i) control, 

(ii) eizon, and (iii) creation respectively. . 

Observation 3.3. In view of Observation 3.1, the 

notion of biological intelligence should be introduced 

besides human intelligence and mechanical one. The mathe- 

matical models of biological intelligence are given by bio- 

robots in ecosphere, whose intelligence aspects can be dis- 

cussed in connection of the informative logics, because of 

the facts enunciated in Observation 3.2. 

Observation 3.4. The mathematical models of biological 
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intelligence called biorobots in ecosphere can be expected 

to be most adequately discussed in the general framework of 

informative logics whose fundamental notions are being de- 

rived from mathematical science approaches in various cyber- 

netical fields of control, communication and computation. 

Genetic epistemological considerations accompanied by in- 

formative logics are expected to contribute to an establish- 

ment of link between biological and mechanical intelligence. 

Observation 3.5. The achievements due to artificial 

intelligence in sciences and technologies can be evaluated 

with respect to the second coordinate system of informative 

logics, that is, information functions. The essential 

procedures adopted in realization of artificial intelligence 

lie in their mechanization procedures of some information 

functions enunciated in the second cordinate systems. In 

this sense we use the terminology "mechanical intelligence" 

instead of artificial intelligence. The more informative 

logics are being formulated as informative machine (infor- 

mative organism), the more human intelligence can be formu- 

lated in the framework of mechanical intelligence. In 

combination of these five Observations 3.1-3.5 just made, we 

may endeavor to mechanize some information functions of 

, 
human intelligence as much as possible, in order to establish 

an intelligent and integrated system of information proces- 

sings in the era of information oriented society. Never- 

theless, there is one thing which we ought not to forget. In 

fact, there does exist an intrinsic vagueness in our formu- 

lation of informative logics, due to the fact that all the 

fundamental notions given in three coordinate systems men- 

tioned in Table 1 are being given in literal terms which 

involve more or less an intrinsic vagueness. It is there- 

fore our problem how to overcome such a vagueness in 
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informative logics. We shall discuss the problem in the 

following Section 4. 

In summing up Observations 3.1 ~ 3.5 we obtain the 

following Table 2. 

4. VAGUENESS AND FUZZINESS IN INFORMATIVE LOGICS 

In Subsection 4.1.1 and 4.1.2, we shall make a general 

survey on the possible features of vagueness in connection 

with the fundamental notions in the first and the second 

coordination, respectively. In Subsection 4.1.3 we turn to 

a discussion on vagueness inherited in integration aspects 

of system formulation enunciated in Subsection 2.2. It is 

pointed out that the fundamental mathematical concepts such 

as set, function, relation, topological space, automata, and 

formal languages should be reconsidered in order that they 
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can work adequately in the realm of information science ap- 

proaches where vagueness will be always involved both in 

information structures and in information functions. The 

usefulness and the merit of the mathematical notion called 

fuzziness in the sense of Zadeh [68] can be recognized as a 

remedy to overcome the difficulties encountered in this 

connection. It is the purpose of Subsection 4.2 to point 

out the characteristic features of the fuzziness in the 

sense of Zadeh with respect to the fundamental notions given 

in Table 1. 

4.1.1. Vagueness in information functions. There are 

three fundamental axes in the second coordinate system re- 

garding information functions, namely, (C) cognition, (D) 

direction, and (E) evaluation. 

In fact, the successive processes of cognition-direction- 

evaluation schemes can be formulated in a system formulation 

where the flows of information can be traced in the system. 

Now there are many sources of vagueness inherited in the 

notions belonging to the second coordinate system, because 

the system formation as well as its component functions 

designated as either of cognition, direction and evaluation 

can accompany with their intrinsic vagueness. The following 

Observations are important to our specific discussions. 

Observation 4.1.1. The vagueness of the subsystems may 

not necessarily be hereditary. In fact, a simple system C 

may be a vague cognition, but D can be a definitive direction 

without any vagueness by which action can be taken. 

Observation 4.1.2. Each of the functions (α ) deduction, 1 
(α ) induction, and (α ) abduction has been formulated in 
2 3 

such a way that each mechanical procedure of deduction, in- 

duction and abduction has been formulated in a certain sense 

respectively. Nevertheless there remains a broad area of 
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mechanical intelligence where biological intelligence should 

be formulated in view of both ethological achievements and 

computer technolgoy developments. 

4.1.2. Vagueness in information structures. The first 

coordinate system in Table 1 is concerned with information 

structure. The three coordinate axes are given by (a) objec- 

tivity, (b) subjectivity, and (c) practices. So far as 

mathematical programming formulations are concerned, (a), (b) 

and (c) can be formulated in exact mathematical expressions, 

and they can be handled with brainware notions in the sense 

defined in our recent work [32]. The formulation of cyber- 

netics due to N. Wiener [66] can be also given in terms of 

mathematical expressions through which we can understand 

some of the fundamental notions such as operations, optimiza- 

tions, chaos, stability, transformation, strategy and learning 

given in the first coordinate system of Table 1 in an exact 

and precise way. The situations are also favourable in the 

case of deterministic and statistical control processes, 

evolutionary operation programs as shown in [31]. Neverthe- 

less there are certainly crucial problems where neither the 

deterministic nor the probabilistic formulation can be 

adopted, as shown and discussed by Bellman-Zadeh [3] and 

Asai-Kitajima [1] and Tanaka-Okuda-Asai [58]. 

4.1.3. Vagueness in system formation. The principles 

of system formation enunciated in Subsection 2.2 are realized 

by means of mathematical concepts and procedures which are 

defined in a rigorous way without any ambiguity and any 

vagueness. Thus, the notion of set is a realization of two 

principles of cutting and self-conservation, while the notion 

of transformation has been formulated in the mathematical 

theories of dynamical systems, automata and formal languages. 

The principles of construction and integration illustrated 
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in Subsection 2.2 can be recognized to have been realized 

in a general way so far as the mathematical approaches are 

concerned. The application of the principle of multitude 

can be observed in the modern stochastic formulation by 

which to overcome the chaostic multitudes inherited in 

inputs, outputs, and flow of informations again by a rigorous 

mathematical formulation. In spite of the remarkable 

achievements given by these modern mathematical theories 

which have been so intimately connected with some aspect of 

information science approaches we have to point out that 

there remains a certain set of uncultivated research areas 

for which the present formulations do not seem to be com- 

pletely adequate. Thus, any theory of large system does 

require us to introduce some system technique by which we 

can manage the vagueness inherited in large system, as dis- 

cussed in our paper [31]. There is also another aspect to 

be considered. There are in fact various lower levels of 

intelligence equilibriums for which the current authentic 

mathematical models are not suited to give any adequate des- 

cription. For instance, a certain stage of intelligence 

development of a child, J. Piaget [48] introduced the notion 

of groupment in the place of group in order to describe the 

pre-operational stage of cognition. In order to establish 

a broad and profound formulation of the key aspects of in- 

formation science approaches, we ought to take into our 

serious consideration the areas of topics which have not 

been adequately formulated in the present mathematical for- 

mulations. This implies the needs for (i) locating any 

discrepancy that may exist between real situations and their 

mathematical models, (ii) pointing out any vagueness that 

may be admitted as a compromise to manage such a discrepancy, 

and then (iii) analyzing the states of vagueness in order 
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to be able to attain some notion suited for mathematical 

treatment. The notion of fuzziness due to Zadeh [68] can be 

considered as one solution to satisfy our present needs. It 

ought to be pointed out that there may be another kind of 

solution to our present problem, as we shall discuss in the 

following Subsection 4.2. 

4.2. Fuzziness Concept Used in the Logics of Information 
Science Approaches 

In what follows a few observations on the extensive uses 

of fuzziness concepts are made in order to review them from 

the standpoints of informative logics, thereby leading us to 

find out where further developments are being required. 

Observation 4.2.1. The essential aspect of fuzziness 

concept is to appeal to the membership function of a set 

instead of the classical characteristic function of a set 

which shows a distinction of the set from the surrounding 

environment. Here we can observe a fuzzy application of 

cutting principle explained in Subsection 2.2. Another fun- 

damental principle of self-conservation does not seem so 

apparent to be adopted. This is due to the fact that the 

uses of fuzziness have been restricted to one equilibrium 

level of intelligence and that any transition from one level 

to another, that is, equilibration, has not been considered 

so much, except a certain aspect in learning fuzzy automata 

by Wee-Fu [65] and in connection with learning languages by 

Tamura-Tanaka [55]. On the other hand, the principle of 

transformation in system formation has been the serious 

topics of fuzziness, as we can observe in various types of 

fuzzy automata. Moreover, the principle of multitude 

explained in Subsection 2.2 may be said to have been con- 

sidered in fuzzy environment in Bellman-Zadeh [3]. 
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Observation 4.2.2. Regarding information structure as- 

pects, the following researches have been done. 

(i) The basic notions of equivalence, similarity, order- 

ing, classification and abstraction, which are concerned with 

(a ) pattern aspect in the first coordinate system, have been 
1 

discussed by several authors such as Zadeh [72], Bellman- 

Kalaba-Zadeh [2], Ruspini [49], Gitman-Levine [9], Shimura 

[52], [53], and Tamura-Higuchi-Tanaka [56], with respect to 

the fuzziness, that is to say, the membership functions. It 

is to be noted that, although most of these approaches are 

concerned with one equilibrium level of intelligence, some of 

them can be considered with equilibration process of learning 

in connection with control processes, however without any 

clear formulation of abduction process. 

(ii) In fact one of the essential merits of the fuzziness 

notion lies in its contribution to an introduction of a mathe- 

matical formulation for certain type of chaostic vagueness 

which is to be distinguished with the mathematical concept of 

probability. At the same time it ought to be noted that any 

transitory feature from fuzziness to probability has not been 

fully discussed, although some interesting works have been by 

Nasu-Honda [44], Zadeh [70], and Sugano [54], [55], in another 

direction. 

Observation 4.2.3. Regarding information function as- 

pects, the following points are worth while to be mentioned. 

(i) With respect to the cognition axis in the second co- 

ordination, deduction has been discussed in the name of fuzzy 

logics by several authors such as Marinos [36], Lee and Chang 

[34], Lee [33], and De Luca and Termini [7] which refers to 

Brouwerian logics. Fuzzy algorithms discussed by Zadeh [71] 

and Santos [49], [50] are also concerned with deduction. None 

of these works have not been concerned with the other two 
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aspects of cognition, namely induction and abduction, where 

one may expect various features of vagueness and ambiguity to 

be encountered with. 

(ii) With respect to the evaluation axis in the second 

coordination, nothing has been done in any literature on the 

fuzziness concept in the direction to look into the discus- 

sion on (γ ) efficiency (γ ) reliability and (γ ) plasti- 1 , 2 , 3 
city. It seems to us that no systematic approach has been de- 

veloped which will contribute to the positive advantage of the 

fuzziness concept in connection with the two aspects called 

(II) eizon, and (III) creation. The recent work of Zadeh [75] 

regarding a new approach to the analysis of complex systems 

and decision processes is also concerned with control aspect, 

so far as fuzzy decisional algorithms are concerned, although 

it does provide us an approximate yet effective means of des- 

cribing the behavior of systems which are too complex or too 

ill-defined to admit precise mathematical analysis. 

Observation 4.2.4. In connection with linguistics, which 

should have a predominant position in information approaches 

as shown in Zadeh [73], the concept of linguistic variable has 

recently been introduced by Zadeh [74] ~ [76] in the general 

framework of fuzziness approaches to serve to quantitative fuz- 

zy semantics, which has its substantial contributions to ap- 

proximate reasoning and the analysis of complex systems and 

decision processes, as illustrated in Zadeh [74], [75]. A 

series of contributions on various fuzzy grammars have been 

given by Tanaka group of Osaka University, which, so far as 

can be observed from Mizumoto-Toyoda-Tanaka [38], [40], Kim- 

Mizumoto-Toyoda-Tanaka [16], and Tamura-Tanaka [57], the in- 

duction of membership functions to the classical formulations 

of mathematical linguistics along the line of automata theory 

seems to us to be their essential contribution. These 
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tendencies can be recognized to follow to the authentic de- 

velopment line of the concept of fuzziness to enlarge its ap- 

plication fields. Nevertheless, if we return back to the gen- 

eral relationship between linguistics and information science 

approaches, it does seem to us that there remain a lot of 

vagueness aspect which is worth while to a serious reconsider- 

ation. 

Observation 4.2.5. With regard to the third coordination 

which is concerned with the three principal aspects of infor- 

mation usage for feasibility of existence (III ) control, , 1 
(III ) evolution (eizon) and (III ) creation, the uses of 

2 
, 

3 
fuzziness concept have been entirely concerned with the (III1) 

control aspect, as we can observe in the contributions by 

Zadeh [70] in optimization under fuzzy constraints, by Bellman 

Zadeh [3] in decision making in a fuzzy environment, by Chang 

and Zadeh [6] in fuzzy mapping and control, by Asai and Kitaj 

Kitajima [1] in optimizing control using fuzzy automata, by 

H. Tanaka-Okuda-Asai [58] in fuzzy mathematical programming. 

5. A NEW DIRECTION FOR A GENERALIZATION OF FUZZINESS CONCEPT 
TO BE USED IN DEVELOPING INFORMATION SCIENCE APPROACHES 

Besides general observations so far given in the previous 

Sections, there are several specific topics belonging to in- 

formation science approaches, which have been the chief con- 

cerns of the present author and which have turned out to give 

an impulse for the author to seek for a new direction for a 

generalization of fuzziness concept which may be useful for 

our purposes. 

These topics are (1) previous knowledge in successive pro- 

cesses of statistical inferences and controls in [17] ~ [20], 

(2) relativistic logic in mutual specification in [21], 

(3) control processes in large systems in [31], (4) system 
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approaches in ecosphere in [28], and (5) general linguistics 

and system formation in [25]. Instead of analysing each of 

these backgrounds and their implications to the concepts of 

vagueness and/or fuzziness, we shall be content here with an 

enunciation of three assertions which will point out clearly 

the essential aspects of our proposal to find out a new direc- 

tion for a generalization of fuzziness concept. 

Assertion 5.1. An application of the principles of sys- 

tem formation enunciation in Subsection 2.2 to a theoretical 

analysis of information processing precedures in language com- 

munications from the standpoint of informative logics leads us 

to the needs for introducing a fuzziness concept in our in- 

formation structure formulations which are not confined to 

linguistics, in such a general way that 

(i) Besides static model, we are concerned with dynamic 

model. 

(ii) Fuzzy structural stability is lefined in a fuzzy 

topological space where dynamic model as well as static one 

is introduced. 

(iii) Fuzzy catastrophes and fuzzy attracters are defined 

along the line of R. Thom [60], with a view covering the ideas 

suggested by him in [61] ~ [63] with reference to Tesniere 

[59] and Greenberg [11]. 

(iv) Topological, lattice theoretic and time-dependent 

approaches in connection with fuzziness, which were given by 

Brown [4], Chang [5], Goguen [10] and Lientz [35], can be ap- 

preciated for further investigation. 

Assertion 5.2. Creation process as one of the three cog- 

nition aspects in information functions is analysed in view of 

the principles of system formation, and the analysis leads us 

to a recognition of the roles of three evaluation aspects (γ ) 
1 

efficiency, (γ ) reliability and (γ ) plasticity in this 
2 

, 
3 
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connection. Furthermore the positive roles of the fuzziness 

concept in its generalized formulation given in Assertion 5.1 

can be evaluated. In order to establish a sound theoretical 

foundation for any large system approach involving their eco- 

logical features, the positive merits of fuzziness should be 

more emphasised than it has been considered in the current 

literatures. 

Assertion 5.3. An integrated system of three information 

functions, namely, (C) cognition, (D) direction and (E) eval- 

uation, which can be observed in the real usages of informa- 

tion functions, is worth while to our systematic investigation 

in the general framework of informative logics. In view of 

our investigations of successive processes of statistical in- 

ferences and controls developed in a series of papers [17] 

[23], which can be recognized as the special integrated sys- 

tems of information functions, two directions do seem to us to 

be indispensable. The first direction is to proceed to var- 

ious formulations of integrated system of three information 

functions which are automatically controlled, that is, macha- 

nized in the sense which we have explained in Section 3 and 

which was precisely defined in our paper [23] with regard to 

successive processes of statistical inferences and controls. 

The second direction is to deal with the real situations which 

involve sophisticated considerations on the topics such as we 

have discussed: 

(i) Mutual specification in relativistic logics in in- 

completely specified model in [21]. 

(ii) Combined usages of informations whose sources may be 

neither exactly identified nor precisely formulated in [17]. 

In the consequence there arises the problem whether and 

how far the mathematical models based upon automated system of 

information functions can be used in real applications by 
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introducing fuzziness concept in every part of the systems 

where it is required. 

Here we have to show the most essential aspects of the 

Thom theory of structural stability and morphogenesis which we 

need in the sense explained in Assertion 4.1. This may be 

done by citing his own conclusions explained in Subsection 

13.7 as conclusion of his monograph [60] p. 321, which may be 

translated as follows: 

(1) Every object or every physical form can be repre- 

sented by an attracter C of dynamical system on a space M of 

internal variables. 

(2) An object does neither represent its stability nor 

be perceptible, unless its corresponding attracter is struc- 

turally stable. 

(3) Every creation or destruction of the formes, that 

is, every morphogenesis, can be described by the extinction 

of the attracters representing the initial formes and their 

replacement by the attracters representing the final forms. 

Such a process which is called catastrophe can be described 

on a space of external variables. 

(4) Every structurally stable process is described by 

one (or a system of) catastrophe(s) which is (are) stable on 

the space P. 

(5) Every natural process can be decomposed into struc- 

turally stable small islands called chreods. The set of these 

chreods and the multidimensional syntax regulating their res- 

pective positions constitute a semantic model. 

(6) If one considers a chreod C as a word of the multi- 

dimensional language, the signification of the word is nothing 

but the global topology of one (or plural) catastrophe(s) as- 

sociated with it and the catastrophes to which it is subject. 

In particular, for a given attracter, its signification is 
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definitely the geometry of its existence domain in the space 

P and the topology of catastrpohes of regulation which res- 

trict this domain. 

In short, semantic topology in which the noun is describ- 

ed by a potential wall in the dynamics of mental activities 

and the verb is described by an oscillator in the unfolding 

space of a spatial catastrophe does require to introduce a 

systematic use of fuzziness concept in its formulation. We 

are now in a position to show our research programs of gener- 

alizing usages of fuzziness concept in accordance with three 

Assertions 5.1 ~ 5.3. 

Program 1. A fuzzy topological space T, according to 

the definition of Chang [5], for instance, is used to define 

fuzzy structural stability in the space T. The set B of all 

the fuzzy structural stable points in the space T is fuzzy 

open in this space, and the set T - B is called the set of 

catastrophes. Our Program 1 is to make a systematic survey 

along the line which will be similar to that developed by 

Thom [60]. 
Program 2. In accordance with the applications of the 

catastrophe theory due to Thom [60] ~ [63], to general lin- 

guistics, the principles of system formation are applied to 

topological analysis and synthesis of natural languages. For 

these applications theoretical models can be provided by fuz- 

zy topological spaces which will be developed in Program 1. 

Program 3. In accordance with progress of implementa- 

tion of Program 2, conventional usages of natural languages in 

various scientific approaches including social sciences and 

humanities are expected to become more intelligible and better 

organized from the standpoint of informative logics than they 

have been. This assertion implies in particular the following 

crucial advantages: 
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(i) Structural stability aspects of various phenomena 

can be identified and traced in spite of their superflucious 

appearance of foggy vagueness and chaostic disorder which have 

been believed to be inherited in these fields. 

(ii) Catastrophic phenomena can be mathematically formu- 

lated so as to admit a systematic approach based upon the in- 

formative logics explained in Section 2. 

Program 4. In accordance with the progress of implemen- 

tation of Programs 2 and 3, by which to confirm systematic 

usages of linguistic variables in quantitative semantics ac- 

cording to the sense of Zadeh [74] with the brainware regard- 

ing the world structure description, we can expect to have 

scientific methodologies for treating with some sort of vague- 

ness concepts in the context of generalized aspects of infor- 

mation usages for feasibility of our existence including 

(III ) eizon aspect and (III ) creation aspect besides (III ) 2 3 1 
control aspect. 

Program 5. Throughout the whole area of scientific re- 

searches and surveys where the usage of data banks are re- 

quired in supplementing our own experiments and/or surveys, 

there is an urgent need to establish a methodology of inte- 

grating various informations with each vague domain of vali- 

dity. It is our program to have a systematic investigation of 

fuzziness concept in connection with Programs 1 ~ 4 with an 

intension to promote the direction suggested by our previous 

papers [17] ~ [24] on statistical inference and control pro- 

cesses. 

Remark. After the Seminar and before the preparation of 

the final draft for publication, the author has the opportu- 

nity of having the recent papers on fuzzy topological spaces 

by a participant of the Seminar C. K. Wong and also a Japanese 

monograph by H. Nakai on Information Communication, which 
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suggests an application of Thom catastrophe theory on docu- 

mentation science. 
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APPLICATIONS TO CLUSTERING ANALYSIS* 

Raymond T. Yeh and S. Y. Bang 
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I. INTRODUCTION 

Techniques for pattern classification and clustering 

analysis are well studied in the literature. Most of the 

techniques are relational or graph-theoretical. The usual 

approaches, given a data matrix or graph, are to obtain 

threshold graphs and then apply various connectivity proper- 

ties of the graph to form clusters. These kinds of ap- 

proaches have a common weakness in that weights in the graphs 

are not treated evenly. This paper is partly motivated from 

the desire to extend the existing graph theoretical tech- 

niques to work on data graphs directly rather than on the 

threshold graphs. In order to do this, it is necessary to 

extend many standard graph theoretical concepts. 

In Section III, an algebra of fuzzy relations is dev- 

eloped which parallels closely that of the binary relations. 

Sections IV and V involve extensions of various connectedness 

concepts of digraphs and undirected graphs into fuzzy graphs. 

Section VI provides evidence that techniques for clustering 

analysis is extendible and desirable. 

II. PRELIMINARIES 

We will provide in this section basic terminologies and 

notations which are necessary for the understanding of 

*The research reported here is supported in part by the 
National Science Foundation under Grant No. GJ-31528. 



126
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

RAYMOND T. YEH AND S. Y. BANG

subsequent results.

A fuzzy (binary) relation R from a set X to a set Y is

a fuzzy subset of X x Y characterized by a membership func-

tion mR: X x Y → [0,1]. For each x ε X and y ε Y, mR(x,y)

is referred to as the strength of the relation between x

and y. If X = Y, then we say R is a fuzzy relation on X.

As in the case of nonfuzzy binary relations, every fuzzy

relation R on X can be represented by a directed fuzzy graph

consisting of a set of vertices X such that there is a

weighted arc connecting each pair of vertices xi, Xj and the

weight on the arc (xi, xj) is mR(xi, xj). Equivalently, R

can be represented by a fuzzy matrix, MR, whose (i,j)
th entry

is mR(xi, xj).

In the following definitions, the symbols ~ and ` stand

for max and min, respectively.

Let R and S be two fuzzy relations from X to Y. R is

said to be contained in S, in symbols, R # S, if mR(x,y) ≤

mS(x,y), for all (x,y) ε X x Y. The union of R and S, de-

noted by R < S, is defined by mR < S = mR ~ mS. The Inter-

section of R and S, denoted by R > S, is defined by mR > S
= mR ~ mS The complement of R, denoted by   R , is defined

by m  R  = 1 – mR. The inverse of R, denoted by R
-1, is a

fuzzy relation from Y to X defined by U
R–l

 = mR.

If R and S are fuzzy relations from X to Y and from Y

to Z, respectively, then the composition of R and S, denoted

by R + S (or simply by RS), is a fuzzy relation from X to Z

defined by

m
R + S(x,z)

 =  ~
y
   [mR(x,y) ` mS(y,z)], x ε X,z ε Z,

The n-fold composition R + R + ... + R is denoted by Rn.
        

n times
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We assume here that basic operations for fuzzy matrices 

are Max and Min respectively. Note that M = M M . RS R S 

III. AN ALGEBRA OF FUZZY RELATIONS 

In this section we will show that the concept of simi- 

larity relation introduced by Zadeh [18] is derivable in 

much the same way as equivalence relation. Furthermore, 

through this derivation, the resolution identity [15] is 

brought out quite naturally. 

Definition 1: Let R be a fuzzy relation on a set X. 

We define the following notions: 

1. R is «-reflexive iff ( ∀ x « X) [µ (x,x)$ «]. A R 
1-reflexive relation will simply be referred to as a reflex- 

ive relation. 

2. R is irreflexive iff ( ∀ x « X) [µ (x,x) = 0]. R 
3. R is symmetric iff µ (x,y) = µ (y,x) for all x,y R R 

in X. 

4. R is weakly reflexive iff for x,y in X, 

µ (x,y) = « → µ (x,x) $ «. R R 

5. R is transitive iff R _⊃ R + R. 

Lemma 1. If R is a fuzzy relation from X to Y, then 
-1 the relation RR is weakly reflexive, and symmetric. 

Proof: i) µ 1(x,x') = ~ [µ (x,y) ̀ µ -1(y,x')] RR- R R 
y 

# ~ [µ (x,y) ` µ (x,y)] R R y 

= µ -1(x,x) RR 

-1 Hence, RR is weakly reflexive. 
-1 -1 -1 -1 ii) (RR ) = RR . Hence, RR is symmetric. 

Let R now be a weakly reflexive and symmetric relation 
R 

on X. Define a family of non-fuzzy sets F as follows: 
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R ←
F = {K ⊆ X | (∃ 0, « # 1)[∀ x « X)[x « K→(∀ x' « K)[µ (x,x')=«]]} R 

(1) 

We note that if we let 

R ← 1 F = {K ⊆ X | (∀ x « X)[X « K→(∀ x' « K)[µ (x,x') $«]]} (2) 
« R 

R R then we see that « # « ⇒ F a F , where "a " denotes 1 2 « «2 1 
R 

covering relation, i.e. every element in F is a subset of 
«

R 2 
an element in F . 

« 1 

A subset J of X is called «-complete with respect to R 

iff (∀ x,x' « J)[µ (x,x') $ «]. A maximal «-complete set is R 
one which is not properly contained in any other «-complete 

set. 
R Lemma 2. F is the family of all maximal «-complete 

sets with respect to R for 0 # « # 1. 
R Proof: Let K « F and x « K. Then there exists 0 ,

« # 1 such that x' « K, µ (x,x') $ « by (1). Hence K is R 
complete. Next, consider an «-complete set J which is not 

maximal. This means that there exists a maximal «-complete 

set J' such that J ⊂ J', which implies that there exists 

x' « J' - J. But since J' is «-complete, we conclude that 

for each x in J, µ (x',x) $ «. Hence, by (1) we must con- R 
clude that x' « J, is a contradiction. Hence, J must also 

be maximal. 

Lemma 3. Whenever µ (x,x') . 0, there is some «-com- R 
R plete set K « F such that {x,x'} ⊆ K. 

Proof: If x = x', then {x} is certainly «-complete for 

« = µ (x x) Otherwise if x ≠ x' then since µ (x,x') = R , . , , R 
µ (x' x) by symmetry and µ (x x) $ µ (x x') and µ (x',x') R , , R , R , R 

1Note that each element in FR defines an «-level-set of 
Zadeh [18]. 
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$ µ (x,x') by weak reflexivity, we see that {x,x'} is «- R 
complete, where « = µ (x,x'). Thus, {x,x'} is contained in R 
some «-complete set C. Denote by C the family of all «- 

«
complete sets C' which include C. Then C is partially 

ordered under set inclusion and hence satisfies the condition 

of Zorn's lemma. Therefore, we conclude from Zorn's lemma 

that C has a maximal element K. This element is also maxi- 
«

mal in the family of all «-complete sets since any sets 
R including K must also include C. Hence K « F by lemma 2, 

and the proof is completed. 

It should be remarked here that sometimes a subclass of 
R 

F , satisfying the condition of lemma 3, will cover the set 

X. For example, let R be the fuzzy relation on X = {a,b,c, 

d,e,f} given by the following matrix. 

1 .3 .4 0 .4 .3 

.3 1 .2 .3 0 .3 

.4 .2 1 .3 .5 0 

0 .3 .3 1 0 0 

.4 0 .5 0 1 0 

.3 .4 0 0 0 1 

We see that the family three maximal complete set {a,b,f}, 

{b,c,d} and {a,c,e} satisfy the condition of lemma 3 but it 

does not contain the maximal complete set {a,b,c}. 

Let 0 and I denote two special relations on a set X 

such that for all x,x' in X, 

µ (x,x') = 0, µ (x,x') = 1. 0 I 

Lemma 4. If R ≠ 0 is a weakly reflexive and symmetric 

relation on X, then there exists a set Y and a fuzzy relation 
-1 S form X to Y such that R = SS . 

|
R Proof: Denote by Y the set {K* K « F }, we define a 
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fuzzy relation S from X to Y as follows: 

α, if x « K and α is the largest number 
R µ (x K*) for which K « F S , = α. (3) 

0 otherwise. 

If µ (x,x') = α . 0, then by lemma 3, there is an α-complete 
R R set K « F such that {x,x'} ⊆ K. Since 

µ 1(x x') = ~ [µ (x K*) ` µ (x',K*)]$ α = µ (x,x'), SS- , S , S R 
K* 

-1 we conclude that R ⊆ SS . 

Suppose now that µ -1(x,x') = β. Then there exists SS 
K* « F such that µ (x,K*) = µ (x',K*). This means that β S S -1 
{x x'} ⊆ K and hence µ (x,x') $ β. Therefore, SS ⊆ R. , R 

Combining lemmas 1 and 4, we have the following result. 

Theorem 1. A fuzzy relation R ≠ 0 on a set X is weakly 

reflexive and symmetric iff there is a set Y and a fuzzy re- 
-1 lation S from X to Y such that R = SS . 

In the sequel, we shall use the notation φ to denote R 
the relation S defined in (3). 

Definition 2: A cover C on a set X is a family of sub- 

sets X , i « I, of X such that ∪ X = X. i i i«I 

Definition 3: Let R be a fuzzy relation from X to Y, 

we define the following notations: 

R is «-determinate iff for each x « X, there exists at 

most one y « Y such that µ (x,y) $ «. R 
R is «-productive iff for each x « X there exists at 

least one y « Y such that µ (x,y) $ «. R 
R is an «-function iff it is both «-determinate and 

«-productive. 

Lemma 5 If R is an «-reflexive relation on X then φ. R R 
is «-productive and for each «' # « F is a cover of X , 

«' . 
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Proof: Since for each x « X, µ (x,x) $ «, and because R R {x} is «-complete, there is some K in F («' # «) such that 
«' R 

x « K. Hence, F is a cover Also by definition of φ
«' . , R, 

x « K implies that µφ (x,K*) $ « which implies that φ is R R 
«-productive. 

In the sequel, we shall use the term productive for 

1-productive, etc. 

Corollary 1. If R is reflexive, then φ is productive R R 
and each F (0 , « # 1) is a cover of X. 

«
The following result is a consequence of lemma 4 and 

corollary 1. 

Corollary 2. R is reflexive and symmetric relation on 

X iff there is a set Y and a productive fuzzy relation S from 
-1 X to Y such that R = SS . 

Lemma 6. Let R be a weakly reflexive, symmetric and 
«transitive relation on X, and let φ denote the relation φ
R R R whose range is restricted to F . Then for each 0 , « # 1, 

«φ« R 
is -determinate and elements of F are pairwise disjoint R «

. 

Proof: Let K and K' be two not necessarily distinct 
R ∩elements of F and assume that k ∪ K' ≠ 0/. For any q « K 
« 1 

K', we have µ (q,q ) $ « for all q in K and µ (q q') $R 1 , R 1, 

«, for all q' in K'. Since R is transitive, we see that 

µ (q,q') $ « for q « K and q' « K' Since R is weakly re- R , , . 

flexive and symmetric, we conclude that K ∪ K' is «-complete. 

However, since K and K' are maximal «-complete, we must con- 

clude that K = K'. Hence, K ≠ K' → ∩ K K' = 0/. Now since 

µφ« (x,K*) = «, and since x cannot belong to any other sets 
R 
R «

in F , φ is determinate R . 

Definition 4. A similarity relation R on X is a fuzzy 

relation on X which is reflexive, symmetric and transitive. 

R is called an «-similarity relation if it is «-reflexive for 
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some 0 , « # 1. 

Since clearly reflexivity implies weak reflexivity, we 

have the following consequence of lemmas 5 and 6. 

Corollary 3. If R is a similarity relation on X, then 
R for each 0 , « # 1, F is a partition on X. 
«

Note that corollary 3 says that every similarity rela- 

tion R admits a resolution ∪ αR , where R is the equivalence α αα
R 

relation induced by the partition F . Indeed, it was pointed α
out by Zadeh [18] that if the R , 0 , α # 1, are a nested α
sequence of distinct equivalence relations on X, with α .1 
α ⇔Þ R ⊆ R R is nonempty and domain of R is equal 
2 α α

, 
1 1 1 2 

to domain of R , then R = ∪ R is a similarity relation on X. 2 αα

The following result, which is a straightforward conse- 

quence of theorem 1 and corollary 3, offers another charac- 

terization of similarity relation. 

Theorem 2. A relation R is an «-similarity (0 , « # 1) 

relation on a set X iff there is another set Y and an «-func- 
-1 tion f from X to Y such that R = ff . 

VI. FUZZY GRAPHS 

In this section, fuzzy graphs will be analyzed from the 

connectedness viewpoint. The results will be applied to 

clustering analysis and modelling of information networks. 

Definition 5: A fuzzy graph G is a pair [V,R], where 

V is a set of vertices, and R is a fuzzy relation on V. 

Following the usual convention between binary relations 

and boolean matrices, we denote by M the corresponding fuzzy G 
matrix of a fuzzy graph G In other words, (M ) = µ (v ,v ). . G R i j ij 

The first part of the following result is due to Tamura, 
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Higucchi and Tanaka [15]. The second part is quite straight- 

forward and hence is given without proof. 

Theorem 3. Let G = [V,R] be a given finite fuzzy graph, 

consisting of n vertices. 

(i) If R is reflexive, then there exists k # n 

such that 
2 k k+1 M , M ,...,M = M 

G G G G i (ii) If R is irreflexive, then the sequence {M } is 
G i=1 eventually periodic. 

In the following, we will only consider finite fuzzy 

graph G whose characterizing fuzzy relation R is reflexive. 

Definition 6: Let G = [V,R] be a fuzzy graph. A 

vertex v is said to be «-reachable from another vertex u, for 

some 0 , « # 1, iff there exists a positive integer k such 

µ k(u,v) $ «. The reachability matrix of G denoted by R R , G, k is the matrix M , where k is the smallest integer such that G k k+1 «M = M . The «-reachability matrix of G denoted by R is G G , G, 
«obtained from R such that R (u,v) = 1 iff R (u v) $ «G G G , . 

The following algorithm can determine the reachability 

between any pair of nodes in a fuzzy graph G. 

Algorithm 1: Determination of R (i,j) G 
th 1. Let R = (ai ,...,ai ) denotes the i row. i 1 n 

2. Obtain the new R by the following procedure : i 
a (new) = max {max {min {a , a (old)}},a (old)}. 
ij kj ik ij j k 

3. Repeat 2 until no further changes occur. 

4. R (i,j) = a (new). G ij 
Note that a similar algorithm can be constructed for 

«the determination of R , 0 # « # 1. 
G 

Definition 7: Let G be a fuzzy graph. The connectivity 

of a pair of vertices u and v, denoted by c(u,v) is defined 

to be min {R (u,v), R (v,u)}. The connectivity matrix of G G G , 
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denoted by C is defined such that C (u,v) = C(u,v). For G, G 
«

0 # « # 1 the «-connectivity matrix of G denoted by C is , , G, 
«obtained from C such that C (u,v) = 1 iff C(u,v) $ «. G G 

Algorithm 2: Determination of C . G 
1. Construct R . G T 
2. Construct R T, where G is the transpose of G. G 
3. C = min(R ,R T). G G G 

«An algorithm for determining C is similar to algorithm 2. G 
Definition 8: Let G be a fuzzy graph. G is called 

strongly «-connected iff every pair of vertices are mutually 

«-reachable. G is said to be initial «-connected iff there 

exists v « V such that every vertex u in G is «-reachable 

from v. A maximal strongly «-connected subgraph (MS«-CS) of 

G is a strongly «-connected subgraph not propertly contained 

in any other MS«-CS. 

It is easily seen that strongly «-connectedness implies 

initial «-connectedness. Also, the following result is 

straightforward. 

Theorem 4. A fuzzy graph G is strongly «-connected iff 

there exists a vertex u such that for any other vertex v in 

G R (u v) $ « and R (v,u) $ «. , G , G 
Algorithm 3. Determination of all MS«-CS in G. 

«
1. Construct C . G 
2. The number of MS«-CS in G is given by the number 

«of distinct row vectors in C . For each row vector G 
«α in C , the vertices contained in the corres- 
G 

ponding MS«-CS are the nonzero element of the 

corresponding columns of α. 

Example 1: Let G be a graph whose corresponding fuzzy 

matrix is given in figure 1a, and C.5 is given in figure 1b. G 
We see that the MS.5-CS's of G contain the following vertex 

sets, {1}, {2,4}, {3,5}, respectively. 
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The previous result is now applied to clustering anal- 

ysis. We assume that a data graph G = [V,R] is given, where 

V is a set of data and µ (u,v) is a quantitive measure of the R 
similarity of the two data items u and v. For 0 , « # 1, an 

«-cluster in V is a maximal subset W of V such that each pair 

of elements in W is mutually «-reachable. Therefore, the 

construction of «-clusters of V is tantamount of finding all 

maximal strongly «-connected subgraphs of G. 

Algorithm 4. Construction of «-clusters 
2 k 1. Compute R,R ,...,R , where k is the smallest 

k k+1 integer such that R = R ; 

k i 2. Let S = R . ∑ Note that S is a similarity 
i=1 

relation; 
S 3. Construct F . 
« S 

Then, each element in F is an «-cluster. 
«

We may also define an «-cluster in V as a maximal sub- 

set W of V such that every element of W is «-reachable from 

a special element v in W. In this case, the construction of 

«-clusters is equivalent to finding all maximal initial 
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«-connected subgraphs of G. Note, however, that the relation 

induced by initial «-connected subgraphs is not in general 

a similarity relation. 

Another application is the use of fuzzy graphs to model 

information networks. Such a model was proposed by Nance, 

Karfhage and Bhat [12] utilizing the concepts of a directed 

graph. The most significant result of their work is the 

establishment of a measure of flexibility of a network. More 

specifically, let N be a network with m edges and n nodes, 

then the measure of flexibility of N, denoted by Z(N), is 

defined as follows: 

m - n 
Z(N) = (3) n(n-2) 

While equation (3) is quite useful in classifying cer- 

tain graph structures related to information network, it also 

has some drawbacks in that it is insensitive to certain 

classes of graphs. It seems that the use of fuzzy graphs 

is a more desirable model for information network. 

The weights in each arc could be used as parameters such as 

number of channels between stations, costs for sending mes- 

sages, etc. Thus, we propose here the use of a fuzzy graph 

to model an information network. Let N have n nodes; we de- 

fine two measures of N: flexibility and balancedness, denoted 

by Z(N) and B(N) respectively, in the following: 

n 
∑ ∑ µ (v v ) R i, j 
i=1 j≠i Z(N) = 

n(n-1) (4) 

µ (v ,v ) - µ (v v ) R i j R k, i ∑ ∑ ∑| | 
i j k 

B(N) = (5) 
n(n-1) 

It is readily seen that the proposed two measures given 
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in (4) and (5) are much more sensitive to the structure of 

graphs than the one given in (3). 

V. SYMMETRIC FUZZY GRAPHS 

In this section, connectivity of a special class of 

fuzzy graphs will be investigated. 

Definition 9: A fuzzy graph G = [V,R] is called 

symmetric iff R is symmetric. 

Following the usual convention of graph theory, a 

symmetric graph is simply a weighted undirected graph such 

that the edge ,u,v. corresponding to a pair of symmetric arcs 

(u,v) and (v,u), and the weight between two nodes u and v is 

µ (u,v). R 
Definition 10: Let G = [V,R] be a symmetric fuzzy 

∑graph Define degree of a vertex v to be d(v) = µ (v u). . R , 
u≠v 

The minimum degree of G is δ(G) = min {d(v)}, and the maximum 
v 

degree of G is ∆(G) = max {d(v)}. 
v 

Definition 11: Let G = [V ,R ], i=1,2 be two fuzzy 

∩
i i i 

graphs such that V V = φ. The sum of G and G , denoted 1 2 1 2 
by G + G , is a graph [V,R], where V = V ∪ V and 1 2 1 2 

µ (u v) u v « V R , , , 1 1 
µ (u,v) = µ (u,v), µ,v « V R R 2 2 

0, otherwise 

Definition 12: Let G = [V ,R ], i = 1,2 be two fuzzy i i i 
graphs G is said to be a subgraph of G if V ⊆ V and . 1 2 1 2 
R is R restricted to V . 1 2 1 

The following result is a straightforward consequence 

from the definitions. 
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Lemma 7: Let G = [V,R] be a symmetric fuzzy graph and 

G = [V ,R ], i = 1,...,n, be disjoint subgraphs of G such i i i 
n 
∑that G is connected. Then i i=1 

∑i) δ( G ) $ min {δ(G )} i i i 

∑ii) ∆( G ) $ max {δ(G )}. i i i 

Definition 13: Let G = [V,R] be a symmetric fuzzy 

graph. G is said to be connected iff for each pair of ver- 
k 

tices u and v in V, there exists a k . 0 such that µ (u v) .0 R , . 

G is called τ -degree connected, for some τ $ 0, if δ(G) 

$ τ and G is connected. A τ -degree component of G is a maxi- 

mal τ-degree connected subgraph of G. 

Theorem 5. For any τ . 0, the τ -degree components of 

a fuzzy graph are disjoint. 

Proof: Let G and G be two τ -degree components of G 
1 2 

such that their vertex sets have at least one common element. 

Since δ(G + G ) $ min {δ(G )} by lemma 7 hence G + G is 
1 2 i 

, , 
1 2 1=1,2 

τ-degree connected. Since G and G are maximal with respect 
1 2 

to τ -degree connectedness, we must conclude that G = G . 
1 2 

Algorithm 5. Determination of τ -degree components of 

a finite symmetric fuzzy graph G. 

1. Calculate the row sums of M . G 
2. If there are rows whose sums are less than τ, 

then obtain a new reduced matrix by eliminating 

those nodes, and go to 1. 

3. If there is no such row, then stop. 

4. Each disjoint subgraph of the graph induced by the 

nodes in the last matrix as well as each eliminated 

node is a maximal τ -degree connected subgraph. 



139
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

RAYMOND T. YEH AND S. Y. BANG

Example 2: Let G be a finite symmetric fuzzy graph such 

that 

a 0 .6 0 .3 0 .9 

b .6 0 .4 .7 0 1.7 

M = c 0 .4 0 .7 .6 1.7 
G 

d .3 .7 .7 0 .4 2.1 

e 0 0 .6 .4 0 1.0 

Applying algorithm 5, we obtain a reduced matrix 

b 0 .4 .7 1.1 

c .4 0 .7 1.1 

d .7 .7 0 1.4 

Hence, the maximal 1.1-degree components of G are {a}, {b,c,d} 

and {d}. 

Definition 14: Let G be a symmetric fuzzy graph, and 

{V ,V } be a dichotomy of its vertex set V. The set of edges 
1 2 

joining vertices of V and vertices of V is called a cut-set 
1 2 

of G denoted by (V V ) relative to the dichotomy {V ,V }. , 1, 2 , 1 2 
∑The weight of the cut-set (V V ) is defined to be µ (u,v). 1, 2 R u«V 1 v«V 2 

Definition 15: Let G be a symmetric fuzzy graph. The 

edge connectivity of G, denoted by λ(G), is defined to be the 

minimum weight of cut-sets of G. G is called τ -edge connected 

if G is connected and λ(G) $ τ . A τ -edge component of G is 

a maximal τ-edge connected subgraph of G. 

The following results can be proved similar to that of 

lemma 7 and theorem 5. 

Lemma 8: Let G be a symmetric fuzzy graph and G , i=1,. i 
∑..,n, be disjoint subgraphs of G such that G is connected, i i 

then 
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∑λ( G ) $ min(λ(G )) 
i i i i 

Theorem 6. For τ . 0, the τ -edge components of a sym- 

metric fuzzy are disjoint. 

The following algorithm for determining τ-edge components 

is based on a result of Matula [10]. 

Algorithm 6. Determination of τ -edge component of G. 

1. Obtain the cohesive matrix H of the M . G 
2. Obtain the τ-threshold graph of H. 

3. Each component of the graph is a maximal τ -edge 

connected subgraph. 

Note that in Step 1, one can determine the cohesive 

matrix by using Corollary 9.5 of [10] after finding a narrow 

slicing [10]. And in order to obtain a narrow slicing, 

Matula's algorithm [10] can be used without modification. 

Example 3: Let G be a symmetric fuzzy graph such that 

a b c d e 

0 .8 .2 0 0 

.8 0 .4 0 .4 M = G .2 .4 0 .8 .3 

0 0 .8 0 .8 

0 .4 .3 .8 0 

A narrow slicing and cohesive matrix of G are given in the 

following: 
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It then follows from the algorithm that the 1.1-edge connected 

components are {a}, {b}, {c,d,e}. 

Definition 16: A disconnection of a symmetric fuzzy 

graph G is a vertex set D whose removal results in a discon- 

nected or a single vert|ex graph. The weight of D is defined 

∑to be {min µ (v,u) µ (v,u) ≠ 0}. R R 
V«D 

Definition 17: The vertex connectivity of a symmetric 

fuzzy graph G, denoted by Ω(G), is defined to be the minimum 

weight of disconnection in G. G is said to be τ -vertex con- 

nected if Ω(G) $ τ . A τ -vertex component is a maximal τ - 

vertex connected subgraph of G. 

Note that τ -vertex components need not be disjoint as 

do τ-degree and τ -edge components. The following result is 

straightforward. 

Theorem 7. Let G be a symmetric fuzzy graph, then 

Ω(G) # λ(G) # δ(G) 

Theorem 8. For any real numbers a, b and c such that 

0 , a # b # c, there exists a fuzzy graph G with Ω(G) = a, 

λ(G) = b, and δ (G) = c. 

Proof: Let n be the smallest integer such that c/n # 1, 

and let a' = a/n, b' = b/n, and c' = c/n, then 0 , a' # b' #

c' # 1. 
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Let the fuzzy graph G in Figure 2 be constructed as follows. 

Each of subsets A, B, and C contains n+1 nodes. Let ,A.

denote the subgraph specified by the set A. In C d(w ) = nc' 
0 

and d(w ) = (n-1) + c' + b' for 1 # i # n. In other words 
i 

,C - w . is 1.0-complete and ,C. is c'-complete. In B d(v ) 0 0 
= n+1 and d(v ) = n + (n-1) + a' + b' for 1 # i # n. ,B.i 
is 1.0-complete. In A d(u ) = n+1 and d(u ) = n + (n-1) + 0 i 
a' for 1 # i # n. ,A. is 1.0-complete. To make clearer the 

connections between subsets should be mentioned. Each w is i 
connected to v with fuzzy value b' for 1 # i # n. And each i 
u (i≠O) is connected to v with fuzzy value a' and to vj's i i 
(j≠i), 0) with fuzzy value 1.0. Finally u is connected to 

0 
v with fuzzy value 1. All other fuzzy values in the fuzzy 
0 
graph G are set to 0. 

Now we will show that G thus constructed satisfies the 

conditions imposed. 

(1) From the process of the construction described above it 

is clear that δ(G) = d(w ) = nc' = c. 0 
(2) The number of edges in any cut of subgraphs ,A., ,B. or 

,C. is greater than or equal to n since ,A., ,B. and ,C. are 

c'-complete. Therefore the weight of a cut is greater than 

or equal to nc', which means that the weight of any cut which 

contains a cut of ,A., ,B. or ,C. is greater than or equal 

to nc'. Only other cuts which do not contain a cut of ,A., 

,B. or ,C. must contain the cut (A,B ∪ C) or (A ∪ B,C). The 

weight of the cut (A,B ∪ C) is 1 + n(n-1) + na' and that of 

the cut (A ∪ B,C) is nb'. 

nb' # nc'. 

nb' # 1 + n(n-1) + na'. 

Hence λ(G) = nb' = b. 

(3) Let us determine the minimum number of nodes in discon- 

nection of G. Since ,A., ,B. and ,C. are at least 

p 
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c'-complete, they can be disconnected or become a single node 

by removing at least n nodes. Only other possible ways to 

disconnect G are disconnections between A, B and C. Since 

,(A - u ) ∪ (b - v ). is a'-complete and u and v are con- 0 0 0 0 
nected to each other and to ,(A - u ) ∪ (B - v )., any dis- 0 0 
connection must contain at least n+1 nodes. On the other 

hand since ,B. and ,C. are connected by n edges, at least n 

nodes have to be removed to disconnect ,A ∪ B. and ,C.. But 

since nodes on both sides of edges are all different, at 

least n nodes have to be removed. Therefore at least n nodes 

have to be removed to disconnect the graph G. Then since 

min {f(v)} = a' and actually {v ,v ,...,v } is a disconnec- 1 2 n v«V 

tion of G, the weight of the disconnection {v ,v ,... v } 1 2 , n 
specifies the node connectivity of the graph G, namely, 

Ω(G) = na' = a. 

V. APPLICATION TO CLUSTERING ANALYSIS 

The usual graph-theoretical approahces to clustering 

analysis involve first obtaining a threshold graph from a 

fuzzy graph, and then applying various techniques to obtain 

clusters as maximal components under different connectivity 

considerations. These methods have a common weakness, namely, 

the weight of edges are not treated fairly in that any weight 

greater (less) than the threshold is treated as 1(0). In 

this section, we will extend these techniques to fuzzy graphs. 

It will be shown that the fuzzy graph approach is more 

powerful. 

In table 1 in the following, we provide a summary of 

various graph theoretical techniques for clustering analysis. 

This table is a modification of table II in Matula [10]. 
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In the following definition, clusters will be defined 

based on various connectivities of a fuzzy graph. 

Definition 18: Let G = [V,R] be a symmetric fuzzy graph. 

A cluster of type i is defined by condition (i), i = 1,2,3,4, 

in the following. 

(1) maximal «-connected subgraphs, for some 0 , « # 1. 

(2) maximal τ -degree connected subgraphs. 

(3) maximal τ-edge connected subgraphs. 

(4) maximal τ -vertex connected subgraphs. 

It follows from the previous definition that clusters of 

type (1), (2) and (3) are hierarchical with different « and 

τ, whereas clusters of type (4) are not due to the fact τ - 

vertex compoenents need not be disjoint. 

It is also easily seen that all clusters of type (1) can 

be obtained by the single-linkage procedure. The difference 

between the two procedures lies in the fact that «-connected 
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subgraphs can be obtained directly from R by at most n-1 G 
matrix multiplication (where n is the rank of M ), whereas in G 
the single-linkage procedure, it is necessary to obtain as 

many threshold graphs as the number of distinct fuzzy values 

in the graph. 

In the following, we will show that not all clusters of 

types 2, 3 and 4 are obtainable by procedures of k-linkage, 

k-edge connectivity, and k-vertex connectivity, respectively. 

Example 4: Let G be a symmetric fuzzy graph given in 

figure 3a. The dendrogram in figure 3b indicates all the 

clusters of type 2. It is easily seen from the threshold 

graphs of G that the same dendrogram cannot be obtained by 

the k-linkage procedure. Those for k=1 and 2 are given in 

figures 4a and 4b, respectively. 
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Theorem 9: The τ -degree connectivity procedure for the 

construction of clusters is more powerful than the k-linkage 

procedure. 

Proof: In light of example 4 above, it is sufficient 

to show that all clusters obtainable by k-linkage procedure 

is also obtainable by τ -degree connectivity procedure for 

some τ . 

Let G be a symmetric fuzzy graph. For 0 , « # 1, let 

G' be a graph obtained from G by replacing these weights 

less than « in G by 0. For any k used in k-linkage proce- 

dure, set τ = k«. It is easily seen that a set is a cluster 

obtained by applying k-linkage procedure to G iff it is a 

cluster obtained by applying the τ -degree connectivity pro- 

cedure to G'. 

Example 5: Let G be a symmetric fuzzy graph given in 

figure 5a. The dendrogram in figure 5b gives all clusters 

of type 3. It is clear by examining all the threshold graphs 

of G that the same dendrogram cannot be obtained by means 

of k-edge connectivity technique for any k. Those for k = 1 

and 2 are given in figure 6. 
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By example 5 and following the same proof procedure as 

in theorem 8, we have the following result. 

Theorem 10. The τ-edge connectivity procedure for the 

construction of clusters is more powerful than the k-edge 

connectivity procedure. 

Example 6: Let G be a symmetric fuzzy graph given in 

figure 7a. The dendrogram in figure 7b provides all clusters 

of type 4. It is easily seen that the same dendrogram cannot 

be obtained by means of k-vertex connectivity technique for 

any k. Those for k = 1 and 2 are given in figure 8. 
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Following the same proof procedure as in theorems 8 and 

9, we conclude with the result below. 

Theorem 11. The τ -vertex connectivity procedure for the 

construction of clusters is more powerful than the k-vertex 

connectivity procedure. 
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CONDITIONAL FUZZY MEASURES AND THEIR APPLICATIONS 

T. Terano and M. Sugeno 
Tokyo Institute of Technology 

Tokyo, Japan 

1. INTRODUCTION 

The concept of fuzzy sets [1, 2, 3] suggested by Prof. 

Zadeh gave us a powerful tool by which we can treat many com- 

plicated problems of human behavior . Comparing a fuzzy set 

with an ordinary set, one of the authors defined a set func- 

tion "fuzzy measure" and a functional "fuzzy integral" in the 

former papers [4, 5]. And they examined analytically and ex- 

perimentally the effectiveness of these concepts for the ma- 

croscopic evaluation of some fuzzy phenomena with fuzzy cri- 

terion [6]. 

In this paper, they introduce a set function "conditional 

fuzzy measure" and a relation between "a priori and a pos- 

teriori fuzzy measures". These are very useful for descri- 

bing any kind of transition of fuzzy phenomena such as commu- 

nication of rumors, the reprint of color photograph, and the 

development of human abilities by education. The common cha- 

racteristics of these phenomena are that the measures descri- 

bing their status are very vague, and that their transitions 

are influenced greatly by the subjectivity of the people who 

are involved in such fuzzy phenomena. 

It is well known that the uncertainty of human behavior 

is sometimes conveniently expressed by the subjective proba- 

bility (judgemental probability) in Bayesian statistics. But 

we can not say that this is the best way of expressing the 

fuzziness unless the problem is directly related to decision 
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making. 

Since the fuzzy measure is an extension of the probabil- 

ity measure and its physical meaning is similar to the member- 

ship function of a fuzzy set, the models presented in this pa- 

per are more suitable for describing the transition of fuzzy 

phenomena generally. 

NOMENCLATURE 

X, Y : arbitrary set 

φ : empty set 

x, y : elements, x ∈ X, y ∈ Y 

B : Borel field 

g(? ) : fuzzy measure of (X,B) 

h : mapping from X to [0,1] 

P(? ) : probability measure of (X,B) 

σ (? x) : conditional fuzzy measure of Y with respect 
Y 

to x 

g (?) : fuzzy measure of X (a priori fuzzy measure) 
X 
g (?) : fuzzy measure of Y 
Y 

σ (? y) : a posteriori fuzzy measure of X 
X 
{ } : set including only one element x. 
i g : fuzzy density 

F(λ) : spectrum of light 

λ : -1 , λ , ∞ or wave length 

u(λ), v(λ), w(λ) : tristimulus values of a spectrum 

color 

F (λ), F (λ), F (λ) : spectrum colors selected for stan- 
R G B 

dard colors Red, Green, Blue 

t(λ) : absorption coefficient of filter. 
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2. FUZZY MEASURES AND INTEGRALS 

2.1 FUZZY MEASURES 

Ordinary measures in the theory of Lebesgue integrals 

have additivity. Here the authors consider a measure as a set 

function w ith monotonicity but not always with additivity. 

The idea of fuzzy measures can be shortly expressed in three 

statements. These are very similar to the axioms of probabi- 

lity measure. The concept of "grade" is used instead of pro- 

bability in the statements. Since "grade" is also used in 

fuzzy sets theory, we will easily understand the connotation. 

Let X be an arbitrary set and φ be an empty set. A small 

letter x denotes a member of X. The first statement is: "The 

grade of x ∈ X equals unity and that of x ∈ φ equals 0". Let 

A and B be subsets of X. Then, the second statement is: "If 

A ⊂ B, then the grade of x ∈ B is larger than that of x ∈ A"†. 

The last statement will be seen in the definition of fuzzy 

measures. 

Let B be a Borel field of X. 

[Definition 1] A set function g(?) with the following proper- 

ties is called a fuzzy measure. 

1) g(φ) = 0. g(X) = 1. 

2) If A, B ∈ B and A ⊂ B, then g(A) # g(B). 

3) If F ∈ B and F is a monotone sequence, then 
n n 

lim g(F ) = g(lim F ) 
n n n→∞ n→∞

In the above definition, 1) means boundedness and non- 

negativity, 2) monotonicity, and 3) continuity. If X is a fi- 

nite set, the condition 3) can be omitted. 

† The concept of the grade of x ∈ A never implies that A is a 

fuzzy set. It can be interpreted in comparison with the 

probability of x ∈ A. 
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Let h: X → [0,1] and F = {xh(x) $ α}. If F ⊂ B for α α
and α ∈ [0,1], then h is called a B-measurable function. A 

triplet (X, B, g) is called a fuzzy measure space. 

In an ordinary probability space (X, B, P), P has the 

following proerties. 

1) 0 # P(E) # 1 for all E ∈ B, particularly, P(X) = 1. 

2) If E ∈ B for 1 # n , ∞ and E ∩ E = φ for i ≠ j n i j 
∞ ∞

then P( ∑ E ) = ∑ P(E ) 
n n 

n=1 n= 1 

Now, P is one of the fuzzy measures because the monotonicity 

and the continuity of P can be derived from the above proper- 

ties. In other words, the fuzzy measure is a set function ob- 

tained by loosing some properties of the probability measures. 

We may use a probability measure with additivity to mea- 

sure "fuzzy phenomena". However, it is quite doubtful if 

there exists "additivity" behind "fuzziness" in the phenomena 

where human subjectivity plays an important role. We might 

as well expect that we may be able to measure "fuzziness", if 

we construct a theory of the measures without additivity. 

Monotonicity is a quite natural condition. It is not 

necessary that g(A ∪ B) = g(A) + g(B) where A ∩ B = φ , if the 

additivity is thrown away. It would be considered that a fuz- 

zy measure is a means for measuring "fuzziness", while a pro- 

bability measure is one for measuring "randomness". In this 

sense, fuzzy measures can be regarded as subjective scales by 

which "grade of fuzziness" is measured. 

2.2 FUZZY INTEGRALS 

Now, by using fuzzy measures, let us define fuzzy inte- 

grals which are very similar to Lebesgue integrals. Let h be 

a B-measurable function. 

[Definition 2] The fuzzy integral of h over A with respect to 
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g is defined as follows: 

∫− h(x) + g(?) = sup [α Λ g(A ∩ F )] F = {xh $ α} 
A α , α . 

α ∈[0 1] . 
(2.1) 

The symbol ∫− is an integral with a small bar. It is also a 

symbol of letter f. The small circle is the symbol of the com- 

position used in the fuzzy sets theory. For simplification, 

the fuzzy integral over X is written as ∫− h + g. The fuzzy 

integrals can be also called fuzzy expectations in comparison 

with the probabilistic counterparts. They have the following 

properties. 

1) 0 # - h + g(?) # 1 (2.2) 

Let a ∈ [0,1], then 

2) ∫− (a V h) + g(?) = a V ∫− h + g(?), (2.3) 

3) ∫− (a Λ h) + g(?) = a Λ ∫− h + g(?). (2.4) 

4) ∫− (h V h ) + g(?) $ ∫− h + g(?) V ∫− h + g(?) (2.5) 1 2 1 2 
5) ∫− (h Λ h ) + g(?) # ∫− h + g(?) Λ ∫− h + g(?) (2.6) 

1 2 1 2 
6) ∫− h + g(?) $ ∫− h + g(?) V ∫− h + g(?) (2 7) E ∪ F E F . 

7) ∫− h + g(?) # ∫− h + g(?) Λ ∫− h + g(?) (2 8) E ∩ F E F . 

Let h (x) be a membership function of a fuzzy set A A . 

Then the fuzzy measure of A is defined as follows: 

g(A) = ∫− h (x) + g(?). (2.9) A 
The fuzzy integral over A is defined as 

∫− h(x) + g(?) = ∫− [h (x) Λ h(x)] + g(?). (2.10) A A 
Here, the properties 6) and 7) also hold. 

Let {h } be a monotonically decreasing sequence of B-mea- 
i 

surable function and {a } a monotonically increasing sequence i 
n 

of real numbers, then V [a Λ h ] is also B-measurable and 
i i i= 1 

there holds 
n n 

8) ∫− [ V (a Λ h )] + g(?) = V [a Λ ∫−h + g(?)]. (2.11) 
i i i i i= 1 i=1 

If {h } is a monotone sequence of B-measurable functions 
n 
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and lim 
n→∞

h = h, then h is B-measurable and 
n 

9) lim ∫− h 0 g(?) = ∫− h + g(?). (2.12) 
n n→∞

Let P be a probability measure. Then both integrals, 

Lebesgue and fuzzy, are defined with respect to P. 

10) ∫− h(x) dP - ∫− h(x) 0 P(?)  # 1/4 (2.13) 

Since the operations of fuzzy integrals include only compari- 

sons. This inequality means that without using addition, we 

can obtain, b a fuzzy integral, the value different by at 

most 1/4 from the probabilistic expectation. 

2.3 CONDITIONAL FUZZY MEASURES 

[Definition 3] Let σ (? x) be a fuzzy measure of Y for any Y 
fixed x ∈ X†. Then it is called a condition fuzzy measure of 

Y with respect to X. 

A fuzzy measure g (?) of Y is constructed by σ (? x) and Y Y 
g (?) as follows: X 

g (F) = ∫− σ (Fx) + g (?) (2.14) 
Y X Y X 

We have 

∫− h(y) + g = ∫− [∫− h(y) + σ (? x)] + g (2.15) 
Y Y X Y Y X 

Analogously we can consider σ (? y). There holds the next , X 
relation between σ (? x) and σ (? y). Y X 

∫− σ (Ey) + g = ∫− σ (Fx) + g (2.16) 
F X Y E Y X 

The above equation corresponds to Bayes' theorem. In this 

sense g is called a priori fuzzy measure and σ (? y) a pos- , X X 
teriori fuzzy measure. 

When X and Y are finite sets, a posteriori fuzzy measure 

can be easily calculated from Eq. (2.16). Let F = {y } where j 

†Note: More precisely, σ (? x) is arbitrary on a set E such Y 
that g (E) = 0 where E ⊂ X and g is a fuzzy measure X X 
of X. 
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y ∈ Y. Then we obtain 
j 

σ (Ey ) Λ g ({y }) = ∫− σ ({y }x) + g . (2.17) 
X j Y j E Y j X 

From this follows that 

(1) if g ({y }) $ ∫− σ ({y }x) + g Y j E Y j X 

σ (Ey ) = ∫− σ ({y }x) + g (2.18) X j E Y j X, 

(2) if g ({y }) = ∫− σ ({y }x) + g Y j E Y j X 

σ (Ey ) $ ∫− σ ({y } ∫−x) + g . (2.19) X j E Y j X 

Note that there holds always g ({y }) $ ∫− σ ({y }x) + g . Y j E Y j X 
In the case (2), σ (Ey ) is not uniquely determined. We can, 

X j 
for instance, let σ (Ey ) be unity. X j 

2.4 CONSTRUCTION OF FUZZY MEASURES 

For simplification, assume that X is a finite set 

{x , x ,...,x }. Let us consider how to construct a fuzzy 
1 2 n X 

measure of a fuzzy measure space (X, 2 , g). 
i i Let 0 # g # 1 for 1 # i # n. Here g is called a fuzzy den- 

sity. Next let 

n 
1 i _ [ ∏ (1 + λg ) - 1] = 1, where -1 , λ , ∞. (2.20) 
λ i=1 

Define for E ⊂ X 

1 i g (E) = _ [ ∏ (1 + λg ) - 1] (2.21) 
λ λ x ∈E i 

Then g satisfies all consitions of a fuzzy measure. 
λ

From the definition, we obtain that 
i g ({x }) = g for 1 # i # n (2.22) 

λ i 
and that if A ∩ B ≠ φ, then 

g (A ∪ B) = g (A) + g (B) + λg (A) g (B). (2.23) λ λ λ λ λ
When λ = 0 g becomes additive and hence, equal to a proba- , λ
bility measure. It follows from Eq. (2.23) that if λ # 0, 

then 

g (A ∪ B) # g (A) + g (B) (2.24) λ λ λ
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and if λ . 0, then 

g (A ∪ B) . g (A) + g (B) (2.25) λ λ λ
Now let us consider how to calculate a fuzzy integral in 
X (X 2 g) Let h : X → [0 1] Assume h(x ) # h(x ) #...#, , . , . 1 2 

h(x ). If not, rearrange h(x) in an increasing order. 
n 

Define 

F = {x , x ,...,x }, for 1 # i # n. 
i i i+1 n 

Then we obtain from Definition 2 

n 
∫− h(x) + g(?) = V [h(x ) Λ g(F )]. (2.26) X i i i=1 

There exists at least one j such that 

h(x ) Λ g(F ) # h(x ) Λ g(F ) 
j-1 j-1 j j 

h(x ) Λ g(F ) $ h(x ) Λ g(F ). 
j j j+1 j+1 

Clearly, there holds for this j 

∫− h(x) + g(?) = h(x ) Λ g(F ). X j j 

Thus, we obtain the value of a fuzzy integral without evalua- 

ting h(x ) Λ g(F ) for all i's. 
i i 

3. TRANSITION OF FUZZY PHENOMENA 

Using the concept of the conditional fuzzy measure, two 

types of models are considered as for the transition of fuzzy 

phenomena. The first model corresponds to Markov process Eq. 

(2 14) Here the input is a fuzzy measure g and the output . . , X 
g is the fuzzy integration of a conditional fuzzy measure Y 
σ (? x) respect to g as shown in Fig. 1. For example, sup- 
Y X 

posing g is the measure of a gossip told to a person, g is X Y 
the measure of the gossip modified by his subjectivity σ . Y 
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The second model corresponds to Bayes' theorem Eq. (2.16). 

The input is a priori fuzzy measure g as above, but the out- X 
put is a posteriori fuzzy measure σ (? y) as shown in Fig. 2. X 
One of the explanations of this model is that one's preconcep- 

tion g is improved to σ by an information σ . The example 
X X Y 

of this model is the ability of evaluation, judgement and diag- 

nosis improved by experience, information or learning. 

Now some numerical examples are shown. We assume that X 

and Y are finite sets each including only three elements. In 

the first model, if σ ({? }x) is independent of x, the output Y 
g (?) is always equal to σ ({? } x). The result is almost the 
Y Y 
same when the trends of σ are not so different with different Y 
x's, as shown in Fig. 3. This is analogous to the fact that 

the hardheaded people do not change their opinion by outside 

information. 
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Since g ({y}) is, generally speaking, a weighted mean of 
Y 

σ ({y}x) of which weight is g , g ({y }) is large if both X X Y j 
g ({x }) and σ ({y }x ) are large for all i's. Some examples 
X i Y j i 
are shown in Fig. 4. 

We can see that g becomes flat usually. Therefore, some 
Y 

amplifiers might be added when this model is applied to the 

actual transition problems. 

A fuzzy transition phenomenon may be represented by a se- 

quence of models or steps each of which is similar to one giv- 

en in Fig. 1. The outputs of these steps converge rapidly to 

a certain value as the number of steps increase. 

In the second model, the output is sometimes amplified 

as explained in Section 2.3. This corresponds to the case 

when a complete information is given in Bayesian statistics. 

In this case a posteriori probability becomes unity. In our 

model however σ (? y ) can take any values between g ({y }) , , X i Y j 



161
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

T. TERANO AND M. SUGENO

and 1 as shown in Eq. (2.19). Therefore, we can say that the 

information is not complete but comparatively reliable. When 

σ ({y }x ) does not change much with i as in Fig 5 and y Y j i . , 1 
is given as an information, the output σ is similar to the X 
imput g . This is because σ ({y }x ) is large or in other X Y 1 i , 

words, y is an information telling us that something likely 1 
to happen has happened. This information is not valuable so 

that g is not modified On the other hand if y is given X . , 3 , 

the input is affected greatly. This means that y is very 
3 

valuable because of its rareness. 

Figs. 6 and 7 show other examples. In Fig. 6, the convex 

input is changed to a concave output and vice versa. This 

means that a priori fuzzy measure is strongly influenced by an 

effective information. The information is thought to be ef- 

fective if σ ({y }x ) is large (small) when g ({x }) becomes Y j 2 X 2 
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In Fig. 7, some parts of the input are amplified. This 

can be considered as a case when one's preconceived opinion is 
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intensified by same kind of external information. 

When g and σ are not so small σ becomes slightly flat X Y , X 
but not so different from g This corresponds to the case X. 

when a fair man gets an incomplete information. 

4. APPLICATIONS 

4.1 FILTERING OF COLOR 

The color of light is changed when the light is filtered 

through a colored glass. The color of photograph by a photo- 

chemical reaction is also a kind of transition of color. 

Let F(λ) is the spectrum of a light source, where λ is a 

wave length. The color of F(λ) is called "spectrum color". 

According to the theory of color [8], our feeling of color is 

said to be expressed by the trichromatic coefficients of light 

(u, v, w). 

U V u = , v = , w = 1 - u - v U + V + W U + V + W , 
(4.1) 

wh
_
ere U

_
= ∫

_
u(λ)F

_
(λ)dλ, V = ∫ v

_
(λ)F(λ)dλ, W = ∫ w

_
(λ)F(λ)dλ

Here, u(λ), v(λ) and w(λ) are the tristimulus values of a spe- 

trum color defined by International Commission on Illumination. 

Consequently, a color is represented as a point on u-v plane. 

Since the characteristic of a filter is expressed by the 
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absorption coefficient t(λ), F(λ) is changed to F'(λ) = t(λ) 

F(λ), when the light is filtered. 

Now F(λ) is formed by mixing three primary spectrum colors 

F (λ), F (λ) and F (λ) which form day light if they are mixed 
R G B 
equally. 

F(λ) = aF (λ) + bF (λ) + cF (λ) (4.2) R G B 
When F(λ) is filtered, the trichromatic coefficients u', v' 

w' of F'(λ) are calculated from Eq. (4.1). Let us consider 

the problem of determining filtered color. The problem is 

solved, if a', b' and c' are identified so that F"(λ) shows 

the same color as F'(λ). 

F"(λ) = a'F (λ) + b'F (λ) + c'F (λ) (4.3) 
R G B 

The basic spectra of colors by which we form an arbitrary 

light is shown in Fig. 8. Fig. 9 shows the characteristic of 

a filter used for the calculation. The values of a, b, c and 

a', b', c' are calculated as shown in Table 1. From this ta- 

ble, we can see that the filter emphasizes green. 
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This transition can be expressed by the first model of 

conditional fuzzy measure. Let g (?) be a fuzzy measure which X 
represents the mixing ratio of light sources, where X consists 

of x (red) x (green) and x (blue) 1 , 2 3 . 

In this example, we assume that g (?) has additivity. As- X 
suming that Y also consists of three axes of red, green, blue 
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for the filtered light, the mixing ratio of three colors is 

expressed by the equation 

g (F) = ∫− σ (Fx) 0 g . Y X Y X 
The densities of σ (? x), which have the same filtering charac- 

Y 
teristics as Fig. 9, are shown in Table 2. 

If we suppose that the coefficients a, b, c correspond to 

the densities of g we can claculate the densities of g as X, Y 
shown in Table 3. Comparing Table 1 with Table 3, we can see 

that the process of color change when light is filtered is 

well simulated by the first model. This example is rather 

physical, so the calculation can be carried out without fuzzi- 

ness. But in analysing the transition of the more sensible 

variables, such as contrast and tone of color, the merit of 

this madel will be seen more saliently. 
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4.2 EVALUATION OF HOUSES 

When a person evaluates a house, he considers many factors 

simultaneously such as equipment, space, cost, environment, 

shopping, etc. The weights of these factors may differ from 

person to person, and some parts of the factors may be redun- 

dant. Moreover, these weights are being refined according 

with his experience or learning. 

The authors already pointed out [6,7] that the fuzzy inte- 

gral is a powerful tool for the synthetic evaluation of fuzzy 

systems. Now, they apply the second model of the conditional 

fuzzy measure to this learning process. 

As the factors of evaluation of houses, we choose five 

items: equipment, space, environment, transportation and shop- 

ping convenience. A volunteer student scores the above items 

x ~ x according to his a priori evaluation of houses gener- 
1 5 

ally. These scores are the densities of a priori fuzzy measure 

g . 
X 

Table 4 shows this experimental scores. The conditional 

fuzzy measure σ , in this case, is calculated objectively from Y 
the data of four sample houses (y ~ y ) as shown in Table 5 

1 4 
. 

Here, σ (? x ) is considered as the scores of each house from Y i 
the viewpoints of an item x . Substituting g and σ into Eqs. 

i X Y 
(2.18) and (2.19), we calculate a posteriori fuzzy measure σ . X 
Tables 6 and 7 show the densities of g and σ respectively. Y X, 
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Comparing Table 4 with Table 7, we can see that the 

weights of evaluation do not change remarkably when y is fix- 
j 

ed. This is becuase he does not have any special preference 

as shown in Table 4 and all the samples (houses) are not re- 

markable different too. The items of which weights are chang- 

ed are transportation for y , y , environment for y , space 
1 2 3 

and environment for y 4. 

The order of his synthetic preference is y y y y 
1
, 

2
, 

3
, 

4
, 

and coincides with the integration in Table 6. That is to say, 

he prefers the house for which he does not need to change his 

a priori weight. This result is quite natural. 
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In this example, it is difficult to examine the accuracy 

of our model experimentally. We shall be able to check it, if 

we adopt the examples of diagnosis or cause-estimation. 

5. CONCLUSION 

The authors show in this paper some idea and the formula- 

tion of "fuzzy measure" and "fuzzy integrals". These are 

suitable for the synthesis of fuzzy elements because of their 

special constitution and their simplicity of calculation. Es- 

pecially, "conditional fuzzy measures" and their related for- 

mula are quite effective for expressing the transition of fuz- 

zy phenomena. 

Only two examples are described here. But many other 

fields of applications, such as decision making, optimization, 

artificial intelligence and thinking models, can be considered. 

Some of them are being studied by the authors. 
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ABSTRACT

The theory of general topology is based on the set opera-

tions of union, intersection and complementation. Fuzzy

sets as introduced by Zadeh [1] have the same kind of opera-

tions. It is, therefore, natural to extend the concept of

point set topology to fuzzy sets, resulting in a theory of

fuzzy topology. Various results similar to those in general

topology as well as some significant ramifications are dis-

cussed.

I.  INTRODUCTION

In his classical paper [1], Zadeh first introduced the

fundamental concept of fuzzy sets. An immediate application

of this idea can be found in the theory of general topology

since it is based mainly on the operations of union, inter-

section and complementation of sets [2,10]. In the develop-

ment of a parallel theory based on fuzzy sets, many inter-

esting phenomena have been observed [3-6]. Specifically,

one notices many differences between the two theories. A

good example is the Tychonoff Theorem in general topology:

any product of compact spaces is compact. Its fuzzy counter-

part holds only for finite products. A counterexample of

infinite product can be easily constructed [4,6]. The con-

cept of point can also be fuzzfied and a local theory is

therefore possible [5]. With the proper fuzzification of

the unit interval, one can study the separation properties
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of fuzzy topological spaces, in particular, normality and

uniformity [7,8].

All these constitute a rich body of theory which is

largely parallel to that of general topology but has many

significant ramifications as well. It can therefore be aptly

termed the theory of fuzzy topology.

For simplicity and unity, we will follow the original

definition of fuzzy sets as introduced by Zadeh [1], i.e.

functions from X to the unit interval. Replacement of the

unit interval by various lattices at different points is

definitely possible and will lead to slightly more general

results [6-9]. Proofs will be omitted but references will

be provided at the end of each section.

II.  BASIC DEFINITIONS AND PROPERTIES

Let X = {x} be a point set. A fuzzy set A in X is

characterized by a membership function mA(x) from X to the

unit interval I = [0,1].

Definition 2.1. Let A and B be fuzzy sets in X. Then:

A = B ⇔ mA(x) = mB(x), for all x ε X.

A , B ⇔ mA(x) ≤ mB(x), for all x ε X.

C = A < B ⇔ mC(x) = max[mA(x), mB(x)], for all x ε X.

D = A > B ⇔ mD(x) = min[mA(x), mB(x)], for all x ε X.

E = A' ⇔  mE(x) = 1 - mA(x), for all x ε X.

More generally, for a family of fuzzy sets, A = {Ai|i ε I},

the union C = <IAi; and the intersection D = >IAi are defined

by

    
mC x( ) = sup

I
{mAi

x( )} x ε X,

and

    
mD x( ) = inf

I
{mAi

x( )} x ε X.
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The symbol F will be used to denote the empty fuzzy set

(mF(x) = 0 for all x in X). For X, we have by definition

mX(x) = 1 for all x in X.

Definition 2.2. A fuzzy topology is a family T of fuzzy

sets in X which satisfies the following conditions:

(a) F, X ε T.

(b) If A, B ε T, then A > B ε T.

(c) If A; ε T for each i ε I, then <IAi ε T.

T is called a fuzzy topology for X, and the pair (X,T) is a

fuzzy topological space, or fts for short. Every member of

T is called a T-open fuzzy set (or simply open fuzzy set). A

fuzzy set is T-closed (or simply closed) iff its complement

is T-open.

As in general topology, the indiscrete fuzzy topology

contains only F and X, while the discrete fuzzy topology

contains all fuzzy sets.

Definition 2.3. Let A be a fuzzy set in a fts (X,T).

The largest open fuzzy set contained in A is called the in-

terior of A and is denoted by A° . The smallest closed fuzzy

set containing A is called the closure of A and is denoted

A-.

Definition 2.4. Let f be a function from X to Y. Let

B be a fuzzy set in Y with membership function mB(y). Then

the inverse of B, written as f-1[B], is a fuzzy set of X

whose membership function is defined by

    

m
f–1 B[ ] x( ) = mB f x( )( ) for all x in X.

Conversely, let A be a fuzzy set in X with membership func-

tion mA(x). The image of A, written as f[A], is a fuzzy set

in Y whose membership function is given by
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mf[A](y) = sup{mA(z)} if f
-1[y] is not empty,

z ε f-1[y]

= 0  otherwise,

for all y in Y, where f-1[y] = {x|f(x) = y}.

Theorem 1.1. Let f be a function from X to Y. Then:

(a) f-1[B'] = {f-1[B]}' for any fuzzy set B in Y.

(b) f[A'] . {f[A]}' for any fuzzy set A in X.

(c) B1 , B2 ⇒ f-1[B1],f-1[B2], where B1,B2 are fuzzy

sets in Y.

(d) A1 , A2 ⇒ f[A1] , f[A2], where A1 and A2 are fuzzy

sets in X.

(e) B . f[f-1[B]] for any fuzzy set B in Y.

(f) A , f-l[f[A]] for any fuzzy set A in X.

(g)  Let f be a function from X to Y and g a function from

Y to Z. Then (g+f)-1[C]=f-1[g-1[C]] for any fuzzy

set C in Z, where g+f is the composition of g and f.

Definition 2.5. A function f from a fts(X,T) to a fts

(Y,U) is F-continuous iff the inverse of each U-open fuzzy

sets is T-open.

Theorem 1.2. A function f from a fts(X,T) to a fts(Y,U)

is F-continuous iff the inverse of each U-closed fuzzy set

is T-closed.

Definition 2.6. A function f from a fts(X,T) to a fts

(Y,U) is said to be F-open (F-closed) iff it maps an open

(closed) fuzzy set in (X,T) onto an open (closed) fuzzy set

in (Y,U).

A fuzzy homeomorphism is an F-continuous one-to-one map-

ping of a fts X onto a fts Y such that the inverse of the

mapping is also F-continuous. If there exists a fuzzy

homeomorphism of one fuzzy space onto another, the two fuzzy

spaces are said to be F-homeomorphic and each is a fuzzy
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homeomorph of the other. Two fts's are topologically F-

equivalent iff they are F-homeomorphic.

For reference see [2].

III.  COMPACTNESS AND COUNTABILITY

Definition 3.1. Let (X,T) be a fts. A family A of fuzzy

sets is a cover of a fuzzy set B iff B , U {A|A ε A}. It is

an open cover iff each member of A is an open fuzzy set. A

subcover of A is a subfamily which is also a cover.

Definition 3.2. A fts is compact iff each open cover

of the space has a finite subcover.

Definition 3.3. A fts is countably compact iff every

countable open cover of the space has a finite subcover.

Definition 3.4. Let T be a fuzzy topology. A subfamily

B of T is a base for T iff each member of T can be expressed

as the union of some members of B.

Definition 3.5. Let T be a fuzzy topology. A subfamily

B of T is a subbase for T iff the family of finite inter-

sections of members of S forms a base for T.

Definition 3.6. A fts(X,T) is said to be CII if there

exists a countable base B for T.

Theorem 3.1. If a fts (X,T) is CII, then compactness

and countable compactness are equivalent.

Theorem 3.2. Let f be an F-continuous function from a

compact (countably compact) fts X onto a fts Y. Then Y is

compact (countably compact).

Next, we will have a characterization of compactness

and countable compactness peculiar to fuzzy topological

spaces.

Given a cover A = Ai, i ε I, it means that

  
sup
iεI

{mAi(x)} = 1 for all x ε X. Therefore, for any 0< ε < 1,
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and for any x ε X, there exists a fuzzy set Ai such that

mAi (x) ≥ 1 - ε. At each point x ε X select one such Ai and

group together all points x with the same Ai. Let Gi,ε denote

the set of all such x's. For a fixed ε{Gi,ε} form a parti-

tion of X, called an ε-partition by A. Note that the parti-

tion depends on the initial choice of Ai's.

If in addition, for any x ε X there exits Ai such that

mAi(x) = 1, then group all points x with the same Ai and

denote it {Gi,ε}. A is then said to have a 0-partition of X.

We have the following characterization theorem.

Theorem 3.3. A fts (X,T) is compact (countably compact)

iff each open cover (countable open cover) has a finite 0-

partition of X.

Theorem 3.4. If there exists an open cover (countable

open cover) A of X and a point x ε X such that mAi(x) < 1 for

all Ai ε A, then (X,T) is not compact (countably compact).

Definition 3.7. A fts (X,T) is Lindelöf iff every open

cover of X has a countable subcover.

Theorem 3.5. If a fts (X,T) is CII, it is also Lindelöf.

Theorem 3.6. Let f be an F-continuous function from a

Lindelöf fts X onto a fts Y. Then Y is Lindelöf.

Theorem 3.7. A fts (X,T) is Lindelöf iff each open

cover has a countable ε-partition of X for all ε such that

0 < ε < 1.

For reference see [3].

IV.  PRODUCT AND QUOTIENT SPACES

Let {Xa}, a ε I be a family of spaces. Let X = PaεIXa

be the usual product space, and let Pa be the projection from

X onto Xa.

Further assume that each Xa  is a fts with fuzzy topology

Ta. Let B ε Ta; then by Definition 2.4, Pa
-1[B] is a fuzzy
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set in X. The family of fuzzy sets S = {Pa
-1 [B]|B ε Ta,a εI}

is now used to generate a fuzzy topology T for X in the fol-

lowing manner: Let B be the family of all finite intersec-

tions of members of S. Let T be the family of all unions of

members of B. It is clear that T is indeed a fuzzy topology

for X, with B as a base and S a subbase.

Definition 4.1. Given a family of fts {(Xa,Ta)}, a ε I,

the fuzzy topology defined as above is called the product

fuzzy topology for X = PaεIXa and (X,T) is called the prod-

uct fts.

Some immediate consequences from this definition are

listed here.

Theorem 4.1. Let (X,T) be the product fts of the family

of fts's {(Xa,Ta)}, a ε I.

(i) For each  a ε I, the projection Pa is F-continuous.

(ii) The product fuzzy topology is the smallest fuzzy

topology for X such that (i) is true.

(iii) Let (Y,U) be a fts and let f be a function from Y to X.

Then f is F-continuous iff for every a ε I, Pa+f is

F-continuous.

Next we state a product theorem for CII spaces. One

would notice the difference between fuzzy topology and gen-

eral topology.

Theorem 4.2. Let {(Xa,Ta)}, a = 1,2,..., be a countable

family of CII fts's. Then the product fts(X,T) is also CII.

However, uncountable products of CII spaces may not be

CII; hence, the above result is, in a sense, the best one can

get.

Theorem 4.3. Let {(Xa,Ta)}, a ε I, be an uncountable

family of CII spaces such that

(i) none is indiscrete, and

(ii) in each fts (Xa,Ta), for any F ε Ta and F ≠ f, there
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exists a point x ε Xa such that mF(X) = 1, where mF is the

membership function of F.

Then the product fts(X,T) is not CII.

After countability, we shall present a product theorem

for compact spaces. Once again, departure from general topol-

ogy is evident.

Theorem 4.4. Let {(Xa,Ta)}, a = 1,2,...,n be a finite

family of compact (countably compact) fts's. Then the product

fts (X,T) is also compact (countably compact).

The following counterexample shows that, in a sense,

Theorem 4.4 is the best one can hope for.

Let Y be any point set. Let n be any positive integer.

Let An be the fuzzy set in Y with membership function mAn
= 1 - (1/n) for all y ε Y. Let Xn = Y and let Tn = {f,An,Y}.

Then (Xn,Tn) is a compact (countably compact) fts since Xn
is the only open cover of Xn. However, the product fts of

the countable family {(Xn,Tn)}, n = 1,2,..., is not compact

(countably compact).

To see this, note that the fuzzy set Pn
-1 [An] has mem-

bership function

mpn 
-1

[An]
(x) = 1-(1/n) for all x ε X = 

    
P
n−1

∞
 X

n
.

By definition of product fts, the family

S = {f,X,Pn
-1[An], n = 1,2,...}

is used to generate the product fuzzy topology T by first

taking the finite intersections and then the unions of these

intersections. Clearly, the product fuzzy topology thus

generated is exactly S itself. The family {Pn
-1[An]}, n = 1,

2,..., is an open cover (countableopen cover) of (X,T) which

has no finite subcover.

Next we discuss another method of constructing new

fuzzy topology, which can be regarded as the dual of the
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product fuzzy topology.

Let X be a point set. Let R be an equivalence relation

defined on X. Let X/R be the usual quotient set, and let P

be the usual projection from X onto X/R.

If (X,T) is a fts, one can define a fuzzy topology on

X/R such that P is F-continuous as follows. Let U be the

family of fuzzy sets in X/R defined by U = {B|P-1[B] ε T}.

Then U is a fuzzy topology, called the quotient topology for

X/R, and (X/R, U) is called the quotient fts.

We have results similar to Theorem 4.1.

Theorem 4.5. (i) The quotient fuzzy topology is the

largest fuzzy topology such that P is F-continuous.

(ii) Let (Y,V) be a fts. Let g be a function from the

quotient fts (X/R,U) to (Y,V). Then g is F-continuous iff

g + P is F-continuous.

Theorem 4.6. Let f be a F-continuous function from a

fts (X,T) onto a fts (Y,V) such that f is either F-open or

F-closed, then there exists an equivalence relation R on X

such that (Y,V) is F-homeomorphic to the quotient fts (X/R,U).

Definition 4.2. Let A be a fuzzy set in a fts (X,T).

Let R be an equivalence relation on X, which is therefore de-

composed into disjoint subsets D = {Xi}, i ε I (x,y ε Xi iff

they are R related). Define two new fuzzy sets A1,A2 in X

with membership functions as follows:

mA1
(x) = 

  yεXi
sup mA(y)  for x ε Xi

and

mA2
(x) = 

  yεXi
inf  mA(y)  for x ε Xi.

They will be called upper and lower fuzzy sets of A,

respectively.
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Theorem 4.7. Let P be the projection from a fts (X,T)

onto its quotient fts (X/R,U). Then the following statements

are equivalent.

(i) P is F-open.

(ii) If A is an open fuzzy set in (X,T), then its upper

   fuzzy set A1 is open.

(iii) If A is a closed fuzzy set in (X,T), then its

      lower fuzzy set A2 is closed.

If "open" and "closed" are interchanged in (i), (ii),

and (iii), the resulting statements are equivalent.

Theorem 4.8. If (X,T) is CII and P is F-open, then the

quotient fts (X/R,U) ts CII.

Theorem 4.9. If (X,T) is compact (countably compact),

then the quotient fts (X/R,U) is compact (countably compact).

For reference see [4,6].

V.  LOCAL PROPERTIES

In this section we introduce the concept of fuzzy points

and state some results on local properties of fuzzy topologi-

cal spaces.

Definition 5.1. A fuzzy point p in X is a fuzzy set

with membership function
mp(x) = y, for x = x0.

= 0,  otherwise,

where 0 < y < 1. p is said to have support x0 and value y.

Definition 5.2. Let p be a fuzzy point and A a fuzzy

set in X. Then p is said to be in A or A contains p, denoted

p ε A, iff mp (x) < mp(x) for all x ε X.

Theorem 5.1. If A = <iεIAi, where I is any index set,

then p ε A iff p ε Ai for some i ε I.

In ordinary set theory, Theorem 5.1 is trivial. But in
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the case of fuzzy set theory, this is not as trivial as one

may imagine. In fact, if one replaces the inequality in

definition 5.2 by mp (x) ≤ mA(X), then Theorem 5.1 is no

longer true. On the other hand, should we restrict all fuzzy

sets to take values {0,1} and hope that Definitions 5.1 and

5.2 would reduce to the corresponding definitions in ordinary

set theory, we should have used 0 < y ≤ 1 and mp(x) ≤ mA(X)

instead of 0 < y < 1 and mp(x) < mA(X). In other words, our

current definitions will not reduce to the ordinary case even

if we impose the restriction that all fuzzy sets will take

values {0,1} only.

Theorem 5.2. Let (X,T) be a fts. Then a subfamily B

of T forms a base of T iff for every member A of T and for

every fuzzy point p ε A, there exists a member B of B such

that p ε B , A.

Definition 5.3. Let (X,T) be a fts and p a fuzzy point.

A subfamily Bp of T is called a local base of p iff p ε B

for every member B of Bp, and for every member A of T such

that p ε A there exists a member B of Bp such that p ε B , A.

Definition 5.4. A fts (X,T) is said to be C1 iff every

fuzzy point in X has a countable local base.

Theorem 5.3. If (X,T) is CII, then it is C1 .

    Definition 5.5. A fts (X,T) is said to be separable iff

there exists a countable sequence of fuzzy points {pi}, i =

1,2,..., such that for every member A of T and A ≠ f, there

exists a pi such that pi ε A.

Theorem 5.4. If a fts (X,T) is CII, then it is

separable.

In Section III, we note that a CII fts is also Lindelof.

Together with Theorem 5.4, one sees that among the four types

of countability properties, namely, CII, CI, Lindelof and

separable, CII is the strongest. We also note that the
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F-continuous image of a Lindelof fts is also Lindelof. Here,

we have a similar result.

Theorem 5.5. Let f be an F-continuous function from a

separable fts (X,T) onto a fts (Y,U). Then (Y,U) is also

separable.

If f is F-open as well as F-continuous, we then have:

Theorem 5.6. Let f be an F-continuous function from a

CII(CI) fts (X,T) onto a fts (Y,U). If f is also F-open,

then (Y,U) is CII(CI).

The introduction of fuzzy points enables us to discuss

convergence in a meaningful way.

Definition 5.6. Let pn, n = 1,2,..., be a sequence of

fuzzy points in a fts (X,T) with supports xn
, = 1,2,....

Let p be a fuzzy point with support x ≠ xn, for all n ≥ n0,

where n0 is some number. Then pn is said to coverge to p,

written pn → p, iff for every member A of T such that p ε A,

there exists a number m, such that pn ε A for all n ≥ m.

Note that the restriction on the supports is necessary

to make the definition meaningful. Note also that if pn has

value yn and p has value y, in general pn → p does not imply

yn → y. In fact, we have the following observations. If

pn → p and p has support x0 and value y, then pn → q for all

fuzzy points q with support x0 and value z ≥ y. In the

theory of general topology, we have a similar situation. As

a matter of fact, the uniqueness of limits of convergent

nets is a characterization of a special type of topological

space, namely, Hausdorff space.

Definition 5.7. Let p be a fuzzy point in (X,T) with

support x0. Let A be a fuzzy set in X. Then p is an accu-

mulation point of A iff for every member B of T such that

p ε B, B > Ap ≠ f, where Ap is the fuzzy set with membership

function
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     mAp (x) = 0, for x = x0,

= mA (x), otherwise.

Similar to our previous remarks on convergence, we note

that if p is an accumulation point of A and P has support xO
and value y, then all fuzzy points q with the same support

xO and value z ≥ y are accumulation points of A.

Theorem 5.7. Let (X,T) be a CI fts. Let A be a fuzzy

set and p a fuzzy point in X. Then p is an accumulation

point of A iff there exists a sequence of fuzzy points pn,

n = 1,2,..., such that pn ε A and pn → p,

Theorem 5.8. Let (X,T) be a fts. if there exists a

countable sequence of fuzzy points {pi}, i = 1,2,..., in X

such that every fuzzy point p in X is an accumulation point

of the fuzzy set A = <ipi. Then (X,T) is separable.

However, the converse of the above theorem is in general

not true, demonstrating yet another departure from general

topology. We have the following counterexample.

Let X be a point set. Let xO ε X. Let Aa, 0 ≤ a ≤ 1,

be fuzzy sets in X defined by

mAa(x) = a, for x = x0
= 0, otherwise.

     Let T = {f,X,Aa,0 ≤ a ≤ 1}. Then (X,T) is a fts. Con-

sider the countable sequence of fuzzy points {pb} such that

the support of each pb is x0 and b ranges over the set of ra-

tional numbers between 0 and 1. Any member B of T such that

B ≠ f will contain a member of {pb}. Thus (X,T) is separable.

Let p be a fuzzy point with support x0 and value a0, 0 < a0
< 1. The p is not an accumulation point of the union A of any

countable fuzzy points since B > Ap = f for all B ε T con-

taining p and B ≠ X.
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The localization of compactness is naturally local

compactness.

Definition 5.8. A fts (X,T) is said to be locally com-

pact iff for every fuzzy point p in X there exists a member

A ε T such that (i) p ε A and (ii) A is compact, i.e. each

open cover of A has a finite subcover.

Clearly, each compact fts is locally compact.

The next result demonstrates once more the ramification

of fuzzy topology from general topology.

Theorem 5.9. A discrete fts (X,T) is not locally

compact.

Like CI fts, we have the following theorem.

Theorem 5.10. Let f be an F-continuous function from a

locally compact fts (X,T) onto a fts (Y,U). If f is also

F-open, then (Y,U) is locally compact.

Next we discuss the product and quotient spaces gener-

ated by CI, separable and locally compact spaces.

Theorem 5.11. Let {(Xa,Ta)}, a ε I, be a countable

family of CI fts's. Then the product fts (X,T) is CI.

However, there exists an uncountable family of CI spaces,

whose product is not CI.

Theorem 5.12. Let {(Xa,Ta)}, a ε I, be an uncountable

family of CI spaces such that:

(i) none is indiscrete, i.e., for each a ε I, there

  exists Ua ε Ta such that Ua ≠ f,Xa;

(ii) for each a ε I, there exists a fuzzy point pa ε Ua

  such that

p =
      

>
aeI

Pa
-1[pa]

is a fuzzy point in X; and

(iii) in each fts (Xa,Ta), for any A ε Ta and A ≠ f,

there exists a point x ε Xa such that mA(x) = 1, where mA is
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the membership function of A.

Then the product fts (X,T) is not CI.

Unlike general topology, given fuzzy points pa in Xa,

a ε I ,

     p = 
      

>
aεI

 Pa
-1 [Pa]

is not always a fuzzy point in X; it is either a fuzzy point

or the empty fuzzy set f. For example, let I = (0,1). In

each Xa, let pa be a fuzzy point with support xa and value a.

Then

     p = 
      

>
aεI

 Pa
-1 [Pa] = f.

Theorem 5.13. Let {(Xa,Ta)}, a ε I, be a countable

family of separable spaces. Then the product fts (X,T) is

also separable.

Theorem 5.14. Let {(Xa,Ta)}, a = 1,2,...,n, be a finite

family of locally compact fts's. Then the product fts (X,T)

is also locally compact.

Theorem 5.15. (i) If (X,T) is separable, then the

quotient fts (X/R,U) is separable.

(ii) If (X,T) is CI and P is F-open, then the quotient

fts (X/R,U) is CI.

(iii) If (X,T) is locally compact, and P is F-open, then

the quotient fts (X/R,U) is locally compact.

For reference see [5].

VI.  NORMALITY AND UNIFORMITY

In this section we present results on separation

properties of fuzzy topological spaces. For this purpose we

need a fuzzy version of the unit interval.

Definition 6.1. The fuzzy unit interval IF is the set
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of all monotonic decreasing functions l from the real line R

to the unit interval I, satisfying:

l(t) = 1 for t < 0, t ε R

l(t) = 0 for t > 1, t ε R

after the identification of l,m:  R → I if for every t ε R,

l(t-) = m(t-) and l(t+) = m(t+), where l(t-) = 
  
inf
s<t

 l(s) =

 
  
lim
s↑t

 l(s) and l(t+) = 
  
inf
s>t

 l(s) = 
  
lim
s↓t

 l(s).

We may define a partial ordering on IF by l ≤ m if for

every t ε R, l(t-) ≤ m(t-) and l(t+) ≤ m(t+). We may embed

the unit interval in the fuzzy unit interval by identifying

r ε I with the function a:R → I where a(t) = 1 for t < r and

a = 0 for t > r.

We define a fuzzy topology on IF by taking as subbase

{Lt,Rt}tεR, where Lt,Rt are fuzzy sets on IF defined by

     Lt(l) = 1-l(t-)

     Rt(l) = l(t+),

for all l ε IF.

Note that if we replace I by {0,1}, then the fuzzy unit

interval and its topology reduce to the unit interval and its

usual topology.

Definition 6.2. A fts (X,T) is said to be normal if

for every closed fuzzy set K and open fuzzy set U such that

K , U, there exists a fuzzy set V such that K , V°  , V-, U.

We can now state a characterization theorem for normal

spaces, which is similar to Uryshon lemma in the theory of

general topology.

Theorem 6.1. A fts (X,T) is normal iff for every closed

fuzzy set K and open fuzzy set U such that K , U, there

exists a F-continuous function f:X → IF such that for every

x ε X
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Should mK(X) ≤ f(x)(1-) ≤ f(x)(0+) ≤ mU(X)

Definition 6.3. A fts (X,T) is perfectly normal if for

every closed fuzzy set K and open fuzzy set U such that K , U,

there exists a F-continuous function f:X → IF such that for

every x ε X

mK(x) = f(x)(1-) ≤ f(x)(0+)  mU(x).

Theorem 6.2. A fts is perfectly normal iff it is normal

and every closed fuzzy set is a countable intersection of

open fuzzy sets. Next we present some results on fuzzy quasi-

uniformities and fuzzy uniformities. First let us consider

a quasi-uniformity on X in general topology. An element D

is a subset of X x X. We may define a mapping d:2x → 2x by

d(V) = {y|x ε V and (x,y) ε D}. It is obvious that V , d(V)

and d(
  I
UVi) = 

  I
U d(Vi) for V and Vi in 2

x. Conversely, given

d:2x → 2x satisfying V , d(V) and d(
  I
UVi) = 

  I
U d(Vi) for V and

Vi in 2
x, we may define D , X x X such that D contains the

diagonal by D = {(x,y)|y ε d({x})}. Thus in defining a

quasi-uniformity for a fuzzy topology, we take our basic

elements of the quasi-uniformity to be elements of the set Q

of mappings d:Ix → Ix which satisfy:

V , d(V) for V ε Ix.

d(
  T
UVi) = 

  I
U d(Vi) for Vi ε Ix.

Let d,e ε Q. We say d , e if d(V) , e(V) for every V ε Ix.

We define d + e by composition of mappings.

Definition 6.4. A fuzzy quasi-uniformity of X is a sub-

set D of Q such that

(a) D ≠ f

(b) If d ε D, e ε Q and d , e, then e ε D.

(c) If d ε D, e ε D, then  there exists f ε D such that
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  f , d and f , e.

(d) If d ε D, then there exists e ε D such that e + e , d.

The pair (X,D) is called a fuzzy quasi-uniform space.

Note that any subset B of Q which satisfies condition

(d) generates a fuzzy quasi-uniformity in the sense that the

collection of all d ε Q which contain a finite intersection

of elements of B is a quasi-uniformity. Such a set B is

called a subbase for the quasi-uniformity generated. If B

also satisfies (c), then B is called a base.

Theorem 6.3. Suppose a mapping i:Ix → Zx satisfies the

interior axioms:

(a) i(X) = X.

(b) i(V) , V for V ε Ix.

(c) i(i(V)) = i(V) for V ε Ix.

(d) i(V > W) = i (V) > i (W) for V,W ε Ix.

Then T = {V ε IX|i(V) = V} is a fuzzy topology and i(V) = V° .

Let (X,D) be a fuzzy quasi-uniform space.  Define

i:Ix → Ix by

i(V) = <{U ε Ix|d(U) , V for some d ε D}.

Then i satisfies the interior axioms.

Definition 6.5. The fuzzy topology generated by D is

the fuzzy topology generated by i. Let (X,T) be a fts. Let

A be any open fuzzy set in T. Define

dA(V) = X  for V , A

      = A  for V , A.

So dA + dA = dA. Then {dA|A ε T} forms a subbase for a fuzzy

quasi-uniformity which generates the original fuzzy topology

T. Therefore we have:

Theorem 6.4. Every fuzzy topology is fuzzy quasi-

uniformizable.
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Definition 6.6. Let (X,D) and (Y,E) be fuzzy quasi-

uniform spaces. A function f:X > Y is said to be F-quasi-

uniformly continuous if for every e ε E, there exists a d ε

D such that d , f-1(e).

Theorem 6.5. Every F-quasi-uniformly continuous func-

tion is F-continuous in the induced fuzzy topologies.

Next we state a theorem corresponding to the character-

ization of quasi-pseudo metrizability in terms of quasi-

uniformities.

Theorem 6.6. Let (X,D) be a fuzzy quasi-uniform space.

Then D has a base {dr|r ε R,r > 0} such that dr + ds , dr+s
for r,s ε R,r,s > 0 iff D has a countable base.

Finally, we turn to fuzzy uniformities.

Definition 6.7. Let d:Ix → Ix. Define d-1:Ix → Ix by

d-1(V) = ù{U|d(U') , V'}. Then a fuzzy quasi-uniformity D

is called a fuzzy uniformity if it also satisfies:

(e) If d ε D, then d-1 ε D.

If D is a fuzzy uniformity, then (X,D) is called a fuzzy

uniform space.

An F-uniformly continuous functions from a fuzzy uniform

space to another fuzzy uniform space can be similarly defined

as in the fuzzy quasi-uniform case.

Before stating the main result on fuzzy uniform spaces

we have to construct a fuzzy uniform structure on IF.

Define bε:(IF)
x → (IF)

x by bε(V) = >{Rs-ε|V , Ls'}.

Then the set {bε,bε
−1}ε>0 forms a subbase for a fuzzy uniform-

ity on IF. The topology generated by the fuzzy uniformity

is the one introduced previously.

We are now in a position to characterize fuzzy uniformi-

zability.

Theorem 6.7. Let (X,D) be a fuzzy unIform space and let
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d ε D.  Suppose d(U) , V.  Then there exists a F-uniformly

continuous function f:X → IF such that

mU(x) ≤ f(x)(1-) ≤ f(x)(0+) ≤ mV(x)

for all x ε X.

For reference see [7,8].
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ABSTRACT 

In this paper, a fuzzy program is defined through a 

flowchart where each arc is associated with a fuzzy relation 

(called a fuzzy branching condition) and a fuzzy assignment. 

Input, program and output variables occurring in a fuzzy 

program represent fuzzy subsets. A fuzzy program is inter- 

preted as implicitly defining a tree; and the execution of 

the fuzzy program is equivalent to searching a solution path 

in the tree, i.e., tree searching. Examples of fuzzy pro- 

grams and their executions are given. 

1. INTRODUCTION 

Fuzzy algorithms and fuzzy programs were introduced in 

[2,4,5,6,10]. The purpose is to use them to describe complex 

or ill-defined problems [11]. It is often the case that 

while real-world problems can be solved easily by human, they 

are often too complex or too ill-defined to be handled by 

machines. Our aim is to try to use fuzzy algorithms to cap- 

ture ill-defined procedures given by human for solving ill- 

defined and complex problems. For a more detailed account 

of motivation of fuzzy algorithms, the reader is encouraged 

to read [2,4]. In this paper, we shall first briefly intro- 

duce fuzzy sets and related concepts [1,4,7,8]. Then, we 

shall define fuzzy programs through flowcharts. We shall 

interpret that a fuzzy program implicitly defines a tree, 

and that the execution of the fuzzy program is equivalent to 
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tree-searching [12,13], i.e., searching a solution path in 

the tree. Most definitions given in Sections 2 and 3 may be 

found in [1,4,8]. 

2. FUZZY SETS AND FUZZY RELATIONS 

A fuzzy subset A of a univers of discourse U is charac- 

terized by a membership function u : U → [0,1] which associ- A 
ates with each element x of U a number u (x) in the interval A 
[0,1] which represents the grade of membership of x in A. 

The support of A, denoted by support(A), is the subset of U 

defined by 

∆support(A) = {xx « U and u (x) . 0}. A 

Through the support of the fuzzy subset A, A can be conven- 

iently written as 

∆A = {u (x)/xx « support (A)}. A 

That is, only those points whose grades of membership are 

greater than 0 are listed in A. For example, suppose that 

U = {1,2,3,...,10}. 

Then, A = {0.5/3, 0.7/4, 1.0/5, 0.5/8} is a fuzzy subset of 

U. 

Another example is 

young = {u(x)/xu(x) = 1 if x « [0,25], or u(x) = 

x-25 2 -1 (1 + ( ) ) if x « [25,100]}, 
5 

where young is a fuzzy subset of [0,100], with x representing 

age. 

In a fuzzy subset A, if u (x)/x and u (x)/x are both in 1 2 
A, and if u (x) ≠ u (x), then the element with smaller grade 

1 2 
of membership should be deleted. For example, if 
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A = {0.2/a, 0.5/a, 0.1/b}, then A should be reduced to 

{0.5/a, 0.1/b}. 

A fuzzy relation R between a set X and a set Y is a 

fuzzy subset of the Cartesian product X x Y. R is charac- 

terized by a membership function u (x,y) and is expressed 
R 

∆
R = {u (x,y)/(x,y)x « X and y « Y} R 

More generally, an nary fuzzy relation R is a fuzzy subset of 

X x X x ... x X and is expressed 1 2 n, 

∆
R = {u (x , x )/(x x )x « X i = 1 n} R 1 ..., n 1,..., n i i, ,..., . 

If R is a relation from X to Y and S is a relation from 

Y to Z, then the composition of R and S is a fuzzy relation 

denoted by R + S and defined by 

∆
R + S = {u(x,z)/(x,z)x « X, z « Z, and 

u(x,z) = v(u (x,y) ̀ u (y z))} R S , 
y 

where v and ̀ denote, respectively, max and min. 

Suppose A and B are fuzzy subsets of U and V, respec - 

tively. Suppose R is a fuzzy relation between U and V. Then, 

ARB, or more precisely R(A,B), is a fuzzy relation between 

U and V defined as 

∆
ARB = {u(x,y)/(x,y)u(x,y) = u (x) ̀ u (x y) ̀ u (y) 

A R 
, 

B 
, 

u (x)/x « A u (y)/y « B and u (x y)/(x y) « R} A , B R , , . 

The degree of the truthness of ARB, denoted by T(ARB), is 

the highest grade of membership in ARB. We note that T(ARB) 

can be conveniently obtained through the use of the max-min 
* product . For example, let 

* 
In the max-min matrix product, the operations of addition 

and multiplication are replaced by max and min, respectively. 
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A = {0.2/a, 0.6/b}, 

B = {0.8/c, 0.4/d, 0.1/e}, and 

R = {0.3/(a,c), 0.9/(a,d), 0.5/(a,e), 0.5/(b,c), 

0.3/(b,c), 0.8/(b,e)}. 

A, B and R can be written in matrix forms as follows: 

a b 
A : [0.2 0.6] 

c d e 
B: [0.8 0.4 0.1] 

c d e 
a 


0.3 0.9 0.5 

R: 
b  0.5 0.3 0.8 



Then, T(ARB) is calculated as follows: 

0.8 
0.3 0.9 0.5 

T(ARB) = [0.2 0.6] 0.4 
0.5 0.3 0.8

0.1 
0.4 

= [0.2 0.6] 
0.5 

= 0.5. 

Another example is shown in Fig. 1. We are given fuzzy 

subsets A and B, and a fuzzy relation R shown in Fig. 1(a). 

Thus, we obtain a fuzzy relation ARB shown in Fig. 1(b). 

Since 0.5 is the highest grade of membership in ARB, T(ARB) 

= 0.5. 

More generally if A ,...,A are fuzzy subsets of , 1 k 
U U respectively if R is a fuzzy relation for U x.. 
1
,..., 

k
, , 

1 
x U , then R(A ,...,A ) is a fuzzy relation for U1 x...x Uk . 

k 1 k 
given by 

∆R(A A ) = {u(x ,...,x )/(x ,...,x )u(x ,...,x ) 
1
,..., 

k 1 k 1 k 1 k 

= u (x ) ` ... ̀ u (x ) ̀ u (x ,...,x ), A 1 A k R 1 k 1 k 
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u (x )/x « A for i=1 k and A i i i ,..., 
i 

u (x x )/(x x ) « R} R 1,..., k 1,..., k . 

The degree of the truthness of R (A ... A ) is the highest 
1
, , 

k 
grade of membership in R(A , A ) 

1 
..., 

k 
. 

If R is a fuzzy relation for U x...x U then the 
1 k

, 

projection of R on U is a fuzzy subset of U , denoted by i i 
proj(R;U ), defined by i 

∆
proj(R;U ) = {u(x )/x x « U , i i i i i 

u(x ) = v u (y y x y y )} 
i R 1

,..., 
i-1

, 
i
, 
i+1

,..., 
k y «U j j 

j=1,..,k 

j≠ i 

For example, Fig. 2 shows a fuzzy relation R and its 

projections proj(R;X) and proj(R;Y). 
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If R is a fuzzy relation from U to V, and A is a fuzzy 

subset of U, then the fuzzy subset B of V which is induced by 

A is given by the composition of R and A ; that is 

∆B = A + R 

in which A plays the role of a unary relation. 

For example, in Fig. 3, B is a fuzzy subset induced by 

a fuzzy subset A and a fuzzy relation R. 

More generally, if R is a fuzzy relation for U x...x U , 
1 k 

and A . A A ,... A are fuzzy subsets of U , . U , 1, .., i-1, i+1 , k 1 . ., i-1 
U ,...,U , respectively then the fuzzy subset A* of U i+1 k , i i 
which is induced by A , j = 1,...,k, j ≠ i, is given by 

j 
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∆
A* = {u(x )/x x « U and u(x ) i i i i i i 

= v (u (y , y x y y ) ̀R 1 ..., i-1, i, i+1,..., k y « U j j 
j=1,...,k u (y )` ...` u (y ))} A 1 A k 1 k j≠i 

Property 1. If A and B are fuzzy subsets of U and V, 

respectively, if R is a fuzzy relation from U to V, then 

proj(ARB;U) = A ∩ A*, and 

proj(ARB;V) = B ∩ B*, 

where A* is the fuzzy subset of U induced by B, and B* is the 

fuzzy subset of V induced by A, that is A*=R+ B, and B*=A+ R. 

Property 2. If A and B are fuzzy subsets of U and V, 
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respectively, if R is a fuzzy relation from U to V, and if 

A' = proj(ARB;U), then both A'RB and ARB have the same degree 

of the truthness. 

Property 3. If A is a fuzzy subset of U, if R is a 

fuzzy relation from U to V, and if B* is the fuzzy subset of 

V induced by A, then ARB* has the highest grade of truthness 

among all ARC for all fuzzy subsets C of V. 

3. OPERATIONS ON FUZZY SETS 

(A) Set Operations 

Suppose A and B are fuzzy subsets of U and V, respec- 

tively. Then, the complement, intersection, and union are 

defined as follows: 

The complement of A is denoted ¬ A and is defined by 

∆¬ A = {u(x)/xu(x)=1-u (x) if x « support(A) ; A 

u(x)=1 otherwise.} 

For example, let U = {1,2,3,4,5}, and let a fuzzy subset A 

of U be given as A = {0.6/2, 0.3/5}. Then, ¬ A = {1.0/1, 

0.2/2, 1.0/3, 1.0/4, 0.7/5}. 

The intersection of A and B is denoted by A ∩ B and is 

defined by 

∆A ∩ B = {u(x)/xx « (support(A) ∩ support(B)) and 

u(x) = u (x) ̀ u (x)}. A B 

The union of A and B is denoted by A U B and is defined 

by 

A U B ∆= {u(x)/xu(x) = u (x) if x « support(A) and A 
x «| support(B); u(x) = u (x) v u (x) if x «A B 
support(A) and x « support(B); u(x) = u (x) if x B 
«| support(A) and x « support(B)}. 
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For example, let U = {a,b,c,d,e}, and let the fuzzy subsets 

A and B of U be given as 

A = {0.1/a, 0.9/b} 

B = {0.5/b, 0.3/c}. 

Then, 

A ∩ B = {0.5/b} 

A U B = {0.1/a, 0.9/b, 0.3/c}. 

(B) Logical Operations 

The negation not and the connective and and or are 

logical operations. They are defined as follows: 

Let A and B be fuzzy subsets of U and V, respectively. 

Then, 

∆
not A = {u(x)/xu(x) = 1-u (x) and u (x)/x « A}. A A ∆A and B = A ∩ B 

A or B =∆ A ∪ B. 

(C) Fuzzification Operations 

The operation of fuzzification has the effect of trans- 

forming a nonfuzzy set into a fuzzy set or increasing the 

fuzziness of a fuzzy set. Let A be a fuzzy subset. Fuzzi- 

fication of A is obtained through the use of a kernel K(x), 

which is a fuzzy subset. The result of application of a 

fuzzification to A by using the kernel K(x) is denoted by 

F(A;K) and is defined by 

F(A;K) = U u (x)K(x) A x « support(A) 

where u (x)K(x) is a fuzzy set defined as A 

u (x)K(x)={u(y)/yu(y)=u (x)u (y) and u (y)/y « K(x)} A A K(x) K(x) . 
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We note that if A = {1.0/x}, then F(A ;K) = K(x). Therefore, 

the kernel K(x) is the fuzzy set resulting from the fuzzifi- 

cation of a singleton {1.0/x}. Note that K(x) plays a role 

similar to the role of impulse response in linear systems. 

As an illustration of fuzzification, assume that U, A, 

and K(x) are defined by 

U = {1,2,3,4} 

A = {0.8/1, 0.6/2} 

K(1) = {1.0/1, 0.4/2} 

K(2) = {1.0/2, 0.4/1, 0.4/3}. 

Then, the fuzzification of A is given by 

F(A;K) = 0.8{1.0/1, 0.4/2} U 0.6{1.0/2, 0.4/1, 0.4/3} 

= {0.8/1, 0.32/2} U {0.6/2, 0.24/1, 0.24/3} 

= {0.8/1, 0.6/2, 0.24/3}. 

(D) Hedge Operations 

Examples of hedge operations are very, slightly, approx- 

imately, slightly, more or less, etc. A detail discussion 

of hedges may be found in [7,8]. 

First, we define very. If A is a fuzzy subset, then 

very A, (or more precisely, very(A),) may be defined 

∆ 2 very A = {(u (x)) /xu (x)/x « A}. A A 

Next, we consider hedges approximately, slightly, more 

or less, etc. These hedges are defined through fuzzifications, 

which are in turn defined by kernels. Different kernels may 

give different interpretations of these hedges. We shall use 

an example to illustrate the method of defining the hedge 

a proximately. Other hedges may be treated similarly. 

Let the universe of discourse U be given as 

U = {1, 1.5, 4}. 
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Let equal be a fuzzy relation for U x U given 

equal = {1.0/(1,1), 1.0/(1.5,1.5), 1.0/(4,4)}. 

Assume we choose a kernel K defined by 

K(1,1) = {1.0/(1,1), 0.8/(1,1.5), 0.8/(1.5,1)} 

K(1.5,1.5) = {1.0/(1.5,1.5), 0.8/(1.5,1), 0.8/(1,1.5)} 

K(4,4) = {1.0/(4,4), 0.2/(4,1.5), 0.2/(1.5,4)}. 

Then, using the kernel K, we may define a fuzzy relation 

approximately equal by 

approximately equal = F(equal;K) 

= 1.0{1.0/(1,1),0.8/(1,1.5),0.8/(1.5,1)} 

U 1.0{1.0/(1.5,1.5),0.8/(1.5,1),0.8/(1,1.5)} 

U 1.0{1.0/(4,4),0.2/(4,1.5),0.2/(1.5,4)} 

= {1.0/(1,1),1.0/(1.5,1.5),1.0/(4,4), 

0.8/(1,1.5),0.8/(1.5,1),0.2/(1.5,4), 

0.2/(4,1.5)}. 

We note that while the method of defining hedges is 

given as above, the same hedge may have different meanings 

in different problem domains. A proper interpretation of a 

hedge for a problem domain may be obtained by using a proper 

kernel for fuzzification. 

(E) Function Operations 

A function operation is a mapping that operates on 

elements of supports of fuzzy subsets. For example, let A 

and B be fuzzy subsets given by 

A = {0.2/1, 0.8/5} 

B = {0.4/2, 0.6/3}. 

Then, A + B is defined by 
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A + B = {0.2/1, 0.8/5} + {0.4/2, 0.6/3} 

`0 2 ̀ 0 4 0 2 ̀ 0 6 0 8 ̀ 0 4 0 8 0 6 = { . . , . . , . . , . . } 
1 + 2 1 + 3 5 + 2 5 + 3 

= {0.2/3, 0.2/4, 0.4/7, 0.6/8}. 

In general, let A ,...,A be fuzzy subsets of U ,... U , 1 n 1 , n 
respectively. Assume g is a function that mapps U x...x U 1 n 
into U. Then, g(A A ) is a fuzzy subset of U given by 1,..., n 

g(A A ) = {u(x)/xx=g(x ,...,x ), 1,..., n 1 n 
u(x)=u (x )` ...` u (x ), and A 1 A n 1 n 
u (x )/x « A , i=1,...,n} A i i i i 

4. FUZZY PROGRAMS 

A fuzzy program can be defined as either a sequence of 

fuzzy statements, or as a flowchart. For clarity of presen- 

tation, we shall use a flowchart to define a fuzzy program. 

This is done by first defining a directed graph as follows: 

Definition. A directed graph consists of a nonempty set 

V, a set A disjoint from V, and a mapping D from A into V x V. 

The elements of V and A are called vertices and arcs, respec- 

tively, and D is called the directed incidence mapping 

associated with the directed graph. If _a « A and D(_a) = 

(v,v'), then v and v' are called the initial and terminal 

vertices of arc _a, respectively. A finite directed graph is 

a graph whose number of vertices and arcs is finite. A 

sequence of vertices v ,...,v denotes a path if v and v 1 q i i+1 
are the initial and terminal vertices of an arc, respectively, 

for i=1,...,q-1. 

Now, we formally define a fuzzy program. 

_ 
Definition. A fuzzy progra

_
m consists of an input vector 

x=(x x ) a program vector y=(y ,...,y ) an output 1,..., L , 1 M , 
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vector z=(z , . z ) and a finite directed graph G such 1 .. , N , 

that the following conditions are satisfied: 

(1) x , x y ,... y ,z ,.. z are variables repre- 1 ..., L, 1 , m 1 ., N 
senting fuzzy subsets; 

(2) In the graph G, there is exactly one vertex called 

the start vertex that is not a terminal vertex of 

any arc; and there is exactly one vertex called the 

halt vertex that is not an initial vertex of any 

arc; and every vertex is on some path from the start 

vertex S to the halt vertex H; 

(3) In G, each arc _a not
_
e
_
ntering H is associated with 

a fuzzy relation R (x,y) called a fuzzy branching 
_a _ _ _ 

condition, and a fuzzy assignment y ← f (x,y); and 
_a 

each arc _a e
_
nt
_
ering H is associated with

_
a fuzz

_
y 
_ 

relation R (x,y) and a fuzzy assignment z ← f (x,y), _a _a 
where R and f are a fuzzy relation and an operation _a _a 
for fuzzy sets as discussed in Section 2 and Section 

3, respectively. 

An example of a fuzzy program P is shown in Fig. 4, where 

several is an input variable, y and y are program variables, 1 2 
and z is an output variable. All these variables represent 

fuzzy subsets of real numbers. In the fuzzy program P, 

approximately equal is a fuzzy relation, and + and - are func- 

tions operations "addition" and "subtraction" for fuzzy sub- 

sets, respectively. 

5. EXECUTIONS (INTERPRETATIONS) OF FUZZY PROGRAMS 

To interpret the fuzzy program P shown in Fig. 1, we 

have to define the hedge approximately. We know 

equal = {1.0/(x,x)x is a real number}. 
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Suppose we choose a kernel given by 

K(x,x) = {u(y,z)/(y,z)u(y,z)=1-d if y+z=2x,y-z# d 

and 0#d#1}. 

If we define approximately equal by fuzzifying equal by K, 

we obtain 

a proximately equal = {u(y,z)/(y,z)u(y,z)=1-d if 

y-z # d and 0 # d # 1}. 

(1) Control is assumed initially at vertex S and the 

values of y ,y and z are arbitrary. This is summarized in 
1 2 

Table 1, where a dash sign "-" indicates an aribtrary value. 
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(2) From vertex S, control can go to vertex V. The path 

is SV, and the values of y and y are {1.0/10.5} and {1 0/ 1 2 . 

23}, respectively. The value of z is still arbitrary. When 

path SV is taken by control, Table 1 is no longer true. 

√Therefore, we obtain Table 2, where a check mark " " is put 

in front of row S to indicate that this row is no longer 

available. 

(3) In Table 2, row SV is unchecked. Therefore, from 

SV, control can take the paths SVH and SVV in parallel. Thus, 

we generate Talbe 3 as follows. 

In row SVH of Table 3, the values of y , y and z are deter- 1 2 
mined as follows: Let AE stand for approximately equal. 

Note that y AEy is a fuzzy relation. We shall evaluate 1 2 
(y AEy ) as changing the values of y and y to the projec- 1 2 1 2 
tions of (y AEy ) on y and y respectively However 1 2 1 2, . , 
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*

according to Property 1 of Section 2, it is equivalent to 

changing the values of y and y by the following assignments 
1 2 

y ← y y* 1 1 ∩ 1 

← * ∩y y y 2 2 2 

where y* and y* are induced fuzzy subsets given by 
1 2 

y = AE + y 1 2 
y* = y + AE. 
2 1 

The matrix representations of y , y , AE and not AE are 1 2 
given by 

10.5 
y : [1] 
1 

23 
y : [1] 2 

23 
AE: 10.5[0] 

23 
not AE: 10.5[1] 

Now y* and y* are calculated by max-min matrix products as , 
1 2 

follows: 

y* = AE + y = [0] [1] = [0] 1 2 
y* = y + AE = [1] [0] = [0] 
2 1 

Therefore, y* = Φ and y* = Φ. (Note that Φ denotes the 
1 2 

empty fuzzy subset.) Thus, we have 

y ← y ∩ y* ← {1.0/10.5}∩ Φ ← Φ, 
1 1 1 

* {1 0/23}∩ Φ Φy ← y y ← ←
2 2 ∩ 2 

. . 

After y AEy is executed, we then execute the following 
1 2 

assignment 

z ← y + y ← Φ + Φ ← Φ. 
1 2 
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Therefore, when the path SVH is taken by control, the values 

of y ,y and z are Φ, as indicated in row SVH of Table 3 1 2 . 

Similarly, the values of y , y and z in row SVVV of 1 2 
Table 3 are computed as follows: 

Now, the test is y (not AE)y . Again, we interpret 1 2 
y (not AE)y as executing the following assignments: 1 2 

∩ * y ← y y 
1 1 1 

∩ * y ← y y 
2 2 2 

where y* = (not AE) + y and y* = y + (not AE) 1 2 2 1 . 

Since 

y* = (not AE) + y = [1] [1] = [1] 1 2 
y* = y + (not AE) = [1] [1] = [1] 2 1 , 

we have y* = {1.0/10.5} and y* = {1 0/23} 1 2 . . 

Therefore, 

y ← y ∩ y* ← {1 0/10 5} ∩ {1 0/10 5} ← {1 0/10 5} 1 1 1 . . . . . . 

{1 0/23} ∩ {1 0/23} {1 0/23} ← ←∩y y y ← . . . . 
2 2 2 

After y (not AE)y is interpreted, we proceed to interpret 1 2 
the following assignments: 

y ← y + several 1 1 
← {1.0/10.5} + {0.8/4, 1.0/5, 0.8/6} 

1 0 ` 0 8 1 0 ` 1 0 1 0 ̀ 0 8 ← { . . . . . . } 
10.5 + 4 

, 
10.5 + 5 

, 
10.5 + 6 

← {0.8/14.5, 1.0/15.5, 0.8/16.5}, and 

y ← y - several 2 2 
← {1.0/

`

23} - {0.8/4, 1.0/5, 0.8/6} 

1 0 0 8 1 0 ` 1 0 1 0 ` 0 8 ← { . . . . . . } 
23-4 

, 
23-5 

, 
23-6 

← {0.8/19, 1.0/18, 0.8/17}. 

The values of y and y are thus recorded in row SVV of 1 2 
Table 3. In Table 3, generations of rows SVH and SVV from 
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row SV is called the expansion of SV. SVH and SVV are called 

the successors of SV in the terminology of tree searching 

[12,13]. When a row is expanded, it is check-marked. 

(4) In Table 3, SVH can not be further expanded. How- 

ever, SVV can be expanded. SVVH and SVVV are successors of 

SVV. Expanding SVV, we obtain the following table: 

The values of y y and z in row SVVH of Table 4 are ob- 
1
, 

2 
tained as follows: 

The matrix representations of y , y and AE are: 1 2 
14.5 15.5 16.5 

y : [0.8 1.0 0.8] 1 
19 18 17 

y : [0.8 1.0 0.8] 2 

19 18 17 

14.5 0 0 0 

AE: 15.5 0 0 0 

16.5 0 0 0.5 
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Therefore, 

0 0 0 0. 0 

y* = AE + y = 0 0 0 1.0 = 0 1 2 
0 0 0.5 0.8 0.5 

0 0 0 

y* = y + AE = [0.8 1.0 0.8] 0 0 0 = [0 0 0.5] 2 1 
0 0 0.5 

Thus, y* = {0.5/16.5} and y* = {0 5/17} 1 2 . . 

First, the interpretation of y AEy is 1 2 

∩ * y ← y y 
1 1 1 

← {0.8/14.5,1.0/15.5,0.8/16.5} ∩ {0.5/16.5} 

← {0.5/16.5} , and 

∩ * y ← y y 
2 2 2 

← {0.8/19,1.0/18,0.8/17} ∩ {0.5/17} 

← {0.5/17} 

Then, the interpretation of z ← y + y is given by 
1 2 

z ← y + y 
1 2 

← {0.5/

`

16.5} + {0.5/17} 

0 5 0 5 ← { . . } 
16.5 + 17 

← {0.5/33.5}. 

Therefore, we have the above values of y , y and z shown in 1 2 
row SVVH of Table 4. 

SimilarIy, the values of y , y and z in row SVVV are 1 2 
computed as follows: The matrix representations of y , y 1 2 
and not AE are 

14.5 15.5 16.5 
y : [0.8 1 0 0 8] 1 . . 

19 18 17 
y : [0.8 1.0 0.8] 2 



































































210
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

C. L. CHANG

19 18 17 

14.5 1.0 1.0 1.0 

not AE: 15.5 1.0 1.0 1.0 

16.5 1.0 1.0 0.5 

Therefore, 

1.0 1.0 1.0 0.8 1.0 

y* = (not AE) + y = 1.0 1.0 1.0 1.0 = 1.0 1 2 
1.0 1.0 0.5 0.8 1.0 

1.0 1.0 1.0 

y* = y + (notAE) = [0 8 1 0 0 8] 1 0 1 0 1 0 2 1 . . . . . . 

1.0 1.0 0.5 

= [1.0 1.0 1.0]. 

Thus, y* = {1 0/14 5 1 0/15 5 1 0/16 5} and y* = {1 0/19 1 . . , . . , . . , 2 . , 

1.0/18, 1.0/17}. First, the interpretation of y (not AE)y 1 2 
is 

∩ * y ← y y 
1 1 1 

← {0.8/14.5,1.0/15.5,0.8/16.5} ∩

{1.0/14.5,1.0/15.5,1.0/16.5} 

← {0.8/14.5,1.0/15.5,0.8/16.5}, and 

y ← y ∩ y* 2 2 2 
← {0.8/19,1.0/18,0.8/17} ∩ {1.0/19,1.0/18,1.0/17} 

← {0.8/19,1.0/18,0.8/17}. 

Then, the interpretation of y ← y + several and y ← y - 1 1 2 2 
several are given by 

y ← y + several 1 1 
← {0.8/14.5,1.0/15.5,0.8/16.5} + {0.8/4,1.0/5,0.8/6} 

← {0.8/18.5,0.8/19.5,1.0/20.5,0.8/21.5,0.8/22.5}, 

y ← y - several 2 2 
← {0.8/19,1.0/18,0.8/17} - {0.8/4,1.0/5,0.8/6} 

← {0.8/15,0.8/14,1.0/13,0.8/12,0.8/11}. 
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The above computed values of y , y are shown in row SVVV of 1 2 
Table 4. 

We can keep extending Table 4 by expanding any unexpanded 

row of Table 4. The question now is when do we stop? The 

answer is that we should inspect the value of the output 

variable z. If z has an element which has a high grade of 

membership, we may stop the execution of the fuzzy program 

and output the element of z which has the highest grade of 

membership in z. If such an element is not unique, then a 

random or arbitrary choice can be made among the elements 

having the highest grade of membership. Of course, other 

stopping rules may be used. For example, if there are ele- 

ments of z whose grades of membership are greater than a 

prespecified threshold value, output all these elements. Or 

we may want to use a criterion which minimizes the number of 

execution steps, etc. Alternately, we may use an interactive 

system. In this case, we can print out at a terminal the 

values of z whenever they are generated. A user sitting in 

front of the terminal may examine the printout and use what- 

ever criterion to choose elements of z and stop the execu- 

tion of the program. 

For the example considered here, the first time z is not 

empty is when the path SVVH is taken by control. We may stop 

the execution and output the value 33.5 with its grade of 

membership being 0.5. However, if we are not satisfied with 

this value, we may continue expanding row SVVV of Table 4, 

hoping that better values may be generated for z. 

There is a warning that we should mention here. That 

is, no matter what criterion we use, we should not accept 

the values of output variables blindly. For example, con- 

sider the fuzzy program shown in Fig. 5. 
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The execution of the above program can be summarized in 

Table 5. 
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The leftmost numbers in Table 5 indicate the order that the 

rows are expanded. For this example, when row SVH is gen- 

erated, we may just output the value of z and terminate the 

execution. However, we note that 1.0/4 is not a correct ele- 

ment for z We note that 1 0/4 is obtained from 1.0/2 of y . . 1 
and 1.0/2 of y . However, for y = {1.0/2} and y = {1.0/2}, 

2 1 2 
the grade of the truthness of the branching condition y ≠ y 1 2 
is 0. Therefore 1.0/4 should not be an element of z. In 

other words, in order that an element, say u/x, to be con- 

sidered an element of z, all the fuzzy branching conditions 

for deriving u/x must have the grades of the truthness 

greater than or equal to u. This means that we may have to 

trace how u/x is computed and make sure that the fuzzy 

branching conditions have proper grades of truthness. 

Finally, we give some justifications of the way we 

interpret a fuzzy program. In general, there are two types 

of arcs in a fuzzy program. They are shown in Fig. 6. The 

interpretation of Fig. 6(a) is very simple. We just update 
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the value of the program vector y by performing 
_
the operation 

f on the existing values of the program vector y and the 
a 

i
_
nput vector 

_
x. However, the interpretation of Fig. 6(b) is 

tricky. We interpret Fig. 6(b) as the one shown in Fig. 7. 

The reason behind the interpretation given in Fig. 7 is 

this: First, we assume that control is passed
_
from 

_
vertex 

i to vertex j. Then, we decide the values of x and y such 

that the grade of truthness of R remains unchanged. That _a 
is, we first know where control should go next and then de- 

cide what values of variables should be for the branching 

condition to hold. This is in contrast to the interpretation 

of ordinary programs [14], where we would test a branching 

condition first and then decide where control should go. By 

Property 2 of Section 2, since proj
_
ec
_
tions maintain the 

same degree of the truthness of R (x,y)as the original fuzzy a 
subsets, the interpretation of Fig. 7 is a reasonable 
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interpretation. (We note that proj(R (x,y
_ _

);
_
X) and 

_ _ _ a 
proj(R (x,y) ;Y) can be computed as proj(R (

_
x,

_
y);

_
X) = x ∩ x* a _ _ _ _ _ a 

and proj(R (x,y) ;Y) = y ∩ y*, respectively, where 
_
x* = a _ 

(x*,...,x*) and y* = (y* y*) are vectors of induced fuzzy 1 L 1,.._.
,
_M 

subsets with respect to R (x,y). See Property 1 of Section a 
2.) As an illustration, let us consider a simple example in 

a non-fuzzy case. Suppose we have an arc shown in Fig. 8. 

Assume control is at vertex i. If y =1 and y =2 or more 
1 2 

, 

precisely in our notation, y = {1.0/1} and y = {1 0/2} 
1 2 

. , 

and if control is passed to vertex j, then y =y is inter- 
1 2 

preted as 

( Y ) ∩ {1 0/1} ∩ Φ Φy ← proj y =y ; ← y y ← ←
1 1 2 1 1 

. , 

( Y ) * {1 0/ } ∩ Φ Φy ← proj y =y ; ← y ∩ y ← 2 ←
2 1 2 2 2 2 

. . 

Therefore, y ← y + y ← Φ + Φ ← Φ This means that since 3 1 2 . 

y is empty, it will not be fruitful to go to vertex j On 
3 

. 

the other hand, if y = 2 and y = 2 or more precisely 
1 2 

, 

y = {1 0/2} and y = {1 0/2} and if control is passed to 1 . 2 . , 

vertex j, then y = y is interpreted as 1 2 
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y ← proj(y =y ;Y ) ← y ∩ y* ← {1.0/2} ∩ {1.0/2} ← {1.0/2}, 
1 1 2 1 1 1 

y ← proj(y =y ;Y ) ← y y* ← {1 0/2} ∩ {1 0/2} ← {1 0/2} 
2 1 2 2 2 ∩ 2 

. . . . 

Thus, y ← y + y ← {1.0/2} + {1.0/2} ← {1.0/4}. Therefore, 
3 1 2 

it will be fruitful for control to go to vertex j, since y 3 
is not empty. 

6. MODELING ILL-DEFINED PROCEDURES BY FUZZY PROGRAMS 

As discussed in [2,4], there are many ill-defined pro- 

cedures used by human in the real world. For example, the 

procedures we use for driving a car, searching for an object, 

tieing a knot, parking a car, cooking a meal, composing 

music, building a house, etc., are all ill-defined. Even 

though these procedures are imprecise, we seem to have no 

trouble of executing them. However, when we want to imple- 

ment these procedures on machines, we encounter tremendous 

difficulties. It is our hope that some of the ill-defined 

procedures encountered in real life may be implemented by 

fuzzy programs. In the sequel, we shall use an example to 

illustrate how this could be done. 

Suppose we want to adjust a TV set for clear pictures. 

The following is a procedure P we usually follow: Turn an 

adjusting knob until a clear picture is obtained. If the 

knob is overturned, turn it back a bit. 

In procedure P, bit and clear are fuzzy. To model 

procedure P, we first identify the universes of discourse. 

There are two universes of discourse namely the set U of , , 1 
all knob angles and the set U of all TV pictures. Then, 2 
bit is a fuzzy subset of U and clear icture is a fuzzy 1, 

subset of U Let variables y and y denote fuzzy subsets 
2
. 

1 2 
of U and U respectively That is, y denotes knob angles 

1 2
, . 

1 
and y denotes pictures. Let clearer than be a fuzzy 

2 
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relation for U x U . Let PICTURE(θ) be a function operation 2 2 
that gets a picture for a knob angle θ. Then, Procedure P 

may be described by the fuzzy program shown in Fig. 9. 

7. CONCLUDING REMARKS 

There are many ways to interpret and execute a fuzzy 

program [2,4,5,6,10]. In this paper, we execute a fuzzy pro- 

gram by tree-searching methods [12,13]. In addition, we have 

shown that we can use fuzzy programs to describe ill-defined 

or complex problems (procedures). 
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ON RISK AND DECISION MAKING IN A FUZZY ENVIRONMENT 

Sheldon S. L. Chang 
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ABSTRACT 

A multistage decision process is a fuzzy mapping from 
N 

X x U → X where X and U are the state and policy spaces. 

Given the initial fuzzy set S on X, the set of final fuzzy i 
sets S on X has certain inclusive properties. Risk and opti- f 
mum decisions are defined in terms of the inclusive proper- 

ties. 

INTRODUCTION 

As control theory progresses from relatively simple sys- 

tems to large scale systems then to ill-defined socio-economic 

systems, the treatment of uncertainty or fuzziness becomes a 

factor of increasing significance. One important concept 

which emerges with uncertainty is that of risk. There is no 

longer an optimum policy but a class of optimum policies with 

varying degrees of risk. This concept will be clarified 

mathematically with the help of fuzzy set theory. 

Heuristically one may describe uncertainty in our know- 

ledge about the state of a system as a fuzzy sphere (convex 

fuzzy set) in state space, and uncertainty in the system mo- 

del as a mapping from a point to a fuzzy sphere (convex fuzzy 

mapping). Obviously fuzziness will be propagated from time 

to time. One question then is "Will convexity be propagated 

or conserved?" or alternatively "Will our fuzzy sphere be 
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eventually transformed into some odd shape by the system dy- 

namics?" We shall answer these questions in the subsequent 

sections. 

CONVEXITY AND FUZZY MAPPING 

Definitions 

1. Fuzzy Mapping [1] 

A fuzzy mapping f from X to Y is a fuzzy set on X x Y 

with membership function µ (x y). A fuzzy function f(x) is f , 

a fuzzy set on Y with membership function 

µ (y) = µ (x y) (1) 
f(x) f 

, . 

-1 Its inverse f (y) is a fuzzy set on X with 

µ (x) = µ (x,y). (2) 
-1 f f (y) 

2. Fuzzy Mapping of a Fuzzy Set [1] 

Let A be a fuzzy set on X. The fuzzy set f(A) is de- 

fined as 

µ (y) ≡ sup (µ (x) Λ µ (x y)) (3) 
f(A) A f 

, 
x«X 

3. Merged Fuzzy Set on Product Space 

Let A and B be fuzzy sets on X, and Y respectively. C 

is said to be the merged fuzzy set of A and B on product space 

X X Y if its membership function satisfies the following rela- 

tion 

µ (x y) = µ (x) Λ µ (y) (4) C , A B 
4. Convex Fuzzy Mapping 

A fuzzy mapping f from X to Y is said to be a convex 

fuzzy mapping if it is a convex fuzzy set on X x Y. 

5. Function of More Than One Variables. 

A fuzzy mapping f from X X ... X to Y is a fuzzy set 1 2 n 
on X x X x...X x Y. The mapping f is said to be convex if 

1 2 n 
it is a convex fuzzy set on X x X ... x Y. 1 2 
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6. Mapping of Two or More Fuzzy Sets. 

Let A A ... A be fuzzy sets on X , X , ... X res- 
1
, 

2 n 1 2 n 
pectively. The function f(A, A ... A ) is a fuzzy set on Y 2 n 
with membership function 

µ (A A ,A )(y) = Max µ (x )..Λµ (x )Λµ (x ,x ...x ,y) 
f 1

, 
2
, 

n A 1 A n f 1 2 n x x x 1 n 1, 2.. n (5) 

7. Projection of Fuzzy Sets 

Let A be a fuzzy set on X and X , X are subspaces of X 1 2 
such that X x X = X. The projection of A on X is defined 1 2 1 
by 

µ (x ) max µ (x x ) (6) P(A) 1 = A 1, 2 x 2 

THEOREMS ON CONVEXITY 

Theorem 1. If A and B are convex fuzzy sets on X and Y 

respectively, then its merged fuzzy set C is convex on X x Y. 

Proof. Given (x , y ), (x , y ) such that 
1 1 2 2 

µ (x , y ) $ µ (x , y ) $ C 
c 1 1 c 2 2 1 

Then by definition µ (x ) $ C , µ (y ) $ C , µ (x ) $ C ,and 
A 1 1 B 1 1 A 2 1 

µ (y ) $ C . Since A and B are convex given any λ o , λ , 1 B 2 1 , , 

µ (λ x + (1-λ)x ) $ C 
A 1 2 1 

µ (λ y + (1-λ)y ) $ C 
B 1 2 1 

From (4), the above inequalities imply 

µ (λx + (1-λ)x ), (λy + (1-λ)y ) $ C c 1 2 1 2 1 

Theorem 2. If f is a convex fuzzy mapping from X to Y 

and A is a convex fuzzy set on X then f(A) is a convex fuzzy 

set on Y. 

Proof. Let B denote f(A). Let o , λ , 1 and µ (y ) $
B 1 

C , µ (y ) $ C . From (3), there exist x and x such that 1 B 2 1 1 2 
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µ (x ) $ C µ (x ) $ C µ (x y ) $ C , and µ (x , y ) $ C . 
A 1 1

, 
A 2 1

, 
f 1, 1 1 f 2 2 1 

Because f and A are convex 

µ (λ x + (1-λ)x ) $ C 
A 1 2 1 

µ (λ x + (1-λ)x λ y + (1-λ)y ) $ C 
f 1 2

, 
1 2 1 

The theorem follows from (3). 

Theorem 3. The projection P(A) of a convex fuzzy set A 

is convex. 

Proof Let a and b be points on X with membership func- . 
1 1 1 

tion greater than C: 

µ (a ) $ C 
P(A) 1 

µ (b ) $ C 
P(A) 1 

From (6) there exist points a , b on X such that , 2 2 2 

µ (a a ) = µ (a ) $ C 
A 1

, 
2 P(A) 1 

µ (b b ) = µ (b ) $ C 
A 1

, 
2 P(A) 1 

For any , o , λ , 1 

µ (λa + (1-λ)b ) max µ (λa + (1-λ)b , x ) 
P(A) 1 1 A 1 1 2 x 2 

$ µ (λa + (1-λ)b , λa + (1-λ)b ) $ C 
A 1 1 2 2 

Theorem 4 If A A ...A are convex sets on X , X ...X . 1, 2 n 1 2 n 
respectively and f: X X .X to Y is a convex fuzzy map- , 

1
, 

2
,.. 

n 
ping, then f(A , A ...A ) is a convex fuzzy set on Y. 

1 2 n 
Proof Let A be the merged set of A , A ...A . Then . 1 2 n 

µ (x x .. x ) = µ (x ) Λ µ (x )...Λ µ (x ) 
A 1

, 
2 

. 
n A 1 A 2 A n 1 2 n 

From (5) 

f(A) = f(A , A ...A ) 1 2 n 

From Theorem 1, A is convex. Form Theorem 2, f(A) is convex, 
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and Theorem 4 is proved. 

In the following corollaries, A , A ...A are assumed to 
1 2 n 

be convex fuzzy sets on X , X ...X , and f is an ordinary or 
1 2 n 

deterministic mapping. 

Corollary 1: If f is a linear mapping from X x X x...x 
1 2 n 

to Y, f(A , A ...A ) is a convex fuzzy set on Y 1 2 n . 

Proof. The set f is a linear subspace. It is a convex 

fuzzy set with membership function 1 on the subspace and 0 

elsewhere. 

Corollary 2: If Y is the real line, and f is a continu- 
n ous mapping from X to Y, then f(A , A ,...A ) is a convex 

1 2 n 
fuzzy set on Y. 

Proof Given µ (y ) $ C and µ (y ) $ C there . 
f(A) a 1 f(A) b 1

, 

( ) n exist x and x in X such that µ x $ C and µ (x ) $ C , 
a b A a 1 A b 1 

f(x ) = y and f(x ) = y . Let λ varies from 0 to 1 then a a b b , 

f(λx + (1-λ)x ) varies continuously from y to y Since a b b a. 

µ (λ x + (1-λ)x ) $ C µ (y) $ C for all y between y A a b 1, f(A) 1 a 
and y . The corollary is proved b . 

DEFINITION OF BINARY OPERATION 

The binary operations of two fuzzy sets: A + A , A - 
1 2 1 

A , A x A A /A A o A are defined as mappings of X x 2 1 2, 1 2, 1 2 1 
X to Y with the mapping f defined by 2 
y = x + x y = x - x y = x x x y = x /x y = x o x 

1 2
, 

1 2
, 

1 2
, 

1 2
, 

1 2
. 

Corollary 3: The binary operations +, - x, o preserves 

convexity. The binary operation / preserves convexity if the 

support of A is a segment on the rea1 line not including 0 2 . 

Proof. Corollary 3 follows from Corollaries 1 and 2. 

MULTISTAGE DECISION PROCESS 

n m Let x = E represent the state space. Let U ⊂ E 
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represent the set of allowed controls. The state of the sys- 

tem is a fuzzy set p(t) on x. The dynamic system is repre- 

sented by a fuzzy mapping from X x U into X 

f: X x U → X 

µ (x(t + 1)) = µ (p(t) u;x(t + 1)) 
p(t+1) f 

, 

An N-state decision process is represented by choice of 

u(t), t=0,1,2...N-1. The criterion of choice is to minimize 

a coordinate x of X. o 
Theorem 5. If in a multistage decision process, 

(i) p(0) is a convex fuzzy set, 

(ii) Given any u « U, the mapping f: X → X is a 

convex fuzzy mapping, then the state fuzzy sets p(t), 

t = 1,2...N are convex. The projection of p(N) on x is o 
convex. 

Proof. The Theorem is proved by repeated applications of 

Theorem 2, and then Theorem 4. 

Let u(?) denote the sequence u(1), u(2)...u(N-1). The 

projection of p(N) on x is the total cost, and will be de- o 
noted as C(u(?)). Since C(u(?)) is a convex fuzzy set, given 

, 1 the set of x with µ $m is an interval )) y m ( ( an , o C u * 
I(m, u(?)) on the rea1 line. Because C(u(?)) is convex the 

following inclusive property holds 

I(m u(?)) ⊃ I(m u(?)) if m , m (7) 1, 2, 1 2 

RISK AND OPTIMUM DECISION 

Definition. Let I (m,u(?)) and I (m,u(?)) denote the s i 
upper and lower bounds (sup and inf) of I(m,u(?)) respectively. 

A control policy u*(?) is said to be m-optional if for any 

other u(?) the following conditions are valid: 
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(a) I (m, u*(?)) . I (m, u(?)) → I (m, u*(?)) , I (m, u(?)) 
s s i i 

(8) 

(b) I (m, u*(?)) . I (m, u(? )) → I (m, u*(?)) , I (m, u(?)) 
i i s s 

The following theorems have been proved: [2] 

Theorem 6. The set of m-optimal cost intervals is simply 
ordered by the strict contained-in relationship. 

Theorem 7. If a contro1 policy u(?)* minimizes the 

quantity 

α I (m, u(?)) + (1-α) I (m, u(?)) (9) i s 

then u(?)* is a member of the m-optima1 set, and α is said to 

be the risk parameter. 

Theorem 8. If α , α , then 
1 2 

I(m, u (?)) ⊂ I(m, u (?)) 
1 2 

Theorem 9. Let u (?) denote the m-optima1 contro1 which α
minimizes (9) with parameter α. If either I (m, u (?)) or 

s α
I (m, u (?)) is continuous in α, then every m-optima1 con- i α
tro1 minimizes (9) with some α. 

APPLICATIONS 

The set of m-optimal policies allow a decision maker to 

make two choices, m and α. If he is trying to win a race, 

he should choose a policy w ith α = 1. If he is trying to 

accomplish some goal with safety first, he should choose a 

policy with α = o. The choice of m is a subjective matter 

and is determined by the odds one is willing to accept. 

The set of m-optimal or nearly optimal policies with 

α = 0+, are called guaranteed cost policies. These policies 

can be determined by fuzzy dynamic programming as shown in 

references [4] and [5]. 
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AN AXIOMATIC APPROACH TO RATIONAL DECISI0N

MAKING IN A FUZZY ENVIRONMENT†

L. W. Fung and K. S. Fu
School of Electrical Engineering

Purdue University
West Lafayette, Indiana  47907

ABSTRACT

An axiomatic approach to rational decision making under

uncertainty is presented. The notion of fuzzy sets is used

to the advantage that it is a convenient tool for unifying

the axioms in various situations, such as statistical deci-

sion, group decision and decision problems in which several

criteria of optimality are involved. The first theorem

asserts that under these axioms the decision strategy can

be either pessimistic, optimistic, or one of mixed type.

The introduction of a stronger postulate restricts our

choice to only the pessimistic type, which in effect is the

minimax principle. Meanwhile, the intersection and union

operations on fuzzy sets are deduced from the assumptions.

I.  INTRODUCTION

In the past many people were interested in building a

logical foundation for decision making under uncertainty.

Numerous results can be found in the pioneering works of

Chernoff, Rubin, Milnor, Hurwitz, Savage and Arrow, and in

recent works of Fine (1972) and Finetti (1972). A majority

of these authors tended to construct utility-type decision

functions which depend on the use of a priori information or

subjective probabilities about the source of uncertainty.

†This work was supported by the National Science Foundation

Grant GK-36721.
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The most controversial of all the principles for making

decision is undoubtedly the minimax principle, which clearly

is a more pessimistic strategy than most people would like

to employ (except possibly in the situation of playing games).

Luce and Raiffa (1957) and Savage (1954) discussed at length

views from both sides.

A very general class of decision-making problems is

concerned with decisions made by a group, which has been

used as a model of decision making for various reasons.

Democratic theorists, economic as well as political, have

long wrestled with the intriguing ethical question of how

"best" to aggregate individual choices into social prefer-

ences and choices. Recently, Fung and Fu (1973b) considered

the group decision model as a means of reducing excessive

subjectiveness due to idiosyncrasy of a single individual.

On the other hand, it seems to be an appropriate model

(Chapter 10, Savage 1954) for interpreting the minimax prin-

ciple, in particular, since it provides the kind of termin-

ology and intuition based on economical and social phenomena

which are easy to argue. In this paper, the authors favor

interpretations of assumptions and results in terms of group

decision problems partly because of the reasons presented

above, and partly because the notion of fuzzy sets can be

incorporated into the problems as a very handy tool.

The purpose of this paper is to attempt to lay a logi-

cal foundation for the minimax principle, and at the same

time to give an axiomatic formalism of the theory of fuzzy

sets first studied by Bellman and Giertz (1973). In Section

II we shall list a collection of basic assumptions which a

rational decision-making scheme must satisfy. In Section

III some lemmas and a theorem are proved, which asserts that

the minimax principle together with two other strategies,
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are the only three candidates which comply with the axioms

postulated in Section II. Two assumptions will be given in

Section IV to replace a weaker one in the previous list, and

it is shown that the minimax principle is the only choice.

II.  BASIC ASSUMPTIONS

The simplest notion of fuzzy sets is a generalization

of the ordinary concept of sets to the case where the mem-

berships of elements are not clearcut, or in other words, the

"boundary" of the sets under consideration is not sharply

defined. Hence, it is essential to talk about a universal

space X which contains all entities we are interested in.

A fuzzy set, according to its innovator (Zadeh 1965), is a

mapping from the universal space to the [0,1] real interval.

Thus we can think of a particular fuzzy set in X as a parti-

cular assignment of memberships to the elements in X. In

this sense an ordinary set is a special case of assignment

in which only 0 or 1 is attached to every x in X, and so the

range of the mappings on the universal space is the set {0,1}

instead of the [0,1] interval. Therefore, it seems to be

natural to treat fuzzy sets as a kind of continuously valued

logic (Preparata and Yeh 1972).

In group decision-making processes, we have a set D of

actions to choose and m individuals are involved in the

process. We can identify the universal space X as D and the

preference pattern of every individual is represented by a

fuzzy set in D: let fi(a) denote the degree of preference

of action a by individual i, where fi(a) ε [0,1], and the

preference

assignment of memberships from the action set D to the [0,1]

interval. One important assumption about the assignments is
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that they are commensurate, and furthermore, for every a ε D

if fi(a) > fj(a), then we say individual i prefers action a

more than individual j does. In some interesting decision-

making problems involving multiple criteria of optimality

(see e.g. Fung and Fu 1973a), we have a set of actions D

which is the universal space, and m criteria each of which

is associated with a fuzzy set where the membership of action

a is the value (in [0,1] interval) of the performance cri-

terion which we want to maximize over all the actions. In

statistical decision theory, the universal set X is a set of

decisions a and the membership function is a decreasing
function of the risk function R(θ,d), where d ε a and θ is

in a set of states of nature (Ferguson 1967). Thus

every state θ of nature is associated with a fuzzy set whose

membership function fθ(•) is defined, for instance, by

fθ(d) ≡ 1 – R(θ,d) for all d ε a, provided the range of
the risk function is the [0,1] interval.

To sum up these cases we see that the membership of an

element in space X represents the degree of acceptability of

the element by the individuals in the group, with respect to

the criteria, or based on the assumption that the states of

nature are some particular ones, in each of these contexts.

It is appropriate to use the word admissibility to denote

various degrees of membership. For example, we can think of

an individual i who constructs his admissible set of actions

Ai by assigning preferences to every action in D, with fi(a)

representing his preference of action a, fi(a) ε [0,1]; then

the admissible set Ai of individual i is a fuzzy set which

can be expressed by writing

Ai = {(a, fi(a)): a ε D}

where fi(a) is the membership or admissibility of action a
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in the set Ai. We shall interchangeably use the words mem-

bership, preference and admissibility to denote a degree of

belonging, and the words membership function, assignment,

admissible set, and preference pattern to denote a mapping

from the universal space to a range of membership values

(e.g., the [0,1] interval).

Two important questions about fuzzy sets can be raised

(Fung and Fu 1973a):

1. How can we assign memberships to elements in

a fuzzy set? and

2. How can the notion of fuzzy sets be applied to

practical problems?

Specifically, the first question concerns the construc-

tion of a numerical scale for membership values in such a

way that the scale satisfies some conditions imposed on a

rational measurement system. This is a very difficult prob-

lem and is still unsolved at this stage. The main diffi-

culty is in constructing a homomorphism from a qualitative

preference system into a quantitative preference system1.

In some particular situations, such as the statistical

decision-making problem described above, the membership func-

tions are sometimes easily available. But the general theory

of decision-making should be able to include the interesting

problems in which only subjective membership assignments are

possible. It was emphasized by Bellman and Zadeh (1970)

that the membership of an element is not a statistical quan-

tity assigned by some individual. In fact, the assignment

of membership functions very much depends on the idiosyn-

crasy, or the state of mind of the individual involved

1A detailed exposition of the theory of measurement is given
in the book by Krantz, Luce, Suppes and Tversky (1971).
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in the problem. By a rational assignment we mean a member-

ship function which preserves some basic properties of the

individual's qualitative preference structure on a numerical

scale. A reason to study this problem is to eliminate

excessive arbitrariness in the qualitative preference struc-

ture due to idiosyncrasy, because we think that no meaningful

decision can be made in a very chaotic situation.1

We can suggest four ways to study this membership as-

signment problem. First, a numerical measurement scale can

be established as we described above. Secondly, we can

reduce excessive subjectiveness of an individual by incor-

porating the expertise of a number of individuals; that is

to say, we consider the problem of eliminating idiosyncrasy

as a collective or group decision problem. Some algorithms

to solve this problem were given by Fung and Fu (1973b).

Thirdly, Zadeh (1973) introduced fuzzy linguistic variables

to evaluate the memberships of complicated actions or com-

mands in terms of the memberships of simpler actions. His

approach assumes that the memberships of simple entities are

available. The fourth approach to the assignment problem is

to consider a topological space which is much simpler than

a real interval. We shall adopt this approach in the present

paper as a basis for the rational aggregation problem which

is the main theme of our dissertation.

The idea of using a topological structure instead of a

numerical scale to describe psychological and social phenom-

ena is not new (see e.g. Lewin 1936). A measurement struc-

ture which depends on the "closeness" of psychological and

1Two related problems about rationalizing estimation and pat-
tern recognition when very little is known about the data
were studied by Fine (1970) and Fine (1972).
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social states was proposed by Shelly (1962). In his paper,

measurement is simply the attachment of any symbol (numeri-

cal, geometric, linguistic, and so on) to a state in the set

of states of interest, and the relative closeness of any two

states can always be determined relative to some third state.

We shall show that the fundamental operations in fuzzy set

theory and the minimax principle in decision-theory can be

deduced on a simple topological structure in which the range

of membership functions is not the [0,1] interval, but can

be any abstract set of symbols which is linearly ordered and

connected. The topological structure S will be assumed to

be a semilattice (Petrich 1973) and is a topology induced

by a linear order on S (Kelley 1955). A feature of our

approach is a generalization of fuzzy sets and decision

theory to include the situations where the scale of member-

ships or risk functions is not necessarily established nor

is a metric defined.1

Let the universal space X be a set D of actions. A

fuzzy set A in D is defined as a set of ordered pairs, A ≡

{a, fA(a)): a ε D} where fA: D → S, S being a topological

space having the following properties:

AXIOM I. S is an order topology induced by a linear

order ≤, and is a connected topological space.

Remark. It follows from this definition of fuzzy sets

that two fuzzy sets A1 and A2 are identically equal, A1 = A2,

if for all a ε D, fA1
 (a) = fA2

 (a); that is, if the membership

functions corresponding to these sets are identical.

1Unlike the characterization in Bellman and Giertz (1973) and
Goguen (1967), our approach does not characterize two binary
operations (viz. intersection and union for fuzzy sets) at
the same time and so the range S does not have the structure
of a lattice (Goguen 1967) which requires the two operations
to be distributive on S.



L. W. FUNG AND K. S. FU

234
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

Some brief explanations of the above axiom are in order.

We say that the range set S is a linearly ordered set if

there is a linear order ≤ defined on S, where ≤ satisfies the

following four conditions:

1. x ≤ x for each x,

2. if x ≤ y and y ≤ x, then x = y

3. if x ≤ y and y ≤ z, then x ≤ z,

4. for each pair s, y, either x ≤ y or y ≤ x.

We use the symbol < to denote "≤ but not =". Intervals in

the ordered set S are defined as usual, e.g.

(a,b] = {x:x ε S, a < x ≤ b}.

By neighborhood of an element a of S we mean an open interval

containing a. (By convention, the sets below are considered

to be open intervals:

{x:x ε S, x < a} and {x:x ε S, x < a}

for any a in S.) Neighborhoods so defined form a basis for

the open sets in the order topology of S, i.e., every non-

empty member of the topological space of S is the union of

open intervals, and each open interval is also a member of

the space. By definition, a subset of S is closed if its

complement in S is a member of the topological space of S.

For example, the set (a1,a2) < (a3,a4) with a1 < a2 < a3 < a4
is open, but the set [a1,a2] < [a3,a4] is closed since its

complement in S, {x ε S:x < a1} < (a2,a3) < {x:x > a4}, is

open in S. The order topological space S is said to be con-

nected if S is not the union of two open disjoint nonempty

sets in the space. Note that any topological space on a

discrete set is not connected, whereas the [0,1] real inter-

val is. A more precise notation for a topological space of

S is an ordered pair (S,TS) where TS is a collection of
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subsets of S such that:  S and φ ε TS; if U1 and U2 belong

to TS, then U1 > U2 belong to TS; and if {Ua:a ε D} is an

indexed family of sets, each of which belongs to TS, then

  
    a ε D

<  Ua belongs to TS.  Another concept about a mapping

from one topological space to another is the following: Let

f be a mapping from a space (S,TS) to (X,TX), i.e., f:S → X;

then we say f is continuous if at every a ε X for any open

set V , X containing f(a), there exists an open set U , X

containing a such that f(U) , V. This topological concept of

continuity is weaker than the notion of continuity when both

spaces are subsets of the real numbers such as the [0,1]

intervals.1

Having assumed a topological structure for the range of

the membership functions, we can proceed to study rational

decision-making and rational aggregates of fuzzy sets. Con-

sider a group decision problem in which every individual's

preference pattern is represented by a fuzzy set in the

action space D. We shall postulate conditions which an ag-

gregation of fuzzy sets must satisfy so that the meaning of

aggregation is consistent with our concept of a process of

compromising or amalgamating the preference patterns of indi-

viduals in the group. We shall take the aggregate of the

fuzzy sets each representing an individual's preference pat-

tern to represent the preference pattern of the whole group,

so that the group can choose an action which has the highest

membership in the aggregate set. In other words, we have

discussed above that each individual in the group has an

admissible set of actions, which is represented by a fuzzy

set with memberships being the admissibilities of the

1For other concepts in topology and basic results we use in
our proofs, refer to Kelley 1955.
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actions in the action set; now the aggregate of the fuzzy

sets for all individuals in the group is regarded as an ad-

missible set for the whole group, so that the optimal choice

of action is made based on the admissibilities of actions in

the aggregated admissible set. Such a process of making de-

cisions by the group is said to be rational, and if the ag-

gregation operation on fuzzy sets satisfies the following

Axioms I-VII, it will be called a rational aggregation. The

Axioms presented below will be the minimal set of conditions

which a rational aggregation operation must comply with in

order to best reflect the ideal process of amalgamating

individual opinions in a group. In statistical decision

and game theory, it should reflect the ideal process of

taking into consideration the preference patterns of the

decisions conditioned by all possible states of nature.

By an aggregate A of fuzzy sets A1,...,Am in the action

space D, we mean a fuzzy set which in some sense (expounded

below) represents a confluence of the sets A1,...,Am (Bellman

and Zadeh 1970). More specifically, suppose A is written as

{(a, fA(a)):a ε D} and for each i = 1,...,m, Ai is written

as {(a,fAi
 (a)):a ε D}; then action a in the aggregate set A

has a membership fA(a) which is the result of amalgamating

the memberships fAi
 (a) of action a in each fuzzy set Ai. In

ordinary set theory, the union operation is an aggregation

of sets, say K1,...,Km, such that the amalgamation process is

to assign membership 1.0 to every action which belongs to at

least one of the sets K1,...,Km, i.e., which has membership

1.0 in at least one of the sets. The intersection operation

on ordinary sets is another type of aggregation. Thus, our

goal is to generalize the aggregations on ordinary sets to

fuzzy sets in which every element has memberships taking on
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values between 0 and 1. In brief, we have replaced the real

interval [0,1] which is the range of membership functions by

a weaker topological space S induced by a linear order and

assumed to be connected. Other assumptions on the aggrega-

tion are simplified as a consequence, and surprisingly we

do not even have to assume that the range S is bounded.

(Theorem 1)

In the following we shall list a collection of basic

assumptions on the properties of a rational aggregation, and

in the next two sections we shall show how to deduce the

particular forms of a rational aggregate on the basis of

these postulates.

Definition. Let F be the class of fuzzy sets in a set

D of actions and taking values in a range S. An aggregation

 ! is a binary operation on F, i.e., ! : F x F → F, and

an aggregate of two fuzzy sets A1,A2 ε F is represented by

A1 ! A2.

AXIOM II. (Law of independent components) There exists

a function •:S x S → S such that

A1 ! A2  {(a, fA1
(a) • fA2

 (a)) : a ε D}

for all fuzzy sets A1, A2 in F, and • is continuous in the

order topology S.

AXIOM III. (Idempotent law) For all A ε F, A ! A = A.

AXIOM IV. (Commutative law) For all A, B ε F, we have

A ! B = B ! A.

Axiom II states that the membership of any action in an

aggregate depends only on its memberships in every set in

the aggregation. Axiom III states simply that aggregating

two identical fuzzy sets should give the original set, and

Axiom III asserts that the aggregation operation ! is

symmetrically defined.
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Axiom V. For m ≥ 3 define A1 ! A2 ! ... ! Am
inductively by A1 ! A2 ! ... ! Am ≡ (A1 ! ... !

Am–1) ! Am.

AXIOM VI. (Associative law) For every A, B, C ε F, we

have (A ! B) ! C = A ! (B ! C).

These are two crucial postulates on the way the concept

of aggregating two fuzzy sets is extended to the case of more

than two sets. Although they are obviously acceptable in a

set-theoretic approach, their role in group decision theory

can be disputed. It is interesting to note that Arrow (1951)

and other research workers in mathematical economics did not

postulate these properties for an aggregation operation.

They presented their axioms on a rational aggregation in

such a way that these properties must be possessed by aggre-

gations involving any number of individuals (i.e., fuzzy sets

in our context).

The main problem concerning these two Axioms is whether

we should define an aggregation involving more than two sets

in an inductive manner. Once we can accept this definition,

Axiom VI should become a natural condition to impose on the

aggregation involving more than two sets. Axiom V in effect

states that, in group decision-making involving more than

two individuals, we can first aggregate the preference pat-

terns of any two individuals, and then use this aggregated

preference pattern to form another aggregation with a third

individual; repeat this process of amalgamating two indivi-

duals at a time until all individuals involved are considered

We must point out that although this manner of aggregating

more than two individuals looks reasonable enough to be ac-

cepted, it is indeed a rather restrictive property of the

aggregation process. An interesting implication of Axioms

IV, V and VI is that for m ≥ 2, A1 ! A2 ! ... ! Am
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is invariant under any permutation of the subscripts {1,..

.,m}; conversely, this property and Axioms IV and V imply

Axiom VI.

Before we proceed to deduce the forms of a rational

aggregate !, we need to postulate the following condition

on ! in order to make the aggregation process behave ra-

tionally:

AXIOM VII. (Non-decreasingness of !) For any action

a ε D and any fuzzy sets B, C1, C2 ε F, with A1 = B ! C1
and A2 = B ! C2, if fC1

 (a) > fc2
(a) then fA1

(a) ≥ fA2
(a).

In other words, consider two individuals in a group

decision-making problem; suppose one individual maintains

his preference of action a from a lower degree to a higher

degree, it must follow that the preference of action a in

the aggregate does not decrease as a consequence.

We can give a set-theoretic interpretation of this

Axiom. For ordinary sets, we say that set A . B if some

actions in D have membership 1 in A but membership 0 in B,

and conversely actions which have memberships 1 in B must

have memberships 1 in A. That is to say, the membership of

every action in B is less than or equal to its membership in

A. We can carry over this concept of inclusion to the case

of fuzzy sets (Zadeh 1965). For fuzzy sets A and B in F, we

say that A . B if and only if fA(a) ≥ fB(a) for all a ε D.

(A has the intuitive notion of a "larger" set than B in the

space F.) Axiom VII therefore is equivalent to

AXIOM VII. For any fuzzy sets B, C1, C2 ε F, if C1 $

C2 then B ! C1 $ B ! C2.

Moreover, in view of Axiom II, Axiom VII is equivalent

to saying that the function • is non-decreasing in the

second component. The other Axioms can be rephrased as:
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Axiom III. For all a ε S, a • a = a.

Axiom IV. For every a, b, ε S, a • b = b • a.

Axiom VI. For every a, b, c, ε S, we have

(a • b) • c = a • (b • c).

We shall use these equivalent statement in the rest of this

paper, and because of the equivalence the binary operation

• on S will also be called an aggregate.

III.  RATIONAL AGGREGATES

LEMMA 1. Let S be a connected order topological space

(induced by a linear order <) and F : S → S be a continuous

mapping. For every a and b in S with f(a) < f(b), if c ε S

and f(a) < c < f(b), then there is at least one point s in S

such that f(s) = c.

Proof. Assume that there does not exist any s in S

such that f(s) = c. Let Iu = {x ε S : x > C} and Il =
{x ε S: x < c}, which are open sets in the order topology,

with f(a) ε Il and f(b) ε Iu. Since S = Il < {c} <Iu, and

f–1({c} = φ, f–1(S) = f–1(Il) > f–1(Iu). On the other hand,

since Il and Iu are disjoint nonempty open sets in S,
f–1(Il) f–1(Iu) = φ. Hence, S is not connected, which is

a contradiction.

Remark. Lemma 1 is essentially the intermediate-value

theorem.

LEMMA 2. Let S be a connected order topological space

in which every point is an idempotent point. If S is a

commutative semigroup, i.e., closed under a continuous and

associative binary operation •, then for every a, b in S,

min{a,b} ≤ a • b ≤ max {a,b}.

Proof. Let a, b be points in S and, without loss of

generality assume a ≤ b. Then the inequality min{a,b} ≤ a•b
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is equivalent to b ≤ a•b. We shall show that a • b > b leads

to a contradiction.

Define fa : S → S by fa(x) = a • x = x • a for all x in

S. Since a is an idempotent point, a • a = a and so fa(a) =

a. Let c = a • b. Then by the associativity of • and idem-

potency of a,

a • c = a • (a • b) = (a • a) • b = a • b = c

which implies fa(c) = c. If we assume c > b, then

a • b = fa(b) = c < b ≤ a = fa(a),

and Lemma 1 implies that there exists a point x in S such

that fa(x) = b or a • x = b. Consequently we have

a • b = a • (a • x) = (a • a) • x = a • x = b.

which is a contradiction to the assumption that a • b = c >

b. Hence c ò b, or equivalently, a • b ≥ min{a,b}.

Second part of the theorem can be proved in a similar

manner by considering the function fb:S → S defined by

fb(x) = b • x = x • b for all x in S.

Lemma 2 asserts that in forming an aggregate a • b we

would not obtain a value which is less than or greater than

both a and b. There is still the possibility that a • b is

some value strictly between these two points (when a ≠ b).

To rule out this possibility for every distinct a and b in

S, we shall show below that only a mild condition, viz. that

• is non-decreasing in each variable, will be required.

Suppose a, b ε S and a > b. If x = a • b and a > x > b,

then we say that x is an unbiased point in S. More specifi-

cally, an unbiased point x in S is a point which can be

expressed as x = a • b for some a, b ε S and x ≠ a or b.

Note that unbiased point (s) may not exist in S. In fact,

our objective is to show that at most one unbiased point can
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exist in S under the same conditions as in Lemma 2. In the

sequel we shall leave out the qualification "if it exists"

when we talk about any unbiased point in S.

Let x be an unbiased point in S. Then by definition

there exist aa and ba in S such that x = aa • ba and

x ≠ aa or ba. Suppose aa > ba, we shall define Ia(x) to be

the closed interval [ba,aa] and

      
J(x) =

a
<I

a
(x)

where the union is over all intervals Ia(x) about x. The

following Lemma gives some useful properties of the intervals

Ia(x) and J(x).

LEMMA 3. In any Ia(x) about an arbitrary unbiased point

x, for every z1 < x and x < z2 we have z1 • z2 = x if the

operation • is non-decreasing in each variable. Furthermore,

the interval J(x) also has the above property.

Proof. Let Ia(x) = [b,a] with a > b. Since a • b = x

we have a • x = a • (a • b) = (a • a) • b = a • b = x, and

similarly b • x = x. Idempotency of x implies x • x = x.

Thus, we have three points in S such that b < x < a, and

x • b = x • x = x • a = x.

Since • is non-decreasing we have x • y = x for all y ε

Ia(x). Now suppose z1, z2 ε Ia(x) with z1 < x and z2 > x.

Since z2 a, z1 < x, by non-decreasingness,

z1 • z2 ≤ z1 • a ≤ x • a = x

and also

z1 • z2 ≥ z1 • x ≥ b • x = x

since z2 > x and z1 > b. Hence z1 • z2 = x.

To prove the second part, consider two intervals
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Ia1
) [b1,a1] and Ia2

(x) = [b2,a2] about x. (Note

that by definition x has at least one interval Ia(x) about

it; if this is the only interval, then J(x) = Ia(x) and the

second part of the Lemma follows from the first part.) In

the case where Ia1
(x) # Ia2

(x), Ia1
(x) < Ia2

(x) = Ia2
(x)

which is again an interval about x. The case where b1< b2 <

x < a1 < a2 will be studied below. For every t1 and t2 such

that b2 ≤ t1 ≤ x and x ≤ t2 ≤ a1, clearly t1 • t2 = x since

both t1 and t2 are in Ia1
(x). Now suppose b2 ≤ t1 ≤ x and

a1 ≤ t2 ≤ a2. It still follows that t1 • t2 = x since both

t1 and t2 are in Ia2
(x). The other case where b1 ≤ t1 ≤ b2

and a1 ≤ t2 ≤ a2 follows from the first part of this Lemma

and from the non-decreasingness of •. More specifically,

t2 ≥ a1 and t1 • a1 = x implies t1 • t2 ≥ x, and similarly

t1 < b2 and t2 • b2  x implies t2 • t1 ≤ x.  Hence we have

t1 • t2 = x.

By induction on the number of Ia(x) intervals about x

we have shown that J(x) = 
    a
< Ia(x) has the property that for

every z1 < x and z2 > x where z1, z2 ε J(x), z1 • z2 = x.

Remark. In view of Lemma 3, it makes sense to talk

about J(x) = 
    a
< Ia(x) as the largest interval Ia(x) containing

x. Note that for every unbiased point x, there is always

associated such an interval   J(x) = [a,b] with a < x < b.

Here we write   J(x) in place of J(x) for the sake of conven-

ience. Note that even though every interval Ia(x) is closed,

J(x) may not be closed since there can be in infinite number

of intervals Ia(x) about x. Since the only difference be-

tween J(x) and   J(x) is in its boundary points a and b,   J(x)

has the property that for all z1,z2 ε   J(x), if a < z1< x

and b > z2 > x then z1 • z2 = x where   J(x) = [a,b]. This

property is inherited from J(x) as a result of Lemma 3.
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LEMMA 4.  Let t1 and t2 be two distinct unbiased points,

t1 < t2  and let   J(t1) [a1,b1],   J(t2) = [a2,b2]. It is not

possible that a2 < t1 and b1 > t2.

Proof. Suppose a2 < t1 and b1 > t2. Then t1 ε   J(t2) and

t2 e   J(t1). Pick any points x and y so that

max{a1,a2} < x < t1

t2 < y < min{b1,b2}.

This is possible since S is a connected space. Clearly, x ε

  J(t2) = [a2,b2] since a2 ≤ max{a1,a2} < x < t1 < t2 < b2, and

similarly y ε   J(t1) = [a1,b1]. On the other hand, x ε   J(t1)

since a1 ≤ max {a1,a2} < x < t1 < b1, and y ε   J(t2)• These

imply that we have both x • y = t1 and x • y = t2 which is

impossible since t1 ≠ t2.

Our next Lemma asserts that the set of unbiased points

in S is dense if S contains more than one point.

LEMMA 5. Let t1 and t2 be two distinct unbiased points,

t1 < t2. Then there exists another unbiased point u ε (t1,t2).

Proof. We shall prove that in each of the following

cases the assumption that no unbiased point exists in (t1,t2)

leads to a contradiction. Let   J(t1) = [a1,b1] and   J(t2) =

[a2,b2].

Case (1): A1 < t1 < b1, a2 < t2 < b. Pick any points

x and y such that a1 < x < t1 and t2 < y < b2, and denote

z = x • y. (Figure 1a). If we assume that no unbiased point

exists in (t1,t2), then z ε (t1,t2) since if z ε (t1,t2) it

will be an unbiased point. There are several other possi-

bilities:

(a)  z = t1.  By Lemma 3 this implies that

  J(t1)$ [a1,y] 
  ≠
. [a1,b1]

which is a contradiction to the definition   J(t1) = [a1,b1].

(b) z = t2. This implies a contradiction as in part (a).
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(c) z < t1. It follows that x • y = z < t1 which is a

contradiction to the hypothesis that the operation • is non-

decreasing since we have x • t1 = t1 (Lemma 3) and recall

that y > t2 > t1.

(d) z > t2. This implies a contradiction as in part

(c). Hence we conclude that in Case (1) there always exists

a distinct unbiased point between any two unbiased points.

Case (2): a2 < t1 and b1 > t2 (see Figure 1b). This

case is ruled out by Lemma 4.

Case (3): a1 < t1 < a2 < t2 < b2 and b1 > t2. Pick

any point y, t2 < y < min{b1,b2}. Since a1 < y < b1, we have

y ε   J(t1). Furthermore, let x be a point such that t1 < x <

t2; clearly x ε   J(t1). Let g: S → S be a function defined

by g(x) = y • x for x ε (t1,t2).

First assume a2 < x < t2, which by Lemma 3 implies that

x • y = t2. Next assume t1 < x < a2. We have three possi-

bilities as a consequence of the assumption that (t1,t2)

does not contain any unbiased point:

(a) x • y = y, which is not possible since • is non-

decreasing and x • y = t2 for a2 < x < t2. For the same

reason it is not possible that x • y < t2.

(b) x • y = x, which implies that there is a jump point

of the function g at x = a2, a contradiction to the continuity

of g.

(c) x • y = t2, which implies that g(x) = y • x = t2
for t1 < x ≤ t2. However, Lemma 3 implies that g(t1) = y •

t1 = t1. Thus we have deduced that g has a jump point at

x = t1, a contradiction to the continuity of g.

Hence, we conclude that in Case (3) there always exists a

distinct unbiased point between any two unbiased points.

(See Figure 1c.)
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Case (4): a1 < t1 < b1 < t2 < b2 and a2 < t1 (see

Figure 1d). This case follows by similar reasoning as in

Case (3).

We shall distinguish two types of aggregates which are

extreme cases of aggregating individual preferences. The

aggregate which is defined by a • b = min{a,b} for all a,b ε

X is said to be pessimistic, and that defined by a • b =

max{a,b} is said to be optimistic. The following Theorem

states that Axioms I - VII imply that a rational aggregate

can only be pessimistic, optimistic or of mixed type. These

axioms are the mildest conditions on the space S and binary

operation • which we know can lead to this conclusion.
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The aggregate of mixed type is a very interesting type

of aggregate: without the assumption of any quantitative mea-

sure and arithmetic operations, the aggregate represented by

the operation • assigns a point in S for every a and b in such

a way that a • b can take on a value different from a or b.

More precisely, an aggregate of mixed type is a binary opera-

tion • on S such that z1 • z2 = x for z1 ≤ x and z2 ≥ x,

z1 • z2 = max{z1,z2} for z1,z2 ≤ x, and z1 • z2 = min{z1 • z2}

for z1,z2 ≥ x, where x is some arbitrary fixed threshold point.

In other words, an aggregate of mixed type is a pessimistic

aggregate if all the variables are above a threshold value,

and it is an optimistic aggregate if all the variables are

below the threshold value; In case some variables are below

and some are above the threshold value, the aggregate takes

on the threshold value. This type of aggregate seems to be

a reasonable one since when the values of all variables are

large enough, we would be willing to adopt a pessimistic ag-

gregate for the sake of guarding against the possibility of

adverse situations as informed by some unfavorite individual

preferences,5 and when the values of all variables are small

enough, we would be willing to be a bit more optimistic or

else the admissibility of the action under consideration would

be too low to be of any competitive value when compared with

other actions in the aggregate; in case some individuals

strongly prefer an action and some are strongly against It,

the group could be expected to make a compromise by choosing

a fixed threshold value as the aggregate value for the action.

THEOREM 1. Let S be a connected order topological space

Induced by a linear order <. Suppose every point of S is an

5This view is shared by Savage (1954) (p.174) who argued in
terms of utility, or personal income of an action, instead of
the generalized notion of membership.
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idempotent point, and S is a commutative semigroup, i.e.

closed under a continuous and associative binary operation

• which is non-decreasing in each variable. Then for every

a and b in S, we can have either

a • b = min{a,b} (pessimistic),

or

a • b = max{a,b} (optimistic),

or that the aggregate is of mixed type.

Proof. Let x be an unbiased point with   J(x) = [a,b].

Lemma 4 Implies that x • y = x for all a < y < b. Suppose x

is the only unbiased point in S. Then x • z takes on values

which are either x or z, for every z > b. Clearly x • z can-

not be z because this implies a jump point of the function g

defined by g(z) = x • z at z, a contradiction to the continu-

ity of g. Hence x • z = x for all z ≥ x; by similar reason-

ing we can show that x • y = x, for all y ≤ x. Furthermore,

for every y ≤ x and z ≥ x, we have y • z = x since x is as-

sumed to be the only unbiased point. This implies that

Ia(x) = J(x) = S. By the non-decreasingness and continuity

of the operation •, it follows that z1 • z2 = max{z1,z2} for

z1,z2 ≤ x, z1 • z2 = min{z1,z2} for z1,z2 ≥ x, and z1 • z2 =

x for z1 ≤ x and z2 ≥ x. Hence the aggregate represented by

operation • is of mixed type when there is exactly one un-

biased point In S. It is easy to show that Axioms I - VII

are necessary conditions for the aggregate to be of mixed type.

Next we shall show that it is not possible to have more

than one unbiased point in S. Suppose x1 < x is another un-

biased point in S. By Lemma 5 we know that there exists an-

other unbiased point x2 ε (x1,x). Inductively we have a se-

quence of unbiased points {xn} which converges to x from be-

low. Note that all xn's in the sequence are distinct and are

different from x. Since S is connected, the space is T2 and
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so the sequence {xn} converges uniquely to x. Let {yn} be a

subsequence of {xn} such that yn ε   J(x) = [a,b] for all n =

1,2,... Let each yn be associated with the interval   J(yn) ≡

[an,bn]. Clearly yn < bn < b. Furthermore, bn ¦ x because

this implies

a ≤ an  < yn  < x < bn ≤ b

from which a contradiction follows as a result of Lemma 4.

Thus for all n, we have yn < bn < x. Recall that yn → x from

below, so that bn → x. Consequently, in the limit n → ∞ we

have   J(x) — [a0,x] where an → a0 since bn → x implies   J(yn)

→ [a0,x] and yn → x implies   J(yn) →   J(x). But we have as-

sumed that   J(x) = [a,b] with b ≠ x which is an unbiased point.

Thus a contradiction is derived from the assumption that there

exists more than one unbiased point in S.

The last alternative is that there is no unbiased point

at all in S. In this case a • b = min{a,b} or a • b =

max{a,b} in view of Lemma 2. Furthermore, the continuity of

• and its symmetric property lead to the conclusion that

either a • b = min{a,b} or a • b = max{a,b} for every a and b

in S, i.e. it is not possible that the operation a1 • b1 =

min{a1,b1} for some pair a1, b1 in S but a2 • b2 = max{a2,b2}

for another pair a2, b2 in S.

Remark. If the space S is bounded from below and above,

i.e. if there exist u ≡ l.u.b.{x ε S} and l ≡ g.l.b.{x ε S}

such that u, l ε S, then the pessimistic and optimistic aggre-

gates are two special cases of the aggregate of mixed type,

with the threshold value x set to l and u respectively.
In the following section we shall show that we can eli-

minate the possibility of a mixed-type aggregate by replacing

the assumption of non-decreasingness of • with two other stron-

ger axioms, thus establishing a more restrictive conclusion

that a rational aggregate must be the pessimistic (or
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optimistic) aggregate.

IV.  ALTERNATIVE ASSUMPTIONS

The axioms which will be assumed in place of Axiom VII

(on the non-decreasingness of the mapping •) are the following:

AXIOM VIII. There exists a point a In S and a lower

limit of S, denoted by 0, such that for all x, 0 ≤ x < a, we

have 0 • x = 0.

This axiom states that every element x of S satisfies

the boundedness condition, i.e. x ≥ 0 for some special ele-

ment 0 which we call zero, and that a point a exists in S,

such that for all x smaller than a, the aggregate of x and

the zero element will give the zero element. In other words,

we say that the zero element dominates in the aggregate with

x if x is smaller than a. This assumption is roughly consis-

tent with our concept of a pessimistic aggregate. In analogy

to this we have the following axiom for an optimistic aggre-

gate:

AXIOM IX. There exists a point b in S and an upper limit

of S, denoted by 1, such that for all x, b < x ≤ 1, we have

1 • x = 1.

Remark. These axioms do not exclude the possibilities

that, respectively, 0 • x = 0 for some (or all) x ≥ a, and

1 • x = 1 for some (or all) x ≤ b.

THEOREM 2. If a rational aggregate ! satisfies the con-

ditions in Theorem 1 with the exception that Axiom VII is re-

placed by Axiom VIII, then ! must be a pessimistic aggregate.

Moreover, if ! satisfies the conditions in Theorem 1 with IX

in place of VII, then ! must be an optimistic aggregate.

Proof. Let Q = {x ε S: 0 • x ≠ 0}. Then,

0 • (0 • x) = (0 • 0) • x = 0 • x ≠ 0,
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which implies that if x ε Q, then 0 • x ε Q. Axiom VIII im-

plies that Q is bounded from below by a, a ≠ 0. That is to

say, for every x ε Q, we have x ≥ a. Since {0} is a closed

set, its inverse image defined by I(0) = {x ε S: 0 • x = 0}

is also closed. Hence, I(0) is the union of a family of

closed intervals. Since 0 • 0 = 0 implies 0 ε I(0), one of

these closed intervals must contain 0. Let it be denoted by

[0,a'] # I(0). From our previous discussion we see that for

every x ε Q, we have x > a (strict inequality) with a ≡ a'.

Consider the function h: S → S defined by h(x) = 0 • x

for all x ε S. It follows from the above paragraph that h(a)

= 0 • a = 0 and h(x) = 0 • x > a for all x ε Q. According to

the formulation of Clifford (1958), S is connected if and

only if S is complete and dense. Completeness of S implies

that every bounded (from below) subset of S has a greatest

lower bound. Hence, Q has a greatest lower bound, denoted

by m, so that if xn is a sequence of points in Q which con-

verges to m from above, h(xn) converges to a point in Q

greater than m. Thus the function h has a jump point at m,

which is contradictory to the continuity assumption. Hence

the set Q must be empty. In other words, we obtain the pro-

perty that 0 • x = 0 for all x ε S.

Now for every a, b ε S, we assume without loss of gener-

ality that a > b. Define f: S → S by f(x) = a • x for all

X ε S. By idempotency, we have f(a) = a • a = a, and we have

just shown that f(0) = a • 0 = 0. Hence, by Lemma 1, there

exists a point c ε S, 0 ≤ c < b such that f(c) = a • c = b.

Consequently a • b = a • (a • c) = a • c = b. Furthermore,

suppose c > b. Then since b < c < a, by Lemma 1 there exists

a point b < d < a such that f(d) = a • d = c. It follows

that a • c = a • (a • d) = (a • a) • d = a • d = c, which is
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a contradiction to our previous assertion that a • c = b.

Similarly, it is not possible that c < b. Hence, we conclude

that c = b uniquely, establishing the equality a • b =

min{a,b}.

Second part of the theorem can be proved following simi-

lar arguments.

Remarks. In the above proof, after it is shown that

x • 0 = 0 for all x ε S, the rest can be proved in a rather

different manner (Faucett 1955, Clifford 1958). It involved

the notion of a special type of topological semigroup called

thread, and was based on the argument that, given S = [0,1],

for every x ε S, we have xS = Sx = [0,x] where xS is defined

as {x • s: s ε S} and Sx as {s • x: s ε S}. It follows

from this result that, for any x and y in S, if y > x then

X • y ε xS = [0,x] or x • y ≤ x; in general, x • y ≤ min{x,y}.

Then using Lemma 1 it can be shown that x • y = min{x,y}.

We must note at this point that the rational decision

scheme based on the pessimistic aggregation is a maximin-mem-

bership principle. As we pointed out earlier, the membership

function of an action is always expresses as a decreasing

function of the risk or loss, this in effect corresponds to

the minimax-risk (or loss) principle.

A simple corollary to Theorems 1 and 2 immediately fol-

lows:

COROLLARY. Under the conditions of Theorem 1, when the

rational aggregate is extended to the case which involves

more than two fuzzy sets by virtue of Axiom V, the aggregate

can take either one of the following three forms: Let

A = A1 ! A2 !...! Am, m ≥ 2 and let fa(a) denote the mem-

bership of action a in the set A. Then for all a ε X,

(i) fA(a) = min{fA1
(a), fAm

(a)},
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(ii) fA(a) = max{fA1
(a), fA2

(a),..., fAm
(a)},

(iii) For any fixed x in S, fA(a) = x, if there exists

some i and j, 1 ≤ i, j ≤ m, such that fAi
(a) > x

and fAj
(a) < x,

or fA(a) = min{fA1
(a)} fAm

(a)} if fAi
 > x for all

i = 1,2,...,m,

or fA(a)  max{fA1
(a),..., fAm

(a)} if fA1
 < x for all

i = 1,2,...,m.

As a corollary to Theorem 2, the aggregate can take the form

of either (i) or (ii).

V.  DISCUSSIONS

In conclusion, we have three important aspects of the

results obtained in this paper. First, Theorem 1 asserts

that if we are content with the weaker implication that a ra-

tional aggregation can be either pessimistic, optimistic, or

of mixed type, then there is no need to assume the range of

membership functions bounded from above or below. A class of

fuzzy optimal control problems has been recently studied based

on this formulation (Fung and Fu, 1974). If we want to res-

trict the implication to only the pessimistic aggregation,

such that the minimax principle is an immediate consequence,

the range is necessarily bounded from below by some point

which satisfies a further condition (Axiom VIII). Furthermore,

if we are interested in deducing the intersection and union

operations of fuzzy sets, represented respectively by the

pessimistic and optimistic aggregates in Theorem 2, the range

must then be bounded from above and from below.

Secondly, as pointed out in Luce and Raiffa (1957),
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there are two distinct types of axiomatic approach to ra-

tional decision-making in the literature, one requiring the

establishment of a complete ordering of the actions, the

other isolating an "optimal" subset of actions but not

attempting to rank non-optimal ones. In this paper we take

the first approach since the latter cannot be conveniently ap-

plied to fuzzy sets.

Thirdly, considering that basic assumptions postulated

here (and thus the minimax principle) may not be appealing

to some people, we must emphasize that it is difficult to

give formal analysis of the concept of democratic decision

for a group, a point discussed at length by Snow (1951),

Hildreth (1953) and others. More specifically, the following

criteria for a democratic group decision scheme, described

verbally for brevity, are not logically consistent. They are:

positive association of social and individual values, inde-

pendence of irrelevant alternatives, citizen's sovereignty,

and non-dictatorship. This assertion is the well-known Arrow's

impossibility theorem (Arrow 1951).

REFERENCES

ARROW, K. J. (1951), "Social Choice and Individual Values,"

Cowles Commission Monograph No. 12; John Wiley & Sons,

New York.

BELLMAN, R., and GIERTZ, M. (1973), On the Analytic Formalism

of the Theory of Fuzzy Sets, Information Sci. 5, 149–156.

BELLMAN, R., and ZADEH, L.A. (1970), Decision Making in a

Fuzzy Environment, Management Science, 17, No. 4, B141–164.

CHANG, C. L. (1968), Fuzzy Topological Spaces, J. Math. Anal.

Appl., 24, 182–190.

CLIFFORD, A. H. (1958), Connected Ordered Topological Semi-

groups With Idempotent Endpoints, I, Trans. Amer. Math.

Soc. 88, 80–98.



L. W. FUNG AND K. S. FU

255
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

FAUCETT, W. M. (1955), Compact Semigroups Irreducibly Connec-
ted Between Two Endpoints, Proc. Amer. Math. Soc. 6,
741–747.

FINE, T. (1970), Extrapolation When Very Little is Known About
the Source, Inform, & Control, 16, 331–359.

FINE, T. (1972), Rational Classification When Very Little is
Known, (submitted to Inform. and Control).

de FINETTI, B. (1972), "Probability, Induction, and Statistics:
the Art of Guessing," John Wiley and Sons, New York.

FERGUSON, T. S. (1967), "Mathematical Statistics, a Decision
Theoretic Approach," Academic Press, New York.

FUNG, L. W. and FU, K. S. (1973a), The kth Optimal Policy
Algorithm for Decision Making in Fuzzy Environments,
Proc. Third IFAC Symposium, the Hague, Netherlands.

FUNG, L. W. and FU, K. S. (1973b), Decision Making in a Fuzzy
Environment, TR–EE 73–22, May 1973, School of Electrical
Engineering, Purdue University, Lafayette, Indiana.

FUNG, L. W. and FU, K. S. (1974), "Characterization of a
Class of Fuzzy Optimal Control Problems", Proc. Eighth
Annual Princeton Conference on Information Science and
Systems, March 28–29, 1974.

GOGNEN, J. A. (1967), L - Fuzzy Sets, J. Math. Anal. Appl.,
18, 145–174.

HILDREDTH, C. (1953), Alternative Conditions for Social Or-
derings, Econometrica, 21, 81–94.

KELLEY, J. L. (1955), "General Topology," Van Nostrand Co.,
New Jersey.

DRANTZ, D. H., LUCE, R. D., SUPPES, P., AND TVERSKY, A. (1971),
"Foundation of Measurement, Vol. I Additive and Polyno-
mial Representations," Academic Press, New York.

LEWIN, K. (1936), "Principles of Topological Psychology,"
McGraw-Hill, New York.

LUCE, R. D., AND RAIFFA, H. (1957), "Games and Decisions,"
John Wiley and Sons, Inc., New York.

PETRICH, M. (1973), "Introduction to Semigroups," Charles E.
Merrill Publishing Co., Ohio.

PREPARATA, F. P. AND YEH, R. T. (1972), Continuously Valued
Logic, J. Comput. System Sci. 6, 397–418.

SAVAGE, L. J. (1954), "The foundation of Statistics," John
Wiley and Sons, Inc., New York.

SHELLY, M. W. (1962), A Topological Approach to the Measure-
ment of Social Phenomena, in "Mathematical Methods in
Small Group Processes," (J. H. Criswell, H. Solomon and
P. Suppes, Eds.), pp. 305–321, Stanford University Press,
Stanford, Calif.

ZADEH, L. A. (1965), Fuzzy Sets, Inform. and Control, 8,
338–353.



L. W. FUNG AND K. S. FU

256
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

ZADEH, L. A. (1973), Outline of a New Approach to the Analysis
of Complex Systems and Decision Processes, IEEE Trans.

on System, Man and Cybernetics, SMC–3, No. 1, 28–44.



DECISION-MAKING AND ITS GOAL IN A FUZZY ENVIRONMENT

Kiyoji Asai, Hideo Tanaka, and Tetsuji Okuda
Department of Industrial Engineering

University of Osaka Prefecture
Sakai, Osaka 591, Japan

1.  INTRODUCTION

Recently the problems of decision-making in a fuzzy envi-

ronment have attracted special interest in such a sense that

it is becoming increasingly clear that in many real world pro-

blems we have more to do with fuzziness rather than random-

ness for the major sources of imprecision. The properties of

fuzzy decision-making problems have been studied by Bellman

and Zadeh [1]. In [1] fuzzy goals G and fuzzy constraints C

are defined precisely as fuzzy sets, that is, as membership

functions mG(x) and mc(x), and a fuzzy decision D may be view-

ed as an intersection of given goals and constraints, i.e.

mD(x) = mc(x) L mG(x). An optimal decision x* is defined as

any alternative in X which maxtmizes mD(x), i. e.

  
Sup
x

mC(x) L mG(x) = mD(x*). Roughly speaking, this definition

of optimal decision means that the grade of membership of the

optimal decision x* in C is the same as the grade of member-

ship of x* in G. In the case of mD(x*) < 0.5, this optimal

decision x* belongs scarcely to C and also to G. Therefore,

it seems that the optimal decision x* loses its meaning.

To remove such a meaningless case that mD(x*) < 0.5, we

will view this problem as follows. Even if we take a present

decision 
  
x
C
* as action, it is not necessary that a goal is at-

tained by the 
  
x
C
*. If we take an 

  
x
C
*, there will exist an
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optimal goal 
  
x
G
* associated with the 

  
x
C
*. We can obtain a for-

mulation of fuzzy decision-making problems in which we can de-

cide what goal must be chosen for given 
  
x
C
*. In this formula-

tion, we do not regard the decision problems under considera-

tion as the problems defined in [1], but we may regard the

problems as the decision problems with a given term of plan-

ning. Precisely speaking, this problem is to decide an order-

ed pair (
  
x
C
*, 

  
x
G
*) where 

  
x
C
* is a present optimal decision as ac-

tion and 
  
x
G
* is an estimated optimal goal at present in such a

sense that (
  
x
C
*, 

  
x
G
*) maximizes

mD(xC, xG : N) = mC(xC) L mG(xG) L mR(xC, xG : N). Here

mR(x, x' : N) denotes the grade of membership of an ordered

pair (x, x') in a similarity relation R.

The decision problems with N periods are called N-deci-

sion problems for brevity. Let us define mR(x, x' : 0) as

    

mR x,x':0( ) =
1;x = x'

0;x ≠ x'







Hence, 0-decision problems are equivalent to the problems de-

fined in [1]. Note that N-decision problems are different

from the ordinary problems of N-stage decision processes in

such a sense that in N-decision problems we can decide only a

present optimal pair (
  
x
C
*, 

  
x
G
*) at the first stage and at the

second stage we may obtain a new optimal pair (
  
x
C
*', 

  
x
G
*')

such that Sup mC'(xC) L mG'(xG) L mR'(xC, xG : N -1) where mC(x)

and mG(X) may be different from mC'(x) and mG'(x) because of

elapsed time, and so on. In short, it is only question to de-

cide a present optimal pair (
  
x
C1
* , 

  
x
G1
* ), and we are not con-

cerned with future optimal pairs (
  
x
C2
* , 

  
x
G3
* ),...,(

  
x
Cn
* , 

  
x
Gn
* ),

because we can not know how mC(x) and mG(x) vary in future.

Our main assertions are the following two points:

(I)  Although many decisions in real world problems
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arising from public, governmental and industrial systems have

been done, it does not seem that the goal associated with a

decision has been clearly shown. Nevertheless, it is perhaps

natural that it is necessary to show a pair of decision and

estimated goal associated with the decision. In our problems

a decision xC does not make sense without some estimated goal

xG and conversely an estimated goal xG does not make sense

without some decision xC.

(II) There are many problems in a fuzzy environment

where it is necessary to decide a present estimated goal such

as the federal air quality act proposed by E. Muskie in 1970.

Hence it is necessary to formulate decision problems in such

a sense that we can decide an estimated goal.

In this paper, we will define N-decision problems from

the above point of view and then discuss the properties of

optimal decision and goal with a view to solve N-decision pro-

blems.

2.  PSEUDO SIMILARITY RELATIONS

We will assume that the grade of membership of a deci-

sion and a goal in similarity relations depends on N periods.

For example, this assumption means such a concept that the

similarity relation between two persons x and x' in the sense

of height depends on the point p where they are observed.

Let us define the membership function of the above similarity

relation as mRH
(x, x' : p). If p →  ∞, it can be assumed that

    

lim
p→ ∞

mRH x,x':p)( ) = 1, since two persons look like two

points. Such a concept described above may be applied to N-

decision problems.

In order to obtain a similarity relation R between xC
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and xG from given mC(x) and mG(X), it is assumed that the re-

lation R satisfies the following axioms:

(i) In the case of N = ∞, assume that an estimated goal

  
xG
0 is given. In such a sense that an arbitrary decision xC

is the first step to the estimated goal 
  
xG
0, we can regard ;xc

and 
  
xG
0 as the simliar one because of N = ∞, that is,

mR(xC,   
xG
0 :∞) = 1 for ;xC. Conversely, assume that a decision

  
xC
0 is given. Since an 

  
xC
0 will be carried out in order to at-

tain to some goal after N periods where N is finite, the goal

associated with 
  
xC
0 is not arbitrary. But in the case of

N = ∞, it can be assumed that the goal associated with 
  
xC
0 is

arbitrary. Thus, we can regard 
  
xC
0 and ;xG as the similar one

that is, mR(  
xC
0, xG :∞) = 1 for ;xG. Hence,

    
lim
N→ ∞

mR xC,xG:N)( ) = 1     for ;xC and 
;xG.

(ii) Even if a fixed pair (xC, xG) is given, we can suppose

that the longer the term of planning, the larger the grade of

membership of (xC, XG) in the similarity relation. Thus, the

following inequality is satisfied:

mR(xC, xG : i) ≤ mR(xC, xG : j)   for i ≤ j.

(iii) If the grade of membership of (xC, xG) in R with i

periods is larger than one of (xC', xG'), we can suppose that the

same matter holds for any j periods. Thus,

mR(xC, xG:i) ≥ mR(xC', xG':i) <=> mR(xC, xG:j) ≥ mR(xC', xG':j)

for ;i and ;j.

(iv) Let us assume that the grade of difference between xC
and xG in the sense of C may be expressed by | mC(xC) -

mC(xG) |. If the grade of difference between xC and xG in the

sense of C is larger than one of difference between xC' and xG',

we can suppose that the grade of similarity between xC and xG
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with one period is smaller than one of xC' and xG', and vice

versa. Since the same relation in the sense of G holds, we

can suppose that the following relation is satisfied:

mR(xC,xG:1) # mR(xC',xG':1) <=> |mC(xC)–mC(xG)|V|mG(xC)–

–mG(xG)|$|mc(xC')–mC(xG')|V|mG(xC')–mG(xG')|.

These axioms lead to the followings:

(a) Reflexivity: mR(x, x : i) = 1 for 
;i.

It follows from (ii) that (a) is satisfied.

(b) Symmetry: mR(x, x' : i) = mR(x', x : i) for 
;i.

It follows from (iii) and (iv) that (b) is satisfied.

Definition 1. Let us define recursively the membership

function of the pseudo similarity relation whtch satisfies the

above axioms as follows:

mR(xC, xG:N) = mRC
(xC,xG:N) L mRG

(xC,xG:N),

mRi
(xC, xG:N) = 

  
Sup
x

 mRi
(xC,x:1) L mRi

(x,xG:N-1),

mRi
(xC, xG:1) = 1 - (|mi(xC) — mi(xG)|),

where i [ {C, G}.

In the following, let us assume that mC(x) and mG(x) are

continuous and that there exists at least an x such that

mC(x) = 1 and mG(x) = 1, respectively. It is easy to prove

that the relation R in Definition 1 satisfies the axioms. We

will call this relation R a pseudo similarity relation, since

though the similarity relation defined by Zadeh in [2] satis-

fies reflexivity, symmetry and transitivity, this R does not

satisfy transitivity.

If we will define mR'(xC, xG : N) as follows:

mR'(xC,xG : N) = mRC'
(xC,xG:N) V  mRG'

(xC,xG:N),
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mRi
'(xC,xG:N) = 

  
Inf
x

 mRi
'(xC,xG:1) V mRi

'(xC,xG:N-1),

mRi
'(xC,xG:1) = 1 - mRi

(xC,xG:1),

where i [ {C,G}, it is easy to show that the mR'(X, x' :j) sat-

isfies the property of a pseudo metric in [3], that is,

(i) mR'(x, x' :j) ≥ 0, (ii) mR'(x, x : j) = 0,

(iii) mR'(x, x' : j) = mR' (x', x : j) and (iv) mR'(x, x' :j)

≤ mR',(x, x" : j) + mR'(x", x' : j) for 
;j.

3.   0-DECISION PROBLEMS

0-decision problems are equivalent to the problem defined

in [1] since we define mR(x, x': 0) as mR(x, x' :0) = 1 for

x = x' and mR(x, x' : 0) = 0 for x = x'. From the point of

view of level sets, this problem had been discussed in [4].

In this section, we will deal with this problems in the varia-

tional version.

Lemma 1.

(a + b) V (c + d) ≥(a L c) + (b V d) ≥ (a + b) L (c + d).

Since it is enough to consider only four cases (i) a > c,

b > d, (ii) a > c, b < d, (iii) a ≤ c, b > d and (iv) a < c,

b < d, it is easy to prove this lemma 1. We may obtain the

following propositions under the assumptions that functions

f1,...,fn are differentiable and continuous at all x [ Rn.

Proposition 1.

|f1(x+dx) L f2(x+dx) — (f1 (x) + < =
  

1
x,dx>) L (f2(x)+< =

  

2
x,dX>)|

< 0(dx2),

where we denote the inner product of two vectors by <•,•> and

=x = 
∂f/∂x and    

  || ∂x||→0
lim     0(dx2)/||dx||→0.
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|f1(x+dx) V f2(x+dx)-(f1 (x)+<=
  

1
x,dx>) V (f2(x)+<=

  

2
x,dx)

<0(dx2).

The proofs of Proposition 1 and 2 are shown in Appendix.

Proposition 3.

|f1 (x+dx) L ••• Lfn(x+dx)-(f1 (x) + <=
  

1
x, dx>) L

     ••• L(fn(x)+<=
  

n
x,dx>) | < 0(dx2).

Proposition 4.

|f1 (x+dx) V ••• V fn(x+dx)-(f1(x) + <=
  

1
x,dx>) V

••• V (fn(fn(x) +<=
  

n
x,dx>)|< 0(dx2).

Propositions 3 and 4 can be proved by induction on n as

follows: since it can be assumed that Proposition 3 of n - 1

functions holds, we can set   ̃f(x+dx) and   ̃f'(x+dx) as

  ̃f(x+dx) = f1(x+dx) L ••• L fn-1(x+dx),

  ̃f'(x+dx) = (f1(x) + < =
  

1
x,dx>) L ••• L (fn-1(x)+<=

  

n
x ,dx>),

and then we can apply the same procedure as in the proof of

Proposition 1 to the proof of Proposition 3.

From these propositions, we may approximate a logical

function ("and" and "or" function) f1(x+dx)*•••*fn(x+dx) by

(f1(x)+<=
  

1
xxdx>)*•••*(fn(x)+<=

  

n
x,dx>) if ||dx|| is sufficiently

small, where the symbol * denotes L or V.

Let us consider the optimal x* such that 
  
Sup
x

 mC(x) L

mG(x) = mC(x
*) L mG(x

*). If x* Ò K = {x|=C(x) = 0 or =G(x) =

0}, the following theorem holds.

Theorem 1. If x* Ò K, mc(x
*) = mG(x

*) and there exists

an l* such that (1-l*) =C(x) + l*=G(x*) = 0 and 0 < l* < 1.

Proof. From Proposition 1 and the optimality of x*, it

is necessary to hold the following inequality for ;dx:

mC(x
*) L mG(x*)-(mC(x

*)+<=C(x*),dx>)L(mG(x
*)+<=G(x*),dx>) ≥ 0.

We can consider two following cases where the above inequality

is satisfied:
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(i) mC(x
*) L mG(x

*) - (mC(x
*) +<=C(x*),dx>) ≥ 0,

mC(x
*) L mG(x

*) - (mG(x
*) +<=G(x*),dX>) ≥ 0.

(ii) [mC(x
*) L mG(x

*) - (mC(x
*) +<=C(x*),dx>)].

[mC(x
*) L mG(x

*) - (mG(x
*) +<=G(x*),dx>)] ≤ 0.

Since =C(x*) = 0 or =G(x*) = 0 in the case (1), this case con-

tradicts x* Ò K. Hence, it is necessary that the case (ii) is

satisfied. It follows from the case (ii) that

 <=C(x*), dx>(mG(x
*) - mC(x

*) L mG(x
*)) + < =G(X*), d x > (mC(x

*) -

mC(x
*) L mG(x

*)) + < =C(x*), dx > ? < =G(x*), dx > ≤ 0.

Since this inequality must be satisfied for ;dx, it im-

plies that mC(x
*) = mG(x

*) and [=C(x*) =G'(x*)] ≤ 0, where

=G'(x*) denotes the transpose of =G(x
*). Since the condition

of mC(x) = mG(x) is necessary, Sup mC(x) L mG(x) = 
  
Sup
x∈T

 mC(x)

is satisfied, where T = {x|mC(x)
x-mG(x) = 0}. According to the

theorem of Kuhn-Tucher, it is necessary that the optimal x*

and l* satisfy the following equation: (1-l*)=C(x*)+l*=G(x*)

= 0. This necessary condition implies that =C(x*),=G(x*) are

linearly dependent. Hence, it follows from [=C(x*)=G'(x*)] ≤

0 that there exists an l* such that 0 < l* < 1.

Corollary 1. If mC(x) and mG(x) are strongly fuzzy con-

vex, then the condition in Theorem 1 is necessary and suffi-

cient.

In the following, we will consider the decision problems

which are defined by r membership functions i.e. mD(x) = m1(x)

L ••• Lmr(x). It is assumed that x [ Rn and r < n.

Theorem 2. If x* Ò K' = {x|=1(x) = 0 or ••• =r(x) = 0}.

then =1(x*),•••,=r(x*) are linearly dependent.

Proof. Let us assume that V1(x ),•••,Vr(x) are linearly

independent and let Wr denote the positive convex cone spanned
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by =1(x*),•••,=r(x*). The cone Wr is pointed, because if some

vector x [ Wr, then -x Ò Wr. We can apply the well-known sep-

aration theorem to the cone Wr and then there is an v such

that <v, w> > 0 for ;w [ Wr. If let v be dx, the following

inequality holds:

m1(x
*) L•••L mr(x

*)–(m1(x
*)+<=1(x*),dx>) L •••

L(mr(x
*)+<=r(x*),dx>) < 0

which contradicts the optimality of x*.

Definition 2. x0 is called a confluent point of m1(x)

and m2(x) if and only if x
o satisfies the equality m1(x

0) =

m2(x
0) = c and the inequality

(m1(x
0+dx)-c)(m2(x

0+dx)-c) ≤ 0 for ;dx.

Theorem 3. If x* Ò K', then there exists a pair (i, j)

such that

  
sup
x

 mD(X) = m1(x
*) L•••L mr(x

*) = mi(x
*) L mj(x

*)

and x* is confluent point of mi(x) and mj(x).

Proof. There exists an k at least such that k ≥ 2 and

me(x
*)>mD(x

*) = mj1
(x*) = ••• = mik

(x*),

since k = 1 contradicts x* Ò K'. From the optimality of x*,

mi1
(x) L••• mik

(x*) - mi1
(x*+dx) L•••Lmik

(x*+dx) ≥ 0

is satisfied for ;dx. If mij
(x*) ≥ mij

(x*+dx) for all j,

this assumption contradicts x* Ò K'. Hence, there are mie
and mie'

 at least such that

(mie
(x* + dx) - mD(x

*))(mie'
(x* + dx) - mD(x

*)) ≤ 0.

If x* Ò K' and m1,...,mr are strongly fuzzy convex, it

follows from the theorem 3 that x1 such that 
  
Sup
x

 m1(x) L•••

L mr(x) is equal to x
  
*
2
 such that 

  
Sup
x

 mi(x) L mJ(x), where the

pair (i, j) satisfies Theorem 3.

*
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4.  I-DECISION PROBLEMS

In this section we will discuss some properties of 1-de-

cision problems and then we will show that 1-decision pro-

blems can be reduced to simply 0-decision problems. In other

words, this problem can be solved by the method for solving

0-decision problem.

Definition 3. A pair (x
  
*
C, x  

*
G) is called the optimal so-

lution of 1-decision problem if and only if

    
Sup
xC,xG

mC(xC) L mG(xG) L mR(xC,xG:1) = mD(x  
*
C,x  

*
G:1).

An x
  
*
C is called the optimal decision and an x  

*
G is called

the estimated optimal goal at present. Let the set U be de-

fined by

U = {(xC,xG) | mC(xC) ≥ mC(xG) and mG(xG) ≥ mG(xG)}

Proposition 5.

    
Sup

(xC,xG)∈X x X
 mD(xC,xG :1) = 

  
(xC,xG)∈U

Sup  mD(xC,xG:1).

Proof. Let us assume that the optimal (x
  
*
C,x  

*
G) belongs

to X x X – U, i.e. (x
  
*
C,x  

*
G) [ X x X – U. Since (x

  
*
C,x  

*
G) Ò U,

(x
  
*
C,x  

*
G) satisfies at least either one of the following two

cases: (i) mC(x  
*
C) < mC(x  

*
G) or (ii) mG(x  

*
C) > mG(x  

*
G). In the

case of (i),

mC(x  
*
C) L mG(x  

*
G) L (1–mR(x  

*
C,x  

*
G:1)) ≤ mC(x  

*
G) L mG(x  

*
G).

In the case of (ii),

mC(x  
*
C) L mG(x  

*
G) L (1–mR(x  

*
C,x  

*
G:1)) ≤ mC(x  

*
G) L mG(x  

*
G).

Since (x
  
*
G,x  

*
G), (x  

*
C,x  

*
C)[ U, this proposition is proved.

As an illustration, let us consider the case of Figure 1.

In this case, Proposition 5 makes the exception of the pair

(x
  
*'
C ,x

  
*
G). The pair (x  

*
C,x  

*
G) is more desirable than (x  

*'
C ,x

  
*
G),

since mC(x  
*
C) > mC(x  

*'
C ) nevertheless mD(x  

*
C,x  

*
G:1) = mD(x  

*'
C ,x

  
*
G:1)

and mR(x  
*'
C ,x

  
*
G:1) = mR(x  

*
C,x  

*
G:1). Hence, it seems that this
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exception is reasonable.

Proposition 6.

  
xC,xG

Sup  mD(xC,xG : 1) ≥ 0.5.

Proof.  From Proposition 5,

  X x X
Sup  mD(xC,xG : 1) = 

  U
Sup mD(xC,xG :1)

≥ 
  U
Sup mC(xC) L (1–mC(xC)) L (1–mG(xG)) L mG(xG)= 0.5.

Corollary 2. If   ̃C0 L   ̃G0 = f,

  X x X
Sup  mD(xC,xG:1) = 0.5,

where   ̃C0 = {x|mC(x) > 0} and   ̃G0 = {x|mG(x) > 0}.

Since Proposition 6 implies that mD(x  
*
C,x  

*
G:1) for all 1–

decision problems is more than 0.5, x
  
*
C and x  

*
G are not unrea-

sonable, even if mD(x
*) < 0.5. In general, the inequality

  
xC,xG

Sup  mD(x  
*
C,x  

*
G:1) ≥ 

  x
Sup mD(x)

is always satisfied. If mC(x) and mG(x) are pseudo convex
+,

the following proposition holds.

Proposition 7.

If C1 > G1 = f,
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xC,xG

Sup  mD(xC,xG:1) > 
  x
Sup mD(x),

where C1 = {x|mC(x) ≥ 1} and G1 = {x|mG(x) ≥ 1}.

Now with a view to obtain the optimal (x
  
*
C,x  

*
G) such that

  U
Sup mD(xC,xG:1) = mD(x  

*
C,x  

*
G:1), let mD1

(xC,xG:1) and

mD2(x  
*
C,x  

*
G:1) be defined as follows:

  U1
Sup mD1

(xC,xG:1) = 

  U1
Sup mC(xC) L (1+mC(xG)–mC(xC))

   L mG(xG),

  U1
Sup mD2

(xC,xG:1) = 

  U1
Sup mC(xC) L (1+mG(xC)–mG(xG))

L m(xG),

where U1 = {(xC,xG)|mC(xC) ≥ mC(xG)} and

U2 = {(xC,xG)|mG(xG) ≥ mG(xC)}.

The decision problems of mD, mD1
 and mD2

 are different

from each other only with respect to the metric induced by

the function mC(x) L mG(x), mC(x) and mG(x) respectively

Proposition 8.

  U1
Sup mD1

 (xC,xG:1) = 

    xG
Sup

1 + mC(xG)
2

LmG(xG).

  
U2

Sup mD2 
(xC,xG:1) =  

    xC
Sup

1 + mG(xC)
2

LmC(xC).

Proof. 

  U1
Sup mC(x) L (1 + mC(xG) – mC(xC)) L mG(xG)

=  Sup  { Sup mC(xC) L (1 + mC(xG) –

xG xC[{x|mC(x)≥mC(xG)}

+ A function mA(x) is a pseudo convex if and only if mA(  x)

< mA(z) holds for ;z [ (  x,  x), where mA(  x) < mA(  x).
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mC(xC))} L mG(xG)

=

    
xG
Sup

1 + mC(xG)
2

  L mG(xG).

Furthermore, it is clear that mC(x  
*
C) ≤ mC(x  

*
G) is satisfied

The equality of mD2
 can be proved by the same procedure.

Definition 4. (mC,mG) is called a pseudo complement if

and only if mC(x) ≤ mC(x') implies mG(x) ≥ mG(x') and is im-

plied by mG(x) ≥ mG(x').

If (mC,mG) is a pseudo complement, it is evident that

(
  
xCi
* ,xGi

* ) such that 

  Ui
Sup  mDi

(xC,xG:1) = mDi
 (

  
x
C
*,

  
x
G
*:1)

belongs to U, where i = 1, 2.

Let us define the sets S*, S*1 and S
*
2 as follows:

S* = {(
  
x
C
*,

  
x
G
*) | 

  U
Sup mD(xC,xG:1) = mD(  

x
C
*,

  
x
G
*:1)},

S*1 = {(
  
xC1
* ,xG1

* ) | 

  
U1

Sup  mD1
(xC,xG:1) = mD1

(
  
x
C
*,

  
x
G
*:1)},

S*2 = {(
  
xC2
* ,xG2

* ) | 

  
U2

Sup mD2
(xC,xG:1) = mD2

(
  
x
C
*,

  
x
G
*:1)}.

Theorem 4. If (mC,mG) is a pseudo complement and

mC(
  
xC1
* ) ≥ mC(

  
xG2
* ) and mC(

  
xC2
* ) ≥ mC(

  
xG1
* ), there exists a pair

(i,j) such that (
  
xCi
* ,

  
xGj
* ) [ S*, where i, j [ {1,2}.

Proof. Let us consider the following four cases:

Case 1: mC(
  
xC1
* ) ≤ mC(

  
xC2
* ) , mG(

  
xG1
* ) ≤ mG(

  
xG2
* )

Let us take (
  
xC1
* ,xG1

* ). Hence,

mD(
  
xC1
* ,xG1

* :1) ≥mD1
(
  
xC1
* ,xG1

* :1) L (1 + mG(
  
xC2
* ) – mG(

  
xG2
* ))

≥mD1
(
  
xC1
* ,xG1

* :1) L mD2
(
  
xC2
* ,

  
xG2
* :1).
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Case 2: mC(
  
xC1
* ) ≥ mC(

  
xC2
* ) , mG(

  
xG1
* ) ≤ mG(

  
xG2
* ).

Let us take (
  
xC2
* ,

  
xG1
* ).  Hence,

mD(
  
xC2
* ,

  
xG1
* :1) ≥ mC(xC2

) L mG(
  
xG1
* ) L (1 + mC(

  
xG1
* ) – mC(

  
xC1
* ))

L (1 + mG(
  
xC2
* ) – mG(

  
xG2
* )) ≥ mD1

(
  
xC1
* ,

  
xG1
* :1) L mD2

(
  
xC2
* , 

  
xG2
* :1).

Case 3: mC(
  
xC1
* ) ≤ mC(

  
xC2
* ) , mG(

  
xG1
* ) ≥ mG(

  
xG2
* ).

Let us take (
  
xC1
* ,

  
xG2
* ).  Hence,

mD(
  
xC1
* ,

  
xG2
* :1) ≥ mD1

(
  
xC1
* ) L mG(

  
xG2
* ) L (1 + mC(

  
xG1
* ) – mC(

  
xC1
* ))

L (1+mG(
  
xC2
* )–mG(

  
xG2
* )) ≥ mD1

(
  
xC1
* ,

  
xG1
* :1) L mD2

(xC2
,
  
xG2
* :1).

Case 4:  mC(
  
xC1
* ) ≥ mC(

  
xC2
* ), mG(

  
xG1
* ) ≥ mG(

  
xG2
* ).

Let us take (
  
xC2
* ,

  
xG2
* ). Hence,

mD(
  
xC2
* ,

  
xG1
* :1) ≥ mD2

(
  
xC2
* ,

  
xG2
* :1) L (1 + mC(

  
xG1
* ) – mC(

  
xC1
* ))

≥ mD2
(
  
xC2
* ,

  
xG2
* :1) L mD1

(
  
xC1
* ,

  
xG1
* :1).

Since the inequality

  XxX
Sup mD(xC,xG:1) ≤ 

  
U1

Sup mD1
 (xC,xG:1) L 

  
U2

Sup mD2
(xC,xG:1)

holds in any case, there exists a pair (i,j) such that

(
  
xCi
* ,xGj

* ) is optimal with regard to mD(xC,xG:1).

From Theorem 4 and Proposition 8, we can find the opti-

mal pair (
  
x
C
*,

  
x
G
*) from four candidates of pairs (

  
xCi
* ,xGj

* ),

where i, j [ {1,2}.
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5. N-DECISION PROBLEMS

We can consider N-decision problems as the extension of

1-decision problems.

Definition 5. A pair (x
  
*
C,x  

*
G) is called the optimal solu-

tion of N-decision problems if and only if

  
xC,xG

Sup mC(xC) L mG(xG) L mR(xC,xG:N) = mD(x  
*
C,x  

*
G:N).

First, let us define Un1
 and Un2 as follows:

Un1 = {(xC,x1,···,xN–1,xG)|mC(xC) ≥ mC(x1)···≥mC(xN–1)≥mC(xG)},

Un2 = {(xC,x1,···,xN–1,xG)|mG(xC) ≤ mG(x1)···≤mG(xN–1)≤mG(xG)}.

Proposition 9. 

  X⋅⋅⋅X
SupmC(xC) L (1 + |mC(xC)–mC(x1)|) L···

LmG(xG)

= 

  
U1
n

Sup mC(xC) L (1 + |mC(xC) – mC(x1)|) L

···LmG(xG).

Proof. This proposition can be proved by the same pro-

cedure as in the proof of Proposition 5. For example, assume

that the optimal solution (xC,x1,...,xN–1,xG) For the left

side equation belongs to X ··· X – Un1 and mC(xC) ≥···≥

mC(xi) < mC(xi+1) > mC(xi+2)···≥ mC(xG), mC(xi–1) ≥ mC(xi+1)

and mC(xi) ≥ mC(xi+2). The sequence {xC,···,xi+1,xi,xi+2
xi+2,···,xG} which satisfies mC(xC) ≥ ··· ≥ mC(xi+1) ≥ mC(xi)

≥ mC(xi+2) ≥ ··· ≥ mC(xG) is also optimal.

Next, we will consider the properties of the followings:

mD1
(x

  
*
C,x  

*
G:N) = 

  
xC,xG

Sup  mC(xC) L mG(xG) L  mR1
 (xC,xG:N),

mD2
(x
  
*
C,x  

*
G:N) = 

  
xC,xG

Sup  mC(xC) L mG(xG) L mR2
(xC,xG:N).

Proposition 10.

      X⋅⋅⋅X
Sup,mD1(xC,xG:N) =

xG
Sup

N + mC(xG)
N + 1

L mG(xG),
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    XLX
Sup,mD2(xC,xG:N) =

xC
Sup mC(xC)L

N + mG(xC)
N + 1

.

Proof.

  
U
1
n

Sup mD(xC,xG:N) = 

    
U
1
n

Sup
1 + mC(x1)

2
 L (1 + mC(x2) – mC(x1)) L

··· L mG(xG)

=

    
U
1
n

Sup
2 + mC(x2)

3
 L (1 + mC(x3) – mC(x2)) L ··· L mG(xG)

  
M

  
M

= 

    
xG

Sup
N + mC(x2)

N + 1
 L mG(xG).

Proposition 11.

  
N→ ∞
lim   

U
i
n

Sup mDi
(xC,xG:N) = 1 ; i = 1, 2.

This proposition is clear form Proposition 10 and the assump-

tion of functions mC, mG. If N is sufficiently large our

formulation implies that our problem may be solved completely

after N periods.

Let us define the sets SN
*
, 
  
S
1
N* and 

  
S
2
N* as follows:

SN
* = {(

  
x
C
*,

  
x
G
*) | Sup mD(xC,xG:N) = mD(  

x
C
*,

  
x
G
*:N)},

  
S
1
N* = {(

  
x
C1

* ,
  
x
G1

* ) | Sup mD1
(xC,xG:N) = mD1

(
  
x
C1

* ,
  
x
G1

* :N)},

  
S
2
N* = {(

  
x
C2

* ,
  
x
G2

* ) | Sup mD2
(xC,xG:N) = mD2

(
  
x
C2

* .
  
x
G2

* :N)}.

The following theorem which corresponds to Theorem 4 holds in

N-decision problems.

Theorem 5. If (mC,mG) is a pseudo complement and

mC(
  
x
C1

* ) ≥ mC(
  
x
G2

* ) and mC(
  
x
G2

* ) ≥ mC(
  
x
G1

* ), then there exists a

pair (i,j) such that (
  
xCi
* ,

  
x
Gj

* )[ SN
*
, where i, j [ {1,2}.
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The optimal (
  
xCi
* ,

  
x
Cj

* ) satisfies mC(
  
xCi
* ) = min {mC(

  
x
C1

* ),

mC(
  
x
C2

* )} and mG(
  
x
Gi
* ) = min {mG(

  
x
G1

* ), mG(
  
x
G2

* )}.

Proof. It is clear from the assumption of pseudo comple-

ent that xC1
, xC2

, xG1
, xG2

  is a well-ordered set of R1 in

both senses of mC(x) and mG(x). The four cases are listed in

Figure 2.

In the case of (i), mC(
  
x
C1

* ) ≥ mC(
  
x
C2

* ) and mG(
  
x
G2

* ) ≥

mG(
  
x
G1

* ).  Now, we will take (
  
x
C2

* ,
  
x
G1

* ) as the optimal solu-

tion in the case of (i). It is evident that

  xC,xG
Sup   mD(xC,xG:N) ≥ mC(

  
x
C2

* ) L mG(
  
x
G1

* ) L mR1
(
  
x
C2

* ,
  
x
G1

* :N)

L mR2
(
  
x
C2

* ,
  
x
G1

* :N).

Furthermore, the following inequality is satisfied:

      mR(
  
x
C2

* ,
  
x
G1

* :N) ≥  mRi(
  
xCi
* ,

  
x
Gi

* :N), i = 1, 2,
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since |mC(
  
x
C1

* ) - mC(
  
x
G1

* )| ≥ | mC(
  
x
C2

* ) – mC(
  
x
G1

* )| and

| mG(
  
x
G2

* ) – mG(
  
x
C2

* ) | > mG(
  
x
G1

* ) – mG(
  
x
C2

* )| are satisfied.

Thus,

mD(
  
x
C2

* ,
  
x
G1

* :N) ≥ mD1
(
  
x
C1

* ,
  
x
G1

* :N) L mD2
(
  
x
C2

* ,
  
x
G2

* :N)

≥ 

  xC,xG
Sup  mD(xC,xG:N).

This leads to

mD(
  
x
C2

* ,
  
x
G1

* :N) = 

  xC,xG
Sup  mD(xC,xG:N).

Since this fact is satisfied in any case, this theorem

was proved.

We are only concerned with the pair (x
  
*
C,x  

*
G) in the opti—

mal sequence {x
  
*
C,x

*
1,

  
K,x*N–1, x  

*
G} such that maximizes

mD(xC,xG:N). Although the sequence {x
*
1,

  
K,x*N–1} is necessary

for obtaining mR(xC,xG:N), this sequence makes no real sense.

Thus, since it is necessary only to decide the optimal pair

(x
  
*
C,x  

*
G), we can get the optimal (x  

*
C,x  

*
G) for mD(xC,xG:N) in

consequence of finding the optimal pairs for mD1
(xC,xG:N) and

mD2
(xC,xG:N), which may be obtained more simply from Proposi-

tion 10.

6.  CONCLUDING REMARKS

Since it seems that almost real world problems involving

economic systems, public systems, etc, satisfy a pseudo com-

plement in the domain under consideration, almost N-decision

problems can be solved by the method for solving 0-decision

problems. We may regard 0-decision problems as optimization
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problems of logical functions. Therefore we have discussed

on the properties of optimization problems including logical

functions, for it seems that they have not yet investigated.

Our approach has obvious limitations due to the necessity

of satisfying the pseudo similarity relation defined in this

paper. But if a similarity relation is given in any way, we

may obtain the optimal pair of the decision and goal by using

the similar procedure as in this paper.
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APPENDIX

Proof of Proposition 1: From the assumption of Proposi-

tion 1, there exists an dx such that

| f1 (x + dx) – f1 (x) — < =1x
, dx > | ≤ 01 (dx2),

| f2 (x + 2x) – f2 (x) — < =
2
x
, dx > | ≤ 02 (dx2).

From Lemma 1,

0(dx2) = 01(dx2) + 02(dx2) ≥ (f1(x+dx) – f1 (x) – <=1x,dx>) V

(f2(x+dx) – f2(x) – <=
2
x,dx>)
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≥ f1(x + dx) L f2(x + dx) + (–f1(x) – <=1x, dx>) V

(–f2(x) – <=1x, dx>)

= f1(x + dx) L f2(x + dx) – (f1(x) + <=
1
x, dx>)

(-f2(x) + <=2x
,dx>).

Conversely from Lemma 1,

–0(dx2) ≤ (f1(x+dx) – f1(x) – <=1x,dx>) L (f2(x+dx) – f2(x) –

<=
2
x,dx>),

0(dx2) ≥ (f1(x) + <=1x,dx> – f1(x+dx)) V (f2(x) + <=2x,dx> –

f2(x+dx))

≥ (f1(x) + <=
1
x,dx>) L (f2(x) + <=

2
x,dx>) + (–f1(x+dx) V

– f2(X + dx)),

-0(dx2) ≤ f1(x + dx) L f2(x + dx) – (f1(x) + <=
1
x,dx>) L

(f2(x) + <=
2
x,dX>).

From the above inequalities,

|f1(x+dx) L f2(x+dx) – (f1(x) + <=1x,dx>) L (f2(x) + <=2x,dx>)|

≤ 0 (dx2).

Proof of Proposition 2: From Lemma 1,

–0(dx2) ≤ (f1(x+dX) – f1(x) – <=1,dx>) L (f2(x+dx) – f2(x)

 – =2x,dx>) ≤ f1(x+dX) V f2(x+dx) – (f1(x) + <=1x,dx>)

 V (f2(x) + <=2x,dx>).

Conversely from Lemma 1,

0(dx2) ≥ (f1(x+dx) – f1(x) – <=1x,dx>) V (f2(x+dx) – f2(x)

   – <=
2
x,dx>),

–0(dx2) ≤ (f1(x) + <=1x,dx> – f1(x+dx)) L (f2(x) + <=2x,dx>),
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– f2(x+dx)) ≤ f1 (x+dx) V f2(x+dx) - (f1(x) + <=1x,dx>)

V (f2(x) + <=2x,dx>).

Thus,

|f1(x+dx) V f2(x+dx) - (f1(x)+<=1xdx>) V (f2(x) +<=2xdx>)|

≤ 0 (dx2).



.
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ABSTRACT

In this paper, we propose the concept of recognition of

fuzzy languages by machines such as Turing machines, linear

bounded automata, pushdown automata and finite automata. It

is shown that it is a reasonable extension of the ordinary

concept of recognition of languages by machines. Basic

results are given about the recognition theory of fuzzy

languages.

1.  INTRODUCTION

In the formal language theory, languages are classified

by the complexities of machines which recognize them. The

most typical ones of such machines are finite automata, push-

down automata, linear bounded automata and Turing machines.

As for fuzzy languages, it is also interesting to develop the

theory of recognition of fuzzy languages by machines and

their classification by the complexities of machines which

recognize them. Of course, the theory should be a reasonable

extension of the ordinary language recognition theory. In

the ordinary language recognition theory, a machine is said

to recognize a language L if and only if for every word in L

the machine decides that it is a member of L, and for any

word not in L, the machine either decides that it is not a

member of L or loops forever. In other words, a machine may
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be said to recognize a language if and only if the machine

computes the characteristic function of the language. So it

is natural to define a machine to recognize a fuzzy language

if and only if the machine computes its fuzzy membership

function. But what does it mean that a machine computes a

fuzzy membership function? In the ordinal language theory,

it is defined that for a given input word a machine computes

the characteristic function value at 1, if and only if it

takes one of special memory-configurations, such as configura-

tions with a final state and configurations with the empty

stack for cases where the machine has pushdown stacks. There-

fore it is a straightforward extension to define each fuzzy

membership function value (which is an element of some lattice)

to be represented by some memory configuration of the machine.

That is to say, we require that the memory configuration

which the machine moves into after a sequence of moves for a

given input word should be uniquely associated with the mem-

bership function value of the word.

Furthermore it is considered to be essential that the

value represented by a memory configuration of the machine is

an element in a lattice. We also require that the machine

can compare it with any cut-point which takes one of elements

in the lattice. It is reasonable to assume that a cut-point

will be represented by an infinite sequence of symbols in a

finite alphabet, following the infinite expansions of decimals.

We require that for any cut-point l the machine having the

memory configuration associated with the fuzzy membership

function value f(w) of a given input word w should be able to

read, as new input, the infinite sequence corresponding to

the cut-point l sequentially, and after a finite step of

moves, it can determine which of the following four cases is

valid, (i) f(w)>l, (ii) f(w)<l, (iii) f(w)=l, and (iv) f(w)
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and l are incomparable.

In this paper, a first step will be given toward the

fuzzy language recognition theory on the line stated above.

2.  FUZZY LANGUAGES

Let S be a finite set of symbols called an alphabet.

The set of all strings of symbols in S including the null

string ε will be denoted by S*. An element of S* will be

called a word over S. A subset of S* will be called a lan-

guage over S. Let L be a lattice with minimum element 0. An

L-fuzzy language over S is defined to be a mapping from S* to

L (following Goguen [2]). L will be often omitted if we are

not confused. Let f be an L-fuzzy language over S, then f(x)

for x in S* represents the grade for x to be a member of the

fuzzy language.

3.  CUT-POINTS AND THEIR REPRESENTATION

Let L be a lattice with minimum element 0. Usually a

value in L is specified and used as a cut-point. It is in-

teresting to consider language associated with an L-fuzzy

language f and a cut-point l such as;

LG(f,l) = {x e S*|f(x) > l}

LGE(f,l) = {x e S*|f(x) ^ l}

Such languages will be called cut-point languages for f and

l.

Let D be a finite alphabet, Let D` be the set of all

infinite sequences of symbols in D extending infinitely to

the right. We will define a representation of L over D.

A one to one mapping r from L to D` is a representation of L

over D if and only if it suffices the following conditions.

(i) For l, m in L, if l ≠ m there exists w1, w2 e D* with
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|w1| = |w2|
† and a,b e D` such that r(l) = w1a, r(m) = w2b

and for all a',b', in D` either following (a) or (b) holds;

(a)  Either w1a' or w2b' is not in r(L).

(b)  Both w1a' and w2b' are in r(L), and

r-1(w1a') > r-1(w2b')  if  l > m,

r-1(w1a') < r-1(w2b')  if  l < m

and r-1(w1a') and r-1(w2b') are incomparable, if l and m are

incomparable.

Such |w1| ( = |w2|) will be called D-length of r(l) and

r(m).

(ii) Let d(r(l), r(m)) be the minimum D-length of r(l)

and r(m), then for any l, m, and n in L with l > m > n,

d(r(l), r(n)) ≤ min {d(r(l), r(m)), d(r(m), r(n))}

holds.

We will say that for l e L, r(l) is the representation

of l with respect to r. A lattice cannot always have its

representation. We will consider from now on only lattices

which can have a representation over some finite alphabet.

Condition (ii) means that representations of lattices are

restricted to the type of one such as decimal expansions of

real numbers. However there may be many representations for

a lattice.

Example 1. Let L be a lattice with finite elements.

If L has elements l1,...,lk, let D = {l1,...,lk} a r(l1)

lilili . . . for i ≤ i ≤ k, then r is a representation of L

over D.

Example 2. Let L[0,1] be the set of all real numbers in

[O,1] with the ordinary ordering. A representation r1 is

given as follows: ∆ = {0,1,    0̇,    1̇}. Let e(l) for l  L[0,1] be

† |w| represents the length of a word w.
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the binary expansion of l not of the form w111 ••• with w e

{0,1}*0. For any rational number l in [0,1], we set e(l) =

wOw1w1w1 ••• such that if e(l) = 
    
w'0

    
w'1

    
w'1

    
w'1 •••, then |wO| ≤

|
    
w'0| and |w1| ≤ |

    
w'1|. Let 

  
⋅e(l) = wOw1w1w1 ••• where

  
⋅w1 =   

⋅a1  
⋅a2 •••   

⋅ak with w1 = a1 ••• ak, ai e {0,1} (1 ≤ i ≤ k).

r1(l) = e(l) if l is irrational.

r1(l) = 
  
⋅e(l) if l is rational.

Example 3. Let L[0,1]R
 be the set of all rational

numbers in [0,1] with the usual ordering relation. A repre-

sentation r2 of L[0,1]R
 is such that D = {0,1,    0̇,  

⋅
1} and r2(l)=

e(l)(l e L[0,1]R
) except for the following cases: r2(0) =

  
⋅
0  

⋅
0  

⋅
0 •••, r2(1) =   ̇l  ̇l  ̇l •••, r2(l) = w  

⋅
0  

⋅
0  

⋅
0 ••• for l such that

e(l) = wOOO ••• with w e {0,1}*1.

4. F-RECOGNITIONS BY MACHINES.

Machines treated hereafter may be finite automata, push-

down automata, linear bounded automata and Turing machines,

which can generally be represented as follows:

A machine has an input terminal which read input symbols

and ε sequentially, a memory storing and processing device

and an output terminal. Formally a machine is given by 8-

tuple M = <F,G,U,d,V,k,g0> where;

F:  a finite set of input symbols

G:  a finite set of memory-configuration symbols

C:  a finite set of output symbols

V:  a finite set of partial function {vi} from G* to G*

U:  a partial function from G* to Gn, for some n ≥ 1.

(For a memory configuration g e G*, u(g) indicates the

accessible information of g by M.)

d:  a partial function from  (F < {ε}) x Gn to 2V
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  k: a partial function from Gn to c < {ε}

gO: an element in G* (called the initial memory

    configuration).

A memory configuration j is said to be derived from a memory

configuration g by a s e f < {ε} and is denoted by g 

  

⇒
s
 j, if

and only if there exists r = u(g) and vi e d (s,r) such that

vi(g) = j. For a word w e F*, a memory configuration j is

said to be derived from a memory configuration g by w and is

denoted by g 
  
⇒
w
 j if and only if there exists s1,s1,...,sl

with si in F < {ε} such that w = s1s2 ••• sl, and g0,g1,•••,

gl with gi e G* such that g0 = g, gl = j and gi 
    

⇒
si
 gi+1

for all 0 ≤ i ≤ l - 1. (g ⇒
ε  g is valid for all g e G*).

Given an input word w e F* and having the initial memory

configuration g0 first, M reads input symbols or ε sequenti-

ally along w, changes step by step memory configurations pos-

sibly in a nondeterministic way and reaches into g such that

g0 
  
⇒
w
 g, emitting output k(u(g)).

Obviously a machine M = <F, G, C, u, d, V, k, g0> can

be restricted to a specified family of automata such as

Turing machines, pushdown automata, finite automata for

appropriate choices of  G, u, d, V, k, and g0.

Furthermore we will define a deterministic machine. A

machine M = <F, G, C, u, d, V, k, g0> will be called a de-

terministic machine if for any memory configuration g such

that g0 
  
⇒
x
 g for some x in F*, if d(ε,u(g)) ≠ f, then

d(ε,u(g)) contains at most one element and for any a s e F,

d(s,u(g)) ≠ f, and if d(ε,u(g)) ≠ f, then for any a s e F,

d(ε,u(g)) contains at most one element.

Now we will define recognition of a fuzzy language by a

machine. Let L be a lattice with a minimum element 0 and

f: S* → L be a fuzzy language over an alphabet S. Let r be a
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representation of L over an alphabet D. A machine M =

<F, G, C, u, d, V, k, g0> f-recognizes f with r if and only if the

following conditions hold:

1. F = S < D < {c}, where c is an element not in S < D.

2. C = {>,<,=,!}

3. There exists a partial function y from G* to L which

satisfies the following conditions (i) ~ (iv).

(i)  For any  x e S*, Sx , Dom y†, where

sx= {g | g0 

  

⇒
xc

 g}

If Sx = f - then max {y(g)|g e Sx} always exists.  Let yx =

max {y(g)|g e Sx} if Sx ≠ φ and otherwise let yx not be

defined. Then it holds that if f(x) ≠ 0, then Sx ≠ f and

f(x) = yx.

(ii) Let g be any memory configuration in Sx. Let a

machine Mg be <D, G, C, u, d', V, k, g> , where d' is the restric-

tion of d over (D < {ε}) x Gn. Then Mg is a deterministic

machine.

(iii) For any memory configuration g e G*, if k(u(g))

is in C, that is, k(u(g)) ≠ ε, then for any s e F < {ε}

d(s, u(g)) is empty. And k(u(g)) is in C only if g' 

  

⇒
y
 g

for some g' e Sx, x in S* and y in PRE r(L)††.

(iv) Let g be any element in Sx. For any l e L,

there exists a prefix v of r(l) such that

   g 

  

⇒
v
 g'

†  Dom y = {g e G*|y(g) is defined}.
†† w1 will be called a prefix of a word or an infinite
  sequence a if a = w1b for some b. Let P be either a set of
  words or a set of infinite sequences. PRE P is the set of
  all prefixes of elements in P.
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k(u(g')) is >, if y(g) > l,

k(u(g')) is =, if y(g) = l,

k(u(g')) is <, if y(g) < l,

and  k(u(g')) is !, if y(g) and l are incomparable.

Given an input sequence xc in S* where c indicates the

end of the input sequence, a machine M moves possibly non-

deterministically into some memory configuration g such

that y(g) is defined. Sx is the set of all such g's. We

consider the maximum value yx of {y(g)|g e Sx} as the value

of x computed by M. If Sx = f we consider that the value of

x cannot be computed by M. We will call a sequence of moves

from the initial memory configuration to a memory configura-

tion in Sx a value computation for x.

Let g be any memory configuration in Sx. Then we

require that Mg should be able to compare y(g) with any

element l in L. Mg moves deterministically reading input

symbols in {ε} < D along the infinite sequence r(l) and emits

one of >, <, = and ! following the order of y(g) and l in L

after reading a finite length of prefix of r(l), and halts.

(See (iii).) We will call a sequence of moves of M from g

in Sx to a halting configuration an order-comparing computa-

tion for g. If a fuzzy language f: S* → L is the function

such that

f(x) = yx if yx is defined

f(x) = 0  otherwise,

then f is said to be f-recognized by the machine M with the

representation r.

Let T0, T1, T2 and T3 be the classes of Turing machines,

linear bounded automata, pushdown automata and finite automata

respectively. And let DT0, DT1, DT2 and DT3 be the classes

of deterministic Turing machines, deterministic linear bounded
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automata, deterministic pushdown automata and deterministic

finite automata respectively. A fuzzy language f is said to

be f-recognized by a machine in Ti(DTi) if and only if f is

f-recognized by a machine in Ti(DTi) with some representation

r, for i = 0, 2 and 3. And we will say that a fuzzy language

f: S* → L is f-recognized by a (deterministic) linear bounded

automaton if and only if f is f-recognized by a (determinis-

tic) Turing machine M with some representation r as follows:

For any x e S*, if g0 
  

⇒
y1
 g for some prefix y1 of xc, or

gO 

  

⇒
xcy

 g for some y in PRE (L), then |g| < C |x| for some

constant C, where g0 is the initial configuration of M.

(This means that lengths of memory configurations in M for

any x e S* are always not greater than some constant time of

|x| throughout the value computation and the order-comparing

computation of x with any cut-point in L.)

Example 4. Let S = {a,b}. For w e S*, let na(w) and

nb(w) be the numbers of occurrences of a and b in w respec-

tively. A fuzzy language f1: S* → L[0,1]R
 defined by

f1(w) = 
  

1

2
 + (

  

1

2
)
|na(w)-nb(w)|+1  (w e S*)

is f-recognized by a deterministic pushdown automaton.

A pushdown automaton M = <F, G, C, u, d, V, k, s0> with g2
in Example 3 f-recognizes f1, where F = S < D < {c} with

S = {a,b} and D = {0,1,  
⋅
0,

  

⋅
1}, G = Q < {zO,a,b,l} where Q =

{qO,q1,q>, q<, q=}, C = {>, <, =}, u is a partial function

from G* → G2 such that u(qxs) = (q,s) for all q e Q,

x e {ε} < z0{a,b}* and s e {z0,a,b,l,  ̇l}, V = {v1a,v1b,va,vb,

v_,vl,vi,v>,v<,v=} where
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g0 = q0z0
v1s(x) = x1s for x e G* and s e {a,b}

vs (x) = xs  for x e G* and s e {a,b}

v_ (xs) = x  for x e G* and s e G

v1(q0x) = q1x1 for x e G*

vi(q0z0) = q1z0i

v>(q1x) = q>x  v<(q1x) = q<x  v=(q1x) = q=x

for x e G*

d:F x G2 → 2V is defined as:

d(c,(q0,z0)) = {vi}

d(s,(q0,z0)) = {v1s} for s e {a,b}

d(s,(q0,s)) = {vs} for s e {a,b}

d(a,(q0,b)) = d(b(q0,a)) = {v_}

d(c,(q0,s)) = {v1} for s e {a,b}

d(1,(q1,l)) = d(0,(q1,s)) = {v_} for s e {a b}

d(0,(q1,l))  {v>}, d(1,(q1,s)) = {v<}  for  s e {a,b}

d(  
⋅
0,(q1,z0)) v=, d(s,(q1,  

⋅
1)) = {v>} for s e {0,l,  

⋅
0}

d(  ̇l,(q1,  ̇l) ) = v=.

k(qn,s) = h for h e C and s e {z0,a,b,l,  ̇l}

We set y:G* → [0, 1]R defined by

y(q1z0  ̇l) = 1

and y(q1z0sn1) = 
  

1

2
 + (

  

1

2
)
n+1

 for s e {a,b} and n ≥ l.

5.  ISOLATED CUT-POINTS

Let f be an L-fuzzy language over S, where L be a lat-

tice with a minimum element 0. l e L will be called an

isolated cut-point of f if one of the following (i), (ii),

and (iii) holds;
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(i) There exists l1 and l2 in L such that l1< l < l2
and for any f(x) (x e S*) with f(x) = l, either f(x) ≤ l1 or

f(x) ≥ l2.

(ii) l is a maximum element of L and there exists l1 ≠ l

in L such that for any f(x) (x e S*) with f(x) ≠ l, f(x) ≤ l1
holds.

(iii) l = 0 and there exists l2 ≠ 0 in L such that for

any f(x) (x e S*) with f(x) ≠ 0, f(x) ≥ l2 holds.

Theorem 1. Let L be a lattice with minimum element 0.

Let f:S*→ L be a fuzzy language and let l be an isolated

cut-point of f. Then if f is f-recognized by a machine in

Ti, each of LGE(f,l) and LG(f,l) is recognized by a machine

in Ti for 0 ≤ i ≤ 3.

(Proof) Assume that f is f-recognized by a machine M

= <S < D < {c},G, C, u, d, V, k, g0> in Ti with a representation

r over D. Since l is an isolated cut-point of f, either (i),

(ii) or (iii) holds. We will only prove the case where (i)

holds. (Proofs for other cases are similar.) Let l1 and l2
in L be such that l1 < l < l2 and for any f(x) (x e S*) with

f(x) = l, either f(x) ≥ l2 or f(x) ≤ l1 holds. Let d1 and

d2 be the minimum D-length of r(l1) and r(l) and of r(l) and

r(l2) respectively. Let d3 = max (d1,d2) and w e S* be the

prefix of r(l) of length d3. From the definition of f-recog-

nition, the set L[M,≥] is recognized by a machine in Ti,

where

L[M,≥] = {xcy| x e S*, y e D*, g0 
  

⇒
xcy

 g such that

k(u(g)) is (=) or (>)}.

And it holds that

{x e S* | f(x) ≥ l} = {x e S* | xcy e L[M,≥]  for

some y in wD*}.
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This is proved as follows:  If f(x) ≥ l there exists g e G*

and y e D* such that y is a prefix of r(l), g0 
  

⇒
xcy g and

k(u(g)) is (>) or (=). Conversely assume that g0 
  

⇒
xcy g and

k(u(g)) is (>) or (=) for some y in wD* and g in G*. Then

there exists l'e L such that f(x) ≥ l' and for some a e D`

and w' e D*, g(l') = ya = ww'a. From the definition of D-

length, neither l' and l1 nor l' and l2 are incomparable.

Also from the definition of D-length, neither l' < l1 nor

l2 < l' is valid. Thus l1 ≤ l' ≤ l2 and so f(x) = l or

f(x) ≥ l2. Hence f(x) ≥ l.

It is obvious that there exists a gsm-mapping G such that

LGE(f,l) = G(L[M,≥] > S*cwD*).

Since recursively enumerable sets, context free languages and

regular sets are closed under a gsm-mapping operation respec-

tively, Theorem has been proved for i = 0, 2 and 3.

For the case of i = 1, the machine M is a Turing machine

such that for some constant C, |g| ≤ C |x| for any x e S*

and for any memory configuration g such that g0 
  
⇒
x  g with

z in PRE (L[M,≥]). A machine M' is a modification of M as

follows; M' moves as in the same way as M for xc (x e S*).

After reading xc, M' continues to read ε, and changes

sequentially memory configurations as in the same was as M

reads y in wD*. M' has an autonmous finite state machine as

a sub-machine which generates any y in wD* nondeterministic-

ally. M' is a linear bounded automaton which recognizes

LGE(f,l).

As for LG(f,l), the proofs are similar.

Corollary 1. Let L be a finite lattice, and let f:

S* → L be a fuzzy language. If f is f-recognized by a

machine in Ti, then for any l e L, each of LGE(f,l) and
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LG(f,l) is recognized by a machine in Ti for i = 0,1,2 and 3.

(Proof) Assume that f is f-recognized by a machine in

Ti, M = <S < D < {c},G, C, u, d, V, k, g0> . Let L =

{l1,l2,...,ls} Then there exists wi' s in D* such that r(li)

is in wiD` but is not in wjD` for i ≠ j (1 ≤ i, j ≤ s). From

the definition of f-recognition, the set L[M,≥] is recognized

by a machine in Ti, where

L[M,≥] = {xcy|x e S*, y e D*, g0 
  

⇒
xcy

 g such that

k(u(g)) is (=) or (>)}

Clearly it holds that for 1 ≤ i ≤ s

{x e S*|f(x) ≥ li} = {x e S*|xcy in L[M,≥]

for some y in WiD*}.

The rest of the proof is the same as in the proof of Theorem 1.

Corollary 2. Let L be a lattice with minimum element 0.

If an L-fuzzy language f is f-recgonized by a machine in Ti
with a representation r, and for l e L, r(l) is generated by

an autonomous finite automaton sequentially, then LG(f,l)

and LGE(f,l) are recognized by a machine in Ti (i = 0,1,2

and 3).

Theorem 2. Let L be a lattice with minimum element 0

which has a representation r0 over D0. Let f:S* → L be a

fuzzy language such that f(S*) = {f(x)|x e S*} is finite. If

for any f(x) (x e S*), LGE(f,f(x)) is recognized by a machine

in Ti, then f is f-recognized by a machine in Ti, for i = 0,

1,2 and 3.

(Proof) Assume that f(Σ*) = {l1,l2,..., ls}. Let Mi be

a machine recognizing LGE(f,li) for 1 ≤ i ≤ s. A machine M

which f-recognizes f with a representation r over D is given

as follows; Let D = D0 < D1 < D2 where D1 = {l1', l2',...,ls'}

(li' is a new symbol corresponding uniquely to li for 1 ≤
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i ≤ s) D2 = 2
D1 x 2D1. We define r as

r(li) = li'r0(li)  for  1 ≤ i ≤ s

r(l) = (Al,Bl)r0(l) if l ∈ f(S*),

where Al = {lj'|lj > l} and Bl = {lj'|lj < l}.

M contains Mi for 1 ≤ i ≤ s as sub-machines. For any word xc

with x in S*, M reads first ε and chooses nondeterministically

the initial configuration of any one of Mj's, say Mk, and

hereafter Mk moves reading x as an input word. From any mem-

ory configuration gi corresponding to accepting configuration

gi in some Mi (1 ≤ i ≤ s), M moves into a memory config-

uration g
  

i
c
 by the input symbol c, and M with the configura-

tion g
  

i
c
, say M(g

  

i
c
), moves in a deterministic way as; M(g

  

i
c
)

emits one of =, >, <, and ! as the output and halts according

to the cases where it reads l
    
'
i, lj' such that lj < li, lk'

such that lk > li, and ll' such that li and ll are incom-

parable. Reading (Al,Bl), M(l
  

i
c
) emits one of >,< and

! according to the cases l
    
'
i e Al, li' e Bl and li' ∈ Al <

Bl, and halts. We set y as

y(g
  

i
c
) = li  (1 ≤ i ≤ s).

If f(x) = lk, then Sx = {g
  

i
c
|li ≤ lk}. Thus f(x) = y(g

  
k
c) =

max {y(g|g e Sx}.

We obtain the following corollaries directly from

Theorem 1, Corollary 1 and Theorem 2.

Corollary 3. If L is a totally ordered set with mini-

mum element or a finite lattice and f is an L-fuzzy language

over some alphabet S such that f(S*) is finite, then for 0

≤ i ≤ 3, a necessary and sufficient condition for f to be

f-recognized by a machine in Ti is that for any f(x) (x e S*)

LGE(f,f(x)) is recognized by a machine in Ti.
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Corollary 4. Let L be a language over S and let fL:

S* → B1 be the characteristic function of L, where B1 is the

Boolian lattice with two elements. For 0 ≤ i ≤ 3 L is

recognized by a machine in Ti if and only if fL, is f-recog-

nized by a machine in Ti.

Corollary 4 shows that the recognition concept for

fuzzy languages introduced in this paper is a fairly good

extension of the one for ordinary languages.

Example 5. Let L be a lattice with the minimum element

0 and the maximum element l. An L-fuzzy context-free gram-

mar is defined as a quadruple G = (V,S,P,S) where V is a

finite set of symbols, S , V is the set of terminal symbols,

V-S is the set of non-terminal symbols, S is in V-S and P is

a finite set of production rules of the form

A 
  

l
→ a

with A e V-S, a e V* and l e L. For b, g in V*, we will

write

b   
l

⇒  g,

if there exists d, h in V* and A   
l

→ a in P such that b = dAh

and g = h. We will write

b 

    

1
⇒
*

 b

b

    

0
⇒
*

g

for all b, g e V*, and

b 

    

m
⇒
*

 g

if and only if there exists a sequence of elements in V*,

b0, b1,•••, bt such that b0 = b, bt = g, bi-1     

li⇒ bi for

1 ≤ l ≤ t and 
  

t
∧

i= 1  li = m. For any x in S*, let lx the least

upper bound of {l e L |S 

    

l⇒
*
 x}. The L-fuzzy language f

defined by
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f(x) = lx  for all x e S*

is said to be generated by G. An L-fuzzy language generated

by some L-fuzzy context free grammar is called an L-fuzzy

context free language. (L-fuzzy phrase structure, L-fuzzy

context sensitive, L-fuzzy regular grammars and languages

are similarly defined respectively.) L[0,l]-fuzzy context-

free languages were studied by Lee and Zadeh [3]. From

Proposition 18 in [4] and Theorem 2, it follows that any

L[0,l]-fuzzy context free language is f-recognized by a

pushdown automaton.

Now we consider Bn—fuzzy context free language, where

Bn is the Boolian lattice with n atoms. (An example of B2-

fuzzy context-free language was given by [5].)

Proposition. The family of languages {LGE(f,l)} with a

Bn-fuzzy context-free language f and l e Bn is exactly the

same as the family of n-intersection languages introduced

by Liu and Weiner [6]. (A language L is defined to be an

n-intersection language if L is expressible as an intersec-

tion of n context-free languages.)

From Corollary 3 and the above Proposition, it follows

that any Bn-fuzzy context-free language is f-recognized by

a linear bounded automaton, but for n ≥ 2, a Bn-fuzzy context-

free language is not generally f-recognized by a pushdown

automaton.

Example 6. Let S = {a,b,c} and let f2 be an L[0,1]-

fuzzy language over S defined by

f2(a
ibjck) = (

  

1

2
)
|i-j|

 +(
  

1

2
)
|j-k|

f2(w) = 0  if  w   e a*b*c*

Then 1 is an isolated cut-point of f2 and LGE(f2,1) =

{aibici|i≥0} is not recognized by any pushdown automaton.
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Hence from Theorem 1, f2 is not f-recognized by any pushdown

automaton. It can be seen that f2 is f-recognized by some

deterministic linear bounded automaton with representation

r1.

6.   A FUZZY LANGUAGE WHICH IS NOT F-RECOGNIZED BY A MACHINE
IN DT2

Considering Theorem 1 and Corollary 1, it is easy to

find fuzzy languages not f-recognized by a machine in Ti
for 0 ≤ i ≤ 3. But we can not use Theorem 1 and Corollary 1

to find an L-fuzzy language whose membership function-values

distribute densely over L and is not f-recognized by a

machine in Ti for 0 ≤ i ≤ 2. Hence, it is interesting to

find such a language. But only a following result has been

obtained.

Example 7. Let S = {0,1} and let f3 be an L[0,1]R
-fuzzy

language over S such that for ai e S (1 ≤ i ≤ k),

f3(a1a2 ••• ak) = a12
-1 + a22

-2 + ••• + ak2
-k

(binary expansion).

f3(ε) = 0

Then f2 is not f-recognized by any deterministic pushdown

automaton.

(Proof) Assume that f3 is f-recognized by a determin-

istic pushdown automaton M = < S < D < {c}, G, {<, =, >},

u, d, V, k, g0> with a representation r over D. Let

L1 = {xcy|g0 
  

⇒
xcy

 and k u(g)) = (=)},

then L1 is a context-free language included in S*cD*. Let

L2 = L1 > 0*1*cD*, L2 is also a context-free language. Since

M is deterministic, for any xcy in L1, there exists only a

in D` such that r(f3(x)) = ya. Due to the pumping lemma of
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the theory of context free languages, it holds that there

exists a constant K such that if |z| ≥ K and z e L2, then we

can write z = uvwxy such that vx ≠ ε, |vwx| ≤ K, and for all

i, uviwxiy is in L2. Let m ≥ K and let zp be an element in

L2 of the form o
plmcgp (gp e D*)for any p ≥ 0. We can write

zp = upvpwpxpyp such that vpxp ≠ ε |vpwpxp| ≤ K, and for

all i ≥ 0, upv
  
i
pwpx  

i
pyp in L2.  Since M is deterministic and

halts immediately after it emits (=), there exist no x in

S* and y and y' in D* with y ≠ y' such that both xcy and

xcy' are L2. Since f3(x) ≠ f3(x') for distinct x and x' in

0*1m, there exist no x and x' in 0*1m with x ≠ x' and y in

D* such that both xcy and x'cy are in L2. Thus for all p

neither up nor yp contains c. Obviously for all p, c can

not occur in either vp or xp.  Hence, wp contains c and

both vp and xp are not ε for all p ≥ 0, so that for all p ≥

0 we can write vp = 1
sP for some sp ≥ 1 and wp = 1

tpcWp for

some tp ≥ 0 and Wp in D*. Since |vpwpxp| ≤ K for all p,

there exist nonnegative integersp and q, and W and x in D*

such that p < q, Wp = Wq = W, sp = sq = s and xp = xq = x.

Hence

zp = 0
P1mcWxyp

zq = O
q1mcWxyq

and for all i ≥ 0

Op1m-s1sicWxiyp e L2
Oq1m-s1sicWxiyp e L2
For some a0 and a1 in D`, it holds that

r-1(Wypa0) = f3(0
p1m-s) < f3(0

P1m) = r-1(Wxypa0)

Let d0 be the minimum D-length of Wypa0 and Wxypa1, and let

j > d0, then for some a2 in D`,
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r-1(Wxjypa2) = f3(O
p1m-s1sj) > f3(O

p1m).

Hence the minimum D-length d1 of Wypa0 and Wx
jypa2 is not

greater than do. Since j > d0, j > d1. But for some a3 in

D`,

r-1(Wxjypa3) = f3(O
p1m-s1sj) < f3(O

p1m-s) = r-1(Wypa0),

which contradicts the definition of the representation.

Thus f3 can not be f-recognized by any deterministic push-

down automaton.

Note. LGE(f3,l) and LG(f3,l) are regular for any l in

L[0,1]R
. This is a well-known result in the theory of

probabilistic automata [9].

7.  RECURSIVE FUZZY LANGUAGES

The relation between deterministic machines and non-

deterministic machines with respect to the f-recognizability

of fuzzy languages is somewhat different from that of or-

dinary languages. It will be shown that in the f-recognition

of fuzzy languages nondeterministic Turing machines are more

powerful than deterministic Turing machines. Let {t0,t1,t2,

•••} be an enumeration of deterministic Turing machines.

Let L3 be a lattice with three elements 0, a and 1 such that

0 < a < 1. Let S = {s}. f4 and f5 are L3-fuzzy languages

over S defined as follows: For n ≥ 0

f4(sn) = 1 if tn with the blank tape eventually

  halts,

= 0 otherwise.

f5(sn) = 1 if tn with the blank tape eventually

halts,

= a otherwise

Then the following lemma holds.
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Lemma. f4 is f-recognized by a deterministic Turing

machine. f5 is f-recognized by a non-deterministic Turing

machine, but it is not f-recognized by any deterministic

Turing machine.

(Proof) It is easy to show a deterministic Turing

machine which f-recognizes f4. Since LGE(f5,1) and LGE(f5,a)

are recursively enumerable languages,it follows from Theorem

2 that f5 is f-recognized by a Turing machine. Assume that

f5 is f-recognized by a deterministic Turing machine, then

it is easily shown that the halting problem of Turing

machine is solvable. This cannot be valid. Thus f5 is not

f-recognized by any deterministic Turing machine.

Let L(Ti) and L(DTi) be the families of fuzzy languages

f-recognized by a machine in Ti and DTi respectively for

i = 0,1, 2 and 3.

Theorem 3. (i) L(T0) ⊃
+ L(DT0) (ii) L(T2) ⊃

+ L(DT2)

(iii) L(T3) = L(DT3).

(i) is a direct consequence of Lemma. (ii) follows

from Corollary 4. The proof of (iii) is easy. But it is

not known whether L(T1) ⊃
+ L(DT1) or not.

Considering Lemma, it seems reasonable to define recur-

sive fuzzy languages as follows: A fuzzy language f over S

is recursive if and only if f is f-recognized by some

machine M = <S < D < {c}, G, C, u, d, V, k, g0> in DT0
with some representation r over D with the condition that

for any x e S*, Sx ≠ f where Sx is {g e  G*|g0 

  

⇒
xc

 g}-

Obviously any fuzzy language in L(T3) is recursive.

And the following Proposition is easily proved.

Proposition. A fuzzy language in L(DT2) < L(T1) is a

recursive fuzzy language.
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I.  INTRODUCTION

The theory of fuzzy grammars and quantitative fuzzy se-

mantics have been proposed by Prof. L. A. Zadeh (1, 2, 3) and

other researchers (4,5). The theory gives us many interest-

ing ideas and provides us a natural way to reduce the gap be-

tween formal languages and natural languages. On the other

hand, if there is a connection between context-free grammars

and grammars of natural languages, it is undoubtedly, as Prof.

N. Chomsky proposes, through some stronger concept like that

of transformational grammar. In this framework, it is not the

context-free language itself that is of interest, but instead,

the set of derivation trees (structural descriptions or P-

markers). It is also true from the view point of the syntax

directed description of fuzzy meanings that sets of trees are

of prime importance as opposed to sets of strings.

These observations motivate interest in systems to mani-

pulate fuzzy sets of trees. The purpose of this note is to of-

fer three systems to manipulate fuzzy sets of trees, genera-

tors, acceptors, and transducers. Main results of this note

are:

(1) The set of derivation trees of any fuzzy context-

free grammar is shown to be a fuzzy set of trees generated by

a fuzzy context-free dendro language generating system and



302
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

YASUYOSHI INAGAKI AND TERUO FUKUMURA

also to be a fuzzy set of trees recognizable by a fuzzy tree

automaton.

(2) The fuzzy tree transducer is shown to be able to de-

scribe the fuzzy meanings of fuzzy context-free languages at

the level of syntax structure in the sense that it can fuzzily

associate each fuzzy derivation tree of the fuzzy language

with a tree representation of the computation process of its

fuzzy meaning.

2.  TREES AND PSEUDOTERMS

We begin by describing fundamental concepts concerning

trees.† Let N be the set of natural numbers and N* be the set

of strings on N containing the null string ε. A finite closed
subset U of N* is called a finite tree domain if

(i)  w ε U  and w = uv implies u ε U (u, v, w ε N*)
(ii) wn ε U and m ≤ n implies wm ε U (w ε N*, m, n ε N)

For a finite tree domain U, the subset   U  = {w|w ε U, w⋅1" U}

is called the leaf node set. A partially ranked alphabet is

a pair (V;S) of finite alphabets V and S, where V > S = φ.

A tree t on a partially ranked alphabet (V ; S) is a mapping

from a finite tree domain U into V < S such that t: U → (V;S),

where

t(w) ε V for w ε U -   U
t(w) ε S for w ε   U .

As easily known, a finite tree t: U → (V;S) can be represent-

ed by a finite set of pairs (w,t(w)), i.e., {(w,t(w))|w ε U}.

It should be fairly clear that trees on (V;S) can be re-

presented graphically by constructing a rooted tree (where the

†Concerning detailed description of these concepts, refer to
the references (6), (7).
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successors of each node are ordered), representing the domain

of the mapping, and labeling the nodes with elements of V < S ,

representing the values of the function. Thus, in the follow-

ing figures there are two examples; as a mapping, the left-

hand tree has the domain {ε, 1, 2, 11, 12} and the value at

11, for example, is a.

The definition of tree and the corresponding pictorial

representation provide a good basis for intuiton in consider-

ing tree manipulating systems. The development of the theory,

however, is simpler if we consider the familiar linear repre-

sentation of such trees. For this purpose we define the set
Tp(V;S) of pseudoterms on V < S as the smallest subset of

[V < S < { (,)}]* satisfying†:

(i)  S , Tp(V;S)
(ii) If n > 0 and A ε V and t1, t2,...,tn ε Tp(V;S), then

A(t1 t2•••tn) ε Tp(V;S)

q   We will consider trees and pseudoterms to be equivalent

formalizations in the followings. The translation between the

two is the usual one. By way of example, the trees of the a-

bove figures correspond to the following pseudoterms:

A (B(a b)a),  f (g(f (a b) g (a b))  f (a b))
For completeness, we note that this correspondence can be

†It is assumed that the parentheses are not symbols of V < S.
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made precise in the following way.

(i) If a pseudoterm tp ε Tp(V;S) is atomic, i.e., t
p =

a ε S, then the corresponding tree t has domain {ε} and t(ε) =

a.

(ii) If tp = A(t1
p•••tpm

  , then t has domain i %
< m{iw_w ε

domain (ti)} < {ε}, t(ε) = A, and for w =iw' In the domain of

t, t(w) = ti(w').

In the following, we will denote the set of trees on

(V;S) by T(V;S),its element by t, and the pseudoterm corre-

sponding to a tree t by p(t) or tp.

A fuzzy set T of trees is defined by a membership func-

tion mT: T(V;S) → [0, 1]. The set of all fuzzy set of trees

will be denoted by F(T(V;S)).

3.  FUZZY DENDROLANGUAGE GENERATING SYSTEMS

We introduce a fuzzy system which generates fuzzy sets

of trees, as an extension of dendrolanguage generating system

of authors (6).

Definition 1. A fuzzy context-free dendrolanguage

generating system (F-CFDS) is 5-tuple,

S = (L,V,S,P, λ0),

where (1) L: a finite set of symbols, of which elements are

called nonterminal node symbols,

(2) V: a finite set of symbols, of which elements are

called node symbols,

(3) S: a finite set of symbols, of which elements are

called leaf symbols,

(4) P: a finite set of fuzzy rewriting rules of the

form

m(λ→t) = r
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   which are usually represented by

λ 
r
→ t; t ε T(V;L < S); r ε [0,1]

or equivalently by

λ 
r
→ p(t) ; p(t) is a pseudoterm corresponding

to a tree t.

  (5) λO ε L: an initial nonterminal node symbol.

Let us define a fuzzy relation 
  

r
⇒ on the set T(V;L < S)

of trees:  For any two trees a,b  ε T(V;L < S)

  
r

a ⇒ b

if and only if (i) p(a) = xly, (ii) p(b) = xp(t)y, and

(iii) 
    
l

r
→ t is in P, where x, y e [V < L < S < {(,)}]*,

l e  L and t ε T
(V;L < S)

. Furthermore, we define the transl-

tive closure   of fuzzy relation  by:

 (i) for all a ε T(V;L < S)

(ii) iff r = Sup {min{r',r"|     ,     }}
                     l ε T(V;L < S)
Definition 2. The fuzzy set T(S) ={(t;p)|lO  t ε

T(V;S)} is called fuzzy context-free dendrolanguage (F-CFDL)

generated by F-CFDS, S.

Example 1. Suppose that L = {l,S,h}, V = {A}, S = {a}

and P is given by

    
a

∗r'
⇒ g

  

∗r
⇒

  
a

∗r
⇒b

    
a

∗1
⇒b

    
g

∗r"
⇒ b

  

r
⇒

  

∗r
⇒
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Then, F-CFDS, S = (L, V, S, P, λ) generates F-CFDS, T(S) =

  {(t; 0.7)|p(t) = A(a      A(aA(aa))     ), n ≥ 0}

<  {(t; 0.6)|p(t) = A(      A(A(aa)a)      a), n ≥ 1}

For example, as a derivation, we have

equivalently,

   0.7         0.8            0.8
l ====> A(j h) ====> A(A(j a)h) ====> A(A(A(j a)a)h)

   0.6                0.6
  ====> A(A(A(aa)a)h) ====> A(A(A(aa)a)a)

4.  NORMAL FORM OF F-CFDS

The depth of tree t with domain Ut is defined by

 d(t) = max {lg(w) | w ε Ut},

where lg(w) is the length of w. The order of F-CFDS is de-

fined as the maximum value of depths of trees appeared in the

right-hand side of the rules.

Two F-CFDS's are said to be equivalent, if they generate

the same fuzzy dendrolanguage. In this section, we will prove

that for any F-CFDS we can construct an equivalent F-CFDS of

order 1, i.e., of which rules are in the form of

••• •••

••• •••

     

     

n

n n

n
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where l, ji ε  L (i = 1,...,k), A ε  V and a ε S.

Lemma 1 Let S = (L, V, S, P, l0) be a F-CFDS of order

n(n > 2). Then we can construct an equivalent F-CFDS of or-

der (n – 1).

Proof. Let us determine a new F-CFDS, S' = (L',V,S,P',l0)

from a given F-CFDS, S as follows:

P' is defined by: For each rule

In P, (i) If d(t) < n, then     should be in P', (ii) If

d(t) = n and p(t) = X(p(tl)...p(tk)) then

and

   ji   ti for all i such that p(ti) ε| L

should be in P', where ji is a new distinct nonterminal node

symbol if p(ti) ε| L and ji = p(ti) if p(ti) ε L.

It should be clear that L' is the union of L and the set

of all new nonterminal node symbols introduced by applying the

above rule (ii).

Suppose        under S. Then p(a) = x l y, p(b) =

xp(t)y and       is in P. If d(t) < n, the above construc-

tion asserts that a   b under S' since            is also con-

tained in P'. If d(t) = n, by the above construction we can

have

p(a) = xly   x X(j1    jk) y   x X(p(t1)
    p(tk))y=p(b).

Conversely, if x l y   x X(j1
    jk) y under S' then

ji   ti; i = 1,
    ,k should be applied since nonterminal

symbols ji's can be rewritten only by them. Thus,

x l y   x X(j1
    jk) y   x X(p(t1)

    p(tk)) y.

For this derivation, we can have

    
l

r
→t

    
l

r
→t

  

1→

  
r

a ⇒ b

  

r
⇒

    
l

r
→ t

    
l

r
→ t

  

r
⇒

  

*1⇒ ••••••

  

*1⇒  

r
⇒ •••

•••  

r
⇒

•••

•••
  

1→
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   x l y   x p(t) y

under S.

Thus we know that T(S) = T(S'). It should be clear from

the construction procedure of S' that S' is of order (n – 1).

 (Q.E.D.)

By repeating application of Lemma 1, we obtain:

Lemma 2 For any given F-CFDS, S, there exists an equiva-

lent F-CFDS, S' of order 1.

Theorem 1 For any given F-CFDS, S, we can construct an

equivalent F-CFDS, S' of which rules are in the form of

where l, ji's are nonterminal node symbols, a is a leaf sym-
bol, and A is a terminal node symbol.

Proof. By Lemma 2, for any given F-CFDS, S, we can con-

struct an equivalent F-CFDS of which rules are in the form of

Here, if we replace the rule of type (ii) by a rule

where ji = Xi if Xi ε L and ji is a new symbol if Xi ε S, and

rules

  

r
⇒
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       ji  Xi    for all Xi ε S,

then we can obtain the desired F-CFDS.  (Q.E.D.)

In the following, a F-CFDS of which rules are In the form

of (i) or (ii) of Theorem 1 will be said to be normal.

Example 2. Consider a set of rules:

This gives a F-CDFS of order 2. The normal form for this

F-CFDS is given by the following rules:

  

1→
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5.   CHARACTERIZATION OF SETS OF DERIVATION TREES OF FUZZY

     CONTEXT-FREE GRAMMARS

We define the sets of derivation trees of fuzzy context-

free grammars as fuzzy set of trees and we characterize them

by F-CFDS's.

Definition 3. (1,2) A fuzzy context-free grammar

(F-CFG) is a 4-tuple G = (V,S,P,S), where

(i) V: a set of nonterminal symbols,

(ii) S: a set of terminal symbols,

(iii) P: a set of fuzzy production rules,

(iv) S: an initial nonterminal symbol.

For a derivation

W0(= S)    W1 
         Wm( = W )

under a fuzzy context-free grammar G, we formally define a

derivation tree with a value of degree of membership as

follows:

 (i)  For wO (= S), (a
w0;1) = ({(ε,S)};1)

(ii)  Suppose that (a
wi-1;r) is given for some i and

that wi-1    wi is realized by     Y1Y2
    Yk (Yi ε V < S)

with wi-1 = xAy and wi = xYlY2    Yky. Then (a
wi;p') is

given by

a
wi = a

wi-1 < {(u.i,Yi)|1 ≤ i ≤ k, (u,A) ε axAy,

u ε   U
awi-1

}†,

where   U
awi-1

 is the leaf node set of a
wi-1 and by r' =

min(r,ri).

†It is assumed that the symbol A replaced by Y1Y2
    Yk

corresponds to a leaf node u in   U
awi-1

.

    

r
⇒1     

r
⇒2 •••    

r
⇒m

    

r
⇒i     

A
r
→i •••

•••

•••
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Let DG be a fuzzy set of trees on (V;S) defined by the

above procedure for all possible derivations of a fuzzy

context-free grammar G. The fuzzy set DG wi11 be called a

fuzzy set of fuzzy derivation trees of G.

Theorem 2 For any given F-CFG, G = (V,S,PG,S), there

exists a F-CFDS, S = (L,VS,SS,PS,l0) which generates the

fuzzy set DG of fuzzy derivation trees of G.

Proof. Put L = {lX|X ε V}, VS = V. SS = S and l0 = lS

Determine PS as follows:  If X  Y1Y2
    Yk is in P,then

should be contained in PS, where we understand that if Yi =

a ε S then lYi
 = a.

By noting that the process obtaining (a
wi,p') from

(a
wi-1,r) in the definition of DG corresponds to the appli-

cation of the rule

.

in F-CFDS, S, we can easily prove that DG = T(S). (Q.E.D.)

Example 3. Consider a F-CFG given by rules:

S 
  

0.5→ AB, A 
  

0.8→ AB, B
  

0.4→ BA, A
  

0.8→ a, A
  

0.3→ b, B
  

0.9→ b

For this F-CFG, construct a F-CFDS determined by rules:

  

r
→ •••
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For a derivation of F-CFG,

its derivation tree is generated by the F-CFDS as follows:

Next we consider the converse of Theorem 2: We will

prove that for any F-CFDS, S, there exists a F-CFG, G

corresponding to S in the sense of the following Theorem 3.

Let h: [V < S < {(,)}]* →  S be a homomorphism defined by

h(a) = a for a in  S and h(X) =  ε for X  ε| S.

Lemma 3 Let S be a F-CFDS. Then, the fuzzy set

p(T(S)) of pseudoterms of T(S) is a fuzzy context-free

language.

Proof. Let S = (L,V,S,P,l0) be a F-CFDS. Construct a

F-CFG, G = (VG,SG,PG,SG) as follows:

Put VG = L, SG = V < S < {(,)},SG = l0 and determine PG by:

if l 
  

r
→ t is in P then l 

  

r
→ p(t) should be in PG. It is clear
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from the above construction that L(G) = p(T(S)). (Q.E.D.)

Theorem 3 For any F-CFDS, S, h(p(T(S))) is a fuzzy

context-free language on S.

Proof. By Lemma 3 with the fact that homomorphic image

of a fuzzy context-free language is also a fuzzy context-

free language. (Q.E.D.)

We can prove a stronger result:

Theorem 4 Every F-CFDL is a projection of the fuzzy

set of derivation trees of a F-CFG.

Proof. Let S = (L,V,S,P,l0) be a normal F-CFDS. We

define a F-CFG, G = (VG,SG,PG,SG), where VG = L x (V < S),

SG = {〈f,a〉|a ε S} (f is a new symbol not in L), SG =

{〈lO,X〉|X ε V < S} and PG is defined by:

<l,X> 
  

r
→ <j1,X1>  <j2,X2> ••• <jk ,Xk>

should be in PG, where Xi e  V <  o.

(ii) If l  
  

r
→   a is in P, Then a rule

  <l,a> 
  

r
→ < f,a>

should be contained in PG.

Again, it is easy to check that if (t;r) is a fuzzy

derivation tree of this grammar, (p(t);r), a projection of

(t;r), is a fuzzy tree generated by the F-CFDS, S, where

p(t) is defined, in terms of pseudoterms, as follows:

 (i) p[〈l,a〉 (  <f,a>  )] = a
(ii) p(〈l;X〉 (p(t1)•••p(tk))] = X(p[P(t1)]•••p[P(tk)]).

      (Q.E.D.)
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, which is contained in the F-CFDL generated by the given

F-CFDS.

6. FUZZY TREE AUTOMATON

In the section 4, we have introduced a fuzzy dendro-

language generating system, as a generator, which is used to

characterize the fuzzy set of derivation trees of a fuzzy

context-free grammar in the preceding section 5. Here we

define a fuzzy tree automaton as an acceptor of fuzzy

dendrolanguage.

Definition 4. A fuzzy tree automaton (F-TA) is a 5-

tuple

A = (S,V,S,α,F)

where (i)  S: a finite set of state symbols,

 (ii)  V: a finite set of terminal node symbols,

(iii)   S: a finite set of leaf symbols, where V > S= φ

(iv)† a:  (V < ) → [S x S → [0,1]], where S is a

finite subset of S* containing the null

string ε. For X ε V, a(X) = aX is a mapping

from (S — {ε}) x S into [0,1], i.e., a fuzzy

relation from S to S, which will be called

†[A → B] denotes the set of all mappings from a set
A to B.
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a fuzzy direct transition function. For a ε

S, a(a) = aa isa mapping from {ε} x S into

[0,1]. aa defines a fuzzy set on S which

should be assigned to the node of a. aX(S1S2•

••Sk,S) = r means that when a node of X has k

sons with states S1,S2,...,Sk, the state S can

be assigned to the node with degree r. This

may graphically be represented by

Finally, (V) F: a distinct subset of S, called a set of

final states.

Now, for a tree t ε T(v;S), we define a fuzzy transition

function

at: [S
* → S] → [0,1]

let t be X(t1t2•••tk) in terms of pseudoterm.

at(s1s2•••sn,s) = aX(t1•••tk)
(s1s2•••sn,s)

= 

  

sup
siεS

min{ax(12•••k,s),

i=1,...,k

at1
(s1s2•••sn,s1),•••,

atk
(s1s2•••sn,sk)}

If t = a ε S, then at=aa.

By at, therefore, we can assign a fuzzy set on S to the

root node of the tree t. The mapping at can also define a
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fuzzy set of trees, i.e., a fuzzy set on T(v;S), by

   T(A) = {(t;r)|r = 

  

max
sεF

{at(e,s)}

which will be called a fuzzy set of trees recognized by a

fuzzy tree automaton A.

Example 5.  Put  S = {sl,sj,sh,}, V = {A}, S = {a}
and F = {sh}. Suppose that a is defined by:

For the F-TA, A = (S, V, S, a, F), T(A) contains

with the membership degree 0.7. The computation process of

~t(e,sn) can be graphically represented by:

where
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a(a)=[0.8sl,0.7sj, 1.0sh]

(i.e.,aa(sl) = 0.8, aa(sj) = 0 7, aa(sh) = 1.0)

a1(A) = [0 sl, 0 sj, 0.7 sh]

and

a2(A)=[0sl,0sj,0.7sh
]

Thus, we can know that at(e, sh) = 0.7.

Alternatively, at(e, sh) can also be known by enumerating

all the fuzzy reductions from t to sh,such as following one:

Theorem 5 Any F-CFDL is recognizable by a F-TA.

Proof. By Theorem 1, we can assume that for any given

F-CFDL, T, there exists a normal F-CFDS, S = (L,V,S,P,l0)

with T (S) = T. From the F-CFDS, S, we construct a F-TA,

A = (S,V,S,a,F) as follows:

    Put S = {Sl|l ε L}, F = {Sl0
}.

The mapping a is determined by:

    (i)  If l
  

r
→ X(l1l2•••lk) is in P, then
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a(X)(Sl1
Sl2

•••Slk
,Sl) = p

(ii)  If l
  

r
→ a is in P, then

a(a) (ε,Sl) = r

As easily known, the set S in the Definition 4 is

    {Sl1
Sl2

•••Slk
 |l

  

r
→ X(l2•••lk) is in P} < {e}.

The above construction of A assures that T(A) = T(S).

  (Q.E.D.)

Theorem 6 Any fuzzy set of trees recognizable by F-TA

is a F-CFDL.

Proof. Again the converse of the construction in the

proof of Theorem 5 proves the theorem.   (Q.E.D.)

Corollary 1 A fuzzy set of derivation trees of any

F-CFG is a fuzzy set of trees recognizable by a F-TA.

Proof. By Theorems 2, 5 and 6.

It should be clear that for F-TA, the results corres-

ponding to Lemma 3, Theorems 3 and 4 also hold.

7.  FUZZY TREE TRANSDUCER

In the previous sections, we have introduced F-CFDS as

generator of fuzzy set of trees and F-TA as acceptor. These

fuzzy tree manipulating systems have been used to charac-

terize a fuzzy set of derivation trees of a fuzzy context-

free grammar. In this section, we introduce a fuzzy tree

transducer which can define a fuzzy mapping from a set of

trees to another one. These three tree manipulating systems

will be able to be used to describe fuzzy meanings of context-

free languages.

Let (V1;S1) and (V2;S2) be two finite partially ranked
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alphabets. A fuzzy tree translation from T(V1;S1
) to

T(V2;S2)
 is a fuzzy subset F of T(V1;S1)

 x T(V2;S2)
 in which

the grade of membership of an element (t1,t2) of T(V1;S1)
x

T(V2;S2)
  is defined by

mF(t1,t2) = p e [0,1]

We also denote it by a triple (t1,t2;p) and then the fuzzy

subset Φ can be considered to be a set of such triples. The

domain of a fuzzy tree translation Φ is {t1|for some t2 and

some p > 0, (t1,t2;p) is in Φ} = {t1|for some t2,mΦ(t1,t2) >

0}, which will be denoted by dom Φ. The range of a fuzzy tree

translation Φ is {t2|for some t1 and some r > 0, (t1,t2;r) is

in Φ} = {t2|for some t1,
mΦ(t1,t2)>0}, which will be denoted

by range Φ. Furthermore, we define two underlying fuzzy

dendrolanguages; the one is that of domain which is defined

to be a fuzzy subset ufd Φ of T(V1;S1)
 in which the grade of

membership of an element t1 of T(V1;S1)
 is given by

mufdΦ(t1) = Sup{r|mΦ(t1,t2) = r, t2 ε T(V1;S1)
}

The other is that o† range which is a fuzzy subset ufrΦ of

T(V2;S2)
. The membership function is given by

mufrΦ(t2) = Sup{r|m(t1,t2) = r, t1 ε T(V1;S1)
}.

Now, we introduce a relatively simple system, called a

fuzzy tree transducer, to define a fuzzy tree translation:

Definition 5. A fuzzy simple tree transducer, (F-STT)

is a 7-tuple

M = (L,V1Ω,S1,V2,S2,R,l0)

where (i) L: a finite set of symbols, of which elements

are called nonterminal node symbols

(ii) V1,V2: finite sets of symbols, called sets of

node symbols
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(iii) S1,S2:  finite sets of symbols, called sets of

leaf symbols

(iv) R: L x T(V1;L < S1)
 x T(V2;L < S2)

 → [0,1], if

m(l,t1,t2) = r then we write l 
  

r
→ (t1,t2),

where t1,t2 contain the same nonterminal

symbols in the same order.  We call it a

fuzzy translation rule.

 (v) l0: initial nonterminal node symbol.

A form of M is a pair (t1,t2) where t1 is in T(V1;L < S1)
and t2 is in T(V2;L < S2)

.  If (i) l 
  

r
→ (t1,t2) is a fuzzy

translation rule, (ii) (a1,a2) and (b1,b2) are forms such that

p(a1) = x1ly1, p(a2) = x2ly2, p(b1) = x1p(t1)y1, p(b2) =

x2p(t2)y2 and (iii) if l is the k-th nonterminal node symbol

in p(a1) then l of p(a2) = x2ly2 is also the k-th one in it,

then we write

(a1,a2) 
  

r
⇒ (b1,b2)

We also define the relation 
    

*r
⇒  by:

(a1,a2) 
  
*1⇒ (a1,a2)

and if (a1,a2) 
    

*r1⇒  (b1,b2) and (b1,b2) 
    

r2⇒ (g1,g2) then

(a1,a2) 
    

*r
⇒  (g1,g2), where r = 

    

sup
(b
1
,b

2)
 {min(r1,r2)}.

The fuzzy tree translation defined by M, written as

F(M), is

{(t1,t2;r|(l,l) 
    

*r
⇒ (t1,t2) ε T(V1;S1)

 x T(V2;S2)
},

i.e., F(M) is a fuzzy set of T(V1;S1)
 x T(V2;S2)

 in which

the grade of membership of an element (t1,t2) of T(V1;S1)
 x

T(V2;S2)
 is given by

mF(M)(t1,t2) = r  of (l,l) 
    

*r
⇒  (t1,t2)

Example 6.  Consider a set of rules:



322
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

YASUYOSHI INAGAKI AND TERUO FUKUMURA

Figure 23

By these rules, we have a fuzzy tree translation of which

elements can be obtained, for example, as follows:

Figure 24

Theorem 7 For any F-STT, M, both of ufdΦ(M) and ufrΦ(M)

are F-CFDL's.

Proof. From a given F-STT, M = (L,V1,S1,V2,S2,R,l0),

we can construct a F-CFDS, S = (L,V1,S1,P,l0) by defining P

as follows: If l 
  

r
→  (t1,t2) is in R, then P contains

l 
  

r
→t1.

By noting that (l0,l0) 
    

*r
⇒  (t1,t2) if and only if

l0 
    

*r
⇒  t1, we can prove ufdΦ(M) = T(S).
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The remaining part of the theorem can be proved similar-

ly. (Q.E.D.)

We can also prove the following theorem:

Theorem 8 For any F-STT, M, both of dom F(M) and range

F(M) are context-free dendrolanguages.

Discussions similar to Theorem 7 can prove this theorem.

8.  FUZZY MEANING OF CONTEXT-FREE LANGUAGE

A central problem of semantics is that of specifying a

set of semantic rules which can serve as an algorithm for

computing the meaning of a composite term from the knowledge

of the meanings of its components. But the complexity of

natural languages is so great that it is not even clear what

the form of the rules should be. In such circumstances, it

is natural to start with a few relatively simple cases in-

volving fragments of natural or artificial languages.

Prof. L. A. Zadeh has suggested a possible start to ap-

proach to the problem of the semantics by proposing a quanti-

tative theory of semantics: The theory shows that the mean-

ing of a term is defined to be a fuzzy subset of a universe

of discourse and that an approach similar to that described

by Prof. D. E. Knuth (8) can be used to compute the meaning

of a composite term.

This method of assigning the meanings to a composite

term is essentially considered to be a syntax-directed one.

On the other hand, we consider that a fuzzy set to be assign-

ed to a composite term is an image of some composite function

of fuzzy sets on the universe of discourse. Then, it should

be fairly natural to consider that we can define the semantic

domain as the universe of discourse and (composite) functions.

Here we can also recognize a syntax structure in an expression
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representing a function. In other words, we consider as the

semantic domain only the set of all functions representable

by using some syntax rules and we consider that assigning the

meaning to a composite term is to assign a syntax tree repre-

sentation of a corresponding function to It.

These discussions lead us to apply our fuzzy tree trans-

ducer to describing the fuzzy meaning of context-free lan-

guage. This will be exemplified by the following discussions:

Example 7. Let us construct a fuzzy tree transducer for

an example which is slightly modified one described by Prof.

L. A. Zadeh in (2,3) as follows:
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Here we assume that fV' fL and f~ are fuzzy set operations

union, intersection and complement and fv is the concen-

trating function deftned by: if fv(A) = B, then the member-

shtp function mB(X) of B is given by mB(x) = m
    

m
A
(X). Further-

more we assume that fold and fyoung are constant functions

of which values are, for example, the fuzzy subsets of the

set of integers K = [1,100], characterized by the membership

functions

mN(old,y) = 0,  for y < 50

          = [1 + (
  
y − 50

5
-2]-1 ,  for y ^ 50

and

mN(young,y) = 1,  for y < 25

            = [1 + (
  
y − 25

5
-2]-1 ,  for y ^ 50

respectively†.

Let us consider a composite term x = old or young and

not very old. For the term x, the translation is given by

†Concerning the definitions of mN and related concepts, refer
to the references (2,3).
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(A) and (B):

(A) (lS,lS)

which is realized by applications of rules (1), (5), (2),

(3), (11), (4), (1), (2), (3), (9), (12), (2), (3), (10),

(13), (6), (9), (7) and (12) in this order.
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which is realized by applications of rules (4), (1), (2),

(3), (9), (12), (5), (2), (3), (10), (13), (6), (9), (7)

and (12).

Thus, we know that in the system under consideration

the composite term x = old or young and not very old has

two meanings fL(fV(fold, fyoung) f~(fv(fold))) [m(old)

Vm(young)] L [1 - m2(old)] and fV(fold, fL(fyoung,

f~(fv(fold)))) = m(old) V [m(young) L [1 - m2(old)]]

with degrees 0.6 and 0.8, respectively.†

As easily known from the above example, a fuzzy tree

transducer can be a reasonable model to describe fuzzy

meaning of fuzzy context-free language at the level of syn-

tax structure in the sense that it can fuzzily associate

each derivation tree of the fuzzy language with a tree repre-

sentation of the computation process of its fuzzy meaning.

†Concerning the abbreviation ofm(old) and m(young), refer
to the references (2,3).
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ABSTRACT

A new type of fuzzy grammar, called the fractionally fuz-

zy grammar, is introduced. These grammars are especially

suitable for pattern recognition because they are powerful

and can easily be parsed. It is shown that the languages pro-

duced by the class of type i (Chomsky) fractionally fuzzy

grammars properly includes the set of languages generated by

type i fuzzy grammars. It is also shown that the set of lan-

guages generated by all type 3 (regular) fractionally fuzzy

grammars is not a subset of the set of languages produced by

all unrestricted (type 0) fuzzy grammars. It is found that

context-sensitive fractionally fuzzy grammars are recursive

and can be parsed by most methods used for ordinary context-

free grammars. Finally, a pattern recognition experiment

which uses fractionally fuzzy grammars to recognize the script

letters i,   e,  t and l without the help of the dot on the i
or the crossing of the t is given. The construction of a
fractionally fuzzy grammar based on a training set and the

experimental results are discussed.

I.  INTRODUCTION

Formal language theory has been applied to pattern recog-

nition problems in which the patterns contain most of their

information in their structure rather than in their numeric
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values (1-5). In order to increase the generative power of

grammars and to make grammars more powerful so that they be-

come more suited to pattern recognition, the concept of a

phrase structured grammar has been extended in several ways.

One is to randomize the use of the production rules, resul-

ting in stochastic grammars (2,6,7) and fuzzy grammars (3-5,

8-10). A fuzzy grammar produces a language which is a fuzzy

set (11) of strings with each string's membership in the lan-

guage measured on the interval [0,1], where 0 indicates no

membership and 1 indicates full membership. These languages

have shown some promise in dealing with pattern recognition

problems, where the underlying concept may be probabilistic

or fuzzy (3-5). A second way of extending the concept of a

grammar is to restrict the use of the productions (10,12,13)

resulting in programmed grammars and controlled grammars.

These grammars can generate all recursively enumerable sets

with a context-free core grammar. Programmed grammars have

the added advantage that they are easily implemented on a

computer.

Cursive script recognition experiments (16-21) have so

far had the major emphasis on recognizing whole words, and

none have used a syntactic approach. A typical method pre-

sented by Eden (18) decomposes the words to be recognized in-

to sequences of strokes which are then combined into letters,

and into words. Mermelstein and Eden (19) tried to distin-

guish words which were similar in appearance such as fell,
feel, foul etc. All of these experiments except that of
Sayre (21) input their data on a graphics device and kept the

sequence of the points as a part of the data. Sayre inputs

pictures of writing and thus did not have the sequence infor-

mation available.

In this paper, we will introduce a new type of fuzzy
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grammar, called the fractionally fuzzy grammar. Fractionally

fuzzy grammars are especially suited to pattern recognition

because they are powerful and can easily be parsed. We will

show that the languages generated by the class of type i

(Chomsky) fractionally fuzzy grammars properly includes the

set of languages generated by type i fuzzy grammars. We will

also show that the set of languages generated by all type 3

(regular) fractionally fuzzy grammars is not a subset of the

set of languages generated by all unrestricted (type 0) fuzzy

grammars. We will find that context-sensitive fractionally

fuzzy grammars are recursive and can be parsed by most methods

used for ordinary context-free grammars. Finally, a pattern

recognition experiment which uses fractionally fuzzy grammars

to recognize the script letters i, e, t and l without the help
of the dot on the i or the crossing of the t will be described.
The construction of a fractionally fuzzy grammar based on a

given training set and the experimental results will also be

discussed.

II.  BACKGROUND AND NOTATION

An ordinary grammar is a four-tuple G = (VT,VN,S,P),

where VT is a finite set of terminal symbols, VN is a finite

set of non-terminal symbols, V = VT < VN is the vocabulary of

the grammar, S e VN is the starting symbol and P is a finite
set of production rules of the form a → b, where a and b are

members of the set V* of all strings (including the null

string ε) over the vocabulary V. A derivation within a gram-

mar proceeds as follows: Starting with the current string

being the starting symbol S, we search the productions for a

rule whose left-hand side a is a substring of the current

string. Any rule which is matched in this manner can be ap-

plied by replacing the substring with the right-hand side of
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the rule b. A derivation is complete when there are only

terminal symbols in the current string.

Grammars are classified according to the form of the pro-

duction rules used (Chomsky hierarchy). Unrestricted or type

0 grammars have no restrictions on the form of the rules.

Context-sensitive or type 1 grammars require that if a → b

is a production, then the length of the string a, denoted by

|a|, must be not greater than the length |b| of the string b.

A grammar is said to be context-free or type 2 if every pro-

duction is of the form A → b, where A is in VN. A grammar is

said to be regular (left linear) if all its productions are

of the form A → B, A → b, or A → bB, where A and B are in VN
and b is in VT. It is sometimes useful to write a grammar in

a particular form. Two forms for context-free grammars have

been commonly used: Chomsky normal form and Greibach normal

form. A context-free grammar is said to be in Chomsky normal

form if every production rule is of one of the forms A → BC

or A → a where A, B, and C are in VN and a is in VT. Also,

if ε is in the language L(G) generated by G, then S → ε is a

production and S does not appear on the right-hand side of

any production. A context-free grammar is said to be in

Greiback normal from if every production rule is of the form

A → aθ, where A is in VN, a is in VT, and θ is in V . Also,

if ε is in L(G), then S → ε is a production and S does not

appear on the right-hand side of any production.

Zadeh (11) first introduced the concept of a fuzzy set.

A fuzzy set f is a mapping of the elements of the universe

into [0,1]. If x is an element, f(x) is its membership in f

with f(x) = 0 indicating no membership and f(x) = 1 indicating

full membership. If f and g are fuzzy sets, then f = g if

and only if f(x) = g(x) for all x. The union and intersection

of fuzzy set f and g are given by the mappings:

  N
*
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f < g(x) = max[f(x),g(x)]

f > g(x) = min[f(x),g(x)]

An extension of the idea of an ordinary grammar is the

fuzzy grammar based on the concept of fuzzy sets. Fuzziness

is added to a language by modifying the grammar as follows:

A fuzzy grammar FG is a six-tuple FG = (VT,VN,P,S,J,f), where

VT, VN, S and P are respectively the terminal alphabet, the

non-terminal alphabet, the starting symbol and the set of

production rules as with an ordinary grammar. J = {ri|i = 1,

2,...,n} is a set of distinct labels for the productions in

P, and f is a fuzzy membership function, f:J → [0,1]. If

rule ri is a → b, when we write the application of ri as:

  
    
gad

f ri( ) →
ri

  gbd

where a, b, γ and d are in V*.  If θi, i = 0,1,2,...,m, are

strings in V* and

is a derivation of x in FG, we write

with f(r1r2...rm)= min[f(r1),f(r2),...f(rm)]. The grade of

membership of the string x 
    
eV *

T is given by

   f(x) = sup[f(r1r2...rm)],

where the supremum is taken over all derivations of x in the

language L(FG) generated by FG. It can be seen that ordinary

grammars are a special case of fuzzy grammars, namely when

f(ri) = 1 for all ri in J. Fuzzy grammars can be classified

according to the form of the production rules. Lee and Zadeh

(8) have shown that for every context-free fuzzy grammar G,

there exists two context-free fuzzy grammars Gg and Gc such

    
s = u0

f r1( ) →
r1

u1
f r2( ) →
r2

u2
f r3( ) →
r3

...
f rm( ) →
rm

um = x

      
s = u0

f r1r2Krm( ) →
r1r2Krm

 um = x
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that L(G) = L(Gg) = L(Gc) and Gg is in Greibach normal form

and Gc is in Chomsky normal form.

EXAMPLE 1:  Consider the fuzzy grammar FG = (VT, VN, S,

P, J, f), where VT = {a, b}, VN = {S, A, B, C}, and P, J, and

f are given as follows:

r1: S → AB f(r1) = 1

r2: A → a f(r2) = 1

r3: B → b f(r3) = 1

r4: A → aAB f(r4) = 0.9

r5: A → aB f(r5) = 0.5

r6: A → aC f(r6) = 0.5

r7: C → a f(r7) = 0.5

r8: C → aa f(r8) = 0.2

r9: A → B f(r9) = 0.2

The language generated by this fuzzy grammar consists of

strings of the form an fm with n, m > 0.  The fuzzy membership

of these strings depends on n and m as follows:  If m = n = 1,

f(x) = 1;  if m = n ≠ 1, f(x) = .9; if m = n + 1, f(x) = .5;
if m = n +2, f(x) = .2; otherwise, f(x) = 0.  Thus, it is seen
that this grammar detects strings of the form anbm, where

|n-m| ≤2.
A fuzzy grammar can be used to generate non-fuzzy lan-

guages by the use of thresholds. The language generated by

a fuzzy grammar FG with a threshold λ is the set of strings

L(FG,λ) = {x eL(FG) | f(x) > λ}

and is called the λ-fuzzy language. There are two other thres-

hold languages defined by Mizumoto, Toyoda and Tanaka (9).

They are the two-threshold language and the equal-threshold

language defined as follows:

L(FG,λ1,λ2) = {x eL(FG) | λ1 <  F (x) ≤ l2}

and

L(FG,=,λ) = {x eL(FG) | f(x) = λ}.
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L(FG,λ) is most often used to compare the generating power of

a fuzzy grammar to that of an ordinary grammar. However,

L(FG,λ) = L(G), where G is the grammar obtained from the FG

by removing all productions whose fuzzy membership is less

than or equal to λ and then removing the fuzziness from the

remaining rules. Therefore, for fuzzy grammars, the thres-

hold language appears to be of limited use.

III.  FRACTIONALLY FUZZY GRAMMARS

In syntactic pattern recognition, the patterns are

strings over the terminal alphabet. These strings must be

parsed in order to find the pattern classes to which they most

likely belong. Many parsing algorithms (15) require back-

tracking. That is, after applying some rules, it is discover-

ed that the input string cannot be parsed successfully by this

sequence of rules. Rather than starting it from the beginning

again, it is desirable to reverse the action of one or more

of the most recently applied rules in order to try another

sequence of productions. With non-fuzzy grammars, it is suf-

ficient to keep track of the derivation tree as it is genera-

ted with each node being labeled with a symbol from V. How-

ever, with fuzzy grammars, this tree is not sufficient since

the fuzzy value at the ith step is the minimum of the value

at (i-1)th step and the fuzzy membership of the ith rule.

If this minimum was the ith rule's membership, there is no

way to know the fuzzy value at the (i-1)th step. Thus, the

fuzzy value at each step must also be remembered at each node,

and hence the memory requirements are greatly increased for

many practical problems.

A second drawback of fuzzy grammars in pattern recogni-

tion is the fact that all strings in L(FG) can be classified

into a finite number of subsets by their membership in the
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language. The number of such subsets is strictly limited by

the number of productions in the grammar. This is so because

if x is a string in L(FG) with a membership f(x), then there

must be a rule in FG with the membership f(x) since f(x) =

  
min
j
[f(rij)] for some sequence of rules 

    
ri1ri2

Krim in P.

This is also the reason that L(FG,λ) for some threshold λ is

always a language generated by those rules in the grammar with

a membership greater than λ.

To overcome these restrictions, we introduce a new method

of computing the membership of a string x which can be derived

by the m sequences of production rules,
      

r
k
1
r  

k
2

Kr
k
lk
, of lengths

l k, where k = 1,2,...,m. This leads to the following defini-
tion.

Definition 1: A fractionally fuzzy grammar is a 7-tuple

FFG = (VN,VT,S,P,J,g,h), where VN, VT, S, P, and J are the

non-terminal alphabet, the terminal alphabet, the starting

symbol, the set of productions and a distinct set of labels

on the productions as a fuzzy grammar. The functions g and

h map the set of productions into the non-negative integers

such that g(rk) ≤ h(ri) for all ri in P. A string is genera-

ted in the same manner as that by a fuzzy grammar, except

that the membership of the derived string is given by

   

      

f x( ) = sup
k

g r
j
k





j=1

l  k

∑

h r
j
k





j=1

l  k

∑
,

where 0/0 is defined as 0.

Because 0/0 is defined as 0, it is clear that 0 ≤ f(x)

≤ 1 for all x. It is also clear that backtracking over a



337
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

G. F. DEPALMA AND S. S. YAU

rule r can now be accomplished by simply subtracting g(r) and

h(r) from the respective running totals.

Let us interpret the above definition in a heuristic

sense. As each rule r is applied, g(r) and h(r) are added to

the respective running totals for the numerator and denomina-

tor of the fuzzy membership. Immediately, it is seen that the

fuzzy membership of a string could be any rational number in

[0,1]. Also, the number of fuzzy membership levels is not

limited by the number of productions. With pattern recogni-

tion in mind, we see that the amount of impact a rule will

have on the final membership level is proportional to the

value of h(r). The value of g(r) will tend to increase the

membership of the string if g(r) is approximately equal to

h(r) and will tend to decrease the membership of the string

if g(r) << h(r) or if g(r) is close to 0. Rules for which

g(r) and h(r) are both 0 will have no effect on the member-

ship. Thus, we can divide the rules into three classes.

Those which strongly indicate membership in the class, those

which strongly indicate membership in another class, and

those which serve little purpose in separating the classes

but which are traits between different classes.

EXAMPLE 2: The following four rules define a fraction-

ally fuzzy grammar which has V = {a,b}, VN = {S} and with

P, J, g and h given by

r1: S → ab g(r1) = 1 h(r1) = 1

r2: S → aSb g(r2) = 1 h(r2) = 1

r3: S → aS g(r3) = 0 h(r3) = 1

r4: S → aSb g(r4) = 0 h(r4) = 1

This grammar generates the fuzzy language {anbm | n,m > 0}.

The membership of the string anbm is given by:

f(anbm) = min(n,m)/max(n,m)

This set of strings is the fuzzy set of strings which are
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"almost" anbn. That is, the first pair of rules generates

the set of strings anbn for n > 0, and the second pair of

rules allow for variations in the number of a's and the num-

ber of b's. The closer n and m are, the greater the member-

ship of the string. This is because g(r) = h(r) for the first

pair of rules and g(r) << h(r) for the second pair. However,

unlike the grammar shown in Example 1, which could only mea-

sure finite differences between m and n, this grammar measures

membership on percentage difference between m and n, which

is similar to the way a person would judge whether or not the

lengths of two lines were the same. We will now compare the

relative generative power of fractionally fuzzy grammars to

that of fuzzy grammars.

Theorem 1: The set of all languages generated by type i

fractionally fuzzy grammars properly includes the set of all

languages generated by type i fuzzy grammars, where i = 0,1,

2 and 3.

Proof: It is clear from the preceding remarks that the

number of distinct levels of membership in a language genera-

ted by a fuzzy grammar FG is limited by the number of pro-

duction rules in FG which must be finite. Thus, it is suffi-

cient to show that for every fuzzy grammar of type i, there

exists a fractionally fuzzy grammar of type i which generates

the same language, and that there exists a fractionally fuzzy

grammar of type i which generates a language with an infinite

number of distinct membership levels.

Let FG =(VN,VT,S,P,J,f) be a fuzzy grammar of type i.

We can construct a fractionally fuzzy grammar FFG = (V'N,V'T,
S',P',J',g,h) as follows: Let fi, i = 1,2,...,m be the dis-

tinct values of f(ri) and arrange them in the order f1 > f2 >
...> fm. Let gi and hi be integers such that fi = gi/hi,

i = 1,2,...,m. For each symbol A in VN, we define m distinct
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symbols Ai, i = 1,2,...,m. These symbols and the new starting

symbol S' make up the set of non-terminals V

  

'
N for the frac-

tionally fuzzy grammar. Let P' initially be the set of rules

  0
ir :s'→ si  g r

0
i



 = gi h r

0
i



 = hi, i= 1,2,...,m.

To these, for each rule rj: a → b in P and each fi, i = 1,2,

...,m, if f(rj) ≥ fi, we add the rule

    j
ir :ai → bi  g r

j
i



 = gi h r

j
i



 = hi,

where ai and bi are the strings a and b with each non-termi-

nal A replaced with the associated new symbol Ai. The FFG

has, in effect, m sub-grammars reachable by the r
  
i
0 rules.

The ith sub-grammar will produce only those strings which

would have been generated with a membership of at least fi in

L(FG). In the ith sub-grammar, these strings have membership

gi/hi = fi. Since their membership in the L(FFG) is defined

as the supremum of all derivations, we find that each string

has equal membership in both languages. In other words,

L(FFG) = L(FG).

To show the proper inclusion, the following fractionally

fuzzy grammar is considered:

r1: S → a g(r1) = 1 h(r1) = 1

r2: S → aS g(r2) = 0 h(r2) = 1

This grammar produces strings of the form an for n > 0. Since

the fuzzy membership of the string an is 1/n, the language

certainly has an infinite number of distinct membership levels.

Since the grammar is regular, it is also context-free, con-

text-sensitive, and a member of the class of type-0 grammars.

Q.E.D.

Fractionally fuzzy grammars are of no use in pattern

recognition if it is not possible to determine whether a gi-

ven string is a member of the language. In other words, in
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order to apply fractionally fuzzy grammars to pattern recog-

nition, we need an algorithm which can compute the membership

of a string in L(FFG) which is bounded in time. The follow-

ing lemmas will lead to Theorem 2 which proves that context-

sensitive fractionally fuzzy grammars are recursive and such

an algorithm exists.

Lemma 1:  Let FFG be a context-sensitive fractionally

fuzzy grammar and let some derivation contain the sequence

...→ θi→ θi=1→... → θi+k→...,

where θi =  θi+k. Then, either k ≤ nP, where n = |V| is the

number of symbols in the vocabulary and P = |θ| is the length

of the string θi, or θi+j = θi+m for 0 ≤ j < m < nP.

Proof: The lemma is obvious because of the non-contrac-

ting nature of context-sensitive grammars (i.e.,|θu1 ≤ |θv|

for u ≤ v) and because there are exactly nP distinct strings

over V of length p. Q.E.D.

Lemma 2: Let FFG be a fractionally fuzzy grammar, and

x e L(FFG) which is derivable by the sequence
S = θ0→ θ1→ θ2→...→ θn = x.

If θj =  θk for j < k and 0 ≤ j < n, then the membership of x

in FFG is at least

  

max

g rim( ) +
m=1

j

∑  g rim( )
m=k+1

n

∑

h rim( ) +
m=1

j

∑  h rim( )
m=k+1

n

∑
,

g rim( )
m=j

k

∑

h rim( )
m=j

k

∑

























Proof: The loop in the derivation sequence from θj to

θk can be removed. The first argument of the maximum repre-

sents the membership given to x by this shortened derivation.

The loop can also be repeated as many times as desired. In

the limit, as the number of times the loop is repeated is
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increased, the membership of x approaches the second argument.

There may be other derivations of x, and thus the membership

of x in L(FFG) is at least the maximum of these two terms.

Q.E.D.

Lemma 2 may be applied repeatedly in a derivation. Thus,

if a derivation contains a loop nested within a loop, the

loops can be considered separately and the membership of the

string is the maximum given by the loop-free derivation, the

inner loop and the outer loop.

Lemma 3: Let FFG be a context-sensitive fractionally

fuzzy grammar with n symbols in V. Let R
  

1
0 = {S}. Let R

  

k
0

be the set of all strings over V of length k which can be

directly generated from a string of length less than k. Let

R
  

k
j
 be the set of all strings of length k which can be direc-

tly generated from a string in R
  

k
j-1,j = 1,2,... Then, the

set Rk = R
  

k
0R  

k
1
...R

  

k
n
 contains all strings over V of length k

which can be generated by the FFG, and the derivation needed

to generate Rk will contain all the simple derivation loops

on strings of length k in L(FFG).

Proof: Assume that there exists a θm such that θm is

not in Rk, |θm| = k, and θm is derivable from θi e R  
k
0. Let

θi → θi+1 →...→ θi+j = θm be the shortest sequence from Oi to

θm for FFG. But j > n by assumption. Thus, by Lemma 1, this

sequence must contain a loop and is therefore not the shortest

sequence. Therefore, no such θm exists.

Assume that θj →  θj+1 → ...→  θj+s = θj is a simple loop

in FFG, where |θj | = k. Assume this loop was not detected by

the derivations which generated Rk and that loop can be de-

tected from θie R
  

k
0 by the shortest sequence

θi →  θi+1 → ...→  θi+r =  θj
By assumption, r + s > n since the loop was not detected by
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generating Rk. However, the r + s strings θi,θi+1,...,θj+s-1
cannot all be distinct. Since θi,...,θi+r are distinct by

assumption and θj,...,θj+s-1 are also all distinct by assump-

tion, then θi+u = θj+v for some 0 ≤ u < r and 0 ≤ v < s

Therefore, the derivation sequence

θi → θ i+1→. . .→θi+u = θj+v → θj+v+1→. . .→θj+s = θj→. . .→θj+v
also detects the simple loop and is shorter than the original

sequence. This contradicts the original assumption, and

therefore no such loop can appear in a derivation. Q.E.D.

Theorem 2: If FFG is a context-sensitive fractionally

fuzzy grammar, then FFG is recursive.

Proof: Let n = |V|. For any string x, we need only

generate R1,R2,...,Rk, where k = |x|. Let Ri be the set of

all strings derivable from S in i steps. For any finite i,

we can find this set. Since it takes nj steps to generate

Rj from R
  

j
0, clearly Rm contains R

j if m ≥ 1 + n + n2 + ... +

nj. Thus, in a finite number of steps, all strings of length

k can be found and all loops in these derivations can be de-

tected. Thus, we can determine whether or not x is in L(FFG)

and its membership if it is.

The following theorem gives an interesting property of

l-fractionally fuzzy grammars:

Theorem 3: Let FFG be a regular fractionally fuzzy gram-

mar. Then, the language L(FFG,λ) is not necessarily a regu-

lar language.

Proof: Assume that L(FFG,λ) is a regular language for

all regular fractionally fuzzy grammars. Consider the two

fractionally fuzzy grammars FFG1 = (VT,VN,X,P,J,f1,g1) and

FFG2 = (VT,VN,S,P,J,f2,g2), where VT = {0,1}, VN = {S,A},

and P is given by
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r1: S → OS

r2: S → 0

r3: S → A

r4: A → 1A

r5: A → 1

Let g1(ri) = g2(ri) = 1 for i = 1,2,3,4,5, and let f1(ri) = 1

for i = 1,2,3, f1(ri) = 0 for i = 4,5. Let f2(ri) = 0 for

i = 1,2 and let f2(ri) = 1 for i = 3,4,5. It is clear that

both grammars produce strings of the form On1m, where m, n ≥

0 and m + n > 0. Further examination shows that the fuzzy

membership of On1m is given by the following two equations:

f1(0
n1m) =  

  
n + 1

m + n + 1

and

f2(O
n1m) = 

  
m + 1

m + n + 1
 if m > 0 or f2(O

n1m) = 0 if m = 0

The set L(FFG1,0.5) = {O
n1m | n ≥ m} and the set L(FFG2,0.5)

= {0n1m| n ≤ m} must be regular by assumption. Since regu-

lar sets are closed under intersection, the set L(FFG1,0.5)>

L(FFG2,0.5) = {0
n1n | n > 0} must be regular. However, it is

known that On1n, where n ≥ 0, is context-free and not regular.

Thus, the assumption is false and the theorem is proved.

  Q.E.D.

IV.  A PATTERN RECOGNITION EXPERIMENT

An experiment was conceived to test the usefulness of

fractionally fuzzy grammars in pattern recognition. A pat-

tern space which was a set of strings was needed. We chose

to use script writing which was input to a computer on a

graphics tablet. This data consisted of strings of points

in the 2-dimensional space of the tablet. The data is a sam-

ple of seven persons' handwriting.  Each person was given a
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list of 400 seven-letter words and was told approximately how

large the person should write. The first three persons wrote

all 400 words while the last four wrote only the first 100

words. The data was digitized in a continuous mode by the

computer whenever the pen was down. Each point collected in

this manner was compared to the previously stored point to

see if the distance between them was greater than a given

threshold (about 0.04 inch). If it was not, the new point

was discarded and a new position of the pen was read. If the

threshold had been exceeded, this point was added to the data

and the process was repeated. This resulted in a record of

250 points in the X-Y plane (with zero fill-in) for each se-

ven-letter word written. Figure 1 shows some examples of

words input to the computer.

We needed to convert these points into a string of sym-

bols which would comprise the terminal alphabet. This was

accomplished by comparing each adjacent pair of points to see

the relative direction traveled by the pen at that point and

classifying the direction into one of eight directions, each



345
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

G. F. DEPALMA AND S. S. YAU

separated by 45 degrees, with class 0 being centered at 0 de-

grees (the + X-direction) and the remaining classes being num-

bered 1 through 7 in a counter clockwise direction. Thus,

the terminal alphabet consisted of the eight octal digits,

i.e., VT = {0,1,2,...,7}. This quantization of directions

introduced some distortion into the data as shown in Figure 2.

The individual letters were separated by an operator

using an interactive graphics program. These letters then

consisted of strings of octal digits whose lengths varied

from 1O to about 70 characters in length. Because of the

methods used, the crossings of the t's and the dotting of the
i's was deleted since they did not necessarily follow the ba-
sic letter without other letters intervening. Thus, to keep

the computer time down, only four letters were used in the

test. The machine was asked to separate the i's,  e's, t's,
and the l's without the dots on the i's and the crossings of
the t's. Because of Theorem 3, it was also decided to use
only regular fractionally fuzzy grammars. The grammars is-

ted in Figure 3 were generated by cut and try methods based
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First, since all the letters under consideration started with

a near horizontal, left to right stroke (octal direction 0)

and continued in a counterclockwise direction (increasing

octal direction) until returning to a near horizontal tail,

the same set of production rules can be used for all classes.

The productions used the non-terminal symbols A,B,...,G to



347
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

G. F. DEPALMA AND S. S. YAU

represent the hightest octal direction thus far encountered,

A representing 1, B representing 2, etc. From any non-ter-

minal, only higher octal directions and higher non-terminal

representations are reachable in the ideal case. However,

to allow for noise in the less curved portions of the letters,

we allow the terminal symbol generated to be one less than

the highest thus far generated. A change of direction of

more than 225 degrees counterclockwise was not allowed since

this would never occur in these letters. The non-terminal

symbol H was added to allow a tail of any length to be af-

fixed to the ideal letter. The grammar was tested on a

training set and was found to accept most of the strings.

Minor modifications were made (e.g., J was added to the non-

terminal alphabet to pick up an unusual noise condition) so

that all strings in the training set were accepted. Now,

came the task of generating the fractionally fuzzy membership

functions. These were developed using the following criteria.

First, a rule which could not help distinguish one class from

another could be given the value 0/0 and would then have no

effect on the final membership assuming some rule r, for

which h(r)≠0, was also applied. Second, a rule for which h(r)

was small would have little effect on the final membership of

any string generated by that rule. Third, any rule for which

h(r) was large would have a large effect on the final member-

ship of any string generated by using that rule. Fourth, if

rule r was used, the fuzzy membership of the string would be

changed in the direction towards the value g(r)/h(r) by that

application of rule r. Thus, if g(r)/h(r) was close to 1,

the membership of the string would be increased and if g(r)/

h(r) was close to 0, the membership of the string would be

decreased. Finally, a rule which was used in all strings

could be given a membership value which could serve as a
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starting point from which we could subtract by rules with

g(r)/h(r)=0 and to which we could add by rules with g(r)/h(r)

=1. In our case, there were two rules (second and third in

Figure 3) one of which must be used in any valid derivation.

Some comments are included in Figure 3 to give some insight

into why the membership functions for that rule were chosen.

Thus, the rule B → 6F is used when a vertical line changes

direction abruptly from up to down. This would indicate a

sharply pointed crown and the letters i and t are reinforced
while e and l are reduced in membership when this rule is
used. After adjustment on the training set to allow a thres-

hold of 0.5 or more to indicate in the class and less than

0.5 to indicate not in the class, the grammars were used on

a random sampling of 121 letters from the remainder of pat-

terns. The strings were parsed in a top down (left to right)

manner by a program written in the SNOBOL 4 programming lan-

guage. The results of this test are summarized in Figure 4.

CLASS E I L T

METHOD 1

% error 10% 15% 28% 27%

METHOD 2

% error 10% 4% 5% 27%

   Figure 4. Results of the Experiment.

Two methods of categorizing were tested. The first classified

the letter into any class for which the pattern had a fuzzy

membership of 0.5 or more. This method left some letters un-

classified and classified others into more than one class.

The method was considered successful if the correct class was

included possibly among other classes. This was done since

a contextual post-processor could be used to find the correct

letter. The second method classified the pattern into the
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class which had the highest fuzzy membership. As expected,

the second method had better results, with 90% of the e's,
96% of the i's, 95% of the l's and 73% of the t's correctly
classified. The only distinction between a t and an l is the
width of the loop. Many of the t's were quite wide and were
thus incorrectly classified as l's. If the presence of one
or more t's was detected by the presence or absence of a hori-
zontal line written directly above some portion of the word,

most of these incorrect classifications could be corrected by

a contextual post-processor such as described by Ehrich (l6).

The distinction between the e's and l's could have been im-
proved if the data was prescaled to eliminate differences in

the average height of the letters generated by the different

subjects. All in all, considering the similarities in the

four letters tested, the results are quite good.

V.  CONCLUSION

In this paper we have presented a new type of fuzzy gram-

mar, called the fractionally fuzzy grammar. It has been shown

that fractionally fuzzy grammars are especially suitable to

deal with pattern recognition problems, and a cursive script

recognition experiment was given to demonstrate its capability.

Further research along this line will be to establish an al-

gorithm for constructing the fractionally fuzzy grammars for

a given training set in order to make them practical to solve

pattern recognition problems.

REFERENCES

1. K. S. Fu and P. H. Swain, "On Syntactic Pattern Recogni-
tion", Software Engineering, Julius Tou (ed.), pp. 155-
182, Academic Press, 1971.

2. P. H. Swain and K. S. Fu, "Stochastic Programmed Gram-
mars for Syntactic Pattern Recognition", Pattern Recog-
nition, Vol. 4, pp. 83-100, 1972.



350
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

G. F. DEPALMA AND S. S. YAU

 3. W. G. Wee, "A Formulation of Fuzzy Automata and Its Ap-
plication as a Model of Learning Systems", IEEE Trans.
on Systems Science and Cybernetics, Vo. SSC-5, pp. 215-
223, July 1969.

 4. M. G. Thomason, "Finite Fuzzy Automata, Regular Fuzzy
Languages, and Pattern Recognition", Pattern Recognition,
Vol. 5, pp. 383-390, 1973.

 5. S. Tamura and K. Tanaka, "Learning of Fuzzy Formal Lan-
guage", IEEE Trans. on Systems, Man and Cybernetics,
Vol. SMC-3, pp. 98-102, January, 1973.

 6. K. S. Fu and T. J. Li, "On Stochastic Automata and Lan-
guages," Information Sciences, Vol. 1, pp. 403-419, 1969.

 7. R. Kanst, "Finite State Probabilistic Languages", Infor-
mation Sciences, Vol. 1, pp. 403-419, 1969.

 8. E. T. Lee and L. A. Zadeh, "Note on Fuzzy Languages",
Information Sciences, Vol. 1, pp. 421-434, 1969.

 9. M. Mizumoto, J. Toyoda and K. Tanaka, "N-Fold Fuzzy Gram-
mars", Information Sciences, Vol 5, pp. 25-43, 1973.

10. A. Kandel, "Codes Over Languages", IEEE Trans. on_Systems,
Man, and Cybernetics, Vol. SMC-4, pp. 135-138, January
1974.

11. L. A. Zadeh, "Fuzzy Sets", Information and Control,
Vol. 8, pp. 338-353, 1965.

12. A. Salomaa, "On Grammars with Restricted Use of Produc-
tions", Ann Acad. Sci. Fennicae, Vol. A.I. 454, pp. 3-
32, November, 1969.

13. A. Salomaa, "On Some Families of Formal Languages", Ann.
Acad. Sci. Fennicae, Vol A.I. 479, pp. 3-18, November, 1970.

14. S. Ginsburg, and E. H. Spanier, "Control Sets on Grammars",
Math. Systems Theory, Vol. 2, pp. 159-177, 1968.

15. A. Aho and J. Ullman, The Theory of Parsing, Translation
and Compiling, Vol. 1, Prentice-Hall, Englewood, N.J., 1972.

16. R. Ehrich, "A Contextual Post-Processor for Cursive
Script Recognition", Proc. 1st International Joint Conf.
on Pattern Recognition, pp. 169-171, October 30, 1973.

17. L. D. Earnest, "Machine Recognition of Cursive Writing",
Information Processing (IFIP), C. M. Popplewell (ed.),
North-Holland Amsterdam, 1962.

18. M. Eden, "Handwriting and Pattern Recognition", IRE
Trans. on Information Theory, Vol. IT 8, pp. 160-166,
1962.

19. P. Mermelstein and M. Eden, "Experiments on Computer
Recognition of Connected Handwritten Words", Information
and Control, Vol. 7, pp. 255-270, 1964.



351
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

G. F. DEPALMA AND S. S. YAU

20. N. Lindgren, "Machine Recognition of Human Language,

Part III—Cursive Script Recognition", IEEE Spectrum,

Vol. 2, pp. 104-116, May, 1965.

21. K. M. Sayre, "Machine Recognition of Handwritten Words:

A Project Report", Pattern Recognition, Vol. 5, pp. 213-

228, 1973.



.



TOWARD INTEGRATED COGNITIVE SYSTEMS,

WHICH MUST MAKE FUZZY DECISIONS

ABOUT FUZZY PR0BLEMS†

Leonard Uhr
Computer Sciences Department
The University of Wisconsin

Madison, Wisconsin 53706 U.S.A.

INTRODUCTION

When the separate cognitive processes of perception,

thinking, remembering, language "understanding", acting, and

learning are integrated into a single system, a variety of

fuzzy problems inevitably arise. This paper examines such a

computer-programmed system, one that is a first attempt to

model the integrated, wholistic mind/brain.

The Search for Well-Formed Problems has Focussed "AI"

Research on a Few Non-Fuzzy Problems

Artificial intelligence (AI) Research has to a great ex-

tent legislated that things be well-formed and non-fuzzy by

developing separate systems to handle clear-cut problems with

correct answers (e.g. the proof of a theorem, or the answer

to a factual question) that can be deduced In a deterministic

way. But as soon as we attempt the kinds of problems that

human beings can handle (e.g. the description of a scene, or

an on-going conversation in which several people exchange

information) the system must constantly operate in a fuzzy

domain.

AI research has attempted to reduce all cognitive

 †This research has been partially supported by grants from
the National Institute of Mental Health (MH-12266), the
National Science Foundation (GJ-36312), (NGR-50-002-160) and
the University of Wisconsin Graduate School.
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processes to a search for a path from a set of Givens to a

Goal, using only a set of legal Transforms. But it is rare

that Givens, Goals, and Transforms are known (or, as in a

game like chess or Go, easily computable). Rather, the cru-

cial problem may be to find the set of transforms that humans,

or some other intelligent entities use (as in pattern recog-

nition), or to determine what are relevant givens (as in

describing scenes or answering questions) or worthwhile goals

(as in conversation, or in finding interesting new theorems).

Each area of AI uses slightly different basic transforms,

overall networks, and search techniques. These are general-

ized in this paper, so that a single system (called a "SEER")

can handle them all. This makes each separated function a

good bit richer in its powers, and also a good bit fuzzier

in the kinds of things that it does. It further raises new

problems of fuzziness, at several ever-higher levels of inte-

gration of processes. Relevance must constantly be assessed,

as a function of a wide variety of contextually interacting

influences. The system must make fuzzy decisions as to the

types of things perceived (e.g. objects vs. words), internal

processes needed, and external acts suggested. And learning

consists in a variety of types of fuzzy conjectures as to

general hypotheses posited from particular pieces of exper-

ience, and how to use these to build, unbuild, and restruc-

ture the cognitive memory network.

The Ill-Formed and Fuzzy Nature of Everyday Thinking

Let's look at the kinds of simple everyday thinking

that all of us spend most of our time doing. They are char-

acterized by an intimate interaction between perceiving,

deducing, searching, remembering, and acting, with constant
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monitoring and guidance from feedback. Rarely do we make

deep or difficult deductions, or remember surprising or pro-

found concepts. Rather, we conduct a kind of shallow and

diffuse on-going "conversation" with our environment, one

that finds and uses the relevant aspects of an impossibly

large set of possibilities, in order to help us muddle along,

often with surprising success.

Examples are the way we decide what to do on a holiday,

and actually carry out all the steps needed to do it. Or

choosing a dinner, or a restaurant; opening the refrigerator,

getting food, baking a cake; deciding what to collect;

building a bookcase.

It may feel like belaboring the obvious, but consider

the subtle interactions between all the cognitive processes

that go on in even the most mundane of acts:

I perceive a can which, in the context of the table it

sits on and the conference I am attending, suggests it might

contain a liquid to drink; so I glance about and move my head

and then walk around it, to look for a spigot and an indi-

cator-whether a sign or a telltale stain or smell-of

whether it contains coffee. This arouses vague hunger needs

for food, and I further look around for trays of soft objects

and, remembering the time of day, for donuts. I sense that I

like cream, deduce that it might be in a pitcher or, if

powdered, a deep dish, and look about some more. I pick up

a noticed cup, and move it under the spigot, pushing its

lever with my other hand, and carefully monitor the drip.

And so on.

Note that a 1-year-old infant engages in much the same

interacting set of processes, albeit with fewer and simpler

possibilities, e.g. when it babbles, cries, crawls, grabs,

flails, pushes, bites, drools, etc., in order to get food.
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But I must emphasize that despite its surface simplicity,

such a process is far more difficult than anything we have

approached with our artificial intelligence programs.

This paper describes a model for such processes, and

shows some of their many inevitably fuzzy aspects.

ARTIFICIAL INTELLIGENCE HAS SIMPLIFIED THE PSYCHOLOGICAL

PROCESSES TO PIECEMEAL FUNCTIONS FOR WELL-FORMED

PATH-SEARCHING

Almost all AI research has concentrated on a single,

separated cognitive function, and attempted to simplify the

problem being attacked to the point where it is "well-formed,"

The Separate Functions of Perception, Thinking, Remembering,

Acting, Language, and Learning

The separate functions being attacked are closely re-

lated to, but usually simplifications of, the traditional

cognitive processes that have always interested psychologists



357
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

LEONARD UHR

Perception, which studies the absorbing and understanding

of pertinent information from the cognitive system's external

environment, has been attacked as the recognition and naming

of an isolated patterned object input to the system (see e.g.

Duda & Hart, 1973; Uhr, 1973a).

Thinking, which involves a variety of little-understood

and only partially identified processes for deciding what are

the most relevant and functional things to do in order to

cope with external presses (perceived objects, imports, sug-

gestions, commands, etc.) and internal presses (needs, desires,

expectations, goals, etc.), has become deductive problem-

solving in deterministic domains like games, puzzles, and

logical systems (see e.g. Nilsson, 1971; Newell & Simon, 1973).

Remembering, which accesses information in the system's

memory model of its world that is most relevant to its pres-

ent situation and its attendant problems, becomes the search

for "correct" answers to clear-cut questions that indeed have

answers that can clearly be deduced to be correct (see e.g.

Minsky, 1968; Simmons, 1965, 1970).

Acting, which includes a variety of things that the or-

ganism can choose to effect upon its world (e.g., touch,

grasp, mix, melt, combine, heat, ingest; move its glance, eye,

head, body), as a function of its percepts, thoughts and

memories, becomes a very conventionalized set of actions,

e.g., "move-self" or "push-object" (a specified distance in

a specified direction) quite similar to the moves of the dif-

ferent pieces in a game like checkers or chess (see e.g.

Nilsson, 1969; Uhr & Kochen, 1969; Winograd, 1971).

Language understanding, which is an especially mysteri-

ous process that involves symbolic reference to the import

of percepts, feelings, ideas and acts, has been reduced to

syntactic parsing and simple question-answering.
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Learning, which must build the memory model and the sys-

tem's ways of making use of that model in the first place,

becomes largely inductive reweighting of the strength of al-

ready-existing connections (see e.g. Duda & Hart, 1973) and,

to a slight extent, the adding of new connections and the

extracting and inferring of new things to be connected (see

e.g. Sauvain and Uhr, 1969; Quillian, 1969, Winston, 1970).

But for work on learning that moves into ill-formed problems

see Kochen, 1961; Uhr and Vossler, 1961; Hunt, 1962; Jordan,

1971; Uhr, 1964, 1973a).

The Deterministic Search for a Solution-Path Between

Givens and Goal, Using Only Legal Transforms

Science must simplify, and this is especially true when

it studies so complex a phenomenon as the intelligent mind.

And the simplified problems that Artificial Intelligence

examines are important, reasonably representative, and still

extremely difficult. But there seems to be an increasingly

strong tendency to simplify by choosing problems that are

"well-formed" in the following sense: Three sets of things

are specified when a problem is posed - "Givens" (e.g. the

axioms of a system of logic, the starting board in a game),

"Goals" (e.g. the theorem to be proved, the winning boards)

and "Legal Transforms" (e.g. the rules of inference, the

moves of the game). The problem then becomes one of finding

a sequence of legal transforms that forms a "Solution Path"

from givens to goals. Thus we have a deductive deterministic

search for a legal path between two clearly specified sets of

nodes in a graph.

This may be an adequate conceptualization (see Figure 2)

for deductive problem-solving, including theorem-proving,

game-playing, and puzzle-solving (see Nilsson, 1971) — and
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these have been the major areas of interest for researchers

in "artificial intelligence." It is also adequate for syn-

tactic parsing that insists upon a tree of paths connecting

the given sentence with the goal "sentence" node that roots

it in a parse (Chomsky, 1957, 1965; Feldman and Gries, 1968).

There is a great deal of effort today to absorb other

cognitive processes into the same framework (or strait-jacket).

"Syntactic Pattern recognition" (e.g. Narashimyan, 1964; Shaw,
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1969; see Swain & Fu, 1970; and Uhr, 1971) attempts to use

parsing techniques to transform an input pattern into a well-

formed tree, and "robot vision" (e.g. Guzman, 1968; Waltz,

1972; see Duda & Hart, 1973) attempts something quite similar,

since it uses algorithms to match stored network models of

objects with the input object.  Question-answerers (e.g.

Thompson, 1966; Shapiro, 1971; Quillian, 1969; see Simmons,

1965, 1970) typically put two such well-formed systems side

by side:  First a parser extracts information from the input

query that is used to access the nodes in a memory network

that the query is about.  Then a deductive problem-solver

searches for a path to answer nodes.  Robot systems (e.g.

Feldman et al., 1971; Nilsson, 1969; Winston, 1972; Winograd,

1971) interface four such systems, for vision, command-

parsing, deductive problem-solving, and generating actions-

sequences that will effect the deduced solution.

The Fuzzy Search for Relevance

Network models seem natural and attractive. The brain

is a network of neurons connected at synapses that appear to

compute complex threshold functions. The mind/brain as a

cognitive network that models its world is an appealing con-

ception that has been elaborated by Peirce (1931), Craik

(1952) and many others. And almost all models of intelli-

gence seem to be network models. (This may well be a trivial

consequence of the fact that any complex function—and the

functions that the intelligent mind/brain must compute are

nothing if not complex-is best broken down into simpler

steps, and any organization of these simple steps into the

complex function forms a network.)

But there is far more to using and building networks
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than the finding of legal solution paths between well-speci-

fied givens and goals. Rather than trying to simplify all

our problems until they reduce to such a well-formed process,

we should be examining the crucial-and much fuzzier -

problems that arise. For example, in pattern recognition

there are really no "legal transforms." Instead, any struc-

turing of any set of feature-detectors or characterizers can

be used to map the input pattern into its name (Figure 2e).

The crucial problem for pattern recognition, and for percep-

tion in general, is to find from among the infinitely large

set of possible transforms not the "correct" set but an ade-

quate set, one that assigns names more or less the way we

humans assign them, using our still-unknown set of trans-

forms. In language processing the input is usually not a

complete, perfectly grammatical sentence, and the sentence

is always embedded in some larger perceived scene; yet we

are able to extract its meaning and import, even though we

cannot "parse" it. We typically must describe a scene, and

converse about remembered concepts, rather than name objects

and give correct answers (Figure 1).

In all these cases, givens, goals and transforms can

only be inferred. Worse, there is no clear-cut search for

a solution-path; rather, there is an interacting set of

searches for relevant nodes and nodes relevant to these, etc.

Even deductive problem-solving, which gives us our only

well-formed paradigms, is basically fuzzy. For it is only

when we are laboring in an idealized world that a theorem-

goal or a game-win-state is posed. And even there we must

use "heuristics" to try to direct what now becomes an essen-

tially fuzzy search. In everyday thinking, and in the logi-

cian's and mathematician's creative work, the goal to be

reached or the theorem to be proved must be judged "valuable"
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or "interesting" - as important and relevant enough to be

worth achieving. And in general the goals of everyday

thinking must be achieved by subtle and complex assessments

of "relevance."

A BRIEF DESCRIPTION OF AN INTEGRATED WHOLISTIC COGNITIVE

SYSTEM (SEER)

Today's robots lash together several separated systems

for relatively well-formed processes. In sharp contrast, I

have been trying to develop cognitive "SEER" (Semantic

Learner*) systems that do a variety of cognitive processes in

as integrated and wholistic a manner as possible, using as

simple and general a structure as possible (Uhr, 1973b,d,

1974). This seems to me mandatory from the points of view

of scientific model-building, whose canons include simplicity

and elegance as well as power and fruitfulness, and of evol-

ution-learning, where each new (and inevitably small) change

must be functional and serve some purpose.

General Transforms to Give a Unified Memory Structure

Such an integrated system needs a unified memory struc-

ture that is built up from a single general kind of trans-

form, one that can perform the entire gamut of cognitive

functions. Figure 3a surveys the kinds of transforms that

have been traditionally used in separate AI systems. A par-

ser makes the built-in assumption that nodes are concatenated

(i.e., touching, in order). A deductive system has built

into it the specific relation among nodes - usually co-

occurrence, or ordered. Transforms for associative memory

searches and feature extraction imply a whole set of unordered

*or Sensed Environment Encoder, Recognized and Responder
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things (the nearby nodes in memory, the possible names to be

assigned). Often they have weights or other kinds of fuzzy

values associated with them. The configurational character-

izer used by SEERs (Figure 3b) is general enough, since rela-

tions, weights, and other attributes can be expressed expli-

citly, to represent all of these, (see the memory network in

Appendix B for examples). Even more important, the assign-

ment of fuzzy values to things, features, relations and
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implications which is essential for fuzzy problems also allows

for a natural deepening of the methods for handling problems

that have been treated as though well-formed. For examples,

the heuristic search for a solution path can be directed by

fuzzy inferences and fuzzy contexts; parsing need not insist

upon a perfectly grammatical and noise-free sentence.

Interactive Merging of Implications Across Processes

Intimate interaction among the various processes is

achieved by using these general transforms and by merging the

implications of transforms into a very small number of com-

mon lists. Any transform can imply implications into any of

these lists and any transform can require any number of con-

ditions. This means that any kind of contextual interaction

can occur. For example, a simple feature like a curve might

imply that additional curve-features be looked for, to try

to build a closed loop, and also that a face be looked for,

which in turn implies looking for its other features (e.g.

nose, hair, ears). Similarly, an internal need, e.g. for

food, might imply particular food objects which in turn imply

specific features that would characterize them.

Overall Architecture, Processes and Behavior

SEERs are memory networks that model their "world"

(including themselves) in a usable fashion. They structure

transforms into several major sub-systems, for a) perceptual

recognition, b) thinking, including both deduction and associ-

ation, and c) generation of actions-sequences. Several suc-

cessively more powerful SEERs have been coded (see Uhr, 1974).

Figure 4 sketches the structure of SEER-2, for 2-dimensional

environments.
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(External partially recognized things, and internal NEEDS,

 IDEAS and chosen ACTS all imply new things to LOOKFOR,

 which imply new IDEAS and NEWCHARacterizerS to apply)

Information flows into the system from the external en-

vironment, which impinges on the retina, and starts an outer-

inner flow of processes. Successive sets of characterizers

(called NOWDO in the SEER program) transform and coalesce

information back into the next layer of the cone. But inter-

nal NEEDs and G0ALs are simultaneously impelling inner-

directed flows of processes. Similarly, partially recognized

things can imply additional things to LOOKFOR and NEW CHAR-

acterizerS to apply, in glancing about to gather information.

Perception is thus a complex back-and forth many-layered

parallel-serial process. "Thinking" consists in the serial

application of transforms from the IDEAS list, to make associ-

ative memory searches and simple deduction. A certain amount

of direction is got by having the system choose the single

most highly implied transform on the IDEAS list to apply next.

Thus the strengths of implications, that is, of connections

between one node and another (where a node can be a trans-

forming procedure, as well as a representation of an object,

class, attribute or compound) serve to heuristically direct
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TREPEAT Initialize the LAYERS and CHARacterizerS TODD 1O

T6 Get the next layer to NOWDO and its STEP-size 11

Put the ERASER, NORMALIZER and PASSON transforms, and NEWCHARS,
onto NOWDO 14

T5 Get the next TRANSform and attendant information from NOWDO. 15

Get the bounds for applying the TRANSform, and its TYPE 16-18

T3 Get the pieces of its DESCRiption, and handle them as Indicated
by TYPE 20-24

A1 MERGE all members of the specified CLASS into the next Layer,
to average or difference. 21

T1 Accumulate the TOTAL weights of the CLASS members that are GOT 22-24

T2 If TOTAL exceeds THRESHold, MERGE IMPLIEDS into the next Layer 25-26

A2 Iterate through the array until the bounds (CMAX, RMAX) have
been reached. 27-28

E1 erase each cell in the next Layer, to initialize it. 29

N1 NORMALIZE each cell, to keep weights roughly constant despite
convergence. 30

ITER Go to process the next Layer, shrinking Row and Column by STEP-size, 31-33
until the apex is reached 34

THINK Initialize and go through up to 7 CYCLES 35-37

Get NEWCHARS that POINTAT LOOKFOR and set them on IDEAS 38-40

CHOOSE the most highly weighted THING on IDEAS, up to 100 41-45

(Cycles through IDEAS until an ACT is the most highly weighted and therefore chosen)

I If TYPE is I, this is an Internal transform to apply to FOUND (the apex).
If the TOTAL weight of CLASS members GOT exceeds THRESHold, MERGE
IMPLIEDS. 46-54

ACT If TYPE is ACT, get the next ACTION and its ARGumentS and other
ARGuments from HISTory 55-56

OUT output the result of the act (after having completed it with
routines below) 59-60

SEARCH If the act couldn't be completed, set up a SEARCH for things 61-66
that POINTAT the NEEDED PARTS, and return to apply more IDEAS.

FAIL output that have "FAILED to execute the chosen act, and go to
the next input. 67

(The routines for the different types of acts follow.)
(Note how Describe uses name, and Move uses Find.)

D Describe the scene, giving the objects and their parts 66-76

T Name the single most highly weighted thing of the class specified
in ARGument. 69-71

F Find the first THING that is a member of the specified ARGument
and bracket it. 77-79

M Move all Found THINGs FROM or TO (as indicated) the TARGET thing 77-85

R Reply to a query by CHOOSEing all THINGs belonging to the 66-90
specified ARGument whose weight exceeds half the MAXWeighTed
THING (i.e. the first) chosen

SEARCHR If no Reply was chosen, MERGE associations from what already 91
found into IDEAS and return to think some more by applying more
IDEAS.

C Compute, using the specified operators (ADD, subtract and divide
are shown) 92-99

SEARCHC If the needed numbers were not recognized, return to search
for INTEGERS 96

ADD ADD, subtract or divide, as indicated by computation
commanded 97-99

G In a Game, make a move by replacing the old board configuration 100-104
with the move

(The following are the functions used by the main program.)
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the processes of thinking. When an act is chosen (because

it is the most highly implied thing on IDEAS) the system will

start generating the specific actions-sequence needed to

carry out that act. This will usually entail further calls

for needed objects to LOOKFOR and transforming IDEAS to remem-

ber and deduce what might be usable objects, which are then

looked for.

SEER thus carries out a rather complex set of parallel

and serial operations. We might make the loose metaphorical

comment that it widens and narrows its "conscious" "attention"

as a function of its problems, tending to be more parallel in

its perceptual processes, more serial in its central cognitive

processes. This means that (serial) time must pass, and a

new program (SEER-T) handles situations in which it interacts

over time with a changing environment (see Uhr, 1973c).

For fuller descriptions, see Uhr, 1974, and in prepara-

tion.

Overview of the SEER-2 Program, and its Flow of Processes

The following is a succinct description of SEER-2. The

actual program is given in the Appendix, along with a brief

description of the programming language, EASEy (Uhr, 1973f),

an English-like variant of SNOBOL (Griswold et al., 1968) in

which it is coded. Note that caps, underlines and numbers

refer to the program.
(Overview of the SEER-2 program. Program Statement No.

START Initialize Memory (Includes type-name to refer to lists and the Transforms
repeatedly used-ERASER, NORMALIZE, PASSON.

IN input Memory, including NEW lists and ADDitions 1
(The MEMory conversion program, which inputs the transforms needed
(Appendix B) goes here.)

(The environments-scenes and problems-to be sensed are also
input here.)

INITialize for the next input problem, by erasing all temporary lists.

SENSE Store the input as an array, in the first Layer of the recognition 2-7
cone.

TRANSform MERGE the things that POINTAT NEEDSGOALS and LOOKFOR into
NEwCHARacterizers 8,9,12
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MERGE Get the THINGs or. LISTA that belong to the specified CLASS and MEl-11
MERGE them, combining TOTAL WeighTs and HISTories, into LISTB.

POINTAT Get the TOTHINGS that POINTAT each THING specified, and MERGE PAl-4
them into the lists specified.

NORMALIZE Divide the WeighT of each thing TONORMalize by NORM, erasing it NOl-5
if WT is below 1.

ABS Get the ABSsolute value of the argument (falls if the argument is A85l-2
not an integer).

CHOOSE CHOOSEs the MAXimum (or if TYPE specifies MIN the MlNimum weighted CHl—13
thing in LISTA of the specified CLASS, getting the THING,
TOTAL, LOC dnd HIST.

Some Simple Examples of the Variety of Behavior of SEER-2

SEER must be given a set of transforms, which form the

system's "cognitive memory network model" of its world.

Future systems will learn these transforms from experience.

But for now we can start the system with a set of transforms

(see Appendix B) already in its memory, and immediately begin

to examine its behavior. The following examples show the

kinds of problems that SEER can handle:

Naming Objects and Describing Scenes. When input an

array of information that contains one or more objects, and

also verbal statements, like "NAME THIS" or "WHAT IS THIS"

or "DESCRIBE", SEER will successively apply feature-extracting

transforms, and then configurational characterizers that were

implied by these prior transforms, and also be tentatively

implied things that would be further confirmed or denied

by these transforms. This process continues until high-level

compounds, like words, phrases, objects, and collections of

objects are got. A recognized command or suggestion will

imply whether the system should name or describe (or do some-

thing else), and the system will choose a particular type of

act as a function of such perceived utterances, and also any

internal needs and presses.

Thus when given the inputs shown in Figure 5a, SEER-2

will output:
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(1)  "CHAIR" (3)  "TABLE"

(2)  "FACE" (4)  "FACE"

When given the inputs shown in Figure 5b, SEER-2 will

output:

(1) "CHAIR (WITH BACK; SEAT; LEGS;)"

(2) "FACE (WITH VISAGE; EYE; EYE; NOSE; MOUTH; LEFTEAR;)"

(3) "BALLOON (WITH CIRCLE; STICK;) FACE (WITH EYE; NOSE;

RIGHTEAR;)"

See Uhr, 1973e for a similar system that gives a wider

variety of descriptive information, where a stylized inter-

action allows the human recipient to direct the description.

For simplicity the rest of the examples of SEER's
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behavior will be shown for 1-dimensional inputs, which can

be handled by either SEER-1 or SEER-2 (see Uhr, 1974, for

details). The first stages of the perceptual process handled

by SEER-2's recognition cone become trivial, and a far sim-

pler memory network is needed. For these examples we will

use the convention @(thing name) to indicate objects, object

parts and qualities (e.g. @PEAR is a symbol for an object

whose name is "pear"), as a shorthand for the actual picture.

When input:

"NAME THIS @PEAR" or

"WHAT IS @PEAR THIS"

SEER will respond:

"PEAR"

When input a set of lower-level qualities, e.g.:

"SAY WHAT @STEM @YELLOW @TEARDROP YOU SEE" and

"@OVAL @STEM @RED WHAT DO YOU SEE"

SEER will respond:

"PEAR" AND

"APPLE" In turn.

Retrieving Information, Answering Questions, and Conversing.

If the input scene contains a question like:

"NAME THE FIRST PRESIDENT" or

"WHAT DOES WISCONSIN PRODUCE"

SEER will output:

"WASHINGTON;" and

"BEER; CHEESE; GARBAGE;"

Verbal inputs that are not simple questions, but rather

act in a more conversational way, will lead to more variable,

but more or less relevant, responses.

Deducing responses. Transforms can similarly lead to
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simple deductions, e.g. as to arithmetic, logic, or the moves

(not necessarily brilliant, or even good) in a game. For

example,

"ADD 3 + 2" will give:

"5"

This result is achieved by first recognizing the parts

(letters, words, phrases), which triggers the following of

the command "ADD," which points to a transform that combines

the numbers to be added according to the rules of addition.

Finding and Manipulating 0bjects, Driven by External

and/or Interval Presses. When it recognizes some part of

the external scene as a command or suggestion (e.g. "TOUCH"

or "FIND" or "WHY DON'T YOU TOUCH"), or some internal need

as a press (e.g. a high level of HUNGER will imply EAT any

perceived food object), it may choose to act (e.g. touch the

indicated object). Note that "touching" is simulated inside

the computer, by the placing of agreed-upon symbols around

the touched objects. The scene's mixture of words and ob-

jects remains, simulating a static visual scene with written

words.

Thus a command like:

"TOUCH THE @BOX PAIL @PEAR @PAIL"

(where @object (e.g. @BOX) indicates the object, not

the word) will lead to the result:

"A PAIL IS FOUND-" "TOUCH THE @BOX PAIL @PEAR @PAIL:"

(colons indicate the act that found and touched).

A command like:

"MOVE THE @PEAR @BOX FRUIT @APPLE TO THE @PAIL PAIL"

will lead to the result:

"A PEAR IS FOUND-"

"MOVE THE @BOX FRUIT @APPLE TO THE (@PAIL @PEAR) PAIL"

(where parentheses indicate that the objects within
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them have been moved together).

An act can also be implied from internal needs as well

as external objects. E.g.

@OBX @PAIL @APPLE @SEER-MOUTH" (along with an internal

need-state of hunger)

will lead to the response:

"A APPLE IS FOUND-"

"@BOX @PAIL (@SEER-MOUTH @APPLE)"

because the act of putting the @APPLE to the MOUTH is now

highly implied, by both the hunger need and the apple itself.

When conflicting commands and presses are perceived,

SEER will make a fuzzy choice, not necessarily a "correct"

choice, among them.

Choosing Among Different Types of Behavior

These examples illustrate the range of problems that

SEER can handle. But they make little use of fuzzy values

and give very little feeling for the complex set of fuzzy

choices it must make when the possible set of alternatives

grows larger and more contextual determinants become relevant.

With simple problems and appropriate transforms there is

little chance for ambiguity. But when there are many dis-

tortions of possible objects in a scene and much information

in memory, decisions become multi-determined. This is handled

by the use of fuzzy implications which are merged together

into common lists where choices as to what to do next are

constantly being made. Thus a variety of partial implica-

tions, as from different characteristics of a scene, and also

from different sources of information such as externally

sensed scenes and internally felt needs all merge together,

are chosen among and determine when to choose.
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It is not clear how well such a system will work as the

size and complexity of its problems increase. The only way

to find out is to test it on much larger sets of more diffi-

cult problems. This is a problem common to all AI systems.

But we need not expect it to be perfect, or even to be excep-

tionally good-just as people do, it can exhibit its share

of mistaken, stupid and rigid behavior.

HIGHER-LEVEL FUZZY PROBLEMS

The combining of functions into a single cognitive sys-

tem forces us to eliminate any rigid flow of processes. The

system must now choose among alternate possibilities, and

these choices confront it with inevitably fuzzy situations,

including the following (see Uhr, in preparation).

Relevance Must Constantly be Assessed, in an On-Going

Conversational Description

Nothing is built into the system that compels it to do

something like "assign a single name"; rather, the system

must develop a relevant description of its environment, in

the sense that it must notice those things that will help it

do what it decides to do. But "description" is an extremely

fuzzy concept. We can think of a "complete description,"

which is far too long to be of use, or a conventionalized

description, which would make such a system impossibly rigid

(see Uhr, 1973c,e for examinations of "description"). In-

stead, the system must develop a pertinent description, as a

function of external and internal presses, and of acts it

has decided to try to effect, and of deductions and memories

that suggest what would be helpful and relevant parts of

descriptions, toward effecting those acts.
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Nothing can be built-in that says "find a path from

this to that," or "choose the single most highly implied

name." Rather, the system must constantly assess the rele-

vance of nodes, transforms, and flows of procedures. Nor

will it be clear how to assess relevance, which will be a

fuzzy function of a variety of things. It seems best to

think of the system as engaging in an on-going "conversation

with its external world" (within which may be objects and

other systems that converse verbally). There will rarely be

a "correct response," and the system will often behave in a

mediocre way. But it will always be trying to act relevantly

and, especially with the aid of friendly elements in its en-

vironment (e.g. parents, teachers, ripe berries and other

manna from heaven), will often muddle through, and even act

reasonably well.

Relevant Imports Must be Got from Mixed Words and Things

Words, phrases, statements, suggestions, questions, com-

mands, and any kind of verbal utterance must be input through

the same perceptual channels that sense, recognize and under-

stand objects and their relations and qualities. There may

indeed be several input channels, such as the two eyes, and

also sensors for sound, touch, smell, or other type of im-

pinging energy. But none can be exclusively reserved for

verbal inputs, in the way that the robot's teletype inputs

are known by the robot to be verbal commands, as opposed to

its television inputs, which are sensed scenes of objects.

Rather, the system must recognize the relevant things in its

input scenes, and further recognize which combine into words

and symbolic referential utterances, and what are the things

to which they refer (Uhr, 1973b,d).
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The System Must Choose the Type of Act to Effect

At the lowest level, any AI system must make fuzzy

choices, using "heuristics" or "characterizers," in order to

search through an overly-large network of possibilities. Un-

less the problem has been cut down to uninteresting toy size

it cannot try everything.

But once we begin to ask a single system to handle a

variety of different types of thing we force it to make

higher-level fuzzy decisions. It must decide what is the

appropriate type of act. E.g. it must decide whether to

name, describe, draw, or touch an object; whether to treat

an input recognized as a verbal utterance as a command to be

followed or a statement to be responded to. This may entail

several levels of fuzzy decisions. E.g. after it decides to

name it must further decide whether to speak, write or print

the name, and which language, e.g. French, English or American

and, sometimes, which of several possible synonymous names,

to use.

Certain Inputs Must be Recognized as Feedback

Just as there can be no special built-in channel for

verbal utterances, there can be no special channel or signal

for feedback. Rather, the system must recognize that some-

thing perceived (e.g. candy, a smile) or felt internally (e.

g. pain) is feedback that refers to some previously perceived

stimuli and consequent actions by the system. This entails

a complex combination of hypotheses the system makes as to

expected feedback consequences, which focus its attention

for confirming or denying evidence, and also an ability to

relate any identified feedback, whether anticipated or unan-

ticipated, to percepts, thoughts and acts that the system
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must once again fuzzily infer are relevant.

The Learning of Things, Transforms and Hypotheses is

Essentially Fuzzy

Learning is fuzzy in several ways.

First, the system must generalize from one, or at most

a relatively small number of experiences. Such generaliza-

tions are guaranteed to be wrong a good deal if not most of

the time, since the world is wondrously complex, diverse, and

accidental. So the system must make an on-going experimental

assessment of each tentatively-learned thing.

Second, it must generate new hypotheses in the first

place, whether from experience, or by combining, refining,

or in some other ways restructuring previously entertained

hypotheses. Once again, there is no assurance that any such

hypothesis will prove to be correct. Rather, the system

must accrue evidence, through future experience, for each

one of them, sifting and choosing among them as this evidence

confirms and denies.

Third, a complex structure of hypotheses must be built.

Once again, we have essentially fuzzy decisions as to which

nodes to connect to which—e.g. what things to put into what

classes, or compound into higher-level structures.

THE STEP-BY-STEP DEVELOPMENT OF M0DELS OF INTELLIGENT

MIND/BRAINS

A number of very difficult steps must be taken before

we can hope to achieve intelligent systems. First, we must

model the separate intellectual functions—perception,

thinking, remembering, acting, language, and learning. But

because these are so interdependent, we cannot expect to

model them separately; rather, we must combine them into
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whole integrated systems. This paper describes a first at-

tempt at such a system, one that begins to do a variety of

cognitive tasks, where the different subsystems must interact

smoothly and coherently. Such a system is just a beginning,

and must be extended in a variety of ways.

It must be made to handle more things. To some extent

this can be done by giving it more transforms, that is, by

giving it a bigger memory network. At that point extensive

tests must be made, since its behavior will be far too com-

plex to predict. This further means that we must develop

some conception about the range of behavior that such a sys-

tem must model, so that we can say something meaningful as to

how well we are sampling, and examining. We still need to

develop the basic canons for experimental test and evaluation

in this new science of complex entities.

Even more important, the system must be made more

powerful, with more powerful transforms and overall structure.

At the same time, it must be simplified. We must strive

for the simplest possible system, at the same time that we

strive for the most powerful possible system. Simplicity

is not only desirable from the point of view of efficiency

and of the canons for building good models, but also because

the simpler the system the more likely it may resemble living

systems that have evolved under nature's canons of simplicity.

In addition to generality, integration, power and sim-

plicity, we must also worry about the fit of the model's

behavior. At first we can be quite satisfied with rather

general fits, for we are modelling such a wide domain of be-

havior—describing the whole elephant, rather than a few

hairs tn the left fore-legpit. But at some point - I think

only after we have developed models that exhibit a good deal

of generality and power - we must begin to worry about fitting
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details. This completes the hypothetico-deductive enterprise

of predicting human behavior, comparing with experimental

results and thus testing our model, and hopefully, finding

new disconfirming evidence that leads to changes that improve

the model.

Finally, learning must be added. We can never hope to

pre-program into such a system all the knowledge that it

might need about the external world with which it must inter-

act, that it must know about. In fact this is impossible in

principle, because that external world is itself open-ended

and constantly changing: New things, organisms and mutants

are born, new words, concepts and other man-made things (e.g.

bicycles, transistors, computers, poems) are created.

SUMMARY AND CONCLUSIONS

It is attractive to model the mind/brain as a network

of neuron-like threshold elements that itself serves as a

"cognitive model" of its world, including itself. Such a

model must have a general kind of transform capability, one

that can handle the specific types of transforms used in the

typically separated Artificial Intelligence systems for per-

ception, deductive problem-solving, language handling, remem-

bering, acting and learning. And the different cognitive

functions must be able to interact intimately, forming a

well-integrated wholistic system with rich contextual influ-

ences on a constant stream of interacting decisions.

This paper examines a first step toward such a system,

a programmed model called SEER that attempts to handle the

various cognitive functions in as simple and integrated a

way as possible.

A network model is general in that it is simply a
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framework for computing structures of functions of any sort.

But today's AI research has over-narrowed the use of networks

to the point where they make a simple well-formed search for

a path, using legal transforms (e.g. rules of inference, moves

in a game) from a set of givens (e.g. premises, the initial

board of the game) to a goal (e.g. a theorem, a win). It may

be possible to handle a few cognitive tasks in such a well-

formed way. But even that seems unlikely, for when the

problem of path-searching becomes difficult (as it does the

minute the problem becomes difficult enough to be interesting)

fuzzy and conjectural "heuristics" must be used as hunches

to guide the search.

Most cognitive problems are ill-formed and fuzzy. The

mathematician doesn't prove theorems posed to him in an MIT

exam; rather he must find theorems worthy of proof. A per-

ceiver does not name single isolated easily discriminable

objects (and even that is a fuzzy problem); rather he makes

note of the relevant aspects of a scene of interacting ob-

jects. We cannot expect to be given only simple verbal

questions, for which there is a "correct" answer; rather, we

must usually engage in a conversation, to which we respond

with hopefully relevant comments.

In just about every separated area of cognition the real

problems are ill-formed and fuzzy, and it is over-simplifying

to reduce them to the point where they can be handled by a

search for a solution path.

Even more important, the moment we ask a system to

handle a variety of cognitive functions at the same time —

which is the typical process for human adults, and even for

infants and higher animals, e.g. when we find, stalk, capture

and prepare food—we force it to make a constant inter-

acting stream of fuzzy decisions. Externally perceived
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objects and internally perceived needs fuzzily suggest acts

that might be effected and memories and deductions that might

help carry out these acts. Conversely, remembered objects,

qualities, and procedures suggest objects that should be

looked for and actions (e.g. glancing about, crawling around)

that might help in gathering more information and testing the

potential value of possible acts. In general, each cognitive

function calls upon and affects all the others. There is no

"correct" sequence of procedures. Rather, multi-determined

fuzzy decisions are constantly being made to guide a fuzzy

interacting set of sets of fuzzy processes.

Finally, several higher-level fuzzy problems emerge.

Relevance must constantly be assessed. All perceived things

are mixed together in the sensory input channels, and must be

sorted out. Thus verbal utterances must be recognized as

structures over perceived things, and then as having symbolic

referential import. Feedback must also be recognized as

feedback, and as probably relevant to fuzzily conjectured

previous stimuli, acts, and hypotheses. And learning must

make fuzzy decisions as to what to learn, and how to build,

unbuild, or restructure the cognitive network memory.

APPENDIX A:  THE SEER-2 PROGRAM

The following program (coded in EASEy, see Appendix C

and Uhr, 1973f, and therefore able to run on any computer

that has a translator for SN0B0L4, see Griswold et al., 1968)

handles the examples given in the paper, among many others.

It also handles far more complex problems e.g. perception

of scenes of distorted objects, since it merges together

multiple fuzzy implications, and chooses among them.

AI programs are too complex to describe fully, accurately
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and fairly. The typical paper usually doesn't give many

details, but rather extols a program's virtues. But we can

not really begin to understand one another's programs, so

that we can begin to borrow from and build upon one another,

until we can observe them clearly. Think what monographs on

mathematics would be without proofs, or books on architecture

without pictures and diagrams.

The EASEy programming language was developed as a first

attempt to bridge this communication gap. A program coded

in EASEy is still cumbersome and hard to read and understand.

It is like a complicated and messy proof in a peculiar and

fuzzy notation. But it is precise and complete. For the

reader who wants to dig in and see exactly what is happening,

it is the thing itself. This is still difficult — but

because of the intrinsic complexity of the model, not the

peculiarities of the programming language.

Following the program is a set of characterizing trans-

forms sufficient to handle all the examples given in both

this paper and Uhr (1974), along with many others. The over-

view and description given in the paper should help when

digging into the program.
(Program SEER-2) RECODES-1 SEER-2

(see Uhr, 1973e)

START set ERASER = 'E 0 0 R C E'
NORMALIZE = 'N 0 0 R C N'
PASSON = 'P 0 0 R C P1'
P1 = 'A%D= 0 0 ]%I=%'

set SPOTSIZE = 1
F = 'FOUND'
N = 'NEWCHARS'
L = 'LOOKFOR'
I = 'IDEAS'

(INput and go to TYPE (initialize memory, SENSE or TRANSform)
IN input TYPE DESCR % [+to $('M' TYPE-end)] 1 1
(MEMory input and format routine goes here-only the beginning is shown. .1 M
(input NEW lists or ADDed information on old lists
MNEW from DESCR get NAME =

set $NAME = CONTENTS [to IN] .2 M
MADD from DESCR get NAME = .3 M

on $NAME set CONTENTS [IN] .4 M
MINIT erase R, L, EXTERNAL, TOOUT, NEWCHARS, LOOKFOR, IDEAS, ACTIVEWT M(N+2) M
(Input and SENSE a new scene into Layer 1 (the retina)
MSENSE erase C 2 2
on EXTERNAL list DESCR .1 3
S1 from DESCR get and call SPOTSIZE symbols SPOT erase [-to 52] 3.V 4
list $(L;R;C) = 'BRIGHT QUAL :BRIGHT ' SPOT ] 4.V 5
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RECODES-1 SEER-2
C = C + l [to S1] 5 6

S2 R = R = 1 + [to IN] 6 7
MTRANS output DESCR SCENE HAS BEEN INPUT, IS BEING TRANSFORMED 7 8
(NEEDS and GOALS imply things to LOOKFOR that POINTAT them

MERGE(POINTAT(NEEDSGOALS),L) .1 9
TREPEAT TODO = LAYERS CHARS 8 1O
T6 from TODO get STEP NOWDO % = [-TREPEAT] 9 11
(LOOKFOR implies NEWCHARacterizers that point at them.

MERGE(POINTAT(LOOKFOR) .N) .1
erase LOOKFOR .2 13

(To ERASE next LAYER NORMALIZE, apply NEWly implied CHARacterizers, and PASSON
(found things

at start of NOWDO set ':ERASER X ]:NORMALIZE X ] NEWCHARS ':PASSON X ]1 10.V 14
(Get each TRANSform from NOWDO (to be applied at this layer)
T5 from NOWDO get CLASSES: TRANS WT HIST ]= [-ITER] ll.V 15

from $TRANS get RA CAA RMAX CMAX DO 12 16
T7 CA = CAA 13 17
T4 from $DO get TYPE THRESH '%D=' DESCR %I=' IMPLIEDS % 14.V 13

erase GOT TOTAL 15 19
T3 from DESCR get: CLASS TYAL DR DC ]= [+$(TYPE L) — ($(TYPE 2) ] 16.V 20
(TYPE A transform Averages or differences.
A1 MERGE($(L;RA+DR;CA+DC),'S(L+1;RA/STEP;CA/STEP),,TVAL,CLASS) [T3] 17.Y 21

(TYPE I transform characterizes
I1 from $(L;RA+DR;CA+DC) get # that CLASS # REST :THING VAL[-T3] 18.V 22

is TVAL lessthan VAL ? yes. TOTAL = TOTAL + 1O [T3] 19.V 23
on GOT list CLASS THING [T3] 20.V 24

(the characterizer succeeds if the TOTAL weight reaches THRESHold
I2 is THRESH greaterthan TOTAL? [+ A2] 21.V 25

MERGE(IMPLIEDS, $(L+1;RA/STEP;CA/STEP)', GOT) 22 26
(keeps applying this TRANSform till its upper bounds are reached.
A2 is CA lessthan $CMAX? yes-CA = CA + 1 [+T4] 23 27

is RA lessthan $RMAX? yes-M = M + 1 [+T7-T5] 24 28
(Erases the next layer, to re-initialize.
El erase S(L+1; RA/STEP; CA/STEP) [A2] 25 29
(Normalizes, dividing by 5-roughly assuming a STEP-size of 2 plus a bit more.
N1 $(L;RA;CA) = NORMALIZE($(L;RA;CA),5) [A2] .1 30
(Coverge to the next layer.
ITER L = L + 1 26 31

R - R / STEP 27 32
C = C/ STEP 28 33

(If the apex has been reached, start the "THINK" (apply IDEAS)
is R lessthan 1 ? is C lessthan 1 ? [-T6] 29 34

(CYCLES 7 times applying 100 transform from IDEAS to FOUND (the apex)
THINK CYCLES = 7 35
TCYCLE CYCLES = CYCLES-1 36

is CYCLES lessthan 1 ?[+ FAIL ] 37
MERGE(POINTAT(LOOKFOR),N) 38

on IDEAS set NEWCHARS 39
erase LOOKFOR, NEWCHARS 40
set TRIES = 100 41

TMORE TRIES = TRIES-l 42
is tries lessthan l ? [+ TCYCLE] 43

(CHOOSES most highly weighted TRANSform from IDEAS
from IDEAS get CHOOSE(IDEAS) = [-TCYCLE] 9.V 44

(Applies the TRANSform to the FOUND in the apex
from $THING Get TYPE THRESH '%D=' DESCR '%I=' IMPLIEDS % [$TYPE] 11.V 45

I set FOUND = $(L;0;0) 10.V 46
(Loops if All indicated (should use LOCs and get nearest.)
TH1 from DESCR get : CLASS WT]= [-EVAL] 12.V 47

from CLASS get '$' ALL = [ +THA ] 48
ALL = 1 49

THA from FOUND get LEFT # that CLASS # RIGHT: THING WTF = [-TH1] 15.V 50

on GOT list CLASS THING 16.Y 51
TOTAL = TOTAL + WT * WTF [$('TH'ALL] 17.V 52

EVAL is THRESH greaterthan TOTAL ? [-TMORE] 18.V 53
MERGE(IMPLIEDS,F,GOT) [TMORE] 54

(ACTs, because an act was chosen from IDEAS.
ACT from IMPLIEDS get ACTION ARGS; = [- OUT] 55
ACT2 from HIST get CLASS ARG = [+ $ACTION ] 56

ARG = ARGS [$ACTION] 57
(OUTputs its actions-sequence

OUT is TOOUT sameas EMPTY ? [+ SEARCH ] 58
output TOOUT 59
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RECODES-l SEER-2
output EXTERNAL [IN] 44.V 60

(Initiates a SEARCH to help in completing the frustrated act.
SEARCH from $ARG get 'I=' IMPLIEDS % [— FAIL] 61
SEARCH2 from IMPLIEDS get IMPLIED WT, = [— FAIL] 62

from IMPLIED get NEEDED '$' [-SEARCH2 ] 63
from $NEEDED get '%D=" PARTS % 64
MERGE(POINTAT(PARTS),N) 65

RETURNACT on NEWCHARS set CHOOSE [TMORE] 66
FAIL output 'FAILED' EXTERNAL [IN] 67
D [T] 68
(Names the most highly implied object of class specified in ARGument
T from $(L;0;0) get CHOOSE($(L;0;0),ARG) = [-ACT ] 36-43 69
(TOTAL weight must be above 5.

is TOTAL greaterthan 5 ? [-ACT] 70
on TOOUT list THING [$('AC'ACTION) ] 71

ACD on TOOUT set '( WITH' 72
(Describes the scene
D3 from HISTC get CLASS THINGH = [-D2 ] 73

from $(L;0;0) get: that THINGH REST = [-D3] 46.V 74
on TOOUT list THINGH, [D3] 49.V 75

D2 on TOOUT set' ) [T ] 76
(Finds the first THING for each ARGument
F from $(L;0;0) get # that ARG # REST: THING MORE.] = [-ACT2 ] 52.V 77
(Finds THING only if without variations in EXTERNAL input

from EXTERNAL get that THING = : THING : [-ACT2 ] 53.V 78
on TOOUT list 'A' THING ' IS FOUND-' [ACT2] 54.V 79

(Moves all Found things as PREPosition (TO or FROM) indicates
M is CLASS sameas "PREP" ? [-F ] 80

from HIST get CLASS ARGT [-ACT ] 81
from $(L;0;0) get # that ARGT # REST: TARGET [-SEARCH ] 56.V 82

M2 from EXTERNAL get: THINGA: = [+ $('M' ARG) ] 57.V 83
MTO from EXTERNAL get that TARGET = '('TARGET THINGA' )'[M2] 84
MFROM from EXTERNAL get LEFT that TARGET RIGHT = 58.V 85
+ : THINGA: LEFT RIGHT TARGET [M2 ]
(Replies. If nothing about ARG, SEARCH associates out some more.
(needs more directed and conscious search
R from $(L;0;0) get CHOOSE($(L;O;0), ARG) = [-SEARCHR] 60.V 86

   MAXWT = TOTAL 87
R2 on TOOUT list THING; 88

from $(L;0;0) get CHOOSE($(L;0;0),ARG) = [-ACT ] 89
is TOTAL lessthan MAXWT / 2 ? L+ACT-R2 ] 90

SEARCHR MERGE($(L;O;O),IDEAS) [RETURNACT ] 91
(Computes
C from ARGS get OP CLASSA CLASSB 92

from $(L;O;0) get, # that OP # REST: OP 93
from $(L;O;0) get # that CLASSA # REST: ARGA [— SEARCHC ] 94
from S(L;O;O) get # that CLASSB # REST: ARGB [+ $OP] 95

SEARCHC MERGE(POINTAT(INTEGERS) [RETURNACT ] 96
(ADD,-etc. are OPS.
ADD on TOOUT list ARGA + ARGB [ACT] 97
— on TOOUT list ARGA-ARGB [ACT] 98
/ on TOOUT list ARGA / ARGB [ACT] 99
(Game move (Needs to look deeper, choose with parallel heuristics)
G from ARGS Get OLD NEW 100

from $(L;O;0) get # that OLD # REST: OLD [-FAIL ] 101
from $(L;0;0) get # that NEW # REST; NEW [-FAIL ] 103
from EXTERNAL get that OLD = NEW [ACT] 104

(Functions used by the main program
(MERGE two lists, combining weights and HISTories
MERGE (DEFINE: MERGE(LISTA,LISTB HISTA,WT,CLASS) 34.V ME1

is CLASS sameas EMPTY ? [-ME1 ]
from LISTA get LEFT: THING WTA HIST] = [— return + ME3]

ME1 from LISTA get LEFT # that CLASS # REST; THING WTA HIST] = [—return] 35.V ME2
ME3 from WTA get '$' = TOTAL 36.V ME3
(Can optionally specify LISTB as part of THING

from THING get '$' LISTB = .1 ME4
is LISTB sameas 'CH' ?  [+ CH ] 37.V ME5
from $LISTB get: that THING TOTAL HISTB = 38.V ME6

+  NAME TOTAL + (WT+1)* WTL HISTA HISTB ; [+ME1 ]
from $THING get '%C=' CLASSES % [+ME2 ] .l ME7
erase CLASSES

ME2 on $LISTB list THING CLASSES: THING (WT+1) * WTL LISTB HISTA ] [ME1] 39.V ME9
CH at start of CENTRAL list CHOOSE($(L;RA;CA),THING) [ME1] 40.V ME10
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RECODES-1 SEER-2

(Back-links only to transforms with nanes
POINTAT DEFINE: POINTAT(THINGS) PA1
PA1 from THINGS get CLASSES: THING HIST] = [— return ]

from $THING get '%D=' TOTHINGS % [-PA1]
MERGE(TOTHINGS;N) [PA1 ]

(NORMALIZE to keep weights roughly constant even though converging passed-on things

NORMALIZE DEFINE: NORMALIZE(TONORM,NORM) NO1
NORM1 from TONORM get LEFT: THING WT RIGHT] = [— return]

WT = WT / NORM
is WT lessthan 1 ? [+ NORM1]
on NORMALIZE list LEFT: THING WT RIGHT] [NORM1 ]

(Get ABSolute value
ABS DEFINE: ABS(ABS) AB1
ABS1 at start of ABS get '-' = [return]
(CHOOSE MAX or MIN weighted (MAX if no type is specified)
CHOOSE DEFINE: CHOOSE(LISTA,CLASS,TYPE) 41 CH1
(CLASS can be a specific thing, or empty (in which case all things are chosen
(among)
CH1 frcm LISTA get CLASSES: FIRST THWT HIHIST ] = [— —return ] 42.V

is CLASS sameas EMPTY ? [+ CH2] 43
from CLASSES get # that CLASS # [-CH1 ] 44.v
list CHOOSE = CLASSES: FIRST THWT L; RA; CA HIHIST 50.v

CH2 from LISTA get ORCLASSES: ORTHING ORWT ORHIST] = [+CH4] 45.v
from CHOOSE get CLASSES: THING TOTAL LOC HIST] [return] 45.v

CH4 is CLASS sameas EMPTY ? [+ $('CH' TYPE) 46
from ORCLASSES get # that CLASS # [+$('CH' TYPE) -CH2 ] 47.V

CHMIN is ORWT lessthan THWT ? yes - THWT = ORWT [+CH3-CH2] 48.V
C11 [CHMAX ]
CHMAX is THWT lessthan ORWT ? yes- THWT = ORWT [+CH3-CH2]  .1
CH2 list CHOOSE = CLASSES: ORTHING ORWT LISTA HIHIST] [CH2] 49.V

APPENDIX B:  CHARACTERIZING TRANSFORMS THAT FORM
SEER's MEMORY NETWORK

Memory networks input in the following form are auto-

matically input and converted (see Uhr, 1974 for the conversion

routines and a further description of details of transforms).

Section 1 gives the memory nodes needed to handle the

2-dimensional pattern recognition problems. Several layers

of the recognition cone are set up, giving averaging, dif-

ferencing and transforming characterizers rich enough to

begin to handle a variety of distorted and shaded inputs.

Many more such transforms would be needed to handle a wider

range of objects but these examples should indicate how they

can rather routinely be described.

Section 2 shows the additional memory nodes needed to

handle all other problems. With 1-dimensional inputs percep-

tual recognition becomes much easier (although difficulties
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can arise with misspellings), and either SEER-1 or SEER-2 can

handle these problems.

Figures 6 and 7 give a sketchy idea of two portions of

the memory network into which the conversion routine trans-

forms these inputs.

1) Memory 1. For 2-Dimensional Inputs

Type Description Implieds Classes Name

L L1:3]
MEM A: 121:BRIGHT ]
Y 242 ]
Y 121 ]

L L2:3]
MEM A: AAA:BRIGHT]
Y A8A]
Y AAA]

L L3:3]
MEM 00000(3;7): HOR*2 ;ACROSS$N;: STROKE;: HOR(3154)]
Y 11111 ]
Y 00000 ]

MEM 01(2;6): VERT*2;UP$N*3;LEGS$N;: EDGE;: VERT]
Y 01]
Y 01]
Y 01]

MEM 0001(4;7): DIAGA*2;UP$N; STROKE;:]
Y 0010]
Y 0100]
Y 1000]

MEM 1O00(4;5): DIAGB*2;: STROKE;:]
Y 1100]
Y 0110]
Y 0011]

MEM 00111100(3;6): CURVA*2;ACROSS$N;ENCLOSURE$N;: STROKE;:]
Y 01000010]
Y 10000001]

MEM 110(3;9): RLOOP;LEFTEAR;FACE$N;: STROKE;:]
Y 100]
Y 110]

MEM 011(3;3): LLOOP;RIGHTEAR;FACE$N;: STROKE;:]
Y 100]
Y 111]

MEM 1O1(1;7): DLOOP;NOSE$2;: STROKE;:]
Y 101]
Y 111]
Y 010]

MEM 010(3;9): CIRCLE;EYE*3;FACE$N;: 0BJECT;: EYE]
Y 101]
Y 010]

MEM 10001(2;7): DISH;MOUTH;: STROKE;:]
Y 01110]

MEM 10000001(3;6): SAUCER;ENCLOSURE$N;: STROKE;OBJECT;:SAUCER]
Y 01000010]
Y 00111100]
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A Graphic Representation of the Part of Memory That is Needed
to Recognize Chairs and Tables.  Note That Many Details, Like
Weights, Thresholds, and How Pointers are Used, are Not Shown.

Figure 6.
Type Description Implieds Classes Name

L CHARS:]

MEM HOR;CURVEA;(1): ACROSS*6;BACK$N*4;: ACROSS]

MEM VERT;DIAGA;(1): UP*3BACK$N*4;SEATLEVEL$N*6;STICK;: UP]
L IDEAS]
MEM !  !ACROSS(7): BACK*9;CHAIR$N*9;: BACK]
Y !!UP !   !UP!]
Y !!UP !   !UP!]
Y !    !ACROSS!]
Y !!UP !   !UP!]
Y !!ACROSS!]

MEM !0!ACROSS!(7): SEAT*14;CHAIR$N*8;TOP*13;TABLE$N*8;: LEVEL]
Y !0!UP!   !UP!]
Y !0!HOR!]

MEM VERT;:VERT;VERT;VERT;]
  (7):] LEGS*8;CHAIR$N*6;: LEGS]

MEM !!CURVEA!: VISAGE;FACE$N*3;BALLOON$N;
  CIRCLE;: FIGURE;: ENCLOSURE]

Y !!SAUCER!] ((in IDEAS))
(If FACE succeeds, BALLOON is implied with a negative weight, to negate it.]
MEM !!VISAGE*5!(6): FACE*35;PERSON$N*4;BALLOON*-7;: OBJECT;: FACE]

!!RIGHTEAR!!LEFTEAR!]
!   !EYE! !EYE!]
!     !NOSE!
!   !MOUTH!]

MEM !CIRCLE! BALLOON*16;: OBJECT;: BALLOON]
!!STICK!]

MEM !!BACK!(9) CHAIR*25;COUCH$L;: FURNITURE,OBJECT;: CHAIR]
Y !!SEAT!]
Y !!LEGS!]

MEM !!TOP!(9) TABLE*21;CHAIR$L;: FURNITURE;OBJECT;: TABLE]
Y !!LEGS!]
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1) MEMORY 2. For 1-Dimensional Inputs. (to be inserted, as indicated, into the
proper layer, ordered to fit examples in the text.)

Type Description Implieds Classes Name

(The following go in Layer 1 (right after L L1:3]) (For Pattern Recognition)
(The word PEAR implies "look for a pear (@PEAR)" and Internally associate about pear)

MEM ' PEAR '(1;7): PEARj@PEAR$N;IPEAR$N;: WORD;TWORD;: PEAR]

MEM ' @PEAR '(1;7): @PEAR;NACT$N;IPEAR$N*2;PEAR;: OBJECT;FRUIT;: @PEAR]

MEM NAME(1;(7): NAME;TONAME$N*3;TACT$N*2;: WORD;COMMAND;: NAME]

MEM WHAT: TONAME$N;TOFIND$N;: WORD;: THIS]

MEM NAME;SAY;WHAT;(1) TACT$N*35;: COMMAND;: TONAME]

(The following goes in IDEAS (right after L IDEAS:])

MEM ACT: T OBJECT;: TACT]

(The following go in Layer 1)

MEM @TEARDROP(1;7): @PEAR2$N;@TEARDROP;: QUAL;: @TEARDROP]

MEM @STEM(1;5): @APPLE2$N;PPEAR2$N;@STEMj;STEM;QUAL;: @STEM]

(A 2d characterizer of @PEAR. Note variations (e.G. @YELLOW didn't point to it).)

MEM @YELLOW;@TEARDROP*2;
 @STEM;(4): @PEAR*3;NACT$N;IPEAR$N;: OBJECT;FRUIT;: @PEAR2]

MEM @OVAL(1;6): @APPLE2$N;@OVAL;: QUAL;:

MEM @RED;OVAL*2;STEM;(4) @APPLE*4;NACT$N;IAPPLE$N;: OBJECT;FRUIT;: @APPLE2]

(For Describing (The following go in L1)

MEM DESCRIBE(1;6): DACT$N*99;: COMMAND;: DESCRIBE]

MEM ALL;: DACT$N3;: ADJ;: ALL]

(The following goes in IDEAS)

MEM ACT: D OBJECT;: DACT]

(For retrieving information) (The following go in Layer 1)

MEM PRESIDENT(1;7): PRESIDENT;IPRESIDENT$N*9; NOUN;VIP;: PRESIDENT]
  PNOW$N*5;PFIRST$N*5;:

MEM BEER;: BEER;: PROD;: BEER]

MEM CHEESE;: CHEESE;: FOOD;PROD;: CHEESE]

MEM GARBAGE;: GARBAGE;: PROD;: GARBAGE]

MEM PROD;: PROD;: CLASS;: PROD]

(The following go in IDEAS)

MEM PRESIDENT;FIRST;(9): WASHINGTON*99;RACT$N*50;: COMMAND;: PFIRST]

MEM ACT: R ;: RACT]

MEM PRESIDENT;: FORD*48;RACT$N*23;: COMMAND;: PNOW]

MEM WISCONSIN(1;7): WISCONSIN;IWIS$N*5;IWIS2$N*4;: WORD;STATE;: WISCONSIN]

MEM WISCONSIN;CITIES;: MILWAUKEE*23;MADISON*18;
 RACINE*15;RACT$N*25;: COMMAND;: IWIS]

MEM PRODUCE(1;6): PROD;IWIS2$N;GARBAGE*23;: :

MEM WISCONSIN*3;PROD;: BEER*27;CHEESE*27;RACT$N*25;: COMMAND;: IWI52]
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Type Description Implieds Classes Name

(For deducing responses) (The following go in Layer 1)

MEM 2;: 2*5;CACT$N;: NUMBER;: 2]

MEM TWO;: 2*5;: NUMBER;: TWO]

MEM 3 ;: 3*5;: NUMBER;: 3]

MEM ADD ;: CACT$N*99;ADD*8;: COMMAND;: ADD]

(The following goes in IDEAS)

MEM ACT: C COMMAND NUMBER NUMBER;: CACT]

(For Finding and Moving) (The following go in L1)

MEM @BOX (1;7): @BOX;BOX;: CONTAINER;: @BOX]

MEM BOX(1;6): BOX;@BOX$N;: WORD;TWORD;: BOX]

MEM @PAIL(1;6): @PAIL;PAIL;: CONTAINER;: @PAIL]

MEM PAIL(1;6): PAILi@PAIL$Nj: WORD;TWORD;: PAIL]

MEM @APPLE(;7): @APPLE;APPLE;EAT$N;: OBJECT;FRUIT;: @APPLE]

MEM APPLE(1;6): APPLE;@APPLE$N;: WORD;TWORD;: APPLE]

MEM FRUIT(1;6): FRUIT;: WORD;TWORD;CLASS;: FRUIT]

MEM TOUCH(1;7): TOUCH;FACT$N*37;FIND;: COMMAND;: TOUCH]

MEM FIND(1;7): FIND;FACT$N*37;: COMMAND;: FIND]

MEM ' TO ': TO;: PREP: TO]

NEW NEEDSGOALS :N1 10 ;:N2 10 ]%
L NEEDS;

MEM FOOD;: @HUNGER*9;EAT$N;: 0BJECT;: N1]

MEM FRUIT;CANDY;(1) FOOD;@HUNGER;EAT$N;: FOOD]

MEM MOVE(1;7): MOVE;TOMOVE$N*30;: COMMAND;: MOVE]

MEM @SEER-MOUTH(l;7): @SEER-MOUTH;EAT$N;T;i: SELF;: @SEER-MOUTH]

(The following go in IDEAS)

MEM OBJECT;TO;OBJECT;: MACT$N*99; TO MOVE]

MEM ACT: F OBJECT.: FACT]

MEM ACT: M ;: MACT]

MEM @HUNGER;FRUIT—CANDY
 TO;@SEER-MOUTH;(6). EACT*99;: COMMAND;: EAT]

MEM ACT: M; EACT]
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APPENDIX C: A NOTE ON EASEy PROGRAMS
(See Uhr, 1973f for details)

1. Numbering at the right identifies statements, and allows

for comparisons between programs. M indicates initial

izing Memory statements: I indicates cards that are

Input by the program. .V indicates a Variant, .1 an

additional statement.

2. A program consists of a sequence of statements, an end

card, and any data cards for input. (Statements that

start with a parenthesis are comments, and are ignored.)

Statement labels start at the left; gotos are at the

right, within brackets (+ means branch on success; — on

failure; otherwise it is an unconditional branch). +

signifies a continuation card.

3. Strings on capitals are programmer-defined. Strings in

underlined lower-case are system commands that must be

present (they would be keypunched in caps to run the

program). These include input, output, erase, set, list,

get, start, call, that and the inequalities. Other

lower-case strings merely serve to help make the pro-

gram understandable; they could be eliminated.

4. EASEy automatically treats a space following a string

as though it were a delimiter; it thus automatically

extracts a sequence of strings and treats them as

names. ].:,;, and % act similarly as a delimiter,

but the programmer must specify it. The symbol # is

used to stand for any delimiter (a space, ], :, ;,%

or #).

5. The symbol $stringI is used to indicate "get the

contents of string I, and treat it as a name and get

its contents" (as in SNOBOL).

6. Pattern-matching statements work just as in SNOBOL
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statement: there are a) a name, b) a sequence of ob-
jects to be found tn the named string in the order speci-
fied, c) the equal sign (meaning replace), and d) a
replacement sequence of objects (b, c, and/or d can be
absent). that string I means "get that particular
object" -otherwise a new string is defined as the
contents of stringI, which is taken to be a variable
name.

7. size(...) is a built-in function that counts the symbols
in the string (s) named within parentheses (its argu-
ment). integer(...) succeeds if its argument is an
integer.

8. DEFINE: defines a programer-coded function. The func-
tion is executed whenever it is specified, FUNCTIONNAME
(ARBUMENTS), in the program. It ends in success or
failure when it reaches a [return] or [ return] goto.
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APPLICATIONS OF FUZZY SETS IN PSYCHOLOGY 

Manfred Kochen 
Mental Health Research Institute 

University of Michigan 
Ann Arbor, Michigan 48014 U.S.A. 

1. INTRODUCTION 

Since its inception, fuzzy set theory was guided by the 

assumption that classical sets were not natural, appro- 

priate or useful notions in describing human behavior. The 

design of a control system that parks a car more in the 

manner of a human driver than in the manner of a "smart bomb" 

was one of the original challenges that motivated fuzzy set 

theorists. Another was the creation of a computer program 

that could respond appropriately to the same kind of instruc- 

tions that are given to a human pilot by another human advi- 

sor or instructions for tying a knot. 

Fuzzy set theory can offer psychology new concepts to 

use as building blocks for improved theories. In return, 

psychology can offer fuzzy set theory not only continuing 

challenges and test problems but methods of experimentation 

as well. It is more fruitful to introduce the notions of 

fuzzy set theory when the need for them arises in the devel- 

opment of psychological conceptualizations than to seek out 

psychological problems for potential applications of fuzzy 

set theory. The ideas and work reported here originated 

with the recogn ition, during the course of developing a new 

model of cognitive learning, that fuzzy sets are relevant, 

useful and possibly necessary to explain certain psycholog- 

ical findings. 
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2. BACKGROUND: SUMMARY OF PREVIOUS RESULTS ON THE USE OF 
FUZZY SET THEORY IN PSYCHOLOGY 

Cognitive learning has been viewed (Kochen, 1974) as an 

algorithm which forms, revises and uses a system of repre- 

sentation for recognizing and coping with an increasing 

variety of opportunities and traps. This view led to such 

an hypothesis as: "if a problem-solver practices with tasks 

requiring shifts of representation, he is likely to perform 

better in solving an ill-defined problem than one who has 

no prior practice or one who has prior practice with well- 

defined problems not requiring representational shifting" 

(Badre, 1973). 

To test such an hypothesis, a new experimental technique 

was developed in which human subjects (college students) were 

instructed only to ask questions that would help them recog- 

nize, formulate and perform a task that the experimenter had 

in mind and created for them. Certain words and actions are 

prespecified but not known to the subject. The subject's 

use of these is interpreted as indicative of representational 

shifting. 

This technique was also applied in showing that 4th and 

5th grade children can be taught to formulate realistic 

mathematical "story-problems" for themselves (Kochen, Badre 

and Badre, 1974), and in showing that if people ask better 

questions they tend to perform better on certain tasks that 

require information-seeking (Kochen and Badre, 1974). In 

ranking questions according to quality, a question that is 

judged to be similar to a second one along the generic- 

specific and the relevance-irrelevance dimensions but which 
1 is more precise is considered better. To measure the pre- 

cision of questions, such as "Is it very expensive?", "Is it 
1 Footnote on the bottom of the next page. 
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very far?", it was necessary to conceptualize precision more 

clearly, and the "fuzzy set" concept seemed to be the most 

appropriate foundation (Kochen and Badre, 1974). We pre- 

sented subjects with samples of numbers and asked them to 

mark on a scale, such as Agree Disagree , 
Strongly Strongly 

the strength of their belief in statements about a sample 

number being much larger than 5. We also repeated this with 

weights instead of numbers as stimuli. We found, for example, 

that in such a test people behave as if they considered "very 

much greater" more precise than "much greater." 

This, of course, has long been regarded to be a plausible 

assumption by fuzzy set theorists. This finding is more im- 

portant for the method of ranking precision than for its 

content. If the degree of agreement, measured by how far 

from the right a subject places his mark on the above scale, 

is plotted against the sample number, a grade-of-membership 

or characteristic curve is obtained. The precision with 

which the subject used "much larger than" is taken to be an 

estimate of the slope of this characteristic curve at inflec- 

tion point. 

We showed that, if f (x) denotes a subject's degree of ML 
agreement with "x is much larger than 5," and f (x) is as- ML 
sumed to be continuous and differentiable in x, with 

f' (x) = b f (x) [1-f (x)] (1) ML ML ML 

then f (x) is the logistic curve with an inflection point at L 
x = a/b, where the (maximum) slope is b/4. The assumption 

in Equation (1) is plausible; it states that a subject's 

1 
For simplicity of exposition, assume that the degree of pre- 
cision is appropriate for the context. That is not always 
so. When it is not, the more precise question is not better 
than the fuzzier one. 
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strength of belief increases as x increases in proportion to 

how strongly he believes it already and also in proportion to 

how strongly he disagrees with the statement. If he dis- 

agrees strongly, it is probably because x is not much larger 

than 5. 

We also found that anchoring increases the degree of 

precision, in line with analogous findings in psychophysics. 

A higher degree of response consistency over trials was 

found to occur if the subject is allowed to give an imprecise 

verbal response about a fuzzy set than if he is forced to 

give a precise "grade-of-membership " answer. This supports 

the assumption that the notion of a "linguistic variable" 

(Zadeh, 1973) is more realistic than that of "grade-of-mem- 

bership." 

This work revealed clearly the critical importance of 

context. In a subsequent study, using the above technique, 

we (Dreyfuss-Raimi, et al., 1974) presented sentences such 

as "25° C is cold for January," "25° C is cold for Miami," 

"25° C is cold for January in Montreal," "60 miles is a long 

distance to walk." We found that: 

1. Characteristic curves were generally steeper for 

temperature than for distance, probably because 

temperature is an inherently less fuzzy concept 

than distance, since temperatures are interpreted 

by most people in the context of climate, while 

the interpretation of distances is much more 

sensitive to individual experiences. 

2. For temperature, few contexts resulted in a steeper 

curve than the one for no context. But for dis- 

tance, the curves for appropriate contexts resulted 

in a steeper curve than the one with no context. 

3. Different contexts produced curves with strikingly 
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different degrees of steepness. 

4. For both distance and temperature, the judgments 

were more precise for no context than for nonsen- 

sical contexts. 

These results seem complementary to the only other (to 

my knowledge) behavioral approach to fuzzy set theory (Rosch, 

1973, 1974), and to recent work connecting fuzzy set theory 

with linguistics (Lakoff, 1971; Zadeh, 1972). 

3. A CONCEPTUAL ISSUE 

When some persons are asked how strongly they believe 

that "x is a large number" they behave as if they had, for 

a time, fixed a threshold or decision criterion d that en- 

ables them to say, consistently, that if x $ d they agree, 

and if x , d they disagree. The mark they place on the 

agreement-disagreement scale might be distributed uniformly 

over the right half of the scale whenever x $ d and it might 

be distributed uniformly over the left half if x , d. Let 

us call such people "thresholders." 

Another kind of person might as best he can, try to 

place his mark close to the agreement side of the scale ac- 

cording to how large he thinks x is. This depends critically 

on the sample that is presented, for if he has "used up" the 

scale by placing a mark close to "agree," his response to 

the largest number just presented, and now an even larger 

one is presented, he will be "squeezed." The characteristic 

curve for such people will look like the continuous f (x) 
L 

discussed in the previous section. Let us call such people 

"estimators," because their strength of belief in "x..5" 

resembles their estimate of x. 

Yet another kind of person might place his mark near 
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"agree strongly" or "disagree strongly" when he feels 

strongly and place no mark when he is uncertain, if he has 

that option. The set of numbers is then partitioned into 

three subsets: those that such a subject considers not large; 

those he considers large ; and those he will not call either 

large or not large. (People do not have to dichotomize, as 

prescribed by Aristotle, that x is either large or not large; 

the above remark is less objectionable to those who see 

Aristotlelian logic as a normative guide to cognition if we 

replaced "not large" by "small.") Let us call such people 

"reliables" or conservatives, as in the psychological 

literature. 

Undoubtedly there are other possible kinds of people. 

Fuzzy set theory applied to psychology might be interpreted 

to suggest the general hypothesis that most people are 

"estimators" rather than "thresholders" or "reliables." If 

enough people in a sample behave as if their strength of 

belief varies nearly continuously with the stimulus variable 

in the statement to be believed, then this hypothesis would 

be supported, and the psychological reality of fuzzy sets 

would be made more evident. 

If, on the other hand, too many people in a sample be- 

haved as if they use a threshold-decision criterion - as 

would be implied by most models of decision-making used in 

decision theory and mathematical statistics (i.e., critical 

regions are classical sets) - then the psychological reality 

of fuzzy sets would be in doubt and other concepts more 

plausible. 

Asking a person to respond to a statement like "25' is 

far to the right" on an agreement-disagreement scale, though 

direct, seems an unrealistic way to measure how he would 

behave in response to an instruction such as "move far to 
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the right." The most obvious and natural thing to do is to 

ask him to move and observe where he goes. This should be 

done repeatedly with the same subject, with detractors be- 

tween repeated instructions to avoid the effect of the sub- 

ject's recalling or trying to be consistent. If he distri- 

butes the distances that he moves uniformly between some 

minimum distance and some upper limit of possible distances 

that he could move, we infer that he used a threshold : the 

minimum distance. The cumulative frequency would then be a 

straight line from the threshold to the maximum. The 

resulting curve might be viewed as his characteristic or 

grade-of-membership curve. 

If he were an estimator, he might distribute the dis- 

tances he moves according to a skew or Bell-shaped curve. 

The cumulative frequency would have a typical S-shape as 

shown by the dashed line in Figure 1. 

It is common in psychological experiments to regard the 

subjects in a random sample of people as interchangeable. 

If the dependent variable that is observed has a bimodal dis- 

tribution, that might indicate that the sample was drawn 

from two populations, such as thresholders and estimators. 

Figure 2 indicates what such a bimodal distribution would 

look like. If the population of estimators dominates, the 

general hypotheses about the psychological reality of fuzzy 

sets appears to be supported. 
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1 4. AN EXPERIMENT 

Twenty-four college freshmen were given the following 

instructions: "People interpret words like 'far,' 'hard,' 

etc. in different ways. In this experiment, I am trying to 

find out how they interpret such words in specific context. 

I will be asking a random sample of people like yourself the 

same thing to see if there are some laws according to which 

all people behave in such tasks. Your name will not be used 

and your responses will be mixed with those of the others. 

Just follow the instructions on each page and work as quickly 

and as accurately as you can. 

In the first section, you are to put an X above the 

point on the line which is to the right 

of the 0. 

For example: Put an X above the point on the line 

which is a little to the right of the 0. 

Any questions?" 

1 The help of Suzanne Brumer in conducting this experiment is 
gratefully acknowledged. 
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The subjects were then given 42 instructions as in the 

above example for the first part of the experiment. The 

blank was filled in by "far," "very far," "not so far," "not 

so close," "very close," or nothing. Two different line 

lengths were used to explore the effect of context in this 

sense. Two positions of the 0 were used with the smaller 

line to see if that made any difference. Each instruction 

was presented twice and the order of presenting the 42 was 

randomized. 

In part 2 of the experiment, each subject was given 42 

pictures in random order such as Figure 2 above, and asked to 

assign to each diagram one of the following 7 statements: 

1. X is very far to the right of 0. 

2. X is far to the right of 0. 

3. X is not so far to the right of 0. 

4. X is to the right of 0. 

5. X is not so close to the right of 0. 

6. X is close to the right of 0. 

7. X is very close to the right of 0. 

The lines in the diagrams were again of 2 lengths and 2 dif- 

ferent positions of the 0 in the shorter line were used. 

The diagrams have fixed X's at 7 distances from 0. Hence 

there are 7 x 3 = 21 diagrams. Each was presented twice. 

5. RESULTS 

Consider first the distribution of the responses from 

the 24 subjects when told to place an X far to the right of 

0 on the long line. The distances were measured by the num- 

ber of quarter inches. The results were: 
1 Distance (in _" units) : 7 8 9 10 11 12 13 Total 4 

Number of subjects who 1 3 13 6 10 8 7 48 
moved that distance: 
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This is shown in Figure 4. The dip at 10 is too sharp 

to be due to chance. A bimodal distribution seems to be 

present. The maximum distance was 13, and the right-hand 

part of the distribution resembles a uniform distribution 

with a threshold at 11. It might be the case that we drew 

our sample from a population in which 1 + 3 + 13 + 6 or 23 

out of 48 or about half, were estimators, and 10 + 8 + 7 or 

25 out of 48, or the other half, were thresholders. It does 

not support the belief that most people behave in the way 

conceptualized by fuzzy set theory. Just about as many 

people seem to behave in the way conceptualized by decision 

theory. 

Recall that each person responded to the same diagram 

twice at different times, with distractions in between. It 

is interesting to note how many people responded the same 

way or differently both times. This is shown next. 

Difference in distance 
moved on both trials: 0 1 2 3 4 5 Total 

Number of subjects who 
obtained that difference: 4 7 5 2 4 2 24 

Again we have a bimodal distribution. It seems as if some 

people in the same category come from a population which 
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estimates consistently, while others are very inconsistent. 

It is noteworthy that the distances chosen by the 4 perfectly 

consistent subjects were 9, 9, 9 and 11; that is, three of 

them came from the "estimator" population, and the fourth 

may have. 

From the remaining data in part 1, the following con- 

clusions can be drawn. Recall that the responses were the 

distance from 0 at which an X was placed. 

1. The responses or distances decreased according to the 

following order of the stimuli in the verbal instruction: 

very far, far, not so close, 0/, not so far, close, very 

close. The responses are consistent (transitive). Here 

0/ refers to the absence of any adjective, as in "put an 

X above the point on the line which is _ to the right 

of the 0." (The blank was left blank.) The reversal of 

"not so close" and "not so far" is perhaps a little 

surprising, but understandable, because "not so close" 

is semantically similar to "far." (It is actually 

ambiguous.) 

2. The response to "very far" is the maximum length of the 

line, independently of line length or the 0's location. 

Similarly, the response to "very close" is an X right 

next to 0, independently of line length and the 0's 

location. There is very little variance over the 

subjects. 

3. The variance of the responses to diagrams in which the 

0 is at the center of the line is less than the vari- 

ance when the 0 is to the left of the center. The 

latter diagram offers a longer maximum distance over 

which to distribute X's. To test whether this is due 

to the eccentric location of 0 or the length, we can 

compare the responses on the long line with the 



406
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

MANFRED KOCHEN

responses on the short line with the 0 entered. The 

difference is not very significant. Hence, it seems to 

be the eccentricity of the 0 that accounts for the 

increased variance. 

4. The variance is greatest when the blank is not filled 

in, i.e., for the 0/ stimulus. Indeed the variance in- 

creases as we move from either extreme (very far, very 

close) towards 0/. 

5. Line length (context) does not affect the responses for 

extreme stimuli, such as very far and very close, but 

the mean response to other stimuli is scaled down. The 

ratio of the line lengths was 9/13. The mean responses 

were: 

Stimulus far not so 0/ not so close 
close far 

Long line (0 at center) : 10.0 6.5 4.5 4.3 2.4 

Short line (0 at center) : 6.6 4.9 3.3 3.4 2.1 

Ratio: .66 .75 .73 .81 .89 

At least for "far," the responses shrank by .66 from 

the long to the short line, which were in a ratio of 

about .69. It seems as if the subjects scaled down in 

direct proportion to the line lengths. 

From the data in part 2, the following conclusions may 

be drawn. Here the response is the selection of a 

phrase, such as "X is far to the right of 0," from 7 

such choices to marked lines presented as stimuli. 

6. Most subjects select "far" and "close," while fewer 

subjects select "very far" and "very close." 

7. Very few subjects select "not so far" and "not so close" 

and the blank, 0/, is used least often of all. 

The data shows remarkable uniformity for a psychological 
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experiment, even though 2 subjects place X's to the left of 

0 in some cases. 

6. CONCLUSIONS 

One out of two people seem to behave, when asked to 

place an X far to the right of a mark on a line, as if they 

interpret "far distances" as a fuzzy set with a grade-of- 

membership assignable to "d « F" that increases continuously 

with d. Measuring that grade-of-membership by observing how 

frequently they placed the X at distance d from the mark 

appears to be useful for connecting fuzzy set theory with 

psychology. Context, in the form of a line of limited length, 

affects the response in nearly direct proportion to the line 

lengths. Of course, this conclusion is not likely to hold 

as the line length increases indefinitely. The linearity of 

the relation between the response and the context (line 

length) is probably local. 

Most of these conclusions are hypotheses supported by 

evidence. But more experimentation is required to establish 

them more firmly and to delimit the range of variables over 

which they hold. On the whole, fuzzy set theory does seem 

appropriate for conceptualizing certain aspects of the be- 

havior of perhaps half the population. 
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1.  INTRODUCTION

The human subjective function of decision-making is

generally attended with ambiguity. And then the "fuzzy

algebra" seems suitable to make a good expression of human

subjectivity instead of probability-theoretical expression

which has been used in the conventional theory of stochastic

decision-making process[1] [2]. From this point of view, the

authors have studied the fuzzy-theoretical formulation of

human decision-making process through a psycho-engineering

experiment using playing cards in a card game.

This paper is an approach to making fuzzy models of the

memorizing-,forgetting- and inference processes which are

essentially important in the human decision-making process

[3]. In Section 2 are presented the block diagram expres-

sion of a whole model of human decision making system and

mapping expressions of experience process, memory process,

and inference process based on memory [4]. Section 3 is a

fine description of fuzzy formulation of human decision-

making. Two types are considered there, one is the decision-

making based on memory only, and the other is the one de-

pending on both memory and inference based on memory. These

processes are expressed by fuzzy relations. Section 4 is

the experimental study to make a fuzzy model of memory

process. It is found that the certainty degree of memory is

a value of the membership function with its ambiguity, and
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varies with time either in the collapsing manner (forgetting)

or in the emphasizing manner (sharpening). Thus, the cer-

tainty degree of memory and its ambiguity is a time function

dependent on several subjective or objective factors govern-

ing the difficulty of memorizing. In Section 5 is analyzed

the inference process through the two kinds of inference

experiments, and is clarified the relation among the quan-

tity of memory effect, the quantity of available information

and the degree of inference, in the inference process [5].

2.  PROPOSITION OF A WHOLE MODEL OF HUMAN DECISION-MAKING

PROCESS

The whole structure of human decision-making is modelled

by the block diagram of Figure 1 [3][6].

i) Experience

Experience is something or knowledge acquired by one's
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own senses or introspection or its acquisition process.

Facing a new problem human thinks that what kind of

problem it is (recognition and classification of the problem),

what kinds of actions have been taken in the past for the

same or similar problems to the present one and what kinds

of results have been obtained (remembrance and re-evaluation

of the past experience), what kinds of environmental changes

have happended (addition of new environmental changes), and

so on [7].

Now, make the following notations:

v: problem

a(v): action for problem v

r(a): result of action a(v)

Ω = {v}: set of problems

A = {a(v)}: set of actions

R = {r(a)}: set of results

Then the experience can be defined as an association of A

and R, where a relation L from A into R can also be defined

as L:A → R, and is changeable with the environment.

ii) Memory

The human memory is to maintain and recall only some of

the experiences which are selected to do a specified role.

Memory has the following four levels, i.e. (1) Memorizing,

(2) Retention, (3) Recall and (4) Recognition. And the

difficulty or the degree of memory is usually governed by

the following few factors: a) intensity of association with

experiences, b) depth of interest, c) depth of impression,

d) conspicuousness, e) peculiarity and f) originality. It

is most probable that a human does not memorize all his

experiences, but only the strongly impressed ones which

should be termed as abstracted experiences.
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Noting that

L: experience

   LA:  abstracted experience

M: memory

Then abstracted experience LA and memory M are given by

mappings h, from L to LA and f, from LA to M respectively,

i.e. h: L → LA, f: LA → M, therefore f ° h: L → M.

iii) Inference Based on Memory

Inference is an important function for decision-making,

which is developed on the base of the memorized experiences.

The inference U is generated from M by a mapping np, i.e.

np: M → U. Where np is a mapping developed by knowledge

under the specified environmental stimulus.

3.  FUZZY FORMULATION OF DECISION-MAKING PROCESS

Here, we will consider the formulation of the decision-

making process by referring some definitions on fuzzy algebra

[8] ~ [11] necessary for the argument in this section.

Since the transitive law is not generally satisfied in

human decision-making, the decision-making sequence can not

be expressed by the equivalence relation. Then, it is pro-

posed to describe the process in terms of n-step fuzzy rela-

tion defined by the notion of fuzzy composition and combina-

tion degree defined as a limit of the n-step fuzzy relation

when n → ∞. Relation having a combination degree whose

value specified threshold is an equivalence relation

[12]. If a deicision-making sequence can be expressed by

the fuzzy partial ordering, then the decision-making can be

accomplished by using an extended form of Szpilrajn's theo-

rem, which is derived for the partially ordered set [13].

Thus, all the functions and states in the
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decision-making process should be considered to concern with

fuzziness, which are represented by suffix F.

Then abstracted experience L
  
A
F
 which is mapped through h

from LF can be shown by the fuzzy matrix.

L
  
A
F
 = h(LF) = [m

L
  
A
F
(ai,rj)] (3.1)

where

{ai, i = 1,2,...,n} e AF
{rj, j = 1,2,...,Q} e RF

m
L
  
A
F
:  membership function of fuzzy set of

      abstracted experiences L
  
A
F

After the operation of mapping f, the information on L
  
A
F
 is

all transferred to the memory MF, which is shown as

MF = f(L  
A
F
) = [mMF

(ai,rj)] (3.2)

mMF
:  membership function of memory set MF

Inference based on memory UF which is given from MF by the

mapping np can be also expressed as

UF = np(MF)=[mMF
(ai,rj)] (3.3)

mMF
:  membership function of inference set UF

Now, denote D
  
1
F
 and D

  
2
F by the relation from VF (set of prob-

lems) to AF and the relation defined by (3.6) respectively.

D
  
1
F
 = [mD

  
1
F
(vk,ai)] (3.4)

D
  
2
F = [mD

  
2
F
(ai,rj)] (3.5)

where

{vk, k = 1,2,...,m} e VF
mD

  
2
F
(ai,rj) = max {mMF

(ai,rj), mMF
(ai,rj)} (3.6)
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Notice that a bigger one* between the corresponding two

elements in MF and UF is to be selected as the element of D  
2
F.

It is probably true to consider that the decision matrix

DF is a composition of D  
1
F and D  

2
F, i.e.

DF = D  
1
F ° D

  
2
F (3.7)

so elements of DF can be decided by (3.8) with the definition

of composition of fuzzy relation.

    

m
D
F

v
k
,r

j









 = max

aie AF
min m[

D
1
F

(v
k
,a
i
),m

D
2
F

(a
i
,r

j
)]

k = 1,2,...,m,i = 1,2,...,n, j = 1,2,...,l.
(3.8)

If we have a problem which is the same one experienced

in the past and for which it is memorized that a good result

is obtained by taking a corresponding action, then we have

the same action which was taken in the past. If the decision

is made by memory only, then the decision matrix DF is equal

to D
  
1
F.

4.  FUZZY SIMULATION OF MEMORIZING—AND FORGETTING PROCESSES

4.1.  Experimental Methods for Fuzziness of Memory

In order to make a fuzzy model of a decision making

process, an interesting experiment using playing cards is

schemed. In this section is first explained the experiments

for the study of memorizing processes and the time behavior

of memory. Memory experiments are done by the method of

reproduction, with the following procedure.

_________

*This decision is in the optimistic case. But in the

pessimistic case a smaller one will be taken as the element

of D
  
2
F, then "max" in the equation (3.6) is to be substituted

by "min".
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1) Certain number of cards (for instance 10 or 15 cards)

are sequentially shown to subjects (five ~ seven junior high

school students including two girls) for a certain period of

time (3 sec./card, 6 sec./card, etc.).

2) After a certain time (0 min., 15 min., 30 min.,

60 min., 7 days, etc.), each subject is asked to make an

entry of 0.2, 0.4, 0.6, 0.8, or 1.0 by his own certainty

degree of memory (depending on his subjectivity) in the cells

on a test form, where the number of cells is the same as the

number of displayed cards.

(Notes) The subject is instructed to make an entry

  of 1.0 only for the cards which are certainly

  confirmed of its display.

3) After then, the experimenter makes an entry in the

corresponding cell of the form  for a correct answer,

for incorrect, or   for forgotten, and also the order of the

displayed cards. For example, ♠ 3 in Table 1 indicates that

the degree of memory is 0.6, the order of the displayed card

is the 8th, and the answer is correct. (A full example is

shown in Table 1.)
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4) The procedures 1) ~ 3) are repeated by changing the

displayed time, number of displayed cards, and the class of

cards (experiments 1 ~ 11).

4.2.  Results of Experiments

The results of experiments are illustrated in Figure 2

~Figure 5. Figure 2 explains the memorizing process, which

is composed of the functions h and f defined by (3.1) and

(3.2) respectively and their combined function f°h. The

figure in x-m plane in Figure 2(c) shows the certainty degree

of memory and the ambiguity of fuzziness of memory. That is,

the difference between the maximum and minimum values of the

degree of the initial memory of each card can be considered

as the ambiguity of the mean value for an averaged subject

(cf. the detailed explanation of Section 5.2).

.

The certainty degree of memory decreases, in other words,

the fuzziness of memory increases as time passes. Figure 3

is a schematic figure showing the time variation of the cer-

tainty degree of memory. P1 indicates an ordinary forgetting
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process. P2 is a special model of forgetting process in

which the degree of memory decreases as time goes as well as

the information of memorized element (number, sort, color,

etc.) is partially discharged. P3 shows the process where

the card is not recalled for a while after the displaying

experience, and thereafter begins to appear in memory and

the certainty degree of memory is gradually emphasized. The

process of P3 is concerned with the sharpening phenomena

and the reminiscnese phenomena.

As described in Section 2, the memory is usually depen-

dent upon six factors of (a) ~ (f) relating to the difficulty

of memory, and varies with time. Therefore, the memory

behavior, that is, memorizing-forgetting process can be

shown, in general, as the membership time function m(a,b,c,d,

e,f,t). In Figure 4 ~ Figure 6 which are the experimental

results for time behavior of the certainty degree of memory,

the membership function is simply shown by m(x,t), where x

is the displayed card, and 0 ≤ m(x,t) ≤ 1.0. As is clear

from those figures, the certainty degree of memory of joker

and honor are high, while that of plain cards are low. The

ambiguity of the mean value of memory degree as shown in

Figure 2(c) is naturally variable with time, but the time
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behavior of ambiguity is not drawn in Figure 4 ~ Figure 6

for simplicity. We can find there the two phenomena of

"sharpening" and "levelling". The former is a phenomenon

emphasizing and developing only some special features, while

the latter is to lose its speciality and decay to an averaged

form [4].
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5.  FUZZY SIMULATION OF INFERENCE PROCESS BASED ON MEMORY

5.1. Fuzzy-theoretical Experiments of Inference [17]

Here is explained the experiments for making a fuzzy-

theoretic and information-theoretic model of human inference

process. In this experiment, the playing card is also used

as a material. Number of subjects participated is ten in

total (five males and five females whose ages cover 19

through 29 years). Test arrangements of the cards are of

seven kinds, an example of which is shown in Figure 7.

Experiments are executed by the following procedure.

1. An experimenter selects one of the seven test

arrangements of the cards (4x13=52 cards).

2. At first, all cards are arranged backside up.

3. The experimenter instructs a subject to find the

card of a specific name.*

____________

*The name of the card instructed is determined in a way of

preventing the experimenter's subjectivity.
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4. At each time, the subject selects just one card

which he believes to be the instructed one, and tells the

experimenter its certainty degree in a numerical value [0,1],

and then turns up the card.

5. The experimenter notes in the cells on the test

form (cf. Table 2) the following items, i.e. the name of the

instructed card, the name and the certainty degree of the

card selected by the subject, and also the correctness of

the selected name.

6. Procedures 3, 4, and 5 are repeated until the

subject can guess correctly the instructed card with its
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certainty degree of 1.0, in other words, until the subject

can find completely the arrangement rule of the cards.

The experiments consist of two cases for every subject:

in Case 1 the turned-up card is kept faceside out, and in

Case II the turned-up card is immediately returned over as

it was. (There is an interval of more than two weeks be-

tween Case I and Case II.) In Case I, the arrangement rule

of the cards can be inferred from seeing the turned-up cards,

which means it is not necessary for a subject to keep the

cards in mind since all the turned-up cards can be considered

to be completely memorized, while in Case II the turned-up

cards must be memorized in his mind for the subject to infer

the arrangement rule of the cards. From the results of the

two cases, we can make a comparative investigation of the

inferences with memorizing effort (Case II) and without

memorizing effort (Case I).

5.2.  Results of Experiments

The experimental results are shown in Figure 8 ~

Figure 11. Figure 8 is the result of Case I, and Figure 9

is that of Case II.

Figure 8 and Figure 9 show the certainty degree answered

by the subject in each trial. The value shown by sign

in the figure is the average value of ten subjects for the

same number of trial order. As shown in the figures, the

value of certainty degree expands over a range around the

average value. The range of distribution for ten subjects

may be regarded as the ambiguity of the mean value for an

averaged subject.

5.3.  Relation among the Ouantities of Memory Effect,

Information, and Inference

The difference between the results of Case 1 (cf. Fig. 8)
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and Case II (cf. Fig. 9) can be considered to correspond the

quantity of memory effect to the inference, q. Because, in

Case II against Case I, it is necessary for a subject to

memorize the turned-up cards in order to infer the arrange-

ment rule, so the certainty degree of the turned-up card in

Case II is less worth by the quantity of fuzziness caused by
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memorizing than that in Case I.

The degree of memory effect qi at the ith trial is de-

fined as

q

  

i =
0
    

,

f
I
i

−f
II
i
,










  
f
I
i

−f
II
i

<0

f
I
i

−f
II
i

≥0
, i=1,2,...,NII    (5.1)

where f
  
I
i and f  

II
i  are the certainty degree of the ith trial

card in Case I and that of Case II respectively, and NII is

the total number of turned-up cards before the subject finds

the arrangement rule completely in Case II.

Then, the quantity of memory effect to the inference is

given by

q=

    

qi
i=1

NII

∑ Di, i=1,2,...,NII (5.2)

where     Di is the interval between the ith and i+1th trials

(cf. Fig. 10).
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Next, we consider the quantity of information of the

turned-up card. The subject will select the card by the In-

ference based on the information, which is to be measured de-

pending upon the certainty degree of the cards turned up in

the preceding trials. In Case I, the difference between the

certainty degree of (i+1)th trial and the quantity of infor-

mation obtained in the preceding trials of 0 ~ ith is consi-

dered to be the degree of inference.

The quantity of information of the card is calculated as

follows. In this paper, the nonprobabilistic entropy P, [14]

and [15], basing on the membership function f(xj) of the

event xj is used, i.e.

        

p = −k {f(xj)Inf

j=i

NI

∑ (xj) + f(xj)Inf (xj)} (5.3)

where, in our case, K is a positive constant, NI is the num-

ber of turned-up cards before the subject finds the arrange-

ment rule of the cards completely in Case I, xj is the turned-

up card at the jth trial, and   f =1-f.

     The reason to use such an entropy P defined above is as

follows. Equation (5.3) is defined so that the quantity of

information {    fInff +     fInff} has the maximum value for the event

xj when the state is the most ambiguous, i.e. f(xj)=0.5, [14].

In our experiments, Fig. 8, Fig. 9, and other experimental

results with different arrangements show that the state is

the most ambiguous when f(xj)60.5. For example, in Fig. 9,

the difference between the maximum and minimum values of the

certainty degree at each trial is biggest when f(xj)=0.6~0.8.

Since the difference between the maximum and minimum values at

each trial can be considered as the ambiguity of the mean

value for an averaged subject, and the most ambiguous point

is the one where the difference is the biggest.
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By the above reasons, the quantity of information can be

calculated by fI of Fig. 8 and Equation (5.3), which ts nor-

malized by K=1/NI; then P is as shown the curve in Fig. 11.

Since the results of Case I, fI can be considered to be

developed by the inference based on the quantity of available

information, then the quantity of inference is given by sub-

tracting the entropy of available information calculated by

Equation (5.3) from the results fI. Therefore, the degree of

inference rj is defined as

rj =   
f
I
j

− p
I

j − 1
, j=1,2,...,NI (5.4)

where 
  
P
j−1
I

  is the quantity of information of cards turned-up

until the j-1th trial.

    

P
j−1
I = 1

NI
{

l −1

j−1

∑ fI(xl)InfI(xl) + fI(xl)InfI(xl)},K = 1 / NI (5.5)

Then the quantity of inference r is given by

    

r = rjD
j ,  j=1,2,...,NI

j=1

NI

∑ (5.6)
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where   Dj is the interval between the jth and j+1th trials.

In the above analysis, if fII is used in place of fI,

then the quantity

    

v = vjDj j=1

NII

∑ , j = 1,2,...,NII

    

= (f
II
j

− p
II
j − i

) 
j=1

NII

∑ Dj (5.7)

where 
    

P
j−1
II = − 1

NII
{fII(xl)lnfII

l =1

j−1
∑ (xl) + fII(xl)lnfII(xl)}

(5.8)

will mean the composition of the quantity of inference and the

quantity of memory effect.

6.  CONCLUSIONS

The remarkable results of a series of fuzzy experiments

developed in this paper are summarized as follows:

1. The certainty degree of memory is a membership function

and has its ambiguity which corresponds to the distribu-

tion range of mean values answered by subjects.

2. The certainty degree of memory and its ambiguity are both

time functions dependent on few factors governing the

difficulty of memorizing.

3. Analyzing the results of the two kinds of ingenious ex-

periments for analysis of inference process, and intro-

ducing the nonprobabilistic entropy of information, can

be clarified the relation among the quantity of memory

effect, the quantity of information and the quantity of

pure inference.

The general formation of h,f,g,np, f
I, and fII remains

as a difficult problem in future.  The study of the relation
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among knowledge, quantity of Information, and quantity of

inference will also be needed, where the quantity of informa-

tion of the event used in a general decision-making is great-

ly effected by an individual's knowledge [16]. The research

of decision-making with additional effects by the introduction

of feeling and new Information will be reported in future.
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ON FUZZY ROBOT PLANNING* 

J. A. Goguen 
Computer Science Department 
University of California 

Los Angeles, California 90024 U.S.A. 

INTRODUCTION 

This is not another theoretical paper, giving some as- 

pects of the theory of "fuzzy X's" (where for this author, X 

has included automata, topological spaces, and convex sets). 

Rather, it is an attempt to lay foundations for applying 

fuzziness in highly practical problems of control and com- 

munication. There is little mathematics here, and only a few 

things from computer science; the goals and ideas are treated 

as more important than their technical expressions. There is 

a lot of "philosophy." After considerable experimentation 

with far drier approaches, I am convinced that an exposition 

like that in this paper helps more than it hinders, though 

it does do both. 

Unfortunately, there are no experimental results to 

report. I delayed writing this in the hope that there would 

be, but things just have not worked out that way. Perhaps 

experimental data will exist by the time you read this. In 

any case, they are forthcoming; all our major decisions on 

how to proceed with implementation have been made, and it is 

"just" a matter of getting it done. 

Getting what done? This paper discusses a system for 

using fuzzy hints to get through a maze. Our basic conten- 

tion, which the running system will hopefully prove, is that 

* Research supported by NSF Contract GK-42112 while the author 
was at UCLA, and also at Naropa Institute and the University 
of Colorado, each in Boulder, Colorado. 
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fuzziness, rather than being a problem, can be very useful in 

practical situations. 

Section 1 defines the notion of robustness, and argues 

for its importance. Section 2 discusses some problems with 

and approaches to, natural language understanding. Section 

3 describes the system itself in a general way, including the 

"intermediate representation language" idea, and also dis- 

cusses how to evaluate system performance. Section 4 gives 

more details of how it works, including the "hedge algebra." 

Section 5 contains some conclusions plus some ideas for fur- 

ther work. One particular point is that the system in a sense 

embodies [Zadeh 1973]'s idea of (fuzzy) "linguistic variables." 

I apologize if I have been too enthusiastic or repetitious 

about certain points. 

We do assume previous familiarity with fuzzy sets (see 

[Zadeh 1965]), though we certainly do not use anything as 

fancy as [Goguen 1967]. It might help to have some familiar- 

ity with the "robot planning" literature in artificial intel- 

ligence, primarily (perhaps) for the contrast of its highly 

syntax and logic-based approach with the present paper. 

Some computer science background will help at certain points 

in Section 4. 

This work grew out of the author's earlier (and grander) 

ideas for a "hierarchically organized metaphor using robot" 

HOMEUR [Goguen 1972], and it owes much of its present form to 

the questions, comments and contributions of the UCLA "Fuzzy 

Robot Users Group," especially D. DeAngelis, A. Gershman, 

K. Kim, R. Pottinger, E. Shaket, and J. Tardo, each of whom 

the author very much wishes to thank. He also wants to thank 

the University of Colorado and Naropa Institute, both in 

Boulder, Colorado for assistance and inspiration during the 

preparation of this report. 
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1. ROBUSTNESS 

In this paper robustness means the ability to respond 

without program modification to slightly perturbed, or to 

somewhat inexactly specified situations. This ability would 

seem to be very useful in a variety of applications and is 

moreover characteristic of the way people cope with their en- 

vironment. 

We first illustrate the significance of "slightly perturb- 

ed ... situations" in the above definition. Say a given per- 

son knows how to get through a complex intersection in a very 

efficient way. He will not be distrubed if road construction 

alters, even greatly alters, certain features in essential 

ways. But if an essential feature is altered in an essential 

way, he will have to rethink the situation. In assembly line 

automation, it would be highly desirable for each step to per- 

form its function in spite of the inevitable inaccuracies of 

the positions of objects coming down the line. Standard pro- 

gramming ("rotate 6.14 degrees clockwise, raise 2.02 centime- 

ters") of robot arms etc. certainly does not have this pro- 

perty. See [Ambler-Barrow-Brown-Burstall-Popplestone 1973] 

for an interesting approach which does permit flexibility and 

seems to embody fuzziness. 

Hints are an important illustration of what we mean by 

"inexactly specified situations" in the definition of robust- 

ness. We may give directions for getting around in a city, 

"Go about ten blocks north until you see a drugstore at a stop 

light, then turn rightish, ..." which only very vaguely des- 

cribe the situation, but which are entirely adequate in the 

context where they are to be executed. 
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A key point here is that the inexactness of the descrip- 

tion is not a liability; on the contrary, it is a blessing in 

the sufficient information can be conveyed with less effort. 

That sufficient information can be conveyed with less effort. 

inexactness makes for greater efficiency!

The work reported in this paper is aimed at producing com- 

puter programs which exhibit robustness in situations similar 

to those described above. Our methods include: fuzzy sets; 

careful hierarchical (recursive) organizations; use of proce- 

dures to represent knowledge; actions, etc.; and a semantic 

(i.e., meaning) orientation, including a general goal orienta- 

tion in the system itself (to run the maze). 

We believe that such an approach has wide applicability 

in areas of problem solving and natural language understand- 

ing. The pilot project we discuss in detail is to design a 

"robot" to accept and use vague hints about how to run a maze 

(or, one can think of "hunting for buried treasure" with a 

"treasure map"). 

2. NATURAL LANGUAGE UNDERSTANDING 

We reject the view that a rigid syntactic foundation is 

necessary for natural language understanding. A person can 

often understand sentences (for example from a non-native 

speaker) which are quite ill-structured in a formal grammati- 

cal sense; e.g., 
(1) "The view that will to be rejected, is that it is neces- 

sary a foundation syntactic rigidly, language for to un- 

derstand to have to have." 

In fact, natural language understanding seems to be a 

rather robust affair. Perhaps it is like the navigation 

through a familiar but complex intersection mentioned in the 
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previous section: small changes in non-crucial features are 

easily tolerated. (It is interested to speculate about just 

what "small" means in this situation; i.e., about the "topo- 

logy of English.") 

We take for granted the idea that most words have inher- 

ent fuzziness, that no rigid boundaries can be drawn for their 

use. This is very clear with colors: there is a linear con- 

tinuum of hues between red and yellow. At no point is there 

a clear separation; and declaring intermediate values to be 

"orange" doesn't help either, since the boundaries of orange 

are equally unclear. A more amusing example is to imagine a 

continuum of physical objects between some given chair and 

table, constructed by letting the chair back shrink while its 

seat expands and flattens, and its legs become higher. There 

will be some strange objects in this continuum which cannot 

clearly be assigned to either class. 

The extent to which such phenomena can be modelled by 

fuzzy sets is another question. Quite likely, fuzzy algorithms 

[Zadeh 1968] and "linguistic variables" ([Zadeh 1973]) come 

closer than pure fuzzy sets, tho those are still very useful. 

Probably we have not yet seen the ultimate model, and anyway, 

the choice of model should depend on the precise use to which 

it is put. 

It is evident that context has a tremendous effect on 

meaning, and that it will not do to treat words, or even sen- 

tences, in isolation. Given the proper context, any word can 

have any meaning. It can always be done crudely, by saying 

"In the following, the word X shall mean ...". More limited 

effects can be achieved more subtly, by complex interactions 

between words of the type often called "metaphorical." For 
1. example in 

1. Footnote on bottom of next page. 
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(2) "The landscape of frozen forms is a jagged one, here and 

there rising to great heights of morphemes piled upon 

morphemes, in between sinking to levels only one or two 

morphemes deep." 

"frozen forms" refers to what are often called "idioms" (per. 

haps "now standardized figures of speech" is clearer). 

I suggest that in cases such as (2), we chose the meaning 

which maximizes the overall meaningfulness in the given context. 

For another, simpler example, "green ideas" may not make much 

sense until we think of green as "not yet fully developed; un- 

tried; not yet ripe" etc. On the other hand it might refer to 

the work of a certain painter, who expressed certain ideas in 

the color green. Context can easily render one or the other 

the most meaningful; or something else entirely different. 

This kind of optimization over a set of given fixed meanings 

is not enough to explain everything; we must also consider 

"non-literal" meanings. Thus "frozen" in the Bolinger quota- 

tion does not refer to some physical substance below its mel- 

ting point, and its sense of "fixed, no longer producing a 

fresh response" does not appear in my dictionary. 

One may not wish to have all senses stored in a dictionary; and 

anyway we have to handle "fresh" uses by some sort of "under- 

standing" process rather than by look-up. Metaphorical lan- 

guage seems to dig "inside" the meanings of words, and to 

pick out some characteristics while ignoring others; see 

[Reddy 1972]. 

Under such a maximizing mechanism, there may well not be 

any "meaningless" or "nonsensical" sentences. For example, by 

providing enough context to pick appropriate secondary or meta- 

phorical meanings, we can make fine sense of the following 

I. D. Bolinger, "The Atomization of Meaning," Language, XLI, 
1965, p. 571, as quoted by [Reddy 1972]. 



435
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

J. A. GOGUEN

sentence declared "nonsensical" by [Chomsky 1957], 

(3) "Colorless green ideas sleep furiously." 

It might mean 

(4) "Boring untried ideas are doing nothing in X's mind but 

there is much activity (such as speaking, writing, etc.) 

about them." 

in the context of a few sentences setting a suitable scene. 

Incidentally, [Chomsky 1957] (and [Minsky 1974] which quotes 

it) declare that 

(5) "Furiously sleep ideas green colorless." 

is treated quite differently from (4). But I think that in a 

suitable context, where (4) is meaningful, (5) will be treat- 
2 ed the same . as (4). 

This suggests that the robustness of human language un- 

derstanding rests on a semantic foundation which is more im- 

portant than the syntactic structure. Moreover, a computer 

program which insists on producing an exact parse tree will 

probably do a lot of unnecessary extra work. For example, 

this seems to be true of [Winograd 1972]. We believe that 

fuzziness, robustness, etc. should make things easier, rather 

than harder. But, we do not claim to know how this works for 

natural language in an algorithmic sense; it seems to be a 

difficult problem, and quite possibly its solution will ra- 

dically change the capability of natural language understand- 

ing systems. We do claim some insight into what is needed: 

fuzziness; the maximization principle; and semantic components 

of words. See also [Goguen 1969, 1972, 1974]. 

It might be noted that much of artificial intelligence 

seems to have suffered from an excess concern with syntax at 

2. In fact, from the point of view of poetry (that is of rhy- 
thm, sound, balance &c.), quite possibly (5) is better 
than (4)! 
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the expense of semantics. Many AI programs merely conduct 

exhaustive searches through spaces of formal descriptions, 

without any idea of the "meaning" of what they are doing. It 

is a very important problem to get beyond this, and perhaps a 

very difficult one. 

We do not suggest, however, that syntax is useless. It 

seems to be a kind of scaffolding which aids in the assembly 

of the total semantic structure from the various words as 

building blocks. There may even be situations where a rigid 

syntax is appropriate, such as present day computer languages. 

Yet the vision of a robust programming language which would 

compensate for small errors, has considerable attractiveness, 

especially for non-professional computer users. 

3. SYSTEM OVERVIEW AND OBJECTIVES 

The particular "fuzzy robot planning" system we are work- 

ing on has the following general structure 

English I C 
. IRL . QLISP 

subset 

where: IRL stands for an "intermediate representation lan- 

guage"; I is a (semantic) interpreter into IRL; C is a "com- 

piler"; and QLISP (see [Reboth-Sacerdoti 1973]) is a particu- 

larly attractive programming language in which we can express 

"meanings" as algorithms. 

The subset of English will be suitable for expressing ap- 

propriate kinds of hints. As suggested in the previous 

3. One alleged advantage of rigidity is that it helps to 

catch errors in program conception. (This is, for example, 

visible in LISP, where beginner's conceptual errors often 

show up as incorrect parentheses.) One would hope for ro- 

bust languages which still retain this feature. 
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section, it should not be too rigidly defined. We are still 

unsure of the best way to proceed with this subset and its 

function I, although there are some crude but effective stra- 

tegies available. Our main focus has been on various IRL's 

and C's, of various complexities, to get a concrete feel for 

the general problems involved. The IRL's are rigidly syntac- 

tically defined. Of course, they are intended to express (to 

embody and to convey) definitely fuzzy information, such as 

"fairly far almost South." 

The way in which we intend the system to "run" a maze is 

as follows: it should start by knowing nothing except the 

starting point and that there is a goal. When it reaches a 

node, it will be told the choices of movement which it has at 

the node (e.g. straight, left, or right), and if there are 

landmarks, appropriate information about them. Of course, the 

entire maze will be stored somewhere in the system, but it 

will not be available to the searching algorithm. 

The idea behind having the final output appear in an al- 

gorithmic language is that, if H is a hint for maze M, then 

C(H) will be run on M after compilation, and C(H) can also be 

run on M', M", etc., perturbations of the original M, to test 

for robustness. The same C(H) should work almost as well for 

mazes for which H is only an "almost appropriate hint." In 

future versions, we might want to make use of the possibili- 

ties of C(H) being an algorithm to permit it to stop and re- 

quest more information, to manipulate a data base at run time, 

and so on (any dynamic action). 

It is remarkable how a very simple hint can provide ac- 

curate guidance through a very complex maze. Assuming IRL and 

C rich enough, consider the following, in which the correct 

path can be found with no mis-steps whatsoever! 
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Of course, we can also have landmarks (such as "past the 

large tree"), making IRL a bit more complex, but simplifying 

the task of searching (or "running") in actual practice. 

Note that it is possible to give hints H which are very "mis- 

leading" for M, in that C(H) has to do a lot of backtracking. 

For example, C(H) on 

might end up exploring all of each of the non-straight paths 

before finding the goal. 

The reader may see now that there are many subtle issues 

here, such as: how far to go before giving up on a path 

which becomes increasingly unpromising; how to measure "pro- 

mise"; how to decide when one "segment" of a hint (such as 

"... next go fairly far East then...") has been completed; 

how the measure "fairly far"; and so on. In fact, even for 

very simple IRL's, the problem of finding the most efficient 

C(H) for each given H seems to be very difficult. We do not 

even attempt this. 

There are also the problems of constructing a good H for 

a given M, and of measuring when M' is "close to" M. We do 

not discuss these in this paper. But it will be important 
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that H is a good hint for M when we run C(H) on M, and that 

M' be close to M when we run C(H) on M' as a perturbation of 

M. In general, intuition is a reliable and sufficient guide 

for our present purposes. 

Despite the mathematical difficulties of finding an "op- 

tional" C(H), we have available a good criterion for "ade- 

quacy": compare C(H) on M with the performance B(H) of a hu- 

man being B given H, on M. Of course, B will have to be 

given access to M only step-by-step, just as C is (rather 

than all-at-once as the drawing above). We needn't expect 

C(H) to do better than B(H); if it doesn't do much worse, we 

will be happy. 

The "meta-objective" is to give a concrete example in 

which fuzziness is used in making a problem easier; e.g., to 

show that simple fuzzy hints do better than rigid exact direc- 

tions for maze solving, because (1) they are shorter, and 

(2) they still apply if the maze is slightly different. 

It is clear that we are not discussing a "robot" in the 

literal sinse, but in the metaphorical sense of a way of co- 

ping with distances, directions, landmarks, and so on. How- 

ever, both "fuzzy" and "planning" in this paper's title are 

fairly literal. Fuzziness appears in the hints, in the mazes, 

in the construction of the system, and in our theorizing about 

it. "Planning" refers to the construction of C(H) from H, 

and is similar to other "robot planning" projects in artifi- 

cial intelligence. 

4. SOME DETAILS 

While our system is not yet programmed, many details of 

its construction are clear. First, there is not just one IRL 

and C, but several, embodying more and more complex principles 
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of description of worlds. Moreover, there are many possible 

worlds to which our idea of compiling hints into search al- 

gorithms might be applied. 

We are starting with a very simple IRL called IRL , which 0 
we now describe An element of IRL is just a sequence of . 0 
fuzzy vectors, where a fuzzy vector is a pair consisting of a 

fuzzy length and a fuzzy direction. By a "fuzzy length" we 

mean a fuzzy set of lengths: more precisely, a function 

L:[0,300] . [0,1], where [0,300] is the set of path 

lengths we are considering, between zero and 300 (actually 

only integral values will come up) and [0,1] is the unit in- 

terval, all real numbers between 0 and 1. L(n) will tell the 

appropriateness of L referring to the length n. By a fuzzy 

direction we mean a fuzzy set of directions, that is, a func- 

tion D:S
1

. [0,1], where S
1
is the unit circle, re- 

presented for us with degrees, [0,360] with 0=360. D(d) tells 

the appropriateness of D referring to d. Combining these, 

,L,D. gives a fuzzy value for each vector ,n,d. by multipli- 

cation, L(n) ? D(d). A more general definition of fuzzy vector 

would be a fuzzy set of vectors ,n,d., or easier, a function 

R
2

. [0,1] representing a fuzzy set of vectors ,x,y. in 

the Cartesian plane (R is the real numbers). Our pairs ,L,D.

describe a sub-class of these in a particularly simple and 

convenient way. 

(In algebraic terms IRL is the free semigroup generated , 0 
by the fuzzy vectors, with concatenation as the operation.) 

We intend to generate these fuzzy vectors from an algebra 

of hedges. A few predicates will be given fixed meanings as 

fuzzy sets, such as "long", "short", and the basic directions 

(North, Southeast, etc.); these are constants. A number of 

hedges will be implemented as unary operators. For example, 

"very" in "very long" is a squaring operator in [Zadeh 1972]; 
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more precisely, (very long)(x) = very (long (x)) = (long(x))2; 

"not" work similarly. Sometimes "long" might be a comparative 

concept, "x is long compared to y" (note that y might actually 

be an implicit part of the present context). Then "long" is 

a binary operator in the hedge algebra. We save further de- 

tails for later publications. [Lakoff 1973] described some 

limitations of [Zadeh 1972]'s scheme, and it will be interes- 

ting to see how this works out in practice. 

IRL is a modest extension of IRL permitting free use 
1 0 

of "OR" as a binary corrective. (More precisely, IRL is the 1 
free algebra generated by fuzzy vectors as constants, and 

and OR as binary operations; note that A.B, representing 

"first A then B", already appears in IRL .) The kind of 
0 

English sentence this represents is 

"First go Southeast a short way, or else Northeast, 

and then go pretty far South; or you could just go 

far straight South." 

Further refinements would permit iterations, while loops, un- 

til 's, landmarks, etc. See example (H) in Section 3. 

It is possible and interesting to include hedge algebra 

directly into IRL's. This leads to a more complex algebra of 

descriptions of fuzzy paths; in effect it is a concrete em- 

bodiment of [Zadeh 1973]'s notion of linguistic variables!

I think that this opens up some quite interesting and poten- 

tially significant areas of research. A typical element of 

such an algebra might be 

,VERY(FAR),ALMOST(SOUTH). ? ,RATHER(NEAR), SOUTHEAST.. 

The purpose of IRL's is to provide a clear target lan- 

guage for the English input, and a source for the compilation 

of search algorithms. Underlying all this must be some defi- 

nite choice of a world in which the search problems are to be 

set and solved. There is considerable scope for choice here; 



442
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

J. A. GOGUEN

but clearly the IRL chosen must be adequate for the world. 

We chose as a basic world a plane square-ruled grid, 100 by 

100, and we have developed some convenient ways of represent- 

ing mazes within this grid. Thus, (M) of section 3 is just 

the kind of thing we consider. 

Now suppose we have H in IRL and M of the sort described 0 
above. How will C(H) deal with M? Again, there are many pos- 

sibilities. We describe in some detail one way of producing 

algorithms from hints; let this compiler be denoted C . 
1 

The basic idea is that C (H) is block structured, with 
1 

one block for each vector in H. In computer science, block 

structuring refers to a nesting of the parts of an algorithm. 

In this case, we cannot be sure that we have gotten the cor- 

rect segment in M for the i
th 

vector of H until we have check- 

ed that the i+1
st 

is correct Thus the part of C (H) which . , 1 
matches the i

th 
vector in H to a segment will have to contain 

the part for the i+1
st

; this leads to the nesting structure. 

In fact, not until the last segment can we be sure: then 

either we find the goal, or we don't. Interestingly enough, 

each block of code has exactly the same internal structure 

(except the first and the last - and they can be made the same 

by a trick) : assuming some given starting point, they look 

for a reasonably straight segment of about the right length 

in about the right direction; success activates a search for 

the next segment (or the goal), to verify this segment; on 

the other hand, failure is reported to the next block up, so 

it can try to find a better starting point. 

Of course, there are lots of details to keep track of. 

We must be sure not to repeat mistakes. "Failure" is not ab- 

solute, but at a certain level, since the match between the 

vector in H and the segment in M is anyway only fuzzy; thus, 

these levels will have to be kept back of, and sometimes 
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readjusted. "Straightness" will be one of the most important 

criteria for remaining in a block, and has to be measured in 

some suitable fuzzy way. We are entitled to assume that H is 

reasonable, i.e., not misleading or contrived. But still, it 

would be nice if C (H) would always find the solution even 1 , 

if H is way off; this is easily achieved by providing re- 

sources to remember failures and to backtrack. 

We can now see more clearly a good standard of perfor- 

mance for C (H); it should do significantly better than a 1 
breadth first (or depth first) search (see [Nilsson 1971]) 

when H fits M. Of course, C (H) will do more computation than 
1 

these methods, since it is trying to use H, and they are not. 

But on the average, the blind search methods will make many 

mistakes, and do a lot more searching (when H matches M). 

The advantage of each block of C (H) having the same 1 
structure, is that C can be given a simple recursive struc- 

1 
ture. It should be easy to write and fast to run on H. 

There is a pretty similar compiler for IRL ; the nesting 
1 

of blocks is no longer just one-within-one, since the OR fea- 

ture provides multiple options for success. 

We have chosen QLISP as object code for compilation be- 

cause of its convenient and powerful features. It has built 

in backtracking, pattern matching, and theorem proving. Of 

course, it runs slower than ordinary LISP (or PL/I, or what- 

ever), though we might use just LISP for the implementation 

of C , which is comparatively simple. 
1 
Unfortunately, I cannot report precise experimental re- 

sults at this writing but it will probably not have escaped 

the reader's attention that I am pretty confident of success. 
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5. CONCLUSIONS AND EXTENSIONS 

The main point we have been trying to make is that fuz- 

ziness, far from being a difficulty, is often a convenience, 

or even an essential, in communication and control processes. 

It might be noted that in ordinary human communications, 

the ability to stretch and modify word meanings is essential. 

There are many more situations occurring in life than we have 

ready-made tags for. Even so simple a word as "chair" has 

all kinds of readily visible complexities to its use. It has 

ambiguity, in that it has more than one distinct area of ap- 

plication (in addition to the usual, we have "Would the chair 

recognize my motion now?" and "Would you like to chair this 

meeting?"). Vagueness (or fuzziness) we have already discussed 

in Section 2; it is closely related to generality, the possi- 

bility of referring to more than one object. In fact without 

generality, language would be almost impossible. Imagine if 

we had to give each chair a new proper name before we could 

talk about it! As far as "stretchiness" is concerned, note 

that some people make a living designing objects they call 

"chairs," but in which other people might sit with only the 

greatest reluctance. The concept of "chair" is constantly 

evolving, in fact. While our system does not (yet) exhibit 

evolution, it should clearly exhibit the usefulness of vague- 

ness even in purely mechanical situations. 

We believe this is only a beginning, that there are very 

many uses for vagueness in special languages for controlling 

processes. For example, consider navigation systems and ma- 

chine tool controllers. It is not just that the fuzziness is 

easier for humans (the way they usually describe processes), 

but it is actually more efficient for the machines too.i We 

must give up the idea that "more exact" is always better, at 



445
FUZZY SETS AND THEIR APPLICATIONS

Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura

J. A. GOGUEN

least in communication situations. 

We have already mentioned some extensions we are consi- 

dering for our work. Obviously we can experiment with more 

complex IRL's, and other kinds of compilers into search al- 

gorithms. We can design fancy evaluation experiments, and we 

can apply them also to human performance in these tasks. Per- 

haps we could figure out the kinds of algorithms people ac- 

tually use. We could also develop system capabilities for 

interaction, dialogue, display, and learning, each of which 

would add a new dimension and raise interesting questions. 

An area where more research is needed, is the translation 

from English into IRL's, and the design of IRL's maximally ap- 

propriate for this process. Our initial crude approach will 

be closer to cataloguing some translations of IRL's into 

English. 

We also have mentioned adding "landmarks" to the problem; 

that is, providing further information than just what the al- 

ternatives are at each node, and whether or not the goal has 

been reached. There could be a property list at each node, 

giving (for example) a COLOR. This could of course be fuzzy. 

Or it might be exact (a wavelength) while the description of 

what we are looking for is vague (e.g., RED). Some nodes 

might be labelled DRUGSTORE or GASSTATION, and we might con- 

sider giving fuzzy information about these landmarks at near- 

by nodes (e.g., "possible drugstore three squares straight 

ahead"). A "tower" might be more or less visible from various 

distances. And so on and so on. The question of how to 

"best" use such information in searching needs further in- 

vestigation. (Note this information is available only at run 

time, not at compile time.) 

The approach could be applied to entirely different types 

of problem from maze running, ranging from machine tool 
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programming to game playing. Landmarks would be much more 

important here than for the simple world of IRL . 0 
I regard the fact that there are so many questions and 

possibilities as highly encouraging. Obviously, this is only 

an initial approach to a large territory. 
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ABSTRACT

The present paper discusses a classification algorithm

of multicategory classifiers which is based on fuzzy logic

and can be used even if statistical independency of pattern

vectors is violated. The algorithm is comparatively simple

and requires an unusually short time for learning. We also

consider the memory systems that recall entities stored in

an associative manner. Entities are stored in the form of

fuzzy matrix and are recalled by fuzzy logic according to

the conditional probability of each category. A computer

simulation is made in English character reading and its

results are presented.

1.  INTRODUCTION

Events occurring in the real world can be classified

into three categories; deterministic, probabilistic and

fuzzy events. In a pattern recognition system, patterns are

usually probabilistic rather than deterministic because

patterns themselves occur probabilistically or patterns are

generally affected by random noise from poor printing, dirt

on the paper, etc. If statistical information regarding

input patterns is available, statistical or probabilistic

decision making is useful and powerful in recognition of

the patterns. Therefore, statistical approaches to pattern
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recognition have been discussed and widely adopted by many

authors. However, the situation is often encountered where

no a priori information is available or where the theory of

a large number cannot be used. Furthermore, in a learning

system, its probability model must be inferred from the

training set. That is, the training patterns as well as the

test patterns must satisfy some statistical assumptions such

as probability distributions. In a practical situation,

however, one could hardly expect the distribution of the

patterns to correspond precisely to the distribution assumed.

In addition, it is often unreasonable to assume the statis-

tical independency of the components of pattern vectors,

whereas the independency has been assumed in most pattern

recognition systems. Chow [2],[3] has presented the non-

linear categorizer under the assumption that each element

depends only on its nearest neighbors.

From various points of view as mentioned above, pattern

recognition is considered essentially fuzzy, because there

exists no precise boundary between categories. Particularly

in the case where the number of sample patterns is small

and where the statistical independency cannot be assumed, a

fuzzy decision process is useful in classification of

unknown patterns and yields rather simple methods of classi-

fication.

Fuzzy set concepts and fuzzy algorithms proposed by

Zadeh have been developed since 1965, and they have been

applied to various fields; pattern recognition, automata

theory, control systems, language, etc. Zadeh [8], [9], [10]

has discussed the advantage of using the fuzzy sets concept

in engineering systems and studied its algorithms. Wee and

Fu [7] have formulated a class of fuzzy automata and discussed

its application to pattern recognition with non-supervised
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learning. In their pattern recognition system, the decision

is made according to the grade of membership functions of

each category and the learning is performed by the fuzzy

automata.

The present paper deals with a class of pattern recog-

nition using fuzzy logic. Input patterns are usually given

as deterministic data although they may contain some fuzzi-

ness, and the output decision is also deterministic. Gen-

erally, patterns are presented on mosaic cells corresponding

to retina, and each cell gives a logic "1" output if the

pattern lies mainly in the cell and a logic "0" output

otherwise. It is sometimes difficult to decide whether the

pattern lies mainly in the cell or not. From this point of

view, it is preferable to employ multi-valued logic for

feature extraction instead of two-valued logic, although the

former is comparatively difficult to be handled, particularly

in hardware. Thus we assume that input data are determinis-

tic. The classification process should be fuzzy instead.

We consider, therefore, the fuzzy decision process under the

assumption where the input and output of the systems are

deterministic.

We note that probability often reflects the degree of

belongingness of patterns to each category in pattern recog-

nition systems, because a measure of uncertainty is often

associated with it. In our system, therefore, the classifi-

cation criteria are based on the maximization of the possible

certainty of correct classification according to the prob-

ability.

Some of the advantages of our system are as follows:

(i) The system is flexible and easily extendable.

(ii) The learning algorithm is simple and requires a

comparatively short time for learning.
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(iii) Classification can be made even in the case where

no statistical property of input patterns is

available. (The learning is essentially nonpara-

metric.)

(iv) The system is realizable with hardware.

Association is a well known function of the human brain

to accumulate information and read-out the accumulated en-

tities. Nakano [6] has proposed a model of associative

memory called the Associatron, which is considered a digi-

tized Perceptron. Kohonen [4] studied the analog memory

similar to the Associatron using the correlation matrix.

The associative memory considered here consists of fuzzy

matrices based on the probability of occurrence of each

component. In the memory, information is stored in a dis-

tributed fashion so that stored information can be recalled

even when a part of the memory is destroyed. A computer

simulation is made with English characters and two types of

associative memories are presented.

2.  MULTICATEGORY PATTERN CLASSIFICATION

As is described in the introduction, the decision of

categories is deterministic although the classification

process is fuzzy. Thus, the decision is made based on the

maximum grade of membership. That is, if af(X) = max mf(X),
m

then pattern X is decided to be from category Ca, where 
mf(X)

is a grade of membership of category Cm (m=1,...,R) for

pattern X.

Let X = (x1,...,xn) be an n-dimensional (preprocessed)

pattern vector taking value +1 or –1 and mY = (my1,...,
myn)

be an n-dimensional direct fuzzy output for category Cm.

Also, let mF = {mfij} be a fuzzy matrix for category Cm.
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Now we will consider the simple fuzzy classifier with

an external teacher as shown in Figure 1. Preprocessed

pattern X is applied to fuzzy processor G consisting of

fuzzy matrices mG = {mgij}. Since the output of this pro-

cessor mY = (my1,...,
myn) should be fuzzy, the non-fuzzy

output for category Cm, nm is assumed to be the maximum of
myj, i.e.

nm = 
  j
max nyj. (1)

As described before, pattern X is decided to be from category

Ca if

nm = 
    m
max nm. (2)

Define the direct fuzzy output myj by

myj = 
  i
max min(xi,      

m
g ij

l ). (3)

The learning behavior is reflected by having fuzzy matrices
mG l and their elements 

      

m
g ij

l  are obtained by the iterative

process as follows:
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m
g ij

l (t+1) = 
      
a
ij
l (t)

      

m
g ij

l (t) + (1–
      
a
ij
l (t))f(X [ Cm). (4)

where 
      

m
g ij

l (t) denotes 
      

m
g ij

l  at the t–th iteration in a

learning phase, and f(u) = 1 if u is true and 0 otherwise.

Set

      
aij

l (t) = 1 – 
    

1
N(t,xi = 1,xj = l)

, (5)

where N(t, xi=1, xj= l) is the number of patterns of which
the elements xi=1 and xj= l up to the t–th iteration. Then
we have

      

m
g ij

l  ≡ 
  t→ ∞
lim  

      

m
g ij

l (t) = prob(X [ Cm|xi=1, xj = l). (6)

That is, 
      

m
g ij

l (t) converges to the probability where X be-

longs to Cm given xi=1 and xj= l. It is known, therefore,
that pattern classification in this simple system is made

according to the conditional probability of all of the

components pairwise as follows:

myj = 
  i
max min(xi,

      

m
g ij

l )

= 
  i
max(0,

      

m
g ij

l ) = 
  i
max

      

m
g ij

l

(xi=1)

= 
  i
max prob(X [ Cm|xi,xj) ≡ yj

(1). (7)

(xi=1)

Next, we consider matrices mH l = {
      

m
h ij

l } which are ob-

tained by the iterative manner similar to that in obtaining
mG l such as

      

m
h ij

l  = 
  t→ ∞
lim =

      

m
h ij

l (t)
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m
h ij

l (t+1) = 
      
bij

l (t)
      

m
h ij

l (t) + (1– 
      
bij

l (t))f(X [ Cm), (8)

where

      
bij

l (t) = 1 – 
    

1
N(t,xi = 1,xj = l)

, (9)

Using mHl, we define 
    

m
yj
'  as

    

m
yj
'  = 

  i
min max(xi,      

m
h ij

l ). (1O)

Since

      

m
h ij

l  = prob(X [ Cm|xi=0, xj= l), (ll)

we have

    

m
yj
' = 

  i
min max(1,

      

m
h ij

l )

(xi=0)

= 
  i
min

      

m
h ij

l

(xi=0)

= 
  i
min prob(X [ Cm|xi,xj). (12)

(xi=0)

It is reasonable to introduce the compound system de-

fined as

myj = max[
  i
max prob(X [ Cm|xi,xj), 

  i
max prob(X [ Cm|xi,xj)].

(xi=1) (xi=0)

(13)

Considering that

  i
min prob(X [ Cm|xi,xj) = 1 – 

  i
max prob(X [ Cm|xi,xj),

(xi=0) (xi=0)
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we have from (13)
myj = 

  i
max prob(X [ Cm xi,xj) (14)

= max(yj
(1),yj

(0)), (15)

where

yj
(0)= 1 –

    

m
yj
'• (16)

Note that

    

m
gij
1  = 

    

m
gij
1

(17)

    

m
hij
0  = 

    

m
hij
0

and that

    

m
gij
0  = 1 – 

    

m
hij
1 . (18)

From (7) and (1O), we can write

yj
(1) = max[

  i
max min(xi,    

m
gij
1 ), 

  i
max min(xi,    

m
gij
0 )]

(xi=0) (xi=1)

yj
(0) = 1 – min[

  i
min max(xi,    

m
hij
1 ), 

  i
min max(xi,    

m
hij
0 )]

 (xi=0)  (xi=0)

= max[max min(1–xi, 1–    

m
hij
1 ), max min(1–xi, 1–    

m
hij
0 )].

Here we introduce trigonometric matrices   G  and   H  in order to

omit redundant elements such as
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m
g
ij
1 =

m
g
ij
1




   fori≥ j

         
0      fori< j

m
h
ij
0 =

m
h
ij
0




   fori≥ j

         
1      fori< j

m
g
ij
0 =

m
g
ij
0




   fori< j

              
fori≥ j

m
h
ij
1 =

m
h
ij
1




   fori< j

         
1      fori≥ j.



























(20)

Using these matrices, the following fuzzy output myj is ob-

tained from (15) and (19).

yj = max[
    

m
y
j
(1),

    

m
y
j
(0)]

(21)

= max[
    

m
j
j
(1),

    

m
j
j
(0)]

where

    

m
j
j
(1) = max[

  i
max min(xi,

    
mg
ij
1 ), 

  i
max min(1–xi,

    

m
h
ij
1 )]

 (xi=1)  (xi=0)

(22)

    

m
j
j
(0) = max[

  i
max min(xi,

    

m
g
ij
0 ), 

  i
max min(1–xi,1–

    

m
h
ij
0 )].

(xi=1) (xi=0)

Equation (22) can be rewritten as follows:

      

m
j
j
(l) = max[max min(xi, 

      
mg
ij
l ), max min(1–xi,1–

      
mh
ij
l )]

= 
  
1
2 +   

1
2 max[  i

max min(2xi-1,2
      
mg
ij
l -1),

= 
  i
min max(2xi-1,2

      
mh
ij
l -1)]. (23)
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Let X' = (x1',...,xn') be the new pattern vector of which

the components xi' = 2xi-1 take the value 1 or —1, and 
mFl be

fuzzy matrices such as mFl = mG—l' + mH—l' — 1 (l=2l'-1). Then

considering (20), we have

myj = max[max min(xi', 
      
mf
ij
l ), —min max(xi', 

      
mf
ij
l )]. (24)

Also, we have the learning algorithm of obtaining matrices
mFl as follows:

      

m
f
ij
l (t + 1) =

a
ij
1 (t)

m
fij(t) + (1 − a

ij
1 (t))f(X'∈ Cm)

fori ≥ j

a
ij
−1(t)m

fij(t) − (1 − a
ij
−1(t))f(X'∈ Cm)

fori < j















(25)

where

    
    
a
ij
m (t) = 1 − 1

N(t, ′xi ′xm = m) (26)

Note that 
      
mf
ij
l  is positive if i ^ j, for l = 1 or if i < j

for l = —1, and negative otherwise, and |
      
mf
ij
l | takes value

between 0 and 1.

The structure of the compound system is shown in

Figure 2.
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3. ASSOCIATIVE MEMORIES I

Associative memories are considered distributed memories

as discussed in the introduction. Let Xm = (xm
1,...,x

m
n) be

n-dimensional input patterns, where xj takes value 1 or –1.

The input patterns are accumulated on memory elements in the

form of fuzzy matrix F, and recalled by the key input

Qm = (q1
m
,...,q

m
n) corresponding to pattern X

m. In the re-

calling process, qi is given to the associative memory,

taking value 1, –1 or 0. Known elements take the value 1 or

–1 and unknown (or forgotten) elements take the value 0.

Figure 3 illustrates pattern A given on the 5 x 6 mosaic

cells, where shaded, white and zero cells indicate 1, –1

and 0, respectively. Even if the incomplete pattern as

shown in Figure 3(b) is applied to the memory as a key input,

the associative memory should recall the accumulated pattern

shown in Figure 3(a). In this case key input Qm can be con-

sidered as a variation of accumulated pattern Xm. In the

associative memory, therefore, forgotten elements of a

pattern are recalled by using n'(<n) known elements. The

structure of the associative memories is shown in Figure 4.
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Let Zm = (zm
1,...,z

m
n) be the recalled pattern when key

input Qm is applied. The recall of a particular zm
j is made by

zj = c[max min(|qm
i|,f

l
ij) + min max(1-|q

m
i|,f

l
ij)]  (27)

where

    

c(u) =
1
0

−1
          

if u > 1 + d

if 1 − d ≤ u ≤ 1 + d

if 1 − d > u.







Fuzzy matrices F  are obtained iteratively as

fl
ij(t+1) = g

l
i(t)f

l
ij(t) + (1–g

l
i(t))f(xj=1).  (28)

Now, we will show that the recalled pattern is con-

structed based on the maximum conditional probability of

occurrence of the pattern elements.

Set

gl
i(t) = 1 – 

    

1
N(t,xi = l)

  ,

where N(t,xi=l) is the number of patterns of which the ele-

ments xi = l up     the t–th iteration in the learning phase.

Then, we have
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fl
ij = 

  
lim
k→ ∞

 fl
ij(t) = prob(qj=1|qi=l) •    (30)

From (28) and (30),

  
max
i

 min(|qi|,f
l
ij) =   

max
i

(0,fl
ij) =   

max
i

 prob(qj=1|qi)

  
min
i

 max(1–|qi|,f
l
ij) =   

min
i

(1,fl
ij) =   

min
i

 prob(qi=1|qi)

                    = 1 – 
  
max
i

 prob(qJ=-1|qi).

Note that |qi| becomes 1 if the i
-th element is known and 0

otherwise. Therefore,

z
    
m
j= c[

  
max
i

 prob(qj=1|qi) — 
  
max
i

 prob(qj=–1qi) + 1]

or

    

z
j
m =

1 if   max
i

prob(qj = 1|qi) > max
i

prob(qj = −1|qi) + d

0 if   |max
i

prob(qj = 1|qi) − max
i

prob(qj = −1|qi)|≤ d

−1 if   max
i

prob(qj = −1|qi) > max
i

prob(qj = 1|qi) + d.













  (31)

That is, forgotten elements are recalled by comparison of

the maximum probabilities of being 1 and –1.

Consider the special case where complete pattern X is

applied as a key input. In this case,

    

f
jj
l = lim

t→ ∞
f
jj
l (t) =

1

0







for l = 1

for l = -1.
  (32)

Since

  
max
i

 min(|qm
i|,f

l
ij) = 1

  
min
i

 max(1–|qm
i|,f

l
ij) = 0,
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zm
j is always 1 even if the corresponding element q

m
j is –1.

To circumvent this incorrect recall, we use new fuzzy matrices

Fl' of which the element Fl'
ij is

Fl'
ij = (l-2ε)Fl

ij + ε  for i ≠ j,    (33)

where 0 ≤ ε ≤ 1.  Using these matrices, therefore, we have

zm
j = c[max min(|qm

i|,F
l'
ij)  + min max(1–|q

m
i|,F

l'
ij)]

      
=

c[1 + c1]
c[c2 + 0]





for l = 1
for l = −1,

where c1 ≤ ε and c2 ≤ 1 – ε. If ε > d, then

    

z
j
m =

1

−1

if q
j
m = 1

if q
j
m = −1.











   (34)

This means that elements of the recalled pattern are

those of the corresponding key input or that known elements

give the same output as themselves.

If we set ε = 0 and d > 0, however, equation (34) does

not hold. In this case, the recalled pattern may be the

corresponding original pattern even if the key input is

partially wrong. That is, the memory may have the ability

to correct input patterns according to a set of conditional

probabilities.

4.  ASSOCIATIVE MEMORIES II

Here we consider another type of associative memory

that has the ability to memorize sequences of patterns. Such

a memory is called a dynamic associative memory. The struc-

ture of such a memory is similar to that discussed before

but has feedback loops as shown in Figure 5. In a learning
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phase, patterns are presented to the memory system in a

given sequence. Each pattern in the sequence is recalled by

a key pattern which is usually the top in the sequence. If

a sequence of characters A, B, C, D, E is stored, then the

output of the system is B, C, D, E when key pattern A' cor-

responding to A is given.

It can be conjectured that the probability of correct

recall generally becomes large with increase of memory

capacity used. However, one of the most important things in

constructing such an associative memory is that the memory

capacity should be small, so long as the probability of

correct recall is comparatively high.

Now, we define the grade of membership fj and gj, where

zj(t+1) takes values 1 and –1, respectively, by

fj(t+1) = 
  i
max min[|qi(t)|,f

l
ij]   (35)

gj(t+1) = 
  i
max min[|qi(t)|, 1-f

l
ij]

= 1 — min max[1-|qi(t)|,f
l
ij],
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where qi is the i
–th element of input pattern Q(t) and fl

ij
is the grade of membership where zj(t+1) = 1 for qi(t) = l.

Since, in the dynamic associative memory, the stored contents

are pattern sequences, the (t+1)st recalled pattern depends

on not only the t-th pattern but also the patterns which

appeared up to time t. Then, let us introduce the n-th order

grade of membership where zj(t+1) takes value 1 defined in

the iterative form as follows:

fj
(n)(t+1) = max[

  
max
i

 min[|qi(t)|,
(1)fl

ij],fj
(n–1)(t)]

fj
(n–1)(t) = max[

  
max
i

 min[|qi(t–1)|,
(2)fl

ij],fj
(n–2)(t–1)]

. .

. .

. .

fj
(1)(t–n+2) = max[

  
max
i

 min[ qi(t–n+1) ,
(n)fij],fj

(0)(t–n+1)]

fj
(0)(t–n+2) = 0.

In the same manner, the n–th order grade of membership,

gj
(n)(t+1) where zj(t+1) takes value –1 is defined as

gj
(n)(t+1) = 1 – hj

(n)(t+1)

hj
(n)(t+1) = min[

  
min
i

 max[1-|qi(t)|,
(1)fl

ij],hj
(n–1)(t)]

. .

. .    (37)

. .

hj
(k)(t–n+k) = min[

  
min
i

 max[1-|qi(t–n+k-1)|,
(n-k+1)h

    i
l
j],

    hj
(k-1)(t–n+k-1)]

. .

. .

. .

hj
(0)(t–n+1) = 1.
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Since the outputs are non-fuzzy, the recalled pattern Z(t+1)

is decided by

    

zj(t + 1) =

1 if   f
j
(n)(t + 1) > g

j
(n)(t + 1) + d

0 if   |f
j
(n)(t + 1) − g

j
(n)(t + 1)|< d

−1 if   f
j
(n)(t + 1) < g

j
(n)(t + 1) − d.














  (39)

The learning algorithm of obtaining (n)fl
ij is

(n)f
ij(t+1) = al

i
(n)fl

ij(t) + (1–al
i)f(xj(t+1)=1),   (40)

where

al
i(t) = 1 – 

    

1
N(t,xi = l)

   (l =1 or -1)

N(t,xi= l) = the number of patterns of which the

            element xi = l up to t.

Therefore, the values of (k)fl
ij after learning becomes

(k)fl
ij(M) = prob(xj(t+1)=1|xi(t–k+1) = l),   (41)

where M is the number of patterns appeared in the sequences.

The schematic diagram of the dynamic associative memory

is shown in Figure 6. The notations used in the figure are

as follows:

Y = {|xi|},   Y={1–|xi|}, 
(n)F = {(n)fl

ij}, 
(n)H = {(n)hl

ij},

  
o = max min and   

o = min max.

5.  COMPUTER SIMULATION

5.1.  Pattern Classification

The patterns used in the computer experiments are
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handwritten English characters A, B,...,Z. They are given

on 9 x 11 mosaic cells as shown in Figure 7(a). Each mosaic

cell gives a logic +l output if the letter lies mainly in the

cell and a logic 0 output otherwise. From each pattern on

the mosaic cells S = (s11,...,s119), twenty-five features

x1,x2,...,x25 as shown in Figure 7(b) are extracted to reduce

the dimensions.

The original 9 x 11 features should be used for general

pattern recognition. Since the probability of correct recog-

nition depends upon the variation of handwritten characters,

we made several experiments to study the recognition perform-

ance of the classifier. Examples of handwritten characters

used are shown in Figure 8.

Firstly, we made a computer simulation of classifying

five characters A, B, C, D, E using the original (no prepro-

cessed) patterns on 5 x 6 mosaic cells. Twenty-five (five
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for each class) handwritten characters were prepared. When

all of the characters were used for learning, the classifier

showed the 1OO% correct recognition. When ten (two for each)

characters are used for learning and the remaining fifteen

for test, the correct recognition rate was 93%. The mis-

classified character was D as shown in Figure 9(a). This

misrecognition arises from the fact that in both A and D the

pair of s13 and s53 take value 1 as shown in Figure 3(a).

Such a misrecognition is the main disadvantage of the classi-

fier, because the decision is actually made by one pair of

elements, although the algorithm is simple. To avoid such

a misrecognition, much more features should be used. How-

ever, this type of error is not peculiar to the classifier

discussed here, and it can be considered that the classifier

still has comparatively good performance in classifying

handwritten characters.
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Secondly, 780 English characters A, B,...,Y, Z (30 for

each character) were tested using the filter detecting lines

and points of the patterns. The thirty extracted features

are shown in Figure 7(b). The result is that the probability

of correct recognition was 93%, although random classifica-

tion of them is l/26 x 1OO = 3.9%. The mean values and

variances are given in Table 1. Figure 10 plots the probab-

ility of correct recognition vs. the number of categories.

Thirdly, we used 26 x 3 = 78 characters written by one

person. In handwritten character reading, it is comparatively

easy for the classifier to recognize characters of a parti-

cular person, because their variation is much smaller so

long as he does not intentionally write in a different hand.

Since the learning time of the classifier proposed is

quite short, the following procedure is useful for the prac-

tical application of the classifier.
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Step 1 Before one uses the classifier, all his hand-

written characters should be presented to it.

Step 2 The classifier is organized by the learning of

the presented characters.

Step 3 The classifier is ready to be used.

Step 4 When another person uses the classifier, the

classifier must relearn his handwriting.

In our experiment, a graphic display with a light pen

was used as an input device and all English characters A, B,

...,Z were presented three times for learning. Our expert-

mental results are shown in Figure 11.

5.2.  Associative Memories

In the experiments, we used five numerals 1, 2, 3, 4, 5

and five English characters A, B, C, D, E. These characters

are given on 5 x 6 mosaic cells and the output of each cell

is directly applied to the memory system as a feature.

Examples of recalled patterns and their key inputs are il-

lustrated in Figure 12. Figure 13 shows the accuracy of

recalled patterns r as a function of the correlation coeffi-

cient of memorized patterns and the corresponding key

patterns g

    

r = 1
R

 
1
4n

  (x
i
m + 1)(z

i
m + 1)

i=1

n

∑
m =1

R

∑

g = 1
R

 
1
n
  x

i
mq
i
m

i=1

n

∑
=1

R

∑ .

From Figure 13, it is known that the associative memory can

recall memorized patterns with probability 0.9 even if one

third of all elements are missed.
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In the computer simulation of the dynamic associative

memory, we used three sequences, '1,2,3,4,5', 'A,B,C,D,E' and

'I,J,K,L,M; as shown in Figure 14(a). When two sequences

'1,2,3,4,5' and 'A,B,C,D,E' were used, the memory recalled

the completely correct pattern sequences. The interesting

case was seen when two sequences '1,2,3,4,5' and 'I,J,K,L,M'

were used. In this case, the correct sequence could not be

recalled for key pattern '1' as shown in Figure 14(b). The

explanation is that the pattern '1' and 'I' are the same.

Thus the memory cannot determine whether the following

pattern is '2' or 'B' and gives the pattern similar to both

'2' and 'B'. However, if the other patterns, e.g. '5' or

'M' were given as a key input, the memory could recall the

correct sequences as shown in Figure 14(c).

6.  CONCLUDING REMARKS

We have discussed some applications of fuzzy logic to

learning systems. The pattern classifier considered in this

paper is based on the conditional probability on the assump-

tion of pairwise dependence. The discriminant function is

nonlinear and the learning is nonparametric. Among the

major advantages of our approach are that the algorithm is

comparatively simple and that the learning time required is

rather short.

Two types of associative memories using fuzzy logic have

been also studied. Entities are stored in these memories in

a distributed manner. The advantage of this type of memory

is the ability of memorizing a large number of patterns al-

though the accuracy of recalled patterns decreases with

increasing the number.
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PREFACE

The papers presented in this volume were contributed by participants in
the U.S.-Japan Seminar on Fuzzy Sets and Their Applications, held at the
University of California, Berkeley, in July 1974. These papers cover a broad
spectrum of topics related to the theory of fuzzy sets, ranging from its mathe-
matical aspects to applications in human cognition, communication, decision-
making, and engineering systems analysis.

Basically, a fuzzy set is a class in which there may be a continuum of
grades of membership as, say, in the class of long objects. Such sets underlie
much of our ability to summarize, communicate, and make decisions under
uncertainty or partial information. Indeed, fuzzy sets appear to play an essen-
tial role in human cognition, especially in relation to concept formation, pat-
tern classification, and logical reasoning.

Since its inception about a decade ago, the theory of fuzzy sets has
evolved in many directions, and is finding applications in a wide variety of
fields in which the phenomena under study are too complex or too ill defined
to be analyzed by conventional techniques. Thus, by providing a basis for a
systematic approach to approximate reasoning, the theory of fuzzy sets may
well have a substantial impact on scientific methodology in the years ahead,
particularly in the realms of psychology, economics, law, medicine, decision
analysis, information retrieval, and artificial intelligence.

The U.S.-Japan Seminar on Fuzzy Sets was sponsored by the U.S.-Japan
Cooperative Science Program, with the joint support of the National Science
Foundation and the Japan Society for the Promotion of Science. In organizing
the seminar, the co-chairmen received considerable help from J.E. O’Connell
and L. Trent of the National Science Foundation; the staff of the Japan Soci-
ety for the Promotion of Science; and D. J. Angelakos and his staff at the
University of California, Berkeley. As co-editors of this volume, we wish also to
express our heartfelt appreciation to Terry Brown for her invaluable assistance
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in the preparation of the manuscript, and to Academic Press for undertaking its
publication.

For the convenience of the reader, a brief introduction to the theory of
fuzzy sets is provided in the Appendix of the first paper in this volume. An
up-to-date bibliography on fuzzy sets and their applications is included at the
end of the volume.

PREFACE
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