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Preface

Since the pioneering work of Harry Markowitz in the 1950s, sophisti-
cated statistical and mathematical techniques have increasingly made
their way into finance and investment management. One might question
whether all this mathematics is justified, given the present state of eco-
nomics as a science. However, a number of laws of economics and finance
theory with a bearing on investment management can be considered
empirically well established and scientifically sound. This knowledge can
be expressed only in the language of statistics and mathematics. As a
result, practitioners must now be familiar with a vast body of statistical
and mathematical techniques.

Different areas of finance call for different mathematics. Investment
management is primarily concerned with understanding hard facts about
financial processes. Ultimately the performance of investment manage-
ment is linked to an understanding of risk and return. This implies the
ability to extract information from time series that are highly noisy and
appear nearly random. Mathematical models must be simple, but with a
deep economic meaning.

In other areas, the complexity of instruments is the key driver behind
the growing use of sophisticated mathematics in finance. There is the need
to understand how relatively simple assumptions on the probabilistic behav-
ior of basic quantities translate into the potentially very complex probabilis-
tic behavior of financial products. Derivatives are the typical example.

This book is designed to be a working tool for the investment man-
agement practitioner, student, and researcher. We cover the process of
financial decision-making and its economic foundations. We present
financial models and theories, including CAPM, APT, factor models,
models of the term structure of interest rates, and optimization method-
ologies. Special emphasis is put on the new mathematical tools that
allow a deeper understanding of financial econometrics and financial
economics. For example, tools for estimating and representing the tails
of the distributions, the analysis of correlation phenomena, and dimen-
sionality reduction through factor analysis and cointegration are recent
advances in financial economics that we discuss in depth.

Xiv



Preface XV

Special emphasis has been put on describing concepts and mathe-
matical techniques, leaving aside lengthy demonstrations, which, while
the substance of mathematics, are of limited interest to the practitioner
and student of financial economics. From the practitioner’s point of
view, what is important is to have a firm grasp of the concepts and tech-
niques, which will allow one to interpret the results of simulations and
analyses that are now an integral part of finance.

There is no prerequisite mathematical knowledge for reading this
book: all mathematical concepts used in the book are explained, starting
from ordinary calculus and matrix algebra. It is, however, a demanding
book given the breadth and depth of concepts covered. Mathematical
concepts are in bolded type when they appear for the first time in the
book, economic and finance concepts are italicized when they appear for
the first time.

In writing this book, special attention was given to bridging the gap
between the intuition of the practitioner and academic mathematical
analysis. Often there are simple compelling reasons for adopting sophisti-
cated concepts and techniques that are obscured by mathematical details;
whenever possible, we tried to give the reader an understanding of the
reasoning behind these concepts. The book has many examples of how
quantitative analysis is used in practice. These examples help the reader
appreciate the connection between quantitative analysis and financial
decision-making. A distinctive feature of this book is the integration of
notions deeply rooted in the practice of investment management with
methods based on finance theory and statistical analysis.

Sergio M. Focardi
Frank J. Fabozzi
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From Art to Engineering in
Finance

t is often said that investment management is an art, not a science.

However since early 1990s the market has witnessed a progressive
shift towards a more industrial view of the investment management pro-
cess. There are several reasons for this change. First, with globalization
the universe of investable assets has grown many times over. Asset man-
agers might have to choose from among several thousand possible
investments from around the globe. The S&P 500 index is itself chosen
from a pool of 8,000 investable U.S. stocks. Second, institutional inves-
tors, often together with their investment consultants, have encouraged
asset management firms to adopt an increasingly structured process
with documented steps and measurable results. Pressure from regulators
and the media is another factor. Lastly, the sheer size of the markets
makes it imperative to adopt safe and repeatable methodologies. The
volumes are staggering. With the recent growth of the world’s stock
markets, total market capitalization is now in the range of tens of tril-
lions of dollars’ while derivatives held by U. S. commercial banks
topped $65.8 trillion in the second quarter of 2003.2

! Exact numbers are difficult to come up with as information about many markets is
missing and price fluctuations remain large.

2 Office of the Comptroller of the Currency, Quarterly Derivatives Report, Second
Quarter 2003.
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INVESTMENT MANAGEMENT PROCESS

The investment management process involves the following five steps:

Step 1: Setting investment objectives

Step 2: Establishing an investment policy

Step 3: Selecting an investment strategy

Step 4: Selecting the specific assets

Step 5: Measuring and evaluating investment performance

The overview of the investment management process described below
should help in understanding the activities that the portfolio manager
faces and the need for the analytical tools that are described in the chap-
ters that follow in this book.

Step 1: Setting Investment Objectives

The first step in the investment management process, setting investment
objectives, begins with a thorough analysis of the investment objectives
of the entity whose funds are being managed. These entities can be clas-
sified as individual investors and institutional investors. Within each of
these broad classifications is a wide range of investment objectives.

The objectives of an individual investor may be to accumulate funds
to purchase a home or other major acquisitions, to have sufficient funds to
be able to retire at a specified age, or to accumulate funds to pay for col-
lege tuition for children. An individual investor may engage the services of
a financial advisor/consultant in establishing investment objectives.

In Chapter 3 we review the different types of institutional investors.
We will also see that in general we can classify institutional investors into
two broad categories—those that must meet contractually specified liabil-
ities and those that do not. We can classify those in the first category as
institutions with “liability-driven objectives” and those in the second cat-
egory as institutions with “nonliability driven objectives.” Some institu-
tions have a wide range of investment products that they offer investors,
some of which are liability driven and others that are nonliability driven.
Once the investment objective is understood, it will then be possible to (1)
establish a “benchmark” or “bogey” by which to evaluate the performance
of the investment manager and (2) evaluate alternative investment strate-
gies to assess the potential for realizing the specified investment objective.

Step 2: Establishing an Investment Policy

The second step in the investment management process is establishing
policy guidelines to satisfy the investment objectives. Setting policy
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begins with the asset allocation decision. That is, a decision must be
made as to how the funds to be invested should be distributed among
the major classes of assets.

Asset Classes

Throughout this book we refer to certain categories of investment prod-
ucts as an “asset class.” From the perspective of a U.S. investor, the con-
vention is to refer the following as traditional asset classes:

m U.S. common stocks

B Non-U.S. (or foreign) common stocks
m U.S. bonds

B Non-U.S. (or foreign) bonds

B Cash equivalents

B Real estate

Cash equivalents are defined as short-term debt obligations that have
little price volatility and are covered in Chapter 2.

Common stocks and bonds are further divided into asset classes.
For U.S. common stocks (also referred to as U.S. equities), the following
are classified as asset classes:

B Large capitalization stocks
B Mid-capitalization stocks
B Small capitalization stocks
H Growth stocks
B Value stocks
By “capitalization,” it is meant the market capitalization of the com-
pany’s common stock. This is equal to the total market value of all of
the common stock outstanding for that company. For example, suppose
that a company has 100 million shares of common stock outstanding
and each share has a market value of $10. Then the capitalization of
this company is $1 billion (100 million shares times $10 per share). The
market capitalization of a company is commonly referred to as the
“market cap” or simply “cap.”

For U.S. bonds, also referred to as fixed-income securities, the fol-
lowing are classified as asset classes:

m U.S. government bonds
B Investment-grade corporate bonds
B High-yield corporate bonds
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® U.S. municipal bonds (i.e., state and local bonds)
B Mortgage-backed securities
B Asset-backed securities

All of these securities are described in Chapter 2, where what is meant by
“investment grade” and “high yield” are also explained. Sometimes, the
first three bond asset classes listed above are further divided into “long
term” and “short term.”

For non-U.S. stocks and bonds, the following are classified as asset
classes:

B Developed market foreign stocks
B Emerging market foreign stocks
B Developed market foreign bonds
B Emerging market foreign bonds

In addition to the traditional asset classes, there are asset classes
commonly referred to as alternative investments. Two of the more pop-
ular ones are hedge funds and private equity.

How does one define an asset class? One investment manager, Mark
Kritzman, describes how this is done as follows:

. some investments take on the status of an asset class simply
because the managers of these assets promote them as an asset
class. They believe that investors will be more inclined to allocate
funds to their products if they are viewed as an asset class rather
than merely as an investment strategy.’

He then goes on to propose criteria for determining asset class status.
We won’t review the criteria he proposed here. They involve concepts
that are explained in later chapters. After these concepts are explained it
will become clear how asset class status is determined. However, it
should not come as any surprise that the criteria proposed by Kritzman
involve the risk, return, and the correlation of the return of a potential
asset class with that of other asset classes.

Along with the designation of an investment as an asset class comes
a barometer to be able to quantify performance—the risk, return, and
the correlation of the return of the asset class with that of another asset
class. The barometer is called a “benchmark index,” “market index,” or
simply “index.”

3 Mark Kritzman, “Toward Defining an Asset Class,” The Journal of Alternative In-
vestments (Summer 1999), p. 79.
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Constraints
There are some institutional investors that make the asset allocation deci-
sion based purely on their understanding of the risk-return characteristics
of the various asset classes and expected returns. The asset allocation
will take into consideration any investment constraints or restrictions.
Asset allocation models are commercially available for assisting those
individuals responsible for making this decision.

In the development of an investment policy, the following factors
must be considered:

m Client constraints
B Regulatory constraints
B Tax and accounting issues

Client-imposed Constraints Examples of client-imposed constraints would
be restrictions that specify the types of securities in which a manager
may invest and concentration limits on how much or little may be
invested in a particular asset class or in a particular issuer. Where the
objective is to meet the performance of a particular market or custom-
ized benchmark, there may be a restriction as to the degree to which the
manager may deviate from some key characteristics of the benchmark.

Regulatory Constraints There are many types of regulatory constraints.
These involve constraints on the asset classes that are permissible and
concentration limits on investments. Moreover, in making the asset allo-
cation decision, consideration must be given to any risk-based capital
requirements. For depository institutions and insurance companies, the
amount of statutory capital required is related to the quality of the
assets in which the institution has invested. There are two types of risk-
based capital requirements: credit risk-based capital requirements and
interest rate-risk based capital requirements. The former relates statu-
tory capital requirements to the credit-risk associated with the assets in
the portfolio. The greater the credit risk, the greater the statutory capi-
tal required. Interest rate-risk based capital requirements relate the stat-
utory capital to how sensitive the asset or portfolio is to changes in
interest rates. The greater the sensitivity, the higher the statutory capital
required.

Tax and Accounting Issues Tax considerations are important for several rea-
sons. First, in the United States, certain institutional investors such as pen-
sion funds, endowments, and foundations are exempt from federal income
taxation. Consequently, the assets in which they invest will not be those
that are tax-advantaged investments. Second, there are tax factors that
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must be incorporated into the investment policy. For example, while a pen-
sion fund might be tax-exempt, there may be certain assets or the use of
some investment vehicles in which it invests whose earnings may be taxed.

Generally accepted accounting principles (GAAP) and regulatory
accounting principles (RAP) are important considerations in developing
investment policies. An excellent example is a defined benefit plan for a
corporation. GAAP specifies that a corporate pension fund’s surplus is
equal to the difference between the market value of the assets and the
present value of the liabilities. If the surplus is negative, the corporate
sponsor must record the negative balance as a liability on its balance
sheet. Consequently, in establishing its investment policies, recognition
must be given to the volatility of the market value of the fund’s portfolio
relative to the volatility of the present value of the liabilities.

Step 3: Selecting a Portfolio Strategy

Selecting a portfolio strategy that is consistent with the investment
objectives and investment policy guidelines of the client or institution is
the third step in the investment management process. Portfolio strate-
gies can be classified as either active or passive.

An active portfolio strategy uses available information and forecast-
ing techniques to seek a better performance than a portfolio that is sim-
ply diversified broadly. Essential to all active strategies are expectations
about the factors that have been found to influence the performance of
an asset class. For example, with active common stock strategies this
may include forecasts of future earnings, dividends, or price-earnings
ratios. With bond portfolios that are actively managed, expectations
may involve forecasts of future interest rates and sector spreads. Active
portfolio strategies involving foreign securities may require forecasts of
local interest rates and exchange rates.

A passive portfolio strategy involves minimal expectational input,
and instead relies on diversification to match the performance of some
market index. In effect, a passive strategy assumes that the marketplace
will reflect all available information in the price paid for securities.
Between these extremes of active and passive strategies, several strategies
have sprung up that have elements of both. For example, the core of a
portfolio may be passively managed with the balance actively managed.

In the bond area, several strategies classified as structured portfolio
strategies have been commonly used. A structured portfolio strategy is
one in which a portfolio is designed to achieve the performance of some
predetermined liabilities that must be paid out. These strategies are fre-
quently used when trying to match the funds received from an invest-
ment portfolio to the future liabilities that must be paid.
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Given the choice among active and passive management, which
should be selected? The answer depends on (1) the client’s or money
manager’s view of how “price-efficient” the market is, (2) the client’s
risk tolerance, and (3) the nature of the client’s liabilities. By market-
place price efficiency we mean how difficult it would be to earn a greater
return than passive management after adjusting for the risk associated
with a strategy and the transaction costs associated with implementing
that strategy. Market efficiency is explained in Chapter 3.

Step 4: Selecting the Specific Assets

Once a portfolio strategy is selected, the next step is to select the specific
assets to be included in the portfolio. It is in this phase of the investment
management process that the investor attempts to construct an efficient
portfolio. An efficient portfolio is one that provides the greatest
expected return for a given level of risk or, equivalently, the lowest risk
for a given expected return.

Inputs Required

To construct an efficient portfolio, the investor must be able to quantify
risk and provide the necessary inputs. As will be explained in the next
chapter, there are three key inputs that are needed: future expected
return (or simply expected return), variance of asset returns, and correla-
tion (or covariance) of asset returns. All of the investment tools
described in the chapters that follow in this book are intended to provide
the investor with information with which to estimate these three inputs.

There are a wide range of approaches to obtain the expected return
of assets. Investors can employ various analytical tools that will be dis-
cussed throughout this book to derive the future expected return of an
asset. For example, we will see in Chapter 18 that there are various
asset pricing models that provide expected return estimates based on
factors that historically have been found to systematically affect the
return on all assets. Investors can use historical average returns as their
estimate of future expected returns. Investors can modify historical
average returns with their judgment of the future to obtain a future
expected return. Another approach is for investors to simply use their
intuition without any formal analysis to come up with the future
expected return.

In Chapter 16, the reason why the variance of asset returns should
be used as a measure of an asset’s risk will be explained. This input can
be obtained for each asset by calculating the historical variance of asset
returns. There are sophisticated time series statistical techniques that
can be used to improve the estimated variance of asset returns that are
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discussed in Chapter 18. Some investors calculate the historical variance
of asset returns and adjust them based on their intuition.

The covariance (or correlation) of returns is a measure of how the
return of two assets vary together. Typically, investors use historical
covariances of asset returns as an estimate of future covariances. But
why is a covariance of asset returns needed? As will be explained in
Chapter 16, the covariance is important because the variance of a port-
folio’s return depends on it and the key to diversification is the covari-
ance of asset returns.

Approaches to Portfolio Construction

Constructing an efficient portfolio based on the expected return for a
portfolio (which depends on the expected return of all the asset returns
in the portfolio) and the variance of the portfolio’s return (which
depends on the variance of the return of all of the assets in the portfolio
and the covariance of returns between all pairs of assets in the portfolio)
are referred to as “mean-variance” portfolio management. The term
“mean” is used because the expected return is equivalent to the “mean”
or “average value” of returns. This approach also allows for the inclu-
sion of constraints such as lower and upper bounds on particular assets
or assets in particular industries or sectors. The end result of the analy-
sis is a set of efficient portfolios—alternative portfolios from which the
investor can select—that offer the maximum expected portfolio return
for a given level of portfolio risk.

There are variations on this approach to portfolio construction.
Mean-variance analysis can be employed by estimating risk factors that
historically have explained the variance of asset returns. The basic princi-
ple is that the value of an asset is driven by a number of systematic factors
(or, equivalently, risk exposures) plus a component unique to a particular
company or industry. A set of efficient portfolios can be identified based
on the risk factors and the sensitivity of assets to these risk factors. This
approach is referred to the “multifactor risk approach” to portfolio con-
struction and is explained in Chapter 19 for common stock portfolio
management and Chapter 21 for fixed-income portfolio management.

With either the full mean-variance approach or the multifactor risk
approach there are two variations. First, the analysis can be performed
by investors using individual assets (or securities) or the analysis can be
performed on asset classes.

The second variation is one in which the input used to measure risk is
the tracking error of a portfolio relative to a benchmark index, rather
than the variance of the portfolio return. By a benchmark index it is
meant the benchmark that the investor’s performance is compared against.
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As explained in Chapter 19, tracking error is the variance of the difference
in the return on the portfolio and the return on the benchmark index.
When this “tracking error multifactor risk approach” to portfolio con-
struction is applied to individual assets, the investor can identify the set of
efficient portfolios in terms of a portfolio that matches the risk profile of
the benchmark index for each level of tracking error. Selecting assets that
intentionally cause the portfolio’s risk profile to differ from that of the
benchmark index is the way a manager actively manages a portfolio. In
contrast, indexing means matching the risk profile. “Enhanced” indexing
basically means that the assets selected for the portfolio do not cause the
risk profile of the portfolio constructed to depart materially from the risk
profile of the benchmark. This tracking error multifactor risk approach to
common stock and fixed-income portfolio construction will be explained
and illustrated in Chapters 19 and 21, respectively.

At the other extreme of the full mean-variance approach to portfolio
management is the assembling of a portfolio in which investors ignore all
of the inputs—expected returns, variance of asset returns, and covariance
of asset returns—and use their intuition to construct a portfolio. We refer
to this approach as the “seat-of-the-pants approach” to portfolio con-
struction. In a rising stock market, for example, this approach is too often
confused with investment skill. It is not an approach we recommend.

Step 5: Measuring and Evaluating Performance

The measurement and evaluation of investment performance is the last step
in the investment management process. Actually, it is misleading to say that
it is the last step since the investment management process is an ongoing
process. This step involves measuring the performance of the portfolio and
then evaluating that performance relative to some benchmark.

Although a portfolio manager may have performed better than a
benchmark, this does not necessarily mean that the portfolio manager
satisfied the client’s investment objective. For example, suppose that a
financial institution established as its investment objective the maximi-
zation of portfolio return and allocated 75% of its funds to common
stock and the balance to bonds. Suppose further that the manager
responsible for the common stock portfolio realized a 1-year return that
was 150 basis points greater than the benchmark.* Assuming that the
risk of the portfolio was similar to that of the benchmark, it would
appear that the manager outperformed the benchmark. However, sup-
pose that in spite of this performance, the financial institution cannot

* A basis point is equal to 0.0001 or 0.01%. This means that 1% is equal to 100 basis
points.
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meet its liabilities. Then the failure was in establishing the investment
objectives and setting policy, not the failure of the manager.

FINANCIAL ENGINEERING IN HISTORICAL PERSPECTIVE

In its modern sense, financial engineering is the design (or engineering)
of contracts and portfolios of contracts that result in predetermined
cash flows contingent to different events. Broadly speaking, financial
engineering is used to manage investments and risk. The objective is the
transfer of risk from one entity to another via appropriate contracts.
Though the aggregate risk is a quantity that cannot be altered, risk can
be transferred if there is a willing counterparty. Just why and how risk
transfer is possible will be discussed in Chapter 23 on risk management.

Financial engineering came to the forefront of finance in the 1980s,
with the broad diffusion of derivative instruments. However the concept
and practice of financial engineering are quite old. Evidence of the use
of sophisticated cross-border instruments of credit and payment dating
from the time of the First Crusade (1095-1099) has come down to us
from the letters of Jewish merchants in Cairo. The notion of the diversi-
fication of risk (central to modern risk management) and the quantifica-
tion of insurance risk (a requisite for pricing insurance policies) were
already understood, at least in practical terms, in the 14th century. The
rich epistolary of Francesco Datini, a 14th century merchant, banker
and insurer from Prato (Tuscany, Italy), contains detailed instructions to
his agents on how to diversify risk and insure cargo.’ It also gives us an
idea of insurance costs: Datini charged 3.5% to insure a cargo of wool
from Malaga to Pisa and 8% to insure a cargo of malmsey (sweet wine)
from Genoa to Southampton, England. These, according to one of
Datini’s agents, were low rates: He considered 12-15% a fair insurance
premium for similar cargo.

What is specific to modern financial engineering is the quantitative
management of uncertainty. Both the pricing of contracts and the opti-
mization of investments require some basic capabilities of statistical
modeling of financial contingencies. It is the size, diversity, and effi-
ciency of modern competitive markets that makes the use of modeling
imperative.

3 Datini wrote the richest medieval epistolary that has come down to us. It includes
500 ledgers and account books, 300 deeds of partnership, 400 insurance policies,
and 120,000 letters. For a fascinating portrait of the business and private life of a
medieval Italian merchant, see Iris Onigo, The Merchant of Prato (London: Penguin
Books, 1963).
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THE ROLE OF INFORMATION TECHNOLOGY

Advances in information technology are behind the widespread adop-
tion of modeling in finance. The most important advance has been the
enormous increase in the amount of computing power, concurrent with
a steep fall in prices. Government agencies have long been using com-
puters for economic modeling, but private firms found it economically
justifiable only as of the 1980s. Back then, economic modeling was con-
sidered one of the “Grand Challenges” of computational science.®

In the late 1980s, firms such as Merrill Lynch began to acquire super-
computers to perform derivative pricing computations. The overall cost
of these supercomputing facilities, in the range of several million dollars,
limited their diffusion to the largest firms. Today, computational facilities
ten times more powerful cost only of a few thousand dollars.

To place today’s computing power in perspective, consider that a
1990 run-of-the-mill Cray supercomputer cost several million U.S. dol-
lars and had a clock cycle of 4 nanoseconds (i.e., 4 billionths of a sec-
ond or 250 million cycles per second, notated as 250 MHz). Today’s fast
laptop computers are 10 times faster with a clock cycle of 2.5 GHz and,
at a few thousand dollars, cost only a fraction of the price. Supercom-
puter performance has itself improved significantly, with top computing
speed in the range of several teraflops’ compared to the several mega-
flops of a Cray supercomputer in the 1990s. In the space of 15 years,
sheer performance has increased 1,000 times while the price-perfor-
mance ratio has decreased by a factor of 10,000. Storage capacity has
followed similar dynamics.

The diffusion of low-cost high-performance computers has allowed
the broad use of numerical methods. Computations that were once per-
formed by supercomputers in air-conditioned rooms are now routinely

¢ Kenneth Wilson, “Grand Challenges to Computational Science,” Future Genera-
tion Computer Systems 5 (1989), p. 171. The term “Grand Challenges” was coined
by Kenneth Wilson, recipient of the 1982 Nobel Prize in Physics, and later adopted
by the U.S. Department Of Energy (DOE) in its High Performance Communications
and Computing Program which included economic modeling among the grand chal-
lenges. Wilson was awarded the Nobel Prize in Physics for discoveries he made in
understanding how bulk matter undergoes “phase transition,” i.e., sudden and pro-
found structural changes. The mathematical techniques he introduced—the renor-
malization group theory—is one of the tools used to understand economic phase
transitions. Wilson is an advocate of computational science as the “third way” of do-
ing science, after theory and experiment.

7 A flops (Floating Point Operations Per Second) is a measure of computational
speed. A Teraflop computer is a computer able to perform a trillion floating point
operations per second.
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performed on desk-top machines. This has changed the landscape of
financial modeling. The importance of finding closed-form solutions and
the consequent search for simple models has been dramatically reduced.
Computationally-intensive methods such as Monte Carlo simulations
and the numerical solution of differential equations are now widely
used. As a consequence, it has become feasible to represent prices and
returns with relatively complex models. Nonnormal probability distri-
butions have become commonplace in many sectors of financial model-
ing. It is fair to say that the key limitation of financial econometrics is
now the size of available data samples or training sets, not the computa-
tions; it is the data that limits the complexity of estimates.

Mathematical modeling has also undergone major changes. Tech-
niques such as equivalent martingale methods are being used in deriva-
tive pricing (Chapter 15) and cointegration (Chapter 11), the theory of
fat-tailed processes (Chapter 13), and state-space modeling (including
ARCH/GARCH and stochastic volatility models) are being used in
econometrics (Chapter 11).

Powerful specialized mathematical languages and vast statistical
software libraries have been developed. The ability to program sequences
of statistical operations within a single programming language has been
a big step forward. Software firms such as Mathematica and Math-
works, and major suppliers of statistical tools such as SAS, have created
simple computer languages for the programming of complex sequences
of statistical operations. This ability is key to financial econometrics
which entails the analysis of large portfolios.®

Presently only large or specialized firms write complex applications
from scratch; this is typically done to solve specific problems, often in
the derivatives area. The majority of financial modelers make use of
high-level software programming tools and statistical libraries. It is dif-
ficult to overestimate the advantage brought by these software tools;
they cut development time and costs by orders of magnitude.

In addition, there is a wide range of off-the-shelf financial applica-
tions that can be used directly by operators who have a general under-
standing of the problem but no advanced statistical or mathematical
training. For example, powerful complete applications from firms such as
Barra and component applications from firms such as FEA make sophisti-
cated analytical methods available to a large number of professionals.

Data have, however, remained a significant expense. The diffusion
of electronic transactions has made available large amounts of data,

8 A number of highly sophisticated statistical packages are available to economists.
These packages, however, do not serve the needs of the financial econometrician who
has to analyze a large number of time series.
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including high-frequency data (HFD) which gives us information at the
transaction level. As a result, in budgeting for financial modeling, data
have become an important factor in deciding whether or not to under-
take a new modeling effort.

A lot of data are now available free on the Internet. If the required
granularity of data is not high, these data allow one to study the viabil-
ity of models and to perform rough tuning. However, real-life applica-
tions, especially applications based on finely grained data, require data
streams of a higher quality than those typically available free on the
Internet.

INDUSTRY'S EVALUATION OF MODELING TOOLS

A recent study by The Intertek Group’ tried to assess how the use of
financial modeling in asset management had changed over the highly
volatile period from 2000 to 2002. Participants in the study included 44
heads of asset management firms in Europe and North America; more
than half were from the biggest firms in their home markets.

The study found that the role of quantitative methods in the invest-
ment decision-making process had increased at almost 75% of the firms
while it had remained stable at about 15% of the firms; five reported
that their process was already essentially quantitative. Demand pull and
management push were among the reasons cited for the growing role of
models. The head of risk management and product control at an inter-
national firm said, “There is genuinely a portfolio manager demand pull
plus a top-down management push for a more systematic, robust pro-
cess.” Many reported that fund managers have become more eager con-
sumers of modeling. “Fund managers now perceive that they gain
increased insights from the models,” the head of quantitative research at
a large northern European firm commented.

In another finding, over one half of the participants evaluated that
models had performed better in 2002 than two years ago; some 20%
evaluated 2002 model performance to be stable with respect to the previ-
ous two years while another 20% considered that performance worsened.
Performance was widely considered to be model-dependent. Among
those that believed that model performance had improved, many attrib-
uted better performance to a better understanding of models and the
modeling process at asset management firms. Some firms reported hav-

? Caroline Jonas and Sergio Focardi, Trends in Quantitative Methods in Asset Man-
agement, 2003, The Intertek Group, Paris, 2003.
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ing in place a formal process in which management was systematically
trained in modeling and mathematical methods.

The search for a silver bullet typical of the early days of “rocket sci-
ence” in finance has passed; modeling is now widely perceived as an
approximation, with the various models shedding different light on the
same phenomena. Just under 60% of the participants in the 2002 study
indicated having made significant changes to their modeling approach
from 2000 to 2002; for many others, it was a question of continuously
recalibrating and adapting the models to the changing environment.!”

Much of the recent attention on quantitative methods has been
focused on risk management—a relatively new function at asset man-
agement firms. More than 80% of the firms participating in the Intertek
study reported a significant evolution of the role of risk management
from 2000 to 2002. Some of the trends revealed by the study included
daily or real-time risk measurement and the splitting of the role of risk
management into two separate functions, one a support function to the
fund managers, the other a central control function reporting to top
management. These issues will be discussed in Chapter 23.

In another area which is a measure of an increasingly systematic
process, more than 60% of the firms in the 2002 study reported having
formalized procedures for integrating quantitative and qualitative input,
though half mentioned that the process had not gone very far and 30%
reported no formalization at all. One way the integration is being han-
dled is through management structures for decision-making. A source at
a large player in the bond market said, “We have regularly scheduled
meetings where views are expressed. There is a good combination of
views and numbers crunched. The mix between quantitative and quali-
tative input will depend on the particular situation. For example, if
models are showing a 4 or § standard deviation event, fundamental
analysis would have to be very strong before overriding the models.”

Many firms have cast integration in a quantitative framework. The
head of research at a large European firm said, “One year ago, the inte-
gration was totally fuzzy, but during the past year we have made the
integration extremely rigorous. All managers now need to justify their
statements and methods in a quantitative sense.” Some firms are priori-
tizing the inputs from various sources. A business manager at a Swiss
firm said, “We have recently put in place a scoring framework which
pulls together the gut feeling of the fund manager and the quantitative

19 Financial models are typically statistical models that have to be estimated and cal-
ibrated. The estimation and calibration of models will be discussed in Chapter 23.
The above remarks reflect the fact that financial models are not “laws of nature” but
relationships valid only for a limited span of time.
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models. We will be taking this further. The objective is to more tightly
link the various inputs, be they judgmental or model results.”

Some firms see the problem as one of model performance evalua-
tion. “The integration process is becoming more and more institutional-
ized,” said the head of quantitative research at a big northern European
firm. “Models are weighted in terms of their performance: if a model
has not performed so well, its output is less influential than that of mod-
els which have performed better.”

In some cases, it is the portfolio manager himself who assigns weights
to the various inputs. A source at a large firm active in the bond markets
said, “Portfolio managers weight the relative importance of quantitative
and qualitative input in function of the security. The more complex the
security, the greater the quantitative weighting; the more macro, long-
term, the less the quantitative input counts: Models don’t really help
here.” Other firms have a fixed percentage, such as 50/50, as corporate
policy. Outside of quantitatively run funds, the feeling is that there is a
weight limit in the range of 60-80% for quantitative input. “There will
always be a technical and a tactical element,” said one source.

Virtually all firms reported a partial automation in the handling of
qualitative information, with some 30% planning to add functionality over
and above the filtering and search functionality now typically provided by
the suppliers of analyst research, consensus data and news. About 25% of
the participants said that they would further automate the handling of
information in 2003. The automatic summarization and analysis of news
and other information available electronically was the next step for several
firms that had already largely automated the investment process.

INTEGRATING QUALITATIVE AND QUANTITATIVE INFORMATION

Textual information has remained largely outside the domain of quanti-
tative modeling, having long been considered the domain of judgment.
This is now changing as financial firms begin to tackle the problem of
what is commonly called information overload; advances in computer
technology are again behind the change.!!

Reuters publishes the equivalent of three bibles of (mostly financial)
news daily; it is estimated that five new research documents come out of
Wall Street every minute; asset managers at medium-sized firms report
receiving up to 1,000 e-mails daily and work with as many as five

' Caroline Jonas and Sergio Focardi, Leveraging Unstructured Data in Investment
Management, The Intertek Group, Paris, 2002.
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screens on their desk. Conversely, there is also a lack of “digested”
information. It has been estimated that only one third of the roughly
10,000 U.S. public companies are covered by meaningful Wall Street
research; there are thousands of companies quoted on the U.S.
exchanges with no Wall Street research at all. It is unlikely the situation
is better relative to the tens of thousands of firms quoted on other
exchanges throughout the world. Yet increasingly companies are pro-
viding information, including press releases and financial results, on
their Web sites, adding to the more than 3.3 billion pages on the World
Wide Web as of mid-2003.

Such unstructured (textual) information is progressively being
transformed into self-describing, semistructured information that can be
automatically categorized and searched by computers. A number of
developments are making this possible. These include:

B The development of XML (eXtensible Markup Language) standards
for tagging textual data. This is taking us from free text search to que-
ries on semi-structured data.

B The development of RDF (Resource Description Framework) stan-
dards for appending metadata. This provides a description of the
content of documents.

B The development of algorithms and software that generate taxonomies
and perform automatic categorization and indexation.

B The development of database query functions with a high level of
expressive power.

B The development of high-level text mining functionality that allows
“discovery.”

The emergence of standards for the handling of “meaning” is a
major development. It implies that unstructured textual information,
which some estimates put at 80% of all content stored in computers,
will be largely replaced by semistructured information ready for
machine handling at a semantic level. Today’s standard structured data-
bases store data in a prespecified format so that the position of all ele-
mentary information is known. For example, in a trading transaction,
the date, the amount exchanged, the names of the stocks traded and so
on are all stored in predefined fields. However, textual data such as
news or research reports, do not allow such a strict structuring. To
enable the computer to handle such information, a descriptive metafile
is appended to each unstructured file. The descriptive metafile is a struc-
tured file that contains the description of the key information stored in
the unstructured data. The result is a semistructured database made up
of unstructured data plus descriptive metafiles.
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Industry-specific and application-specific standards are being devel-
oped around the general-purpose XML. At the time of this writing,
there are numerous initiatives established with the objective of defining
XML standards for applications in finance, from time series to analyst
and corporate reports and news. While it is not yet clear which of the
competing efforts will emerge as the de facto standards, attempts are
now being made to coordinate standardization efforts, eventually
adopting the ISO 15022 central data repository as an integration point.

Technology for handling unstructured data has already made its
way into the industry. Factiva, a Dow Jones-Reuters company, uses
commercially available text mining software to automatically code and
categorize more than 400,000 news items daily, in real time (prior to
adopting the software, they manually coded and categorized some
50,000 news articles daily). Users can search the Factiva database which
covers 118 countries and includes some 8,000 publications, and more
than 30,000 company reports with simple intuitive queries expressed in
a language close to the natural language. Suppliers such as Multex use
text mining technology in their Web-based research portals for clients
on the buy and sell sides. Such services typically offer classification,
indexation, tagging, filtering, navigation, and search.

These technologies are helping to organize research flows. They
allow to automatically aggregate, sort, and simplify information and
provide the tools to compare and analyze the information. In serving to
pull together material from myriad sources, these technologies will not
only form the basis of an internal knowledge management system but
allow to better structure the whole investment management process.
Ultimately, the goal is to integrate data and text mining in applications
such as fundamental research and event analysis, linking news, and
financial time series.

PRINCIPLES FOR ENGINEERING A SUITE OF MODELS

Creating a suite of models to satisfy the needs of a financial firm is engi-
neering in full earnest. It begins with a clear statement of the objectives.
In the case of financial modeling, the objective is identified by the type of
decision-making process that a firm wants to implement. The engineering
of a suite of financial models requires that the process on which decisions
are made is fully specified and that the appropriate information is sup-
plied at every step. This statement is not as banal as it might seem.

We have now reached the stage where, in some markets, financial
decision-making can be completely automated through optimizers. As we
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will see in the following chapters, one can define models able to construct
a conditional probability distribution of returns. An optimizer will then
translate the forecast into a tradable portfolio. The manager becomes a
kind of high-level supervisor of an otherwise automated process.

However, not all financial decision-making applications are, or can
be, fully automated. In many cases, it is the human operator who makes
the decision, with models supplying the information needed to arrive at
the decision. Building an effective suite of financial models requires
explicit decisions as to (1) what level of automation is feasible and
desirable and (2) what information or knowledge is required.

The integration of different models and of qualitative and quantita-
tive information is a fundamental need. This calls for integration of dif-
ferent statistical measures and points of view. For example, an asset
management firm might want to complement a portfolio optimization
methodology based on Gaussian forecasting with a risk management
process based on Extreme Value Theory (see Chapter 13). The two pro-
cesses offer complementary views. In many cases, however, different
methodologies give different results though they work on similar princi-
ples and use the same data. In these cases, integration is delicate and
might run against statistical principles.

In deciding which modeling efforts to invest in, many firms have in
place a sophisticated evaluation system. “We look at the return on
investment [ROI] of a model: How much will it cost to buy the data
necessary to run the model? Then we ask ourselves: What are the factors
that are remunerated? Our decision on what data to buy and where to
spend on models is made in function of what indicators are the most
‘remunerated,”” commented the head of quantitative management at a
major European asset management firm.

SUMMARY

B The investment management process is becoming increasingly struc-
tured; the objective is a well-defined, repeatable investment process.

B This requires measurable objectives and measurable results, financial
engineering, risk control, feedback processes and, increasingly, knowl-
edge management.

B In general, the five steps in the investment management process are set-
ting investment objectives, establishing an investment policy, selecting
an investment strategy, selecting the specific assets, and measuring and
evaluating investment performance.
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Changes in the investment management business are being driven by
the explosion in the universe of investable assets brought about by glo-
balization, investors, and especially institutional investors and their
consultants, pressure from regulators and the media, and the sheer size
of the markets.

Given the size, diversity, and efficiency of modern markets, a more dis-
ciplined process can be achieved only in a quantitative framework.
Key to a quantitative framework is the measurement and management
of uncertainty (i.e., risk) and financial engineering.

Modeling is the tool to achieve these objectives; advances in informa-
tion technology are the enabler.

Unstructured textual information is progressively being transformed
into self-describing, semistructured information, allowing a better
structuring of the research process.

After nearly two decades of experience with quantitative methods,
market participants now more clearly perceive the benefits and the lim-
its of modeling; given today’s technology and markets, the need to bet-
ter integrate qualitative and quantitative information is clearly felt.






Overview of Financial Markets,
Financial Assets, and Market
Participants

In a market economy, the allocation of economic resources is driven by
the outcome of many private decisions. Prices are the signals that
direct economic resources to their best use. The types of markets in an
economy can be divided into (1) the market for products (manufactured
goods and services), or the product market; and (2) the market for the
factors of production (labor and capital), or the factor market. Our pri-
mary application of the mathematical techniques presented in this book
is to one part of the factor market, the market for financial assets, or,
more simply, the financial market. In this chapter we review the basic
characteristics and functions of financial assets and financial markets,
the major players in the financial market, and the major financial assets
(common stock, bonds, and derivatives).

FINANCIAL ASSETS

An asset is any possession that has value in an exchange. Assets can be
classified as tangible or intangible. The value of a tangible asset depends
on particular physical properties—examples include buildings, land, or
machinery. Tangible assets may be classified further into reproducible
assets such as machinery, or nonreproducible assets such as land, a
mine, or a work of art. Intangible assets, by contrast, represent legal
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claims to some future benefit. Their value bears no relation to the form,
physical or otherwise, in which the claims are recorded.

Financial assets (also referred to as financial instruments, or securi-
ties) are intangible assets. For these instruments, the typical future bene-
fit comes in the form of a claim to future cash. The entity that agrees to
make future cash payments is called the issuer of the financial asset; the
owner of the financial asset is referred to as the investor.

The claims of the holder of a financial asset may be either a fixed
dollar amount or a varying, or residual, amount. In the former case, the
financial asset is referred to as a debt instrument. Bonds and bank loans
are examples of debt instruments. An equity claim (also called a residual
claim) obligates the issuer of the financial asset to pay the holder an
amount based on earnings, if any, after holders of debt instruments have
been paid. Common stock is an example of an equity claim. A partner-
ship share in a business is another example. Some financial assets fall
into both categories. Preferred stock, for example, represents an equity
claim that entitles the investor to receive a fixed dollar amount. This
payment is contingent, however, due only after payments to debt instru-
ment holders are made. Another instrument is convertible bonds, which
allow the investor to convert debt into equity under certain circum-
stances. Both debt and preferred stock that pays a fixed dollar amount
are called fixed income instruments.

Financial assets serve two principal economic functions. First, finan-
cial assets transfer funds from those parties who have surplus funds to
invest to those who need funds to invest in tangible assets. As their sec-
ond function, they transfer funds in such a way as to redistribute the
unavoidable risk associated with the cash flow generated by tangible
assets among those seeking and those providing the funds. However, the
claims held by the final wealth holders generally differ from the liabili-
ties issued by the final demanders of funds because of the activity of
entities operating in financial markets, called financial intermediaries,
who seek to transform the final liabilities into different financial assets
preferred by the public. We discuss financial intermediaries later in this
chapter.

Financial assets possess the following properties that determine or
influence their attractiveness to different classes of investors: (1) money-
ness; (2) divisibility and denomination; (3) reversibility; (4) term to
maturity; (5) liquidity; (6) convertibility; (7) currency; (8) cash flow and
return predictability; and (9) tax status.

1 Some of these properties are taken from James Tobin, “Properties of Assets,” un-
dated manuscript, Yale University.
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Some financial assets act as a medium of exchange or in settlement
of transactions. These assets are called money. Other financial assets,
although not money, closely approximate money in that they can be
transformed into money at little cost, delay, or risk. Moneyness clearly
offers a desirable property for investors. Divisibility and denomination
divisibility relates to the minimum size at which a financial asset can be
liquidated and exchanged for money. The smaller the size, the more the
financial asset is divisible.

Reversibility, also called round-trip cost, refers to the cost of invest-
ing in a financial asset and then getting out of it and back into cash
again. For financial assets traded in organized markets or with “market
makers,” the most relevant component of round-trip cost is the so-
called bid-ask spread, to which might be added commissions and the
time and cost, if any, of delivering the asset. The bid-ask spread consists
of the difference between the price at which a market maker is willing to
sell a financial asset (i.e., the price it is asking) and the price at which a
market maker is willing to buy the financial asset (i.e., the price it is bid-
ding). The spread charged by a market maker varies sharply from one
financial asset to another, reflecting primarily the amount of risk the
market maker assumes by “making” a market. This market-making risk
can be related to two main forces.

One is the variability of the price as measured, say, by some measure
of dispersion of the relative price over time. The greater the variability,
the greater the probability of the market maker incurring a loss in excess
of a stated bound between the time of buying and reselling the financial
asset. The variability of prices differs widely across financial assets. The
second determining factor of the bid-ask spread charged by a market
maker is what is commonly referred to as the thickness of the market,
which is essentially the prevailing rate at which buying and selling orders
reach the market maker (i.e., the frequency of transactions). A “thin
market” sees few trades on a regular or continuing basis. Clearly, the
greater the frequency of orders coming into the market for the financial
asset (referred to as the “order flow”), the shorter the time that the finan-
cial asset must be held in the market maker’s inventory, and hence the
smaller the probability of an unfavorable price movement while held.
Thickness also varies from market to market. A low round-trip cost is
clearly a desirable property of a financial asset, and as a result thickness
itself is a valuable property. This attribute explains the potential advan-
tage of large over smaller markets (economies of scale), and a market’s
endeavor to standardize the instruments offered to the public.

The term to maturity, or simply maturity, is the length of the inter-
val until the date when the instrument is scheduled to make its final pay-
ment, or the owner is entitled to demand liquidation. Maturity is an



24 The Mathematics of Financial Modeling and Investment Management

important characteristic of financial assets such as debt instruments.
Equities set no maturity and are thus a form of perpetual instrument.
Liquidity serves an important and widely used function, although no
uniformly accepted definition of liquidity is presently available. A useful
way to think of liquidity and illiquidity, proposed by James Tobin, is in
terms of how much sellers stand to lose if they wish to sell immediately
against engaging in a costly and time consuming search.? Liquidity may
depend not only on the financial asset but also on the quantity one
wishes to sell (or buy). Even though a small quantity may be quite lig-
uid, a large lot may run into illiquidity problems. Note that liquidity
again closely relates to whether a market is thick or thin. Thinness
always increases the round-trip cost, even of a liquid financial asset. But
beyond some point it becomes an obstacle to the formation of a market,
and directly affects the illiquidity of the financial asset.

An important property of some financial assets is their convertibility
into other financial assets. In some cases, the conversion takes place
within one class of financial assets, as when a bond is converted into
another bond. In other situations, the conversion spans classes. For
example, with a corporate convertible bond the bondholder can change
it into equity shares. Most financial assets are denominated in one cur-
rency, such as U.S. dollars or yen or euros, and investors must choose
them with that feature in mind. Some issuers have issued dual-currency
securities with certain cash flows paid in one currency and other cash
flows in another currency.

The return that an investor will realize by holding a financial asset
depends on the cash flow expected to be received, which includes divi-
dend payments on stock and interest payments on debt instruments, as
well as the repayment of principal for a debt instrument and the
expected sale price of a stock. Therefore, the predictability of the
expected return depends on the predictability of the cash flow. Return
predictability, a basic property of financial assets, provides the major
determinant of their value. Assuming investors are risk averse, as we
will see in later chapters, the riskiness of an asset can be equated with
the uncertainty or unpredictability of its return.

An important feature of any financial asset is its tax status. Govern-
mental codes for taxing the income from the ownership or sale of finan-
cial assets vary widely if not wildly. Tax rates differ from year to year,
country to country, and even among municipalities or provinces within
a country. Moreover, tax rates may differ from financial asset to finan-
cial asset, depending on the type of issuer, the length of time the asset is
held, the nature of the owner, and so on.

2 Tobin, “Properties of Assets.”
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FINANCIAL MARKETS

Financial assets are traded in a financial market. Below we discuss how
financial markets can be classified and the functions of financial mar-
kets.

Classification of Financial Markets

There are five ways that one can classify financial markets: (1) nature of
the claim, (2) maturity of the claims, (3) new versus seasoned claims, (4)
cash versus derivative instruments, and (5) organizational structure of
the market.

The claims traded in a financial market may be either for a fixed
dollar amount or a residual amount and financial markets can be classi-
fied according to the nature of the claim. As explained earlier, the
former financial assets are referred to as debt instruments, and the
financial market in which such instruments are traded is referred to as
the debt market. The latter financial assets are called equity instruments
and the financial market where such instruments are traded is referred
to as the equity market or stock market. Preferred stock represents an
equity claim that entitles the investor to receive a fixed dollar amount.
Consequently, preferred stock has in common characteristics of instru-
ments classified as part of the debt market and the equity market. Gen-
erally, debt instruments and preferred stock are classified as part of the
fixed income market.

A second way to classify financial markets is by the maturity of the
claims. For example, a financial market for short-term financial assets is
called the money market, and the one for longer maturity financial
assets is called the capital market. The traditional cutoff between short
term and long term is one year. That is, a financial asset with a maturity
of one year or less is considered short term and therefore part of the
money market. A financial asset with a maturity of more than one year
is part of the capital market. Thus, the debt market can be divided into
debt instruments that are part of the money market, and those that are
part of the capital market, depending on the number of years to matu-
rity. Because equity instruments are generally perpetual, a third way to
classify financial markets is by whether the financial claims are newly
issued. When an issuer sells a new financial asset to the public, it is said
to “issue” the financial asset. The market for newly issued financial
assets is called the primary market. After a certain period of time, the
financial asset is bought and sold (i.e., exchanged or traded) among
investors. The market where this activity takes place is referred to as the
secondary market.
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Some financial assets are contracts that either obligate the investor
to buy or sell another financial asset or grant the investor the choice to
buy or sell another financial asset. Such contracts derive their value
from the price of the financial asset that may be bought or sold. These
contracts are called derivative instruments and the markets in which
they trade are referred to as derivative markets. The array of derivative
instruments includes options contracts, futures contracts, forward con-
tracts, swap agreements, and cap and floor agreements.

Although the existence of a financial market is not a necessary con-
dition for the creation and exchange of a financial asset, in most econo-
mies financial assets are created and subsequently traded in some type of
organized financial market structure. A financial market can be classi-
fied by its organizational structure. These organizational structures can
be classified as auction markets and over-the-counter markets. We
describe each type later in this chapter.

Economic Functions of Financial Markets
The two primary economic functions of financial assets were already dis-
cussed. Financial markets provide three additional economic functions.

First, the interactions of buyers and sellers in a financial market
determine the price of the traded asset; or, equivalently, the required
return on a financial asset is determined. The inducement for firms to
acquire funds depends on the required return that investors demand, and
this feature of financial markets signals how the funds in the economy
should be allocated among financial assets. It is called the price discovery
process. Whether these signals are correct is an issue that we discuss
when we examine the question of the efficiency of financial markets.

Second, financial markets provide a mechanism for an investor to
sell a financial asset. This feature offers liquidity in financial markets, an
attractive characteristic when circumstances either force or motivate an
investor to sell. In the absence of liquidity, the owner must hold a debt
instrument until it matures and an equity instrument until the company
either voluntarily or involuntarily liquidates. Although all financial
markets provide some form of liquidity, the degree of liquidity is one of
the factors that differentiates various markets.

The third economic function of a financial market reduces the
search and information costs of transacting. Search costs represent
explicit costs, such as the money spent to advertise the desire to sell or
purchase a financial asset, and implicit costs, such as the value of time
spent in locating a counterparty. The presence of some form of orga-
nized financial market reduces search costs. Information costs are
incurred in assessing the investment merits of a financial asset, that is,
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the amount and the likelihood of the cash flow expected to be gener-
ated. In an efficient market, prices reflect the aggregate information col-
lected by all market participants.

Secondary Markets

The secondary market is where already-issued financial assets are
traded. The key distinction between a primary market and a secondary
market is that in the secondary market the issuer of the asset does not
receive funds from the buyer. Rather, the existing issue changes hands in
the secondary market, and funds flow from the buyer of the asset to the
seller. Below we explain the various features of secondary markets.
These features are common to any type of financial instrument traded.

It is in the secondary market where an issuer of securities, whether
the issuer is a corporation or a governmental unit, may be provided
with regular information about the value of the security. The periodic
trading of the asset reveals to the issuer the consensus price that the
asset commands in an open market. Thus, firms can discover what value
investors attach to their stocks, and firms and noncorporate issuers can
observe the prices of their bonds and the implied interest rates investors
expect and demand from them. Such information helps issuers assess
how well they are using the funds acquired from earlier primary market
activities, and it also indicates how receptive investors would be to new
offerings.

The other service a secondary market offers issuers is that it pro-
vides the opportunity for the original buyers of the asset to reverse their
investment by selling it for cash. Unless investors are confident that they
can shift from one financial asset to another as they may deem neces-
sary, they would naturally be reluctant to buy any financial asset. Such
reluctance would harm potential issuers in one of two ways: either issu-
ers would be unable to sell new securities at all or they would have to
pay a high rate of return, as investors would demand greater compensa-
tion for the expected illiquidity of the securities.

Investors in financial assets receive several benefits from a secondary
market. Such a market obviously offers them liquidity for their assets as
well as information about the assets’ fair or consensus values. Further,
secondary markets bring together many interested parties and so can
reduce the costs of searching for likely buyers and sellers of assets.
Moreover, by accommodating many trades, secondary markets keep the
cost of transactions low. By keeping the costs of both searching and
transacting low, secondary markets encourage investors to purchase
financial assets.
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Perfect Market

In order to explain the characteristics of secondary markets, we will first
describe a “perfect market” for a financial asset. Then we can show how
common occurrences in real markets keep them from being theoretically
perfect.

In general, a perfect market results when the number of buyers and
sellers is sufficiently large, and all participants are small enough relative
to the market so that no individual market agent can influence the com-
modity’s price. Consequently, all buyers and sellers are price takers, and
the market price is determined where there is equality of supply and
demand. This condition is more likely to be satisfied if the commodity
traded is fairly homogeneous (for example, corn or wheat).

There is more to a perfect market than market agents being price
takers. It is also required that there are no transaction costs or impedi-
ments that interfere with the supply and demand of the commodity.
Economists refer to these various costs and impediments as “frictions.”
The costs associated with frictions generally result in buyers paying
more than in the absence of frictions, and/or sellers receiving less.

In the case of financial markets, frictions would include:

B Commissions charged by brokers.

B Bid-ask spreads charged by dealers.

B Order handling and clearance charges.

B Taxes (notably on capital gains) and government-imposed transfer fees.

m Costs of acquiring information about the financial asset.

B Trading restrictions, such as exchange-imposed restrictions on the size
of a position in the financial asset that a buyer or seller may take.

B Restrictions on market makers.

B Halts to trading that may be imposed by regulators where the financial
asset is traded.

Role of Brokers and Dealers in Real Markets

Common occurrences in real markets keep them from being theoreti-
cally perfect. Because of these occurrences, brokers and dealers are nec-
essary to the smooth functioning of a secondary market.

One way in which a real market might not meet all the exacting
standards of a theoretically perfect market is that many investors may
not be present at all times in the marketplace. Further, a typical investor
may not be skilled in the art of the deal or completely informed about
every facet of trading in the asset. Clearly, most investors in even
smoothly functioning markets need professional assistance. Investors
need someone to receive and keep track of their orders for buying or
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selling, to find other parties wishing to sell or buy, to negotiate for good
prices, to serve as a focal point for trading, and to execute the orders.
The broker performs all of these functions. Obviously, these functions
are more important for the complicated trades, such as the small or
large trades, than for simple transactions or those of typical size.

A broker is an entity that acts on behalf of an investor who wishes to
execute orders. In economic and legal terms, a broker is said to be an
“agent” of the investor. It is important to realize that the brokerage activ-
ity does not require the broker to buy and hold in inventory or sell from
inventory the financial asset that is the subject of the trade. (Such activity
is termed “taking a position” in the asset, and it is the role of the dealer.)
Rather, the broker receives, transmits, and executes investors’ orders with
other investors. The broker receives an explicit commission for these ser-
vices, and the commission is a “transaction cost” of the capital markets.

A real market might also differ from the perfect market because of
the possibly frequent event of a temporary imbalance in the number of
buy and sell orders that investors may place for any security at any one
time. Such unmatched or unbalanced flow causes two problems. First,
the security’s price may change abruptly even if there has been no shift
in either supply or demand for the security. Second, buyers may have to
pay higher than market-clearing prices (or sellers accept lower ones) if
they want to make their trade immediately.

For example, suppose the consensus price for ABC security is $50,
which was determined in several recent trades. Also suppose that a flow
of buy orders from investors who suddenly have cash arrives in the mar-
ket, but there is no accompanying supply of sell orders. This temporary
imbalance could be sufficient to push the price of ABC security to, say,
$55. Thus, the price has changed sharply even though there has been no
change in any fundamental financial aspect of the issuer. Buyers who
want to buy immediately must pay $55 rather than $50, and this differ-
ence can be viewed as the price of “immediacy.” By immediacy, we
mean that buyers and sellers do not want to wait for the arrival of suffi-
cient orders on the other side of the trade, which would bring the price
closer to the level of recent transactions.

The fact of imbalances explains the need for the dealer or market
maker, who stands ready and willing to buy a financial asset for its own
account (add to an inventory of the security) or sell from its own
account (reduce the inventory of the security). At a given time, dealers
are willing to buy a security at a price (the bid price) that is less than
what they are willing to sell the same security for (the ask price).

In the 1960s, economists George Stigler> and Harold Demsetz* ana-
lyzed the role of dealers in securities markets. They viewed dealers as the
suppliers of immediacy—the ability to trade promptly—to the market.
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The bid-ask spread can be viewed in turn as the price charged by dealers
for supplying immediacy, together with short-run price stability (continu-
ity or smoothness) in the presence of short-term order imbalances. There
are two other roles that dealers play: they provide better price informa-
tion to market participants, and in certain market structures they provide
the services of an auctioneer in bringing order and fairness to a market.’

The price-stabilization role relates to our earlier example of what
may happen to the price of a particular transaction in the absence of
any intervention when there is a temporary imbalance of order. By tak-
ing the opposite side of a trade when there are no other orders, the
dealer prevents the price from materially diverging from the price at
which a recent trade was consummated.

Investors are concerned with immediacy, and they also want to
trade at prices that are reasonable, given prevailing conditions in the
market. While dealers cannot know with certainty the true price of a
security, they do have a privileged position in some market structures
with respect to the flow of market orders. They also have a privileged
position regarding “limit” orders, the special orders that can be exe-
cuted only if the market price of the security changes in a specified way.

Finally, the dealer acts as an auctioneer in some market structures,
thereby providing order and fairness in the operations of the market.
For example, the market maker on organized stock exchanges in the
United States performs this function by organizing trading to make sure
that the exchange rules for the priority of trading are followed. The role
of a market maker in a call market structure is that of an auctioneer.
The market maker does not take a position in the traded security, as a
dealer does in a continuous market.

One of the most important factors that determine the price dealers
should charge for the services they provide (i.e., the bid-ask spread) is
the order processing costs incurred by dealers, such as the costs of
equipment necessary to do business and the administrative and opera-
tions staff. The lower these costs, the narrower the bid-ask spread. With
the reduced cost of computing and better-trained personnel, these costs
have declined over time.

Dealers also have to be compensated for bearing risk. A dealer’s
position may involve carrying inventory of a security (along position) or

3 George Stigler, “Public Regulation of Securities Markets,” Journal of Business
(April 1964), pp. 117-34.

4 Harold Demsetz, “The Cost of Transacting,” Quarterly Journal of Economics
(October 1968), pp. 35-6.

S Robert A. Schwartz, Equity Markets: Structure, Trading, and Performance (New
York: Harper & Row Publishers, 1988), pp. 389-397.
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selling a security that is not in inventory (a short position). There are
three types of risks associated with maintaining a long or short position
in a given security. First, there is the uncertainty about the future price
of the security. A dealer who has a long position in the security is con-
cerned that the price will decline in the future; a dealer who is in a short
position is concerned that the price will rise.

The second type of risk has to do with the expected time it will take
the dealer to unwind a position and its uncertainty. And this, in turn,
depends primarily on the rate at which buy and sell orders for the secu-
rity reaches the market (i.e., the thickness of the market). Finally, while
a dealer may have access to better information about order flows than
the general public, there are some trades where the dealer takes the risk
of trading with someone who has better information® This results in the
better-informed trader obtaining a better price at the expense of the
dealer. Consequently, in establishing the bid-ask spread for a trade, a
dealer will assess whether the trader might have better information.
Some trades that we will discuss below can be viewed as “information-
less trades.” This means that the dealer knows or believes a trade is
being requested to accomplish an investment objective that is not moti-
vated by the potential future price movement of the security.

Market Price Efficiency

The term “efficient” capital market has been used in several contexts to
describe the operating characteristics of a capital market. There is a dis-
tinction, however, between an operationally (or internally) efficient mar-
ket and a pricing (or externally) efficient capital market.” In this section
we describe pricing efficiency.

Pricing efficiency refers to a market where prices at all times fully
reflect all available information that is relevant to the valuation of secu-
rities. That is, relevant information about the security is quickly
impounded into the price of securities. In his seminal review article on
pricing efficiency, Eugene Fama points out that in order to test whether
a market is price efficient, two definitions are necessary.® First, it is nec-
essary to define what it means that prices “fully reflect” information.
Second, the “relevant” set of information that is assumed to be “fully
reflected” in prices must be defined.

¢ Walter Bagehot, “The Only Game in Town,” Financial Analysts Journal (March-
April 1971), pp. 12-14, 22.

7 Richard R. West, “Two Kinds of Market Efficiency,” Financial Analysts Journal
(November-December 1975), pp. 30-34.

8 Eugene F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical
Work,” Journal of Finance (May 1970), pp. 383-417.
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Fama, as well as others, defines “fully reflects” in terms of the
expected return from holding a security. The expected return over some
holding period is equal to expected cash distributions plus the expected
price change, all divided by the initial price. The price formation process
defined by Fama and others is that the expected return one period from
now is a stochastic (i.e., random) variable that already takes into
account the “relevant” information set.

In defining the “relevant” information set that prices should reflect,
Fama classified the pricing efficiency of a market into three forms: weak,
semistrong, and strong. The distinction between these forms lies in the
relevant information that is hypothesized to be impounded in the price
of the security. Weak efficiency means that the price of the security
reflects the past price and trading history of the security. Semistrong effi-
ciency means that the price of the security fully reflects all public infor-
mation (which, of course, includes but is not limited to historical price
and trading patterns). Strong-form efficiency exists in a market where
the price of a security reflects all information, whether or not it is pub-
licly available.

A price-efficient market has implications for the investment strategy
that investors may wish to pursue. Throughout this book, we shall refer
to various active strategies employed by investors. In an active strategy,
investors seek to capitalize on what they perceive to be the mispricing of
a security or securities. In a market that is price efficient, active strate-
gies will not consistently generate a return after taking into consider-
ation transaction costs and the risks associated with a strategy that is
greater than simply buying and holding securities. This has lead inves-
tors in certain markets that empirical evidence suggests are price effi-
cient to pursue a strategy of indexing, which simply seeks to match the
performance of some financial index.

Operational Efficiency

In an operationally efficient market, investors can obtain transaction
services as cheaply as possible, given the costs associated with furnish-
ing those services. Commissions are only part of the cost of transacting
as we noted above. The other part is the dealer spread. Bid-ask spreads
for bonds vary by type of bond. Other components of transaction costs
are discussed below.

In an investment era where one-half of one percentage point can
make a difference when an asset manager is compared against a perfor-
mance benchmark, an important aspect of the investment process is the
cost of implementing an investment strategy. Transaction costs are more
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than merely brokerage commissions—they consist of commissions, fees,
execution costs, and opportunity costs.’

Commissions are the fees paid to brokers to trade securities. Execu-
tion costs represent the difference between the execution price of a secu-
rity and the price that would have existed in the absence of the trade.
Execution costs can be further decomposed into market (or price)
impact and market-timing costs. Market impact cost is the result of the
bid-ask spread and a price concession extracted by dealers to mitigate
their risk that an investor’s demand for liquidity is information-moti-
vated. Market-timing cost arises when an adverse price movement of the
security during the time of the transaction can be attributed in part to
other activity in the security and is not the result of a particular transac-
tion. Execution costs, then, are related to both the demand for liquidity
and the trading activity on the trade date.

There is a distinction between information-motivated trades and
informationless trades. Information-motivated trading occurs when inves-
tors believe they possess pertinent information not currently reflected in
the security’s price. This style of trading tends to increase market impact
because it emphasizes the speed of execution, or because the market
maker believes a desired trade is driven by information and increases the
bid-ask spread to provide some protection. It can involve the sale of one
security in favor of another. Informationless trades are the result of either
a reallocation of wealth or implementation of an investment strategy that
utilizes only existing information. An example of the former is a pension
fund’s decision to invest cash in the stock market. Other examples of
informationless trades include portfolio rebalances, investment of new
money, or liquidations. In these circumstances, the demand for liquidity
alone should not lead the market maker to demand the significant price
concessions associated with new information.

The problem with measuring execution costs is that the true mea-
sure—which is the difference between the price of the security in the
absence of the investor’s trade and the execution price—is not observ-
able. Furthermore, the execution prices are dependent on supply and
demand conditions at the margin. Thus, the execution price may be
influenced by competitive traders who demand immediate execution, or
other investors with similar motives for trading. This means that the
execution price realized by an investor is the consequence of the struc-
ture of the market mechanism, the demand for liquidity by the marginal

? For a further discussion of these costs, see Bruce M. Collins and Frank J. Fabozzi,
“A Methodology for Measuring Transaction Costs,” Financial Analysts Journal
(March-April 1991), pp. 27-36.



34 The Mathematics of Financial Modeling and Investment Management

investor, and the competitive forces of investors with similar motiva-
tions for trading.

The cost of not transacting represents an opportunity cost. Oppor-
tunity costs may arise when a desired trade fails to be executed. This
component of costs represents the difference in performance between an
investor’s desired investment and the same investor’s actual investment
after adjusting for execution costs, commissions, and fees. Opportunity
costs have been characterized as the hidden cost of trading, and it has
been suggested that the shortfall in performance of many actively man-
aged portfolios is the consequence of failing to execute all desired
trades.!* Measurement of opportunity costs is subject to the same prob-
lems as measurement of execution costs. The true measure of opportu-
nity cost depends on knowing what the performance of a security would
have been if all desired trades had been executed at the desired time
across an investment horizon. As these are the desired trades that the
investor could not execute, the benchmark is inherently unobservable

OVERVIEW OF MARKET PARTICIPANTS

With an understanding of what financial assets are and the role of finan-
cial assets and financial markets, we can now identify who the players are
in the financial markets. By this we mean the entities that issue financial
assets and the entities that invest in financial assets. We will focus on one
particular group of market players, called financial intermediaries, because
of the key economic functions that they perform in financial markets. In
addition to reviewing their economic function, we will set forth the basic
asset/liability problem faced by managers of financial intermediaries.

There are entities that issue financial assets, both debt instruments
and equity instruments. There are investors who purchase these finan-
cial assets. This does not mean that these two groups are mutually
exclusive—it is common for an entity to both issue a financial asset and
at the same time invest in a different financial asset.

A simple classification of these entities is as follows: (1) central gov-
ernments; (2) agencies of central governments; (3) municipal govern-
ments; (4) supranationals; (5) nonfinancial businesses; (6) financial
enterprises; and (7) households. Central governments borrow funds for
a wide variety of reasons. Many central governments establish agencies
to raise funds to perform specific functions. Most countries have munic-
ipalities or provinces that raise funds in the capital market. A suprana-
tional institution is an organization that is formed by two or more
central governments through international treaties. Businesses are classi-
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fied into nonfinancial and financial businesses. These entities borrow
funds in the debt market and raise funds in the equity market. Nonfinan-
cial businesses are divided into three categories: corporations, farms,
and nonfarm/noncorporate businesses. The first category includes cor-
porations that manufacture products (e.g., cars, steel, computers) and/or
provide nonfinancial services (e.g., transportation, utilities, computer
programming). In the last category are businesses that produce the same
products or provide the same services but are not incorporated.

Financial businesses, more popularly referred to as financial institu-
tions, provide services related to one or more of the following:

1. Transforming financial assets acquired through the market and consti-
tuting them into a different and more preferable type of asset—which
becomes their liability. This is the function performed by financial
intermediaries, the most important type of financial institution.

2. Exchanging financial assets on behalf of customers.

. Exchanging financial assets for their own account.

4. Assisting in the creation of financial assets for their customers and then

selling those financial assets to other market participants.

. Providing investment advice to other market participants.

6. Managing the portfolios of other market participants.

S8

(2]

Financial intermediaries include: depository institutions that
acquire the bulk of their funds by offering their liabilities to the public
mostly in the form of deposits; insurance companies (life and property
and casualty companies); pension funds; and finance companies. Later
in this chapter we will discuss these entities. The second and third ser-
vices in the list above are the broker and dealer functions. The fourth
service is referred to as securities underwriting. Typically, a financial
institution that provides an underwriting service also provides a broker-
age and/or dealer service.

Some nonfinancial businesses have subsidiaries that provide finan-
cial services. For example, many large manufacturing firms have subsid-
iaries that provide financing for the parent company’s customer. These
financial institutions are called captive finance companies.

Role of Financial Intermediaries

Financial intermediaries obtain funds by issuing financial claims against
themselves to market participants and then investing those funds. The
investments made by financial intermediaries—their assets—can be in
loans and/or securities. These investments are referred to as direct
investments. As just noted, financial intermediaries play the basic role of
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transforming financial assets that are less desirable for a large part of
the public into other financial assets—their own liabilities—which are
preferred more by the public. This transformation involves at least one
of four economic functions: (1) providing maturity intermediation; (2)
risk reduction via diversification; (3) reducing the costs of contracting
and information processing; and (4) providing a payments mechanism.

Maturity intermediation involves a financial intermediary issuing lia-
bilities against itself that have a maturity different from the assets it
acquires with the fund raised. An example is a commercial bank that
issues short-term liabilities (i.e., deposits) and invests in assets with a
longer maturity than those liabilities. Maturity intermediation has two
implications for financial markets. First, investors have more choices con-
cerning maturity for their investments; borrowers have more choices for
the length of their debt obligations. Second, because investors are reluctant
to commit funds for a long period of time, they will require that long-term
borrowers pay a higher interest rate than on short-term borrowing. In con-
trast, a financial intermediary will be willing to make longer-term loans,
and at a lower cost to the borrower than an individual investor would, by
counting on successive deposits providing the funds until maturity
(although at some risk as discussed below). Thus, the second implication is
that the cost of longer-term borrowing is likely to be reduced.

To illustrate the economic function of risk reduction via diversifica-
tion, consider an investor who invests in a mutual fund. Suppose that
the mutual fund invests the funds received in the stock of a large num-
ber of companies. By doing so, the mutual fund has diversified and
reduced its risk. Investors who have a small sum to invest would find it
difficult to achieve the same degree of diversification because they
would not have sufficient funds to buy shares of a large number of com-
panies. Yet by investing in the investment company for the same sum of
money, investors can accomplish this diversification, thereby reducing
risk. This economic function of financial intermediaries—transforming
more risky assets into less risky ones—is called diversification. While
individual investors can do it on their own, they may not be able to do it
as cost effectively as a financial intermediary, depending on the amount
of funds they have to invest. Attaining cost-effective diversification in
order to reduce risk by purchasing the financial assets of a financial
intermediary is an important economic benefit for financial markets.

Investors purchasing financial assets should develop skills necessary
to understand how to evaluate an investment. Once those skills are
developed, investors should apply them to the analysis of specific finan-
cial assets that are candidates for purchase (or subsequent sale). Inves-
tors who want to make a loan to a consumer or business will need to
write the loan contract (or hire an attorney to do so). While there are
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some people who enjoy devoting leisure time to this task, most of us
find that leisure time is in short supply, so to sacrifice it, we have to be
compensated. The form of compensation could be a higher return
obtained from an investment. In addition to the opportunity cost of the
time to process the information about the financial asset and its issuer,
there is the cost of acquiring that information. All these costs are called
information processing costs. The costs of writing loan contracts are
referred to as contracting costs. Another dimension to contracting costs
is the cost of enforcing the terms of the loan agreement. There are econ-
omies of scale in contracting and processing information about financial
assets, because of the amount of funds managed by financial intermedi-
aries. The lower costs accrue to the benefit of the investor who pur-
chases a financial claim of the financial intermediary and to the issuers
of financial assets, who benefit from a lower borrowing cost.

While the previous three economic functions may not have been
immediately obvious, this last function should be. Most transactions
made today are not done with cash. Instead, payments are made using
checks, credit cards, debit cards, and electronic transfers of funds. These
methods for making payments are provided by certain financial interme-
diaries. The ability to make payments without the use of cash is critical
for the functioning of a financial market. In short, depository institu-
tions transform assets that cannot be used to make payments into other
assets that offer that property.

Institutional Investors

Managers of the funds of financial entities manage those funds to meet
specified investment objectives. For many institutional investors (insur-
ance companies, pension funds, investment companies, depository institu-
tions, and endowments and foundations), those objectives are dictated by
the nature of their liabilities. It is within the context of the asset/liability
problem faced by managers of institutional funds that investment vehicles
and investment strategies make any sense. Therefore, in this section we
provide an overview of the investment objectives of institutional investors
and the constraints imposed on managers of the funds of these entities.

Nature of Liabilities

The nature of an institutional investor’s liabilities will dictate the gen-
eral investment strategy to pursue. Depository institutions, for example,
seek to generate income by the spread between the return that they earn
on their assets and the cost of their funds. Life insurance companies are
in the spread business. Pension funds are not in the spread business, in
that they themselves do not raise funds in the market. Certain types of
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pension funds seek to cover the cost of pension obligations at a mini-
mum cost to the plan sponsor. Most investment companies face no
explicit costs for the funds they acquire and must satisfy no specific lia-
bility obligations, the exception being target-term trusts.

A liability is a cash outlay that must be made at a specific time to
satisfy the contractual terms of an obligation. An institutional investor
is concerned with both the amount and timing of liabilities, because its
assets must produce the cash flow to meet any payments it has promised
to make in a timely way. In fact, liabilities are classified according to the
degree of certainty of their amount and timing, as shown in Exhibit 2.1.
This exhibit assumes that the holder of the obligation will not cancel it
prior to any actual or projected payout date.

The descriptions of cash outlays as either known or uncertain are
undoubtedly broad. When we refer to a cash outlay as being uncertain,
we do not mean that it cannot be predicted. There are some liabilities
where the “law of large numbers” makes it easier to predict the timing
and/or amount of cash outlays. This work is typically done by actuaries,
but even actuaries have difficulty predicting natural catastrophes such
as floods and earthquakes.

In our description of each type of risk category, it is important to note
that, just like assets, there are risks associated with liabilities. Some of
these risks are affected by the same factors that affect asset risks.

A Type I liability is one for which both the amount and timing of
the liabilities are known with certainty. An example would be when an
institution knows that it must pay $8 million six months from now.
Banks and thrifts know the amount that they are committed to pay
(principal plus interest) on the maturity date of a fixed-rate certificate of
deposit (CD), assuming that the depositor does not withdraw funds
prior to the maturity date. Type I liabilities, however, are not limited to
depository institutions. A product sold by life insurance companies is a
guaranteed investment contract, popularly referred to as a GIC (dis-
cussed below). The obligation of the life insurance company under this
contract is that, for a sum of money (called a premium), it will guaran-
tee an interest rate up to some specified maturity date.

EXHIBIT 2.1 Classification of Liabilities of Institutional Investors

Liability Type  Amount of Outlay = Timing of Cash Outlay

Type I Known Known
Type II Known Uncertain
Type 111 Uncertain Known

Type IV Uncertain Uncertain
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A Type II liability is one for which the amount of the cash outlay is
known, but the timing of the cash outlay is uncertain. The most obvious
example of a Type II liability is a life insurance policy. There are many
types of life insurance policies, but the most basic type provides that, for
an annual premium, a life insurance company agrees to make a specified
dollar payment to policy beneficiaries upon the death of the insured.
Naturally, the timing of the insured’s death is uncertain.

A Type II liability is one for which the timing of the cash outlay is
known, but the amount is uncertain. A 2-year, floating-rate CD for
which the interest rate resets quarterly, based on some market interest
rate, is an example.

A Type IV liability is one for which there is uncertainty as to both the
amount and the timing of the cash outlay. There are numerous insurance
products and pension obligations in this category. Probably the most
obvious examples are automobile and home insurance policies issued by
property and casualty insurance companies. When, and if, a payment will
have to be made to the policyholder is uncertain. Whenever damage is
done to an insured asset, the amount of the payment that must be made is
uncertain. The liabilities of pension plans can also be Type IV liabilities.
In defined benefit plans, retirement benefits depend on the participant’s
income for a specified number of years before retirement and the total
number of years the participant worked. This will affect the amount of
the cash outlay. The timing of the cash outlay depends on when the
employee elects to retire, and whether the employee remains with the
sponsoring plan until retirement. Moreover, both the amount and the tim-
ing will depend on how the employee elects to have payments made—
over only the employee’s life or those of the employee and spouse.

Overview of Asset/liability Management
The two goals of a financial institution are (1) to earn an adequate
return on funds invested and (2) to maintain a comfortable surplus of
assets beyond liabilities. The task of managing funds of a financial insti-
tution to accomplish these goals is referred to as asset/liability manage-
ment or surplus management. This task involves a trade-off between
controlling the risk of a decline in the surplus and taking on acceptable
risks in order to earn an adequate return on the funds invested. With
respect to the risks, the manager must consider the risks of both the
assets and the liabilities.

Institutions may calculate three types of surpluses: economic, account-
ing, and regulatory. The method of valuing assets and liabilities greatly
affects the apparent health of a financial institution. Unrealistic valuation,
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although sometimes allowable under accounting procedures and regula-
tions, is not sound investment practice.

The economic surplus of any entity is the difference between the mar-
ket value of all its assets and the market value of its liabilities. That is,

Economic surplus = Market value of assets — Market value of liabilities

The market value of the liabilities is simply the present value of the lia-
bilities, where the liabilities are discounted at an appropriate interest rate.

Institutional investors must prepare periodic financial statements.
These financial statements must be prepared in accordance with “gener-
ally accepted accounting principles” (GAAP). Thus, the assets and lia-
bilities reported are based on GAAP accounting and the resulting
surplus is referred to as accounting surplus.

Institutional investors that are regulated at the state or federal levels
must also provide financial reports to regulators based on regulatory
accounting principles (RAP). RAP accounting for a regulated institution
need not use the same rules as set forth in GAAP accounting. Liabilities
may or may not be reported at their present value, depending on the
type of institution and the type of liability. The surplus, as measured
using RAP accounting, is called regulatory surplus or statutory surplus,
and, as in the case of accounting surplus, may be materially different
from economic surplus.

Benchmarks for Nonliability Driven Entities

Thus far, our discussion has focused on institutional investors that face
liabilities. However, not all financial institutions face liabilities. An
investment company (discussed later) is an example. Also, while an
entity such as a pension plan may face liabilities, it may engage external
asset managers and set for those managers an objective that is unrelated
to the pension fund’s liabilities. For such asset managers who do not
face liabilities, the objective is to outperform some client-designated
benchmark. In bond portfolio management, the benchmark may be one
of the bond indexes described in Chapter 21. In general, the perfor-
mance of the money manager will be measured as follows:

Return on the portfolio — Return on the benchmark

Active money management involves creating a portfolio that will
earn a return (after adjusting for risk) greater than the benchmark. In
contrast, a strategy of indexing is one in which an asset manager creates
a portfolio that only seeks to match the return on the benchmark.
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From our discussion of asset/liability management and the manage-
ment of funds in the absence of liabilities, we can see that the invest-
ment strategy of one institutional investor may be inappropriate for
another. As with investment strategies, a security or asset class that may
be attractive for one institutional investor may be inappropriate for the
portfolio of another.

In the remainder of this section we look at the investment objective
of the major institutional investors. For each entity, the nature of the
liabilities and the strategies they use to accomplish their investment
objectives are also reviewed, as well as regulations that influence invest-
ment decisions.

Insurance Companies

Insurance companies are financial intermediaries that, for a price, will
make a payment if a certain event occurs. They function as risk bearers.
There are two types of insurance companies: life insurance companies
(“life companies”) and property and casualty insurance companies
(“P&C companies”). The principal event that the former insures against
is death. Upon the death of a policyholder, a life insurance company
agrees to make either a lump sum payment or a series of payments to
the beneficiary of the policy. Life insurance protection is not the only
financial product sold by these companies; a major portion of the busi-
ness of life companies is in the area of providing retirement benefits. In
contrast, P& C companies insure against a wide variety of occurrences.
Two examples are automobile insurance and home insurance.

The key distinction between life and P& C companies lies in the dif-
ficulty of projecting whether a policyholder will be paid off and, if so,
how much the payment will be. While this is no simple task for either
type of insurance company, from an actuarial perspective it is easier for
a life company. The amount and timing of claims on P&C companies
are more difficult to predict because of the randomness of natural catas-
trophes and the unpredictability of court awards in liability cases. This
uncertainty about the timing and amount of cash outlays to satisfy
claims affects the investment strategies used by the managers of P&C
companies’ funds.

Pension Funds

A pension plan is a fund that is established for the payment of retire-
ment benefits. The entities that establish pension plans—called plan
sponsors—are private business entities acting for their employees, state
and local entities on behalf of their employees, unions on behalf of their
members, and individuals for themselves. In the United States, corporate
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pension plans are governed by the Employee Retirement Income Secu-
rity Act of 1974 (ERISA). Pension funds are exempt from taxation.

There are two basic and widely used types of pension plans: defined
contribution plans and defined benefit plans. In a defined contribution
plan, the plan sponsor is responsible only for making specified contribu-
tions into the plan on behalf of qualifying participants. The payments
that will be made to qualifying participants upon retirement will depend
on the growth of the plan assets; that is, payment is determined by the
investment performance of the assets in which the pension fund is
invested. Therefore, in a defined contribution plan, the employee bears
all the investment risk. In a defined benefit plan, the plan sponsor agrees
to make specified dollar payments to qualifying employees at retirement
(and some payments to beneficiaries in case of death before retirement).
The retirement payments are determined by a formula that usually takes
into account both the length of service and the earnings of the
employee. The pension obligations are effectively the liability of the
plan sponsor, who assumes the risk of having insufficient funds in the
plan to satisfy the contractual payments that must be made to retired
employees. Thus, unlike a defined contribution plan, in a defined benefit
plan, all the investment risks are borne by the plan sponsor.

Investment Companies

Investment companies sell shares to the public and invest the proceeds
in a diversified portfolio of securities. Each share they sell represents a
proportionate interest in a portfolio of securities. The securities pur-
chased could be restricted to specific types of assets such as common
stock, government bonds, corporate bonds, or money market instru-
ments. The investment strategies followed by investment companies
range from high-risk active portfolio strategies to low-risk passive port-
folio strategies.

There are two types of managed investment companies: open-end
funds and closed-end funds. An open-end fund, more popularly referred
to as a mutual fund, continually stands ready to sell new shares to the
public and to redeem its outstanding shares on demand at a price equal
to an appropriate share of the value of its portfolio, which is computed
daily at the close of the market. A mutual fund’s share price is based on
its net asset value (NAV) per share, which is found by subtracting from
the market value of the portfolio the mutual fund’s liabilities and then
dividing by the number of mutual fund shares outstanding.

In contrast to mutual funds, closed-end funds sell shares like any
other corporation and usually do not redeem their shares. Shares of
closed-end funds sell on either an organized exchange, such as the New
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York Stock Exchange, or in the over-the-counter market. The price of a
share in a closed-end fund is determined by supply and demand, so the
price can fall below or rise above the net asset value per share.

Depository Institutions

Depository institutions are financial intermediaries that accept deposits.
They include commercial banks (or simply banks), savings and loan
associations (S&Ls), savings banks, and credit unions. It is common to
refer to depository institutions other than banks as “thrifts.” Deposi-
tory institutions are highly regulated and supervised because of the
important role that they play in the financial system.

The asset/liability problem that depository institutions face is quite
simple to explain—although not necessarily easy to solve. A depository
institution seeks to earn a positive spread between the assets it invests in
(loans and securities) and the cost of its funds (deposits and other
sources). This difference between income and cost is referred to as spread
income or margin income. The spread income should allow the institu-
tion to meet operating expenses and earn a fair profit on its capital.

In generating spread income a depository institution faces several
risks. These include credit risk, regulatory risk, and interest rate risk.
Regulatory risk is the risk that regulators will change the rules so as to
adversely impact the earnings of the institution. Simply put, interest rate
risk is the risk that a depository institution’s spread income and capital
will suffer because of changes in interest rates. This kind of risk can be
explained best by an illustration. To illustrate the impact on spread
income, suppose that a depository institution raises $100 million by
issuing a certificate of deposit that has a maturity of one year and by
agreeing to pay an interest rate of 7%. Ignoring for the time being the
fact that the depository institution cannot invest the entire $100 million
because of reserve requirements, suppose that $100 million is invested
in a U.S. Treasury security that matures in 15 years paying an interest
rate of 9%. Because the funds are invested in a U.S. Treasury security,
there is no credit risk.

It seems at first that the depository institution has locked in a spread
of 2% (9% minus 7%). This spread can be counted on only for the first
year, though, because the spread in future years will depend on the
interest rate this depository institution will have to pay depositors in
order to raise $100 million after the 1-year certificate of deposit
matures. If interest rates decline, the spread income will increase
because the depository institution has locked in the 9% rate. If interest
rates rise, however, the spread income will decline. In fact, if this depos-
itory institution must pay more than 9% to depositors for the next 14
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years, the spread income will be negative. That is, it will cost the depos-
itory institution more to finance the purchase of the Treasury security
than it will earn on the funds invested in that security.

In our example, the depository institution has “borrowed short” (bor-
rowed for one year) and “lent long” (invested for 15 years). This invest-
ment policy will benefit from a decline in interest rates, but suffer if
interest rates rise. Suppose the institution could have borrowed funds for
15 years at 7% and invested in a U.S. Treasury security maturing in one
year earning 9 %—borrowing long (15 years) and lending short (one year).
A rise in interest rates will benefit the depository institution because it can
then reinvest the proceeds from the maturing 1-year government security
in a new 1-year government security offering a higher interest rate. In this
case a decline in interest rates will reduce the spread income. If interest
rates fall below 7%, there will be a negative spread income.

All depository institutions face this interest rate risk problem. Man-
agers of a depository institution who have particular expectations about
the future direction of interest rates will seek to benefit from these expec-
tations. Those who expect interest rates to rise may pursue a policy to
borrow funds long term and lend funds short term. If interest rates are
expected to drop, managers may elect to borrow short and lend long.

The problem of pursuing a strategy of positioning a depository insti-
tution based on expectations is that considerable adverse financial conse-
quences will result if those expectations are not realized. The evidence on
interest rate forecasting suggests that it is a risky business. We doubt if
there are managers of depository institutions who have the ability to
forecast interest rate moves so consistently that the institution can bene-
fit with any regularity. The goal of management should be to lock in a
spread as best as possible, not to wager on interest rate movements.

Some interest rate risk, however, is inherent in any balance sheet of
a depository institution. Managers must be willing to accept some inter-
est rate risk, but they can take various measures to address the interest
rate sensitivity of the institution’s liabilities and its assets. A depository
institution should have an asset/liability committee that is responsible
for monitoring the exposure to interest rate risk. There are several asset/
liability strategies for controlling interest rate risk.

Because of the special role that depository institutions play in the
financial system, they are highly regulated and supervised by either fed-
eral and/or state government entities. Regulators have placed restric-
tions on the types of securities that depository institutions can take a
position in for their investment portfolio. There are risk-based capital
requirements for depository institutions that specify capital require-
ments based on their credit risk and the interest rate risk exposures.
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Endowments and Foundations

Endowments and foundations include colleges, private schools, muse-
ums, and hospitals. The investment income generated from the funds
invested by endowments and foundations is used for the operation of
the entity. In the case of a college, the investment income is used to meet
current operating expenses and capital expenditures (i.e., the construc-
tion of new buildings or sports facilities).

As with pension funds, qualified endowments and foundations are
exempt from taxation. The board of trustees, just like the plan sponsor
for a pension fund, specifies the investment objectives and the accept-
able investment alternatives. Typically, the managers of endowments
and foundations invest in long-term assets and have the primary goal of
safeguarding the principal of the entity. The second goal, and an impor-
tant one, is to generate a stream of earnings that allow the endowment
or foundation to perform its functions of supporting certain operations.
There is a constraint imposed on an endowment or foundation in that it
must maintain its tax-exempt status.

COMIVION STOCK

Common stocks are also called equity securities. Equity securities repre-
sent an ownership interest in a corporation. Holders of equity securities
are entitled to the earnings of the corporation when those earnings are
distributed in the form of dividends; they are also entitled to a pro rata
share of the remaining equity in case of liquidation.

Trading Locations
In the United States, the secondary market that trades in common stocks
has occurred in two ways. The first is on organized exchanges, which
are specific geographical locations called trading floors, where represen-
tatives of buyers and sellers physically meet. The trading mechanism on
exchanges is the auction system, which results from the presence of
many competing buyers and sellers assembled in one place. The second
type is via over-the-counter (OTC) trading, which results from geo-
graphically dispersed traders or market-makers linked to one another
via telecommunication systems. That is, there is no trading floor. This
trading mechanism is a negotiated system whereby individual buyers
negotiate with individual sellers.

Exchange markets are called central auction specialist systems and
OTC markets are called multiple market maker systems. In recent years
a new method of trading common stocks via independently owned and
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operated electronic communications networks (ECNs) has developed
and is growing quickly.

In the United States there are two national stock exchanges: the New
York Stock Exchange (NYSE) and the American Stock Exchange (AMEX
or ASE). In addition to the national exchanges, there are regional stock
exchanges in Boston, Chicago (called the Midwest Exchange), Cincinnati,
San Francisco (called the Pacific Coast Exchange) and Philadelphia.
Regional exchanges primarily trade stocks from corporations based within
their region. The major OTC market in the United States is NASDAQ (the
National Association of Securities Dealers Automated Quotation System.
In 1998, NASDAQ and AMEX merged to form the NASDAQ-AMEX
Market Group, Inc.

Stock Market Indicators

Stock market indicators have come to perform a variety of functions,
from serving as benchmarks for evaluating the performance of profes-
sional money managers to answering the question, “How did the mar-
ket do today?” Thus, stock market indicators (indexes or averages) have
become a part of everyday life. Even though many of the stock market
indicators are used interchangeably, it is important to realize that each
indicator applies to, and measures, a different facet of the stock market.

The most commonly quoted stock market indicator is the Dow
Jones Industrial Average (DJIA). Other popular stock market indicators
cited in the financial press are the Standard & Poor’s 500 Composite
(S&P 500), the New York Stock Exchange Composite Index (NYSE
Composite), the NASDAQ Composite Index, and the Value Line Com-
posite Average (VLCA). There are a myriad of other stock market indi-
cators such as the Wilshire stock indexes and the Russell stock indexes,
which are followed primarily by institutional money managers.

In general, market indexes rise and fall in fairly similar patterns.
Although the correlations among indexes are high, the indexes do not
move in exactly the same way at all times. The differences in movement
reflect the different manner in which the indexes are constructed. Three
factors enter into that construction: the universe of stocks represented by
the sample underlying the index, the relative weights assigned to the stocks
included in the index, and the method of averaging across all the stocks.

Some indexes represent only stocks listed on an exchange. Examples
are the DJIA and the NYSE Composite, which represent only stocks
listed on the NYSE or Big Board. By contrast, the NASDAQ includes
only stocks traded over the counter. A favorite of professionals is the
S&P 500 because it is a broader index containing both NYSE-listed and
OTC-traded shares. Each index relies on a sample of stocks from its
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universe, and that sample may be small or quite large. The DJTA uses
only 30 of the NYSE-traded shares, while the NYSE Composite includes
every one of the listed shares. The NASDAQ also includes all shares in
its universe, while the S&P 500 has a sample that contains only 500 of
the more than 8,000 shares in the universe it represents.

The stocks included in a stock market index must be combined in cer-
tain proportions, and each stock must be given a weight. The three main
approaches to weighting are: (1) weighting by the market capitalization,
which is the value of the number of shares times price per share; (2)
weighting by the price of the stock; and (3) equal weighting for each
stock, regardless of its price or its firm’s market value. With the exception
of the Dow Jones averages (such as the DJIA) and the VLCA, nearly all of
the most widely used indexes are market-value weighted. The DJIA is a
price-weighted average, and the VLCA is an equally weighted index.

Stock market indicators can be classified into three groups: (1) those
produced by stock exchanges based on all stocks traded on the
exchanges; (2) those produced by organizations that subjectively select
the stocks to be included in indexes; and (3) those where stock selection
is based on an objective measure, such as the market capitalization of
the company. The first group includes the New York Stock Exchange
Composite Index, which reflects the market value of all stocks traded on
the NYSE. While it is not an exchange, the NASDAQ Composite Index
falls into this category because the index represents all stocks traded on
the NASDAQ system.

The three most popular stock market indicators in the second group
are the Dow Jones Industrial Average, the Standard & Poor’s 500, and
the Value Line Composite Average. The DJIA is constructed from 30 of
the largest blue chip industrial companies traded on the NYSE. The
companies included in the average are those selected by Dow Jones &
Company, publisher of the Wall Street Journal. The S&P 500 represents
stocks chosen from the two major national stock exchanges and the
over-the-counter market. The stocks in the index at any given time are
determined by a committee of Standard & Poor’s Corporation, which
may occasionally add or delete individual stocks or the stocks of entire
industry groups. The aim of the committee is to capture present overall
stock market conditions as reflected in a very broad range of economic
indicators. The VLCA, produced by Value Line Inc., covers a broad
range of widely held and actively traded NYSE, AMEX, and OTC issues
selected by Value Line.

In the third group we have the Wilshire indexes produced by
Wilshire Associates (Santa Monica, California) and Russell indexes pro-
duced by the Frank Russell Company (Tacoma, Washington), a consult-
ant to pension funds and other institutional investors. The criterion for
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inclusion in each of these indexes is solely a firm’s market capitalization.
The most comprehensive index is the Wilshire 5000, which actually
includes more than 6,700 stocks now, up from 5,000 at its inception.
The Wilshire 4500 includes all stocks in the Wilshire 5000 except for
those in the S&P 500. Thus, the shares in the Wilshire 4500 have
smaller capitalization than those in the Wilshire 5000. The Russell 3000
encompasses the 3,000 largest companies in terms of their market capi-
talization. The Russell 1000 is limited to the largest 1,000 of those, and
the Russell 2000 has the remaining smaller firms.

Two methods of averaging may be used. The first and most common
is the arithmetic average. An arithmetic mean is just a simple average of
the stocks, calculated by summing them (after weighting, if appropriate)
and dividing by the sum of the weights. The second method is the geo-
metric mean, which involves multiplication of the components, after
which the product is raised to the power of 1 divided by the number of
components.

Trading Arrangements
Below we describe the key features involved in trading stocks.

Types of Orders

When an investor wants to buy or sell a share of common stock, the
price and conditions under which the order is to be executed must be
communicated to a broker. The simplest type of order is the market
order, an order to be executed at the best price available in the market.

The danger of a market order is that an adverse move may take
place between the time the investor places the order and the time the
order is executed. To avoid this danger, the investor can place a limit
order that designates a price threshold for the execution of the trade.
The key disadvantage of a limit order is that there is no guarantee that it
will be executed at all; the designated price may simply not be obtain-
able. The limit order is a conditional order: It is executed only if the
limit price or a better price can be obtained.

Another type of conditional order is the stop order, which specifies
that the order is not to be executed until the market moves to a desig-
nated price, at which time it becomes a market order. There are two
dangers associated with stop orders. Stock prices sometimes exhibit
abrupt price changes, so the direction of a change in a stock price may
be quite temporary, resulting in the premature trading of a stock. Also,
once the designated price is reached, the stop order becomes a market
order and is subject to the uncertainty of the execution price noted ear-
lier for market orders. A stop-limit order, a hybrid of a stop order and a
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limit order, is a stop order that designates a price limit. In contrast to
the stop order, which becomes a market order if the stop is reached, the
stop-limit order becomes a limit order if the stop is reached. The stop-
limit order can be used to cushion the market impact of a stop order.
The investor may limit the possible execution price after the activation
of the stop. As with a limit order, the limit price may never be reached
after the order is activated, which therefore defeats one purpose of the
stop order—to protect a profit or limit a loss.

Short Selling

Short selling involves the sale of a security not owned by the investor at
the time of sale. The investor can arrange to have her broker borrow the
stock from someone else, and the borrowed stock is delivered to imple-
ment the sale. To cover her short position, the investor must subsequently
purchase the stock and return it to the party that lent the stock. The
investor benefits if the price of the of the security sold short declines. Two
costs will reduce the profit on a short sale. First, a fee will be charged by
the lender of the stock. Second, if there are any dividends paid, the short
seller must pay those dividends to the lender of the security.

Exchanges impose restrictions as to when a short sale may be exe-
cuted; these so-called tick-test rules are intended to prevent investors
from destabilizing the price of a stock when the market price is falling.
A short sale can be made only when either (1) the sale price of the par-
ticular stock is higher than the last trade price (referred to as an “uptick
trade”), or (2) if there is no change in the last trade price of the particu-
lar stock (referred to as a “zero uptick”), the previous trade price must
be higher than the trade price that preceded it.

Margin Transactions

Investors can borrow cash to buy securities and use the securities them-
selves as collateral. A transaction in which an investor borrows to buy
shares using the shares themselves as collateral is called buying on mar-
gin. By borrowing funds, an investor creates financial leverage. The
funds borrowed to buy the additional stock will be provided by the bro-
ker, and the broker gets the money from a bank. The interest rate that
banks charge brokers for these funds is the call money rate (also labeled
the broker loan rate). The broker charges the borrowing investor the
call money rate plus a service charge.

The brokerage firm is not free to lend as much as it wishes to the
investor to buy securities. The Securities Exchange Act of 1934 prohib-
its brokers from lending more than a specified percentage of the market
value of the securities. The initial margin requirement is the proportion
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of the total market value of the securities that the investor must pay as
an equity share, and the remainder is borrowed from the broker. The
1934 act gives the Board of Governors of the Federal Reserve (the Fed)
the responsibility to set initial margin requirements. The initial margin
requirement has been below 40% and is 50% as of this writing.

The Fed also establishes a maintenance margin requirement. This is
the minimum proportion of (1) the equity in the investor’s margin
account to (2) the total market value. If the investor’s margin account
falls below the minimum maintenance margin (which would happen if
the share price fell), the investor is required to put up additional cash.
The investor receives a margin call from the broker specifying the addi-
tional cash to be put into the investor’s margin account. If the investor
fails to put up the additional cash, the broker has the authority to sell
the securities in the investor’s account.

Trading Arrangements Used by Institutional Investors

With the increase in trading by institutional investors, trading arrange-
ments more suitable to these investors were developed. Institutional
needs included trading in large size and trading groups of stocks, both
at a low commission and with low market impact. This has resulted in
the evolution of special arrangements for the execution of certain types
of orders commonly sought by institutional investors: (1) orders requir-
ing the execution of a trade of a large number of shares of a given stock
and (2) orders requiring the execution of trades in a large number of dif-
ferent stocks at as near the same time as possible. The former types of
trades are called block trades; the latter are called program trades.

On the NYSE, block trades are defined as either trades of at least
10,000 shares of a given stock, or trades of shares with a market value
of at least $200,000, whichever is less. Program trades involve the buy-
ing and/or selling of a large number of names simultaneously. Such
trades are also called basket trades because effectively a “basket” of
stocks is being traded. The NYSE defines a program trade as any trade
involving the purchase or sale of a basket of at least 15 stocks with a
total value of $1 million or more.

The institutional arrangement that has evolved to accommodate
these two types of institutional trades is the development of a network
of trading desks of the major securities firms and other institutional
investors that communicate with each other by means of electronic dis-
play systems and telephones. This network is referred to as the “upstairs
market.” Participants in the upstairs market play a key role by (1) pro-
viding liquidity to the market so that such institutional trades can be



Overview of Financial Markets, Financial Assets, and Market Participants 51

executed, and (2) by arbitrage activities that help to integrate the frag-
mented stock market.

In its simplest form, a bond is a financial obligation of an entity that
promises to pay a specified sum of money at specified future dates. The
entity that promises to make the payment is called the bond issuer and is
referred to as the borrower. Bond issuers include central governments,
municipal/provincial governments, supranational (e.g., the World
Bank), and corporations. The investor who purchases bond is said to be
the lender or creditor. The promised payments that the bond issuer
agrees to make at the specified dates consist of two components: interest
payments and repayment of the amount borrowed.

Prior to the 1980s, bonds were simple investment vehicles. Holding
aside default by the bond issuer, the investor knew how much interest
would be received periodically and when the amount borrowed would
be repaid. Moreover, most investors purchased bonds with the intent of
holding them to their maturity date. Beginning in the 1980s, the bond
world changed. First, bond structures became more complex. There are
features in many bonds that make it difficult to determine when the
amount borrowed will be repaid. For some bonds it is difficult to
project the amount of interest that will be received periodically. Second,
the hold-to-maturity investor has been replaced by the institutional
investor who actively trades bonds. These new product design features
in bonds and the shift in trading strategies have lead to the increased use
of the mathematical techniques described in later chapters.

Maturity
The term to maturity of a bond is the number of years over which the
issuer has promised to meet the conditions of the obligation. The matu-
rity of a bond refers to the date that the debt will cease to exist, at
which time the bond issuer will redeem the bond by paying the amount
borrowed. The maturity date of a bond is always identified when
describing a bond. For example, a description of a bond might state
“due 12/1/2020.” The practice in the bond market is to refer to the
“term to maturity” of a bond as simply its “maturity” or “term.” As we
explain later, there may be provisions in the bond agreement that allow
either the bond issuer or bondholder to alter a bond’s term to maturity.
There are three reasons why the term to maturity of a bond is
important. The most obvious is that it indicates the time period over
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which the bondholder can expect to receive interest payments and the
number of years before the principal will be paid in full. The second rea-
son is that the yield on a bond depends on it. Finally, the price of a bond
will fluctuate over its life as interest rates in the market change. The
price volatility of a bond is dependent on its maturity. More specifically,
with all other factors constant, the longer the maturity of a bond, the
greater the price volatility resulting from a change in interest rates. We
will demonstrate these two properties in Chapter 4 as an application of
calculus.

Par Value

The par value of a bond is the amount that the issuer agrees to repay the
bondholder by the maturity date. This amount is also referred to as the
principal, face value, redemption value, or maturity value. Bonds can
have any par value.

Because bonds can have a different par value and currency (e.g.,
U.S. dollar, euro, pound sterling), the practice is to quote the price of a
bond as a percentage of its par value. A value of 100 means 100% of
par value. So, for example, if a bond has a par value of $1,000 and the
issue is selling for $900, this bond would be said to be selling at 90. If a
bond with a par value of Eur 5,000 is selling for Eur 5,500, the bond is
said to be selling for 110.

Coupon Rate

The coupon rate, also called the nominal rate, is the interest rate that
the bond issuer agrees to pay each year. The annual amount of the inter-
est payment made to bondholders during the term of the bond is called
the coupon. The coupon is determined by multiplying the coupon rate
by the par value of the bond. For example, a bond with an 8% coupon
rate and a par value of $1,000 will pay annual interest of $80.

When describing a bond of an issuer, the coupon rate is indicated along
with the maturity date. For example, the expression “6s of 12/1/2020”
means a bond with a 6% coupon rate maturing on 12/1/2020.

In the United States, the usual practice is for the issuer to pay the cou-
pon in two semiannual installments. Outside the U.S., bond payments
with semiannual and annual payments are found. For certain sectors of
the bond market—mortgage-backed and asset-backed securities—pay-
ments are made monthly. If the bondholder sells a bond between coupon
payments and the buyer holds it until the next coupon payment, then the
entire coupon interest earned for the period will be paid to the buyer of
the bond since the buyer will be the holder of record. The seller of the
bond gives up the interest from the time of the last coupon payment to the
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time until the bond is sold. The amount of interest over this period that
will be received by the buyer, even though it was earned by the seller, is
called accrued interest. In the United States and in many countries, the
bond buyer must pay the bond seller the accrued interest. The amount
that the buyer pays the seller is the agreed-upon price for the bond plus
accrued interest. This amount is called the dirty price. The agreed-upon
bond price without accrued interest is called the clean price.

In addition to indicating the coupon payments that the investor
should expect to receive over the term of the bond, the coupon rate also
affects the bond’s price sensitivity to changes in market interest rates. As
illustrated later, all other factors constant, the higher the coupon rate,
the less the price will change in response to a change in market interest
rates. Again, this property will be demonstrated as an application of cal-
culus in Chapter 4.

Not all bonds make periodic coupon payments. Bonds that are not
contracted to make periodic coupon payments are called zero-coupon
bonds. The holder of a zero-coupon bond realizes interest by buying the
bond substantially below its par value. Interest then is paid at the matu-
rity date, with the interest being the difference between the par value
and the price paid for the bond. So, for example, if an investor pur-
chases a zero-coupon bond for 70, the interest is 30. This is the differ-
ence between the par value (100) and the price paid (70).

The coupon rate on a bond need not be fixed over the bond’s term.
Floating-rate securities have coupon payments that reset periodically
according to some reference rate. The typical formula for the coupon
rate at the dates when the coupon rate is reset is:

Reference rate + Quoted margin

The quoted margin is the additional amount that the issuer agrees to
pay above the reference rate. For example, suppose that the reference
rate is the 1-month London interbank offered rate (LIBOR). Suppose
that the quoted margin is 100 basis points. Then the coupon reset for-
mula is:

1-month LIBOR + 100 basis points

So, if 1-month LIBOR on the coupon reset date is 5%, the coupon rate
is reset for that period at 6% (5% plus 100 basis points).

The reference rate for most floating-rate securities is an interest rate
or an interest rate index. There are some issues where this is not the
case. Instead, the reference rate is some financial index such as the
return on the Standard & Poor’s 500 or a nonfinancial index such as the
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price of a commodity. Through financial engineering, issuers have been
able to structure floating-rate securities with almost any reference rate.
In several countries, there are government bonds whose coupon reset
formula is tied to an inflation index.

A floating-rate security may have a restriction on the maximum cou-
pon rate that will be paid at a reset date. The maximum coupon rate is
called a cap. Because a cap restricts the coupon rate from increasing, a
cap is an unattractive feature for the investor. In contrast, there could be
a minimum coupon rate specified for a floating-rate security. The mini-
mum coupon rate is called a floor. If the coupon reset formula produces
a coupon rate that is below the floor, the floor is paid instead. Thus, a
floor is an attractive feature for the investor.

Financial engineering has also allowed bond issuers to create inter-
esting floating-rate structures. These include the following:

B Inverse floaters. Typically, the coupon reset formula on floating-rate
securities is such that the coupon rate increases when the reference rate
increases, and decreases when the reference rate decreases. With an
inverse floater the coupon rate moves in the opposite direction from the
change in the reference rate. A general formula for an inverse floater is
K - L (Reference rate) with a floor of zero.

B Range notes. A range note is a bond whose coupon rate is equal to the
reference rate as long as the reference rate is within a certain range at
the reset date. If the reference rate is outside of the range, the coupon
rate is zero for that period. For example, a 3-year range note might
specify that the reference rate is 1-year LIBOR and that the coupon rate
resets every year. The coupon rate for the year will be 1-year LIBOR as
long as 1-year LIBOR at the coupon reset date falls within the range as
specified below:

Year 1 Year2  Year 3

Lower limit of range  4.5% 525% 6.00%
Upper limit of range  5.5%  6.75% 7.50%

If 1-year LIBOR is outside of the range, the coupon rate is zero.

B Stepup notes. There are bonds whose coupon rate increases over time.
These securities are called stepup notes because the coupon rate “steps
up” over time. For example, a 5-year stepup note might have a coupon
rate that is 5% for the first 2 years and 6% for the last 3 years. Or, the
stepup note could call for a 5% coupon rate for the first 2 years, 5.5%
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for the third and fourth years, and 6% for the fifth year. When there is
only one change (or stepup), as in our first example, the issue is
referred to as a single stepup note. When there is more than one
increase, as in our second example, the issue is referred to as a multiple
stepup note.

Provisions for Paying off Bonds

The bond issuer of a bond agrees to repay the principal by the stated
maturity date. The issuer can agree to repay the entire amount bor-
rowed in one lump sum payment at the maturity date. That is, the issuer
is not required to make any principal repayments prior to the maturity
date. Such bonds are said to have a bullet maturity. Bonds backed by
pools of loans (mortgage-backed securities and asset-backed securities)
often have a schedule of principal repayments. Such bonds are said to be
amortizing securities. For many loans, the payments are structured so
that when the last loan payment is made, the entire amount owed is
fully paid off.

There are bond issues that have a provision granting the bond issuer
an option to retire all or part of the issue prior to the stated maturity
date. This feature is referred to as a call feature and a bond with this
feature is said to be a callable bond. If the issuer exercises this right, the
issuer is said to “call the bond.” The price that the bond issuer must pay
to retire the issue is referred to as the call price. Typically, there is not
one call price but a call schedule, which sets forth a call price based on
when the issuer can exercise the call option. When a bond is issued, typ-
ically the issuer may not call the bond for a number of years. That is,
the issue is said to have a deferred call.

A bond issuer generally wants the right to retire a bond issue prior
to the stated maturity date because it recognizes that at some time in the
future the general level of interest rates may fall sufficiently below the
issue’s coupon rate so that redeeming the issue and replacing it with
another issue with a lower coupon rate would be economically benefi-
cial. This right is a disadvantage to the bondholder since proceeds
received must be reinvested at a lower interest rate. As a result, an issuer
who wants to include this right as part of a bond offering must compen-
sate the bondholder when the issue is sold by offering a higher coupon
rate, or equivalently, accepting a lower price than if the right is not
included.

If a bond issue does not have any protection against early call, then
it is said to be a currently callable issue. But most new bond issues, even
if currently callable, usually have some restrictions against certain types
of early redemption. The most common restriction is prohibiting the
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refunding of the bonds for a certain number of years. Refunding a bond
issue means redeeming bonds with funds obtained through the sale of a
new bond issue. Call protection is much more absolute than refunding
protection. While there may be certain exceptions to absolute or com-
plete call protection in some cases, it still provides greater assurance
against premature and unwanted redemption than does refunding pro-
tection. Refunding prohibition merely prevents redemption only from
certain sources of funds, namely the proceeds of other debt issues sold
at a lower cost of money. The bondholder is only protected if interest
rates decline, and the borrower can obtain lower-cost money to pay off
the debt.

For amortizing securities that are backed by loans and have a sched-
ule of principal repayments, individual borrowers typically have the
option to pay off all or part of their loan prior to the scheduled date.
Any principal repayment prior to the scheduled date is called a prepay-
ment. The right of borrowers to prepay is called the prepayment option.
Basically, the prepayment option is the same as a call option. However,
unlike a call option, there is not a call price that depends on when the
borrower pays off the issue. Typically, the price at which a loan is pre-
paid is par value.

Options Granted to Bondholders

A bond issue may include a provision that gives either the bondholder
and/or the issuer an option to take some action against the other party.
The most common type of option embedded in a bond is a call feature,
which was discussed earlier. This option is granted to the issuer. There
are two options that can be granted to the bondholder: the right to put
the issue and the right to convert the issue.

An issue with a put provision grants the bondholder the right to sell
the issue back to the issuer at a specified price on designated dates. The
bond with this feature is called a putable bond and the specified price is
called the put price. The advantage of the put provision to the bondholder
is that if after the issue date market rates rise above the issue’s coupon
rate, the bondholder can force the issuer to redeem the bond at the put
price and then reinvest the proceeds at the prevailing higher rate.

A convertible bond is an issue giving the bondholder the right to
exchange the bond for a specified number of shares of common stock.
Such a feature allows the bondholder to take advantage of favorable
movements in the price of the bond issuer’s common stock. An
exchangeable bond allows the bondholder to exchange the issue for a
specified number of shares of common stock of a corporation different
from the issuer of the bond.



Overview of Financial Markets, Financial Assets, and Market Participants 57

FUTURES AND FORWARD CONTRACTS

A futures contract is an agreement that requires a party to the agree-
ment either to buy or sell something at a designated future date at a pre-
determined price. Futures contracts are products created by exchanges.
To create a particular futures contract, an exchange must obtain
approval from the Commodity Futures Trading Commission (CFTC), a
government regulatory agency. When applying to the CFTC for
approval to create a futures contract, the exchange must demonstrate
that there is an economic purpose for the contract. Futures contracts are
categorized as either commodity futures or financial futures. Commod-
ity futures involve traditional agricultural commodities (such as grain
and livestock), imported foodstuffs (such as coffee, cocoa, and sugar),
and industrial commodities. Futures contracts based on a financial
instrument or a financial index are known as financial futures. Financial
futures can be classified as (1) stock index futures, (2) interest rate
futures, and (3) currency futures.

A party to a futures contract has two choices on liquidation of the
position. First, the position can be liquidated prior to the settlement
date. For this purpose, the party must take an offsetting position in the
same contract. For the buyer of a futures contract, this means selling the
same number of identical futures contracts; for the seller of a futures
contract, this means buying the same number of identical futures con-
tracts. The alternative is to wait until the settlement date. At that time
the party purchasing a futures contract accepts delivery of the underly-
ing (financial instrument, currency, or commodity) at the agreed-upon
price; the party that sells a futures contract liquidates the position by
delivering the underlying at the agreed-upon price. For some futures
contracts settlement is made in cash only. Such contracts are referred to
as cash-settlement contracts.

Associated with every futures exchange is a clearinghouse, which
performs two key functions. First, the clearinghouse guarantees that the
two parties to the transaction will perform. It does so as follows. When
an investor takes a position in the futures market, the clearinghouse
takes the opposite position and agrees to satisfy the terms set forth in
the contract. Because of the clearinghouse, the investor need not worry
about the financial strength and integrity of the party taking the oppo-
site side of the contract. After initial execution of an order, the relation-
ship between the two parties ends. The clearinghouse interposes itself as
the buyer for every sale and the seller for every purchase. Thus investors
are free to liquidate their positions without involving the other party in
the original contract, and without worry that the other party may
default. In addition to the guarantee function, the clearinghouse makes
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it simple for parties to a futures contract to unwind their positions prior
to the settlement date.

When a position is first taken in a futures contract, the investor
must deposit a minimum dollar amount per contract as specified by the
exchange. This amount is called the initial margin and is required as
deposit for the contract. The initial margin may be in the form of an
interest-bearing security such as a Treasury bill. As the price of the
futures contract fluctuates, the value of the investor’s equity in the posi-
tion changes. At the end of each trading day, the exchange determines
the settlement price for the futures contract. This price is used to mark
to market the investor’s position, so that any gain or loss from the posi-
tion is reflected in the investor’s equity account.

Maintenance margin is the minimum level (specified by the
exchange) by which an investor’s equity position may fall as a result of
an unfavorable price movement before the investor is required to
deposit additional margin. The additional margin deposited is called
variation margin, and it is an amount necessary to bring the equity in
the account back to its initial margin level. Unlike initial margin, varia-
tion margin must be in cash not interest-bearing instruments. Any
excess margin in the account may be withdrawn by the investor. If a
party to a futures contract who is required to deposit variation margin
fails to do so within 24 hours, the futures position is closed out.

Although there are initial and maintenance margin requirements for
buying securities on margin, the concept of margin differs for securities and
futures. When securities are acquired on margin, the difference between the
price of the security and the initial margin is borrowed from the broker.
The security purchased serves as collateral for the loan, and the investor
pays interest. For futures contracts, the initial margin, in effect, serves as
“good faith” money, an indication that the investor will satisfy the obliga-
tion of the contract. Normally no money is borrowed by the investor.

Futures versus Forward Contracts

A forward contract, just like a futures contract, is an agreement for the
future delivery of something at a specified price at the end of a desig-
nated period of time. Futures contracts are standardized agreements as
to the delivery date (or month) and quality of the deliverable, and are
traded on organized exchanges. A forward contract differs in that it is
usually nonstandardized (that is, the terms of each contract are negoti-
ated individually between buyer and seller), there is no clearinghouse,
and secondary markets are often nonexistent or extremely thin. Unlike a
futures contract, which is an exchange-traded product, a forward con-
tract is an over-the-counter instrument.
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Futures contracts are marked to market at the end of each trading
day. Consequently, futures contracts are subject to interim cash flows as
additional margin may be required in the case of adverse price move-
ments, or as cash is withdrawn in the case of favorable price move-
ments. A forward contract may or may not be marked to market,
depending on the wishes of the two parties. For a forward contract that
is not marked to market, there are no interim cash flow effects because
no additional margin is required.

Finally, the parties in a forward contract are exposed to credit risk
because either party may default on the obligation. Credit risk is mini-
mal in the case of futures contracts because the clearinghouse associated
with the exchange guarantees the other side of the transaction.

Other than these differences, most of what we say about futures
contracts applies equally to forward contracts.

Risk and Return Characteristics of Futures Contracts

When an investor takes a position in the market by buying a futures
contract, the investor is said to be in a long position or to be long
futures. If, instead, the investor’s opening position is the sale of a
futures contract, the investor is said to be in a short position or short
futures. The buyer of a futures contract will realize a profit if the futures
price increases; the seller of a futures contract will realize a profit if the
futures price decreases; if the futures price decreases, the buyer of the
futures contract realizes a loss while the seller of a futures contract real-
izes a profit. Notice that the risk-return is symmetrical for a favorable
and adverse price movement.

When a position is taken in a futures contract, the party need not
put up the entire amount of the investment. Instead, only initial margin
must be put up. Thus a futures contract, as with other derivatives,
allows a market participant to create leverage. While the degree of
leverage available in the futures market varies from contract to contract,
the leverage attainable is considerably greater than in the cash market
by buying on margin. While at first the leverage available in the futures
market may suggest that the market benefits only those who want to
only speculate on price movements. This is not true. Futures markets
can be used to reduce price risk. Without the leverage possible in futures
transactions, the cost of reducing price risk using futures would be too
high for many market participants.

Pricing of Futures Contracts
In later chapters we will see how the mathematical tools presented in
this book can be applied to valuing complex financial instruments.
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However, the pricing of futures contracts does not require any high level
mathematical analysis. Rather it is based on simple arbitrage arguments
discussed in Chapter 14. To see this, let’s derive the theoretical price of a
futures contract using simple algebra. All we need to know is the fol-
lowing:

B The price that the underlying asset for the futures contract is selling for
in the cash market.

B The cash yield earned on the underlying asset until the settlement date.

B The interest rate for borrowing and lending until the settlement date.

Let

financing cost

cash yield on underlying asset

cash market price ($) of the underlying asset
futures price ($)

esliacih
o

Now consider the following strategy, referred to as a cash and carry
trade:

| Sell the futures contract at F
B Purchase the underlying asset in the cash market for P
B Borrow P until the settlement date at the financing cost of »

The outcome at the settlement date then is:

1. From Settlement of the Futures Contract

Proceeds from sale of the underlying asset to settle the = F
futures contract
Payment received from investing in the underlying asset for = yP
3 months
Total proceeds = F+yP
2. From the Loan
Repayment of the principal of loan =P
Interest on loan = rP
Total outlay = P+7P

The profit will equal:
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Profit = Total proceeds — Total outlay
=F+yP—(P+7P)

The theoretical futures price is where the profit from this strategy is
zero. Thus, to have equilibrium, the following must hold:

0=F+yP—-(P+7P)
Solving for the theoretical futures price, we have:
F=P+P(r-vy)

Alternatively, consider the following strategy called a reverse cash
and carry trade:

B Buy the futures contract at F
| Sell (short) the underlying asset for P
B Invest (lend) P at 7 until the settlement date

The outcome at the settlement date would be:

1. From Settlement of the Futures Contract

Price paid for purchase of the underlying asset to settle = F
futures contract
Payment to lender of the underlying asset in order to borrow = yP
the asset
Total outlay = F+yP
2. From the Loan
Proceeds received from maturing of the loan investment =P

Interest earned = rP
Total proceeds P+ 7P

The profit will equal:

Profit = Total proceeds — Total outlay
=P+ P - (F+yP)

Setting the profit equal to zero so that there will be no arbitrage profit
and solving for the futures price, we would obtain the same equation for
the theoretical futures price as given from the cash and carry trade.
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The theoretical futures price may be at a premium to the cash market
price (higher than the cash market price) or at a discount from the cash
market price (lower than the cash market price) depending on P(r — y).
The term r — y, which reflects the difference between the cost of financing
and the asset’s cash yield, is called the net financing cost. The net financ-
ing cost is more commonly called the cost of carry or, simply, carry. Posi-
tive carry means that the yield earned is greater than the financing cost;
negative carry means that the financing cost exceeds the yield earned.

At the delivery date, the futures price must be equal to the cash market
price. Thus, as the delivery date approaches, the futures price will con-
verge to the cash market price. This can be seen by looking at the equation
for the theoretical futures price. As the delivery date approaches, the
financing cost approaches zero, and the yield that can be earned by hold-
ing the investment approaches zero. Hence the cost of carry approaches
zero, and the futures price will approach the cash market price.

To derive the theoretical futures price using the arbitrage argument,
several assumptions are made. When the assumptions are violated, there
will be a divergence between the actual futures price and the theoretical
futures price as derived above; that is, the difference between the two
prices will differ from carry. The reasons for the deviation of the actual
futures price from the theoretical futures price are as follows.

First, no interim cash flows due to variation margin are assumed. In
addition, any cash flows payments from the underlying asset are assumed
to be paid at the delivery date rather than at an interim date. However, we
know that interim cash flows can occur for both of these reasons. Because
we assume no variation margin, the theoretical price for the contract is
technically the theoretical price for a forward contract that is not marked
to market, not the theoretical price for a futures contract. This is because,
unlike a futures contract, a forward contract that is not marked to market
at the end of each trading day does not require additional margin.

Second, in deriving the theoretical futures price it is assumed that
the borrowing rate and lending rate are equal. Typically, however, the
borrowing rate is greater than the lending rate. Letting rp denote the
borrowing rate and r; denote the lending rate, then the following
boundaries would exist for the theoretical futures price:

Upper boundary: F = P + P(rg — )
Lower boundary: F = P + P(r; — )

Third, in determining the theoretical futures price, transaction costs
involved in establishing the positions are ignored. In actuality, there are
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transaction costs of entering into and closing the cash position as well
as round-trip transactions costs for the futures contract that do affect
the theoretical futures price. Transaction costs widen the boundaries for
the theoretical futures price.

In the strategy involving short-selling of the underlying asset, it is
assumed that the proceeds from the short sale are received and rein-
vested. In practice, for individual investors, the proceeds are not
received, and, in fact, the individual investor is required to put up mar-
gin (securities margin not futures margin) to short-sell. For institutional
investors, the asset may be borrowed, but there is a cost to borrowing.
This cost of borrowing can be incorporated into the model by reducing
the yield on the asset.

In our derivation, we assumed that only one asset is deliverable.
There are futures contracts, such as the government bond futures con-
tract in the United States and other countries, where the short has the
option of delivering one of several acceptable issues to satisfy the
futures contract. Thus, the buyer of a futures contract with this feature
does not know what the deliverable asset will be. This leads to the
notion of the “cheapest to deliver asset.” It is not difficult to value this
option granted to the short.

Finally, the underlying for some futures contracts is not a single
asset but a basket of assets, or an index. Stock index futures contracts
are an example. The problem in arbitraging these futures contracts on
an index is that it is too expensive to buy or sell every asset included in
the index. Instead, a portfolio containing a smaller number of assets
may be constructed to “track” the index. The arbitrage, however, is no
longer risk-free because there is the risk that the portfolio will not track
the index exactly. All of this leads to higher transaction costs and uncer-
tainty about the outcome of the arbitrage.

The Role of Futures in Financial Markets

Without financial futures, investors would have only one trading loca-
tion to alter portfolio positions when they get new information that is
expected to influence the value of assets—the cash market. If economic
news that is expected to impact the value of an asset adversely is
received, investors can reduce their price risk exposure to that asset. The
opposite is true if the new information is expected to impact the value
of that asset favorably: an investor would increase price-risk exposure
to that asset. There are, of course, transaction costs associated with
altering exposure to an asset—explicit costs (commissions), and hidden
or execution costs (bid-ask spreads and market impact costs).
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Futures provide another market that investors can use to alter their
risk exposure to an asset when new information is acquired. An investor
will transact in the market that is the more efficient to use in order to
achieve the objective. The factors to consider are liquidity, transaction
costs, taxes, and leverage advantages of the futures contract. The mar-
ket that investors feel is the one that is more efficient to use to achieve
their investment objective should be the one where prices will be estab-
lished that reflect the new economic information. That is, this will be
the market where price discovery takes place. Price information is then
transmitted to the other market. It is in the futures market that it is eas-
ier and less costly to alter a portfolio position. Therefore, it is the
futures market that will be the market of choice and will serve as the
price discovery market. It is in the futures market that investors send a
collective message about how any new information is expected to
impact the cash market.

How is this message sent to the cash market? We know that the
futures price and the cash market price are tied together by the cost of
carry. If the futures price deviates from the cash market price by more
than the cost of carry, arbitrageurs (in attempting to obtain arbitrage
profits) would pursue a strategy to bring them back into line. Arbitrage
brings the cash market price into line with the futures price. It is this
mechanism that assures that the cash market price will reflect the infor-
mation that has been collected in the futures market.

OPTIONS

An option is a contract in which the writer of the option grants the buyer
of the option the right, but not the obligation, to purchase from or sell to
the writer something at a specified price within a specified period of time
(or at a specified date). The writer, also referred to as the seller, grants
this right to the buyer in exchange for a certain sum of money, which is
called the option price or option premium. The price at which the asset
may be bought or sold is called the exercise or strike price. The date after
which an option is void is called the expiration date.

When an option grants the buyer the right to purchase the desig-
nated instrument from the writer (seller), it is referred to as a call
option, or call. When the option buyer has the right to sell the desig-
nated instrument to the writer, the option is called a put option, or put.
Buying calls or selling puts allows the investor to gain if the price of the
underlying asset rises. Selling calls and buying puts allows the investor
to gain if the price of the underlying asset falls.
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An option is also categorized according to when the option buyer may
exercise the option. There are options that may be exercised at any time up
to and including the expiration date. Such an option is referred to as an
American option. There are options that may be exercised only at the
expiration date. An option with this feature is called a European option.

There are no margin requirements for the buyer of an option once
the option price has been paid in full. Because the option price is the
maximum amount that the investor can lose, no matter how adverse the
price movement of the underlying asset, there is no need for margin.
Because the writer of an option has agreed to accept all of the risk (and
none of the reward) of the position in the underlying asset, the writer is
generally required to put up the option price received as margin. In
addition, as price changes occur that adversely affect the writer’s posi-
tion, the writer is required to deposit additional margin (with some
exceptions) as the position is marked to market.

Options, like other financial instruments, may be traded either on
an organized exchange or in the over-the-counter market. An exchange
that wants to create an options contract must obtain approval from
either the Commodities Futures Trading Commission or the Securities
and Exchange Commission. Exchange-traded options have three advan-
tages. First, the exercise price and expiration date of the contract are
standardized. Second, as in the case of futures contracts, the direct link
between buyer and seller is severed after the order is executed because
of the interchangeability of exchange-traded options. The clearinghouse
associated with the exchange where the option trades performs the same
function in the options market that it does in the futures market.
Finally, the transaction costs are lower for exchange-traded options
than for OTC options. The higher cost of an OTC option reflects the
cost of customizing the option for the many situations where an institu-
tional investor needs to have a tailor-made option because the standard-
ized exchange-traded option does not satisfy its investment objectives.
Some commercial and investment and banking firms act as principals as
well as brokers in the OTC options market. OTC options are sometimes
referred to as dealer options.

OTC options can be customized in any manner sought by an institu-
tional investor. Basically, if a dealer can reasonably hedge the risk asso-
ciated with the opposite side of the option sought, it will create the
option desired by a customer. OTC options are not limited to European
or American type expiration designs. An option can be created in which
the option can be exercised at several specified dates as well as the expi-
ration date of the option. Such options are referred to as limited exer-
cise options, Bermuda options, and Atlantic options.
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Risk-Return for Options

The maximum amount that an option buyer can lose is the option price.
The maximum profit that the option writer can realize is the option
price. The option buyer has substantial upside return potential, while
the option writer has substantial downside risk.

Notice that, unlike in a futures contract, one party to an option con-
tract is not obligated to transact—specifically, the option buyer has the
right but not the obligation to transact. The option writer does have the
obligation to perform. In the case of a futures contract, both buyer and
seller are obligated to perform. Of course, a futures buyer does not pay
the seller to accept the obligation, while an option buyer pays the seller
an option price.

Consequently, the risk/reward characteristics of the two contracts are
also different. In the case of a futures contract, the buyer of the contract
realizes a dollar-for-dollar gain when the price of the futures contract
increases and suffers a dollar-for-dollar loss when the price of the futures
contract drops. The opposite occurs for the seller of a futures contract.
Options do not provide this symmetric risk/reward relationship. The most
that the buyer of an option can lose is the option price. While the buyer of
an option retains all the potential benefits, the gain is always reduced by the
amount of the option price. The maximum profit that the writer may real-
ize is the option price; this is offset against substantial downside risk. This
difference is extremely important because investors can use futures to pro-
tect against symmetric risk and options to protect against asymmetric risk.

The Option Price

Determining the value of an option is not as simple as the value of a
futures contract. In Chapter 15 we will present a model employing sto-
chastic calculus and arbitrage arguments to determine the theoretical
price of an option. In this section we simply present the factors that
affect the valuation of an option.

Basic Components of the Option Price

The option price is a reflection of the option’s intrinsic value and any
additional amount over its intrinsic value. The premium over intrinsic
value is often referred to as the time premium.

The intrinsic value of an option is the economic value of the option
if it is exercised immediately, except that if there is no positive economic
value that will result from exercising immediately then the intrinsic
value is zero. The intrinsic value of a call option is the difference
between the current price of the underlying asset and the strike price if
positive; it is otherwise zero. For example, if the strike price for a call
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option is $100 and the current asset price is $103, the intrinsic value is
$5. That is, an option buyer exercising the option and simultaneously
selling the underlying asset would realize $105 from the sale of the
asset, which would be covered by acquiring the asset from the option
writer for $100, thereby netting a $5 gain.

When an option has intrinsic value, it is said to be “in the money.”
When the strike price of a call option exceeds the current asset price, the
call option is said to be “out of the money”; it has no intrinsic value. An
option for which the strike price is equal to the current asset price is
said to be “at the money.” Both at-the-money and out-of-the-money
options have an intrinsic value of zero because it is not profitable to
exercise the option. Our call option with a strike price of $100 would
be: (1) in the money when the current asset price is greater than $100;
(2) out of the money when the current asset price is less than $100; and
(3) at the money when the current asset price is equal to $100.

For a put option, the intrinsic value is equal to the amount by which
the current asset price is below the strike price. For example, if the strike
price of a put option is $100 and the current asset price is $92, the intrin-
sic value is $8. That is, the buyer of the put option who exercises the put
option and simultaneously sells the underlying asset will net $8 by exer-
cising. The asset will be sold to the writer for $100 and purchased in the
market for $92. For our put option with a strike price of $100, the option
would be: (1) in the money when the asset price is less than $100; (2) out
of the money when the current asset price exceeds the strike price; and (3)
at the money when the strike price is equal to the asset’s price.

The time premium of an option is the amount by which the option
price exceeds its intrinsic value. The option buyer hopes that, at some
time prior to expiration, changes in the market price of the underlying
asset will increase the value of the rights conveyed by the option. For
this prospect, the option buyer is willing to pay a premium above the
intrinsic value. For example, if the price of a call option with a strike
price of $100 is $9 when the current asset price is $105, the time pre-
mium of this option is $4 ($9 minus its intrinsic value of $5). Had the
current asset price been $90 instead of $105, then the time premium of
this option would be the entire $9 because the option has no intrinsic
value. Clearly, other things being equal, the time premium of an option
will increase with the amount of time remaining to expiration.

There are two ways in which an option buyer may realize the value
of a position taken in the option. First is to exercise the option. The sec-
ond is by selling the call option for $9. In the first example above, sell-
ing the call is preferable because the exercise of an option will realize a
gain of only $5—it will cause the immediate loss of any time premium.
There are circumstances under which an option may be exercised prior
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to the expiration date; they depend on whether the total proceeds at the
expiration date would be greater by holding the option or exercising
and reinvesting any cash proceeds received until the expiration date.

Factors that Influence the Option Price
There are six factors that influence the option price:

1. Current price of the underlying asset.

2. Strike price.

3. Time to expiration of the option.

4. Expected return volatility of the underlying asset over the life of the
option.

5. Short-term risk-free interest rate over the life of the option.

6. Anticipated cash payments on the underlying asset over the life of the

option.

The impact of each of these factors may depend on whether the option
is a call or a put, and whether the option is an American option or a
European option. A summary of the effect of each factor on put and call
option prices is presented in Exhibit 2.2.

Option Pricing Models

Earlier we illustrated that the theoretical price of a futures contract can
be determined on the basis of arbitrage arguments. Theoretical bound-
ary conditions for the price of an option also can be derived through
arbitrage arguments. For example, using arbitrage arguments it can be
shown that the minimum price for an American call option is its intrin-
sic value; that is:

EXHIBIT 22 Summary of Factors that Affect the Price of an Option

Effect of an Increase of Factor on

Factor Call Price Put Price
Current price of underlying asset  Increase Decrease
Strike price Decrease Increase
Time to expiration of option Increase Increase
Expected price volatility Increase Increase
Short-term interest rate Increase Decrease

Anticipated cash payments Decrease Increase
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Call option price = > Max (0, Price of asset — Strike price)

This expression says that the call option price will be greater than or
equal to the difference between the price of the underlying asset and the
strike price (intrinsic value), or zero, whichever is higher.

The boundary conditions can be “tightened” by using arbitrage argu-
ments coupled with certain assumptions about the cash distribution of the
asset.!? The extreme case is an option pricing model that uses a set of
assumptions to derive a single theoretical price, rather than a range. Deriv-
ing a theoretical option price is much more complicated than deriving a
theoretical futures price, because the option price depends on the expected
return volatility of the underlying asset over the life of the option.

Several models have been developed to determine the theoretical
value of an option. The most popular one was developed by Fischer
Black and Myron Scholes in 1973 for valuing European call options.!!
Several modifications to their model have followed since then. We shall
discuss the Black-Scholes model and its assumptions in Chapter 135.
Basically, the idea behind the arbitrage argument is that if the payoff
from owning a call option can be replicated by purchasing the asset
underlying the call option and borrowing funds, the price of the option
is then (at most) the cost of creating the replicating strategy.

SWAPS

A swap is an agreement whereby two parties (called counterparties)
agree to exchange periodic payments. The dollar amount of the pay-
ments exchanged is based on some predetermined dollar principal,
which is called the notional principal amount or notional amount. The
dollar amount each counterparty pays to the other is the agreed-upon
periodic rate times the notional principal amount. The only dollars that
are exchanged between the parties are the agreed-upon payments, not
the notional principal amount. In a swap, there is the risk that one of
the parties will fail to meet its obligation to make payments (default).
This is referred to as counterparty risk.

Swaps are classified based on the characteristics of the swap payments.
There are four types of swaps: interest rate swaps, interest rate-equity
swaps, equity swaps, and currency swaps. In an interest rate swap, the

19See Chapter 4 in John C. Cox and Mark Rubinstein, Option Markets (Englewood
Cliffs, N.].: Prentice Hall, 1985), Chapter 4.

" Fischer Black and Myron Scholes, “The Pricing of Corporate Liabilities,” Journal
of Political Economy (May-June 1973), pp. 637-659.
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counterparties swap payments in the same currency based on an interest
rate. For example, one of the counterparties can pay a fixed-interest rate
and the other party a floating interest rate. The floating-interest rate is
commonly referred to as the reference rate. In an interest rate-equity swap,
one party is exchanging a payment based on an interest rate and the other
party based on the return of some equity index. The payments are made in
the same currency. In an equity swap, both parties exchange payments in
the same currency based on some equity index. Finally, in a currency swap,
two parties agree to swap payments based on different currencies.

A swap is not a new derivative instrument. Rather, it can be decom-
posed into a package of forward contracts. While a swap may be nothing
more than a package of forward contracts, it is not a redundant contract
for several reasons. First, in many markets where there are forward and
futures contracts, the longest maturity does not extend out as far as that of
a typical swap. Second, a swap is a more transactionally efficient instru-
ment. By this we mean that in one transaction an entity can effectively
establish a payoff equivalent to a package of forward contracts. The for-
ward contracts would each have to be negotiated separately. Third, the
liquidity of some swap markets is now better than many forward con-
tracts, particularly long-dated (i.e., long-term) forward contracts.

CAPS AND FLOORS

There are agreements available in the financial market whereby one
party, for a fee (premium), agrees to compensate the other if a desig-
nated reference is different from a predetermined level. The party that
will receive payment if the designated reference differs from a predeter-
mined level and pays a premium to enter into the agreement is called the
buyer. The party that agrees to make the payment if the designated ref-
erence differs from a predetermined level is called the seller.

When the seller agrees to pay the buyer if the designated reference
exceeds a predetermined level, the agreement is referred to as a cap. The
agreement is referred to as a floor when the seller agrees to pay the
buyer if a designated reference falls below a predetermined level. The
designated reference could be a specific interest rate such as LIBOR or
the prime rate, the rate of return on some domestic or foreign stock
market index such as the S&P 500 or the DAX, or an exchange rate
such as the exchange rate between the U.S. dollar and the Japanese yen.
The predetermined level is called the strike. As with a swap, a cap and a
floor have a notional principal amount. Only the buyer of a cap or a
floor is exposed to counterparty risk.
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In general, the payment made by the seller of the cap to the buyer
on a specific date is determined by the relationship between the desig-
nated reference and the strike. If the former is greater that the latter,
then the seller pays the buyer:

Notional principal amount x [Actual value of designated reference — Strike]

If the designated reference is less than or equal to the strike, then the
seller pays the buyer nothing.

For a floor, the payment made by the seller to the buyer on a specific
date is determined as follows. If the designated reference is less than the
strike, then the seller pays the buyer:

Notional principal amount x [Strike — Actual value of designated reference]

If the designated reference is greater than or equal to the strike, then the
seller pays the buyer nothing.

In a cap or floor, the buyer pays a fee which represents the maxi-
mum amount that the buyer can lose and the maximum amount that the
seller of the agreement can gain. The only party that is required to per-
form is the seller. The buyer of a cap benefits if the designated reference
rises above the strike because the seller must compensate the buyer. The
buyer of a floor benefits if the designated reference falls below the strike
because the seller must compensate the buyer.

In essence the payoff of these contracts is the same as that of an
option. A call option buyer pays a fee and benefits if the value of the
option’s underlying asset (or equivalently, designated reference) is
higher than the strike price at the expiration date. A cap has a similar
payoff. A put option buyer pays a fee and benefits if the value of the
option’s underlying asset (or equivalently, designated reference) is less
than the strike price at the expiration date. A floor has a similar payoff.
An option seller is only entitled to the option price. The seller of a cap
or floor is only entitled to the fee. Thus, a cap and a floor can be viewed
as simply a package of options. As with a swap, a complex contract can
be seen to be a package of basic contracts (forward contracts in the case
of swaps and options in the case of caps and floors).

SUMMARY

B The claims of the holder of a financial asset may be either a fixed dollar
amount (fixed income instrument or bond) or a varying, or residual,
amount (common stock).
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B The two principal economic functions of financial assets are to (1)

transfer funds from those parties who have surplus funds to invest to
those who need funds to invest in tangible assets; and (2) transfer funds
in such a way as to redistribute the unavoidable risk associated with
the cash flow generated by tangible assets among those seeking and
those providing the funds.

Financial assets possess the following properties that determine or
influence their attractiveness to different classes of investors: (1) mon-
eyness; (2) divisibility and denomination; (3) reversibility; (4) term to
maturity; (5) liquidity; (6) convertibility; (7) currency; (8) cash flow
and return predictability; and (9) tax status.

There are five ways to classify financial markets: (1) nature of the
claim; (2) maturity of the claims; (3) new versus seasoned claims; (4)
cash versus derivative instruments; and (5) organizational structure of
the market.

Financial markets provide the following economic functions: (1) They
signal how the funds in the economy should be allocated among finan-
cial assets (i.e., price discovery); (2) they provide a mechanism for an
investor to sell a financial asset (i.e., provide liquidity); and (3) they
reduce search and information costs of transacting.

Pricing efficiency refers to a market where prices at all times fully
reflect all available information that is relevant to the valuation of
securities.

Financial intermediaries obtain funds by issuing financial claims
against themselves to market participants, then investing those funds.
Asset managers manage funds to meet specified investment objectives—
either based on a market benchmark or based on liabilities.

Common stocks, also called equity securities, represent an ownership
interest in a corporation; holders of this types of security are entitled to
the earnings of the corporation when those earnings are distributed in
the form of dividends.

A bond is a financial obligation of an entity that promises to pay a
specified sum of money at specified future dates; a bond may include a
provision that grants the issuer or the investor an option to alter the
effective maturity.

A futures contract and forward contract are agreements that require a
party to the agreement either to buy or sell the underlying at a desig-
nated future date at a predetermined price.

Futures contracts are standardized agreements as to the delivery date
and quality of the deliverable, and are traded on organized exchanges;
a forward contract differs in that it is usually nonstandardized, there is
no clearinghouse (and therefore counterparty risk), and secondary
markets are often nonexistent or extremely thin.
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B An option is a contract in which the writer of the option grants the
buyer of the option the right, but not the obligation, to purchase from
the writer (a call option) or sell to the writer (a put option) the underly-
ing at the strike (or exercise) price within a specified period of time (or
at a specified date); the option price is a reflection of the option’s intrin-
sic value and any additional amount over its intrinsic value.

B A swap is an agreement whereby the counterparties agree to exchange
periodic payments; the dollar amount of the payments exchanged is
based on a notional amount.

B A cap and a floor are agreements whereby one party, for a fee (pre-
mium), agrees to compensate the other if a designated reference is dif-
ferent from a predetermined level.






Milestones in Financial Modeling
and Investment Management

he mathematical development of present-day economic and finance
theory began in Lausanne, Switzerland at the end of the nineteenth
century, with the development of the mathematical equilibrium theory by
Leon Walras and Wilfredo Pareto.! Shortly thereafter, at the beginning of
the twentieth century, Louis Bachelier in Paris and Filip Lundberg in Upp-
sala (Sweden) made two seminal contributions: they developed sophisti-
cated mathematical tools to describe uncertain price and risk processes.
These developments were well in advance of their time. Further
progress was to be made only much later in the twentieth century, thanks
to the development of digital computers. By making it possible to com-
pute approximate solutions to complex problems, digital computers
enabled the large-scale application of mathematics to business problems.
A first round of innovation occurred in the 1950s and 1960s. Ken-
neth Arrow and Georges Debreu introduced a probabilistic model of
markets and the notion of contingent claims. (We discuss their contribu-
tions in Chapter 6.) In 1952, Harry Markowitz described mathemati-
cally the principles of the investment process in terms of utility
optimization. In 1961, Franco Modigliani and Merton Miller clarified
the nature of economic value, working out the implications of absence
of arbitrage. Between 1964 and 1966, William Sharpe, John Lintner,

I References for some of the works cited in this chapter will be provided in later chap-
ters in this book. For an engaging description of the history of capital markets see
Peter L. Bernstein, Capital Ideas (New York: The Free Press, 1992). For a history of
the role of risk in business and investment management, see Peter L. Bernstein,
Against the Gods (New York: John Wiley & Sons, 1996).
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and Jan Mossin developed a theoretical model of market prices based
on the principles of financial decision-making laid down by Markowitz.
The notion of efficient markets was introduced by Paul Samuelson in
19635, and five years later, further developed by Eugene Fama.

The second round of innovation started at the end of the 1970s. In
1973, Fischer Black, Myron Scholes, and Robert Merton discovered how to
determine option prices using continuous hedging. Three years later,
Stephen Ross introduced arbitrage pricing theory (APT). Both were major
developments that were to result in a comprehensive mathematical method-
ology for investment management and the valuation of derivative financial
products. At about the same time, Merton introduced a continuous-time
intertemporal, dynamic optimization model of asset allocation. Major
refinements in the methodology of mathematical optimization and new
econometric tools were to change the way investments are managed.

More recently, the diffusion of electronic transactions has made
available a huge amount of empirical data. The availability of this data
created the hope that economics could be given a more solid scientific
grounding. A new field—econophysics—opened with the expectation
that the proven methods of the physical sciences and the newly born sci-
ence of complex systems could be applied with benefit to economics. It
was hypothesized that economic systems could be studied as physical
systems with only minimal a priori economic assumptions. Classical
econometrics is based on a similar approach; but while the scope of
classical econometrics is limited to dynamic models of time series,
econophysics uses all the tools of statistical physics and complex sys-
tems analysis, including the theory of interacting multiagent systems.

THE PRECURSORS: PARETO, WALRAS, AND THE
LAUSANNE SCHOOL

The idea of formulating quantitative laws of economic behavior in ways
similar to the physical sciences started in earnest at the end of the nineteenth
century. Though quite accurate economic accounting on a large scale dates
back to Assyro-Babylonian times, a scientific approach to economics is a
recent endeavor.

Leon Walras and Wilfredo Pareto, founders of the so-called Lausanne
School at the University of Lausanne in Switzerland, were among the first
to explicitly formulate quantitative principles of market economies, stating
the principle of economic equilibrium as a mathematical theory. Both
worked at a time of great social and economic change. In Pareto’s work in
particular, pure economics and political science occupy a central place.
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Convinced that economics should become a mathematical science,
Walras set himself the task of writing the first mathematical general
equilibrium system. The British economist Stanley Jevons and the Aus-
trian economist Carl Menger had already formulated the idea of eco-
nomic equilibrium as a situation where supply and demand match in
interrelated markets. Walras’s objective—to prove that equilibrium was
indeed possible—required the explicit formulation of the equations of
supply-and-demand equilibrium.

Walras introduced the idea of tatonemment (French for groping) as a
process of exploration by which a central auctioneer determines equilib-
rium prices. A century before, in 1776, in his book An Inquiry into the
Nature and Causes of the Wealth of Nations, Adam Smith had introduced
the notion of the “invisible hand” that coordinates the activity of inde-
pendent competitive agents to achieve desirable global goals.> Walras was
to make the hand “visible” by defining the process of price discovery.

Pareto followed Walras in the Chair of Economics at the University of
Lausanne. Pareto’s focus was the process of economic decision-making. He
replaced the idea of supply-and-demand equilibrium with a more general
idea of the ordering of preferences through utility functions.®> Equilibrium
is reached where marginal utilities are zero. The Pareto system hypothe-
sized that agents are able to order their preferences and take into account
constraints in such a way that a numerical index—“utility” in today’s ter-
minology—can be associated to each choice.* Economic decision-making
is therefore based on the maximization of utility. As Pareto assumed utility
to be a differentiable function, global equilibrium is reached where mar-
ginal utilities (i.e., the partial derivatives of utility) vanish.

Pareto was especially interested in the problem of the global opti-
mum of utility. The Pareto optimum is a state in which nobody can be
better off without making others worse off. A Pareto optimum does not
imply the equal division of resources; quite the contrary, a Pareto opti-
mum might be a maximally unequal distribution of wealth.

21In the modern parlance of complex systems, the “invisible hand” would be called
an “emerging property” of competitive markets. Much recent work on complex sys-
tems and artificial life has focused on understanding how the local interaction of in-
dividuals might result in complex and purposeful global behavior.

3 Pareto used the word “ophelimity” to designate what we would now call utility.
The concept of ophelimity is slightly different from the concept of utility insofar as
ophelimity includes constraints on people’s preferences.

*It was not until 1944 that utility theory was formalized in a set of necessary and
sufficient axioms by von Neumann and Morgenstern and applied to decision-making
under risk and uncertainty. See John von Neumann and Oskar Morgenstern, Theory
of Games and Economic Bebavior (Princeton, NJ: Princeton University Press,
1944).
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A lasting contribution of Pareto is the formulation of a law of
income distribution. Known as the Pareto law, this law states that there
is a linear relationship between the logarithm of the income I and the
number N of people that earn more than this income:

LogN=A+slogl

where A and s are appropriate constants.

The importance of the works of Walras and Pareto were not appre-
ciated at the time. Without digital computers, the equilibrium systems
they conceived were purely abstract: There was no way to compute
solutions to economic equilibrium problems. In addition, the climate at
the turn of the century did not allow a serene evaluation of the scientific
merit of their work. The idea of free markets was at the center of heated
political debates; competing systems included mercantile economies
based on trade restrictions and privileges as well as the emerging cen-
trally planned Marxist economies.

PRICE DIFFUSION: BACHELIER

In 1900, the Sorbonne University student Louis Bachelier presented a
doctoral dissertation, Théorie de la Spéculation, that was to anticipate
much of today’s work in finance theory. Bachelier’s advisor was the
great French mathematician Henri Poincaré. There were three notable
aspects in Bachelier’s thesis:

B He argued that in a purely speculative market stock prices should be
random.

B He developed the mathematics of Brownian motion.

B He computed the prices of several options.

To appreciate the importance of Bachelier’s work, it should be
remarked that at the beginning of the 20th century, the notion of proba-
bility was not yet rigorous; the formal mathematical theory of probabil-
ity was developed only in the 1930s (see Chapter 6). In particular, the
precise notion of the propagation of information essential for the defini-
tion of conditional probabilities in continuous time had not yet been
formulated.

Anticipating the development of the theory of efficient markets 60
years later, the key economic idea of Bachelier was that asset prices in a
speculative market should be a fair game, that is, a martingale process
such that the expected return is zero (see Chapter 15). According to Bach-
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elier, “The expectation of the speculator is zero.” The formal concept of a
martingale (i.e., of a process such that its expected value at any moment
coincides with the present value) had not yet been introduced in probabil-
ity theory. In fact, the rigorous notion of conditional probability and fil-
tration (see Chapter 6) were developed only in the 1930s. In formulating
his hypothesis on market behavior, Bachelier relied on intuition.
Bachelier actually went much further. He assumed that stock prices
evolve as a continuous-time Markov process. This was a brilliant intu-
ition: Markov was to start working on these problems only in 1906.
Bachelier established the differential equation for the time evolution of
the probability distribution of prices, noting that this equation was the
same as the heat diffusion equation. Five years later, in 1905, Albert
Einstein used the same diffusion equation for the Brownian motion (i.e.,
the motion of a small particle suspended in a fluid). Bachelier also made
the connection with the continuous limit of random walks, thus antici-
pating the work of the Japanese mathematician Kiyosi It6 at the end of
the 1940s and the Russian mathematician and physicist Ruslan L. Stra-
tonovich on stochastic integrals at the end of the 1950s.
By computing the extremes of Brownian motion, Bachelier computed
the price of several options. He also computed the distributions of a
number of functionals of Brownian motion. These were remarkable
mathematical results in themselves. Formal proof was given only much
later. Even more remarkable, Bachelier established option pricing formu-
las well before the formal notion of absence of arbitrage was formulated.
Though the work of Bachelier was correctly assessed by his advisor
Poincaré, it did not bring him much recognition at the time. Bachelier
succeeded in getting several books on probability theory published, but
his academic career was not very successful. He was offered only minor
positions in provincial towns and suffered a major blow when in 1926,
at the age of 56, he was refused a permanent chair at the University of
Dijon under the pretext (false) that his 1900 thesis contained an error.’
Bachelier’s work was outside the mainstream of contemporary
mathematics but was too mathematically complex for the economists of
his time. It wasn’t until the formal development of probability theory in
1930s that his ideas became mainstream mathematics and only in the
1960s, with the development of the theory of efficient markets, that his
ideas became part of mainstream finance theory. In an efficient market,
asset prices should, in each instant, reflect all the information available
at the time, and any event that causes prices to move must be unex-

5 The famous mathematician Paul Levy who, apparently in bona fide, initially en-
dorsed the claim that Bachelier’s thesis contained an error, later wrote a letter of
apology to Bachelier.
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pected (i.e., a random disturbance). As a consequence, prices move as
martingales, as argued by Bachelier. Bachelier was, in fact, the first to
give a precise mathematical structure in continuous time to price pro-
cesses subject to competitive pressure by many agents.

THE RUIN PROBLEM IN INSURANCE: LUNDBERG

In Uppsala, Sweden, in 1903, three years after Bachelier defended his
doctoral dissertation in Paris, Filip Lundberg defended a thesis that was
to become a milestone in actuarial mathematics: He was the first to
define a collective theory of risk and to apply a sophisticated probabilis-
tic formulation to the insurance ruin problem. The ruin problem of an
insurance company in a nonlife sector can be defined as follows. Sup-
pose that an insurance company receives a stream of sure payments
(premiums) and is subject to claims of random size that occur at random
times. What is the probability that the insurer will not be able to meet
its obligations (i.e., the probability of ruin)?

Lundberg solved the problem as a collective risk problem, pooling
together the risk of claims. To define collective risk processes, he intro-
duced marked Poisson processes. Marked Poisson processes are pro-
cesses where the random time between two events is exponentially
distributed. The magnitude of events is random with a distribution inde-
pendent of the time of the event. Based on this representation, Lundberg
computed an estimate of the probability of ruin.

Lundberg’s work anticipated many future developments of probability
theory, including what was later to be known as the theory of point pro-
cesses. In the 1930s, the Swedish mathematician and probabilist Harald
Cramer gave a rigorous mathematical formulation to Lundberg’s work. A
more comprehensive formal theory of insurance risk was later developed.
This theory now includes Cox processes—point processes more general
than Poisson processes—and fat-tailed distributions of claim size.

A strong connection between actuarial mathematics and asset pric-
ing theory has since been established.® In well-behaved, complete mar-
kets (see Chapter 23), establishing insurance premiums entails principles
that mirror asset prices. In the presence of complete markets, insurance
would be a risk-free business: There is always the possibility of reinsur-
ance. In markets that are not complete—essentially because they make
unpredictable jumps—hedging is not possible; risk can only be diversi-

¢ Paul Embrechts, Claudia Kliippelberg, and Thomas Mikosch, Modelling Extremal
Events for Insurance and Finance (Berlin: Springer, 1996).
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fied and options are inherently risky. Option pricing theory again mir-
rors the setting of insurance premiums.

Lundberg’s work went unnoticed by the actuarial community for
nearly 30 years, though this did not stop him from enjoying a successful
career as an insurer. Both Bachelier and Lundberg were in advance of
their time; they anticipated, and probably inspired, the subsequent
development of probability theory. But the type of mathematics implied
by their work could not be employed in full earnest prior to the devel-
opment of digital computers. It was only with digital computers that we
were able to tackle complex mathematical problems whose solutions go
beyond closed-form formulas.

THE PRINCIPLES OF INVESTMENT: MARKOWITZ

Just how an investor should allocate his resources has long been
debated. Classical wisdom suggested that investments should be allo-
cated to those assets yielding the highest returns, without the consider-
ation of correlations. Before the modern formulation of efficient
markets, speculators widely acted on the belief that positions should be
taken only if they had a competitive advantage in terms of information.
A large amount of resources were therefore spent on analyzing financial
information. John Maynard Keynes suggested that investors should
carefully evaluate all available information and then make a calculated
bet. The idea of diversification was anathema to Keynes, who was actu-
ally quite a successful investor.

In 1952, Harry Markowitz, then a graduate student at the University
of Chicago, and a student member of the Cowles Commission,” published a
seminal article on optimal portfolio selection that upset established wis-
dom. He advocated that, being risk adverse, investors should diversify their
portfolios.® The idea of making risk bearable through risk diversification
was not new: It was widely used by medieval merchants. Markowitz under-
stood that the risk-return trade-off of investments could be improved by
diversification and cast diversification in the framework of optimization.

7 The Cowles Commission is a research institute founded by Alfred Cowles in 1932.
Originally based in Colorado Springs, the Commission later moved to the University
of Chicago and thereafter to Yale University. Many prominent American economists
have been associated with the Commission.

8 See Harry M. Markowitz, “Portfolio Selection,” Journal of Finance (March 1952),
pp. 77-91. The principles in Markowitz’s article were then expanded in his book
Portfolio Selection, Cowles Foundation Monograph 16 (New York: John Wiley,
1959).
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Markowitz was interested in the investment decision-making pro-
cess. Along the lines set forth by Pareto 60 years earlier, Markowitz
assumed that investors order their preferences according to a utility
index, with utility as a convex function that takes into account inves-
tors’ risk-return preferences. Markowitz assumed that stock returns are
jointly normal. As a consequence, the return of any portfolio is a nor-
mal distribution, which can be characterized by two parameters: the
mean and the variance. Utility functions are therefore defined on two
variables—mean and variance—and the Markowitz framework for
portfolio selection is commonly referred to as mean-variance analysis.
The mean and variance of portfolio returns are in turn a function of a
portfolio’s weights. Given the variance-covariance matrix, utility is a
function of portfolio weights. The investment decision-making process
involves maximizing utility in the space of portfolio weights.

After writing his seminal article, Markowitz joined the Rand Corpo-
ration, where he met George Dantzig. Dantzig introduced Markowitz to
computer-based optimization technology.” The latter was quick to appre-
ciate the role that computers would have in bringing mathematics to bear
on business problems. Optimization and simulation were on the way to
becoming the tools of the future, replacing the quest for closed-form solu-
tions of mathematical problems.

In the following years, Markowitz developed a full theory of the invest-
ment management process based on optimization. His optimization theory
had the merit of being applicable to practical problems, even outside of the
realm of finance. With the progressive diffusion of high-speed computers,
the practice of financial optimization has found broad application.!”

? The inputs to the mean-variance analysis include expected returns, variance of re-
turns, and either covariance or correlation of returns between each pair of securities.
For example, an analysis that allows 200 securities as possible candidates for port-
folio selection requires 200 expected returns, 200 variances of return, and 19,900
correlations or covariances. An investment team tracking 200 securities may reason-
ably be expected to summarize their analyses in terms of 200 means and variances,
but it is clearly unreasonable for them to produce 19,900 carefully considered corre-
lation coefficients or covariances. It was clear to Markowitz that some kind of model
of the covariance structure was needed for the practical application of the model. He
did little more than point out the problem and suggest some possible models of co-
variance for research to large portfolios. In 1963, William Sharpe suggested the sin-
gle index market model as a proxy for the covariance structure of security returns
(“A Simplified Model for Portfolio Analysis,” Management Science (January 1963),
pp. 277-293).

19Tn Chapter 16 we illustrate one application. For a more detailed discussion, see
Frank J. Fabozzi, Francis Gupta, and Harry M. Markowitz, “The Legacy of Modern
Portfolio Theory,” Journal of Investing (Summer 2002), pp. 7-22.
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UNDERSTANDING VALUE: MODIGLIANI AND MILLER

At about the same time that Markowitz was tackling the problem of
how investors should behave, taking asset price processes as a given,
other economists were trying to understand how markets determine
value. Adam Smith had introduced the notion of perfect competition
(and therefore perfect markets) in the second half of the eighteenth cen-
tury. In a perfect market, there are no impediments to trading: Agents
are price takers who can buy or sell as many units as they wish. The
neoclassical economists of the 1960s took the idea of perfect markets as
a useful idealization of real free markets. In particular, they argued that
financial markets are very close to being perfect markets. The theory of
asset pricing was subsequently developed to explain how prices are set
in a perfect market.

In general, a perfect market results when the number of buyers and
sellers is sufficiently large, and all participants are small enough relative
to the market so that no individual market agent can influence a com-
modity’s price. Consequently, all buyers and sellers are price takers, and
the market price is determined where there is equality of supply and
demand. This condition is more likely to be satisfied if the commodity
traded is fairly homogeneous (for example, corn or wheat).

There is more to a perfect market than market agents being price
takers. It is also required that there are no transaction costs or impedi-
ments that interfere with the supply and demand of the commodity.
Economists refer to these various costs and impediments as “frictions.”
The costs associated with frictions generally result in buyers paying
more than in the absence of frictions, and/or sellers receiving less. In the
case of financial markets, frictions include:

B Commissions charged by brokers.

B Bid-ask spreads charged by dealers.

B Order handling and clearance charges.

B Taxes (notably on capital gains) and government-imposed transfer fees.

m Costs of acquiring information about the financial asset.

B Trading restrictions, such as exchange-imposed restrictions on the size
of a position in the financial asset that a buyer or seller may take.

B Restrictions on market makers.

B Halts to trading that may be imposed by regulators where the financial
asset is traded.
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Modigliani-Miller Irrelevance Theorems and the

Absence of Arhitrage

A major step was taken in 1958 when Franco Modigliani and Merton
Miller published a then-controversial article in which they maintained
that the value of a company does not depend on the capital structure of
the firm.!" (The capital structure of a firm is the mix of debt and equity.)
The traditional view prior to the publication of the article by
Modigliani and Miller was that there existed a capital structure that
maximized the value of the firm (i.e., there is an optimal capital struc-
ture). Modigliani and Miller demonstrated that in the absence of taxes
and in a perfect capital market, the capital structure was irrelevant (i.e.,
the capital structure does not affect the value of a firm).!?

In 1961, Modigliani and Miller published yet another controversial
article where they argued that the value of a company does not depend
on the dividends it pays but on its earnings.'®> The basis for valuing a
firm—earnings or dividends—had always attracted considerable atten-
tion. Because dividends provide the hard cash which remunerates inves-
tors, they were considered by many as key to a firm’s value.

Modigliani and Miller’s challenge to the traditional view that capi-
tal structure and dividends matter when determining a firm’s value was
founded on the principle that the traditional views were inconsistent
with the workings of competitive markets where securities are freely
traded. In their view, the value of a company is independent of its finan-
cial structure: from a valuation standpoint, it does not matter whether
the firm keeps its earnings or distributes them to shareholders.

Known as the Modigliani-Miller theorems, these theorems paved the
way for the development of arbitrage pricing theory. In fact, to establish
their theorems, Modigliani and Miller made use of the notion of absence
of arbitrage. Absence of arbitrage means that there is no possibility of
making a risk-free profit without an investment. This implies that the
same stream of cash flows should be priced in the same way across dif-

" Franco Modigliani and Merton H. Miller, “The Cost of Capital, Corporation Fi-
nance, and the Theory of Investment,” American Economic Review (June 1958),
pp. 261-297. In a later article, they corrected their analysis for the impact of corpo-
rate taxes: Franco Modigliani and Merton H. Miller, “Corporate Income Taxes and
the Cost of Capital: A Correction,” American Economic Review (June 1963), pp.
433-443.

12 By extension, the irrelevance principle applies to the type of debt a firm may select
(e.g., senior, subordinated, secured, and unsecured).

13 Merton H. Miller and Franco Modigliani, “Dividend Policy, Growth, and the Val-
uation of Shares,” Journal of Business (October 1961), pp. 411-433.
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ferent markets. Absence of arbitrage is the fundamental principle for rel-
ative asset pricing; it is the pillar on which derivative pricing rests.

EFFICIENT MARKETS: FAMA AND SAMUELSON

Absence of arbitrage entails market efficiency. Shortly after the Modigliani-
Miller theorems had been established, Paul Samuelson in 1965 and
Eugene Fama in 1970'° developed the notion of efficient markets: A
market is efficient if prices reflect all available information. Bachelier
had argued that prices in a competitive market should be random condi-
tionally to the present state of affairs. Fama and Samuelson put this
concept into a theoretical framework, linking prices to information.

As explained in the previous chapter, in general, an efficient market
refers to a market where prices at all times fully reflect all available infor-
mation that is relevant to the valuation of securities. That is, relevant infor-
mation about the security is quickly impounded into the price of securities.

Fama and Samuelson define “fully reflects” in terms of the expected
return from holding a security. The expected return over some holding
period is equal to expected cash distributions plus the expected price
change, all divided by the initial price. The price formation process
defined by Fama and Samuelson is that the expected return one period
from now is a stochastic variable that already takes into account the “rel-
evant” information set. They argued that in a market where information
is shared by all market participants, prices should fluctuate randomly.

A price-efficient market has implications for the investment strategy
that investors may wish to pursue. In an active strategy, investors seek
to capitalize on what they perceive to be the mispricing of financial
instruments (cash instruments or derivative instruments). In a market
that is price efficient, active strategies will not consistently generate a
return after taking into consideration transaction costs and the risks
associated with a strategy that is greater than simply buying and hold-
ing securities. This has lead investors in certain sectors of the capital
market where empirical evidence suggests the sector is price efficient to
pursue a strategy of indexing, which simply seeks to match the perfor-
mance of some financial index. However Samuelson was careful to
remark that the notion of efficient markets does not make investment
analysis useless; rather, it is a condition for efficient markets.

14 Paul A. Samuelson, “Proof the Properly Anticipated Prices Fluctuate Randomly,”
Industrial Management Review (Spring 1965), pp. 41-50.

15 Eugene F. Fama, “The Behavior of Stock Market Prices,” Journal of Business (Jan-
uary 1965), pp. 34-105.
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Another facet in this apparent contradiction of the pursuit of active
strategies despite empirical evidence on market efficiency was soon to be
clarified. Agents optimize a risk-return trade-off based on the stochastic
features of price processes. Price processes are not simply random but
exhibit a rich stochastic behavior. The objective of investment analysis
is to reveal this behavior (see Chapters 16 and 19).

CAPITAL ASSET PRICING MODEL: SHARPE, LINTNER AND
MOSSIN

Absence of arbitrage is a powerful economic principle for establishing
relative pricing. In itself, however, it is not a market equilibrium model.
William Sharpe (in 1964),'° John Lintner (in 1965),!” and Jan Mossin
(in 1966),'% developed a theoretical equilibrium model of market prices
called the Capital Asset Pricing Model (CAPM). As anticipated 60 years
earlier by Walras and Pareto, Sharpe, Lintner, and Mossin developed the
consequences of Markowitz’s portfolio selection into a full-fledged sto-
chastic general equilibrium theory.

Asset pricing models categorize risk factors into two types. The first
type is risk factors that cannot be diversified away via the Markowitz
framework. That is, no matter what the investor does, the investor can-
not eliminate these risk factors. These risk factors are referred to as sys-
tematic risk factors or nondiversifiable risk factors. The second type is
risk factors that can be eliminated via diversification. These risk factors
are unique to the asset and are referred to as unsystematic risk factors
or diversifiable risk factors.

The CAPM has only one systematic risk factor—the risk of the over-
all movement of the market. This risk factor is referred to as “market
risk.” This is the risk associated with holding a portfolio consisting of
all assets, called the “market portfolio.” In the market portfolio, an
asset is held in proportion to its market value. So, for example, if the
total market value of all assets is $X and the market value of asset ; is
$Y, then asset j will comprise $Y/$X of the market portfolio.

16 William F. Sharpe, “Capital Asset Prices,” Journal of Finance (September 1964),
pp. 425-442.

7 John Lintner, “The Valuation of Risk Assets and the Selection of Risky Invest-
ments in Stock Portfolio and Capital Budgets,” Review of Economics and Statistics
(February 1965), pp. 13-37.

18 Jan Mossin, “Equilibrium in a Capital Asset Market,” Econometrica (October
1966), pp. 768-783.
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The expected return for an asset i according to the CAPM is equal to
the risk-free rate plus a risk premium. The risk premium is the product of
(1) the sensitivity of the return of asset i to the return of the market port-
folio and (2) the difference between the expected return on the market
portfolio and the risk-free rate. It measures the potential reward for tak-
ing on the risk of the market above what can be earned by investing in an
asset that offers a risk-free rate. Taken together, the risk premium is a
product of the quantity of market risk and the potential compensation of
taking on market risk (as measured by the second component).

The CAPM was highly appealing from the theoretical point of view.
It was the first general-equilibrium model of a market that admitted
testing with econometric tools. A critical challenge to the empirical test-
ing of the CAPM is the identification of the market portfolio.'’

THE MULTIFACTOR CAPM: MERTON

The CAPM assumes that the only risk that an investor is concerned with
is uncertainty about the future price of a security. Investors, however,
are usually concerned with other risks that will affect their ability to
consume goods and services in the future. Three examples would be the
risks associated with future labor income, the future relative prices of
consumer goods, and future investment opportunities.

Recognizing these other risks that investors face, in 1976 Robert
Merton extended the CAPM based on consumers deriving their optimal
lifetime consumption when they face these “extra-market” sources of
risk.? These extra-market sources of risk are also referred to as “fac-
tors,” hence the model derived by Merton is called a multifactor CAPM.

The multifactor CAPM says that investors want to be compensated
for the risk associated with each source of extra-market risk, in addition
to market risk. In the case of the CAPM, investors hedge the uncertainty
associated with future security prices by diversifying. This is done by
holding the market portfolio. In the multifactor CAPM, in addition to
investing in the market portfolio, investors will also allocate funds to
something equivalent to a mutual fund that hedges a particular extra-
market risk. While not all investors are concerned with the same sources
of extra-market risk, those that are concerned with a specific extra-mar-
ket risk will basically hedge them in the same way.

Y Richard R. Roll, “A Critique of the Asset Pricing Theory’s Tests,” Journal of Fi-
nancial Economics (March 1977), pp. 129-176.

20Robert C. Merton, “An Intertemporal Capital Asset Pricing Model,” Econometri-
ca (September 1973), pp. 867-888.
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The multifactor CAPM is an attractive model because it recognizes
nonmarket risks. The pricing of an asset by the marketplace, then, must
reflect risk premiums to compensate for these extra-market risks. Unfor-
tunately, it may be difficult to identify all the extra-market risks and to
value each of these risks empirically. Furthermore, when these risks are
taken together, the multifactor CAPM begins to resemble the arbitrage
pricing theory model described next.

ARBITRAGE PRICING THEORY: ROSS

An alternative to the equilibrium asset pricing model just discussed, an
asset pricing model based purely on arbitrage arguments, was derived
by Stephen Ross.?! The model, called the Arbitrage Pricing Theory
(APT) Model, postulates that an asset’s expected return is influenced by
a variety of risk factors, as opposed to just market risk as assumed by
the CAPM. The APT model states that the return on a security is lin-
early related to H systematic risk factors. However, the APT model does
not specify what the systematic risk factors are, but it is assumed that
the relationship between asset returns and the risk factors is linear.

The APT model as given asserts that investors want to be compen-
sated for all the risk factors that systematically affect the return of a secu-
rity. The compensation is the sum of the products of each risk factor’s
systematic risk and the risk premium assigned to it by the capital market.

Proponents of the APT model argue that it has several major advan-
tages over the CAPM. First, it makes less restrictive assumptions about
investor preferences toward risk and return. As explained earlier, the
CAPM theory assumes investors trade off between risk and return solely
on the basis of the expected returns and standard deviations of prospec-
tive investments. The APT model, in contrast, simply requires that some
rather unobtrusive bounds be placed on potential investor utility func-
tions. Second, no assumptions are made about the distribution of asset
returns. Finally, since the APT model does not rely on the identification
of the true market portfolio, the theory is potentially testable. The
model simply assumes that no arbitrage is possible. That is, using no
additional funds (wealth) and without increasing risk, it is not possible
for an investor to create a portfolio to increase return.

The APT model provides theoretical support for an asset pricing
model where there is more than one risk factor. Consequently, models of

21 Stephen A. Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Economic
Theory (December 1976), pp. 343-362.
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this type are referred to as multifactor risk models. These models are
applied to portfolio management.

ARBITRAGE, HEDGING, AND OPTION THEORY: BLACK, SCHOLES,
AND MERTON

The idea of arbitrage pricing can be extended to any price process. A
general model of asset pricing will include a number of independent
price processes plus a number of price processes that depend on the first
process by arbitrage. The entire pricing structure may or may not be
cast in a general equilibrium framework.

Arbitrage pricing allowed derivative pricing. With the development
of derivatives trading, the requirement of a derivative valuation and
pricing model made itself felt. The first formal solution of the option
pricing model was developed independently by Fisher Black and Myron
Scholes in 1976,2% working together, and in the same year by Robert
Merton.*3

The solution of the option pricing problem proposed by Black,
Scholes, and Merton was simple and elegant. Suppose that a market
contains a risk-free bond, a stock, and an option. Suppose also that the
market is arbitrage-free and that stock price processes follow a continu-
ous-time geometric Brownian motion (see Chapter 8). Black, Scholes,
and Merton demonstrated that it is possible to construct a portfolio
made up of the stock plus the bond that perfectly replicates the option.
The replicating portfolio can be exactly determined, without anticipa-
tion, solving a partial differential equation.

The idea of replicating portfolios has important consequences.
Whenever a financial instrument (security or derivative instrument) pro-
cess can be exactly replicated by a portfolio of other securities, absence
of arbitrage requires that the price of the original financial instrument
coincide with the price of the replicating portfolio. Most derivative pric-
ing algorithms are based on this principle: to price a derivative instru-
ment, one must identify a replicating portfolio whose price is known.

Pricing by portfolio replication received a powerful boost with the
discovery that calculations can be performed in a risk-neutral probabil-
ity space where processes assume a simplified form. The foundation was
thus laid for the notion of equivalent martingales, developed by Michael

22 Fischer Black and Myron Scholes, “The Pricing of Options and Corporate Liabil-
ities,” Journal of Political Economy (1973), pp. 637-654.

23 Robert C. Merton, “Theory of Rational Option Pricing,” Bell Journal of Econom-
ics and Management Science (1973), pp. 141-183.
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Harrison and David Kreps®* and Michael Harrison and Stanley Pliska®
in the late 1970s and early 1980s. Not all price processes can be
reduced in this way: if price processes do not behave sufficiently well
(i.e., if the risk does not vanish with the vanishing time interval), then
replicating portfolios cannot be found. In these cases, risk can be mini-
mized but not hedged.

SUMMARY

B The development of mathematical finance began at the end of the nine-
teenth century with work on general equilibrium theory by Walras and
Pareto.

B At the beginning of the twentieth century, Bachelier and Lundberg
made a seminal contribution, introducing respectively Brownian
motion price processes and Markov Poisson processes for collective
risk events.

B The advent of digital computers enabled the large-scale application of
advanced mathematics to finance theory, ushering in optimization and
simulation.

B In 1952, Markowitz introduced the theory of portfolio optimization
which advocates the strategy of portfolio diversification.

B In 1961, Modigliani and Miller argued that the value of a company is
based not on its dividends and capital structure, but on its earnings;
their formulation was to be called the Modigliani-Miller theorem.

B In the 1960s, major developments include the efficient market hypothe-
sis (Samuelson and Fama), the capital asset pricing model (Sharpe,
Lintner, and Mossin), and the multifactor CAPM (Merton).

B In the 1970s, major developments include the arbitrage pricing theory
(Ross) that lead to multifactor models and option pricing formulas
(Black, Scholes, and Merton) based on replicating portfolios which are
used to price derivatives if the underlying price processes are known.

24J. Michael Harrison and David M. Kreps, “Martingale and Arbitrage in Multipe-
riod Securities Markets,” Journal of Economic Theory 20 (1979), pp. 381-408.

25 Michael Harrison and Stanley Pliska, “Martingales and Stochastic Integrals in the
Theory of Continuous Trading,” Stochastic Processes and Their Applications
(1981), pp. 313-316.



Principles of Galculus

nvented in the seventeenth century independently by the British physi-
Icist Isaac Newton and the German philosopher G.W. Leibnitz, (infini-
tesimal) calculus was a major mathematical breakthrough; it was to
make possible the modern development of the physical sciences. Calcu-
lus introduced two key ideas:

B The concept of instantaneous rate of change.
B A framework and rules for linking together quantities and their instan-
taneous rates of change.

Suppose that a quantity such as the price of a financial instrument
varies as a function of time. Given a finite interval, the rate of change of
that quantity is the ratio between the amount of change and the length
of the time interval. Graphically, the rate of change is the steepness of
the straight line that approximates the given curve.' In general, the rate
of change will vary as a function of the length of the time interval.

What happens when the length of the time interval gets smaller and
smaller? Calculus made the concept of infinitely small quantities precise
with the notion of limit. If the rate of change can get arbitrarily close to
a definite number by making the time interval sufficiently small, that
number is the instantaneous rate of change. The instantaneous rate of
change is the limit of the rate of change when the length of the interval
gets infinitely small. This limit is referred to as the derivative of a func-
tion, or simply, derivative. Graphically, the derivative is the steepness of
the tangent to a curve.

Starting from this definition and with the help of a number of rules
for computing a derivative, it was shown that the instantaneous rate of

! The rate of change should not be confused with the return on an asset, which is the
asset’s percentage price change.

91
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change of a number of functions—such as polynomials, exponentials,
logarithms, and many more—can be explicitly computed as a closed for-
mula. For example, the rate of change of a polynomial is another poly-
nomial of a lower degree.

The process of computing a derivative, referred to as differentiation,
solves the problem of finding the steepness of the tangent to a curve; the
process of integration solves the problem of finding the area below a
given curve. The reasoning is similar. The area below a curve is approx-
imated as the sum of rectangles and is defined as the limit of these sums
when the rectangles get arbitrarily small.

A key result of calculus is the discovery that integration and deriva-
tion are inverse operations: Integrating the derivative of a function
yields the function itself. What was to prove even more important to the
development of modern science was the possibility of linking together a
quantity and its various instantaneous rates of change, thus forming dif-
ferential equations, the subject of Chapter 9.

A solution to a differential equation is any function that satisfies it.
A differential equation is generally satisfied by an infinite family of func-
tions; however, if a number of initial values of the solutions are
imposed, the solution can be uniquely identified. This means that if
physical laws are expressed as differential equations, it is possible to
exactly forecast the future development of a system. For example,
knowing the differential equations of the motion of bodies in empty
space, it is possible to predict the motion of a projectile knowing its ini-
tial position and speed. It is difficult to overestimate the importance of
this principle. The fact that most laws of physics can be expressed as
relationships between quantities and their instantaneous rates of change
prompted the physicist Eugene Wigner’s remark on the “unreasonable
effectiveness of mathematics in the natural sciences.”?

Mathematics has, however, been less successful in describing human
artifacts such as the economy or financial markets. The problem is that
no simple mathematical law can faithfully represent the evolution of
observed quantities. A description of economic behavior requires the
introduction of a certain amount of uncertainty in economic laws.

Uncertainty can be represented in various ways. It can, for example,
be represented with concepts such as fuzziness and imprecision or more
quantitatively as probability. In economics, uncertainty is usually repre-
sented within the framework of probability. Probabilistic laws can be
cast in two mathematically equivalent ways:

% Eugene Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural
Sciences,” Communications in Pure and Applied Mathematics 13, no. 1 (February

1960).
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B The evolution of probability distributions is represented through differ-
ential equations. This is the case within the framework of calculus.

B The evolution of random phenomena is represented through direct
relationships between stochastic processes. This is the case within the
framework of stochastic calculus.

Stochastic calculus has been adopted as the preferred framework in

finance and economics. We will start with a review of the key concepts
of calculus and then introduce the concepts of its stochastic evolution.

SETS AND SET OPERATIONS

The basic concept in calculus (and in the theory of probability) is that of
a set. A set is a collection of objects called elements. The notions of both
element and set should be considered primitive. Following a common
convention, let’s denote sets with capital Latin or Greek letters:
A,B,C,Q... and elements with small Latin or Greek letters: a,b,®. Let’s
then consider collections of sets. In this context, a set is regarded as an
element at a higher level of aggregation. In some instances, it might be
useful to use different alphabets to distinguish between sets and collec-
tions of sets.

Piling up sets and sets of sets is not as innocuous as it might seem; it
is effectively the source of subtle and basic fundamental logical contra-
dictions called antinomies. Mathematics requires that a distinction be
made between naive set theory, which deals with basic set operations,
and axiomatic set theory, which deals with the logical structure of set
theory. In working with calculus, we can stay within the framework of
naive set theory and thus consider only basic set operations.

Proper Subsets

An element a of a set A is said to belong to the set A written as a € A. If
every element that belongs to a set A also belongs to a set B, we say that
A is contained in B and write: A ¢ B. We will distinguish whether A is a
proper subset of B (i.e., whether there is at least one element that
belongs to B but not to A) or if the two sets might eventually coincide.
In the latter case we write A < B.

For example, as explained in Chapter 2, in the United States there
are indexes that are constructed based on the price of a subset of com-
mon stocks from the universe of all common stock in the country. There
are three types of common stock (equity) indexes:
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1. Produced by stock exchanges based on all stocks traded on the particu-
lar exchanges (the most well known being the New York Stock
Exchange Composite Index).

2. Produced by organizations that subjectively select the stocks included
in the index (the most popular being the Standard & Poor’s 500).

3. Produced by organizations where the selection process is based on an
objective measure such as market capitalization.

The Russell equity indexes, produced by Frank Russell Company,
are examples of the third type of index. The Russell 3000 Index includes
the 3,000 largest U.S. companies based on total market capitalization. It
represents approximately 98% of the investable U.S. equity market. The
Russell 1000 Index includes 1,000 of the largest companies in the Rus-
sell 3000 Index while the Russell 2000 Index includes the 2,000 smallest
companies in the Russell 3000 Index. The Russell Top 200 Index
includes the 200 largest companies in the Russell 1000 Index and the
Russell Midcap Index includes the 800 smallest companies in the Rus-
sell 1000 Index. None of the indexes include non-U.S. common stocks.

Let us introduce the notation:

A = all companies in the United States that have issued common
stock

I3000 = companies included in the Russell 3000 Index

Iipop = companies included in the Russell 1000 Index

I)pop = companies included in the Russell 2000 Index

ITop200 = companies included in the Russell Top 200 Index

IMicap = companies included in the Russell Midcap200 Index

We can then write the following:

I3000 € A (every company that is contained in the Russell 3000
Index is contained in the set of all companies in the
United States that have issued common stock)

L000 < 13000 (the largest 1,000 companies contained in the Rus-
sell 1000 Index are contained in the Russell 3000
Index)

IMicap © T1000  (the 800 smallest companies in the Russell Midcap
Index are contained in the Russell 1000 Index)

Itop200 < T1000 < 13000 < A
Inticap € T1000 < 13000 € A
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Throughout this book we will make use of the convenient logic sym-
bols V and 3 that mean respectively, “for any element” and “an element
exists such that.” We will also use the symbol = that means “implies.”
For instance, if A is a set of real numbers and a € A, the notation Va: a
< x means “for any number a smaller than x” and Ja: a < x means
“there exists a number g smaller than x.”

Empty Sets

Given a subset B of a set A, the complement of B with respect to A writ-
ten as B is formed by all elements of A that do not belong to B. It is
useful to consider sets that do not contain any elements called empty
sets. The empty set is usually denoted by @. For example, using the Rus-
sell Indexes, the set of non-U.S. companies in the Russell 3000 Index
whose stock is not traded in the United States is an empty set.

Union of Sets
Given two sets A and B, their union is formed by all individuals that
belong to either A or B. This is written as C = A U B. For example,

L1000 Y 2000 = 13000 (the union of the companies contained in
the Russell 1000 Index and the Russell
2000 Index is the set of all companies
contained in the Russell 3000 Index)

IMicap Y ITop200 = 1000 (the union of the companies contained in
the Russell Midcap Index and the Russell
Top 200 Index is the set of all companies
contained in the Russell 1000 Index)

Intersection of Sets
Given two sets A and B, their intersection is formed by all elements that
belong to both A and B. This is written as C = A N B. For example, let

Isgp = companies included in the S&P 500 Index

The S&P 500 is a stock market index that includes 500 widely held
common stocks representing about 77% of the New York Stock Exchange
market capitalization. (Market capitalization for a company is the product

of the market value of a share and the number of shares outstanding.)
Then
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Issep N ITop200 = C (the stocks contained in the S&P 500 Index
that are the largest 200 companies in the Rus-
sell Index)

We can also write:
L1900 N 000 = D (companies included in both the Russell 2000

and the Russell 1000 Index is the empty set since
there are no companies that are in both indexes)

Elementary Properties of Sets
Suppose that the set Q includes all elements that we are presently con-

sidering (i.e., that it is the total set). Three elementary properties of sets
are given below:
B Property 1. The complement of the empty set is the total set:

Q=0 =0

B Property 2. If A,B,C are subsets of Q, then the distribution properties
of union and intersection hold:

AUuBNC)=(AUuB) Nn(AuCQC)
ANn(BuC =(AnB)UANCQC)
B Property 3. The complement of the union is the intersection of the
complements and the complement of the intersection is the union of the
complements:

(BuC)©=B“nC®

(BN C)¢ =By C’

DISTANCES AND QUANTITIES

Calculus describes the dynamics of quantitative phenomena. This calls
for equipping sets with a metric that defines distances between elements.
Though many results of calculus can be derived in abstract metric
spaces, standard calculus deals with sets of #-tuples of real numbers. In
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a quantitative framework, real numbers represent the result of observa-
tions (or measurements) in a simple and natural way.

IHuples
An n-tuple, also called an n-dimensional vector, includes 7 components:
(a1, ayy ...y a,). The set of all n-tuples of real numbers is denoted by R”.
The R stands for real numbers.?

For example, suppose the monthly rates of return on a portfolio in
2002 are as shown below along with the actual return for the S&P 500
(the benchmark index for the portfolio manager):*

Month Portfolio  S&P 500

January 1.10%  -1.46%
February 1.37% 1.93%
March 2.95% 3.76%
April 5.78% 6.06%
May 0.51% 0.74%
June 7.32% 7.09%
July 7.13% 7.80%
August 1.47% 0.66%
September 9.54%  10.87%
October 7.32% 8.80%

November 6.19% 5.89%
December  -4.92% -5.88%

Then the monthly returns 7y, for the portfolio can be written as a 12-
tuple and has the following 12 components:

P [1.10%,1.37%,2.95%, 5.78%, 0.51%, 7.32 %, }
POt | 713%, 1.47%, 9.54%, 7.32%, 6.19%, —4.92 %

Similarly, the return rqg.p on the S&P 500 can be expressed as a 12-
tuple as follows:

3Where the components of an z-tuple are only integers, the set of n-tuples is denoted
by Z", Z representing zahlen, which is German for integer.
*The monthly rate of return on the S&P 500 is computed as follows

Dividends paid on all | Change in the index
the stock in the index  value for the month 1

Value of the index at the beginning of the period
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Fosep = {—1.46%, 1.93%, 3.76 %, 6.06 %, 0.74 %, 7.09 %, }
7.80%, 0.66 %, 10.87 %, 8.80%, 5.89 %, -5.88%

One can perform standard operations on #n-tuples. For example,
consider the portfolio returns in the two 12-tuples. The 12-tuple that
expresses the deviation of the portfolio’s performance from the bench-
mark index is computed by subtracting from each component of the
return 12-tuple from the corresponding return on the S&P 500. That is,

rport_rS&P
_ [1.10%, 1.37%, 2.95%, 5.78 %, 0.51 %, 7.32%,
713%,1.47 %, 9.54%,7.32%, 6.19%,-4.92%

_[-1.46%,1.93%, 3.76 %, 6.06 %, 0.74 %, 7.09 %,
7.80%,0.66 %, 10.87 %, 8.80%, 5.89 %, -5.88 %

_ {2.56%,—0.56%,—0.81%,—0.28%,—0.23%, 0.23%, }
-0.67%,0.81%,-1.33%,-1.48%, 0.30 %, 1.26 %

It is the resulting 12-tuple that is used to compute the tracking error of a
portfolio—the standard deviation of the variation of the portfolio’s return
from its benchmark index’s return described in Chapter 19.

Coming back to the portfolio return, one can compute a logarithmic
return for each month by adding 1 to each component of the 12-tuple
and then taking the natural logarithm of each component. One can then
obtain a geometric average, called the geometric return, by multiplying
each component of the resulting vector and taking the 12th root.

Distance

Consider the real line R! (i.e., the set of real numbers). Real numbers
include rational numbers and irrational numbers. A rational number is
one that can be expressed as a fraction, c¢/d, where ¢ and d are integers
and d # 0. An irrational number is one that cannot be expressed as a
fraction. Three examples of irrational numbers are

J2=1.4142136

Ratio between diameter and circumference

=mw=3.1415926535897932384626

Natural logarithm = e = 2.7182818284590452353602874713526
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On the real line, distance is simply the absolute value of the difference
between two numbers |a — b| which also can be written as

Ja-by

R" is equipped with a natural metric provided by the Euclidean distance
between any two points

d[(dl, 612, ceey ﬂn), (bl’ bz, N bn)] = ;2(@— bl)z

Given a set of numbers A, we can define the least upper bound of
the set. This is the smallest number s such that no number contained in
the set exceeds s. The quantity s is called the supremum and written as s
= supA. More formally, the supremum is that number, if it exists, that
satisfies the following properties:

VYa:ae A,s>a
Ve>0,da:s—a<e

The supremum need not to belong to the set A. If it does, it is called the
maximum.

Similarly, infimum is the greatest lower bound of a set A, defined as
the greatest number s such that no number contained in the set is less
than s. If infimum belongs to the set it is called the minimum.

Density of Points

A key concept of set theory with a fundamental bearing on calculus is
that of the density of points. In fact, in financial economics we distin-
guish between discrete and continuous quantities. Discrete quantities
have the property that admissible values are separated by finite dis-
tances. Continuous quantities are such that one might go from one to
any of two possible values passing through every possible intermediate
value. For instance, the passing of time between two dates is considered
to occupy every possible instant without any gap.

The fundamental continuum is the set of real numbers. A contin-
uum can be defined as any set that can be placed in a one-to-one rela-
tionship with the set of real numbers. Any continuum is an infinite non-
countable set; a proper subset of a continuum can be a continuum. It
can be demonstrated that a finite interval is a continuum as it can be
placed in a one-to-one relationship with the set of all real numbers.
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EXHIBIT 4.1 Bernoulli’s Construction to Enumerate Rational Numbers

1 12 13 1/4
2/1 272 23 2/4
31 32 3/3 3/4
4/1 42 43  4/4

The intuition of a continuum can be misleading. To appreciate this,
consider that the set of all rational numbers (i.e., the set of all fractions
with integer numerator and denominator) has a dense ordering, i.e., has
the property that given any two different rational numbers a,b with a <
b, there are infinite other rational numbers in between. However, ratio-
nal numbers have the cardinality of natural numbers. That is to say
rational numbers can be put into a one-to-one relationship with natural
numbers. This can be seen using a clever construction that we owe to
the seventeenth century Swiss mathematician Jacob Bernoulli.

Using Bernoulli’s construction, we can represent rational numbers
as fractions of natural numbers arranged in an infinite two-dimensional
table in which columns grow with the denominators and rows grow
with the numerators. A one-to-one relationship with the natural num-
bers can be established following the path: (1,1) (1,2) (2,1) (3,1) (2,2)
(1,3) (1,4) (2,3) (3,2) (4,1) and so on (see Exhibit 4.1).

Bernoulli thus demonstrated that there are as many rational num-
bers as there are natural numbers. Though the set of rational numbers
has a dense ordering, rational numbers do not form a continuum as they
cannot be put in a one-to-one correspondence with real numbers.

Given a subset A of R”, a point a € A is said to be an accumulation
point if any sphere centered in a contains an infinite number of points
that belong to A. A set is said to be “closed” if it contains all of its own
accumulation points and “open” if it does not.

FUNCTIONS

The mathematical notion of a function translates the intuitive notion of a
relationship between two quantities. For example, the price of a security is a
function of time: to each instant of time corresponds a price of that security.

Formally, a function f is a mapping of the elements of a set A into
the elements of a set B. The set A is called the domain of the function.
The subset R = f{A) < B of all elements of B that are the mapping of
some element in A is called the range R of the function f. R might be a
proper subset of B or coincide with B.
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The concept of function is general: the sets A and B might be any two
sets, not necessarily sets of numbers. When the range of a function is real
numbers, the function is said to be a real function or a real-valued function.

Two or more elements of A might be mapped into the same element
of B. Should this situation never occur, that is, if distinct elements of A
are mapped into distinct elements of B, the function is called an injection.
If a function is an injection and R = f(A) = B, then f represents a one-to-
one relationship between A and B. In this case the function f is invertible
and we can define the inverse function g = f~! such that f(g(a)) = a.

Suppose that a function f assigns to each element x of set A some ele-
ment y of set B. Suppose further that a function g assigns an element z of
set C to each element y of set B. Combining functions f and g, an element
z in set C corresponds to an element x in set A. This process results in a
new function, function b, and that function takes an element in set A and
assigns it to set C. The function b is called the composite of functions g
and f, or simply a composite function, and is denoted by h(x) = g[f(x)].

VARIABLES

In calculus one usually deals with functions of numerical variables. Some
distinctions are in order. A variable is a symbol that represents any element
in a given set. For example, if we denote time with a variable ¢, the letter ¢
represents any possible moment of time. Numerical variables are symbols
that represent numbers. These numbers might, in turn, represent the ele-
ments of another set. They might be thought of as numerical indexes which
are in a one-to-one relationship with the elements of a set. For example, if
we represent time over a given interval with a variable ¢, the letter ¢ repre-
sents any of the numbers in the given interval. Each of these numbers in
turn represents an instant of time. These distinctions might look pedantic
but they are important for the following two reasons.

First, we need to consider numeraire or units of measure. Suppose,
for instance, that we represent the price P of a security as a function of
time #: P = f(¢). The function f links two sets of numbers that represent
the physical quantities price and time. If we change the time scale or the
currency, the numerical function f will change accordingly though the
abstract function that links time and price will remain unchanged.

Second, in probability theory we will have to introduce random vari-
ables which are functions from states of the world to real numbers and not
from real numbers to real numbers.

One important type of function is a sequence. A sequence is a mapping
of the set of natural numbers into another set. For example a discrete-time,
real-valued time series maps discrete instants of time into real numbers.
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LIMITS

The notion of limit is fundamental in calculus. It applies to both func-
tions and sequences. Consider an infinite sequence S of real numbers

S= (dl, AYy eey di,...)

If, given any real number € > 0, it is always possible to find a natural
number i(¢) such that

izi(e) implies |a;—a| <&
then we write

lima, = a
n—» oo n

and say that the sequence S tends to @ when 7 tends to infinity, or that a
is the limit of the sequence S.

Two aspects of this definition should be noted. First, € can be chosen
arbitrarily small. Second, for every choice of € the difference, in absolute
value, between the elements of the sequence S and the limit 4 is smaller
than € for every index i above i(¢). This translates the notion that the
sequence S gets arbitrarily close to a as the index i grows.

We can now define the concept of limit for functions. Suppose that a
real function y = f(x) is defined over an open interval (a,b), i.e., an inter-
val that excludes its end points. If, given any real number € > 0, it is
always possible to find a positive real number r(€) such that

x—c <r(e) implies y—-d <e
then we write

lim f(x) = d

and say that the function f tends to the limit d when x tends to c.

These basic definitions can be easily modified to cover all possible
cases of limits: infinite limits, limits from the left or from the right or
finite limits when the variable tends to infinity. Exhibit 4.2 presents in
graphical form these cases. Exhibit 4.3 lists the most common defini-
tions, associating the relevant condition to each limit.
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EXHIBIT 4.2  Graphical Presentation of Infinite Limits, Limits from the Left or
Right, and Finite Limits
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Note that the notion of limit can be defined only in a continuum. In
fact, the limit of a sequence of rational numbers is not necessarily a
rational number.

CONTINUITY

Continuity is a property of functions, a continuous function being a

function that does not make jumps. Intuitively, a continuous function

might be considered one that can be represented through an uninter-

rupted line in a Cartesian diagram. Its formal definition relies on limits.
A function f is said to be continuous at the point ¢ if

lim f(x) = f(0)
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EXHIBIT 4.3 Most Common Definitions Associating the Relevant Condition to
Each Limit

The sequence tends to a finite lim a, = a Ve >0, 3i(e): |a, —al < e
limit noee for n > i(g)

The sequence tends to plus lim a, = +oo VD >0, 3iD): a,, > D
infinity e for n > i(g)

The sequence tends to minus lim a, = — VD <0, 3i{(D): a, <D
infinity noe for n > i(g)

Finite limit of a function lim f(x) = d Ve >0, 3r(e): fix) —d| < e

X —cC

for |x — c| < r(g)

Finite left limit of a function lim f(x) = d Ve >0, 3re): |fix)—d <e
x—>c for|x —c|<r(e),x <c

Finite right limit of a function lim f(x) = d Ve >0, 3re): |fix)—d <e
x—c for|x —c| < 7(e), x > ¢

Finite limit of a function when  lim f(x) =d  Ve>0,3R(e) > 0: |f(x) —al <&
x tends to plus infinity X for x > R(g)

Finite limit of a function when  lim f(x) =d  ve>0,3R(e) > 0: |fix) —al <€
— —oo

x tends to minus infinity * for x < —R(g)
Infinite limit of a function lim [f(x)] =~ VvD> 0, 3I7(D): Ifix)| > D
X —cC
for |x — ¢| < (D)
Infinite limit of a function lim f(x) = + VYD > 0, 3R(D): fix)> D
X — 400

when x tends to plus infinity for x > (D)

This definition does not imply that the function f is defined in an inter-
val; it requires only that ¢ be an accumulation point for the domain of
the function f.

A function can be right continuous or left continuous at a given
point if the value of the function at the point ¢ is equal to its right or left
limit respectively. A function f that is right or left continuous at the
point ¢ can make a jump provided that its value coincides with one of
the two right or left limits. (See Exhibit 4.4.) A function y = f(x) defined
on an open interval (a,b) is said to be continuous on (a,b) if it is contin-
uous for all x € (a,b).

A function can be discontinuous at a given point for one of two rea-
sons: (1) either its value does not coincide with any of its limits at that
point or (2) the limits do not exist. For example, consider a function f
defined in the interval [0,1] that assumes the value 0 at all rational
points in that interval, and the value 1 at all other points. Such a func-
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EXHIBIT 4.4  Graphical Illustration of Right Continuous and Left Continuous
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tion is not continuous at any point of [0,1] as its limit does not exist at
any point of its domain.

TOTAL VARIATION

Consider a function f(x) defined over a closed interval [a,b]. Then con-
sider a partition of the interval [a,b] into # disjoint subintervals defined
by # + 1 points: a = x5 < xy < ... < x,,_1 < x,, = b and form the sum

T = Y |f(x)—flx; )|

i=1

The supremum of the sum T over all possible partitions is called the
total variation of the function f on the interval [a,b]. If the total varia-
tion is finite, the function f is said to have bounded variation or finite
variation. Note that a function can be of infinite variation even if the
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function itself remains bounded. For example, the function that assumes
the value 1 on rational numbers and 0 elsewhere is of infinite variation
in any interval, though the function itself is finite.

Continuous functions might also exhibit infinite variation. The follow-
ing function is continuous but with infinite variation in the interval [0,1]:

0forx=0
f(x) = xsin(ltj for 0<x<1
x

DIFFERENTIATION

Given a function y = f(x) defined on the open interval (a,b), consider its
increments around a generic point x consequent to an increment » of the
variable x € (a,b)

Ay = flx + b) - f(x)

Consider now the ratio Ay/b between the increments of the depen-
dent variable y and the independent variable x. Called the difference
quotient, this quantity measures the average rate of change of y in some
interval around x. For instance, if y is the price of a security and # is
time, the difference quotient

Ay — y(t+ hlj _y(t)

represents the average price change per unit time over the interval
[¢,¢+h]. The ratio Ay/b is a function of h. We can therefore consider its
limit when b tends to zero.

If the limit

ooy = e [ B) —f(x)
) = hhinoT

exists, we say that the function f is differentiable at x and that its deriv-
ative is f’, also written as

b o

or

dx dx
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The derivative of a function represents its instantaneous rate of change.
If the function f is differentiable for all x € (a,b), then we say that f is
differentiable in the open interval (a,b).

Introduced by Leibnitz, the notation dy/dx has proved useful; it sug-
gests that the derivative is the ratio between two infinitesimal quantities
and that calculations can be performed with infinitesimal quantities as
well as with discrete quantities. When first invented, calculus was
thought of as the “calculus of infinitesimal quantities” and was there-
fore called “infinitesimal calculus.” Only at the end of the nineteenth
century was calculus given a sound logical basis with the notion of the
limit.> The infinitesimal notation remained, however, as a useful
mechanical device to perform calculations. The danger in using the
infinitesimal notation and computing with infinitesimal quantities is
that limits might not exist. Should this be the case, the notation would
be meaningless.

In fact, not all functions are differentiable; that is to say, not all
functions possess a derivative. A function might be differentiable in
some domain and not in others or be differentiable in a given domain
with the exception of a few singular points. A prerequisite for a function
to be differentiable at a point x is that it is continuous at the point.

However, continuity is not sufficient to ensure differentiability. This
can be easily illustrated. Consider the Cartesian plot of a function f.
Derivatives have a simple geometric interpretation: The value of the
derivative of f at a point x equals the angular coefficient of the tangent
of its plot in the same point (see Exhibit 4.5). A continuous function
does not make jumps, while a differentiable function does not change
direction by discrete amounts (i.e., it does not have cusps). A function
can be continuous but not differentiable at some points. For example,
the function y = |x| at x = 0 is continuous but not differentiable. How-
ever, there are examples of functions that defy visual intuition; in fact, it
is possible to demonstrate that there are functions that are continuous
in a given interval but never differentiable. One such example is the
path of a Brownian motion which we will discuss in Chapter 8.

Gommonly Used Rules for Computing Derivatives
There are rules for computing derivatives. These rules are mechanical rules
that apply provided that all derivatives exist. The proofs are provided in all
standard calculus books. The basic rules are:

3 In the 1970s the mathematician Abraham Robinson reintroduced on a sound logi-
cal basis the notion of infinitesimal quantities as the basis of a generalized calculus
called “nonstandard analysis.” See Abraham Robinson, Non-Standard Analysis
(Princeton, NJ: Princeton University Press, 1996).
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EXHIBIT 4.5 Geometric Interpretation of a Derivative

y (x 108)
8 o )
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o~ | | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200 x

M Rule 1: j—i—(c) = 0, where c is a real constant.
x

B Rule 2: di(bxn) = nbx""! , where b is a real constant.
x

B Rule 3: i(af(x) +bg(x)) = aif(x) + big(x) , where a and b are
dx dx dx
real constants.

Rule 3 is called the rule of termwise differentiation and shows that dif-
ferentiation is a linear operation.

Let’s apply the basic rules to the following function:
y=a+bix +byx? + byx® + ... + bpxt

where a, by, by, b3, ..., by are the constants.
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The first term is just a and as per Rule 1 the derivative is zero. The
derivative of byx by Rule 2 is by. For each term b,x"” by Rule 2 the
derivative is nb,x""!. Thus, the derivative of

byx* is 2byx!
byx® is 3bsx?
bax* is 4byx’
etc.

Therefore, the derivative of y is

dy _ b+ szxl + 3b3x2 + 4174x3 o+ nbnx"_l
dx

There is a special rule for a composite function. Consider a compos-
ite function: h(x) = flg(x)]. Provided that b and g are differentiable at
the point x and that f is derivable at the point s = g(x), then the follow-
ing rule, called the chain rule, applies:

b (x) = f'(g(x)g"(x)

h(x) = f(g(x))

222
dx dg)\dx

Exhibit 4.6 shows the sum rule, product rule, quotient rule, and
chain rule for calculating derivatives in both standard and infinitesimal
notation. In Exhibit 4.6 it is assumed that a,b are real constants (i.e.,
fixed real numbers), that f, g, and b are functions defined in the same
domain, and that all functions are differentiable at the point x. Exhibit
4.7 lists (without proof) a number of commonly used derivatives.

Given a function f(x), its derivative f’(x) represents its instanta-
neous rate of change. The logarithmic derivative

ilnP(x) = fﬁz

dx f(x)

for all x such that P(x) # 0, represents the instantaneous percentage
change. In finance, the function p = p(¢) represents prices; its logarith-
mic derivative represents the instantaneous returns.
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EXHIBIT 4.7 Commonly Used Derivatives

flx) df Domain of P
dx

X" nx! R,x#0ifn<0

x* ax®1 x>0

sin x cos x R

cos x —sin x R

tan x 1

T T TN
——+n-<x<-+n-

cosz(x) 2 2 2 2
In x 1 x>0

x
e* e* R
log (fix))  f(x) fla) %0

f(x)

Note: Where R denotes real numbers.

Given a function y = f(x), its increments Af = f(x + Ax) — f(x) can be
approximated by

Af(x) = f'(x)Ax

The quality of this approximation depends on the function itself.

HIGHER ORDER DERIVATIVES

Suppose that a function f(x) is differentiable in an interval D and its
derivative is given by

The derivative might in turn be differentiable. The derivative of a deriv-
ative of a function is called a second-order derivative and is denoted by
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d*f d
frxy = L) - dx
de dx

Provided that the derivatives exist, this process can be iterated, pro-
ducing derivatives of any order. A derivative of order n is written in the
following way:

d(df”l(x>j
ey = A L dx" ]
dx” dx

Application to Bond Analysis

Two concepts used in bond portfolio management, duration and con-
vexity, provide an illustration of derivatives. A bond is a contract that
provides a predetermined stream of positive cash flows at fixed dates
assuming that the issuer does not default nor prepay the bond issue
prior to the stated maturity date. If the interest rate is the same for each
period, the present value of a risk-free bond has the following expres-
sion:

V = c + c +...+C+M

A+ (1+)? 1+

yi=1,.,N

If interest rates are different for each period, the previous formula
becomes

v=_C¢ L+ € , s C*M i 4N

(A+i)' (1+iy)’ 1+

In Chapter 8, we introduce the concept of continuous compound-
ing. With continuous compounding, if the short-term interest rate is
constant, the bond valuation formula becomes®

°If the short-term rate is variable:

_J';i(s)ds . —J'zi(s)ds Ni(s)ds

V= Ce Ce +...+(C+M)e_f°
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V= £+£+...+C+M

Application of the First Derivative

The sensitivity of the bond price V to a change in interest rates is given
by the first derivative of V with respect to the interest rate 7. The first
derivative of V with respect to the interest rate i is called dollar dura-
tion. We can compute dollar duration in each case using the derivation
formulas defined thus far. In the discrete-time case we can write

dvi) _ d[ C C C+Mj
— = — + o+
didi\(11pt (1+i0) (1+)N
d| ¢ } d[cuw]
= - +...+—.
dif (1 4 ! dif (1 4 N

:Ci{ 1 ]+...+(C+M)i{ 1 }
di (1 4 ) dif (1 4+ )N

We can use the quotient rule

i L = _Lf'(x)
dx[f] P

to compute the derivatives of the generic summand as follows:

d{ 1 } _ 1 . Ni-1 .1
— | = - .l(1+l) = —f—
dif (1 4 i)’ (1+i)* (1+i)*!

Therefore, the derivative of the bond value V with respect to the interest
rates is

d_Y = —(1+)ca+)+2c1+ 2+ .+ N(C+ M1 +)™N]

di

Using a similar reasoning, we can slightly generalize this formula,
allowing the interest rates to be different for each period. Call i, the
interest rate for period #. The sequence of values is called the yield
curve. We will have more to say about the yield curve in Chapter 20.
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Now suppose that interest rates are subject to a parallel shift. In other
words, let’s assume that the interest rate for period ¢ is (i, + x). If we
compute the first derivative with respect to x for x = 0, we obtain

dVv(i) _d C C C

a n + ...+
dx | _, dx (1+z'1+x)1 (1+i2+x)2 (1+iN+x)N

x=0
[C(1+i) +2C(1+iy) " + ...+ N(C+M)(1+iy) N1

In this case we cannot factorize any term as interest rates are different in
each period. Obviously, if interest rates are constant, the yield curve is a
straight line and a change in the interest rates can be thought of as a
parallel shift of the yield curve.

In the continuous-time case, assuming that interest rates are con-
stant, the dollar duration is’

2i

av _ d[Ce "'+ Ce +...+(C+M)e‘Ni]
di di

= _1Ce - 2CeH o _N(C+M)e N

where we make use of the rule

7 When interest rates are deterministic but time-dependent, the derivative dV/di is
computed as follows. Assume that interest rates experience a parallel shift i(z) + x and
compute the derivative with respect to x evaluated at x = 0. To do this, we need to
compute the following derivative:

T t t t
—| [i(s)+x]ds —| i(s)ds —| xds —| i(s)ds
4, J - i{e J e J } = ) ™

e
dx dx dx
t
| i(s)ds
e
t . t . t .
_d—e—Jlo[z(s)+x]ds _ te’Xte_J‘)l(S)ds - _te—J.Oz(s)ds
dx Y=
x=0
Therefore, we can write the following;:
1 N
FAY —| i(s)ds —| i(s)ds —| i(s)ds
= —-Ce J” —ZCeﬁ —...=N(C+ M)e J”
dx 20

For i = constant we find again the formula established above.
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—(e") =e
x

Application of the Chain Rule

The above formulas express dollar duration which is the derivative of
the price of a bond with respect with the interest rate and which
approximates price changes due to small parallel interest rate shifts.
Practitioners, however, are more interested in the percentage change of a
bond price with respect to small parallel changes in interest rates. The
percentage change is the price change divided by the bond value:

avi
diV

The percentage price change is approximated by duration, which is the
derivative of a bond’s value with respect to interest rates divided by the
value itself. Recall from the formulas for derivatives that the latter is the
logarithmic derivative of a bond’s price with respect to interest rates:

dv1l _ d(logV)
diV di

Duration =
Based on the above formulas, we can write the following formulas
for duration:

Duration for constant interest rates in discrete time:

dvi 1 C 2C N(C+ M)
= ot

— +
div VA+)| T+ (1442 (1+)N

Duration for variable interest rates in discrete time:

dvi 1| c 2C N(C + M)
N+1

dx V. Vi1 4ip* (1+iy)° (1+iy)
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Duration for continuously compounding constant interest rate in dis-
crete time:®

dV1 _ 11 12Ce 2 + .+ N(C+ Mye N
v

di'V

We will now illustrate the chain rule of derivation by introducing
the concept of effective duration. In Chapter 2, we described the differ-
ent features of bonds. The bond valuation we presented earlier is for an
option-free bond. But when a bond has an embedded option, such as a
call option as discussed in Chapter 2, it is more complicated to value.
Similarly, the sensitivity of the value of a bond to changes in interest
rates is more complicated to assess when there is an embedded call
option. Intuitively, we know that the sensitivity of the value of a bond
with an embedded option would be sensitive to not only how changes in
interest rates affect the present value of the cash flows as shown above
for an option-free bond, but also how they would affect the value of the
embedded option.

We will use the following notation to assess the sensitivity of a call-
able bond’s value (i.e., a bond with an embedded call option) to a
change in interest rates. The value of an option-free bond can be decom-
posed as follows:

Vofb = Vcb + Vco

Vofp = value of an option-free bond
V., = value of a callable bond
= value of a call option on the bond

The above equation says that an option-free bond’s value depends
on the sum of the value of a callable bond’s value and a call option on
that option-free bond. The equation can be rewritten as follows:

Vep = Vofb -V

8 The duration for continuously compounding variable interest rate in discrete time is

1 N
—| i(s)ds —|i(s)ds —| i(s)ds
vl _ —1{&3 '[0 +2Ce'ﬁ +...+N(C+M)e J.O }
di V 1%
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That is, the value of a callable bond is found by subtracting the value of
the call option from the value of the option-free bond. Both components
on the right side of the valuation equation depend on the interest rate i.
Using linearity to compute the first derivative of the valuation equation
with respect to i and dividing both sides of the equation by the callable
bond’s value gives

dvcbi _ dVofhi_choi
di v, di vV, di V,

Multiplying the numerator and denominator of the right-hand side
by the value of the option-free bond and rearranging terms gives

dVe, 1 _ AV, 1 Vo, dVeo 1 Vopp
di Vo o di VoV o di VoV,

The above equation is the sensitivity of a callable bond’s value to
changes in interest rates. That is, it is the duration of a callable bond,
which we denote by Durcp.” The component given by

dvofb 1
di Vg

is the duration of an option-free bond’s value to changes in interest
rates, which we denote by Dur, 4. Thus, we can have

Vofb_dvco 1 Vofb
Vo di Vg Vi

Dur,, = Durofb

Now let’s look at the derivative, which is the second term in the
above equation. The change in the value of an option when the price of
the underlying changes is called the option’s delta. In the case of an
option on a bond, as explained above, changes in interest rates change
the value of a bond. In turn, the change in the value of the bond changes
the value of the embedded option. Here is where we see a function of a
function and the need to apply the chain rule. That is,

? Actually, it is equal to —Dur , but because we will be omitting the negative sign for
the durations on the right-hand side, this will not affect our derivation.
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Vco(i) = f[ Vofb(i)]

This tells us that the value of the call option on an option-free bond
depends on the value of the option-free bond and the value of the
option-free bond depends on the interest rate. Now let’s apply the chain
rule. We get

dv, (i) _ df dVofb
di dVp di

The first term on the right-hand side of the equation is the change in
the value of the call option for a change in the value of the option-free
bond. This is the delta of the call option, A,. Thus,

dv, (i) N dvofb

co

di di

Substituting this equation into the equation for the duration and rear-
ranging terms we get

\%
Dur , = Durofb ofb

(1-A

co)
cb

This equation tells us that the duration of the callable bond depends on
the following three quantities. The first quantity is the duration of the
corresponding option-free bond. The second quantity is the ratio of the
value of the option-free bond to the value of the callable bond. The dif-
ference between the value of an option-free bond and the value of a call-
able bond is equal to the value of the call option. The greater (smaller)
the value of the call option, the higher (lower) the ratio. Thus, we see
that the duration of the callable bond will depend on the value of the
call option. Basically, this ratio indicates the leverage effectively associ-
ated with the position. The third and final quantity is the delta of the
call option. The duration of the callable bond as given by the above
equation is called the option-adjusted duration or effective duration.

Application of the Second Derivative

We can now compute the second derivative of the bond value with
respect to interest rates. Assuming cash flows do not depend on interest



Principles of Calculus 119

rates, this second derivative is called dollar convexity. Dollar convexity
divided by the bond’s value is called convexity. In the discrete-time fixed
interest rate case, the computation of convexity is based on the second
derivatives of the generic summand:

sl )t
ditl 1+t difdi i) Al (14!

—ti{;} =1(1 +t);
di (1 44 *! (1+i)*?

Therefore, dollar convexity assumes the following expression:

Vi) _ dT C C C+M]
— = — + +oot
di*  difl(1+d' A+ (1+)N
2 2
=Cd—[ ! }+...+(C+M)d—{ 1 ]
di*l(1+i)' di*L (1 + )N
= [2C(1+) > +2-3C(1+i) " +...
+ N(N +1)(C+ M)(1 +i) N+

Using the same reasoning as before, in the variable interest rate case,
dollar convexity assumes the following expression:

d> V(i)

= [2C(1+i) " +2-3-C(1+i) "+ ...
dx*

x=0
FN(N+1)(C+M)(1+iy) N2

This scheme changes slightly in the continuous-time case, where,
assuming that interest rates are constant, the expression for convexity is'°

10 For variable interest rates this expression becomes

1 2) N
—| i(s)ds —|i(s)ds —| i(s)ds
= 1%Ce '[0 +2%Ce '[0 +.. +NX(C+Me IO

x=0

dv
dx
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d’V _ d’[Ce’+Ce P+ ..+ (C+M)e ]
di* di*
=1%.Ce' 427 Ce P N (C+ M)

where we make use of the rule

dl

—() =€
2
dx
We can now write the following formulas for convexity:

Convexity for constant interest rates in discrete time:

di* V. v+ (+D (145)? (1+nH)N

dvi1 1 2, 3@C,  NN+1D(C+M)

Convexity for variable interest rates in discrete time:

Vi _1|_2C . 3@C,  NN+D(C+M)

dx*V Via+i)® (a+ipt (1+iN*?

Convexity for continuously compounding constant interest rate in dis-
crete time:'!

V1 _

[Ce” +2%Ce™ + ...+ N (C+ M)e ™M

di* v

<lI=

"'The convexity for continuously compounding variable interest rate in discrete time
is

2 - 1i(s)ds - 2i(s)ds - Ni(s)ds
dVl _1lc, J +22Ce f 4.+ NXC+M)e J
di2 Vv Vv
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TAYLOR SERIES EXPANSION

An important relationship used in economics and finance theory to
approximate how the value of a function, such as a price function, will
change is the Taylor series expansion. We begin by establishing Taylor’s
theorem. Consider a continuous function with continuous derivatives
up to order # in the closed interval [a,b] and differentiable with contin-
uous derivatives in the open interval (a,b) up to order n + 1. It can be
demonstrated that there exists a point § € (a,b) such that

n

” 2 (n) n
fb) = fla)+ fayb-ay+ LD @C-a) p
2!

n!

where the residual R,, can be written in either of the following forms:

_ " Pee-a"!

Lagrange’s form: R,
(n+1)!

_ @B -8)"(b-a)

n!

Cauchy’s form: R,

In general, the point & € (a,b) is different in the two forms. This
result can be written in an alternative form as follows. Suppose x and x|
are in (a,b). Then, using Lagrange’s form of the residual, we can write

” _ 2 (1) _ n
f(x) = f(xo)+f'(x)(x—xo)+f—(x)(x )", X
2! n!
£ @) - xp)" !

+

(n+1)!

If the function f is infinitely differentiable, i.e., it admits derivatives
of every order and if

lim R, =0

n —> oo

the infinite series obtained is called a Taylor series expansion (or simply
Taylor series) for f(x). If x5 = 0, the series is called a Maclaurin series.
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Such series, called power series, generally converge in some interval,
called interval of convergence, and diverge elsewhere.

The Taylor series expansion is a powerful analytical tool. To appre-
ciate its importance, consider that a function that can be expanded in a
power series is represented by a denumerable set of numbers even if it is
a continuous function. Consider also that the action of any linear oper-
ator on the function f can be represented in terms of its action on pow-
ers of x.

The Maclaurin expansion of the exponential and of trigonometric
functions are given by:

x° x"
e = 1l+x+=—+..+=—+R,
2! n!
3 N n_2n+1
smx:x——+x—+...+(_1);+Rn
3t 5! (2n+1)!
2 4 n_2n
cosx=1—x—+x—+...+ﬂx—+R
21 41 (2n)!

Application to Bond Analysis

Let’s illustrate Taylor and Maclaurin power series by computing a sec-
ond-order approximation of the changes in the present value of a bond
due to a parallel shift of the yield curve. This information is important
to portfolio managers and risk managers to control the interest rate risk
exposure of a position in bonds. In bond portfolio management, the first
two terms of the Taylor expansion series are used to approximate the
change in an option-free bond’s value when interest rates change. An
approximation based on the first two terms of the Taylor series is called
a second order approximation, because it considers only first and sec-
ond powers of the variable.

We begin with the bond valuation equation, again assuming a single
discount rate. We first compute dollar duration and convexity, i.e., the
first and second derivatives with respect to x evaluated at x = 0, and we
expand in Maclaurin power series. We obtain

V(x) = V(0) - (Dollar duration)x + 1(Dollar conv«:—:Xity)x2 +R;
2

We can write this expression explicitly as:
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V(ix) = c + c +...+C+M
A+t (1+i)? (1+i)N

{ C C N(C+M)}
- X R R

+
A+ (1+i) (1+)N+!

+

N+2

Do | =

xz{ 2C_,3:2:C  (N(N+1)(C+M)

A+’ a+ (1+1)

1 3[ 3.2.C 4.3-2-C
X + + ...

3-2 (1+i+§)4 (1+z’+§)5
+N(N+ (N +2)(C+ M)

(1 +z'+§)NJr3

Asset managers, however, are primarily interested in percentage price
change. We can now compute the percentage price change as follows:

AV _ V(x)=V(0)

v V(0)
C C N(C+M)]
= —x + o=
A+i)> (1+i)° (1+HN*!
1
X
C C C+M
+ + ...+
A+ (1+i)? 1+
1 2” 2.C 3-2-C N(N + 1)(C+ M)
+-x + o+
2 N+2

A+ a+ (1+1)

X

{ C C C+M]
+ + ...+
A+i' (1+i)? 1+
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Lxﬂ 3:2:C NN+ D(N+2)(C+M)

32 (1+i+§)4 (1+l-+§)N+3
1
{ C C C+M]
+ +...+
A+ (1+i)? 1+ |

The first term in the square brackets on the right-hand side of the equa-
tion is the first approximation and is the approximation based on the
duration of the bond. The second term in the square brackets on the
right-hand side is the second derivative, the convexity measure, multi-
plied by one half. The third term is the residual. Its size is responsible
for the quality of the approximation.

The residual is proportional to the third power of the interest rate
shift x. The term in the square bracket of the residual is a rather com-
plex function of C,M,N, and i. A rough approximation of this term is
N(N + 1)(N + 2). In fact, in the case of zero-coupon bonds, i.e., C = 0,
the residual can be written as

(O8]

1 [N(N+1)(N+2)MJ 1

=
w
1

3x2 (1+i+§)N+3 [ M }
I 1+ |
N
- N(N+ DH(N+2)—dFD
(1+i+<§)NJr3

which is a third order polynomial in N.

Therefore, the error of the second order approximation is of the
order [1/(3 x 2)](xN)>. For instance, if x = 0.01 and N = 20 years, the
approximation error is of the order 0.001. The following numerical
example will clarify these derivations.

In Chapter 2 we discussed the features of bonds. In our illustration
to demonstrate how to use the Taylor series, we will use an option-free
bond with a coupon rate of 9% that pays interest semiannually and has
20 years to maturity. Suppose that the initial yield is 6%. In terms of
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our bond valuation equation, this means C = $4.5, M = $100, and i =
0.06. Substituting these values into the bond valuation equation, the
price of the bond is $134.6722.

Suppose that we want to know the approximate percentage price
change if the interest rate (i.e., i) increases instantaneously from 6% to
8%. In the bond market, a change in interest rates is referred to in terms
of basis points. One basis point is equal to 0.0001 and therefore 1 per-
centage point is 100 basis points. In our illustration we are looking at
an instantaneous change in interest rates of 200 basis points. We will
use the two terms of the Taylor expansion series to show the approxi-
mate percentage change in the bond’s value for a 200 basis point
increase in interest rates.

We do know what the answer is already. The initial value for this
bond is $134.6722. If the interest rate is 8%, the value of this bond
would be $109.8964. This means that the bond’s value declines by
18.4%. Let’s see how well the Taylor expansion series using only two
terms approximates this change.

The first approximation is the estimate using duration. The duration
for this bond is 10.66 found by using the formula above for duration.
The convexity measure for this bond is 164.11 The change in interest
rates, di, is 200 basis points. Expressed in decimal it is 0.02. The first
term of the Taylor expansion series gives

-10.66 x (0.02) =-0.2132 = -21.32%

Notice that this approximation overestimates the actual change in
value, which is —=18.4% and means that the estimated new value for the
bond is underestimated.

Now we add the second approximation. The second term of the
Taylor series gives

1%(164.11) x (0.02)> = 3.28%

The approximate percentage change in the bond’s value found by using
the first term of the Taylor series and the second term of the Taylor series
is =21.32% + 3.28% = -18.0%. The actual percentage change in value is
-18.4%. Thus the two terms of the Taylor series do an excellent job of
approximating the percentage change in value.

Let’s look at what would happen if the change in interest rates is a
decline from 6% to 4%. The exact percentage change in value is +25.04%
(from 134.6722 to 168.3887). Now the change in interest rates di is —0.02.
Notice that the approximate change in value due to duration is the same
except for a change in sign. That is, the approximate change based on the
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first term (duration) is +21.32%. Since the percentage price change is
underestimated, the new value of the bond is underestimated. The change
due to the second term of the Taylor series is the same in magnitude and
sign since when —0.02 is squared, it gives a positive value. Thus, the
approximate change is 21.32% + 3.28% = 24.6%. Using the terms of the
Taylor series does a good job of estimating the change in the bond’s value.

We used a relatively large change in interest rates to see how well the
two terms of the Taylor series approximate the percentage change in a
bond’s value. For a small change in interest rates, duration does an effec-
tive job. For example, suppose that the change in interest rates is 10 basis
points. That is, di is 0.001. For an increase in interest rates from 6% to
6.1% the actual change in the bond’s value would be —1.06% ($134.6722
to $133.2472). Using just the first term of the Taylor series, the approxi-
mate change in the bond’s value gives the precise change:

-10.66 x 0.001 = -1.066%

For a decrease in interest rates by 10 basis points, the result would be
1.066%.

What this illustration shows is that for a small change in a variable,
a linear approximation does a good job of estimating the change in the
value of the price function of a bond. A different interpretation, how-
ever, is possible. Note that in general convexity is computed as a num-
ber, which is a function of the term structure of interest rates as follows:

Dollar convexity = [2C(1 +i1)_3 +2-3-C1 +i2)_4+
+N-(N+1)-(C+M)(1+iy) N7

This expression is a nonlinear function of all the yields. It is sensitive to
changes of the curvature of the term structure. In this sense it is a mea-
sure of the convexity of the term structure.

Let’s suppose now that the term structure experiences a change that
can be represented as a parallel shift plus a change in slope and curva-
ture. In general both duration and convexity will change. The previous
Maclaurin expansion, which is valid for parallel shifts of the term struc-
ture, will not hold. However, we can still attempt to represent the
change in a bond’s value as a function of duration and convexity. In par-
ticular, we could represent the changes in a bond’s value as a linear
function of duration and convexity. This idea is exploited in more gen-
eral terms by assuming that the term structure changes are a linear com-
bination of factors.
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INTEGRATION

Differentiation addresses the problem of defining the instantaneous rate
of change, whereas integration addresses the problem of calculating the
area of an arbitrary figure. Areas are easily defined for rectangles and
triangles, and any plane figure that can be decomposed into these
objects. While formulas for computing the area of polygons have been
known since antiquity, a general solution of the problem was arrived at
first in the seventeenth century, with the development of calculus.

Riemann Integrals

Let’s begin by defining the integral in the sense of Riemann, so called after
the German mathematician Bernhard Riemann who introduced it. Con-
sider a bounded function y = f(x) defined in some domain which includes
the interval [a,b]. Consider the partition of the interval [a,b] into 7 disjoint
subintervals a = x(y < xy < ... < x,,_1 < x,, = b, and form the sums:

SLJ = ZfM(xi)(xi_xi—l)

i=1

where fM(xi) = supf(x),x € [x;_y,x;] and

Si = z Fn() (i =% 1)

i=1

where f,,(x;) = inf f(x), x € [x;_1,x,].

Exhibit 4.8 illustrates this construction. SY, SL are called, respec-
tively, the upper Riemann sum and lower Riemann sum. Clearly an infi-
nite number of different sums, SY, S5 can be formed depending on the
choice of the partition. Intuitively, each of these sums approximates the
area below the curve y = f(x), the upper sums from above, the lower
sums from below. Generally speaking, the more refined the partition the
more accurate the approximation.

Consider the sets of all the possible sums {SY} and {SL} for every
possible partition. If the supremum of the set {S5} (which in general
will not be a maximum) and the infimum of the set {SY} (which in gen-
eral will not be a minimum) exist, respectively, and if the minimum and
the supremum coincide, the function f is said to be “Riemann integrable
in the interval (a,b).”

If the function fis Riemann integrable in [a,b], then
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EXHIBIT 4.8 Riemann Sums

y 121

The upper Rieman sum
is represented by the area
below this line

N
08+ \ﬁﬁ %

The lower Riemann sum is represented by
the area below the this line
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I = be(x)dx = sup{Si} = inf{S,[l]}

is called the proper integral of f on [a,b] in the sense of Riemann.
An alternative definition of the proper integral in the sense of Rie-
mann is often given as follows. Consider the Riemann sums:

n

Sy = X fx])(x=%x, 1)

i=1

where x; is an arbitrary point in the interval [xq,x;_{]. Call Ax; = (x; —
x;_1) the length of the i-th interval. The proper integral I between a and
b in the sense of Riemann can then be defined as the limit (if the limit
exists) of the sums S, when the maximum length of the subintervals
tends to zero:
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I'= lim S

n
maxAx; — 0

In the above, the limit operation has to be defined as the limit for
any sequence of sums S, as for each 7 there are infinitely many sums.
Note that the function f need not be continuous to be integrable. It
might, for instance, make a finite number of jumps. However every
function that is integrable must be of bounded variation.

Properties of Riemann Integrals

Let’s now introduce a number of properties of the integrals (we will
state these without proof). These properties are simple mechanical rules
that apply provided that all integrals exist. Suppose that a,b,c are fixed
real numbers, that f,g,h are functions defined in the same domain, and
that they are all integrable on the same interval (a,b). The following

properties apply:

Properties of Riemann Integrals

Property 1 rf(x)dx =0
Property 2 J;f(x)dx = ij(x)dx + JZf(x)dx, a<b<c

b b
Property 3 h(x) = af(x) +pBg(x) =>j h(x)dx = ocJ.bf(x)dx + [3.[ g(x)dx

b, b ,
Property 4 jj(x)g(x)dx = f(x)g(x)|, - jb f(x)g’ (x)dx

B Properties 1 and 2 establish that integrals are additive with respect to
integration limits.

B Property 3 is the statement of the linearity of the operation of integra-
tion.

B Property 4 is the rule of integration by parts.

Now consider a composite function: h(x) = f(g(x)). Provided that g is
integrable on the interval (a,b) and that f is integrable on the interval corre-
sponding to all the points s = g(x), the following rule, known as the chain
rule of integration, applies:
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-1

b -1
[ fondy = [V fatong (ydx
a g (a)

Lebesque-Stieltjes Integrals

Most applications of calculus require only the integral in the sense of
Riemann. However, a number of results in probability theory with a
bearing on economics and finance theory can be properly established
only in the framework of Lebesgue-Stieltjes integral. Let’s therefore
extend the definition of integrals by introducing the Lebesgue-Stieltjes
integral.

The integral in the sense of Riemann takes as a measure of an inter-
val its length, also called the Jordan measure. The definition of the inte-
gral can be extended in the sense of Lebesgue-Stieltjes by defining the
integral with respect to a more general Lebesgue-Stieltjes measure.

Consider a non-decreasing, left-continuous function g(x) defined on a
domain which includes the interval [x; — x;_1] and form the differences
m; = g(x;) — glx;_1). These quantities are a generalization of the concept
of length. They are called Lebesgue measures. Suppose that the interval
(a,b) is divided into a partition of 7 disjoint subintervals by the points
a=xpy<xq<..<x,=>band form the Lebesgue-Stieltjes sums

n
S, = 2 f(x;f)mLi, xj € (xpx;_q)
i=1

where x; is any point in i-th subinterval of the partition.

Consider the set of all possible sums {S,,}. These sums depend on the
partition and the choice of the midpoint in each subinterval. We define
the integral of f(x) in the sense of Lebesgue-Stieltjes as the limit, if the
limit exists, of the Lebesgue-Stieltjes sums {S,} when the maximum
length of the intervals in the partition tends to zero. We write, as in the
case of the Riemann integral:

b
I= j f(x)dg(x) = limS,,

The integral in the sense of Lebesgue-Stieltjes can be defined for a
broader class of functions than the integral in the sense of Riemann. If f
is an integrable function and g is a differentiable function, the two inte-
grals coincide. In the following chapters, all integrals are in the sense of
Riemann unless explicitly stated to be in the sense of Lebesgue-Stieltjes.
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INDEFINITE AND IMPROPER INTEGRALS

In the previous section we defined the integral as a real number associ-
ated with a function on an interval (a,b). If we allow the upper limit b to
vary, then the integral defines a function:

F(x) = Ef(u)du

which is called an indefinite integral.

Given a function f, there is an indefinite integral for each starting
point. From the definition of integral, it is immediate to see that any two
indefinite integrals of the same function differ only by a constant. In
fact, given a function f, consider the two indefinite integrals:

Fo(x) = [ flurdu, Fy(x) = [ fludu
If a < b, we can write
F,(x) = rf(u)du = be(u)du+j;f(u)du = constant + Fy(x)

We can now extend the definition of proper integrals by introducing
improper integrals. Improper integrals are defined as limits of indefinite
integrals either when the integration limits are infinite or when the inte-
grand diverges to infinity at a given point. Consider the improper integral

|| feod
This integral is defined as the limit
rf(x)dx = lim rf(u)du

if the limit exists. Consider now a function f that goes to infinity as x
approaches the upper integration limit b. We define the improper integral

jif(x)dx
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as the left limit
jbf(x)dx = lim rf(u)du
a x—b “a

A similar definition can be established for the lower integration
limit. Improper integrals exist only if these limits exist. For instance, the
integral

does not exist.

THE FUNDAMENTAL THEOREM OF CALCULUS

The fundamental theorem of calculus shows that integration is the
inverse operation of derivation; it states that, given a continuous func-
tion f, any of its indefinite integrals F is a differentiable function and the
following relationship holds:

dF) d[ fae)du

dx dx

= f(x)

If the function [ is not continuous, then the fundamental theorem
still holds, but in any point of discontinuity the derivative has to be
replaced with the left or right derivative dependent on whether or not
the function f is left or right continuous at that point.

Given a continuous function f, any function F such that

dF(x) _
e f(x)

is called a primitive or an indefinite integral of the function f. It can be
demonstrated that any two primitives of a function f differ only by a
constant. Any primitive of a function f can therefore be represented
generically as an indefinite integral plus a constant.
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As an immediate consequence of the fundamental theorem of calculus
we can now state that, given a primitive F of a function f, the definite integral

b
L f(x)dx
can be computed as
[[ feordx = b~ Fia)

All three properties—the linearity of the integration operation, the chain
rule, and the rule of integration by parts—hold for indefinite integrals:

h(x) = af(x)+bg(x):>jh(x)dx = ajf(x)dx+bj'g(x)dx
[F@gdx = fx)g(x) - [f(x)g (x)dx

y=g(x)= [fndy = [f(x)g (x)dx

The differentiation formulas established in the previous section can now
be applied to integration. Exhibit 4.9 lists a number of commonly used
integrals.

EXHIBIT4.9 Commonly Used Integrals

flx) J.f(x)dx Domain
x" 1 a+1 n#-1,Rx#0ifn<0
—_—x
n+1
x* 1 as+1 x>0
x
a+1
sin x —COS X R
CoSs x sin x R
1 log x x>0
x
e* e~ R
f(x) log [f(x)] flx) >0

f(x)
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INTEGRAL TRANSFORMS

Integral transforms are operations that take any function f(x) into
another function F(s) of a different variable s through an improper inte-
gral

E(s) = jG(s,x)f(x)dx

The function G(s,x) is referred to as the kernel of the transform. The
association is one-to-one so that f can be uniquely recovered from its
transform F. For example, linear processes can be studied in the time
domain or in the frequency domain: The two are linked by integral
transforms. We will see how integral transforms are applied to several
applications in finance. The two most important types of integral trans-
forms are the Laplace transform and Fourier transform. We discuss both
in this section.

Laplace Transform
Given a real-valued function f, its one-sided Laplace transform is an
operator that maps f to the function L(s) = Z(f(x)) defined by the
improper integral

=

L(s) = £1f(x)] = [ f(x)dx
0

if it exists.

The Laplace transform of a real-valued function is thus a real-valued
function. The one-sided transform is the most common type of Laplace
transform used in physics and engineering. However in probability theory
Laplace transforms are applied to density functions. As these functions are
defined on the entire real axis, the two-sided Laplace transforms are used.
In probability theory, the two-sided Laplace transform is called the
moment generating function. The two-sided Laplace transform is defined

by

=3

L(s) = £Lif(0)] = [ fx)dx

—oco
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if the improper integral exists.

Laplace transforms “project” a function into a different function
space, that of their transforms. Laplace transforms exist only for func-
tions that are sufficiently smooth and decay to zero sufficiently rapidly
when x — . The following conditions ensure the existence of the
Laplace transform:

B f(x) is piecewise continuous.
B f(x) is of exponential order as x — oo, that is, there exist positive real
constants K, a, and T, such that |f(x)| < Ke”™, for x > T.

Note that the above conditions are sufficient but not necessary for
Laplace transforms to exist. It can be demonstrated that, if they exist,
Laplace transforms are unique in the sense that if two functions have
the same Laplace transform they coincide pointwise. As a consequence,
the Laplace transforms are invertible in the sense that the original func-
tion can be fully recovered from its transform. In fact, it is possible to
define the inverse Laplace transform as the operator £ '(F(s)) such that

LL(9)] = flx)

The inverse Laplace transform can be represented as a Bromwich
integral, that is, an integral defined on a contour in the complex plane
that leaves all singularities of the transform to the left:

Y+ ioo
J e“L(s)ds
Y —ie

€

2

f(X) =

The following conditions ensure the existence of an inverse Laplace
transform:

lim F(s) = 0
s —> o0

lim sF(s) is finite
s—> oo

We will now list (without proof) some key properties of Laplace
transforms; both the one-sided and two-sided Laplace transforms have
similar properties. The Laplace transform is a linear operator in the
sense that, if f,g are real-valued functions that have Laplace transforms
and a,b are real-valued constants, then the following property holds:
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oo

[ e (af(x) + bg(x))dx

—o0

Llaf(x) +bg(x)]

=3

a J e flx)dx+ b ]: e g(x)dx

aLlf(x)] +bL[g(x)]

Laplace transforms turn differentiation, integration, and convolu-
tion (defined below) into algebraic operations. For derivatives the fol-
lowing property holds for the two-sided transform:

X

{@} = S 21f(x)]

and

J{M} = sL[f(x)] - f(0)
dx

for the one-sided transform. For higher derivatives the following for-
mula holds for the two-sided transform

LI 0)] = S"LIf) =" f0) =" 20y - .- £ D(0)
An analogous property holds for integration for one-sided trans-

forms

t
Z{J.f(x)} = 1.4’[f(x)] for the one-sided transform
0

N

t
J{J‘f(x)} = 1.Z[f(x)] for the two-sided transform
0

N

Consider now the convolution. Given two functions f and g, their
convolution h(x) = f(x) * g(x) is defined as the integral
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h(x) = (f*@)(x) = [ flx—n)gt)ds

It can be demonstrated that the following property holds:
Llh(x)] = LIf * gl = LIf(x)1L[g(x)]

As we will see in Chapter 9, when we cover differential equations,
these properties are useful in solving differential equations, turning the
latter into algebraic equations. These properties are also used in repre-
senting probability distributions of sums of variables.

Fourier Transforms

Fourier transforms are similar in many respects to Laplace transforms.
Given a function f, its Fourier transform f(®) = Z[f(x)] is defined as the
integral

fo) = Zifeol = [ e MO fx)dx

—oo

if the improper integral exists, where 7 is the imaginary unity. The Fou-
rier transform of a real-valued function is thus a complex-valued func-
tion. For a large class of functions the Fourier transform exists and is
unique, so that the original function, f, can be recovered from its trans-
form, f.

The following conditions are sufficient but not necessary for a func-
tion to have a forward and inverse Fourier transform:

[ | r lf(x)|dx exists.

B The function f(x) is piecewise continuous.
B The function f(x) has bounded variation.

The inverse Fourier transform can be represented as:

oo

f) = 7 f)] = [ fo)do

—oo



138 The Mathematics of Financial Modeling and Investment Management

Fourier transforms are linear operators. The Fourier transform of
the convolutions is the product of Fourier transforms; the Fourier trans-
form of derivatives and integrals have similar properties to the Laplace
transform.

CALCULUS IN MORE THAN ONE VARIABLE

The previous concepts of calculus can be extended in a multivariate envi-
ronment, that is, they can be extended to functions of several variables.
Given a function of #n variables, y = f(x{,...,x,,), we can define n partial
derivatives

of(x1s ..., x,,)
ox;

1

i = 1,...,n holding constant # — 1 variables and then using the definition
for derivatives of univariate functions:

of(xq, ..., x,) o fleqs e xi by x,) = (X, X X,)
— = lim

0x: h—0 b

1

Repeating this process we can define partial derivatives of any order.
Consider, for example, the following function of two variables:

—(x2 +0xy+ yz)

flx,y) = e
Its partial derivatives up to order 2 are given by the following formulas

—(x2 +0xy+ yz)

J _
dx

—(2x +oy)e

—(x2 +0xy+ yz)

of
dy

= —(2y+o0x)e

7 .

x>

—(x2+cxy+y2) —(x2+0xy+y2)
2e

+(2x + Gy)2€
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2
ﬂ _ _26—(x2+cxy+y2)+(2y+6x)26—(x2+0xy+y2)
2
dy
2 2 2 2 2
d f — (2x+0y)(2y+0x)e—(x +0oxy+y )_Ge—(x +oxy+y’)
dxdy

In bond analysis, we can also compute partial derivatives in the case
where each interest rate is not the same for each time period in the bond
valuation formula. In that case, derivatives can be computed for each
time period’s interest rate. When the percentage price sensitivity of a
bond to a change in the interest rate for a particular time period is com-
puted, the resulting measure is called rate duration or partial duration.'

The definition of the integral can be obtained in the same way as in
the one variable case. The integral is defined as the limit of sums of
multidimensional rectangles. Multidimensional integrals represent the
ordinary concept of volume in three dimensions and n-dimensional
hypervolume in more that three dimensions. A more general definition
of integral that includes both the Riemann and the Riemann-Stieltjes as
special cases, will be considered in the chapter on probability.

SUMMARY

We can now summarize our discussion of calculus as follows:

W The infinitesimally small and infinitely large. Through the concept of
the limit, calculus has rendered precise the notion of infinitesimally
small and infinitely large.

B Rules for computing limits. A sequence or a function tends to a finite
limit if there is a number to which the sequence or the function can get
arbitrarily close; a sequence or a function tends to infinity if it can
exceed any given quantity. Starting from these simple concepts, rules
for computing limits can be established and limits computed.

B Derivatives. A derivative of a function is the limit of its incremental
ratio when the interval tends to zero. Derivatives represent the rate of
change of quantities.

B Integrals. Integrals represent the area below a curve; they are the limit
of sums of rectangles that approximate the area below the curve. More

12 There is a technical difference between rate duration and partial duration but the
difference is not important here.
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in general, integrals can be used to represent cumulated quantities such
as cumulated gains.

W Integrals and derivatives. The fundamental theorem of calculus proves
that integrals and derivatives are inverse operations, insofar as the
derivative of the integral of a function returns the function.

B The derivative of the product of a constant and a function is the prod-
uct of the constant and the derivative of the function.

B The integral of the product of a constant and a function is the product
of the constant and the integral of the function.

B The derivative and the integral of a sum of functions is the sum of
derivatives or integrals.

B Derivation and integration are linear operations.

B The derivative of a product of functions is the derivative of the first
function times the second plus the first function times the derivative of
the second.

B The derivative of a function of function is the product of outer function
with respect to the inner function times the derivative of the inner func-
tion.

B A derivative of order # of a function is defined as the function that
results from applying the operation of derivation 7 times.

B A function that is differentiable to any order at a given point a can be
represented as a series of the powers of (x — a) times the n-th derivative
at a times the reciprocal of n/; this expansion is called a Taylor series
expansion.

B Taylor series truncated to the first or second terms are called first and
second order approximations, respectively.

B Laplace and Fourier transforms of a function are the integral of that
function times an exponential.

B Laplace and Fourier transforms are useful because they transform dif-
ferentiation and integration into algebraic operations, thereby provid-
ing a method for solving linear differential equations.

m Differentiation and integration can be extended to functions of more
than one variable.

B A function of 7 variables has # first derivatives, n-square second deriv-
atives and so on.



Matrix Algebra

rdinary algebra deals with operations such as addition and multiplica-
0tion performed on individual numbers. In many applications, however,
it is useful to consider operations performed on ordered arrays of num-
bers. This is the domain of matrix algebra. Ordered arrays of numbers are
called vectors and matrices while individual numbers are called scalars. In
this chapter, we will discuss the basic operations of matrix algebra.

VECTORS AND MATRICES DEFINED

Let’s now define precisely the concepts of vector and matrix. Though
vectors can be thought of as particular matrices, in many cases it is use-
ful to keep the two concepts—vectors and matrices—distinct. In partic-
ular, a number of important concepts and properties can be defined for
vectors but do not generalize easily to matrices.

Vectors

An n-dimensional vector is an ordered array of # numbers. Vectors are
generally indicated with bold-face lower case letters. Thus a vector x is
an array of the form

x = [xq...x,]

The numbers x; are called the components of the vector x.
A vector is identified by the set of its components. Consider the vec-
tors X = [x7...x,] and y = [y{...y,,]. Two vectors are said to be equal if

! Vectors can be thought as the elements of an abstract linear space while matrices
are operators that operate on linear spaces.

141
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and only if they have the same dimensions 7 = m and the same compo-
nents:

X=yox;=y,i=1,..,n

Vectors can be row vectors or column vectors. If the vector compo-
nents appear in a horizontal row, then the vector is called a row vector,
as for instance the vector

x=1[128 7]

Here are two examples. Suppose that we let w,, be a risky asset’s
weight in a portfolio. Assume that there are N risky assets. Then the fol-
lowing vector, w, is a row vector that represents a portfolio’s holdings of
the N risky assets:

As a second example of a row vector, suppose that we let 7, be the
excess return for a risky asset. (The excess return is the difference
between the return on a risky asset and the risk-free rate.) Then the fol-
lowing row vector is the excess return vector:

If the vector components are arranged in a column, then the vector
is called a column vector as, for instance, the vector

AN e RN NSy

For example, as explained in Chapter 19, a portfolio’s excess return
will be affected by what can be different characteristics or attributes that
affect all asset prices. A few examples would be the price-earnings ratio,
market capitalization, and industry. We can denote for a particular
attribute a column vector, a, that shows the exposure of each risky asset
to that attribute:
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where a,, is the exposure of asset 7 to attribute a.

Vector components can be either real or complex numbers. Return-
ing to the row vector w of a portfolio of holdings, a positive value for
w,, would mean that some of the risky asset 7 is held in the portfolio; a
value of zero would mean that the risky asset 7 is not held in the portfo-
lio. If the value of w,, is negative, this means that there is a short posi-
tion in risky asset 7.

While in most applications in economics and finance vector compo-
nents are real numbers, recall that a complex number is a number which
can be represented in the form

c=a+bi

where i is the imaginary unit. One can operate on complex numbers? as if
they were real numbers but with the additional rule: 2 = —1. In the follow-
ing we will assume that vectors have real components unless we explicitly
state the contrary.

Vectors admit a simple graphic representation. Consider an 7z-dimensional
Cartesian space. An n-dimensional vector is represented by a segment
that starts from the origin and such that its projections on the n-th axis
are equal to the n-th component of the vector. The direction of the vec-
tor is assumed to be from the origin to the tip of the segment. Exhibit
5.1 illustrates this representation in the case of the usual three spatial
dimensions x,y,z.

The (Euclidean) length of a vector x, also called the norm of a vec-
tor, denoted as |x|, is defined as the square root of the sum of the
squares of its components:

2 2
x| = Jx]+...+x),

2 In rigorous mathematical terms, complex numbers are defined as ordered pairs of
real numbers. Operations on complex numbers are defined as operations on pairs of
real numbers. The representation with the imaginary unit is a shorthand based on a
rigorous definition of complex numbers.
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EXHIBIT 5.1  Graphical Representation of Vectors

Z component

Vector (X,Y,2)

X component )
Y component X

Matrices

An nxm matrix is a bidimensional ordered array of nxm numbers.
Matrices are usually indicated with bold-face upper case letters. Thus,
the generic matrix A is an nxm array of the form

a1 " 91, " Myom
A= la;, aij " Am
an,l an,/ an,m

Note that the first subscript indicates rows while the second sub-
script indicates columns. The entries a;—called the elements of the
matrix A—are the numbers at the crossing of the i-th row and the j-th
column. The commas between the subscripts of the matrix entries are
omitted when there is no risk of confusion: a; ;=a;;. A matrix A is often
indicated by its generic element between brackets:
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where the subscripts 7 are the dimensions of the matrix.

The elements of a matrix can be either real numbers or complex
numbers. In the following, we will assume that elements are real num-
bers unless explicitly stated otherwise. If the matrix entries are real
numbers, the matrix is called a real matrix; if the a;; are complex num-
bers, the matrix is called a complex matrix.

Two matrices are said to be equal if they are of the same dimensions
and have the same elements. Consider two matrices A = {a;j},,,, and B =
{bij}um of the same order nxm:

A = B means {aif}nm = {b”}nm

Vectors are matrices with only one column or only one row. An n-
dimensional row vector is an nx1 matrix, an n-dimensional column vec-
tor is a 1xn matrix. A matrix can be thought of as an array of vectors.
Denote by a; the column vector formed by the j-th column of the matrix
A. The matrix A can then be written as A = [a]. This notation can be
generalized. Suppose that the two matrices B, C have the same number
n of rows and mp, m columns respectively. The matrix A = [B C] is the
matrix whose first mp columns are formed by the matrix B and the fol-
lowing m¢ columns are formed by the matrix C.

SQUARE MATRICES

There are several types of matrices. First there is a broad classification
of square and rectangular matrices. A rectangular matrix can have dif-
ferent numbers of rows and columns; a square matrix is a rectangular
matrix with the same number # of rows as of columns.

Diagonals and Antidiagonals
An important concept for a square matrix is the diagonal. The diagonal

includes the elements that run from the first row, first column to the last
row, last column. For example, consider the following square matrix:

a1 "4, An

The diagonal terms are the a; ; terms.
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The antidiagonals of a square matrix are the other diagonals that do
not run from the first row, first column to the last row, last column. For
example, consider the following 4x4 square matrix:

5 9 14 8
2 6 1211
17 21 42 2
1973 7 8

The diagonal terms include 5, 6, 42, 8. One antidiagonal is 2, 9. Another
antidiagonal is 17, 6, 14. Note that there are antidiagonal terms in rect-
angular matrices.

Identity Matrix

The nxn identity matrix, indicated as the matrix I,,, is a square matrix
whose diagonal elements (i.e., the entries with the same row and column
suffix) are equal to one while all other entries are zero:

10--. .0
01---0

00 - - -1
A matrix whose entries are all zero is called a zero matrix.
Diagonal Matrix

A diagonal matrix is a square matrix whose elements are all zero except
the ones on the diagonal:

lay, 0 0

0 ay 0
A = ’

10 0 -

Given a square 7xn matrix A, the matrix dg A is the diagonal matrix
extracted from A. The diagonal matrix dg A is a matrix whose elements



Matrix Algebra 147

are all zero except the elements on the diagonal that coincide with those
of the matrix A:

app A2 0t Ay a; 0 - -+ 0

dpyp dpp * "t Ay 0 ay--- 0
A=| " =~ - T =>dgA =

¥anl Ay * " anng ¥0 (O anrg

The trace of a square matrix A is the sum of its diagonal elements:

n
trA = Z a;;

i=1

A square matrix is called symmetric if the elements above the diago-
nal are equal to the corresponding elements below the diagonal: a;; = aj;.
A matrix is called skew-symmetric if the diagonal elements are zero and
the elements above the diagonal are the opposite of the corresponding
elements below the diagonal: a;; = —a;;, i #J, a;; = 0.

The most commonly used symmetric matrix in finance and econo-
metrics is the covariance matrix, also referred to as the variance-covari-
ance matrix. (See Chapter 6 for a detailed explanation of variances and
covariances.) For example, suppose that there are N risky assets and
that the variance of the excess return for each risky asset and the covari-
ances between each pair of risky assets are estimated. As the number of
credit risky assets is N there are N? elements, consisting of N variances
(along the diagonal) and N* — N covariances. Symmetry restrictions
reduce the number of independent elements. In fact the covariance o;(t)
between risky asset i and risky asset j will be equal to the covariance
between risky asset j and risky asset i. We can therefore arrange the
variances and covariances in the following square matrix V:

01,1 61,;  O1,N
V=10, 0 0Oin

O,N " OiN " "ONN

Notice that V is a symmetric matrix.
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Upper and Lower Triangular Matrix

A matrix A is called upper triangular if a;; = 0, i > j. In other words, an
upper triangular matrix is a matrix whose elements in the triangle below
the diagonal are all zero as is illustrated below:

a1 " a1, " A,n

A=|0 -a;- a;,| [upper triangular]

i in
n,n
A matrix A is called lower triangular if a;; = 0, 7 < /. In other words,

a lower triangular matrix is a matrix whose elements in the triangle
above the diagonal are zero as is illustrated below:

a1+ 0 0
A=| - -a; ;- 0| [lower triangular]
an,l an,i : an,n

DETERMINANTS

Consider a square, nxn, matrix A. The determinant of A, denoted |A], is
defined as follows:

A = Z(—l)t(il’ ...’/W)Hﬂii

i=1

where the sum is extended over all permutations (jy,...,j,) of the set (1,
2,...,n) and #(jq,...,/,) is the number of transpositions (or inversions of
positions) required to go from (1,2,...,72) tO (j1,.--sfp)-

Otherwise stated, a determinant is the sum of all different products
formed taking exactly one element from each row with each product
multiplied by

s omrf)

(-1
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Consider, for instance, the case #n = 2, where there is only one possi-
ble transposition: 1,2 = 2,1. The determinant of a 2x2 matrix is there-
fore computed as follows:

0 1
Al = (=1)"ajjay, +(=1) apay; = ajjay —apay

Consider a square matrix A of order #. Consider the matrix M;;
obtained by removing the ith row and the jth column. The matrix M;; is
a square matrix of order (n — 1). The determinant |[M;| of the matrix

M;; is called the minor of a;;. The signed minor

i

(—1)(i+j)\Mi;‘\

is called the cofactor of a;; and is generally denoted as oy;. The r-minors
of the nxm rectangular matrix A are the determinants of the matrices
formed by the elements at the crossing of » different rows and r different
columns of A.

A square matrix A is called singular if its determinant is equal to
zero. An nxm matrix A is of rank 7 if at least one of its (square) -minors
is different from zero while all (r + 1)-minors, if any, are zero. A non-
singular square matrix is said to be of full rank if its rank r is equal to
its order 7.

SYSTEMS OF LINEAR EQUATIONS

A system of 7 linear equations in m unknown variables is a set of 7
simultaneous equations of the following form:

al 1x1+...+ﬂ1 mxm = bl
an’1x1+...+a1’mxm = bm

The nxm matrix
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formed with the coefficients of the variables is called the coefficient
matrix. The terms b; are called the constant terms. The augmented
matrix [A b]—formed by adding to the coefficient matrix a column
formed with the constant term—is represented below:

a1 "9, " Mym by

[Ab]: aiil.a.A.aA b.

ij i,mYi

n1 " an,f ' an,mbn

If the constant terms on the right side of the equations are all zero, the
system is called homogeneous. If at least one of the constant terms is dif-
ferent from zero, the system is called nonhomogeneous. A system is called
consistent if it admits a solution, i.e., if there is a set of values of the vari-
ables that simultaneously satisfy all the equations. A system is called
inconsistent if there is no set of numbers that satisfy the system equations.

Let’s first consider the case of nonhomogeneous linear systems. The
fundamental theorems of linear systems state that:

B Theorem 1. A system of n linear equations in 7 unknowns is consistent
(i.e., it admits a solution) if and only if the coefficient matrix and the
augmented matrix have the same rank.

B Theorem 2. If a consistent system of # equations in 7 variables is of
rank 7 < m, it is possible to choose 7—r unknowns so that the coefficient
matrix of the remaining 7 unknowns is of rank . When these m—r vari-
ables are assigned any arbitrary value, the value of the remaining vari-
ables is uniquely determined.

An immediate consequence of the fundamental theorems is that (1) a
system of 7 equations in 7z unknown variables admits a solution and (2) the
solution is unique if and only if both the coefficient matrix and the aug-
mented matrix are of rank 7.

Let’s now examine homogeneous systems. The coefficient matrix and
the augmented matrix of a homogeneous system always have the same
rank and thus a homogeneous system is always consistent. In fact, the
trivial solution x{ = ... = x,,, = 0 always satisfies a homogeneous system.

Consider now a homogeneous system of 7 equations in # unknowns.
If the rank of the coefficient matrix is 7, the system has only the trivial
solution. If the rank of the coefficient matrix is 7 < n, then Theorem 2
ensures that the system has a solution other than the trivial solution.



Matrix Algebra 151

LINEAR INDEPENDENCE AND RANK

Consider an nxm matrix A. A set of p columns extracted from the
matrix A

a1,i, " A0,

are said to be linearly independent if it is not possible to find p constants
Bs, s = 1,...,p such that the following # equations are simultaneously sat-

isfied:

Blal,il + ...+ Bpal,ip = O
Blan’il + ...+ Bpan, iji =

Analogously, a set of g rows extracted from the matrix A are said to
be linearly independent if it is not possible to find ¢ constants A, s =
1,...,q, such that the following 7 equations are simultaneously satisfied:

7\.1611-1’1 + ...+ aniq’ 1 = O

+Aa =0

klail,m ot hgd
It can be demonstrated that in any matrix the number p of linearly
independent columns is the same as the number ¢ of linearly indepen-
dent rows. This number is equal, in turn, to the rank 7 of the matrix.
Recall that an #xm matrix A is said to be of rank r if at least one of its
(square) r-minors is different from zero while all (r+1)-minors, if any,
are zero. The constant, p, is the same for rows and for columns. We can
now give an alternative definition of the rank of a matrix:

Given an nxm matrix A, its rank, denoted rank(A), is the number r of
linearly independent rows or columns. This definition is meaningful
because the row rank is always equal to the column rank.
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HANKEL MATRIX

For the theoretical analysis of the autoregressive integrated moving
averages (ARMA) processes described in Chapter 11, it is important to
understand a special type of matrix, a Hankel matrix. A Hankel matrix
is a matrix where for each antidiagonal the element is the same. For
example, consider the following square Hankel matrix:

17 16 15 24
16 15 24 33
1524 3372
24 33 72 41

Each antidiagonal has the same value. Now consider the elements of the
antidiagonal running from the second row, first column and first row,
second column. Both elements have the value 16. Consider another
antidiagonal running from the fourth row, second column to the second
row, fourth column. All of the elements have the value 33.

An example of a rectangular Hankel matrix would be

72 60 55 43 30 21
60 55 43 30 21 10
5543 30 21 10 80

Notice that a Hankel matrix is a symmetric matrix.’?

Consider an infinite sequence of square 7x7 matrices:

Ho, Hl’ eey Hl’

The infinite Hankel matrix H is the following matrix:

3 A special case of a Hankel matrix is when the values for the elements in the first
row of the matrix are repeated in each successive row such that its value appears one
column to the left. For example, consider the following square Hankel matrix:

41 32 23 14
322314 41
23 14 41 32
14 41 32 23

This type of Hankel matrix is called an anticirculant matrix.
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H,H, H, ...

The rank of a Hankel matrix can be defined in three different ways:

1. The column rank is the largest number of linearly independent
sequence columns.

2. The row rank is the largest number of linearly independent sequence
rows.

3. The rank is the superior of the ranks of all finite matrices of the type:

H H,
HN, N =
Hy : : Hyin

As in the finite-dimensional case, the three definitions are equivalent in
the sense that the three numbers are equal, if finite, or they are all three
infinite.

VECTOR AND MATRIX OPERATIONS

Let’s now introduce the most common operations performed on vectors
and matrices. An operation is a mapping that operates on scalars, vectors,
and matrices to produce new scalars, vectors, or matrices. The notion of
operations performed on a set of objects to produce another object of the
same set is the key concept of algebra. Let’s start with vector operations.

Vector Operations

The following operations are usually defined on vectors: (1) transpose,
(2) addition, and (3) multiplication.

Transpose

The transpose operation transforms a row vector into a column vector and
vice versa. Given the row vector X = [xq...x,] its transpose, denoted as x
or x’, is the column vector:
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X1

Clearly the transpose of the transpose is the original vector:
T
)’ =x

Addition

Two row (or column) vectors x = [x1...x,], ¥y = [y1...y,] with the same
number 7 of components can be added. The addition of two vectors is a
new vector whose components are the sums of the components:

X+y = [x;+y1...x,+y,]

This definition can be generalized to any number N of summands:

N

N N
in = xli"'zym'

i=1 i=1 i=1

The summands must be both column or row vectors; it is not possible to
add row vectors to column vectors.

It is clear from the definition of addition that addition is a commu-
tative operation in the sense that the order of the summands does not
matter: X + y = y + x. Addition is also an associative operation in the
sense that X + (y +z) = (X +y) + z.

Multiplication

We define two types of multiplication: (1) multiplication of a scalar and

a vector and (2) scalar multiplication of two vectors (inner product).*
The multiplication of a scalar A and a row (or column) vector x,

denoted as Ax, is defined as the multiplication of each component of the

vector by the scalar:

* Different types of products between vectors can be defined: the vector product be-
tween vectors produces a third vector and the outer product produces a matrix. We
do not define them here, as, though widely used in the physical sciences, they are not
typically used in economics.
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Ax = [Axq...Ax,]

As an example of the multiplication of a vector by a scalar, consider
the vector of portfolio weights w = [w1...w,,]. If the total portfolio value
at a given moment is P, then the holding in each asset is the product of
the value by the vector of weights:

Pw = [Pw;...Pw,]

A similar definition holds for column vectors. It is clear from this defini-
tion that

lax]| = |al|x]
and that multiplication by a scalar is associative as
a(x+y) = ax + ay

The scalar (or inner) product of two vectors of the same dimensions
X, v, denoted as x - y, is defined between a row vector and a column vec-
tor. The scalar product between two vectors produces a scalar according
to the following rule:

For example, consider the column vector a of a particular attribute dis-
cussed earlier and the row vector w of portfolio weights. Then a - w is a
scalar that shows the exposure of the portfolio to the particular
attribute. That is,
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As another example, a portfolio’s excess return is found by taking
the transpose of the excess return vector, r, and multiplying it by the
vector of portfolio weights, w. That is,

I
M
:\
g

Z

Two vectors x, y are said to be orthogonal if their scalar product is
zero. The scalar product of two vectors can be interpreted geometrically
as an orthogonal projection. In fact, the inner product of vectors x and
y, divided by the square norm of y, can be interpreted as the orthogonal
projection of x onto y. The following two properties are an immediate
consequence of the definitions:

x| = Jx-x
(ax) - (by) = abx -y

Matrix Operations
The following five operations on matrices are usually defined: (1) trans-
pose, (2) addition, (3) multiplication, (4) inverse, and (5) adjoint.

Transpose

The definition of the transpose of a matrix is an extension of the trans-
pose of a vector. The transpose operation consists in exchanging rows
with columns. Consider the 7#xm matrix

A = {ai/}nm

The transpose of A, denoted AT or A” is the mxn matrix whose ith row is
the ith column of A:

T

AT =g,
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The following should be clear from this definition:
Ah' = A

and that a matrix is symmetric if and only if

A=A
Addition
Consider two nxm matrices
A= Aaih,
and
B = {b,‘,‘}nm

The sum of the matrices A and B is defined as the nxm matrix obtained
by adding the respective elements:

Note that it is essential for the definition of addition that the two matri-
ces have the same order nxm.

The operation of addition can be extended to any number N of
summands as follows:

where a, is the generic 7,j element of the sth summand.
ij

The following properties of addition are immediate from the defini-
tion of addition:

A+B=B+A

A+(B+C)=(A+B)+C=A+B+C
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tr(A+B) = trA+trB

The operation of addition of vectors defined above is clearly a special
case of the more general operation of addition of matrices.

Multiplication
Consider a scalar ¢ and a matrix:

The product cA = Ac is the nxm matrix obtained by multiplying each
element of the matrix by c:

cA = Ac = {ca

i3 om

Multiplication of a matrix by a scalar is associative with respect to
matrix addition:

c(A+B) = cA+¢cB
Let’s now define the product of two matrices. Consider two matrices:
A= {a;} np
and

The product C = AB is defined as follows:

p
C=AB = {¢;} = {Za”bt/}

t=1

The product C = AB is therefore a matrix whose generic element {c;} is
the scalar product of the ith row of the matrix A and the jth column of
the matrix B. This definition generalizes the definition of scalar product
of vectors: The scalar product of two n-dimensional vectors is the product
of an 7#x1 matrix (a row vector) for a 1xz matrix (the column vector).
Following the above definition, the matrix product operation is per-
formed rows by columns. Therefore, two matrices can be multiplied
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only if the number of columns (i.e., the number of elements in each row)
of the first matrix equals the number of rows (i.e., the number of ele-
ments in each column) of the second matrix.

The following two distributive properties hold:

C(A+B)

CA+CB

AC+BC

(A+B)C
The associative property also holds:
(AB)C = A(BC)

However, the matrix product operation is not commutative. In fact, if A
and B are two square matrices, in general AB # BA. Also AB = 0 does
not imply A =0 or B = 0.

Inverse and Adjoint

Consider two square matrices of order 7, A and B. If AB = BA =1, then
the matrix B is called the inverse of A and is denoted as A™'. It can be
demonstrated that the two following properties hold:

B Property 1. A square matrix A admits an inverse A~! if and only if it is
nonsingular, i.e., if and only if its determinant is different from zero.
Otherwise stated, a matrix A admits an inverse if and only if it is of full
rank.

B Property 2. The inverse of a square matrix, if it exists, is unique. This
property is a consequence of the property that, if A is nonsingular, then
AB = AC implies B = C.

Consider now a square matrix of order # A = {a;} and consider its
cofactors 0. Recall that the cofactors oy; are the signed minors
(—1)(Z+7)‘M,-7-‘ of the matrix A. The adjoint of the matrix A, denoted as

Adj(A), is the following matrix:

T
O q - Oq ;" O p Oy 1" 0Oy q " Oy q
Ad](A) =101 az; Oci,n = 0(1,1' aZ,i (Xn,z
0, 1 (X‘n,] OLn,n OLl,n OLZ,n Ocn,n
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The adjoint of a matrix A is therefore the transpose of the matrix
obtained by replacing the elements of A with their cofactors.

If the matrix A is nonsingular, and therefore admits an inverse, it
can be demonstrated that

Al - Adj(A)
|A|

A square matrix A of order 7 is said to be orthogonal if the follow-
ing property holds:

AA" = A’A =1,

Because in this case A must be of full rank, the transpose of an orthogo-
nal matrix coincides with its inverse: A™' = A",

EIGENVALUES AND EIGENVECTORS

Consider a square matrix A of order 7 and the set of all #-dimensional
vectors. The matrix A is a linear operator on the space of vectors. This
means that A operates on each vector producing another vector and that
the following property holds:

A(ax+by) = aAx+bAy

Consider now the set of vectors x such that the following property

holds:
Ax = Ax
Any vector such that the above property holds is called an eigenvector
of the matrix A and the corresponding value of A is called an eigenvalue.
To determine the eigenvectors of a matrix and the relative eigenval-
ues, consider that the equation Ax = Ax can be written as follows:

(A-ADx = 0

which can, in turn, be written as a system of linear equations:
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aj—A- ay,j A,n | [*1
(A—}\,I)X = ai,l . ai,i—k . ai,n X;| = 0
an,l an,j an,n A Xy

This system of equations has nontrivial solutions only if the matrix A —
Al is singular. To determine the eigenvectors and the eigenvalues of the
matrix A we must therefore solve the equation

ap -k oay; A, n
[A-Al = a,q +a;;-\A- a;, =0
an,l ' an,/’ ' an,n_}"

The expansion of this determinant yields a polynomial ¢(A) of
degree n known as the characteristic polynomial of the matrix A. The
equation ¢(A) = 0 is known as the characteristic equation of the matrix
A. In general, this equation will have 7 roots A, which are the eigenval-
ues of the matrix A. To each of these eigenvalues corresponds a solution
of the system of linear equations as illustrated below:

41,1—7“5 ay,; A, n X1,
az,l a; 7\‘s ai n xis =0
Ap1 an,i Ay n 7“5 Xn

Each solution represents the eigenvector x, corresponding to the eigen-
vector A,. As we will see in Chapter 12, the determination of eigenvalues
and eigenvectors is the basis for principal component analysis.

DIAGONALIZATION AND SIMILARITY

Diagonal matrices are much easier to handle than fully populated matri-
ces. It is therefore important to create diagonal matrices equivalent (in a
sense to be precisely defined) to a given matrix. Consider two square



162 The Mathematics of Financial Modeling and Investment Management

matrices A and B. The matrices A and B are called similar if there exists
a nonsingular matrix R such that

B =R'AR
The following two theorems can be demonstrated:
B Theorem 1. Two similar matrices have the same eigenvalues.

B Theorem 2. If y; is an eigenvector of the matrix B = R™'AR corre-
sponding to the eigenvalue A;, then the vector x; = Ry; is an eigenvector
of the matrix A corresponding to the same eigenvalue A;.

A diagonal matrix of order # always has # linearly independent eigen-
vectors. Consequently, a square matrix of order 7 has 7 linearly inde-
pendent eigenvectors if and only if it is similar to a diagonal matrix.

Suppose the square matrix of order # has 7 linearly independent
eigenvectors x; and 7 distinct eigenvalues A;. This is true, for instance, if
A is a real, symmetric matrix of order n. Arrange the eigenvectors,
which are column vectors, in a square matrix: P = {x;}. It can be demon-
strated that P'AP is a diagonal matrix where the diagonal is made up of
the eigenvalues:

A 00 0 0
0 -000
P'AP =0 02, 0 0
000 -0
00002

SINGULAR VALUE DECOMPOSITION

Suppose that the 7xm matrix A with 7 > n has rank(A) = 7 > 0. It can be
demonstrated that there exists three matrices U, W, V such that the fol-
lowing decomposition, called singular value decomposition, holds:

A=UWV

and such that U is nxr with U"U = I,; W is diagonal, with non-negative
diagonal elements; and V is mxr with V'V = L.
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SUMMARY

B In representing and modeling economic and financial phenomena it is
useful to consider ordered arrays of numbers as a single mathematical
object.

B Ordered arrays of numbers are called vectors and matrices; vectors are
a particular type of matrix.

H It is possible to consistently define operations on vectors and matrices
including the multiplication of matrices by scalars, sum of matrices,
product of matrices, and inversion of matrices.

B Determinants are numbers associated with square matrices defined as
the sum of signed products of elements chosen from different rows and
columns.

B A matrix can be inverted only if its determinant is not zero.

B The eigenvectors of a square matrix are those vectors that do not
change direction when multiplied by the matrix.






Goncepts of Probability

robability is the standard mathematical representation of uncertainty in

finance. In this chapter we present concepts in probability theory that
are applied in many areas in financial modeling and investment manage-
ment. Here are just a few applications: The set of possible economic states
is represented as a probability space; prices, cash flows, and other eco-
nomic quantities subject to uncertainty are represented as time-dependent
random variables (i.e., stochastic processes); conditional probabilities are
used in representing the dynamics of asset prices; and, probability distribu-
tions are used in finding the optimal risk-return tradeoff.

REPRESENTING UNCERTAINTY WITH MATHEMATICS

Because we cannot build purely deterministic models of the economy, we
need a mathematical representation of uncertainty. Probability theory is the
mathematical description of uncertainty that presently enjoys the broadest
diffusion. It is the paradigm of choice for mainstream finance theory. But it
is by no means the only way to describe uncertainty. Other mathematical
paradigms for uncertainty include, for example, fuzzy measures.’

Though probability as a mathematical axiomatic theory is well
known, its interpretation is still the subject of debate. There are three
basic interpretations of probability:

B Probability as “intensity of belief” as suggested by John Maynard
Keynes.?

!Lotfi A. Zadeh, “Fuzzy Sets,” Information and Control 8 (1965), pp. 338-353.
2 John Maynard Keynes, Treatise on Probability (McMillan Publishing, 1921).

165
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® Probability as “relative frequency” as formulated by Richard von Mises.’

B Probability as an axiomatic system as formulated by Andrei N. Kol-

I’I’lOgOI'OV.4

The idea of probability as intensity of belief was introduced by John
Maynard Keynes in his Treatise on Probability. In science as in our daily
lives, we have beliefs that we cannot strictly prove but to which we
attribute various degrees of likelihood. We judge not only the likelihood of
individual events but also the plausibility of explanations. If we espouse
probability as intensity of belief, probability theory is then a set of rules
for making consistent probability statements. The obvious difficulty here is
that one can judge only the consistency of probability reasoning, not its
truth. Bayesian probability theory (which we will discuss later in the chap-
ter) is based on the interpretation of probability as intensity of belief.

Probability as relative frequency is the standard interpretation of
probability in the physical sciences. Introduced by Richard Von Mises in
1928, probability as relative frequency was subsequently extended by
Hans Reichenbach.® Essentially, it equates probability statements with
statements about the frequency of events in large samples; an unlikely
event is an event that occurs only a small number of times. The difficulty
with this interpretation is that relative frequencies are themselves uncer-
tain. If we accept a probability interpretation of reality, there is no way
to leap to certainty. In practice, in the physical sciences we usually deal
with very large numbers—so large that nobody expects probabilities to
deviate from their relative frequency. Nevertheless, the conceptual diffi-
culty exists. As the present state of affairs might be a very unlikely one,
probability statements can never be proved empirically.

The two interpretations of probability—as intensity of belief and as
relative frequency—are therefore complementary. We make probability
statements such as statements of relative frequency that are, ultimately,
based on an a priori evaluation of probability insofar as we rule out, in
practice, highly unlikely events. This is evident in most procedures of
statistical estimation. A statistical estimate is a rule to choose the proba-
bility scheme in which one has the greatest faith. In performing statisti-
cal estimation, one chooses the probabilistic model that yields the

3 Richard von Mises, Wahrscheinlichkeitsrechnung, Statistik unt Wabrheit (Vienna:
Verlag von Julius Spring, 1928). (English edition published in 1939, Probability, Sta-
tistics and Truth.)

* Andrei N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin:
Springer, 1933). (English edition published in 1950, Foundations of the Theory of
Probability.)

3 At the time, both were German professors working in Constantinople.
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highest probability on the observed sample. This is strictly evident in
maximum likelihood estimates but it is implicit in every statistical esti-
mate. Bayesian statistics allow one to complement such estimates with
additional a priori probabilistic judgment.

The axiomatic theory of probability avoids the above problems by
interpreting probability as an abstract mathematical quantity. Devel-
oped primarily by the Russian mathematician Andrei Kolmogorov, the
axiomatic theory of probability eliminated the logical ambiguities that
had plagued probabilistic reasoning prior to his work. The application
of the axiomatic theory is, however, a matter of interpretation.

In economics and finance theory, probability might have two differ-
ent meanings: (1) as a descriptive concept and (2) as a determinant of
the agent decision-making process. As a descriptive concept, probability
is used in the sense of relative frequency, similar to its use in the physical
sciences: the probability of an event is assumed to be approximately
equal to the relative frequency of its occurrence in a large number of
experiments. There is one difficulty with this interpretation, which is
peculiar to economics: empirical data (i.e., financial and economic time
series) have only one realization. Every estimate is made on a single
time-evolving series. If stationarity (or a well-defined time process) is
not assumed, performing statistical estimation is impossible.

PROBABILITY IN A NUTSHELL

In making probability statements we must distinguish between outcomes
and events. Outcomes are the possible results of an experiment or an obser-
vation, such as the price of a security at a given moment. However, proba-
bility statements are not made on outcomes but on events, which are sets of
possible outcomes. Consider, for example, the probability that the price of
a security be in a given range, say from $10 to $12, in a given period.

In a discrete probability model (i.e., a model based on a finite or at
most a countable number of individual events), the distinction between
outcomes and events is not essential as the probability of an event is the
sum of the probabilities of its outcomes. If, as happens in practice,
prices can vary by only one-hundredth of a dollar, there are only a
countable number of possible prices and the probability of each event
will be the sum of the individual probabilities of each admissible price.

However, the distinction between outcomes and events is essential
when dealing with continuous probability models. In a continuous proba-
bility model, the probability of each individual outcome is zero though the
probability of an event might be a finite number. For example, if we repre-
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sent prices as continuous functions, the probability that a price assumes
any particular real number is strictly zero, though the probability that
prices fall in a given interval might be other than zero.

Probability theory is a set of rules for inferring the probability of an
event from the probability of other events. The basic rules are surprisingly
simple. The entire theory is based on a few simple assumptions. First, the
universe of possible outcomes or measurements must be fixed. This is a
conceptually important point. If we are dealing with the prices of an
asset, the universe is all possible prices; if we are dealing with 7 assets, the
universe is the set of all possible n-tuples of prices. If we want to link #
asset prices with k economic quantities, the universe is all possible (7 +
k)-tuples made up of asset prices and values of economic quantities.

Second, as our objective is to interpret probability as relative frequen-
cies (i.e., percentages), the scale of probability is set to the interval [0,1].
The maximum possible probability is one, which is the probability that
any of the possible outcomes occurs. The probability that none of the out-
comes occurs is 0. In continuous probability models, the converse is not
true as there are nonempty sets of measure zero. In other words, in con-
tinuous probability models, a probability of one is not equal to certainty.

Third, and last, the probability of the union of disjoint events is the
sum of the probabilities of individual events.

All statements of probability theory are logical consequences of these
basic rules. The simplicity of the logical structure of probability theory
might be deceptive. In fact, the practical difficulty of probability theory
consists in the description of events. For instance, derivative contracts
link in possibly complex ways the events of the underlying with the events
of the derivative contract. Though the probabilistic “dynamics” of the
underlying phenomena can be simple, expressing the links between all
possible contingencies renders the subject mathematically complex.

Probability theory is based on the possibility of assigning a precise
uncertainty index to each event. This is a stringent requirement that
might be too strong in many instances. In a number of cases we are sim-
ply uncertain without being able to quantify uncertainty. It might also
happen that we can quantify uncertainty for some but not all events.
There are representations of uncertainty that drop the strict requirement
of a precise uncertainty index assigned to each event. Examples include
fuzzy measures and the Dempster-Schafer theory of uncertainty.® The
latter representations of uncertainty have been widely used in Artificial

®See G. Schafer, A Mathematical Theory of Evidence (Princeton, NJ: Princeton Uni-
versity Press, 1976); Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Beliefs (San Mateo, CA: Morgan Kaufmann, 1988); and, Zadeh,
“Fuzzy Sets.”



Concepts of Probability 169

Intelligence and engineering applications, but their use in economics
and finance has so far been limited.

Let’s now examine probability as the key representation of uncer-
tainty, starting with a more formal account of probability theory.

OUTCOMES AND EVENTS

The axiomatic theory of probability is based on three fundamental con-
cepts: (1) outcomes, (2) events, and (3) measure. The outcomes are the
set of all possible results of an experiment or an observation. The set of
all possible outcomes is often written as the set Q. For instance, in the
dice game a possible outcome is a pair of numbers, one for each face,
such as 6 + 6 or 3 + 2. The space Q is the set of all 36 possible out-
comes.

Events are sets of outcomes. Continuing with the example of the
dice game, a possible event is the set of all outcomes such that the sum
of the numbers is 10. Probabilities are defined on events, not on out-
comes. To render definitions consistent, events must be a class 3 of sub-
sets of Q with the following properties:

B Property 1. 3 is not empty

® Property 2. If A € 3 then A® € 3; AC is the complement of A with
respect to Q, made up of all those elements of Q that do not belong to
A

W Property 3.1f A;e€ S fori=1,2,... then \UA;e 3
i=1

Every such class is called a 6-algebra. Any class for which Property 3 is
valid only for a finite number of sets is called an algebra.

Given a set Q and a c-algebra & of subsets of Q, any set A € & is said
to be measurable with respect to &. The pair (€,8) is said to be a mea-
surable space (not to be confused with a measure space, defined later in
this chapter). Consider a class & of subsets of Q and consider the small-
est c-algebra that contains &, defined as the intersection of all the o-
algebras that contain &. That c-algebra is denoted by 6{&} and is said
to be the o-algebra generated by &.

A particularly important space in probability is the Euclidean space.
Consider first the real axis R (i.e., the Euclidean space R! in one dimen-
sion). Consider the collection formed by all intervals open to the left and
closed to the right, for example, (a,b]. The c-algebra generated by this
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set is called the 1-dimensional Borel c-algebra and is denoted by &. The
sets that belong to B are called Borel sets.

Now consider the n#-dimensional Euclidean space R”, formed by 7-
tuples of real numbers. Consider the collection of all generalized rectan-
gles open to the left and closed to the right, for example, ((a1,b¢] X ...
X(a,,b,]). The o-algebra generated by this collection is called the #-
dimensional Borel c-algebra and is denoted by B”. The sets that belong
to B” are called n-dimensional Borel sets.

The above construction is not the only possible one. The &7, for any
value of 7, can also be generated by open or closed sets. As we will see
later in this chapter, 3" is fundamental to defining random variables. It
defines a class of subsets of the Euclidean space on which it is reasonable
to impose a probability structure: the class of every subset would be too
big while the class of, say, generalized rectangles would be too small. The
B is a sufficiently rich class.

PROBABILITY

Intuitively speaking, probability is a set function that associates to every
event a number between 0 and 1. Probability is formally defined by a
triple (Q,3,P) called a probability space, where Q is the set of all possi-
ble outcomes, 3 the event G-algebra, and P a probability measure.

A probability measure P is a set function from 3 to R (the set of real
numbers) that satisfies three conditions:

m Condition 1. 0 < P(A), forallAe 3
B Condition 2. P(Q) = 1

W Condition 3. P(U A;) = XP(A;) for every finite or countable collection
of disjoint events {A;} such that A; € 3

3 does not have to be a c-algebra. The definition of a probability space
can be limited to algebras of events. However it is possible to demon-
strate that a probability defined over an algebra of events X can be
extended in a unique way to the c-algebra generated by X.

Two events are said to be independent if:

P(A N B) = P(A)P(B)

The (conditional) probability of event A given event B, written as P(A|B),
is defined as follows:
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P(ANB)

P(A|B) = o

It is possible to deduct from simple properties of set theory and from the
disjoint additivity of probability that

P(AUB) = P(A) + P(B) - P(A " B) < P(A) + P(B)
P(A) =1-P(A°)

Bayes theorem is a rule that links conditional probabilities. It can be
stated in the following way:

P(A|B) = P(ANB) _ P(ANB)P(A) _ P(B\A)I—)ﬂ)

P(B) P(B)P(A) P(B)
Bayes theorem allows one to recover the probability of the event A
given B from the probability of the individual events A, B, and the prob-
ability of B given A.

Discrete probabilities are a special instance of probabilities. Defined
over a finite or countable set of outcomes, discrete probabilities are non-
zero over each outcome. The probability of an event is the sum of the
probabilities of its outcomes. In the finite case, discrete probabilities are
the usual combinatorial probabilities.

A measure is a set function defined over an algebra or c-algebra of sets,
denumerably additive, and such that it takes value zero on the empty set
but can otherwise assume any positive value including, conventionally,
an infinite value. A probability is thus a measure of total mass 1 (i.e., it
takes value 1 on the set Q).

A measure can be formally defined as a function M(A) from an alge-
bra or a c-algebra S to R (the set of real numbers) that satisfies the fol-
lowing three properties:

B Property 1. 0 < M(A), for every A e S

B Property 2. M(D) =0



172 The Mathematics of Financial Modeling and Investment Management

B Property 3. M(U A;) = XM(A,) for every finite or countable collection
of disjoint events {A;} such that A; € 3

If M is a measure defined over a G-algebra 3, the triple (Q,3,M) is
called a measure space (this term is not used if 3 is an algebra). Recall
that the pair (Q,3) is a measurable space if S is a c-algebra. Measures in
general, and not only probabilities, can be uniquely extended from an
algebra to the generated c-algebra.

RANDOM VARIABLES

Probability is a set function defined over a space of events; random vari-
ables transfer probability from the original space Q into the space of
real numbers. Given a probability space (Q,3,P), a random variable X is
a function X() defined over the set Q that takes values in the set R of
real numbers such that

(0: X()<x)e 3

for every real number x. In other words, the inverse image of any inter-
val (—oo,x] is an event. It can be demonstrated that the inverse image of
any Borel set is also an event.

A real-valued set function defined over Q is said to be measurable
with respect to a c-algebra S if the inverse image of any Borel set
belongs to 3. Random variables are real-valued measurable functions. A
random variable that is measurable with respect to a c-algebra cannot
discriminate between events that are not in that c-algebra. This is the
primary reason why the abstract and rather difficult concept of measur-
ability is important in probability theory. By restricting the set of events
that can be identified by a random variable, measurability defines the
“coarse graining” of information relative to that variable. A random
variable X is said to generate & if & is the smallest c-algebra in which it
is measurable.

INTEGRALS

In Chapter 4 on calculus we defined the integral of a real-valued function
on the real line. However, the notion of the integral can be generalized to
a general measure space. Though a bit technical, these definitions are
important in the context of probability theory.
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For each measure M, the integral is a number that is associated to
every integrable function f. It is defined in the following two steps:

B Step 1. Suppose that f is a measurable, non-negative function and con-
sider a finite decomposition of the space Q, that is to say a finite collection

of disjoint subsets A;  Q whose union is Q:

A;cQsuchthat A;nA; =D forizjand UA;=Q
Consider the sum
Zinf(f(u)): we A)M(A))
The integral

j fdM

Q

is defined as the supremum, if it exists, of all these sums over all possible
decompositions of Q. Suppose that f is bounded and non-negative and
M(Q) < oo, Let’s call

5. = sup( 3 (inf fo)M(4,))
the lower integral and
5= inf(;(cstela {(m)M(Ai)))

the upper integral. It can be demonstrated that if the integral exists then
S* = 8_. It is possible to define the integral as the common value § = §* =
S_. This approach is the Darboux-Young approach to integration.”

W Step 2. Given a measurable function f not necessarily non-negative,
consider its decomposition in its positive and negative parts f=f* —f".
The integral of f is defined as the difference, if a difference exists,
between the integrals of its positive and negative parts.

7 See Patrick Billingsley, Probability and Measure, Second edition (New York: Wiley,
1983).
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The integral can be defined not only on Q but on any measurable
set G. In order to define the integral over a measurable set G, consider
the indicator function I, which assumes value 1 on each point of the
set G and 0 elsewhere. Consider now the function f - I;. The integral
over the set G is defined as

_[fdM = jf. IodM
G Q
The integral jfdM is called the indefinite integral of /.
G

Given a c-algebra S, suppose that G and M are two measures and
that a function f exists such that for A e 3

G(A) = J'fdM
A

In this case G is said to have density f with respect to M.

The integrals in the sense of Riemann and in the sense of Lebesgue-
Stieltjes (see Chapter 4 on calculus) are special instances of this more
general definition of the integral. Note that the Lebesgue-Stieltjes inte-
gral was defined in Chapter 4 in one dimension. Its definition can be
extended to n-dimensional spaces. In particular, it is always possible to
define the Lebesgue-Stieltjes integral with respect to a n-dimensional dis-
tribution function. We omit the definitions which are rather technical.®

Given a probability space (Q,3,P) and a random variable X, the
expected value of X is its integral with respect to the probability measure P

E[X] = j XdP
Q

where integration is extended to the entire space.

DISTRIBUTIONS AND DISTRIBUTION FUNCTIONS

Given a probability space (©,3,P) and a random variable X, consider a set
A e B Recall that a random variable is a real-valued measurable func-

8 For details, see Yuan Shih Chow and Henry Teicher, Probability Theory: Second
Edition (New York: Springer, 1988).
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tion defined over the set of outcomes. Therefore, the inverse image of A,
X!(A) belongs to 3 and has a well-defined probability P(X~(A)).

The measure P thus induces another measure on the real axis called
distribution or distribution law of the random variable X given by:
ux(A) = P(X7Y(A)). It is easy to see that this measure is a probability
measure on the Borel sets. A random variable therefore transfers the
probability originally defined over the space Q to the set of real numbers.

The function F defined by: F(x) = P(X < x) for x € R is the cumula-
tive distribution function (c.d.f.), or simply distribution function (d.f.),
of the random variable X. Suppose that there is a function f such that

F(x) = [ fdy

or F'(x) = f(x), then the function f is called the probability density func-
tion of the random variable X.

RANDOM VECTORS

After considering a single random variable, the next step is to consider
not only one but a set of random variables referred to as random vectors.
Random vectors are formed by n-tuples of random variables. Consider a
probability space (©,3,P). A random variable is a measurable function
from Q to R'; a random vector is a measurable function from Q to R”.
We can therefore write a random vector X as a vector-valued function

flo) = [f1(0) f(®) ... f,(0)]

Measurability is defined with respect to the Borel c-algebra &”. It can
be demonstrated that the function f is measurable S if and only if each
component function f;(®) is measurable 3.

Conceptually, the key issue is to define joint probabilities (i.e., the
probabilities that the n variables are in a given set). For example, con-
sider the joint probability that the inflation rate is in a given interval
and the economic growth rate in another given interval.

Consider the Borel c-algebra 3" on the real #-dimensional space R”.
It can be demonstrated that a random vector formed by # random vari-
ables X;, i = 1,2,...,n induces a probability measure over B”. In fact, the
set (0 e Q: (X{(0),X5(w),....X,,(w)) € H; He B") € 3 (i.e., the inverse
image of every set of the c-algebra B” belongs to the c-algebra 3). It is
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therefore possible to induce over every set H that belongs to &” a prob-
ability measure, which is the joint probability of the # random variables
X;. The function

F(xq,...,x,) = P(X;<xq,...,X,<x,)

n

where x; € R is called the n-dimensional cumulative distribution func-
tion or simply #-dimensional distribution function (c.d.f. or d.f.). Sup-
pose there exists a function f{x1,...,x,,) for which the following relationship
holds:

F(xq,....,x,) = I Jf(ul, cou,)dug ... du

The function f(xq,...,x,,) is called the n-dimensional probability density
function (p.d.f.) of the random vector X. Given a n-dimensional probabil-
ity density function f(x1,...,x,,), if we integrate with respect to all variables
except the j-th variable, we obtain the marginal density of that variable:

fX/_(y) = j jf(ul, s tty)duy du;_qdu;, g du,

Given a n-dimensional d.f. we define the marginal distribution func-
tion with respect to the j-th variable, Fy (y) = P(X;<y) as follows:
]

Fxl_(y) = x}ill)lmF(xl, o X Y Xy gy oo Xy)

i#]

If the distribution admits a density we can also write

Y
Fx () = [ fx(u)du

These definitions can be extended to any number of variables. Given
a n-dimensional p.d.f., if we integrate with respect to k variables
(Xj> - X)) OVer R*, we obtain the marginal density functions with
respect to the remaining variables. Marginal distribution functions with
respect to any subset of variables can be defined taking the infinite limit
with respect to all other variables.
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Any d.f. FX (y) defines a Lebesgue-Stieltjes measure and a Lebesgue-
Stieltjes integral. For example, as we have seen in Chapter 4, in the 1-dimen-
sional case, the measure is defined by the differences Fy (x;)— FX (x;_1)-
We can now write expectatlons in two different, and more useful, ways.
In an earlier section in this chapter, given a probability space (Q,3,P), we
defined the expectation of a random variable X as the following integral

E[X] = | XdP
[]i

Suppose now that the random variable X has a d.f. Fy(#). It can be dem-
onstrated that the following relationship holds:

E[X] = deP = ]fudFX(u)
Q

—oo

where the last integral is intended in the sense of Riemann-Stieltjes. If,
in addition, the d.f. FX (u) has a density fy(u) = Fy(u), then we can
write the expectation as follows:

oo oo

E[X] = J'XdP = judFX(u) = Juf(u)du
Q

—oo —oo

where the last integral is intended in the sense of Riemann. More in gen-
eral, given a measurable function g the following relationship holds:

Elg(X)] = [gGu)dFx(u) = [ g(u)f(u)du

This latter expression of expectation is the most widely used in practice.
In general, however, knowledge of the distributions and of distribu-
tion functions of each random variable is not sufficient to determine the
joint probability distribution function. As we will see later in this chap-
ter, the joint distribution is determined by the marginal distributions
plus the copula function.
Two random variables X,Y are said to be independent if

P(Xe A,Ye B)=P(Xe AP(Ye B)
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forall A e B, B e B. This definition generalizes in obvious ways to any
number of variables and therefore to the components of a random vec-
tor. It can be shown that if the components of a random vector are inde-
pendent, the joint probability distribution is the product of distributions.
Therefore, if the variables (Xi,...,X,,) are all mutually independent, we
can write the joint d.f. as a product of marginal distribution functions:

F(xy, ..., x,) = HFX/.(x,‘)

j=1

It can also be demonstrated that if a d.f. admits a joint p.d.f., the
joint p.d.f. factorizes as follows:

fxqs ooy x,) = fof(x,)

j=1
Given the marginal p.d.f.s the joint d.f. can be recovered as follows:

X1

F(xq,...,x,) = j ff(ul, v tty)duy ... du,

—oo

Xq X

= J J. inX/_(ul-)}dul...dun
Celj=1

—oo

n %

= 1 | fx(updw;

i=1 e

= HFXj(xi)

j=1

STOCHASTIC PROCESSES

Given a probability space (,3,P) a stochastic process is a parameterized
collection of random variables {X,}, # € [0,T] that are measurable with
respect to 3. The parameter ¢ is often interpreted as time. The interval in
which a stochastic process is defined might extend to infinity in both
directions.
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When it is necessary to emphasize the dependence of the random
variable from both time # and the element ®, a stochastic process is
explicitly written as a function of two variables: X = X(¢,0). Given o,
the function X = X,(®) is a function of time that is referred to as the
path of the stochastic process.

The variable X might be a single random variable or a multidimen-
sional random vector. A stochastic process is therefore a function X =
X(t,0) from the product space [0,T] X Q into the z-dimensional real space
R”. Because to each o corresponds a time path of the process—in general
formed by a set of functions X = X,(®)—it is possible to identify the space
Q with a subset of the real functions defined over an interval [0,T].

Let’s now discuss how to represent a stochastic process X = X(t,0)
and the conditions of identity of two stochastic processes. As a stochas-
tic process is a function of two variables, we can define equality as
pointwise identity for each couple (f,0). However, as processes are
defined over probability spaces, pointwise identity is seldom used. It is
more fruitful to define equality modulo sets of measure zero or equality
with respect to probability distributions. In general, two random vari-
ables X,Y will be considered equal if the equality X(®) = Y(®) holds for
every ® with the exception of a set of probability zero. In this case, it is
said that the equality holds almost everywhere (denoted a.e.).

A rather general (but not complete) representation is given by the
finite dimensional probability distributions. Given any set of indices
t1s...st,,;, consider the distributions

W, oo (H) = PI(X,, ... X, )e HHHe ¥"]

1

These probability measures are, for any choice of the #;, the finite-
dimensional joint probabilities of the process. They determine many,
but not all, properties of a stochastic process. For example, the finite
dimensional distributions of a Brownian motion do not determine
whether or not the process paths are continuous.

In general, the various concepts of equality between stochastic pro-
cesses can be described as follows:

B Property 1. Two stochastic processes are weakly equivalent if they have
the same finite-dimensional distributions. This is the weakest form of
equality.

B Property 2. The process X = X(t,m) is said to be equivalent or to be a
modification of the process Y = Y(t,0) if, for all ¢,
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P(X,=Y,) =1

B Property 3. The process X = X(t,m) is said to be strongly equivalent to
or indistinguishable from the process Y = Y(¢,o) if

P(X;=Y, forallz) =1

Property 3 implies Property 2, which in turn implies Property 1.
Implications do not hold in the opposite direction. Two processes hav-
ing the same finite distributions might have completely different paths.
However it is possible to demonstrate that if one assumes that paths are
continuous functions of time, Properties 2 and 3 become equivalent.

PROBABILISTIC REPRESENTATION OF FINANCIAL MARKETS

We are now in the position to summarize the probabilistic representation
of financial markets. From a financial point of view, an asset is a contract
which gives the right to receive a distribution of future cash flows. In the
case of a common stock, the stream of cash flows will be uncertain. It
includes the common stock dividends and the proceeds of the eventual
liquidation of the firm. A debt instrument is a contract that gives its
owner the right to receive periodic interest payments and the repayment
of the principal by the maturity date. Except in the case of debt instru-
ments of governments whose risk of default is perceived as extremely
low, payments are uncertain as the issuing entity might default.

Suppose that all payments are made at the trading dates and that no
transactions take place between trading dates. Let’s assume that all
assets are traded (i.e., exchanged on the market) at either discrete fixed
dates, variable dates or continuously. At each trading date there is a
market price for each asset. Each asset is therefore modeled with two
time series, a series of market prices and a series of cash flows. As both
series are subject to uncertainty, cash flows and prices are time-depen-
dent random variables (i.e., they are stochastic processes). The time
dependence of random variables in this probabilistic setting is a delicate
question and will be examined shortly.

Following Kenneth Arrow’ and using a framework now standard,
the economy and the financial markets in a situation of uncertainty are
described with the following basic concepts:

9 Kenneth Arrow, “The Role of Securities in the Optimal Allocation of Risk Bear-
ing,” Review of Economic Studies (April 1964), pp. 91-96.
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B It is assumed that the economy is in one of the states of a probability
space (Q,3,P).

B Every security is described by two stochastic processes formed by two
time-dependent random variables S;(®) and d,(®) representing prices

and cash flows of the asset.

This representation is completely general and is not linked to the
assumption that the space of states is finite.

INFORMATION STRUCTURES

Let’s now turn our attention to the question of time. The previous dis-
cussion considered a space formed by states in an abstract sense. We
must now introduce an appropriate representation of time as well as
rules that describe the evolution of information, that is, information
propagation, over time. The concepts of information and information
propagation are fundamental in economics and finance theory.

The concept of information in finance is different from both the
intuitive notion of information and that of information theory in which
information is a quantitative measure related to the a priori probability
of messages.10 In our context, information means the (progressive) reve-
lation of the set of events to which the current state of the economy
belongs. Though somewhat technical, this concept of information sheds
light on the probabilistic structure of finance theory. The point is the
following. Assets are represented by stochastic processes, that is, time-
dependent random variables. But the probabilistic states on which these
random variables are defined represent entire histories of the economy.
To embed time into the probabilistic structure of states in a coherent
way calls for information structures and filtrations (a concept we
explain in the next section).

Recall that it is assumed that the economy is in one of many possible
states and that there is uncertainty on the state that has been realized.
Consider a time period of the economy. At the beginning of the period,
there is complete uncertainty on the state of the economy (i.e., there is
complete uncertainty on what path the economy will take). Different
events have different probabilities, but there is no certainty. As time
passes, uncertainty is reduced as the number of states to which the econ-

19 There is indeed a deep link between information theory and econometrics embod-
ied in concepts such as the Fisher Information Matrix, see Chapter 12.
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omy can belong is progressively reduced. Intuitively, revelation of infor-
mation means the progressive reduction of the number of possible states;
at the end of the period, the realized state is fully revealed. In continuous
time and continuous states, the number of events is infinite at each
instant. Thus its cardinality remains the same. We cannot properly say
that the number of events shrinks. A more formal definition is required.

The progressive reduction of the set of possible states is formally
expressed in the concepts of information structure and filtration. Let’s
start with information structures. Information structures apply only to
discrete probabilities defined over a discrete set of states. At the initial
instant T, there is complete uncertainty on the state of the economy;
the actual state is known only to belong to the largest possible event
(that is, the entire space Q). At the following instant Ty, assuming that
instants are discrete, the states are separated into a partition, a partition
being a denumerable class of disjoint sets whose union is the space
itself. The actual state belongs to one of the sets of the partitions. The
revelation of information consists in ruling out all sets but one. For all
the states of each partition, and only for these, random variables assume
the same values.

Suppose, to exemplify, that only two assets exist in the economy
and that each can assume only two possible prices and pay only two
possible cash flows. At every moment there are 16 possible price-cash
flow combinations. We can thus see that at the moment T all the states
are partitioned into 16 sets, each containing only one state. Each parti-
tion includes all the states that have a given set of prices and cash distri-
butions at the moment T;. The same reasoning can be applied to each
instant. The evolution of information can thus be represented by a tree
structure in which every path represents a state and every point a parti-
tion. Obviously the tree structure does not have to develop as symmetri-
cally as in the above example; the tree might have a very generic
structure of branches.

FILTRATION

The concept of information structure based on partitions provides a
rather intuitive representation of the propagation of information through
a tree of progressively finer partitions. However, this structure is not suffi-
cient to describe the propagation of information in a general probabilistic
context. In fact, the set of possible events is much richer than the set of
partitions. It is therefore necessary to identify not only partitions but also
a structure of events. The structure of events used to define the propaga-
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tion of information is called a filtration. In the discrete case, however, the
two concepts—information structure and filtration—are equivalent.

The concept of filtration is based on identifying all events that are
known at any given instant. It is assumed that it is possible to associate
to each trading moment ¢ a G-algebra of events 3, c S formed by all
events that are known prior to or at time ¢. It is assumed that events are
never “forgotten,” that is, that S, ¢ 3, if £ < s. An ordering of time is
thus created. This ordering is formed by an increasing sequence of o-
algebras, each associated to the time at which all its events are known.
This sequence is a filtration. Indicated as {3,}, a filtration is therefore an
increasing sequence of all o-algebras 3, each associated to an instant ¢.

In the finite case, it is possible to create a mutual correspondence
between filtrations and information structures. In fact, given an infor-
mation structure, it is possible to associate to each partition the algebra
generated by the same partition. Observe that a tree information struc-
ture is formed by partitions that create increasing refinement: By going
from one instant to the next, every set of the partition is decomposed.
One can then conclude that the algebras generated by an information
structure form a filtration.

On the other hand, given a filtration {3}, it is possible to associate a
partition to each $3,. In fact, given any element that belongs to Q, con-
sider any other element that belongs to Q such that, for each set of 3,
both either belong to or are outside this set. It is easy to see that classes
of equivalence are thus formed, that these create a partition, and that
the algebra generated by each such partition is precisely the 3, that has
generated the partition.

A stochastic process is said to be adapted to the filtration {3,} if the
variable X, is measurable with respect to the 6-algebra 3,. It is assumed
that the price and cash distribution processes S;(®) and d,(®) of every
asset are adapted to {3,}. This means that, for each ¢, no measurement
of any price or cash distribution variable can identify events not
included in the respective algebra or c-algebra. Every random variable
is a partial image of the set of states seen from a given point of view and
at a given moment.

The concepts of filtration and of processes adapted to a filtration
are fundamental. They ensure that information is revealed without
anticipation. Consider the economy and associate at every instant a par-
tition and an algebra generated by the partition. Every random variable
defined at that moment assumes a value constant on each set of the par-
tition. The knowledge of the realized values of the random variables
does not allow identifying sets of events finer than partitions.

One might well ask: Why introduce the complex structure of c-alge-
bras as opposed to simply defining random variables? The point is that,
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from a logical point of view, the primitive concept is that of states and
events. The evolution of time has to be defined on the primitive struc-
ture—it cannot simply be imposed on random variables. In practice, fil-
trations become an important concept when dealing with conditional
probabilities in a continuous environment. As the probability that a
continuous random variable assumes a specific value is zero, the defini-
tion of conditional probabilities requires the machinery of filtration.

CONDITIONAL PROBABILITY AND CONDITIONAL EXPECTATION

Conditional probabilities and conditional averages are fundamental in
the stochastic description of financial markets. For instance, one is gen-
erally interested in the probability distribution of the price of an asset at
some date given its price at an earlier date. The widely used regression
models are an example of conditional expectation models.

The conditional probability of event A given event B was defined
earlier as

P(ANB)
P(B)

P(A|B) =

This simple definition cannot be used in the context of continuous ran-
dom variables because the conditioning event (i.e., one variable assum-
ing a given value) has probability zero. To avoid this problem, we
condition on G-algebras and not on single zero-probability events. In
general, as each instant is characterized by a c-algebra 3,, the condition-
ing elements are the 3.

The general definition of conditional expectation is the following.
Consider a probability space (Q,3,P) and a c-algebra & contained in 3
and suppose that X is an integrable random variable on (Q,3,P). We
define the conditional expectation of X with respect to &, written as
E[X|8], as a random variable measurable with respect to & such that

jE[X\@]dP = J.XdP
G G

for every set G € 8. In other words, the conditional expectation is a
random variable whose average on every event that belongs to & is
equal to the average of X over those same events, but it is &-measurable
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while X is not. It is possible to demonstrate that such variables exist and
are unique up to a set of measure zero.

Econometric models usually condition a random variable given
another variable. In the previous framework, conditioning one random
variable X with respect to another random variable Y means condition-
ing X given o{Y} (i.e., given the c-algebra generated by Y). Thus E[X]|Y]
means E[X|c{Y}].

This notion might seem to be abstract and to miss a key aspect of
conditioning: intuitively, conditional expectation is a function of the
conditioning variable. For example, given a stochastic price process, X,
one would like to visualize conditional expectation E[X, | X ,s<tasa
function of X that yields the expected price at a future date given the
present price. This intuition is not wrong insofar as the conditional
expectation E[X|Y] of X given Y is a random variable function of Y.
For example, the regression function that will be explained later in this
chapter is indeed a function that yields the conditional expectation.

However, we need to specify how conditional expectations are
formed, given that the usual conditional probabilities cannot be applied
as the conditioning event has probability zero. Here is where the above
definition comes into play. The conditional expectation of a variable X
given a variable Y is defined in full generality as a variable that is measur-
able with respect to the c-algebra o(Y) generated by the conditioning
variable Y and has the same expected value of Y on each set of 6(Y). Later
in this section we will see how conditional expectations can be expressed
in terms of the joint p.d.f. of the conditioning and conditioned variables.

One can define conditional probabilities starting from the concept
of conditional expectations. Consider a probability space (Q,3,P), a sub-
c-algebra & of 3, and two events A € 3, B e 3. If I 5,I are the indicator
functions of the sets A,B (the indicator function of a set assumes value 1
on the set, 0 elsewhere), we can define conditional probabilities of the
event A, respectively, given & or given the event B as

P(A|8) = ElI4|8] PAIB) = E[l,|Ip]

Using these definitions, it is possible to demonstrate that given two ran-
dom variables X and Y with joint density f(x,y), the conditional density
of X given Y is

fxly) = &)

fy(y)

where the marginal density, defined as
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fr) = [ fx y)dx

is assumed to be strictly positive.

In the discrete case, the conditional expectation is a random variable
that takes a constant value over the sets of the finite partition associated
to 3,. Its value for each element of Q is defined by the classical concept of
conditional probability. Conditional expectation is simply the average
over a partition assuming the classical conditional probabilities.

An important econometric concept related to conditional expecta-
tions is that of a martingale. Given a probability space (Q,3,P) and a fil-
tration {3}, a sequence of 3;-measurable random variables X; is called a
martingale if the following condition holds:

E[Xi+1\3i] = X;

A martingale translates the idea of a “fair game” as the expected value
of the variable at the next period is the present value of the same value.

MOMENTS AND CORRELATION

If X is a random variable on a probability space (Q,3,P), the quantity
E[ X "1, p > 0is called the p-th absolute moment of X. If k is any posi-
tive integer, E[X*], if it exists, is called the k-th moment. In the general
case of a probability measure P we can therefore write:

mEX?] = J XPdP,p >0, is the p-th absolute moment.
Q

[ | E[Xk] = ijdP , if it exists for k positive integer, is the k-th moment.
Q

In the case of discrete probabilities p;, Zp; = 1 the above expressions
become

E[X"M =Y x"p,;

and
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EIX'] = Yxip;

respectively. If the variable X is continuous and has a density p(x) such
that

°j’ p(x)dx =1

we can write

E[XI] = [ 1x"p(x)dx
and
E[X] = Jxkp(x)dx

respectively.

The centered moments are the moments of the fluctuations of the
variables around its mean. For example, the variance of a variable X is
defined as the centered moment of second order:

o2 = oX(X) = E[(X-X)*]

X

var(X)

=

(=) Ll 2
J. (x - X)Zp(x)dx = J. xzp(x)dx - { J. xp(x)dx}

—oo

where X = E[X].

The positive square root of the variance, 6, is called the standard
deviation of the variable.

We can now define the covariance and the correlation coefficient of
a variable. Correlation is a quantitative measure of the strength of the
dependence between two variables. Intuitively, two variables are depen-
dent if they move together. If they move together, they will be above or
below their respective means in the same state. Therefore, in this case,
the product of their respective deviations from the means will have a
positive mean. We call this mean the covariance of the two variables.
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The covariance divided by the product of the standard deviations is a
dimensionless number called the correlation coefficient.

Given two random variables X,Y with finite expected values and
finite variances, we can write the following definitions:

B cov(X,Y) = 6y y = E[(X-X)(Y-Y)] is the covariance of X,Y.

S . . .
Bpyy= Y s the correlation coefficient of X, Y.
GxOy

The correlation coefficient can assume values in the interval [-1,1].
If two variables X,Y are independent, their correlation coefficient van-
ishes. However, uncorrelated variables, that is, variables whose correla-
tion coefficient is zero, are not necessarily independent.

It can be demonstrated that the following property of variances holds:

Var[ZXJ = ZVar(Xi)+2cov(Xi, Xi)

%]
Further, it can be demonstrated that the following properties hold:
oy y = EIXY]-E[X]E[Y]
Ox,y = Oy, x
O.x.by = aboy x
Ox+v,z = Ox,z%0y,z

cov[ZaiXi, ijY]-] = ZZaibjcov(Xi, Y)
i i j

i

COPULA FUNCTIONS

Understanding dependences or functional links between variables is a
key theme of modern econometrics. In general terms, functional depen-
dences are represented by dynamic models. As we will see in Chapter
11, many important models are linear models whose coefficients are
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correlations coefficients. In many instances, in particular in risk man-
agement, it is important to arrive at a quantitative measure of the
strength of dependencies.

The correlation coefficient provides such a measure. In many instances,
however, the correlation coefficient might be misleading. In particular, there
are cases of nonlinear dependencies that result in a zero correlation coeffi-
cient. From the point of view of risk management this situation is particu-
larly dangerous as it leads to substantially underestimated risk.

Different measures of dependence have been proposed, in particular
copula functions. We will give only a brief introduction to copula func-
tions.!! Copula functions are based on the Theorem of Sklar. Sklar dem-
onstrated'? that any joint probability distribution can be written as a
functional link, i.e., a copula function, between its marginal distribu-
tions. Let’s suppose that F(xq,x,...,X,,) is a joint multivariate distribu-
tion function with marginal distribution functions Fy(xq), Fa(x3), ...
F,(x,). Then there is a copula function C such that the following rela-
tionship holds:

F(xq, x5, ...,x,) = C[F{(xq), Fy(x5), ..., F,(x,)]

The joint probability distribution contains all the information
related to the co-movement of the variables. The copula function allows
to capture this information in a synthetic way as a link between mar-
ginal distributions. We will see an application of the concept of copula
functions in Chapter 22 on credit risk modeling.

SEQUENCES OF RANDOM VARIABLES

Consider a probability space (©,3,P). A sequence of random variables is an
infinite family of random variables X; on (Q,3,P) indexed by integer num-
bers: i = 0,1,2,...,n... If the sequence extends to infinity in both directions, it
is indexed by positive and negative integers: i = ...,,..., 0,1,2,....71....

A sequence of random variables can converge to a limit random
variable. Several different notions of the limit of a sequence of random
variables can be defined. The simplest definition of convergence is that

"'The interested reader might consult the following reference: P. Embrechts, F. Lind-
skog, and A. McNeil, “Modelling Dependence with Copulas and Applications to
Risk Management,” Chapter 8 in S.T. Rachev (ed.), Handbook of Heavy Tailed Dis-
tributions in Finance (Amsterdam: North Holland, 2003).

12 A. Sklar, “Random Variables, Joint Distribution Functions and Copulas,” Kyber-
netika 9 (1973), pp. 449-460.
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of pointwise convergence. A sequence of random variables X;, i 2 1 on
(Q,3,P), is said to converge almost surely to a random variable X,
denoted

a.s.
X=X
if the following relationship holds:

P{o: lim X(0) = X(0)} = 1

In other words, a sequence of random variables converges almost surely
to a random variable X if the sequence of real numbers X;(®) converges
to X(w) for all @ except a set of measure zero.

A sequence of random variables X;, i 2 1 on (Q,3,P), is said to con-
verge in mean of order p to a random variable X if

lim E[|X(®) - X(o)|"] = 0

provided that all expectations exist. Convergence in mean of order one
and two are called convergence in mean and convergence in mean
square, respectively.

A weaker concept of convergence is that of convergence in probabil-
ity. A sequence of random variables X;, i > 1 on (Q,3,P), is said to con-
verge in probability to a random variable X, denoted

P
X —-X

if the following relationship holds:

lim P{w: ‘Xi(m) —X(o))‘ <el=1,Ve>0

1—> 00

It can be demonstrated that if a sequence converges almost surely
then it also convergences in probability while the converse is not gener-
ally true. It can also be demonstrated that if a sequence converges in
mean of order p > 0, then it also convergences in probability while the
converse is not generally true.

A sequence of random variables X, i 2 1 on (,3,P) with distribution
functions Fy is said to converge in distribution to a random variable X
with distribution function Fy, denoted
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if
lim Fy (x) = Fy(x),xe C
i—o0 i

where C is the set of points where all the functions Fy. and Fy are con-
tinuous.

It can be demonstrated that if a sequence converges almost surely
(and thus converges in probability) it also converges in distribution
while the converse is not true in general.

INDEPENDENT AND IDENTICALLY DISTRIBUTED SEQUENCES

Consider a probability space (Q,3,P). A sequence of random variables X;
on (Q,3,P) is called a sequence of independent and identically distributed
(IID) sequence if the variables X; have all the same distribution and are
all mutually independent. An IID sequence is the strongest form of white
noise, that is, of a completely random sequence of variables. Note that in
many applications white noise is defined as a sequence of uncorrelated
variables. This is a weaker definition as an uncorrelated sequence might
be forecastable.

An TID sequence is completely unforecastable in the sense that the
past does not influence the present or the future in any possible sense. In
an IID sequence all conditional distributions are identical to uncondi-
tional distributions. Note, however, that an IID sequence presents a sim-
ple form of reversion to the mean. In fact, suppose that a sequence X;
assumes at a given time ¢ a value larger than the common mean of all
variables: X, > E[X]. By definition of mean it is more likely that X, be
followed by a smaller value: P(X,, < X,) > P(X,,1 > X,).

Note that this type of mean reversion does not imply forecastability
as the probability distribution of asset returns at time ¢ + 1 is indepen-
dent from the distribution at time .

SUM OF VARIABLES

Given two random variables X(®), Y(®) on the same probability space
(Q,3,P), the sum of variables Z(®) = X(®) + Y(®) is another random
variable. The sum associates to each state ® a value Z(®) equal to the
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sum of the values taken by the two variables X,Y. Let’s suppose that the
two variables X(w), Y(®) have a joint density p(x,y) and marginal densi-
ties px(x) and py(x), respectively. Let’s call H the cumulative distribu-
tion of the variable Z. The following relationship holds

H(u) = P[Z(0)<ul = [[p(x, y)dxdy
A

A={y<—x+u}

In other words, the probability that the sum X + Y be less than or equal
to a real number u is given by the integral of the joint probability distri-
bution function in the region A. The region A can be described as the
region of the x,y plane below the straight line y = —x + u.

If we assume that the two variables are independent, then the distri-
bution of the sum admits a simple representation. In fact, under the
assumption of independence, the joint density is the product of the mar-
ginal densities: p(x,y) = px(x)py(x). Therefore, we can write

oo

u-y
H(u) = PIZ(@)Su] = [[p(x.y)dxdy = | { px(x)dx}pyw)dy
A

—o0 —oo

We can now use a property of integrals called the Leibnitz rule,
which allows one to write the following relationship:

dH _ - _ 4
— = pz(w) _'[OPX(M Yo y(y)dy

Recall from Chapter 4 that the above formula is a convolution of
the two marginal distributions. This formula can be reiterated for any
number of summands: the density of the sum of # random variables is
the convolution of their densities.

Computing directly the convolution of a number of functions might
be very difficult or impossible. However, if we take the Fourier transforms
of the densities, Py(s), Px(s), Py(s) computations are substantially simpli-
fied as the transform of the convolution is the product of the transforms:

pz(n) = [ px(u=1)py(y)dy = Py(s) = Px(s)x Py(s)

—oo
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This relationship can be extended to any number of variables.

In probability theory, given a random variable X, the following
expectation is called the characteristic function (c.f.) of the variable X
©x(t) = E[¢"*] = E[costX] +iE[sintX]

If the variable X admits a d.f. Fx(y), it can be demonstrated that the
following relationship holds:

=3 oo =

ox(t) = E[e"™] = [ dFy(x) = [ costx dFy(x)+ [ sintx dFy(x)
X X X

—oo —oo —oo

In this case, the characteristic function therefore coincides with the Fou-
rier-Stieltjes transform. It can be demonstrated that there is a one-to-one
correspondence between c.d.s and d.f.s. In fact, it is well known that the
Fourier-Stieltjes transform can be uniquely inverted.

In probability theory convolution is defined, in a more general way,
as follows. Given two d.f.s Fx(y) and Fy(y), their convolution is defined
as:

F* () = (Fx*Fy)(n) = [ Fx(ue=y)dFy(y)

—oo

It can be demonstrated that the d.f. of the sum of two variables X,Y
with d.f.s Fx(y) and Fy(y) is the convolution of their respective d.f.s:

P(X+Y<u) = Fy,y(u) = F*(u) = (Fx*Fy)(u) = JFX(u—y)dFy(y)

—oo

If the d.f.s admits p.d.f.s, then the inversion formulas are those estab-
lished earlier. Inversion formulas also exist in the case that the d.f.s do
not admit densities but these are more complex and will not be given
here.?

We can therefore establish the following property: the characteristic
function of the sum of # independent random variables is the product of
the characteristic functions of each of the summands.

13 See Chow and Teicher, Probability Theory.
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GAUSSIAN VARIABLES

Gaussian random variables are extremely important in probability the-
ory and statistics. Their importance stems from the fact that any phe-
nomenon made up of a large number of independent or weakly
dependent variables has a Gaussian distribution. Gaussian distributions
are also known as normal distributions. The name Gaussian derives
from the German mathematician Gauss who introduced them.

Let’s start with univariate variables. A normal variable is a variable
whose probability distribution function has the following form:

2 1 (x-w°
flx|u, %) = ——exp] -
o.2m 267

The univariate normal distribution is a distribution characterized by
only two parameters, (11,067), which represent, respectively, the mean and
the variance of the distribution. We write X ~ N(u,6%) to indicate that
the variable X has a normal distribution with parameters (u,0%). We
define the standard normal distribution as the normal distribution with
zero mean and unit variance. It can be demonstrated by direct calcula-
tion that if X ~ N(u,0?) then the variable

7 = X1

o

is standard normal. The variable Z is called the score or Z-score. The
cumulative distribution of a normal variable is generally indicated as

F(x) = @ X%
(o}

where ®(x) is the cumulative distribution of the standard normal.

It can be demonstrated that the sum of 7 independent normal distribu-
tions is another normal distribution whose expected value is the sum of
the expected values of the summands and whose variance is the sum of the
variances of the summands.

The normal distribution has a typical bell-shaped graph symmetrical
around the mean. Exhibit 6.1 shows the graph of a normal distribution.
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EXHIBIT 6.1 Graph of a Normal Variable with Zero Mean and ¢ = 100
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Multivariate normal distributions are characterized by the same
exponential functional form. However, a multivariate normal distribu-
tion in 7 variables is identified by 7 means, one for each axis, and by a
nxn symmetrical variance-covariance matrix. For instance, a bivariate
normal distribution is characterized by two expected values, two vari-
ances and one covariance. We can write the general expression of a
bivariate normal distribution as follows:

exp{— 1Q}
27
26 Cya 1 - p2

0=t { x—uxz_zp x—bx | y=hy] (Y-hy 2}

1-p> L ox Ox Oy Gy

fx,y) =

where p is the correlation coefficient.
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This expression generalizes to the case of #n random variables. Using
matrix notation, the joint normal probability distributions of the random
n vector V = {X;}, i = 1,2,...,n has the following expression:

V = {X;} ~N,( Z)
where
W = E[X)]

and X is the variance-covariance matrix of the {X;}

2= E[(V-m)(V-p']

npel 172 Te-1
f(v) = [2n) 2] exp[(-"2)(v-p) T (v-p)]
where || = detX, the determinant of X.

For n = 2 we find the previous expression for bivariate normal, tak-
ing into account that variances and correlation coefficients have the fol-
lowing relationship

Ojj = P;j9;9;
It can be demonstrated that a linear combination
n
i=1
of n jointly normal random variables X, ~ N(u;, GZ-Z) with cov(X;,X;) =

o;; is a normal random variable W~ N(lyy, 6) where

Wy = Z%‘Hi
i=1

n n
G%V = 2 2 0,005
i=1j=1
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THE REGRESSION FUNCTION

Given a probability space (Q,3,P), consider a set of p + 1 random variables.
Let’s suppose that the random vector {X Z; ... Z,} ={X Z}, Z = {Z; ... Z,}
has the joint multivariate probability density function:

f(le...zp) = f(x,2),z = {z1...2,}
Let’s consider the conditional density
f(x‘zla (AR zp) = f(x,‘Z)

and the marginal density of Z,
f,(z) = J. f(x,z)dx

Recall from an earlier section that the joint multivariate density f(x,z)
factorizes as

f(x,2) = f(x 2)f,(2)

Let’s consider now the conditional expectation of the variable X given Z
=z = {21 ... 3}

g(z) = E[XZ=12] = juf(y z)dv

—oo

The function g, that is, the function which gives the conditional expec-
tation of X given the variables Z, is called the regression function. Oth-
erwise stated, the regression function is a real function of real variables
which is the locus of the expectation of the random variable X given
that the variables Z assume the values z.

Linear Regression

In general, the regression function depends on the joint distribution of
[X Zy ... Z,]. In financial econometrics it is important to determine
what joint distributions produce a linear regression function. It can be
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demonstrated that joint normal distributions produce a linear regression
function. Consider the joint normal distribution

fv) = [2n)" (2] Zexp —%(v—u)Tz‘%v—u)

where parameters are those defined in an earlier section in this chapter.
Let’s partition the parameters as follows:

Uzmaw Mrl = | Oxx On
u, c >

X,z z

where [, I, are respectively a scalar and a p-vector of expected values,
Ox.x» Oxz> Oz and X, are respectively a scalar, p-vectors and a pxp
matrix of variances and covariances and 6, , = o, O, . = O .ltcan
be demonstrated that the variable (X|Z = z) is normally distributed with

the following parameters:
| , -1
(X|Z=12)~ Nlu, - (%, Gz,x) (M, —2), Ox,x ~ Oy, 22 Gz,x+]

From the above expression we can conclude that the conditional
expectation is linear in the conditioning variables. Let’s call

o = px—(Eglcz,x)‘uz and B = Z;lc

z, X
We can therefore write
g(z) = E[X|Z=12] = o+ Pz

If the matrix X is diagonal, the random variables (X,Z;,...,Z,) are
independent, such that 6, , = 0 and B = Z;lcz’x = 0 and therefore the
regression function is a constant that does not depend on the condition-
ing variables. If the matrix %, is diagonal but o, ,, 6, , do not vanish,

then the linear regression takes the following form

b Gx,z- 4 Gx,z-
g(z) = E[X|Z=2] = p .- Y - U, + Z—Z’zi

i=1 Gzi i=1 Gzi
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In particular, a bivariate normal distribution factorizes in a linear
regression as follows:

2
° 2 (O )
(X|Z = 2)~ N| = =21, =), 0 - =
GZ Gz
o c
g(2) = EIX Z=2] = - =+ =%
Y o

z z

SUMMARY

B Probability is a set function defined over a class of events where events
are sets of possible outcomes of an experiment. A probability space is a
triple formed by a set of outcomes, a G-algebra of events, and a proba-
bility measure.

B A random variable is a real-valued function defined over the set of out-
comes such that the inverse image of any interval is an event. 7-dimen-
sional random vectors are functions from the set of outcomes into the
n-dimensional Euclidean space with the property that the inverse image
of n-dimensional generalized rectangles is an event.

B Stochastic processes are time-dependent random variables.

B An information structure is a collection of partitions of events associ-
ated to each instant of time that become progressively finer with the
evolution of time. A filtration is an increasing collection of G-algebras
associated to each instant of time.

B The states of the economy, intended as full histories of the economy,
are represented as a probability space. The revelation of information
with time is represented by information structures or filtrations. Prices
and other financial quantities are represented by adapted stochastic
processes.

B By conditioning is meant the change in probabilities due to the acqui-
sition of some information. It is possible to condition with respect to
an event if the event has nonzero probability. In general terms, condi-
tioning means conditioning with respect to a filtration or an informa-
tion structure.

B A martingale is a stochastic process such that the conditional expected
value is always equal to its present value. It embodies the idea of a fair
game where today’s wealth is the best forecast of future wealth.
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The variance of a random variable measures the average size of its fluc-
tuations around the mean.

The correlation coefficient between two variables is a number that
measures how the two variables move together. It is zero for inde-
pendent variables, plus/minus one for linearly dependent determin-
istic variables.

An infinite sequence of random variables might converge to a limit ran-
dom variable. Different types of convergence can be defined: pointwise
convergence, convergence in probability, or convergence in distribu-
tion.

Random variables can be added to produce another random variable.
The characteristic function of the sum of two random variables is the
product of the characteristic functions of each random variable.

Given a multivariate distribution, the regression function of one ran-
dom variable with respect to the others is the conditional expectation
of that random variable given the values of the others.

B Joint normal distributions admits a linear regression function.



Optimization

he concept of optimization is intrinsic to finance theory. The seminal

work of Harry Markowitz demonstrated that financial decision-mak-
ing is essentially a question of an optimal trade-off between risk and
returns. While Markowitz was developing his theory of investment in
the 1950s, as we will see in Chapter 16, Georg Dantzig, the father of
linear programming, was laying down the foundations of the modern
computerized approach to optimization.!

Purely mathematical solutions to optimization problems were proposed
early in the history of calculus. In the eighteenth century, the French mathe-
matician Lagrange introduced a general methodology for finding the
maxima or minima of a multivariate function subject to constraints; the
Swiss-born mathematician Euler? introduced the mathematics of the calculus
of variations.> Nevertheless, no matter how important from the concep-
tual point of view, optimization had limited practical applications in
engineering, business, and financial planning until the recent develop-
ment of high-performance computing.

In modern terminology, an optimization problem is called a mathe-
matical programming problem. From an analytical perspective, a static
mathematical program attempts to identify the maxima or minima of a
function f(xq,...,x,,) of n real-valued variables, called the objective func-
tion, in a domain identified by a set of constraints. The latter might take
the general form of inequalities g;(x1,...,x,) = b;. Linear programming is
the specialization of mathematical programming to instances where

! Dantzig and Markowitz worked together at the Rand Corporation in the 1950s.

2 Euler was born in Basel, Switzerland, but spent a large part of his long career in
Russia.

3 The calculus of variations played a fundamental role in the development of modern
science.
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both f and the constraints are linear. Quadratic programming is the spe-
cialization of mathematical programming to instances where f is a qua-
dratic function. The Markowitz mean-variance approach leads to a
quadratic programming problem.

A different, and more difficult, problem is the optimization of a
dynamic process. In this case, the objective function depends on the entire
realization of a process, which is often not deterministic but stochastic.
Decisions might be taken at intermediate steps on the basis of information
revealed up to that point. This is the concept of recourse, that is, revision of
past decisions. This area of optimization is called stochastic programming.

From an application perspective, mathematical programming is an
optimization tool that allows the rationalization of many business or
technological decisions. The computational tractability of the resulting
analytical models is a key issue in mathematical programming. The sim-
plex algorithm, developed in 1947 by George Dantzig, was one of the
first tractable mathematical programming algorithms to be developed
for linear programming. Its subsequent successful implementation con-
tributed to the acceptance of optimization as a scientific approach to
decision-making and initiated the field known as operations research.

Optimization is a highly technical subject, which we will not fully
develop in this chapter. Instead, our objective is to give the reader a gen-
eral understanding of the technology. We begin with an explanation of
maxima or minima of a multivariate function subject to constraints. We
then discuss the basic tools for static optimization: linear programming
and quadratic programming. After introducing the idea of optimizing a
process and defining the concepts of the calculus of variations and con-
trol theory, we briefly cover the techniques of stochastic programming.*

MAXIMA AND MINIMA

Consider a multivariate function f{x1,...,x,,) of 7 real-valued variables. Sup-
pose that f is twice differentiable. Define the gradient of f, gradf, also written
V7, as the vector whose components are the first order partial derivatives of f

grad[f(xq,...,x,)] = Vf = ﬁ—, ,ﬂ—
x4 0x

n

4 For a good introduction to stochastic programming, see, among others, J.R. Birge
and F. Louveaux, Introduction to Stochastic Programming (Heidelberg: Springer,
1997) and Peter Kall and Stein W. Wallace, Stochastic Programming (Chichester,
West Sussex: Wiley, 19935).
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Given a multivariate function f(xq,...,x,), consider the matrix
formed by the second order partial derivatives. This matrix is called the
Hessian matrix and its determinant, denoted by H, is called the Hessian
determinant (see Chapter 5 for definition of matrix and determinants):

x> 0x,0x,,
H =

P ... P

0x,0x,, axi

A point (ay,...,a,,) is called a relative local maxima or a relative local
minima of the function f if the relationship

flay+bhy, ..ox,+b,)<flay,...,a,), b <d>0

or, respectively,

flay+bhy, ..ox,+b,)2f(ay,...,a,), b <d>0

holds for any real positive number d > 0.

A necessary, but not sufficient, condition for a point (x,...,x,) to be
a relative maximum or minimum is that all first order partial derivatives
evaluated at that point vanish, that is, that the following relationship
holds:
i ij = (0,...,0)

axl'"axn

grad[f(xq, ..., x,)] = [

A point where the gradient vanishes is called a critical point.
A critical point can be a maximum, a minimum or a saddle point.
For functions of one variable, the following sufficient conditions hold:

W If the first derivative evaluated at a point a vanishes and the second
derivative evaluated at a is positive, then the point a is a (relative) min-
imum.
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B If the first derivative evaluated at a point a vanishes and the second
derivative evaluated at a is negative, then the point a is a (relative)
maximum.

B If the first derivative evaluated at a point a vanishes and the second
derivative evaluated at a also vanishes, then the point a is a saddle point.

In the case of a function f(x,y) of two variables x,y, the following
conditions hold:

W If V£ = 0 at a given point a and if the Hessian determinant evaluated at
a is positive, then the function f has a relative maximum in a if f,,, < 0
or f,, < 0 and a relative minimum if f,., > 0 or f;,, > 0. Note that if the
Hessian is positive the two second derivatives f,, and f,, must have the
same sign.

W If V£ = 0 at a given point a and if the Hessian determinant evaluated at
a is negative, then the function f has a saddle point in 4.

W If V£ = 0 at a given point a and if the Hessian determinant evaluated at
a vanishes, then the point @ is degenerate and no conclusion can be
drawn in this case.

The above conditions can be expressed in a more compact way if we
consider the eigenvalues (see Chapter 5) of the Hessian matrix. If both
eigenvalues are positive at a critical point a, the function has a local
minimum at a; if both are negative the function has a local maximum; if
they have opposite signs, the function has a saddle point; and if at least
one of them is 0, the critical point is degenerate. Recall that the product
of the eigenvalues is equal to the Hessian determinant.

This analysis can be carried over in the three-dimensional case. In this
case there will be three eigenvalues, all of which are positive at a local
minimum and negative at a local maximum. A critical point of a function
of three variables is degenerate if at least one of the eigenvalues of the
Hessian determinant is 0 and has a saddle point if at least one eigenvalue
is positive, at least one is negative, and none is 0.

In higher dimensions, the situation is more complex and goes beyond
the scope of our introduction to optimization.

LAGRANGE MULTIPLIERS

Consider a multivariate function f(x1,...,x,) of n real-valued variables.
In the previous section we saw that, if the 7 variables are unconstrained,
a local optimum of f can be found by solving the 7 equations:
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vf - (_ai, if.j 0,0
0x ox

n

Let’s now discuss how to find maxima and minima when the optimi-
zation problem has equality constraints. Suppose that the » variables
(x1,---,X,,) are not independent, but satisfy 7 < n constraint equations

g1(X15eeesx,) =0

(X 15ee0xy) = 0

These equations define, in general, an (n-m)-dimensional surface.
For instance, in the case of two variables, a constraint g{(x,y) = 0
defines a line. In the case of three variables, one constraint g¢(x,y,z) = 0
defines a two-dimensional surface while two constraints gq(x,y,z) = 0,
22(x,,2) = 0 define a line in the three-dimensional space, and so on.

Our objective is to find the maxima or minima of the function f for
the set of points that also satisfy the constraints. It can be demonstrated
that, under this restriction, the gradient Vf of f need not vanish at the
maxima or minima, but need only be orthogonal to the (7-72)-dimen-
sional surface described by the constraint equations. That is, the follow-
ing relationships must hold

Vf = ).TVg, for some A = (Aq, ..., A,,)

or, in the usual notation
m

de.
IR S W R T
dax; [y 0x;

The coefficients (Aq,...,A,,) are called Lagrange multipliers.
If we define the function

m
F(xqy oo Xy Myy oos Nyy) = [, 00, x,) — Z Ag;
j=1
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the above equations together may be written as
VF=0

or

In other words, the method of Lagrange multipliers transforms a con-
strained optimization problem into an unconstrained optimization
problem. The method consists in replacing the original objective func-
tion f to be optimized subject to the constraints g with another objective
function

to be optimized without constraints in the variables (xq,...;%;;,A15--0sA)-
The Lagrange multipliers are not only a mathematical device. In many
applications they have a useful physical or economic interpretation.

NUMERICAL ALGORITHMS

The method of Lagrange multiplers works with equality constraints,
that is, when the solution is constrained to stay on the surface defined
by the constraints. Optimization problems become more difficult if ine-
quality constraints are allowed. This means that the admissible solu-
tions must stay within the boundary defined by the constraints. In this
case, approximate numerical methods are often needed. Numerical
algorithms or “solvers” to many standard optimization problems are
available in many computer packages.

Linear Programming
The general form for a linear programming (LP) problem is as follows.
Minimize a linear objective function

f(xq, o Xx,) = X1+ .. +CX

n-n

or, in vector notation,



Optimization 207

T
F(Xq, s X)) = € Xy €= (Cpy ey )y X = (Xq0eerXyy)

subject to the constraints

<
ai’ 1x1 + ... +al’ nxn = bl’ l = 1,2,...,m
>
or, in matrix notation
<
AX = b
>

with additional sign restrictions such as x; < 0, x; 2 0, or x; unrestricted
in sign.

The largest or smallest value of the objective function is called the
optimal value, and a vector [x ... x,,] that gives the optimal value con-
stitutes an optimal solution. The variables x1,...,x,, are called the deci-
sion variables. The feasible region determined by a collection of linear
inequalities is the collection of points that satisfy all of the inequalities.
The optimal solution belongs to the feasible region.

The above formulation has the general structure of a mathematical
programming problem as outlined in the introduction to the chapter,
but is characterized, in addition, by the fact that the objective function
and the constraints are linear.

LP problems can be transformed into standard form. An LP is said
to be in standard form if (1) all constraints are equality constraints and
(2) all the variables have a nonnegativity sign restriction. An LP prob-
lem in standard form can therefore be written as follows

min ¢’x

b}
where A is an m X n matrix and b is an m-vector.

Every LP can be brought into standard form through the following
transformations:

subject to constraints

ol
(VRS
S
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1. An inequality constraint

IN

al’lxl + ve +al’nxn

[\l

can be converted into an equality constraint through the introduction
of a slack variable, denoted by S, or an excess variable, denoted by E,
such that

or

2. A variable with negative sign restriction x; < 0 can be substituted by
x; = —x;, x;/ 20 while an unrestricted variable can be substituted by
x; =x;/-x",x/,x2,”20.

There are two major techniques for solving an LP problem: the sim-
plex method and the interior-point method. The simplex method was
discovered by Dantzig in the 1940s. Although the number of iterations
may be exponential in the number of unknowns, the simplex method
proved very useful and was unrivaled until the late 1980s. The exponen-
tial computational complexity of the simplex method led to a search for
algorithms with better computational complexity features, in particular
polynomial complexity. Khachiyan’s ellipsoid method—the first polyno-
mial-time algorithm—appeared in the 1970s. Most interior-point meth-
ods also have polynomial complexity. We will briefly describe both the
simplex and the interior-point methods.

The Simplex Algorithm

Linear constraints identify a region called a simplex. The simplex
method searches for optima on the vertices of the simplex. Recall from
Chapter 5 on matrix algebra that the system Ax = b admits solutions if
and only if rank [Ab] = rank A. We can assume without loss of general-
ity that rank A = m, otherwise we drop redundant equations. The feasi-
ble set is the set B of points that satisfy the constraints

B ={x: Ax =b, x >0}
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A feasible basic solution is a solution X =(x,...x,) € B with the following
additional properties. For each solution x consider the set I of indices such
that the respective variables are strictly positive: I(x) = (i: x; > 0), with x €
B. A feasible basic solution x is a feasible solution such that the set
{A;:ie I(x)} of columns of the matrix A are linearly independent. There-
fore, the components x;, i € I(x) are the unique solutions of the system

2 Aix; = b;

ie I(x)

In fact, it is possible to demonstrate the following two important
results:

B If an LP has a bounded optimal solution, then there exists an extreme
point, that is, a minimum or maximum, of the feasible (on one of the
vertices) region, which is optimal.

B Extreme points of the feasible region of an LP correspond to basic fea-
sible solutions of the standard form representation of the problem.

The first result implies that in order to obtain an optimal solution of
an LP, we can constrain our search on the set of the extreme points of its
feasible region. The second result implies that each of these points is
determined by selecting a set of basic variables, with cardinality equal to
the number of the constraints of the LP and the additional requirement
that the (uniquely determined) values of these variables are nonnegative.

This further implies that the set of extreme points for an LP with 7 con-
straints and N variables in its standard form representation can have only a
finite number of extreme points. A naive approach to the problem would be
to enumerate the entire set of extreme points and select one which minimizes
the objective function over this set. However, for reasonably sized LP prob-
lems, the set of extreme points, even though finite, can become extremely
large. Hence a more systematic approach to organize the search is needed.
The simplex algorithm provides such a systematic approach.

The algorithm starts with an initial basic feasible solution and tests its
optimality. If an optimality condition is verified, then the algorithm termi-
nates. Otherwise, the algorithm identifies an adjacent feasible solution
with a better objective value. The optimality of this new solution is tested
again and the entire scheme is repeated until an optimal solution is found.
The algorithm will terminate in a finite number of steps except in special
pathological cases. In other words, the simplex algorithm starts from
some initial extreme point and follows a path along the edges of the feasi-
ble region towards an optimal extreme point, such that all the intermedi-
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ate extreme points visited improve the objective function. Many standard
optimization software packages contain the simplex algorithm. However,
the simplex method exhibits exponential complexity. This means that the
number of steps required for finding a solution grows exponentially with
the number of unknowns.

Interior-Point Methods
The exponential complexity of the simplex method was behind the search
for more computationally efficient methods. The 1980s saw the introduc-
tion of the first fast algorithms that generate iterates lying in the interior
of the feasible set rather than on the boundary, as simplex methods do.
The primal-dual class of interior-points algorithms is today considered
the state-of-the-art technique for the practical solution of LP problems.
Furthermore, this class of methods are also very amenable to theoretical
analysis, and has opened up a new area of research within optimization.
We will limit our brief discussion to this class of interior-point algorithms.
Let’s begin by formulating the concept of duality. Every problem of
the type

maximize ¢{xq + ... + ¢,X

nen

subject to

Aj1X1 + e+ A%, 2 by i = 1,2,m

has a dual problem

minimize by + ... + by,

subject to

V11, + wee + Ymlm,i S Gy 1= 1,2,..m
y;20,7=12,..m

The original problem is called the primal problem. The primal-dual gap
is the difference, if it exists, between the largest primal value and the small-
est dual value. The Strong Duality Theorem states that, if the primal prob-
lem has an optimal solution x* = (x1,...,x,,), the dual also has an optimal
solution y* = (y1,...,y,,,) and there is no primal-dual gap in the sense that
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dcixi = Dby,
; i

Interior-point algorithms generate iterates such that the duality gap is
driven to zero, yielding a limiting point that solves the primal and dual
linear programs. Commercial software packages that contain primal-
dual interior-point solvers are available.

Quadratic Programming

The general quadratic programming (QP) problem is a mathematical
programming problem where the objective function is quadratic and
constraints are linear as follows:

o 1.7
minimize f(xy,...,x,) = ¢ Xx+-x Dx

where ¢ = (cq,.--,¢,,)s X = (X71,-..,X,,) are n-vectors and D is a nxn matrix,
subject to

ax<b,iel
ax=b,ie E
x>0

where b is an m-vector b = (by,...,b,,), A = [a;] is an mxn matrix, and [
and E specify the nonequality and equality constraints respectively.

The major classification criteria for these problems come from the
characteristics of the matrix D as follow:

B If the matrix D is positive semidefinite or positive definite, then the QP
problem is a convex quadratic problem. For convex quadratic prob-
lems, every local maximum is a global maximum. Algorithms exist for
solving this problem in polynomial time.* The Markowitz mean-vari-
ance optimization problem is of this type.

B If the matrix D is negative semidefinite, that is, its eigenvalues are all
nonpositive, then the QP problem is a concave quadratic problem. All
solutions lie at some vertex of the feasible regions. There are efficient
algorithms for solving this problem.

5 A problem is said to be solvable in polynomial time if the time needed to solve the
problem scales with the number of variables as a polynomial.
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B If the matrix D is such that the problem is bilinear, that is, the variables
x can be split into two subvectors such that the problem is linear when
one of the two subvectors is fixed, then the QP problem is bilinear.
There are efficient algorithms for solving this problem.

B If the matrix D is indefinite, that is, it has both positive and negative
eigenvalues, then the QP problem is very difficult to solve. Depending
on the matrix D, the complexity of the problem might grow exponen-
tially with the number of variables.

Many modern software optimization packages have solvers for several
of these problems.

CALCULUS OF VARIATIONS AND OPTIMAL CONTROL THEORY

We have thus far discussed the problem of finding the maxima or min-
ima of a function of # real variables. The solution to these problems is
typically one point in a domain. This formulation is sufficient for prob-
lems such as finding the optimal composition of a portfolio for a single
period of a finite horizon: An investment is made at the initial time and
a payoff is received at the end of the period. However, many other
important optimization problems in finance require finding an optimal
function or path throughout time and over multiple periods. The mathe-
matical foundation for problems whose solution requires finding an
optimal function or path of this kind is the calculus of variations. The
basic setting of the calculus of variations is the following. An infinite set
of admissible functions y = f(x), xy < x < x; is given. The end points
might vary from curve to curve. Let’s assume all curves are differentia-
ble in the given interval [x(,x1]. A function of three variables F(x,y,z) is
given such that the integral

X1

Jy = [Fx.y,y)dx

X0

is well defined where y” = dy/dx. The value of | depends on the curve y. The
basic problem of the calculus of variations is to find the curve y = f(x) that
minimizes J. This problem could be easily reformulated in many variables.
One strategy for solving this problem is the following. Any solution
y = f(x) has the property that, if we slightly displace the curve y, the
integral assumes higher values. Therefore if we parameterize parallel
displacements with a variable € (denoting by {y,} the collection of all
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such displacements from the optimal y such that yg‘ = vy ), the deriv-
ative of | with respect to € must vanish fore = 0. '~ 0

If we compute this derivative, we arrive at the following differential
equation that must be satisfied by the optimal solution y

IF(x,3,9")  dIF(x,3.y) _
dy dx 9y’

First established by Leonard Euler in 1744, this differential equation is
known as the Euler equation or the Euler-Lagrange equation.®

Though fundamental in the physical sciences, this formulation of
variational principles, is rarely encountered in finance theory. In finance
theory, as in engineering, one is primarily interested in controlling the
evolution of a process. For instance, in investment management, one is
interested in controlling the composition of a portfolio in order to attain
some objective. This is the realm of control theory. Let’s now define con-
trol theory in a deterministic setting. The following section will discuss
stochastic programming—a computational implementation of control
theory in a stochastic setting.

Consider a dynamic process which starts at a given initial time ¢, and
ends at a given terminal time #;. Let’s suppose that the state of the system is
described by only one variable x(z) called the state variable. The state of the
system is influenced by a set of control variables that we represent as a vec-
tor u(t) = [#4(t),...,4,,(t)]. The control vector must lie inside a given subset of
a Euclidean r-dimensional space, U which is assumed to be closed and time-
invariant. An entire path of the control vector is called a control. A control
is admissible if it stays in U and satisfies some regularity conditions.

The dynamics of the state variables are specified through the differ-
ential equation

9% _ £, ()]
dt
where f; is assumed to be continuously differentiable with respect to
both arguments. Suppose that the initial state is given but the terminal
state is unrestricted.

The problem to be solved is that of maximizing the objective func-
tional:

® Lagrange himself attributed the equation to Euler.
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21
]y = ij[t, x(t), u(t)lde + S[tq, x(t1)]

%o

A functional is a mapping from a set of functions into the set of real
numbers; it associates a number to each function. The definite integral is
an example of a functional.

To solve the above optimal control problem, a useful strategy is to find
a set of differential equations that must be satisfied by the control. Two
major approaches for solving this problem are available: Bellman’s
Dynamic Programming’ and Pontryagin’s Maximum Principle.® The
former approach is based on the fact that the value of the state variable at
time ¢ captures all the necessary information for the decision-making from
time ¢ and onward: The paths of the control vector and the state variable
up to time ¢ do not make any difference as long as the state variable at time
t is the same. Bellmann showed how to derive from this observation a par-
tial differential equation that uniquely determines the control. Pontryagin’s
Maximum Principle introduces additional auxiliary variables and derives
differential equations via the calculus of variations that might be simpler to
solve than those of Bellmann’s dynamic programming.

STOCHASTIC PROGRAMMING

The model formulations discussed thus far assume that the data for the
given problem are known precisely. However, in financial economics, data
are stochastic and cannot be known with certainty. Stochastic program-
ming can be used to make optimal decisions under uncertainty. The fun-
damental idea behind stochastic programming is the concept of stages
and recourse. Recourse is the ability to take corrective action at a future
time, that is, a decision stage, after a random event has taken place.

To formulate problems of dynamic decision-making under uncer-
tainty as a stochastic program, we must first characterize the uncertainty
in the model. The most common method is to formulate scenarios and to
assign to each scenario a probability. A scenario is a complete path of
data. To illustrate the problem of stochastic programming, let’s consider

7 R. Bellman, Dynamic Programming (Princeton, NJ: Princeton University Press,
1957).

8 For a discussion of Pontryagin’s Maximum Principle see, for instance: E.B. Lee, and
L. Marcus, Foundations of Optimal Control Theory (New York: John Wiley &
Sons, 1967).
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a two-stage program that seeks to minimize the cost of the first-period
decision plus the expected cost of the second-period recourse decision. In
Chapter 21 we provide an example related to bond portfolio manage-
ment.

To cast the stochastic programming problem in the framework of LP,
we need to create a deterministic equivalent of the stochastic problem.
This is obtained introducing a new set of variables at each stage and tak-
ing expectations. The first-period direct cost is ¢'x while the recourse
cost at the second stage is dl-Tyi where 7 = 1,...,S represents the different
states. The first-period constraints are represented as Ax = b. At each
stage, recourse is subject to some recourse function Tx + Wy = h. This
constraint can be, for example, self-financing conditions in portfolio
management. It should be noted that in stochastic programs the first-
period decision is independent of which second-period scenario actually
occurs. This is called the nonanticipativity property.

A two-stage problem can be formulated as follows

S
minimize ¢ x + 2 pl-diTyi
i=1
subject to

Ax=b
Tx+Wy;=h;, i=1,.,8
x20
yi20

where S is the number of states and p; is the probability of each state
such that

Notice that the nonanticipativity constraint is met. There is only one
first-period decision whereas there are S second-period decisions, one
for each scenario. In this formulation, the stochastic programming
problem has been reduced to an LP problem. This formulation can be
extended to any number of intermediate stages.
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SUMMARY

B Optimizing means finding the maxima or minima of a function or of a
functional.

B Optimization is a fundamental principle of financial decision-making
insofar as financial decisions are an optimal trade-off between risk and
return.

B The partial derivatives of an unconstrained function vanish at maxima
and minima.

B The maxima and minima of a function subject to equality constraints
can be found equating to zero the derivatives of the corresponding
Lagrangian function, which is the sum of the original function and of a
linear combination of the constraints.

W If constraints are linear inequalities, the problem can be solved numeri-
cally with the techniques of linear programming, quadratic program-
ming, or nonlinear mathematical programming.

B There are two major solution strategies for a linear programming prob-
lem: the simplex method and the interior points method.

B The simplex method searches for a solution by moving on the vertices
of the simplex, that is, the area identified by the constraint equations.

B The interior points method allows movement in the interior points of
the area identified by the constraint equations.

B Quadratic and, more in general, nonlinear optimization problems are
more difficult to solve and more computationally intensive.

B Functionals are functions defined on other functions.

B Calculus of variations deals with the problem of finding those func-
tions that optimize a functional.

H Control theory deals with the problem of optimizing a functional by
controlling some of the variables while other variables are subject to
exogenous dynamics.

B Bellmann’s Dynamic Programming and Pontryagin’s Maximum Princi-
ple are the key mathematical tools of control theory.

B Multistage stochastic programming is a set of numerical techniques for
finding the maxima and minima of a functional defined on a stochastic
process.

B Multistage stochastic optimization is based on formalizing the rules for
recourse, that is, how decisions are made at each stage and on describ-
ing possible scenarios.



Stochastic Integrals

n Chapter 4, we explained definite and indefinite integrals for deter-

ministic functions. Recall that integration is an operation performed
on single, deterministic functions; the end product is another single,
deterministic function. Integration defines a process of cumulation: The
integral of a function represents the area below the function. However,
the usefulness of deterministic functions in economics and finance the-
ory is limited. Given the amount of uncertainty, few laws in economics
and finance theory can be expressed through them. It is necessary to
adopt an ensemble view, where the path of economic variables must be
considered a realization of a stochastic process, not a deterministic
path. We must therefore move from deterministic integration to stochas-
tic integration. In doing so we have to define how to cumulate random
shocks in a continuous-time environment. These concepts require rigor-
ous definition. This chapter defines the concept and the properties of
stochastic integration. Based on the concept of stochastic integration,
Chapter 10 defines stochastic differential equations.

Two observations are in order:

B While ordinary integrals and derivatives operate on functions and
yield either individual numbers or other functions, stochastic integra-
tion operates on stochastic processes and yield either random vari-
ables or other stochastic processes. Therefore, while a definite
integral is a number and an indefinite integral is a function, a stochas-
tic integral is a random variable or a stochastic process. A differential
equation—when equipped with suitable initial or boundary condi-
tions—admits as a solution a single function while a stochastic differ-
ential equations admits as a solution a stochastic process.

217
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B Moving from a deterministic to a stochastic environment does not
necessarily require leaving the realm of standard calculus. In fact, all
the stochastic laws of economics and finance theory could be
expressed as laws that govern the distribution of transition probabili-
ties. We will see an example of this mathematical strategy when we
introduce the Fokker-Planck differential equations (Chapter 20). The
latter are deterministic partial differential equations that govern the
probability distributions of prices. Nevertheless it is often convenient
to represent uncertainty directly through stochastic integration and
stochastic differential equations. This approach is not limited to eco-
nomics and finance theory: it is also used in the domain of the physi-
cal sciences. In economics and finance theory, stochastic differential
equations have the advantage of being intuitive: thinking in terms of
a deterministic path plus an uncertain term is easier than thinking in
terms of abstract probability distributions. There are other reasons
why stochastic calculus is the methodology of choice in economics
and finance but easy intuition plays a key role.

For example, a risk-free bank account, which earns a deterministic
instantaneous interest rate f(t), evolves according to the deterministic law:

y = Aexp([f(t)dp)
which is the general solution of the differential equation:

dy _
y - f(t)dt

The solution of this differential equation tells us how the bank account
cumulates over time.

However if the rate is not deterministic but is subject to volatility—
that is, at any instant the rate is f(#) plus a random disturbance—then
the bank account evolves as a stochastic process. That is to say, the
bank account might follow any of an infinite number of different paths:
each path cumulates the rate f(¢) plus the random disturbance. In a sense
that will be made precise in this chapter and in Chapter 10 on stochastic
differential equations, we must solve the following equation:

ﬂ = f(t)dt plus random disturbance
y
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Here is where stochastic integration comes into play: It defines how the
stochastic rate process is transformed into the stochastic account pro-
cess. This is the direct stochastic integration approach.

It is possible to take a different approach. At any instant ¢, the
instantaneous interest rate and the cumulated bank account have two
probability distributions. We could use a partial differential equation to
describe how the probability distribution of the cumulated bank
account is linked to the interest rate probability distribution.

Similar reasoning applies to stock and derivative price processes. In
continuous-time finance, these processes are defined as stochastic pro-
cesses which are the solution of a stochastic differential equation.
Hence, the importance of stochastic integrals in continuous-time finance
theory should be clear.

Following some remarks on the informal intuition behind stochastic
integrals, this chapter proceeds to define Brownian motions and outlines
the formal mathematical process through which stochastic integrals are
defined. A number of properties of stochastic integrals are then estab-
lished. After introducing stochastic integrals informally, we go on to
define more rigorously the mathematical process for defining stochastic
integrals.

THE INTUITION BEHIND STOCHASTIC INTEGRALS

Let’s first contrast ordinary integration with stochastic integration. A
definite integral

b
A = jf(x)dx

is a number A associated to each function f(x) while an indefinite inte-
gral

y(x) = [f(s)ds

is a function y associated to another function f. The integral represents
the cumulation of the infinite terms f(s)ds over the integration interval.
A stochastic integral, that we will denote by
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b
W = [X,dB,
a
or
b
W = [X,dB,
a

is a random variable W associated to a stochastic process if the time
interval is fixed or, if the time interval is variable, is another stochastic
process W,. The stochastic integral represents the cumulation of the sto-
chastic products X;dB,. As we will see in Chapter 10, the rationale for
this approach is that we need to represent how random shocks feed back
into the evolution of a process. We can cumulate separately the deter-
ministic increments and the random shocks only for linear processes. In
nonlinear cases, as in the simple example of the bank account, random
shocks feed back into the process. For this reason we define stochastic
integrals as the cumulation of the product of a process X by the random
increments of a Brownian motion.

Consider a stochastic process X, over an interval [S,T]. Recall that a
stochastic process is a real variable X(), that depends on both time and
the state of the economy . For any given o, X(-), is a path of the process
from the origin S to time T. A stochastic process can be identified with
the set of its paths equipped with an appropriate probability measure. A
stochastic integral is an integral associated to each path; it is a random
variable that associates a real number, obtained as a limit of a sum, to
each path. If we fix the origin and let the interval vary, then the stochas-
tic integral is another stochastic process.

It would seem reasonable, prima facie, to define the stochastic inte-
gral of a process X (), as the definite integral in the sense of Rieman-
Stieltjes associated to each path X(:), of the process. If the process X(m),
has continuous paths X(-,m), the integrals

T
W(w) = J.X(s, w)ds
S

exist for each path. However, as discussed in the previous section, this is
not the quantity we want to represent. In fact, we want to represent the
cumulation of the stochastic products X,dB,. Defining the integral
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b
W = [X,dB,

a

pathwise in the sense of Rieman-Stieltjes would be meaningless because
the paths of a Brownian motion are not of finite variation. If we define
stochastic integrals simply as the limit of X,dB, sums, the stochastic
integral would be infinite (and therefore useless) for most processes.

However, Brownian motions have bounded quadratic variation.
Using this property, we can define stochastic integrals pathwise through
an approximation procedure. The approximation procedure to arrive at
such a definition is far more complicated than the definition of the Rie-
man-Stieltjes integrals. Two similar but not equivalent definitions of sto-
chastic integral have been proposed, the first by the Japanese
mathematician Kyosi Itd in the 1940s, the second by the Russian physi-
cist Ruslan Stratonovich in the 1960s. The definition of stochastic inte-
gral in the sense of Itd or of Stratonovich replaces the increments Ax;
with the increments AB; of a fundamental stochastic process called
Brownian motion. The increments AB; represent the “noise” of the pro-
cess.! The definition proceeds in the following three steps:

W Step 1. The first step consists in defining a fundamental stochastic pro-
cess—the Brownian motion. In intuitive terms, a Brownian motion
B,(®) is a continuous limit (in a sense that will be made precise in the
following sections) of a simple random walk. A simple random walk is
a discrete-time stochastic process defined as follows. A point can move
one step to the right or to the left. Movement takes place only at dis-
crete instants of time, say at time 1,2,3,.... At each discrete instant, the
point moves to the right or to the left with probability Y.

The random walk represents the cumulation of completely uncer-
tain random shocks. At each point in time, the movement of the point
is completely independent from its past movements. Hence, the
Brownian motion represents the cumulation of random shocks in the
limit of continuous time and of continuous states. It can be demon-
strated that a.s. each path of the Brownian motion is not of bounded
total variation but it has bounded quadratic variation.

!'The definition of stochastic integrals can be generalized by taking a generic square
integrable martingale instead of a Brownian motion. Itd defined stochastic integrals
with respect to a Brownian motion. In 1967 H. Kunita and S. Watanabe extended
the definition of stochastic integrals to square integrable martingales.
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Recall that the total variation of a function f(x) is the limit of the
sums

3 |f ) = fx; )|

while the quadratic variation is defined as the limit of the sums

3 [fex) — flx )|

Quadratic variation can be interpreted as the absolute volatility of a
process. Thanks to this property, the AB; of the Brownian motion
provides the basic increments of the stochastic integral, replacing the
Ax; of the Rieman-Stieltjes integral.

m Step 2. The second step consists in defining the stochastic integral for a
class of simple functions called elementary functions. Consider the time
interval [S,T] and any partition of the interval [S,T] in N subintervals:
S=ty<ty<..t;<..ty=T. An elementary function ¢ is a function
defined on the time # and the outcome ® such that it assumes a constant
value on the i-th subinterval. Call I[¢;,1,t;) the indicator function of the
interval [#;,1,t;). The indicator function of a given set is a function that
assumes value 1 on the points of the set and 0 elsewhere. We can then
write an elementary function ¢ as follows:

0t @) = Y e (0)I[t;,1,1,)

In other words, the constants €;(®) are random variables and the
function ¢(#,m) is a stochastic process made up of paths that are con-
stant on each i-th interval.

We can now define the stochastic integral, in the sense of 1td, of
elementary functions ¢(z,m) as follows:

T
W = [o(t, @)dB (@) = Y e(0)[B;, () - Biw)]
N i

where B is a Brownian motion.
It is clear from this definition that W is a random variable ® —
W(w). Note that the Ito integral thus defined for elementary functions
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cumulates the products of the elementary functions ¢(¢,0) and of the
increments of the Brownian motion B,(®).

It can be demonstrated that the following property, called Ito
isometry, holds for It stochastic integrals defined for bounded ele-
mentary functions as above:

T 2 T
EKJ(D(!‘, m)dBt(m)) } - E[jq)(t, m)zdt}
S S

The It6 isometry will play a fundamental role in Step 3.

W Step 3. The third step consists in using the Ito isometry to show that
each function g which is square-integrable (plus other conditions that
will be made precise in the next section) can be approximated by a
sequence of elementary functions 0,,(¢,0) in the sense that

T
E{J‘[g—q)n(t, m)]zdt} -0
S

If g is bounded and has a continuous time-path, the functions ¢,,(z,0)
can be defined as follows:

0,(t, @) = Y g(t;, O)I[t;, 1. 1;)

where I is the indicator function. We can now use the Itd isometry to
define the stochastic integral of a generic function f(#,®) as follows:

T T
jf(t, ®)dB,(®) = nli_r)an)n(t, ®)dB,(®)
S S

The It6 isometry insures that the Cauchy condition is satisfied
and that the above sequence thus converges.

In outlining the above definition, we omitted an important point
that will be dealt with in the next section: The definition of the stochas-
tic integral in the sense of Itd requires that the elementary functions be
without anticipation—that is, they depend only on the past history of
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the Brownian motion. In fact, in the case of continuous paths, we wrote
the approximating functions as follows:

0,(t, ®) = Y g(t;, ®)[B;, {(0) - B,(®)]

1

taking the function g in the left extreme of each subinterval.

However, the definition of stochastic integrals in the sense of Stra-
tonovich admits anticipation. In fact, the stochastic integral in the sense
of Stratonovich, written as follows:

T
[ft. @)°dB (o)
S

uses the following approximation under the assumption of continuous
paths:

0,(t, ®) = Y g(t], ®)[B;, 1(®) - By(0)]

1

where

iyt
i __2__

is the midpoint of the i-th subinterval.

Whose definition—Itd’s or Stratonovich’s—is preferable? Note that
neither can be said to be correct or incorrect. The choice of the one over
the other is a question of which one best represents the phenomena
under study. The lack of anticipation is one reason why the It6 integral
is generally preferred in finance theory.

We have just outlined the definition of stochastic integrals leaving
aside mathematical details and rigor. The following two sections will
make the above process mathematically rigorous and will discuss the
question of anticipation of information. While these sections are a bit
technical and might be skipped by those not interested in the mathemat-
ical details of stochastic calculus, they explain a number of concepts
that are key to the modern development of finance theory.
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BROWNIAN MOTION DEFINED

The previous section introduced Brownian motion informally as the
limit of a simple random walk when the step size goes to zero. This sec-
tion defines Brownian motion formally. The term “Brownian motion” is
due to the Scottish botanist Robert Brown who in 1828 observed that
pollen grains suspended in a liquid move irregularly. This irregular
motion was later explained by the random collision of the molecules of
the liquid with the pollen grains. It is therefore natural to represent
Brownian motion as a continuous-time stochastic process that is the
limit of a discrete random walk.

Let’s now formally define Brownian motion and demonstrate its
existence. Let’s first go back to the probabilistic representation of the
economy. Recall from Chapter 6 that the economy is represented as a
probability space (Q,3,P), where Q is the set of all possible economic
states, S is the event G-algebra, and P is a probability measure. Recall
that the economic states ® € Q are not instantaneous states but repre-
sent full histories of the economy for the time horizon considered,
which can be a finite or infinite interval of time. In other words, the eco-
nomic states are the possible realization outcomes of the economy.

Recall also that, in this probabilistic representation of the economy,
time-variable economic quantities—such as interest rates, security prices
or cash flows as well as aggregate quantities such as economic output—
are represented as stochastic processes X,(®). In particular, the price and
dividend of each stock are represented as two stochastic processes S,(®)
and d,(o).

Stochastic processes are time-dependent random variables defined
over the set Q. It is critical to define stochastic processes so that there is no
anticipation of information, i.e., at time ¢ no process depends on variables
that will be realized later. Anticipation of information is possible only
within a deterministic framework. However the space Q in itself does not
contain any coherent specification of time. If we associate random vari-
ables X,(®) to a time index without any additional restriction, we might
incur in the problem of anticipation of information. Consider, for instance,
an arbitrary family of time-indexed random variables X,(®) and suppose
that, for some instant ¢, the relationship X,(®) = X;,1(®) holds. In this case
there is clearly anticipation of information as the value of the variable
X;,1(w) at time #+1 is known at an earlier time z. All relationships that lead
to anticipation of information must be treated as deterministic.

The formal way to specify in full generality the evolution of time and
the propagation of information without anticipation is through the con-
cept of filtration. Recall from Chapter 6 that the concept of filtration is
based on identifying all events that are known at any given instant. It is
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assumed that it is possible to associate to each moment ¢ a c-algebra of
events 3, c 3 formed by all events that are known prior to or at time z. It
is assumed that events are never “forgotten,” i.e., that 3, c 3, if # < s.
An increasing sequence of c-algebras, each associated to the time at
which all its events are known, represents the propagation of informa-
tion. This sequence (called a filtration) is typically indicated as S,.

The economy is therefore represented as a probability space (Q,3,P)
equipped with a filtration {3,}. The key point is that every process X,(®)
that represents economic or financial quantities must be adapted to the
filtration {3}, that is, the random variable X,(®w) must be measurable
with respect to the c-algebras 3,. In simple terms, this means that each
event of the type X,(®) £ x belongs to 3, while each event of the type
X () <y for ¢t < s belongs to 3. For instance, consider a process P,(®)
which might represent the price of a stock. Any coherent representation
of the economy must ensure that events such as {®: P, (w) < ¢} are not
known at any time ¢ < s. The filtration {3,} prescribes all events admissi-
ble at time z.

Why do we have to use the complex concept of filtration? Why can’t
we simply identify information at time ¢ with the values of all the vari-
ables known at time # as opposed to identifying a set of events? The
principal reason is that in a continuous-time continuous-state environ-
ment any individual value has probability zero; we cannot condition on
single values as the standard definition of conditional probability would
become meaningless. In fact, in the standard definition of conditional
probability (see Chapter 6) the probability of the conditioning event
appears in the denominator and cannot be zero.

It is possible, however, to reverse this reasoning and construct a fil-
tration starting from a process. Suppose that a process X,(®) does not
admit any anticipation of information, for instance because the X,(®)
are all mutually independent. We can therefore construct a filtration 3,
as the strictly increasing sequence of 6-algebras generated by the process
X, (®). Any other process must be adapted to S,.

Let’s now go back to the definition of the Brownian motion. Sup-
pose that a probability space (Q,3,P) equipped with a filtration 3, is
given. A one-dimensional standard Brownian motion is a stochastic
process B,(®) with the following properties:

B B,(o) is defined over the probability space (Q,3,P).

B B,(o) is continuous for 0 < ¢ < .

| Bo((D) =0.

B B,(o) is adapted to the filtration S,.

B The increments B,(®) —B,(®) are independent and normally distributed
with variance (t-s) and zero mean.
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The above conditions” state that the standard Brownian motion is a
stochastic process that starts at zero, has continuous paths and normally
distributed increments whose variance grows linearly with time. Note
that in the last condition the increments are independent of the c-alge-
bra 3, and not of the previous values of the process. As noted above,
this is because any single realization of the process has probability zero
and it is therefore impossible to use the standard concept of conditional
probability: conditioning must be with respect to a c-algebra 3,. Once
this concept has been firmly established, one might speak loosely of
independence of the present values of a process from its previous values.
It should be clear, however, that what is meant is independence with
respect to a c-algebra S..

Note also that the filtration 3, is an integral part of the above defini-
tion of the Brownian motion. This does not mean that, given any proba-
bility space and any filtration, a standard Brownian motion with these
characteristics exists. For instance, the filtration generated by a discrete-
time continuous-state random walk is insufficient to support a Brown-
ian motion. The definition states only that we call a one-dimensional
standard Brownian motion a mathematical object (if it exists) made up
of a probability space, a filtration and a time dependent random vari-
able with the properties specified in the definition

However it can be demonstrated that Brownian motions exist by
constructing them. Several construction methodologies have been pro-
posed, including methodologies based on the Kolmogorov extension
theorem or on constructing the Brownian motion as the limit of a
sequence of discrete random walks. To prove the existence of the stan-
dard Brownian motion, we will use the Kolmogorov extension theorem.

The Kolmogorov theorem can be summarized as follows. Consider
the following family of probability measures

Mo, ... (Hx..xH,) = Pl(X, € H,...X, €H,)Hed"]

for all #q,...,t, € [0,), k € N and where the Hs are n-dimensional Borel
sets. Suppose that the following two consistency conditions are satisfied

2 The set of conditions defining a Brownian motion can be more parsimonious. If a
process has stationary, independent increments and continuous paths a.s. it must
have normally distributed increments. A process with stationary independent incre-
ments and with paths that are continuous to the right and limited to the left (the cad-
lag functions), is called a Levy process. In Chapter 13 we will generalize Brownian
motion to a-stable Levy processes that admit distributions with infinite variance and/
or infinite mean.
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u, (Hyx...xH,) = u,

(Hc_l(l) X ... X Hc“(m)

o1y = tom) vty

for all permutations 6 on {1,2,...,k}, and

oo (Hyx o x Hy x R"x .. x R")

M, (HiX o Hy) =

, et by s e
for all m. The Kolmogorov extension theorem states that, if the above
conditions are satisfied, then there is (1) a probability space (Q,3,P) and
(2) a stochastic process that admits the probability measures

W, ..o (Hx..xH,) = P[(X, € Hy,.... X, € H,), He ¥"]
as finite dimensional distributions.

The construction is lengthy and technical and we omit it here, but it
should be clear how, with an appropriate selection of finite-dimensional
distributions, the Kolmogorov extension theorem can be used to prove
the existence of Brownian motions. The finite-dimensional distributions
of a one-dimensional Brownian motion are distributions of the type

Ky, “-’tk(Hl X ... xHy)

= J‘ p(t, X, xl)p(tz—tl, xl, xZ)P(tk _tkfl’ xkil, xk)dxldxk
Hyx...xH,

where

D=

- 2
p(t,x,y) = (2nt) eXp(— ‘x_‘l)

2t

and with the convention that the integrals are taken with respect to the
Lebesgue measure. The distribution p(t,x,x1) in the integral is the initial
distribution. If the process starts at zero, p(¢,x,x1) is a Dirac delta, that
is, it is a distribution of mass 1 concentrated in one point.

It can be verified that these distributions satisfy the above consis-
tency conditions; the Kolmogorov extension theorem therefore ensures
that a stochastic process with the above finite dimensional distributions
exists. It can be demonstrated that this process has normally distributed
independent increments with variance that grows linearly with time. It
is therefore a one-dimensional Brownian motion. These definitions can
be easily extended to a n-dimensional Brownian motion.
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In the initial definition of a Brownian motion, we assumed that a fil-
tration 3, was given and that the Brownian motion was adapted to the
filtration. In the present construction, however, we reverse this process.
Given that the process we construct has normally distributed, station-
ary, independent increments, we can define the filtration 3, as the filtra-
tion SB generated by B,(®). The independence of the increments of the
Browman motion guarantee the absence of anticipation of 1nformat10n
Note that if we were given a filtration 3, larger than the filtration St ,
B,(®) would still be a Brownian motion w1th respect to 3.

As we will see in Chapter 10 when we cover stochastic differential
equations, there are two types of solutions of stochastic differential equa-
tions—strong and weak—depending on whether the filtration is given or
generated by the Brownian motion. The implications of these differences
for economics and finance will be discussed in the same section.

The above construction does not specify uniquely the Brownian
motion. In fact, there are infinite stochastic processes that start from the
same point and have the same finite dimensional distributions but have
totally different paths. However it can be demonstrated that only one
Brownian motion has continuous paths a.s. Recall that a.s. means
almost surely, that is, for all paths except a set of measure zero. This
process is called the canonical Brownian motion. Its paths can be identi-
fied with the space of continuous functions.

The Brownian motion can also be constructed as the continuous limit
of a discrete random walk. Consider a simple random walk W; where i are
discrete time points. The random walk is the motion of a point that moves
Ax to the right or to the left with equal probability % at each time incre-
ment Ax. The total displacement X; at time 7 is the sum of i independent
increments each distributed as a Bernoulli variable. Therefore the random
variable X has a binomial distribution with mean zero and variance:

Azx

At

Suppose that both the time increment and the space increment
approach zero: At — 0 and Ax — 0. Note that this is a very informal
statement. In fact what we mean is that we can construct a sequence of
random walk processes W, each characterized by a time step and by a
time displacement. It can be demonstrated that if
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(i.e., the square of the spaced interval and the time interval are of the
same order) then the sequence of random walks approaches a Brownian
motion. Though this is intuitive as the binomial distributions approach
normal distributions, it should be clear that it is far from being mathe-
matically obvious.

Exhibit 8.1 illustrates 100 realizations of a Brownian motion
approximated as a random walk. The exhibit clearly illustrates that the
standard deviation grows with the square root of the time as the vari-
ance grows linearly with time. In fact, as illustrated, most paths remain
confined within a parabolic region.

PROPERTIES OF BROWNIAN MOTION

The paths of a Brownian motion are rich structures with a number of
surprising properties. It can be demonstrated that the paths of a canoni-
cal Brownian motion, though continuous, are nowhere differentiable. It
can also be demonstrated that they are fractals of fractal dimension %.

EXHIBIT 8.1 Illustration of 100 Paths of a Brownian Motion Generated as an
Arithmetic Random Walk

30~
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The fractal dimension is a concept that measures quantitatively how a
geometric object occupies space. A straight line has fractal dimension
one, a plane has fractal dimension two, and so on. Fractal objects might
also have intermediate dimensions. This is the case, for example of the
path of a Brownian motion which is so jagged that, in a sense, it occu-
pies more space than a straight line.

The fractal nature of Brownian motion paths implies that each path is
a self-similar object. This property can be illustrated graphically. If we
generate random walks with different time steps, we obtain jagged paths.
If we allow paths to be graphically magnified, all paths look alike regard-
less of the time step with which they have been generated. In Exhibit 8.2,
samples paths are generated with different time steps and then portions of
the paths are magnified. Note that they all look perfectly similar.

This property was first observed by Benoit Mandelbrot in sequences
of cotton prices in the 1960s. In general, if one looks at asset or com-
modity price time series, it is difficult to recognize their time scale. For

EXHIBIT 8.2 Tllustration of the Fractal Properties of the Paths of a Brownian Motion®
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2 Five paths of a Brownian motion are generated as random walks with different time
steps and then magnified.
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instance, weekly or monthly time series look alike. Recent empirical and
theoretical research work has made this claim more precise as we will
see in Chapter 13.

Let’s consider a one-dimensional standard Brownian motion. If we
wait a sufficiently long period of time, every path except a set of paths
of measure zero will return to the origin. The path between two consec-
utive passages through zero is called an excursion of the Brownian
motion. The distribution of the maximum height attained by an excur-
sion and of the time between two passages through zero or through any
level have interesting properties. The distribution of the time between
two passages through zero has infinite mean. This is at the origin of the
so-called St. Petersburg paradox described by the Swiss mathematician
Bernoulli. The paradox consists of the following. Suppose a player bets
increasing sums on a game which can be considered a realization of a
random walk. As the return to zero of a random walk is a sure event,
the player is certain to win—but while the probability of winning is one,
the average time before winning is infinite. To stay the game, the capital
required is also infinite. Difficult to imagine a banker ready to put up
the money to back the player.

The distribution of the time to the first passage through zero of a
Brownian motion is not Gaussian. In fact, the probability of a very long
waiting time before the first return to zero is much higher than in a nor-
mal distribution. It is a fat-tailed distribution in the sense that it has
more weight in the tail regions than a normal distribution. The distribu-
tion of the time to the first passage through zero of a Brownian motion
is an example of how fat-tailed distributions can be generated from
Gaussian variables. We will come back on this subject in Chapter 13
where we deal with the question of how the fat-tailed distributions
observed in financial markets are generated from a large number of
apparently independent events.

STOCHASTIC INTEGRALS DEFINED

Let’s now go back to the definition of stochastic integrals, starting with
one-dimensional stochastic integrals. Suppose that a probability space
(©,3,P) equipped with a filtration 3, is given. Suppose also that a
Brownian motion B;(®) adapted to the filtration 3; is given. We will
define Ito integrals following the three-step procedure outlined earlier in
this chapter. We have just completed the first step defining Brownian
motion. The second step consists in defining the Itd integral for elemen-
tary functions.
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Let’s first define the set ®(S,T) of functions ®(S,T) = {f(¢,®): [(0,) X
Q — R]} with the following properties:

B Each fis jointly & x 3 measurable.
B Each f(t,0) is adapted to 3.

T
m E@fz(t, m)dt] <ol

S

This is the set of paths for which we define the Ito integral.

Consider the time interval [S,T] and, for each integer 7, partition
the interval [S,T] in subintervals: S=¢t,<t;<...t;<...t,<...ty=T in
this way:

k27" ifS<k27<T
tp=1tp =48 ifR27" <
T ifR2">T

This rule provides a family of partitions of the interval [S,T] which can
be arbitrarily refined.
Consider the elementary functions ¢(¢,) € ® which we write as

02, @) = e[t -1;)

As ¢(t,0) € @, g;(w) are 3, measurable random variables.
1 . . . A
We can now define the stochastic integral, in the sense of Itd, of ele-
mentary functions ¢(z,®) as

T
W = [0, 0)dB,(0) = Y e(@)[B;, (@)~ Bi()]
N

120

where B is a Brownian motion. Note that the g;(®) and the increments
B(®) - B;(w) are independent for j > i. The key aspect of this definition
that was not included in the informal outline is the condition that the
g;(w) are 3, measurable.

For bounded elementary functions ¢(¢,m) € ®@ the It6 isometry holds

3 This condition can be weakened.
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T 2 T
EKJ(I)(L w)dBt((o)j } = E[jq)(t, w)zdt}
S S

The demonstration of the Ito isometry rests on the fact that

E[elgl(Bt1+l - Bti)(Btj+ - Bt/)] =

1

This completes the definition of the stochastic integral for elementary
functions.

We have now completed the introduction of Brownian motions and
defined the Ito integral for elementary functions. Let’s next introduce
the approximation procedure that allows to define the stochastic inte-
gral for any o(¢,0). We will develop the approximation procedure in the
following three additional steps that we will state without demonstra-
tion:

W Step 1. Any function g(t,m) € @ that is bounded and such that all its
time paths o(-,) are continuous functions of time can be approximated

by

0,(t, @) = Y gty O)I[t;, 1 ~1;)

in the sense that:

T
EJ[(g— (])n)zdt] —0,n— o, VO
S

where the intervals are those of the partition defined above. Note that
0,(t, ) € @ given that g(t, w) e D.

W Step 2. We release the condition of time-path continuity of the
¢,,(¢, ). It can be demonstrated that any function h(¢, ®) € ® which
is bounded but not necessarily continuous can be approximated by
functions g,,(¢, ®) € ® which are bounded and continuous in the sense
that
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T
Ep(h _gn)zdt} -0
S

B Step 3. It can be demonstrated that any function f(#, ®) € @, not nec-
essarily bounded or continuous, can be approximated by a sequence of
bounded functions 4 (¢, ®) € ® in the sense that

T
E[j(f_ bn)zdt] -0
S

We now have all the building blocks to complete the definition of
It6 stochastic integrals. In fact, by virtue of the above three-step
approximation procedure, given any function f(t,®)e ®, we can
choose a sequence of elementary functions ¢,(¢, ®) € ® such that the
following property holds:

T
E[j(f_ ¢n)2dt] -0
s
Hence we can define the It6 stochastic integral as follows:
T T
Ifl(w) = J.f(l‘, 0)dB,(®) = lim p‘bn(ta (D)dt]
S "o S

The limit exists as

T
I¢n(t, ®)dB,(®)
S

forms a Cauchy sequence by the Itdo isometry, which holds for every
bounded elementary function.
Let’s now summarize the definition of the Itd stochastic integral:
Given any function (¢, ®) € ®, we define the Itd stochastic integral

by
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T T
11f1w) = [ft, @)dB (o) = nlgn{j%(t, m)dt]
S S

where the functions ¢,(¢, ®) € ® are a sequence of elementary functions
such that

T
E[j(f_q)n)zdt] -0
S

The multistep procedure outlined above ensures that the sequence
¢,(t, w) € @ exists. In addition, it can be demonstrated that the It6
isometry holds in general for every f(t, ®) € ®

T 2 T
Emf(t, w)dBt(w)] } - E[ff(t, a))zdt}
S S

SOME PROPERTIES OF ITO STOCHASTIC INTEGRALS

Suppose that f,ge ®(S,T) and let 0 <S< U< T. It can be demon-
strated that the following properties of 1t6 stochastic integrals hold:

T U T
[fdB, = [fdB,+ [fdB, fora.a. o
S S U
T
E{ | det] =0
S
T T T
J(cf+ dg)dB, = cJ.det + dJ.gdBt, for a.a. m, ¢, d constants
S S N

If we let the time interval vary, say (0,¢), then the stochastic integral
becomes a stochastic process:
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t
I(0) = [fdB,
0

It can be demonstrated that a continuous version of this process exists.
The following three properties can be demonstrated from the definition
of integral:

The last two properties show that, after performing stochastic integra-
tion, deterministic terms might appear.

SUMMARY

B Stochastic integration provides a coherent way to represent that instan-
taneous uncertainty (or volatility) cumulates over time. It is thus funda-
mental to the representation of financial processes such as interest
rates, security prices or cash flows as well as aggregate quantities such
as economic output.

B Stochastic integration operates on stochastic processes and produces
random variables or other stochastic processes.

B Stochastic integration is a process defined on each path as the limit of a
sum. However, these sums are different from the sums of the Riemann-
Lebesgue integrals because the paths of stochastic processes are gener-
ally not of bounded variation.

B Stochastic integrals in the sense of It6 are defined through a process of
approximation.

m Step 1 consists in defining Brownian motion, which is the continuous
limit of a random walk.
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M Step 2 consists in defining stochastic integrals for elementary functions
as the sums of the products of the elementary functions multiplied by
the increments of the Brownian motion.

B Step 3 extends this definition to any function through approximating
sequences.



Differential Equations and
Difference Equations

n Chapter 4, we explained how to obtain the derivative of a function.

In this chapter we will introduce differential equations. In nontechnical
terms, differential equations are equations that express a relationship
between a function and one or more derivatives (or differentials) of that
function.

It would be difficult to overemphasize the importance of differential
equations in modern science: they are used to express the vast majority
of the laws of physics and engineering principles. In economics and
finance, differential equations are used to express various laws and con-
ditions including the following:

B The laws of deterministic quantities such as the accumulation of risk-
free bank deposits.

B The laws that govern the evolution of price probability distributions.

B The solution of economic variational problems, such as intertemporal
optimization.

m Conditions of continuous hedging, such as the Black-Scholes equation
that we will describe in Chapter 15.

A large number of properties of differential equations have been
established over the last three centuries. This chapter provides only a
brief introduction to the concept of differential equations and their
properties, limiting our discussion to the principal concepts.

239
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DIFFERENTIAL EQUATIONS DEFINED

A differential equation is a condition expressed as a functional link
between one or more functions and their derivatives. It is expressed as
an equation (that is, as an equality between two terms).

A solution of a differential equation is a function that satisfies the
given condition. For example, the condition

Y/ (x)+aY (x) +BY(x)-b(x) = 0

equates to zero a linear relationship between an unknown function Y(x),
its first and second derivatives Y’(x),Y”(x), and a known function b(x).!
The unknown function Y(x) is the solution of the equation that is to be
determined.

There are two broad types of differential equations: ordinary differ-
ential equations and partial differential equations. Ordinary differential
equations are equations or systems of equations involving only one
independent variable. Another way of saying this is that ordinary differ-
ential equations involve only total derivatives. In contrast, partial differ-
ential equations are differential equations or systems of equations
involving partial derivatives. That is, there is more than one indepen-
dent variable.

As we move from deterministic equations to stochastic equations,
we introduce stochastic differential equations. In these differential equa-
tions, a random or stochastic term is included.

ORDINARY DIFFERENTIAL EQUATIONS

In full generality, an ordinary differential equation (ODE) can be expressed
as the following relationship:

Flx, Y(x), Y (x), ..., Y (x)] = 0

where Y (x) denotes the m-th derivative of an unknown function Y(x). If
the equation can be solved for the n-th derivative, it can be put in the form:

Y (x) = Glx, Y(x), Y (x), .., Y D))

'In some equations we will denote the first and second derivatives by a single and
double prime, respectively.
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Order and Deyree of an ODE
A differential equation is classified in terms of its order and its degree.
The order of a differential equation is the order of the highest derivative
in the equation. For example, the above differential equation is of order 7
since the highest order derivative is Y")(x). The degree of a differential
equation is determined by looking at the highest derivative in the differen-
tial equation. The degree is the power to which that derivative is raised.
For example, the following ordinary differential equations are first
degree differential equations of different orders:

Y(x) - 10Y(x) + 40 = 0 (order 1)
4YP)(x) + Y (x) + YV (x) - 0.5Y(x) + 100 = 0 (order 3)

The following ordinary differential equations are of order 3 and fifth
degree:

4 1Y) + [YP (%)) + YV (x) - 0.5Y(x) + 100 = 0
4 Y3 ()] + [YP %)) + Y (x) - 0.5Y(x) + 100 = 0

When an ordinary differential equation is of the first degree, it is said to
be a linear ordinary differential equation.

Solution to an ODE

Let’s return to the general ODE. A solution of this equation is any function
y(x) such that:

Flx, y(x), y V(x), ...y ™ (x)] = 0

In general there will be not one but an infinite family of solutions. For
example, the equation

YP(x) = aY(x)
admits, as a solution, all the functions of the form
y(x) = Cexp(ox)

To identify one specific solution among the possible infinite solu-
tions that satisfy a differential equation, additional restrictions must be
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imposed. Restrictions that uniquely identify a solution to a differential
equation can be of various types. For instance, one could impose that a
solution of an n-th order differential equation passes through n given
points. A common type of restriction—called an initial condition—is
obtained by imposing that the solution and some of its derivatives
assume given initial values at some initial point.

Given an ODE of order 7, to ensure the uniqueness of solutions it
will generally be necessary to specify a starting point and the initial
value of n-1 derivatives. It can be demonstrated, given the differential
equation

Flx, Y(x), YV (x), ..., YY) = 0

that if the function F is continuous and all of its partial derivatives up to
order 7 are continuous in some region containing the values y,...,
yf)m ), then there is a unique solution y(x) of the eq1uat10n in some
interval I = (M < x < L) such that yy, = Y(xg),.. ,yo = Y D(x).2
Note that this theorem states that there is an 1nterval in which the solu-
tion exists. Existence and uniqueness of solutions in a given interval is a
more delicate matter and must be examined for different classes of
equations.

The general solution of a differential equation of order 7 is a func-

tion of the form
y =0x,Cy,...,C)
that satisfies the following two conditions:

B Condition 1. The function y = ¢(x,Cy,...,C,,) satisfies the differential
equation for any n-tuple of values (Cy,...,C,,).

[ | Condztzon 2. Given a set of initial conditions y(xg) = yg,....y" V(xg) =
3’0 ™ that belong to the region where solutions of the equation exist,
it is possible to determine # constants in such a way that the function y
= ¢(x,Cys,...,C,,) satisfies these conditions.

The coupling of differential equations with initial conditions embod-
ies the notion of universal determinism of classical physics. Given initial

2 The condition of existence and continuity of derivatives is stronger than necessary.
The Lipschitz condition, which requires that the incremental ratio be uniformly
bounded in a given interval, would suffice.
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conditions, the future evolution of a system that obeys those equations is
completely determined. This notion was forcefully expressed by Pierre-
Simon Laplace in the eighteenth century: a supernatural mind who
knows the laws of physics and the initial conditions of each atom could
perfectly predict the future evolution of the universe with unlimited pre-
cision.

In the twentieth century, the notion of universal determinism was
challenged twice in the physical sciences. First in the 1920s the develop-
ment of quantum mechanics introduced the so called indeterminacy
principle which established explicit bounds to the precision of measure-
ments.> Later, in the 1970s, the development of nonlinear dynamics and
chaos theory showed how arbitrarily small initial differences might become
arbitrarily large: the flapping of a butterfly’s wings in the southern hemi-
sphere might cause a tornado in northern hemisphere.

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Differential equations can be combined to form systems of differential
equations. These are sets of differential conditions that must be satisfied
simultaneously. A first-order system of differential equations is a system
of the following type:

dh

- = f(-x7y 5---’yn)
I 1 1

d)’z

— = LYY,
I 2 1

dy

= = £ V1 e V)
I V1 y

3 Actually quantum mechanics is a much deeper conceptual revolution: it challenges
the very notion of physical reality. According to the standard interpretation of quan-
tum mechanics, physical laws are mathematical recipes that link measurements in a
strictly probabilistic sense. According to quantum mechanics, physical states are
pure abstractions: they can be superposed, as the celebrated “Schrodinger’s cat”
which can be both dead and alive.



244 The Mathematics of Financial Modeling and Investment Management

Solving this system means finding a set of functions yy,...,y,, that satisfy
the system as well as the initial conditions:

Y1(%0) = Y105 - Yu(X0) = Ypo

Systems of orders higher than one can be reduced to first-order systems
in a straightforward way by adding new variables defined as the deriva-
tives of existing variables. As a consequence, an n-th order differential
equation can be transformed into a first-order system of 7 equations.
Conversely, a system of first-order differential equations is equivalent to
a single n-th order equation.

To illustrate this point, let’s differentiate the first equation to obtain

d’y, df, ofidy f1 dy,
= et . —

dx?  ox dy;dx dy, dx

Replacing the derivatives
dyl dyn
Ty vy T
dx dx
with their expressions fi,...,f,, from the system’s equations, we obtain

2

V1
5 = Fz(x7y1’ 7yn)
dx

If we now reiterate this process, we arrive at the n-th order equation:

d(n))’l

=F (%9159,
dx™

We can thus write the following system:
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dy
== fl(x, Vs oo0s Vi)
dx

dZ)’l
— " Fy(x, 91 -0 )
dx

d(n)}ﬂ

dx(")

= Fu(x, 515 y,)

. ’ (n-1) .
We can express y,,...,¥, as functions of x, v,y 1, ..., ¥3 by solving,
if possible, the system formed with the first 7 — 1 equations:

-1

Yy = (Pz(x’J’py’l, -~~’y(1n ))
-1

y3 = (P3(x, Y1, )’,1, cees y(ln ))

-1
Y = (pn(x’ylfyll"”7y(1n ))

Substituting these expressions into the #-th equation of the previous sys-
tem, we arrive at the single equation:

-1
= O(x, y,l’ sy y(ln ))

Solving, if possible, this equation, we find the general solution
vy = y1(x, Cq, ..., C))

Substituting this expression for y; into the previous system, y,,...,y,, can
be computed.
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CLOSED-FORM SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS

Let’s now consider the methods for solving two types of common differ-
ential equations: equations with separable variables and equations of lin-
ear type. Let’s start with equations with separable variables. Consider the
equation

ﬂ =
o f(x)g(y)

This equation is said to have separable variables because it can be writ-
ten as an equality between two sides, each depending on only y or only
x. We can rewrite our equation in the following way:

Ay _ f(x)dx
8(y)

This equation can be regarded as an equality between two differentials
in y and x respectively. Their indefinite integrals can differ only by a
constant. Integrating the left side with respect to y and the right side
with respect to x, we obtain the general solution of the equation:

dy _ [fenydx+c
g(y)

For example, if g(y) =y, the previous equation becomes

dy = f(x)dx

y

whose solution is
J-% = J.f(x)dx +C=logy= J.f(x)dx +C=>y=A exp(J.f(x)dx)

where A = exp(C).

A differential equation of this type describes the continuous com-
pounding of time-varying interest rates. Consider, for example, the
growth of capital C deposited in a bank account that earns the variable
but deterministic rate » = f(#). When interest rates R; are constant for dis-
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crete periods of time Az, compounding is obtained by purely algebraic
formulas as follows:

C(t) - C(t;_ 1)

R At =
o C(t;_ )

Solving for C(#;):

Ct) = (1 +RA)C(2;_pp)

By recursive substitution we obtain

C(t;) = (1+R,AL)(1+R;_At;_1)...(1+ R, A1) C(ty)

However, market interest rates are subject to rapid change. In the
limit of very short time intervals, the instantaneous rate () would be
defined as the limit, if it exists, of the discrete interest rate:

Wty = lim CU+AD = C()
At — 0 AtC(t)

The above expression can be rewritten as a simple first-order differential
equation in C:

dC(t)
t

r(t)C(t) =

In a simple intuitive way, the above equation can be obtained consider-
ing that in the elementary time df the bank account increments by the
amount dC = C(t)r(t)dt. In this equation, variables are separable. It
admits the family of solutions:

C=A exp(jr(t)dt)
where A is the initial capital.

Linear Differential Equation
Linear differential equations are equations of the following type:
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(n-1)

an(x)y(")+an_1(x)y + ... +a1(x)y(l)+ ag(x)y + b(x)=0

If the function b is identically zero, the equation is said to be homoge-
neous.

In cases where the coefficients a’s are constant, Laplace transforms
provide a powerful method for solving linear differential equation. Con-
sider, without loss of generality, the following linear equation with con-
stant coefficients:

any(")+an_1y(n_1)+ +a1y(1)+aoy = b(x)

together with the initial conditions: ¥(0) = yg,...,y"(0) = yg)n_l) . In cases in
which the initial point is not the origin, by a variable transformation we
can shift the origin.

Let’s recall the formula to Laplace-transform derivatives presented
in Chapter 4. For one-sided Laplace transforms the following formulas

hold:

J(M] = sZ1f(x)] - f(0)
dx

z(m] = L] -5 P0) - - D0
dx"

Suppose that a function y = y(x) satisfies the previous linear equation
with constant coefficients and that it admits a Laplace transform. Apply
one-sided Laplace-transform to both sides of the equation. If Y(s) =
Z[y(x)], the following relationships hold:

1 1
L(any(n)+an_1y(" Yy +a1y( )+aoy) = L[b(x)]

R (1) (1)

n 2 (l)(O) (n 2)

a [s Y(s) -

+an_1[s Y(s)
+...+ayY(s) = B(s)

(0)]
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Solving this equation for Y(s), that is, Y(s) = g[s,y"(0),...,y""1(0)] the
inverse Laplace transform y(¢) = £7![Y(s)] uniquely determines the solu-
tion of the equation.

Because inverse Laplace transforms are integrals, with this method,
when applicable, the solution of a differential equation is reduced to the
determination of integrals. Laplace transforms and inverse Laplace
transforms are known for large classes of functions. Because of the
important role that Laplace transforms play in solving ordinary differ-
ential equations in engineering problems, there are published reference
tables.* Laplace transform methods also yield closed-form solutions of
many ordinary differential equations of interest in economics and
finance.

NUMERICAL SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS

Closed-form solutions are solutions that can be expressed in terms of
known functions such as polynomials or exponential functions. Before
the advent of fast digital computers, the search for closed-form solu-
tions of differential equations was an important task. Today, thanks to
the availability of high-performance computing, most problems are
solved numerically. This section looks at methods for solving ordinary
differential equations numerically.

The Finite Difference Method

Among the methods used to numerically solve ordinary differential
equations subject to initial conditions, the most common is the finite
difference method. The finite difference method is based on replacing
derivatives with difference equations; differential equations are thereby
transformed into recursive difference equations.

Key to this method of numerical solution is the fact that ODEs sub-
ject to initial conditions describe phenomena that evolve from some
starting point. In this case, the differential equation can be approxi-
mated with a system of difference equations that compute the next point
based on previous points. This would not be possible should we impose
boundary conditions instead of initial conditions. In this latter case, we
have to solve a system of linear equations.

4 See, for example, “Laplace Transforms,” Chapter 29 in Milton Abramowitz and
Irene A. Stegun (eds.), Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables (New York: Dover, 1972).
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To illustrate the finite difference method, consider the following
simple ordinary differential equation and its solution in a finite interval:

f(x) = f(x)

éffzdx

log f(x) = x+C
f(x) = exp(x + C)

As shown, the closed-form solution of the equation is obtained by separa-
tion of variables, that is, by transforming the original equation into
another equation where the function f appears only on the left side and
the variable x only on the right side.

Suppose that we replace the derivative with its forward finite differ-
ence approximation and solve

l((xl'+ 1)—f(xi)

Xit1—X;

= f(xi)

f(xipq) = [T+ (x0 = x))f(x))

If we assume that the step size is constant for all i:
flx)) = [1+Ax]'F(x)

The replacement of derivatives with finite differences is often called the
Euler approximation. The differential equation is replaced by a recur-
sive formula based on approximating the derivative with a finite differ-
ence. The i-th value of the solution is computed from the i~1-th value.
Given the initial value of the function f, the solution of the differential
equation can be arbitrarily approximated by choosing a sufficiently
small interval. Exhibit 9.1 illustrates this computation for different val-
ues of Ax.

In the previous example of a first-order linear equation, only one ini-
tial condition was involved. Let’s now consider a second-order equation:

f7(x)+kf(x) = 0
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EXHIBIT 9.1 Numerical Solutions of the Equation f’ = f with the Euler
Approximation for Different Step Sizes

35+

True exponential function

Euler approximation with 20 iterations,
3L step = 0.05

Euler approximation with 10 iterations, ..

step = 0.1 i

25

This equation describes oscillatory motion, such as the elongation of a
pendulum or the displacement of a spring.

To approximate this equation we must approximate the second
derivative. This could be done, for example, by combining difference
quotients as follows:

= [ 80) )
Ax

f(x +2Ax) - f(x + Ax)
Ax

f'(x+Ax) =
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£ (x+Ax) —f'(x)

f7(x)=
Ax
fx +2Ax) — f(x + Ax)  f(x + Ax) - f(x)
Ax Ax

Ax
_ flx +2Ax) = 2f(x + Ax) + f(x)

(Ax)*

With this approximation, the original equation becomes

X +2Ax) = 2f(x + Ax) + f(x)
2

f"(x)+kf(x)=f ( +kf(x) = 0

(Ax)

fx + 2Ax) = 2f(x + Ax) + (1 + k(Ax))f(x) = 0
We can thus write the approximation scheme:

f(x +Ax) = f(x)+ Axf(x)

f(x +2A%) = 2f(x + Ax) — (1 + k(Ax)*)f(x)

Given the increment Ax and the initial values f(0),f ’(0), using the above
formulas we can recursively compute f(0 + Ax), f(0 + 2Ax), and so on.
Exhibit 9.2 illustrates this computation.

In practice, the Euler approximation scheme is often not sufficiently
precise and more sophisticated approximation schemes are used. For
example, a widely used approximation scheme is the Runge-Kutta
method. We give an example of the Runge-Kutta method in the case of
the equation " + f = 0 which is equivalent to the linear system:

In this case the Runge-Kutta approximation scheme is the following:
ky = hy(i)

hy = —hx(i)



Differential Equations and Difference Equations 253

EXHIBIT 9.2 Numerical Solution of the Equation f” + f = 0 with the Euler
Approximation

1.5
The solid line represents the exact solution
y = sin x of the equation f" + f=0
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h4 = —b[.x(l) + k3]

y(i+1) = y@i)+ %(bl +2hy+2by+hy)

Exhibits 9.3 and 9.4 illustrate the results of this method in the two cases
f'=fandf” +f=0.

As mentioned above, this numerical method depends critically on our
having as givens (1) the initial values of the solution and (2) its first deriv-
ative. Suppose that instead of initial values two boundary values were
given, for instance the initial value of the solution and its value 1,000
steps ahead, that is, f(0) = f, /(0 + 1,000Ax) = f100- Conditions like these
are rarely used in the study of dynamical systems as they imply foresight,

EXHIBIT 9.3 Numerical Solution of the Equation f’ = f with the Runge-Kutta
Method After 10 Steps
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EXHIBIT 9.4 Numerical Solution of the Equation f” + f = 0 with the Runge-Kutta
Method

1.5
The solid line represents the exact solutiw ¥ = sin x.

05+ Z

b [s o
Af 7 i
The circles represent the numerical solution
computed with the Runge-Kutta method.

20 40 60 80 100 120

that is, knowledge of the future position of a system. However, they often
appear in static systems and when trying to determine what initial condi-
tions should be imposed to reach a given goal at a given date.

In the case of boundary conditions, one cannot write a direct recur-
sive scheme; it’s necessary to solve a system of equations. For instance, we
could introduce the derivative f’(x) = 8 as an unknown quantity. The dif-
ference quotient that approximates the derivative becomes an unknown.
We can now write a system of linear equations in the following way:

f(Ax) = fo +BAx

f2Ax) = 2f(Ax) ~ (1 + k(Ax)D)fy
f(3Ax) = 2f(24x) - (1 + k(Ax))f(Ax)

Fro00 = 2(999Ax) — (1 + k(Ax)>)f(998 Ax)
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This is a system of 1,000 equations in 1,000 unknowns. Solving the
system we compute the entire solution. In this system two equations, the
first and the last, are linked to boundary values; all other equations are
transfer equations that express the dynamics (or the law) of the system.
This is a general feature of boundary value problems. We will encounter it
again when discussing numerical solutions of partial differential equations.

In the above example, we chose a forward scheme where the derivative
is approximated with the forward difference quotient. One might use a dif-
ferent approximation scheme, computing the derivative in intervals cen-
tered around the point x. When derivatives of higher orders are involved,
the choice of the approximation scheme becomes critical. Recall that when
we approximated first and second derivatives using forward differences, we
were required to evaluate the function at two points (i,i + 1) and three
points (i, + 1,i + 2) ahead respectively. If purely forward schemes are
employed, computing higher-order derivatives requires many steps ahead.
This fact might affect the precision and stability of numerical computations.

We saw in the examples that the accuracy of a finite difference
scheme depends on the discretization interval. In general, a finite differ-
ence scheme works, that is, it is consistent and stable, if the numerical
solution converges uniformly to the exact solution when the length of
the discretization interval tends to zero. Suppose that the precision of an
approximation scheme depends on the length of the discretization inter-
val Ax. Consider the difference 8f = f(x)~-f(x) between the approxi-
mate and the exact solutions. We say that 8f— 0 uniformly in the
interval [a,b] when Ax — 0 if, given any € arbitrarily small, it is possible
to find a Ax such that |8f] <e, Vx e [a, b].

NONLINEAR DYNAMICS AND CHAOS

Systems of differential equations describe dynamical systems that evolve
starting from initial conditions. A fundamental concept in the theory of
dynamical system is that of the stability of solutions. This topic has
become of paramount importance with the development of nonlinear
dynamics and with the discovery of chaotic phenomena. We can only
give a brief introductory account of this subject whose role in econom-
ics is still the subject of debate.

Intuitively, a dynamical system is considered stable if its solutions
do not change much when the system is only slightly perturbed. There
are different ways to perturb a system: changing parameters in its equa-
tions, changing the known functions of the system by a small amount,
or changing the initial conditions.



Differential Equations and Difference Equations 257

Consider an equilibrium solution of a dynamical system, that is, a
solution that is time invariant. If a stable system is perturbed when it is
in a position of equilibrium, it tends to return to the equilibrium posi-
tion or, in any case, not to diverge indefinitely from its equilibrium posi-
tion. For example, a damped pendulum—if perturbed from a position of
equilibrium—will tend to go back to an equilibrium position. If the pen-
dulum is not damped it will continue to oscillate forever.

Consider a system of #n equations of first order. (As noted above,
systems of higher orders can always be reduced to first-order systems by
enlarging the set of variables.) Suppose that we can write the system
explicitly in the first derivatives as follows:

dyq

- = f(x,y > ’yn)
dx 1 1

dy,

- = f(xry ""7yn)
dx 2 1

dy,

- = n(x7 9 ey n)
T fa(x, 91 y

If the equations are all linear, a complete theory of stability has been
developed. Essentially, linear dynamical systems are stable except possi-
bly at singular points where solutions might diverge. In particular, a
characteristic of linear systems is that they incur only small changes in
the solution as a result of small changes in the initial conditions.

However, during the 1970s, it was discovered that nonlinear sys-
tems have a different behavior. Suppose that a nonlinear system has at
least three degrees of freedom (that is, it has three independent nonlin-
ear equations). The dynamics of such a system can then become chaotic
in the sense that arbitrarily small changes in initial conditions might
diverge. This sensitivity to initial conditions is one of the signatures of
chaos. Note that while discrete systems such as discrete maps can
exhibit chaos in one dimension, continuous systems require at least
three degrees of freedom (that is, three equations).

Sensitive dependence from initial conditions was first observed in
1960 by the meteorologist Edward Lorenz of the Massachusetts Institute
of Technology. Lorenz remarked that computer simulations of weather
forecasts starting, apparently, from the same meteorological data could
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yield very different results. He argued that the numerical solutions of
extremely sensitive differential equations such as those he was using pro-
duced diverging results due to rounding-off errors made by the computer
system. His discovery was published in a meteorological journal where it
remained unnoticed for many years.

Fractals

While in principle deterministic chaotic systems are unpredictable
because of their sensitivity to initial conditions, the statistics of their
behavior can be studied. Consider, for example, the chaos laws that
describe the evolution of weather: while the weather is basically unpre-
dictable over long periods of time, long-run simulations are used to pre-
dict the statistics of weather.

It was discovered that probability distributions originating from cha-
otic systems exhibit fat tails in the sense that very large, extreme events
have nonnegligible probabilities.® It was also discovered that chaotic sys-
tems exhibit complex unexpected behavior. The motion of chaotic sys-
tems is often associated with self-similarity and fractal shapes.

Fractals were introduced in the 1960s by Benoit Mandelbrot, a
mathematician working at the IBM research center in Yorktown Heights,
New York. Starting from the empirical observation that cotton price
time-series are similar at different time scales, Mandelbrot developed a
powerful theory of fractal geometrical objects. Fractals are geometrical
objects that are geometrically similar to part of themselves. Stock prices
exhibit this property insofar as price time-series look the same at differ-
ent time scales.

Chaotic systems are also sensitive to changes in their parameters. In
a chaotic system, only some regions of the parameter space exhibit cha-
otic behavior. The change in behavior is abrupt and, in general, it can-
not be predicted analytically. In addition, chaotic behavior appears in
systems that are apparently very simple.

While the intuition that chaotic systems might exist is not new, the
systematic exploration of chaotic systems started only in the 1970s. The
discovery of the existence of nonlinear chaotic systems marked a con-
ceptual crisis in the physical sciences: it challenges the very notion of the
applicability of mathematics to the description of reality. Chaos laws
are not testable on a large scale; their applicability cannot be predicted

5 See W. Brock, D. Hsieh, and B. LeBaron, No#nlinear Dynamics, Chaos, and Insta-
bility (Cambridge, MA: MIT Press, 1991) and D. Hsieh, “Chaos and Nonlinear Dy-
namics: Application to Financial Markets,” Journal of Finance 46 (1991), pp. 1839-
1877.
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analytically. Nevertheless, the statistics of chaos theory might still prove
to be meaningful.

The economy being a complex system, the expectation was that its
apparently random behavior could be explained as a deterministic cha-
otic system of low dimensionality. Despite the fact that tests to detect
low-dimensional chaos in the economy have produced a substantially
negative response, it is easy to make macroeconomic and financial
econometric models exhibit chaos.® As a matter of fact, most macroeco-
nomic models are nonlinear. Though chaos has not been detected in eco-
nomic time-series, most economic dynamic models are nonlinear in
more than three dimensions and thus potentially chaotic. At this stage
of the research, we might conclude that if chaos exists in economics it is
not of the low-dimensional type.

PARTIAL DIFFERENTIAL EQUATIONS

To illustrate the notion of a partial differential equation (PDE), let’s
start with equations in two dimensions. A n-order PDE in two dimen-
sions x,y is an equation of the form

(1)
F‘x:y?ﬂ(’a_fa'-wa—f =0,0S/€SZ,OSZSH
ox y T gty

A solution of the previous equation will be any function that satisfies
the equation.

In the case of PDEs, the notion of initial conditions must be
replaced with the notion of boundary conditions or initial plus bound-
ary conditions. Solutions will be defined in a multidimensional domain.
To identify a solution uniquely, the value of the solution on some sub-
domain must be specified. In general, this subdomain will coincide with
the boundary (or some portion of the boundary) of the domain.

Diffusion Equation
Different equations will require and admit different types of boundary
and initial conditions. The question of existence and uniqueness of solu-

¢ See W.A. Brock, W.D. Dechert, J.A. Scheinkman, and B. LeBaron, “A Test for In-
dependence Based on the Correlation Dimension,” Econometric Reviews, 15(3)
(1996); and W. Brock and C. Hommes, “A Rational Route to Randomness,” Econo-
metrica 65 (1997), pp. 1059-1095.
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tions of PDEs is a delicate mathematical problem. We can only give a
brief account by way of an example.

Let’s consider the diffusion equation. This equation describes the
propagation of the probability density of stock prices under the ran-
dom-walk hypothesis:

of _ 201
ot n?

The Black-Scholes equation, which describes the evolution of option
prices (see Chapter 15), can be reduced to the diffusion equation.

The diffusion equation describes propagating phenomena. Call
f(t,x) the probability density that prices have value x at time ¢. In
finance theory, the diffusion equation describes the time-evolution of the
probability density function f(t,x) of stock prices that follow a random
walk. 7 It is therefore natural to impose initial and boundary conditions
on the distribution of prices.

In general, we distinguish two different problems related to the diffu-
sion equation: the first boundary value problem and the Cauchy initial
value problem, named after the French mathematician Augustin Cauchy
who first formulated it. The two problems refer to the same diffusion
equation but consider different domains and different initial and bound-
ary conditions. It can be demonstrated that both problems admit a
unique solution.

The first boundary value problem seeks to find in the rectangle 0 < x
<1,0 <t < T a continuous function f(z,x) that satisfies the diffusion equa-
tion in the interior Q of the rectangle plus the following initial condition,

f(0,x) = 6(x),0<x <
and boundary conditions,

f(t,0)=f1(1), f(t,1)=f(1), 0<t<T

The functions fy, f, are assumed to be continuous and f1(0) = ¢(0), f,(0)
= §(]).

The Cauchy problem is related to an infinite half plane instead of a
finite rectangle. It is formulated as follows. The objective is to find for

7In physics, the diffusion equation describes phenomena such as the diffusion of par-
ticles suspended in some fluid. In this case, the diffusion equation describes the den-
sity of particles at a given moment at a given point.
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any x and for £ 2 0 a continuous and bounded function f(t,x) that satis-
fies the diffusion equation and which, for ¢ = 0, is equal to a continuous
and bounded function £(0,x) = ¢(x), Vx.

Solution of the Diffusion Equation
The first boundary value problem of the diffusion equation can be
solved exactly. We illustrate here a widely used method based on the
separation of variables which is applicable if the boundary conditions
on the vertical sides vanish (that is, if f{(¢) = f5(¢) = 0). The method
involves looking for a tentative solution in the form of a product of two
functions, one that depends only on ¢ and the other that depends only
on x: f(t,x) = h(t)g(x).

If we substitute the previous tentative solution in the diffusion equation

we obtain an equation where the left side depends only on ¢ while the
right side depends only on x:

d’g(x)
a’x2

) oxy = a?h(1y 28X
dr

dh(t) 1 _ 2d’g(x) 1
dt bty gy g

This condition can be satisfied only if the two sides are equal to a con-
stant. The original diffusion equation is therefore transformed into two
ordinary differential equations:

Ldb@® _ oy
2 dt

a

d’g(x) _

dx*

bg(x)
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with boundary conditions g(0) = g(I) = 0. From the above equations and
boundary conditions, it can be seen that b can assume only the negative
values,

while the functions g can only be of the form

g(x) = BksinkTRx

Substituting for b, we obtain

Apin
h(t) = By exp(— t]
2

Therefore, we can see that there are denumerably infinite solutions of
the diffusion equation of the form

AR | kn
fr(t,x) = Cpexp| - . t |sin Tx
/

All these solutions satisfy the boundary conditions f(#,0) = f(z,[) = 0. By
linearity, we know that the infinite sum

- - k' kT
f(t,x) = Z fu(t, x) = Z Cp, exp| - t sinTx
k=1 k=1

12

will satisfy the diffusion equation. Clearly f(¢,x) satisfies the boundary
conditions f(2,0) = f(z,]) = 0. In order to satisfy the initial condition,
given that ¢(x) is bounded and continuous and that ¢(0) = ¢(/) = 0, it can
be demonstrated that the coefficients Cs can be uniquely determined
through the following integrals, which are called the Fourier integrals:
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Cp = —j¢(&)sm[ &Jd&

The previous method applies to the first boundary value problem
but cannot be applied to the Cauchy problem, which admits only an ini-
tial condition. It can be demonstrated that the solution of the Cauchy
problem can be expressed in terms of a convolution with a Green’s func-
tion. In particular, it can be demonstrated that the solution of the
Cauchy problem can be written in closed form as follows:

¢(&) ﬂ}
I

for t > 0 and f(0,x) = ¢(x). It can be demonstrated that the Black-Scholes
equation (see Chapter 15), which is an equation of the form

2
A 2T

-rf=0
Jat 2 axz

can be reduced through transformation of variables to the standard dif-
fusion equation to be solved with the Green’s function approach.

Numerical Solution of PDEs

There are different methods for the numerical solution of PDEs. We
illustrate the finite difference methods which are based on approximat-
ing derivatives with finite differences. Other discretization schemes,
such as finite elements and spectral methods are possible but, being
more complex, they go beyond the scope of this book.

Finite difference methods result in a set of recursive equations when
applied to initial conditions. When finite difference methods are applied
to boundary problems, they require the solution of systems of simulta-
neous linear equations. PDEs might exhibit boundary conditions, initial
conditions or a mix of the two.

The Cauchy problem of the diffusion equation is an example of initial
conditions. The simplest discretization scheme for the diffusion equation
replaces derivatives with their difference quotients. As for ordinary differ-
ential equations, the discretization scheme can be written as follows:



264 The Mathematics of Financial Modeling and Investment Management

of _f(t+ At x)—f(t x)
Jat At

’f _ft,x + Ax) = 2f(1, x) + f(t, x - Ax)
ax” (Ax)*

In the case of the Cauchy problem, this approximation scheme
defines the forward recursive algorithm. It can be proved that the algo-
rithm is stable only if the Courant-Friedrichs-Lewy (CFL) conditions

2
At < M
2a2

are satisfied.

Different approximation schemes can be used. In particular, the for-
ward approximation to the derivative used above could be replaced by
centered approximations. Exhibit 9.5 illustrates the solution of a Cauchy
problem for initial conditions that vanish outside of a finite interval. The
simulation shows that solutions diffuse in the entire half space.

EXHIBIT 9.5  Solution of the Cauchy Problem by the Finite Difference Method
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EXHIBIT 9.6  Solution of the First Boundary Problem by the Finite Difference Method
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Applying the same discretization to a first boundary problem would
require the solution of a system of linear equations at every step.
Exhibit 9.6 illustrates this case.

SUMMARY

B Derivatives can be combined to form differential equations.

m Differential equations are conditions that must be satisfied by their
solutions.

m Differential equations generally admit infinite solutions.

M Initial or boundary conditions are needed to identify solutions uniquely.

m Differential equations are the key mathematical tools for the develop-
ment of modern science; in finance they are used in arbitrage pricing, to
define stochastic processes, and to compute the time evolution of aver-
ages.

B Ordinary differential equations include only total derivatives; partial
differential equations include partial derivatives.

m Differential equations can be solved in closed form or with numerical
methods.
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B Finite difference methods approximate derivatives with difference quo-
tients.

M Initial conditions yield recursive algorithms.

B Boundary conditions require the solution of linear equations.
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Stochastic Differential Equations

hapter 8 introduced stochastic integrals, a mathematical concept

used for defining stochastic differential equations, the subject of this
chapter. Stochastic differential equations solve the problem of giving
meaning to a differential equation where one or more of its terms are
subject to random fluctuations. For instance, consider the following
deterministic equation:

dy _
i f(t)y

We know from our discussion on differential equations (Chapter 9)
that, by separating variables, the general solution of this equation can
be written as follows:

y = A expl [f(t)dr]

A stochastic version of this equation might be obtained, for instance, by
perturbing the term £, thus resulting in the “stochastic differential equa-
tion”

D _ (ft)+elde
y

where € is a random noise process.

As with stochastic integrals, in defining stochastic differential equa-
tions it is necessary to adopt an ensemble view: The solution of a stochas-
tic differential equation is a stochastic process, not a single function. We

267
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will first provide the basic intuition behind stochastic differential equa-
tions and then proceed to formally define the concept and the properties.

THE INTUITION BEHIND STOCHASTIC DIFFERENTIAL EQUATIONS

Let’s go back to the equation

D~ ifr) +ely

where € is a continuous-time noise process. It would seem reasonable to
define a continuous-time noise process informally as the continuous-
time limit of a zero-mean, IID sequence, that is, a sequence of indepen-
dent and identically distributed variables with zero mean (see Chapter
6). In a discrete time setting, a zero-mean, IID sequence is called a white
noise. We could envisage defining a continuous-time white noise as the
continuous-time limit of a discrete-time white noise. Each path of € is a
function of time g(-,). It would therefore seem reasonable to define the
solution of the equation pathwise, as the family of functions that are
solutions of the equations,

dy _ [f(2) +e(t, w)]y
dt

where each equation corresponds to a specific white noise path.

However this definition would be meaningless in the domain of
ordinary functions. In other words, it would generally not be possible to
find a family of functions y(-,w) that satisfy the above equations for each
white-noise path and that form a reasonable stochastic process.

The key problem is that it is not possible to define a white noise pro-
cess as a zero-mean stationary stochastic process with independent
increments and continuous paths. Such a process does not exist in the
domain of ordinary functions.! In discrete time the white noise process
is obtained as the first-difference process of a random walk. Anticipat-
ing concepts that will be developed in Chapter 12 on time series analy-
sis, the random walk is an integrated nonstationary process, while its
first-difference process is a stationary IID sequence.

't is possible to define a “generalized white noise process” in the domain of “tem-
pered distributions.” See Bernd Oksendal, Stochastic Differential Equations: Third
Edition (Berlin: Springer, 1992).
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The continuous-time limit of the random walk is the Brownian
motion. However the paths of a Brownian motion are not differentiable.
As a consequence, it is not possible to take the continuous-time limit of
first differences and to define the white noise process as the derivative of
a Brownian motion. In the domain of ordinary functions in continuous
time, the white noise process can be defined only through its integral,
which is the Brownian motion. The definition of stochastic differential
equations must therefore be recast in integral form.

A sensible definition of a stochastic differential equation must
respect a number of constraints. In particular, the solution of a stochas-
tic differential equation should be a “perturbation” of the associated
deterministic equation. In the above example, for instance, we want the
solution of the stochastic equation

d_y = [f(?) + &(¢, w)]dt
dy

to be a perturbation of the solution
y = A exp([f(1)dn)

of the associated deterministic equation

dy = f(t)dt
y

In other words, the solution of a stochastic differential equation should
tend to the solution of the associated deterministic equation in the limit
of zero noise. In addition, the solutions of a stochastic differential equa-
tion should be the continuous-time limit of some discrete-time process
obtained by discretization of the stochastic equation.

A formal solution of this problem was proposed by Kyosi Itd in the
1940s and, in a different setting, by Ruslan Stratonovich in the 1960s.
It6 and Stratonovich proposed to give meaning to a stochastic differen-
tial equation through its integral equivalent. The It definition proceeds
in two steps: in the first step, Itd processes are defined; in the second
step, stochastic differential equations are defined.

W Step 1: Definition of Itd processes. Given two functions @(¢, ®) and
y(t, ®) that satisfy usual conditions to be defined later, an Ito pro-
cess—also called a stochastic integral—is a stochastic process of the
form:
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t t
Z(t, 0) = j(p(s, o)ds + j\p(s, ®)dB (s, ®)
0 0

An It6 process is a process that is the result of the sum of two sum-
mands: the first is an ordinary integral, the second an It6 integral. Itd
processes are stable under smooth maps, that is, any smooth function
of an Itd process is an It process that can be determined through the
It6 formula (see Itd processes below).

B Step 2: Definition of stochastic differential equations. As we have seen,
it is not possible to write a differential equation plus a white-noise term
which admits solutions in the domain of ordinary functions. However
we can meaningfully write an integral stochastic equation of the form

t t
X(t, ®) = jq)(s, X)ds + jw(s, X)dB,
0 0

It can be demonstrated that this equation admits solutions in the
sense that, given two functions ¢ and W, there is a stochastic process X
that satisfies the above equation. We stipulate that the above integral
equation can be written in differential form as follows:

dX(t,®) = ¢(t, X)dt +y(t, X)dB,

Note that this is a definition; a stochastic differential equation
acquires meaning only through its integral form. In particular, we can-
not divide both terms by dt and rewrite the equation as follows:

dX(t, ®) dB,
LT ot X X)—t
7 o(t, X) +y(t, )dt

The above equation would be meaningless because the Brownian
motion is not differentiable. This is the difficulty that precludes writ-
ing stochastic differential equations adding white noise pathwise. The
differential notation of a stochastic differential equation is just a
shorthand for the integral notation.

However we can consider a discrete approximation:

AX(t, ) = ¢* (¢, X)At + y*(t, X)AB,
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Note that in this approximation the functions ¢*(z, X), y*(t, X) will
not coincide with the functions ¢(¢, X), y(¢, X). Using the latter would
(in general) result in a poor approximation.

The following sections will define It processes and stochastic dif-
ferential equations and study their properties.

ITO PROCESSES

Let’s now formally define Ito processes and establish key properties, in
particular the Itd formula. In the previous section we stated that an Ito
process is a stochastic process of the form

t t
Z(t, 0) = ja(s, o)ds + _[b(s, ®)dB(s, ®)
0 0

To make this definition rigorous, we have to state the conditions
under which (1) the integrals exist and (2) there is no anticipation of
information. Note that the two functions @ and b might represent two
stochastic processes and that the Riemann-Stieltjes integral might not
exist for the paths of a stochastic process. We have therefore to demon-
strate that both the It6 integral and the ordinary integral exist. To this
end, we define It processes as follows.

Suppose that a 1-dimensional Brownian motion B, is defined on a
probability space (Q,3,P) equipped with a filtration 3,. The filtration
might be given or might be generated by the Brownian motion B,. Sup-
pose that both @ and b are adapted to 3, and jointly measurable in 3 x R.
Suppose, in addition, that the following two integrability conditions hold:

1l
—_

t
P[Jbz(s, )ds < oo forall £ > 0}
0

and

11
[EN

t
P{J.a(s, o)|ds < o for all £ o}
0

These conditions ensure that both integrals in the definition of It6 pro-
cesses exist and that there is no anticipation of information. We can
therefore define the It process as the following stochastic process:



272 The Mathematics of Financial Modeling and Investment Management

t t
Z(t, ®) = ja(s, w)ds + Jb(s, ®)dB (s, m)
0 0

Itd processes can be written in the shorter differential form as

dZ, = adt+bdB,

It should be clear that the latter formula is just a shorthand for the inte-
gral definition.

THE 1-DIMENSIONAL IT0 FORMULA

One of the most important results concerning Itd processes is a formula
established by It6 that allows one to explicitly write down an Itd process
which is a function of another Itd process. Ito’s formula is the stochastic
equivalent of the change-of-variables formula of ordinary integration.
We will proceed in two steps. First we will introduce 1t6’s formula for
functions of Brownian motion and then for functions of general It pro-
cesses. Suppose that the function g(z,x) is twice continuously differentia-
ble in [0,e0) X R and that B, is a one-dimensional Brownian motion. The
function Y, = g(¢,B,) is a stochastic process. It can be demonstrated that
the process Y, = g(¢,B;) is an It6 process of the following form

2

dYt = [a(t’Bt)+§$(t’Bt)]dt+£(t’ Bt)dBt

The above is Itd’s formula in the case the underlying process is a Brown-
ian motion. For example, let’s suppose that g(t,x) = x*. In this case we
can write

2
% 0,280,208,

at x50

. . ~ 2
Inserting the above in It&’s formula we see that the process B, can be
represented as the following Itd process

dY, = dt + 2B,dB,

or, explicitly in integral form
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t
Y, = t+2[BdB,
0

The nonlinear map g(t,x) = x* introduces a second term in dt. Note that
we established the latter formula at the end of Chapter 8 in the form

t
1., 1
ngst = 5B/ 3t

Let’s now generalize Ito’s formula.

Suppose that X, is an It6 process given by dX, = adt + bdB,. As X, is
a stochastic process, that is, a function X(¢,) of both time and the
state, it makes sense to consider another stochastic process Y,, which is
a function of the former, Y, = g(¢,X,). Suppose that g is twice continu-
ously differentiable on [0,) X R.

It can then be demonstrated (we omit the detailed proof) that Y, is
another Itd process that admits the representation

P) P) 19°
dY, = 28(¢, X,)dt + 28(¢, X,)dX, + == (¢, X )(dX,)*
ot ox Zaxz

where differentials are computed formally according to the rules?

dt-dt=dt-dB,=dB, -dt=0,dB,-dB,=dt

It6’s formula can be written (perhaps more) explicitly as

dy, < (28,98, 1082, 08, p
ot ax 25,2 x

This formula reduces to the ordinary formula for the differential of a com-
pound function in the case where b = 0 (that is, when there is no noise).

As a second example of application of Itd’s formula, consider the
geometric Brownian motion:

dX, = uX,dt + 6X,dB,

2 These rules are known as the Box algebra.
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where W, are real constants, and consider the map g(¢,x) = log x. In this
case, we can write

1 0%g 1
x a2 2

% ) 2%
X X

ot ox

QO
&}

and Itd’s formula yields

dY, = dlogX, = (]J.—%Gz)dt+0d3t

STOCHASTIC DIFFERENTIAL EQUATIONS

An Tt6 process defines a process Z(t,0) as the sum of the time integral of
the process a(t,m) plus the 1to integral of the process b(¢,). Suppose
that two functions ©(t,x), y(t,x) that satisfy conditions established
below are given. Given an Itd process X(£,m), the two processes ¢(z,X),
y(£,X) admit respectively a time integral and an Itd integral. It therefore
makes sense to consider the following Itd process:

t t
Z(t, ) = J.(p[s, X(s, m)]ds + jw[s, X(s, m)]dB,
0 0

The term on the right side transforms the process X into a new process
Z. We can now ask if there are stochastic processes X that are mapped
into themselves such that the following stochastic equation is satisfied:

t t
X(t, 0) = J(p[s, X(s, )]ds + j\p[s, X(s, ®)]dB,
0 0

The answer is positive under appropriate conditions. It is possible
to prove the following theorem of existence and uniqueness. Suppose
that a 1-dimensional Brownian motion B, is defined on a probability
space (Q, 3, P) equipped with a filtration 3, and that B; is adapted to
the filtration 3,. Suppose also that the two measurable functions ¢(z,x),
y(t,x) map [0,T] X R — R and that they satisfy the following conditions:

[@(t, )+ [y(t, )| * < C(1 +[x])*, te [0, T, x € R
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and
‘(p(tvx)‘ _(p(t7 D’)"' ‘W(t’x)‘ _W(t3 J’)SD(‘x—y‘), te [0’ T]a xeR

for appropriate constants C,D. The first condition is known as the lin-
ear growth condition, the last condition is the Lipschitz condition that
we encountered in ordinary differential equation (see Chapter 9). Sup-
pose that Z is a random variable independent of the c-algebra S, gener-
ated by B, for ¢+ > 0 such that E( Zz)<<><>. Then there is a unique
stochastic process X, defined for 0 < ¢ < T, with time-continuous paths
such that Xy = Z and such that the following equation is satisfied:

t t
X(t,0) = Xo+ [ols, X(s, 0)1ds + [yls, X(s, )1dB,
0 0

The process X is called a strong solution of the above equation.
The above equation can be written in differential form as follows:

dX(t,®) = o[t, X(t, ®)]dt +y[t, X(t, ®)]dB,

The differential form does not have an independent meaning; a differen-
tial stochastic equation is just a short albeit widely used way to write
the integral equation.

The key requirement of a strong solution is that the filtration 3, is
given and that the functions @,y are adapted to the filtration 3,. From
the economic (or physics) point of view, this requirement translates the
notion of causality. In simple terms, a strong solution is a functional of
the driving Brownian motion and of the “inputs” @,y. A strong solution
at time ¢ is determined only by the “history” up to time ¢ of the inputs
and of the random shocks embodied in the Brownian motion.

These conditions can be weakened. Suppose that we are given only
the two functions @(t,x), y(#,x) and that we must construct a process X,
a Brownian motion B;, and the relative filtration so that the above equa-
tion is satisfied. The equation still admits a unique solution with respect
to the filtration generated by the Brownian motion B. It is however only
a weak solution in the sense that, though there is no anticipation of
information, it is not a functional of a given Brownian motion.> Weak
and strong solutions do not necessarily coincide. However, any strong
solution is also a weak solution with respect to the same filtration.

3 See, for instance, [oannis Karatzas and Steven E. Shreve, Brownian Motion and Sto-
chastic Calculus (New York: Springer, 1991).
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Note that the solution of a differential equation is a stochastic pro-
cess. Initial conditions must therefore be specified as a random variable
and not as a single value as for ordinary differential equations. In other
words, there is an initial value for each state. It is possible to specify a sin-
gle initial value as the initial condition of a stochastic differential equa-
tion. In this case the initial condition is a random variable where the
probability mass is concentrated in a single point.

We omit the detailed proof of the theorem of uniqueness and exist-
ence. Uniqueness is proved using the It6 isometry and the Lipschitz con-
dition. One assumes that there are two different solutions and then
demonstrates that their difference must vanish. The proof of existence
of a solution is similar to the proof of existence of solutions in the
domain of ordinary equations. The solution is constructed inductively
by a recursive relationship of the type

t t
X** D @) = J.(p[s, XK (s, ®)1ds +J.l|l[s, X*(s, 0)1dB,
0 0

It can be shown that this recursive relationship produces a sequence of
processes that converge to the unique solution.

GENERALIZATION TO SEVERAL DIMIENSIONS

The concepts and formulas established so far for Ito (and Stratonovich)
integrals and processes can be extended in a straightforward but often cum-
bersome way to multiple variables. The first step is to define a d-dimen-
sional Brownian motion.

Given a probability space (Q, 3, P) equipped with a filtration {3}, a
d-dimensional standard Brownian motion B,(®), is a stochastic process
with the following properties:

M By(®) is a d-dimensional process defined over the probability space
(Q, 3, P) that takes values in R%.

B B;(®) has continuous paths for 0 < ¢ < co.

[ | Bo((,l)) =0.

B B,(o) is adapted to the filtration S,.

B The increments B;(®) — By(w) are independent of the c-algebra 3, and
have a normal distribution with mean zero and covariance matrix (¢ —
s)I4, where I is the identity matrix.
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The above conditions state that the standard Brownian motion is a sto-
chastic process that starts at zero, has continuous paths, and has nor-
mally distributed increments whose variances grow linearly with time.

The next step is to extend the definition of the It6 integral in a
multi-dimensional environment. This is again a straightforward but
cumbersome extension of the 1-dimensional case. Suppose that the fol-
lowing rxd-dimensional matrix is given:

where each entry vjj = vjj(t, ) satisfies the following conditions:

1. v;; are B?x 3 measurable.
2. vj;are Sadapted.

t
3.P j(vil-)zds <ecoforallz20| = 1.
0

Then, we define the multidimensional It6 integral

t t Ull N Uld dBl
deB = J . .
0 0lv,y = Uy dBd

as the -dimensional column vector whose components are the following
sums of 1-dimensional Itd integrals:

dt
2 jvi/(s, m)dBl-(s, ®)

i=19

Note that the entries of the matrix are functions of time and state:
they form a vector of stochastic processes. Given the previous definition
of Itd integrals, we can now extend the definition of Itd processes to the
multidimensional case. Suppose that the functions # and v satisfy the
conditions established for the one-dimensional case. We can then form a
multidimensional Ité process as the following vector of Itd processes:
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XmT = Mrdt+l/rldBl + ... +U7ddBd

or, in matrix notation
dX = udt+vdB

After defining the multidimensional It6 process, multidimensional sto-
chastic equations are defined in differential form in matrix notation as
follows:

dX(t, ) = u[t, X (t, ), ..., X (t, ®)]dt
+v[t, X (t, ), ..., X (t, ®)]dB

Consider now the multidimensional map: g(¢,x) = [g(¢,x), ...,
g4(t,x)], which maps the process X into another process Y = g(z,X). It
can be demonstrated that Y is a multidimensional It6 process whose
components are defined according to the following rules:

R T Y P Y A
i i ij i j

1

dBdB, = 1ifi=},0ifi#j, dB,dt = dtdB; = 0

SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS

It is possible to determine an explicit solution of stochastic differential
equations in the linear case and in a number of other cases that can be
reduced to linear equations through functional transformations. Let’s
first consider linear stochastic equations of the form:

dX, = [A(®)X,+a(t)]ldt +0()dB,,0<t <o
Xo=¢&
where B is an r-dimensional Brownian motion independent of the d-

dimensional initial random vector & and the (dxd), (dxd), (dxr) matrices
A(t), a(t), o(t) are nonrandom and time dependent.
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The simplest example of a linear stochastic equation is the equation
of an arithmetic Brownian motion with drift, written as follows:

dX, = pdt+0dB,,0<t <o
X =&, I, G constants

In linear equations of this type, the stochastic part enters only in an
additive way through the terms o;,(#)dB,. The functions 6(¢) are some-
times called the instantaneous variances and covariances of the process.
In the example of the arithmetic Brownian motion, | is called the drift
of the process and o the volatility of the process.

It is intuitive that the solution of this equation is given by the solu-
tion of the associated deterministic equation, that is, the ordinary differ-
ential equation obtained by removing the stochastic part, plus the
cumulated random disturbances. Let’s first consider the associated
deterministic differential equation

ditf = A()x+a(t),0<t <

where x(t) is a d-dimensional vector with initial conditions x(0) = &.

It can be demonstrated that this equation has an absolutely continu-
ous solution in the domain 0 <t < . To find its solution, let’s first con-
sider the matrix differential equation

d_q> = A(t)DP,0<t<oo
dt

This matrix differential equation has an absolutely continuous solution
in the domain 0 < ¢ < oo, The matrix ®(¢) that solves this equation is
called the fundamental solution of the equation. It can be demonstrated
that ®(¢) is a nonsingular matrix for each #. Lastly, it can be demon-
strated that the solution of the equation:

d—Df = At)x+a(t),0<t<oo
dt

with initial condition x(0) = &, can be written in terms of the fundamen-
tal solution as follows:
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t
x(t) = ©(1) x(0)+'[d>1(s)a(s)ds}0$t<oo

0

Let’s now go back to the stochastic equation

dX, = [A(t)X,+a(t)ldt +0()dB,,0<t < e

Xo=§

Using It6’s formula, it can be demonstrated that the above linear sto-
chastic equation admits the following unique solution:

t t
X(t) = @(t) §+jq>‘l(s)a(s)ds+jq>‘1(s)c(s)st ,0<t<oo
0 0

This effectively demonstrates that the solution of the linear stochastic
equation is the solution of the associated deterministic equation plus the
cumulated stochastic term

t
jcp‘l(s)c(s)st
0

To illustrate this, below we now specialize the above solutions in the
case of arithmetic Brownian motion, Ornstein-Uhlenbeck processes, and
geometric Brownian motion.

The Arithmetic Brownian Motion
The arithmetic Brownian motion in one dimension is defined by the fol-
lowing equation:

dX, = udt + 0dB,
In this case, A(#) = 0, a(#) = U, o(¢) = o and the solution becomes

X =ut+oB

The Ornstein-Unhlenbeck Process
The Ornstein-Uhlenbeck process in one dimension is a mean-reverting
process defined by the following equation:
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dX, = -oXdt + 6dB,

It is a mean-reverting process because the drift is pulled back to zero by
a term proportional to the process itself. In this case, A(¢) = —a, a(t) = 0,
6(t) = 6 and the solution becomes

t
X, = Xo+e " +ofe ™7 VdB,
0

The Geometric Brownian Motion
The geometric Brownian motion in one dimension is defined by the fol-
lowing equation:

dX = uXdr + 6XdB

This equation can be easily reduced to the previous linear case by the
transformation:

Y=log X

Let’s apply 1to’s formula

2
dy, = [B_g + 2,4 1a—gb2]dt+ %8 pas,

ot dx 2,2 ox
where
b} ag 19 1
gt x) = logx,—g= 0,28_228__
ot X gyt e

We can then verify that the logarithm of the geometric Brownian motion
becomes an arithmetic Brownian motion with drift

I: e
W= -3

The geometric Brownian motion evolves as a lognormal process:
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X, = xoexp{(u— %cz)t + GBt}

SUMMARY

W Stochastic differential equations give meaning to ordinary differential
equations where some terms are subject to random perturbation.

B Following Itd and Stratonovich, stochastic differential equations are
defined through their integral equivalent: the differential notation is
just a shorthand.

W Itd processes are the sum of a time integral plus an It6 integral.

B It6 processes are closed with respect to smooth maps: a smooth func-
tion of an Itd process is another It6 process defined through the It6 for-
mula.

B Stochastic differential equations are equations established in terms of
It6 processes.

B Linear equations can be solved explicitly as the sum of the solution of
the associated deterministic equation plus a stochastic cumulative
term.
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Financial Econometrics:
Time Series Goncepts,
Representations, and Models

n this chapter and the next we introduce models of discrete-time sto-
Ichastic processes (that is, time series) and address the general problem
of estimating a model from a given set of empirical data. Recall from
Chapter 6 that a stochastic process is a time-dependent random variable.
Stochastic processes explored thus far, for instance Brownian motion and
It6 processes, develop in continuous time. This means that time is a real
variable that can assume any real value. In many applications, however, it
is convenient to constrain time to assume only discrete values. A time
series is a discrete-time stochastic process; that is, it is a collection of ran-
dom variables X; indexed with the integers ...-n,...,-2,-1,0,1,2,....1,...

In finance theory, as in the practice of quantitative finance, both
continuous-time and discrete-time models are used. In many instances,
continuous-time models allow simpler and more concise expressions as
well as more general conclusions, though at the expense of conceptual
complication. For instance, in the limit of continuous time, apparently
simple processes such as white noise cannot be meaningfully defined.
The mathematics of asset management tends to prefer discrete-time pro-
cesses while the mathematics of derivatives tends to prefer continuous-
time processes.

The first issue to address in financial econometrics is the spacing of
discrete points of time. An obvious choice is regular, constant spacing.
In this case, the time points are placed at multiples of a single time inter-
val: ¢ = iAt. For instance, one might consider the closing prices at the
end of each day. The use of fixed spacing is appropriate in many appli-

283
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cations. Spacing of time points might also be irregular but deterministic.
For instance, week-ends introduce irregular spacing in a sequence of
daily closing prices. These questions can be easily handled within the
context of discrete time series.

The diffusion of electronic transactions has made available high-fre-
quency data related to individual transactions. These data are randomly
spaced as the intervals between two transactions are random variables. If
one wants to consider randomly spaced time intervals, discrete-time
models will not suffice; one must use either marked point processes (dis-
cussed briefly in Chapter 13) or continuous-time processes through the
use of master equations. In this chapter and the next we discuss only
time series at discrete and fixed intervals of time. Here we introduce con-
cepts, representations, and models of time series. In the next chapter we
will discuss model selection and estimation.

CONCEPTS OF TIME SERIES

A time series is a collection of random variables X, indexed with a dis-
crete time index ¢ = ...—2,-1,0,1,2,.... The variables X, are defined over a
probability space (Q,P,3), where Q is the set of states, P is a probability
measure, and 3 is the c-algebra of events, equipped with a discrete fil-
tration {3} that determines the propagation of information (see Chapter
6). A realization of a time series is a countable sequence of real num-
bers, one for each time point.

The variables X, are characterized by finite-dimensional distributions
(see the section on stochastic processes in Chapter 6) as well as by condi-
tional distributions, F (x/S,), s > ¢. The latter are the distributions of the
variable x at time s given the c-algebra {3} at time ¢. Note that condition-
ing is always conditioning with respect to a c-algebra though (see Chap-
ter 6) we will not always strictly use this notation and will condition with
respect to the value of variables, for instance:

Fi(xJ/x;), s>t

If the series starts from a given point, initial conditions must be fixed.
Initial conditions might be a set of fixed values or a set of random vari-
ables. If the initial conditions are not fixed values but random variables,
one has to consider the correlation between the initial values and the ran-
dom shocks of the series. A usual assumption is that the initial conditions
and the random shocks of the series are statistically independent.
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How do we describe a time series? One way to describe a time series
is to determine the mathematical form of the conditional distribution.
This description is called an autopredictive model because the model
predicts future values of the series from past values. However, we can
also describe a time series as a function of another time series. This is
called an explanatory model as one variable is explained by another.
The simplest example is a regression model where a variable is propor-
tional to another exogenously given variable plus a constant term. Time
series can also be described as random fluctuations or adjustments
around a deterministic path. These models are called adjustment mod-
els. Explanatory, autopredictive, and adjustment models can be mixed
in a single model. The data generation process (DGP) of a series is a
mathematical process that computes the future values of the variables
given all information known at time 2.

An important concept is that of a stationary time series. A series is
stationary in the “strict sense” if all finite dimensional distributions are
invariant with respect to a time shift. A series is stationary in a “weaker
sense” if only the moments up to a given order are invariant with
respect to a time shift. In this chapter, time series will be considered
(weakly) stationary if the first two moments are time-independent. Note
that a stationary series cannot have a starting point but must extend
over the entire infinite time axis. Note also that a series can be strictly
stationary (that is, have all distributions time-independent, but the
moments might not exist). Thus a strictly stationary series is not neces-
sarily weakly stationary.

A time series can be univariate or multivariate. A multivariate time
series is a time-dependent random vector. The principles of modeling
remain the same but the problem of estimation might become very diffi-
cult given the large numbers of parameters to be estimated.

Models of time series are essential building blocks for financial fore-
casting and, therefore, for financial decision-making. In particular asset
allocation and portfolio optimization, when performed quantitatively,
are based on some model of financial prices and returns. This chapter
lays down the basic financial econometric theory for financial forecasting.
We will introduce a number of specific models of time series and of multi-
variate time series, presenting the basic facts about the theory of these
processes. The next chapter will tackle the problem of model estimation
from empirical data. We will consider primarily models of financial
assets, though most theoretical considerations apply to macroeconomic
variables as well. These models include:

B Correlated random walks. The simplest model of multiple financial
assets is that of correlated random walks. This model is only a rough
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approximation of equity price processes and presents serious problems
of estimation in the case of a large number of processes.

B Factor models. Factor models address the problem of estimation in the
case of a large number of processes. In a factor model there are correla-
tions only among factors and between each factor and each time series.
Factors might be exogenous or endogenously modeled.

B State-space models. State-space models describe factors as autoregres-
sive processes. They work in stationary and nonstationary environ-
ments. In the latter case, state-space models are equivalent to
cointegrated models.

B Cointegrated models. In a cointegrated model there are portfolios
which are described by autocorrelated, stationary processes. All pro-
cesses are linear combinations of common trends that are represented
by the factors.

The above models are all linear. However, nonlinearities are at work
in financial time series. One way to model nonlinearities is to break down
models into two components, the first being a linear autoregressive model
of the parameters, the second a regressive or autoregressive model of
empirical quantities whose parameters are driven by the first. This is the
case with most of today’s nonlinear models (e.g., ARCH/GARCH mod-
els), Hamilton models, and Markov switching models.

There is a coherent modeling landscape, from correlated random
walks and factor models to the modeling of factors, and, finally, the
modeling of nonlinearities by making the model parameters vary. Before
describing models in detail, however, let’s present some key empirical
facts about financial time series.

STYLIZED FACTS OF FINANCIAL TIME SERIES

Most sciences are stratified in the sense that theories are organized on
different levels. The empirical evidence that supports a theory is gener-
ally formulated in a lower level theory. In physics, for instance, quan-
tum mechanics cannot be formulated as a standalone theory but needs
classical physics to give meaning to measurement. Economics is no
exception. A basic level of knowledge in economics is represented by the
so-called stylized facts. Stylized facts are statistical findings of a general
nature on financial and economic time series; they cannot be considered
raw data insofar as they are formulated as statistical hypotheses. On the
other hand, they are not full-fledged theories.
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Amongst the most important stylized facts from the point of view of
finance theory, we can mention the following:

B Returns of individual stocks exhibit nearly zero autocorrelation at
every lag.

B Returns of some equity portfolios exhibit significant autocorrelation.

B The volatility of returns exhibits hyperbolic decay with significant
autocorrelation.

B The distribution of stock returns is not normal for time horizons from
a few minutes to a few days. The exact shape is difficult to ascertain
but power law decay cannot be rejected.

B The distribution of stock returns is close to a log-normal after a few
days.

B There are large stock price drops (that is, market crashes) that seem to
be outliers with respect to both normal distributions and power law
distributions.

B Stock return time series exhibit significant cross-correlation.

These findings are, in a sense, model-dependent. For instance, the
distribution of returns, a subject that has received a lot of attention, can
be fitted by different distributions. There is no firm evidence on the
exact value of the power exponent, with alternative proposals based on
variable exponents. The autocorrelation is model-dependent while the
exponential decay of return autocorrelation can be interpreted only as
absence of linear dependence.

It is fair to say that these stylized facts set the stage for financial model-
ing but leave ample room for model selection. Financial time series seem to
be nearly random processes that exhibit significant cross correlations and,
in some instances, cross autocorrelations. The global structure of auto and
cross correlations, if it exists at all, must be fairly complex and there is no
immediate evidence that financial time series admit a simple DGP.

One more important feature of financial time series is the presence
of trends. Prima facie trends of economic and financial variables are
exponential trends. Trends are not quantities that can be independently
measured. Trends characterize an entire stochastic model. Therefore
there is no way to arrive at an assessment of trends independent from
the model. We will see later in this chapter that a number of models
reject the assumption of exponential trends. Exponential trends are,
however, a reasonable first approximation.

Given the finite nature of world resources, exponential trends are
not sustainable in the long run. However, they might still be a good
approximation over limited time horizons. An additional insight into
financial time series comes from the consideration of investors’ behav-



2388 The Mathematics of Financial Modeling and Investment Management

ior. If investors are risk averse, as required by the theory of investment
(see Chapter 16) then price processes must exhibit a trade off between
risk and returns. The combination of this insight with the assumption of
exponential trends yields market models with possibly diverging expo-
nential trends for prices and market capitalization.

Again, diverging exponential trends are difficult to justify in the
long run as they would imply that after a while only one entity would
dominate the entire market. Some form of reversion to the mean or
more disruptive phenomena that prevent time series to diverge exponen-
tially must be at work.

In the following sections we will proceed to describe the theory and
the estimation procedures of a number of market models that have been
proposed. After introducing general concepts of the measure of depen-
dence between random variables, we will present the multivariate ran-
dom walk model and will analyze in some detail the correlation
structure of real markets. We will introduce dimensionality reduction
techniques and multifactor models. We will then proceed to introduce
cointegration, autoregressive models, state-space models, ARCH/
GARCH models, Markov switching, and other nonlinear models.

INFINITE MOVING-AVERAGE AND AUTOREGRESSIVE
REPRESENTATION OF TIME SERIES

There are several general representations (or models) of time series. This
section introduces representations based on infinite moving averages or
infinite autoregressions useful from a theoretical point of view. In the
practice of econometrics, however, more parsimonious models such as
the ARMA models (described in the next section) are used. Representa-
tions are different for stationary and nonstationary time series. Let’s
start with univariate stationary time series.

Univariate Stationary Series

The most fundamental model of a univariate stationary time series is the
infinite moving average of a white noise process. In fact, it can be dem-
onstrated that under mild regularity conditions, any univariate station-
ary causal time series admits the following infinite moving average
representation:

xt = Zhl€t71+m
i=0
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where the b; are coefficients and ¢,_; is a one-dimensional zero-mean
white-noise process. This is a causal time series as the present value of
the series depends only on the present and past values of the noise pro-
cess. A more general infinite moving-average representation would
involve a summation which extends from —eo to +eo. Because this repre-
sentation would not make sense from an economic point of view, we
will restrict ourselves only to causal time series.

A sufficient condition for the above series to be stationary is that the
coefficients b; are absolutely summable:

oo

2 V’i\2<°°

i=0

Also, in general it can be demonstrated that given any stationary pro-
cess x;, if the sequence of coefficients b; is absolutely summable, then the
process

Yi = Z hix;

i=1
is stationary.

The Lag Operator L

Let’s now simplify the notation by introducing the lag operator L. The
lag operator L is an operator that acts on an infinite series and produces
another infinite series shifted one place to the left. In other words, the
lag operator replaces every element of a series with the one delayed by
one time lag:

L(x,) = x,_4
The n-th power of the lag operator shifts a series by 7 places:
Ln(xt) =X;_,
Negative powers of the lag operator yield the forward operator F,
which shifts places to the right. The lag operator can be multiplied by a

scalar and different powers can be added. In this way, linear functions
of different powers of the lag operator can be formed as follows:
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N .
1
A(L) = Y aL
i=1
Note that if the lag operator is applied to a series that starts from a
given point, initial conditions must be specified.
Within the domain of stationary series, infinite power series of the

lag operator can also be formed. In fact, as remarked above, given a sta-
tionary series, if the coefficients b; are absolutely summable, the series

2 biLixt
i=1

is well defined in the sense that it converges and defines another station-
ary series. It therefore makes sense to define the operator:

ALy = Y bl
i=1

Now consider the operator I — AL. If |A| <1, this operator can be
inverted and its inverse is given by the infinite power series,

(-aLy = YL
i=1

as can be seen by multiplying I — AL by the power series Z AL
i=1

(I-A) Y AL = L% =1

i=1
On the basis of this relationship, it can be demonstrated that any opera-
tor of the type
N .
A(L) = Y al
i=1

can be inverted provided that the solutions of the equation
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have absolute values strictly greater than 1. The inverse operator is an
infinite power series

AT = Yl
i=1

Given two linear functions of the operator L, it is possible to define
their product

M .
A(L) = Y al
i=1
N .
B(L) = Z b,L'
j=1
M+ N )
P(L) = A(L)B(L) = Y, p,L'

i=1

p; = 2 arbi—r

r=1

The convolution product of two infinite series in the lag operator is
defined in a similar way

AL) = Y aL
i=0

B(L) =Y b,L'
j=0
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oo

C(L) = A(L)xB(L) = ¥ ¢L*
k=0

k
k= z asbk—s
s=0

We can define the left-inverse (right-inverse) of an infinite series as the oper-
ator A7Y(L), such that A™}(L) x A(L) = I. The inverse can always be com-
puted solving an infinite set of recursive equations provided that aq # 0.
However, the inverse series will not necessarily be stationary. A sufficient
condition for stationarity is that the coefficients of the inverse series are
absolutely summable.

In general, it is possible to perform on the symbolic series

H(L) = Y h,L
i=1

the same operations that can be performed on the series

H(z) = Y b

i=1

with z complex variable. However operations performed on a series of
lag operators neither assume nor entail convergence properties. In fact,
one can think of z simply as a symbol. In particular, the inverse does not
necessarily exhibit absolutely summable coefficients.

Stationary Univariate Moving Average

Using the lag operator L notation, the infinite moving average represen-
tation can be written as follows:

X, = [2 hiL’]e#m = H(L)e, +m
i=0

Consider now the inverse series:
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(L) = Y ML T(L)H(L) = I
i=1

If the coefficients A; are absolutely summable, we can write

e, = N(L)x, = Y LL'x,_;
i=1

and the series is said to be invertible.

Multivariate Stationary Series

The concepts of infinite moving-average representation and of invert-
ibility defined above for univariate series carry over immediately to the
multivariate case. In fact, it can be demonstrated that under mild regu-
larity conditions, any multivariate stationary causal time series admits
the following infinite moving-average representation:

X, = ZHiet—i"'m
i=0

where the H; are nxn matrices, €, is a n-dimensional, zero-mean, white
noise process with nonsingular variance-covariance matrix €, and m is an
n-vector of constants. The coefficients H; are called Markov coefficients.
This moving-average representation is called the Wold representation.
Wold representation states that any series where only the past influences
the present can be represented as an infinite moving average of white noise
terms. Note that, as in the univariate case, the infinite moving-average rep-
resentation can be written in more general terms as a sum which extends
from —eo to +e0. However a series of this type is not suitable for financial
modeling as it is not causal (that is, the future influences the present).
Therefore we consider only moving averages that extend to past terms.

Suppose that the Markov coefficients are an absolutely summable
series:

2 [H <o
i=0

2. . . .
where ||[H|” indicates the largest eigenvalue of the matrix HH’. Under
this assumption, it can be demonstrated that the series is stationary and
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that the (time-invariant) first two moments can be computed in the fol-
lowing way:

cov(x,X,_p) = Z H,QH_,
i=0

E[x,] = m

with the convention H; = 0 if i < 0. Note that the assumption that the
Markov coefficients are an absolutely summable series is essential, oth-
erwise the covariance matrix would not exist. For instance, if the H;
were identity matrices, the variances of the series would become infinite.

As the second moments are all constants, the series is weakly sta-
tionary. We can write the time-independent autocovariance function of
the series, which is a #xz matrix whose entries are a function of the lag
b, as

T (h) = Y HQH] ,
i=0

Under the assumption that the Markov coefficients are an abso-
lutely summable series, we can use the lag-operator L representation
and write the operator

H(L) = Y H,L'
i=0

so that the Wold representation of a series can be written as

x, = H(L)e +m

The concept of invertibility carries over to the multivariate case. A
multivariate stationary time series is said to be invertible if it can be rep-
resented in autoregressive form. Invertibility means that the white noise
process can be recovered as a function of the series. In order to explain
the notion of invertible processes, it is useful to introduce the generating
function of the operator H, defined as the following matrix power
series:
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H(z) = Y Hz'
i=0

It can be demonstrated that, if Hy = I, then H(0) = H{ and the
power series H(z) is invertible in the sense that it is possible to formally
derive the inverse series,

H(Z) = 2 Hizi
i=0

such that
IM(z)H(z) = (IxH)(z) =1

where the product is intended as a convolution product. If the coeffi-
cients IT; are absolutely summable, as the process x, is assumed to be
stationary, it can be represented in infinite autoregressive form:

II(L)(x,—m) = ¢,

In this case the process x, is said to be invertible.

From the above, it is clear that the infinite moving average represen-
tation is a more general linear representation of a stationary time than
the infinite autoregressive form. A process that admits both representa-
tions is called invertible.

Nonstationary Series

Let’s now look at nonstationary series. As there is no very general model
of nonstationary time series valid for all nonstationary series, we have
to restrict somehow the family of admissible models. Let’s consider a
family of linear, moving-average, nonstationary models of the following

type:

t

Xt = z sttfz + h(t)Z,l
i=0

where the H; are left unrestricted and do not necessarily form an abso-
lutely summable series, h(#) is deterministic, and z_q is a random vector
called the initial conditions, which is supposed to be uncorrelated with
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the white noise process. The essential differences of this linear model
with respect to the Wold representation of stationary series are:

B The presence of a starting point and of initial conditions.
B The absence of restrictions on the coefficients.
B The index ¢ which restricts the number of summands.

The first two moments of a linear process are not constant. They can be
computed in a way similar to the infinite moving average case:

t
cov(X,X, ) = ZHiQH'i_h+h(t)var(z)h’
i=0

Elx,] = m, = h(t)E[z]

Let’s now see how a linear process can be expressed in autoregres-
sive form. To simplify notation let’s introduce the processes €, and x;
and the deterministic series h(#) defined as follows:

- g ift>0 -~ Ix,ift>0 ~ o |hift>0
o 0ift<0 ~0ift<0 ~0ift<0

It can be demonstrated that, due to the initial conditions, a linear pro-
cess always satisfies the following autoregressive equation:

I(L)x; = g+ I(L)h x (t)z_,

A random walk model

t

Xy =X HE =g+ D €
i=1

is an example of a linear nonstationary model.

The above linear model can also represent processes that are nearly
stationary in the sense that they start from initial conditions but then
converge to a stationary process. A process that converges to a station-
ary process is called asymptotically stationary.

We can summarize the previous discussion as follows. Under mild
regularity conditions, any causal stationary series can be represented as
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an infinite moving average of a white noise process. If the series can also
be represented in an autoregressive form, then the series is said to be
invertible. Nonstationary series do not have corresponding general rep-
resentations. Linear models are a broad class of nonstationary models
and of asymptotically stationary models that provide the theoretical
base for ARMA and state-space processes that will be discussed in the
following sections.

ARMA REPRESENTATIONS

The infinite moving average or autoregressive representations of the pre-
vious section are useful theoretical tools but they cannot be applied to
estimate processes. One needs a parsimonious representation with a
finite number of coefficients. Autoregressive moving average (ARMA)
models and state-space models provide such representation; though
apparently conceptually different, they are statistically equivalent.

Stationary Univariate ARMA Models

Let’s start with univariate stationary processes. An autoregressive pro-
cess of order p — AR(p) is a process of the form:

xt+ ﬂlxt_l + ... +al)xt_l) = St
which can be written using the lag operator as
A(L)x, = (1 +a,L+ ... +aPLp)xt =x,+aLx,+ ... +aPprt_P =g,
Not all processes that can be written in autoregressive form are sta-
tionary. In order to study the stationarity of an autoregressive process,

consider the following polynomial:

AR) = 1+az+... +apzp

where z is a complex variable.
The equation

A(z) = 1+a1z+...+apzp =0

is called the inverse characteristic equation. It can be demonstrated that
if the roots of this equation, that is, its solutions, are all different from 1
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in modulus (that is, the roots do not lie on the unit circle), then the
operator A(L) is invertible and admits the inverse representation:

+o0 +00
x,= AN Lye, = Y A, with Y A <4
i=—co j=—o0

In addition, if the roots are all strictly greater than 1 in modulus, then
the representation only involves positive powers of L:

400 +00
x, = A (L)g, = Y Ag, g, with YA <o
] = —oc0 i=0

We can therefore say that, if the roots of the inverse characteristic equa-
tion of an autoregressive process are all strictly greater than 1 in modu-
lus (that is, they lie outside the unit circle), then the process is invertible
as it admits a causal infinite moving average representation.

In order to avoid possible confusion, note that the solutions of the
inverse characteristic equation are the reciprocal of the solution of the
characteristic equation defined as

-1
A(z) = zp+a1zp

+...+ap=0
Therefore an autoregressive process is invertible with an infinite moving
average representation that only involves positive powers of the opera-
tor L if the solutions of the characteristic equation are all strictly
smaller than 1 in absolute value. This is the condition of invertibility
often stated in the literature.

Let’s now consider finite moving-average representations. A process
is called a moving average process of order g — MA(q) if it admits the
following representation:

_ e —
x, = (L+bL+...+bpL7)e, = g, +byg, 1 +...+bpg,_,
In a way similar to the autoregressive case, if the roots of the equation

B(z) = 1+byz+...+bz" = 0

are all different from 1 in modulus, then the MA(g) process is invertible
and, therefore, admits the infinite autoregressive representation:



Financial Econometrics: Time Series Concepts, Representations, and Models 299

+o0 400
e, = B'(L), = Y me, i, with Y |m] < e
[ = —oco i=0

In addition, if the roots of B(z) are strictly greater than 1 in modulus,
then the autoregressive representation only involves past values of the
process:

400 +o0
1 .
e, = B (L)g, = Y me, ;,with Y m; <+
i=0 i=0

As in the previous case, if one considers the characteristic equation,

B(z) = zq+b1zq_l+...+bq =0

then the MA(g) process admits a causal autoregressive representation if
the roots of the characteristic equation are strictly smaller than 1 in
modulus.

Let’s now consider, more in general, an ARMA process of order p,q.
We say that a stationary process admits a minimal ARMA(p,q) repre-
sentation if it can be written as

Xptapx, g tax, , = b+ +be

or equivalently in terms of the lag operator

A(L)x, = B(L)g,

where €, is a serially uncorrelated white noise with nonzero variance, a
=by=1,a,#0,b, #0, the polynomials A and B have roots strictly
greater than 1 in modulus and do not have any root in common.
Generalizing the reasoning in the pure MA or AR case, it can be
demonstrated that a generic process, which admits the ARMA(p,q) rep-
resentation A(L)x, = B(L)g, is stationary if both polynomials A and B
have roots strictly different from 1. In addition, if all the roots of the
polynomial A(z) are strictly greater than 1 in modulus, then the
ARMA(p,q) process can be expressed as a moving average process:

B(L
_ B,
A(L)

t
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Conversely, if all the roots of the polynomial B(z) are strictly greater
than 1, then the ARMA(p,q) process can be expressed as an autoregres-
sive process:

AW
B(L) '

t

Note that in the above discussions every process was centered—that
is, it had zero constant mean. As we were considering stationary pro-
cesses, this condition is not restrictive as the eventual nonzero mean can
be subtracted.

Note also that ARMA stationary processes extend through the
entire time axis. An ARMA process, which begins from some initial con-
ditions at starting time ¢ = 0, is not stationary even if its roots are
strictly outside the unit circle. It can be demonstrated, however, that
such a process is asymptotically stationary.

Nonstationary Univariate ARMA Models

So far we have considered only stationary processes. However, ARMA
equations can also represent nonstationary processes if some of the
roots of the polynomial A(z) are equal to 1 in modulus. A process
defined by the equation

A(L)x, = B(L)g,

is called an Autoregressive Integrated Moving Average (ARIMA) process
if at least one of the roots of the polynomial A is equal to 1 in modulus.
Suppose that A be a root with multiplicity d. In this case the ARMA rep-
resentation can be written as

A(L)(I-AL)x, = B(L)e,

A(L) = A/(L)(I-AL)*

However this formulation is not satisfactory as the process A is not
invertible if initial conditions are not provided; it is therefore preferable
to offer a more rigorous definition, which includes initial conditions.
Therefore, we give the following definition of nonstationary integrated
ARMA processes.



Financial Econometrics: Time Series Concepts, Representations, and Models 301

A process x, defined for ¢ 2 0 is called an Autoregressive Integrated
Moving Average process—ARIMA (p,d,q)—if it satisfies a relationship
of the type

A(LY(I-AL)x, = B(L)e,

where:

B The polynomials A(L) and B(L) have roots strictly greater than 1.

B ¢, is a white noise process defined for ¢ > 0.

M A set of initial conditions (x_q, ..., X_j_g, € .., €_4) independent from
the white noise is given.

Later in this chapter we discuss the interpretation and further properties
of the ARIMA condition.

Stationary Multivariate ARMA Models

Let’s now move on to consider stationary multivariate processes. A sta-
tionary process which admits an infinite moving-average representation
of the type

Xy = zHietfi
i=0

where g, ; is an n-dimensional, zero-mean, white-noise process with
nonsingular variance-covariance matrix Q is called an autoregressive
moving average—ARMA(p,q)—model, if it satisfies a difference equa-
tion of the type

A(L)x, = B(L)g,

where A and B are matrix polynomials in the lag operator L of order p
and g respectively:

4 .
A(L) = ZAiL’,AO:I,Ap:tO
i=1
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P _
B(L) = ZBiL’,B0=I,Bq¢O
j=1

If g = 0, the process is purely autoregressive of order p; if ¢ = 0, the pro-
cess is purely a moving average of order q. Rearranging the terms of the
difference equation, it is clear that an ARMA process is a process where
the i-th component of the process at time #, x;;, is a linear function of all
the components at different lags plus a finite moving average of white
noise terms.

It can be demonstrated that the ARMA representation is not unique.
The nonuniqueness of the ARMA representation is due to different rea-
sons, such as the existence of a common polynomial factor in the
autoregressive and the moving-average part. It entails that the same pro-
cess can be represented by models with different pairs p,q. For this rea-
son, one would need to determine at least a minimal representation—
that is, an ARMA(p,q) representation such that any other ARMA(p’,q")
representation would have p” > p, ¢° > g. With the exception of the
univariate case, these problems are very difficult from a mathematical
point of view and we will not examine them in detail.

Let’s now explore what restrictions on the polynomials A(L) and
B(L) ensure that the relative ARMA process is stationary. Generalizing
the univariate case, the mathematical analysis of stationarity is based on
the analysis of the polynomial det[A(z)] obtained by formally replacing
the lag operator L with a complex variable z in the matrix A(L) whose
entries are finite polynomials in L.

It can be demonstrated that if the complex roots of the polynomial
det[A(z)], that is, the solutions of the algebraic equation det[A(z)] = O,
which are in general complex numbers, all lie outside the unit circle,
that is, their modulus is strictly greater than one, then the process that
satisfies the ARMA conditions,

A(L)x, = B(L)g,

is stationary. The demonstration is based on formally solving the ARMA
equation, writing (see Chapter 5 on matrix algebra)

x, = A (D)B(L)g, = “UADIR ;e
det[A(L)]

If the roots of the polynomial det[A(z)] lie outside the unit circle,
then it can be shown that
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adi[A(L)]B(L)St _ 2 HiLigt , with z H, absolutely summable
det[A(L)] i=1 i=1

which demonstrates that the process x, is stationary.! As in the univari-
ate case, if one would consider the equations in 1/z, the same reasoning
applies but with roots strictly inside the unit circle.

A stationary ARMA(p,q) process is an autocorrelated process. Its
time-independent autocorrelation function satisfies a set of linear differ-
ence equations. Consider an ARMA(p,q) process which satisfies the fol-
lowing equation:

AOXt+AlXt*1 + ... +APXt7P = B0€t+Bl€t*1 + ... +Bq8t*q
where A = I. By expanding the expression for the autocovariance func-

tion, it can be demonstrated that the autocovariance function satisfies
the following set of linear difference equations:

0ifh>q

q-h

D, B, ,QH;
i=0

where Q and H; are, respectively, the covariance matrix and the Markov
coefficients of the process in its infinite moving-average representation:

X, = ZHiet—i
i=0

From the above representation, it is clear that if the process is purely MA,
that is, if p = 0, then the autocovariance function vanishes for lag » > gq.

It is also possible to demonstrate the converse of this theorem. If a
linear stationary process admits an autocovariance function that satis-
fies the following equations,

! Christian Gourieroux and Alain Monfort, Time Series and Dynamic Models (Cam-
bridge: Cambridge University Press, 1997).
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then the process admits an ARMA(p,q) representation. In particular, a sta-
tionary process is a purely finite moving-average process MA(q), if and
only if its autocovariance functions vanish for b > q, where ¢ is an integer.

Nonstationary Multivariate ARMA Models

Let’s now consider nonstationary series. Consider a series defined for ¢ >
0 that satisfies the following set of difference equations:

Apx, +Ax, 1+...+Apx,_p=Byg,+Big,_+... +qut_q
where, as in the stationary case, €._; is an n-dimensional zero-mean,
white noise process with nonsingular variance-covariance matrix Q, A
=1, By =1 A, # 0, B, #0. Suppose, in addition, that initial conditions
(X_q5+e-X_pspseers€g) are given. Under these conditions, we say that the pro-
cess x;, which is well defined, admits an ARMA representation.

A process x; is said to admit an ARIMA representation if, in addi-
tion to the above, it satisfies the following two conditions: (1) det[B(z)]
has all its roots strictly outside of the unit circle, and (2) det[A(z)] has
all its roots outside the unit circle but with at least one root equal to 1.
In other words, an ARIMA process is an ARMA process that satisfies
some additional conditions. Later in this chapter we will clarify the
meaning of integrated processes.

Markov Coefficients and ARMA Models

For the theoretical analysis of ARMA processes, it is useful to state
what conditions on the Markov coefficients ensure that the process
admits an ARMA representation. Consider a process x;, stationary or
not, which admits a moving-average representation either as

X; = z He, _;
i=0
or as a linear model:

t
i=0

The process x; admits an ARMA representation if and only if there
is an integer g and a set of p matrices A;, i = 0, ..., p such that the
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Markov coefficients H; satisfy the following linear difference equation
starting from g:

4
Y AH, ;=0,l>q
j=0

Therefore, any ARMA process admits an infinite moving-average
representation whose Markov coefficients satisfy a linear difference
equation starting from a certain point. Conversely, any such linear infi-
nite moving-average representation can be expressed parsimoniously in
terms of an ARMA process.

Hankel Matrices and ARMA Models

For the theoretical analysis of ARMA processes it is also useful to
restate the above conditions in terms of the Hankel infinite matrices.” It
can be demonstrated that a process, stationary or not, which admits
either the infinite moving average representation

X; = ZHist—i
i=0

or a linear moving average model

t

i=0

also admits an ARMA representation if and only if the Hankel matrix

formed with the sequence of its Markov coefficients has finite rank or,
equivalently, a finite column rank or row rank.

STATE-SPACE REPRESENTATION

There is another representation of time series called state-space models.
As we will see in this section, state-space models are equivalent to ARMA
models. While the latter are typical of econometrics, state-space models
originated in the domain of engineering and system analysis. Consider a

2 Hankel matrices are explained in Chapter 5.
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system defined for ¢ > 0 and described by the following set of linear differ-
ence equations:

z,,1 = Az, +Bu,
Cz,+Du, +Es,

e
1l

X; = an n-dimensional vector
z; = a k-dimensional vector
an m-dimensional vector
a k-dimensional vector
a kxk matrix
a kxm matrix
an nxk matrix
an nxm matrix
= an nxk matrix

£

moOwWEL

In the language of system theory, the variables u, are called the
inputs of the system, the variables z, are called the state variables of the
system, and the variables x; are called the observations or outputs of the
system, and s; are deterministic terms that describe the deterministic
components if they exist.

The system is formed by two equations. The first equation is a
purely autoregressive AR(1) process that describes the dynamics of the
state variables. The second equation is a static regression of the observa-
tions over the state variables, with inputs as innovations. Note that in
this state-space representation the inputs u, are the same in both equa-
tions. It is possible to reformulate state space models with different,
independent inputs for the states, and the observables. The two repre-
sentations are equivalent.

The fact that the first equation is a first order equation is not restric-
tive as any AR(p) system can be transformed into a first-order AR(1)
system by adding variables. The new variables are defined as the lagged
values of the old variables. This can be illustrated in the case of a single
second-order autoregressive equation:

Xiv1 = 09X+ 0y X, g +8

Define Y, = X,_;. The previous equation is then equivalent to the first-
order system:
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Xip1 = 0pX,+04Y, +8,, 4

Y X

t+1 = Dy
This transformation can be applied to systems of any order and with
any number of equations. Recall from Chapter 9 that a similar proce-
dures is applied to systems of differential equations.

Note that this state-space representation is not restricted to white
noise inputs. A state-space representation is a mapping of inputs into
outputs. Given a realization of the inputs u, and an initial state z, the
realization of the outputs x; is fixed. The state-space representation can
be seen as a black-box, characterized by A, B, C, D, and z, that maps
any m-dimensional input sequence into an n-dimensional output
sequence. The mapping S = S(A,B,C,D,z() of u — x is called a black-box
representation in system theory.

State-space representations are not unique. Given a state-space rep-
resentation, there are infinite other state-space representations that
implement the same mapping u — x. In fact, given any nonsingular
(invertible) matrix Q, it can be easily verified that

S(A,B,C,D,z,) = S(QAQ ', QB,CQ ", D, Qz,)

Any two representations that satisfy the above condition are called
equivalent.

The minimal size of a system that admits a state-space representa-
tion is the minimum possible size k of the state vector. A representation
is called minimal if its state vector has size k.

We can now establish the connection between state-space and infi-
nite moving-average representations and the equivalence of ARMA and
state-space representations. Consider a n-dimensional process x,, which
admits an infinite moving-average representation

Xy = ZHiezfi
i=0

where €, is an n-dimensional, zero-mean, white noise process with non-
singular variance-covariance matrix Q and Hj = I, or a linear moving
average model
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It can be demonstrated that this system admits the state-space repre-
sentation:

Zt+1 = AZt+B8t
Cz, + Deg,

Xy

if and only if its Hankel matrix is of finite rank. In other words, a time
series which admits an infinite moving-average representation and has a
Hankel matrix of finite rank can be generated by a state-space system
where the inputs are the noise. Conversely, a state-space system with
white-noise as inputs generates a series that can be represented as an
infinite moving-average with a Hankel matrix of finite rank. This con-
clusion is valid for both stationary and nonstationary processes.

Equivalence of State-Space and ARMA Representations
We have seen in the previous section that a time series which admits an
infinite moving-average representation can also be represented as an
ARMA process if and only if its Hankel matrix is of finite rank. There-
fore we can conclude that a time series admits an ARMA representation
if and only if it admits a state-space representation. ARMA and state-
space representations are equivalent.

To see the equivalence between ARMA and state-space models, con-
sider a univariate ARMA(p,q) model

4 q
X = Z POpxy_ it 2 Vg, i, Wo=1
i=1 i=0
This ARMA model is equivalent to the following state-space model
x; = Cgy
2=Az 1+ 8
where

C=[01...0, Ty ...yl
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x_t‘l Q1. =9, Ty oy, Wz;
: 1 ..000.. 0 O©
iy R
z=1g |andA=1]¢09 .1 00.. 0 0
&1 0 .. 0 0O0.. 0 0
ey 0 .. 0 00.. 1 0]

In general, the number of states will be larger than the number of obser-
vations. However, the number of states can be reduced model reduction
techniques.®

The connection between ARMA and state-space models has a deep
meaning that will be elucidated after introducing the concept of cointe-
gration and after generalizing the concept of state-space modeling. As
we will see, both cointegration and state-space modeling implement a
fundamental dimensionality reduction which plays a key role in the
econometrics of financial time series.

INTEGRATED SERIES AND TRENDS

This section introduces the fundamental notions of trend stationary
series, difference stationary series, and integrated series. Consider a one-
dimensional time series. A trend stationary series is a series formed by a
deterministic trend plus a stationary process. It can be written as

X, = f(t) +e(2)

A trend stationary process can be transformed into a stationary pro-
cess by subtracting the trend. Removing the deterministic trend entails
that the deterministic trend is known. A trend stationary series is an
example of an adjustment model.

Consider now a time series X,. The operation of differencing a series
consists of forming a new series Y; = AX; = X, — X;_;. The operation of
differencing can be repeated an arbitrary number of times. For instance,
differencing twice the series X, yields the following series:

3 The idea of applying model reduction techniques to state-space models was advo-
cated by, among others, Masanao Aoki. See M. Aoki and A. Havenner, “State Space
Modeling of Multiple Time Series,” Econometric Reviews (1991), pp. 10:1-59.
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N
I

¢ =AY, = AAX)) = (X, =X, 1) - (X, =X, _3)
Xt_thl_thz"'thz»

Differencing can be written in terms of the lag operator as
axd = (1-1y'x,

A difference stationary series is a series that is transformed into a
stationary series by differencing. A difference stationary series can be
written as

AX, = u+e(t)
X, = X, (+u+e(r)

where €(2) is a zero-mean stationary process and W is a constant. A trend
stationary series with a linear trend is also difference stationary, if spac-
ings are regular. The opposite is not generally true. A time series is said
to be integrated of order # if it can be transformed into a stationary
series by differencing 7 times.

Note that the concept of integrated series as defined above entails
that a series extends on the entire time axis. If a series starts from a set
of initial conditions, the difference sequence can only be asymptotically
stationary.

There are a number of obvious differences between trend stationary
and difference stationary series. A trend stationary series experiences
stationary fluctuation, with constant variance, around an arbitrary
trend. A difference stationary series meanders arbitrarily far from a lin-
ear trend, producing fluctuations of growing variance. The simplest
example of difference stationary series is the random walk.

An integrated series is characterized by a stochastic trend. In fact, a
difference stationary series can be written as

t—1
X, = ut+ Zs(s) +e(t)

s+0

The difference X, - X, between the value of a process at time ¢ and
the best affine prediction at time # — 1 is called the innovation of the pro-
cess. In the above linear equation, the stationary process €(¢) is the inno-
vation process. A key aspect of integrated processes is that innovations
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€(t) never decay but keep on accumulating. In a trend stationary pro-
cess, on the other hand, past innovations disappear at every new step.

These considerations carry over immediately in a multidimensional
environment. Multidimensional trend stationary series will exhibit multiple
trends, in principle one for each component. Multidimensional difference-
stationary series will yield a stationary process after differencing.

Let’s now see how these concepts fit into the ARMA framework,
starting with univariate ARMA model. Recall that an ARIMA process is
defined as an ARMA process in which the polynomial B has all roots
outside the unit circle while the polynomial A has one or more roots
equal to 1. In the latter case the process can be written as

A'(L)A%%, = B(L)e,

A(L) = (1-L)¢A"(L)

and we say that the process is integrated of order #. If initial conditions
are supplied, the process can be inverted and the difference sequence is
asymptotically stationary.

The notion of integrated processes carries over naturally in the mul-
tivariate case but with a subtle difference. Recall from earlier discussion
in this chapter that an ARIMA model is an ARMA model:

A(L)x, = B(L)g,

which satisfies two additional conditions: (1) det[B(z)] has all its roots
strictly outside of the unit circle, and (2) det[A(z)] has all its roots out-
side the unit circle but with at least one root equal to 1.

Now suppose that, after differencing d times, the multivariate series
A"x, can be represented as follows:

A’(L)x, = B'(L)g, 1 with A’(L) = A(L)A"

In this case, if (1) B’(z) is of order g and det[B’(z)] has all its roots
strictly outside of the unit circle and (2) A’(z) is of order p and
det[A’(z)] has all its roots outside the unit circle, then the process is
called ARIMA(p,d,q). Not all ARIMA models can be put in this frame-
work as different components might have a different order of integration.

Note that in an ARIMA(p,d,q) model each component series of the
multivariate model is individually integrated. A multivariate series is
integrated of order d if every component series is integrated of order d.
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Note also that ARIMA processes are not invertible as infinite mov-
ing averages, but as discussed, they can be inverted in terms of a generic
linear moving average model with stochastic initial conditions. In addi-
tion, the process in the d-differences is asymptotically stationary.

In both trend stationary and difference stationary processes, innova-
tions can be serially autocorrelated. In the ARMA representations dis-
cussed in the previous section, innovations are serially uncorrelated white
noise as all the autocorrelations are assumed to be modeled in the ARMA
model. If there is residual autocorrelation, the ARMA or ARIMA model
is somehow misspecified.

The notion of an integrated process is essentially linear. A process is
integrated if stationary innovations keep on adding indefinitely. Note
that innovations could, however, cumulate in ways other than addition,
producing essentially nonlinear processes. In ARCH and GARCH pro-
cesses for instance, innovations do not simply add to past innovations.

The behavior of integrated and nonintegrated time series is quite dif-
ferent and the estimation procedures are different as well. It is therefore
important to ascertain if a series is integrated or not. Often a prelimi-
nary analysis to ascertain integratedness suggests what type of model
should be used.

A number of statistical tests to ascertain if a univariate series is inte-
grated are available. Perhaps the most widely used and known are the
Dickey-Fuller (DF) and the Augmented Dickey-Fuller (ADF) tests. The
DF test assumes as a null hypothesis that the series is integrated of order
1 with uncorrelated innovations. Under this assumption, the series can
be written as a random walk in the following form:

X1 =pX,+b+g

p=1
g, 1ID

where IID is an independent and identical sequence (see Chapter 6).

In a sample generated by a model of this type, the value of p esti-
mated on the sample is stochastic. Estimation can be performed with the
ordinary least square (OLS) method. Dickey and Fuller* determined the
theoretical distribution of p and computed the critical values of p that

*See William H. Greene, Econometric Analysis: Fifth Edition (Upper Sadle River,
NJ: Prentice-Hall, 2003).
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correspond to different confidence intervals. The theoretical distribution
of p is determined computing a functional of the Brownian motion.

Given a sample of a series, for instance a series of log prices, appli-
cation of the DF test entails computing the autoregressive parameter p
on the given sample and comparing it with the known critical values for
different confidence intervals. The strict hypothesis of random walk is
too strong for most econometric applications. The DF test was extended
to cover the case of correlated residuals that are modeled as a linear
model. In the latter case, the DF test is called the Augmented Dickey
Fuller or ADF test. The Phillips and Perron test is the DF test in the gen-
eral case of autocorrelated residuals.

SUMMARY

B A time series is a discrete-time stochastic process, that is, a denumera-
ble collection of random variables indexed by integer numbers.

B Any stationary time series admits an infinite moving average represen-
tation, that is to say, it can be represented as an infinite sum of white
noise terms with appropriate coefficients.

B A time series is said to be invertible if it can also be represented as an
infinite autoregression, that is, an infinite sum of all past terms with
appropriate coefficients.

B ARMA models are parsimonious representations that involve only a
finite number of moving average and autoregressive terms.

B An ARMA model is stationary if all the roots of the inverse characteris-
tic equation of the AR or the MA part have roots with modulus strictly
greater than one.

B A process is said to be integrated of order p if it becomes stationary
after differencing p times.

B A state-space model is a regression of observable variables over an
ARMA model of lower dimensionality.

B Every ARMA process admits a state-space representation.
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Financial Econometrics:
Model Selection, Estimation,
and Testing

n economics and finance theory models are rarely determined by
Istrong theoretical considerations. Often, one or more families of mod-
els compete as plausible explanations of empirical data. Therefore, a
specific family of models has to be selected and, within a given family,
parameters have to be estimated. In this chapter we discuss criteria for
model selection and parameter estimation.

MODEL SELECTION

Science works by making hypotheses and testing them. In the physical
sciences, in particular, hypotheses are mathematical models typically
tested with a very high level of precision under a variety of experimental
settings. In the usual process of scientific inquiry, models can be under-
stood as the product of human creativity. How the general concepts of
science are formed and modified to account for new empirical evidence
has been the subject of intense study.’

With the advent of fast computers, an automatic approach to sci-
ence—and to the creative process in general—has been made possible.
The Nobel laureate Herbert Simon was a strong advocate of the idea
that the creative discovery process can be automated as an algorithmic
(that is, step-by-step) search in a space of different possibilities.

! See for instance Thomas Kuhn, The Structure of Scientific Revolutions: Third Edi-
tion (Chicago: University of Chicago Press, 1996).

315
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Since the pioneering work of Simon, many different search strate-
gies have been proposed by statisticians and researchers in artificial
intelligence. Most approaches to searching strategies are based on mini-
mizing a “distance” from an objective. In the case of econometrics, the
objective of searching is to find the best model that describes data.
Searches are implemented by optimization of some functional.

The problem with the search approach is that the search space is infi-
nite. Even if the search space can be made finite by applying some sort of
discretization, its size for real-life problems is enormous. Any practical
application of the idea of automatic searches requires that the search
space is constrained. Econometrics, as well as statistics and data mining,
constrains the search space by searching within given families of models.

In econometrics, the selection of the model family is typically per-
formed on the basis of theoretical considerations as in the physical sci-
ences. There is no way that an unconstrained search for models might
yield positive results. Various tools might help to decide what family of
models to adopt but, ultimately, model selection is a creative decision
based on theoretical grounds. Once a family of models is selected, there
are still choices to be made as regards the constraints to apply.

A typical top-down approach to constraining searches consists of
starting with a broad family of unrestricted models, for instance, as
explained later in this chapter, Vector Autoregressive Models (VAR),
and then proceeding by constraining them, for instance by applying
error correction constraints as discussed later. A typical bottom-up
approach starts with a family of highly constrained models suggested by
theory and then progressively relaxes constraints.

As there is a large amount of uncertainty in econometrics, model
selection is never definitive and many different models may coexist as
competing or synergic explanations of the same empirical facts, leading
to model uncertainty. One can deal with this by giving weights to vari-
ous models, e.g., predict with the weighted average of the prediction
from several models. This process can be performed under a classical
statistical framework or under a Bayesian statistical framework if prior
probabilities can be assigned to models.? In this sense, econometrics is
quite different from the physical sciences where the coexistence of com-
peting theories is a rare event.

Econometric models generally entail the selection of parameters or
even the selection of a specific model within a family. This is the realm of
algorithmic searches, generally in the form of optimization procedures.

2 A classical reference to Bayesian statistics with emphasis on statistical inference as
decision theory is: Jos¢ M. Bernardo and Adrian F.M. Smith, Bayesian Theory
(Chichester, U.K.: John Wiley & Sons., 2000).
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For instance, an econometrician might decide, on theoretical grounds, to
adopt an ARMA family of models. Searches will then help determine
parameters such as the order of the model and the estimation of the
model parameter. We will return to the problem of determining the
model complexity and estimating parameters in the following sections.

The above considerations apply to parametric models, that is, mod-
els that include parameters to be estimated. There are statistical models
that appear to be nonparametric. Nonparametric models are typically
based on the empirical estimation of probability distribution functions.
Nonparametric models are typically simple models as there is no practi-
cal way to estimate empirically complex models.

In summary, econometrics follows a general scientific principle of
formulation and testing of theoretical hypotheses. However, economet-
ric hypotheses are generally formulated as a family of models with
parameters to be optimized. Econometrics is thus an instance of a gen-
eral process of learning.’

LEARNING AND MODEL COMPLEXITY

If one had an infinite amount of empirical data and an infinite amount of
computational resources, econometric models could in principle be selected
with arbitrary accuracy. However as empirical data are finite and, gener-
ally, scarce, many different models fit empirical data. The key problem of
statistical learning is that most families of models can be parameterized so
that they can fit a finite sample of data with arbitrary accuracy. For
instance, if an arbitrary number of lags is allowed, an ARMA model can be
made to fit any sample of data with arbitrary accuracy. A model of this
type, however, would have very poor forecasting ability. The phenomenon
of fitting sample data with excessive accuracy is called overfitting.

In the classical formulation of the physical sciences, overfitting is a
nonissue as models are determined with theoretical considerations and
are not adaptively fit to data. The problem of overfitting arises in con-
nection with broad families of models that are able to fit any set of data
with arbitrary accuracy. Avoiding overfitting is essentially a problem of

3 Christian Gourieroux and Alain Monfort, Statistics and Econometric Models
(Cambridge: Cambridge University Press, 1995); D.F. Hendry, “Econometrics: Al-
chemy or Science?” Economica 47 (1980), pp. 387-406, reprinted in D.F. Hendry,
Econometrics: Alchemy or Science? (Oxford: Blackwell Publishers, 1993, and Ox-
ford University Press, 2000); D.F. Hendry, Dynamic Econometrics (Oxford: Oxford
University Press, 1995); and Vladimir N. Vapnik, Statistical Learning Theory (New
York: John Wiley and Sons, 1998).
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selecting the right model complexity. The complexity of a model is
sometimes identified with its dimensionality, that is, with the number of
free parameters of the model.

The problem of model complexity is intimately connected with the
concept of algorithmic compressibility introduced in the 1960s indepen-
dently by Andrei Kolmogorov* and Gregory Chaitin.’ In intuitive terms,
algorithmic complexity is defined as the minimum length of a program
able to reproduce a given stream of data. If the minimum length of a
program able to generate the given sequence is the same as the length of
the data stream, then there is no algorithmic compressibility and data
can be considered purely random. If, on the other hand, a short pro-
gram is able to describe a long stream of data, then the level of algorith-
mic compressibility is high and scientific explanation is possible.

Models can only describe algorithmically compressible data. In a
nutshell, the problem of learning is to find the right match between the
algorithmic compressibility of the data and the dimensionality of the
model. In practice, it is a question of implementing a trade-off between
the accuracy of the estimate and the size of the sample.

Various methodologies have been proposed. Some early proposals are
empirical rules of thumb, based on increasing the model complexity until
there is no more gain in the forecasting accuracy of the model. These pro-
cedures require partitioning the data in training and test sets, so that
models can be estimated on the training data and tested on the test data.

Procedures such as the Box-Jenkins methodology for the determina-
tion of the right ARMA model can be considered ad hoc methods based
on specific characteristics of the model, for instance, the decay of the
autocorrelation function in the case of ARMA models.

More general criteria for model complexity are based on results
from information theory. The Akaike Information Criteria (AIC) pro-
posed by Akaike® is a model selection criterion based on the informa-
tion content of the model. The Bayesian Information Criteria (BIC)
proposed by Schwartz’ is another model selection criterion based on
information theory in a Bayesian context.

* Andrei N. Kolmogorov, “Three Approaches to the Quantitative Definition of In-
formation,” Problems of Information Transmission 1 (1965), pp. 1-7.

3 Gregory J. Chaitin, “On the Length of Programs for Computing Finite Binary Sequenc-
es,” Journal of Association Computational Mathematics 13 (1965), pp. 547-569.

® H. Akaike, “Information Theory and an Extension of the Maximum Likelihood
Principle,” in B.N. Petrov and F. Csake (eds.), Second International Symposium on
Information Theory (Budapest: Akademiai Kiado, 1973), pp. 267-281.

7 Gideon Schwarz, “Estimating the Dimension of a Model,” Annals of Statistics 6
(1978), pp. 461-464.
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Recently, the theory of learning has been given a firm theoretical
basis by Vladimir Vapnik and Alexey Chervonenkis.® The Vapnik-Cher-
vonenkis (VC) theory of learning is a complex theoretical framework
for learning that, when applicable, is able to give precise theoretical
bounds to the learning abilities of models. The VC theory has been
applied in the context of nonlinear models thus originating the so-called
Support Vector Machines. Though its theoretical foundation is solid,
the practical applicability of the VC theory is complex. It has not found
yet a broad following in the world of econometrics.

MAXIMUM LIKELIHOOD ESTIMATE

Once the dimensionality of the model has been chosen, parameters need
to be estimated. This is the somewhat firmer ground of statistical esti-
mation. An estimator of a parameter is a statistic, that is, a function
computed on the sample data. For instance, the empirical average

n
X = in
i=1

of an n-sample is an estimator of the population mean. An estimator is
called unbiased if its expected value coincides with the theoretical
parameter. An estimator is called consistent if a sequence of estimators
computed on a sequence of samples whose size tends to infinity con-
verges to the true theoretical value of the parameter.

An estimator is a stochastic quantity when computed on a sample.
Given a model, the distribution of the estimator on samples of a given
size is determined and can be computed. Different estimators of the
same parameters will be characterized by different distributions when
computed on samples of the same size. The variance of the estimator’s
distribution is an indication of the quality of the approximation offered
by the estimator. An efficient estimator has the lowest possible variance.
A lower bound of an estimator variance is given by the Cramer-Rao
bound.

The Cramer-Rao bound is a theoretical lower bound to the accuracy
of estimates. It can be formulated as follows. Suppose that a population
sample X has a joint density f(x ©) that depends on a parameter ¥ and
that Y = g(X) is an unbiased estimator of ¥. Y is a random variable that
depends on the sample. The Cramer-Rao bound prescribes a lower

8 Vapnik, Statistical Learning Theory.
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. 2 . . :
bound for the variance oy of Y. In fact, under mild regularity condi-
tions, it can be demonstrated that

(5%/ = var Yz—l—
In

Py 2
I, = nE{ —logf(X]0) }
00

The Cramer-Rao bound can be generalized to the estimates of a k-
vector of parameters 0. In this case, one must consider the Fisher infor-
mation matrix I(0) (see below) which is defined as the variance-covari-
ance matrix of the vector

2 logf(X 6)
00

It can be demonstrated that the difference between the variance-covari-
ance matrix of the vector © and the inverse of the Fisher information
matrix is a nonnegative definite matrix.

This does not mean that the entries of the variance-covariance
matrix of the vector 0 are systematically bigger than the elements of the
inverse of the Fisher information matrix. However, we can determine a
lower bound for the variance of each parameter 6;. In fact, as all the
diagonal elements a nonnegative definite matrix are nonnegative, the
following relationship holds:

2 -1
g =var 0;2{I "}ii
1

In other words, the lower bound of the variance of the i-th parameter
0, is the i-th diagonal entry of the inverse of the Fisher information
matrix. Estimators that attain the Cramer-Rao bound are called efficient
estimators. In the following section we will show that the maximum like-
lihood (ML) estimators attain the Cramer-Rao lower bound and are
therefore efficient estimators.

There are various methodologies for determining estimators. An
important methodology is based on the maximum likelihood estimation
(MLE). MLE is a principle of statistical estimation which, given a para-
metric model, prescribes choosing those parameters that maximize the
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likelihood of the sample under the model. This idea is highly intuitive: If
one throws a coin and obtains 75 heads out of 100 trials, one believes
that the probabilities of head and tail are % and Y4 respectively and not
that one is experiencing a very unlikely run of heads.

Suppose that an n-sample x = (x1,...,x,,) with a joint density function
f(x/9) is given. Suppose also that the density depends on a set of parame-
ters U. The likelihood function is any function L(®) proportional to f(x/9):

L(9) e f(x[®)

computed on the given sample. The MLE prescribes to choose those
parameters ¥ that maximize the likelihood. If the sample is formed by

independent draws from a density, then the likelihood is the product of
individual likelihoods:

f(x/9) = T fx; 9

i=1

L(®) o J]fx; 0

i=1

In this case, in order to simplify calculations, one normally com-
putes the log-likelihood defined as the logarithm of the likelihood, so
that the product is transformed into a sum. As the logarithm is an
increasing function, maximizing the likelihood or the log likelihood
gives the same results.

The MLE is an estimation method which conforms to general scientific
principles. From a statistical point of view, it has interesting properties. In
fact, it can be demonstrated that a ML estimator is an efficient estimator
(that is, an estimator which attains the minimum possible variance).

In the case of independent samples, the classical theory of ML esti-
mators can be resumed as follows. Let Y}, i = 1,2,...,n be # independent
variables with probability density functions f;(y;|0), where 0 is a k-vector
of parameters to be estimated. Let the joint density of # independent
observations y = (y;) of the variables Y; be

fiy 8) = []f:(y; &) = L(y 0)

i=1

The log-likelihood function of the sample is
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logL(y|0) = Y logfi(y;|6)
i=1

The Fisher score function # is defined as the k-vector of the first deriva-
tives of the log-likelihood:

u(8) = [1,(8)]

uj(e) = ilogL(y\e) =12,k
a6,

The ML estimator 8 of the true parameter 0 is obtained equating
the score to zero: u(@) = 0. It can be demonstrated that the mean of the
score evaluated at the true parameter value vanishes: E[u(08)] = 0. The
variance-covariance matrix of the score is called the Fisher information
matrix:

var/cov[u(8)] = E[u(®)u’(8)] = 1(0)

Under mild regularity conditions it can be demonstrated that the follow-
ing relationship holds:

2
1(0) = -E 07 logL(0)
06,00,

The matrix of the second derivatives on the right side is called the
observed information matrix. The classical theory of ML estimators
states that, in large samples, the distribution of the ML estimator 8 of 6
is approximately normal with parameters [0, I"'(0)], that is, the follow-
ing relationship holds:

6~ N[6,1(8)]

This relationship tells us that ML estimators are efficient estimators as
their variance attains the Cramer-Rao bound. The asymptotic joint nor-
mality of the ML estimators can be used to construct a number of tests
and confidence intervals.
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Suppose that one wants to estimate a regressive model Y =aX + b +
€ from a sample of 7 pairs (y;, x;). The linear regressive model is charac-
terized by the two parameters @ and b, which can be estimated with the
Ordinary Least Square (OLS) method. The OLS computes the straight
line that minimizes the sum of the squares of the distances of the sam-
ples from that straight line. o

In a probabilistic setting, the estimates a, b of the two parameters a
and b depend on the sample. They obey a distribution that depends on
the distribution of the errors . It can be demonstrated that, if the errors
are normally distributed IID sequences than the OLS estimators a, b are
unbiased ML estimators. They are therefore efficient estimators. If the
errors are IID variables with finite variance but are not normally distrib-
uted, then the OLS estimators a, b of the two parameters a and b are
unbiased estimators but not necessarily ML estimators.

The OLS estimation procedure is very general. It can be demon-
strated that any linear unconstrained autoregressive model with normal
innovations can be estimated with OLS estimators and that the ensuing
estimators are unbiased ML estimators and thus efficient estimators.

One can also estimate directly the moments of a distribution. In par-
ticular, in a multivariate environment we have to estimate the variance-
covariance matrix Q. It can be demonstrated that the variance-covari-
ance matrix can be estimated through empirical variances and covari-
ances. Consider two random variables X,Y.

The empirical covariance between the two variables is defined as
follows:

n
N 1 — -
cxyz-Zp&—Xxn—w
ni-1

where the empirical means of the variables are:

X=1%x,

<
I
Sl

n
Y,
i=1

The correlation coefficient is the covariance normalized with the
product of the respective empirical standard deviations:
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It can be demonstrated that the empirical covariance matrix is an
unbiased estimator of the variance-covariance matrix. If innovations are
jointly normally distributed, it is also an ML estimator.

LINEAR VIODELS OF FINANCIAL TIME SERIES

Let’s now apply previous general theoretical considerations and those of
the previous chapter to modeling financial time series. This section
describes linear models of financial time series using the concepts intro-
duced in the previous sections. Linear financial models are regressive
and/or autoregressive models where a series is regressed over exogenous
variables and/or its own past under a number of constraints.

In the practice of asset and portfolio management, models of prices,
returns, and rates are used as inputs to asset selection methodologies
such as semiautomated investment processes, heuristic computational
procedures, or full-fledged optimization procedures. The following
chapters on methods for asset management will explain how the compu-
tational models described in this and the following chapter translate
into asset and portfolio management strategies. We will start with ran-
dom walk models and progressively introduce more complex factor-
based models.

RANDOM WALK MODELS

Consider a time series of prices P, of a financial asset. Assume there are
no cash payouts. The simple net return of the asset between periods ¢ —
1 and ¢ is defined as
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From this definition it is clear that the compound return R,(k) over k
periods is:

P k-1 p k-1
R(k)y = —-1=J]—=-1=[] R, ;+D-1
P,y i=oPi—iv1 i=0

Consider now the logarithms of prices and returns:

p, = log P,

r, = log (1 +R,)

r,(k) = log [1+ R,(k)]

Following standard usage, we denote prices and returns with upper case
letters and their logarithms with lower case letters. As the logarithms of
a product is the sum of the logarithms, we can write:

P,

r, = log (1+R,) = log =Di=Pia

t—1

r (k) = log [T+ R, (k)] = r,+7,_1+...+7_p.q

Note that for real-world price time series, if the time interval is small,
the numerical value of returns will also be small. Therefore, as a first
approximation, we can write

r,=log (1+R,) =R,

The simplest model of equity prices consists in assuming that loga-
rithmic returns are an IID sequence. Under this assumption we can
write: 7, = L + &, where [ is a constant and €, is a white noise, that is, a
zero-mean, finite-variance IID sequence. Under this model we can write
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A time series of this form is called an arithmetic random walk. It is a
generalization of the simple random walk that was introduced in Chap-
ter 6. The arithmetic random walk is the simplest example of an inte-
grated process.

Let’s go back to simple net returns. From the above definition, it is
clear that we can write

n+e,

1+R, =¢

If the white noise is normally distributed, then the returns R, are lognor-
mally distributed. Recall that we found a simple correspondence
between a geometric Brownian motion with drift and an arithmetic
Brownian motion with drift. In fact, using Itd’s Lemma, we found that,
if the process S, follows a geometric Brownian motion with drift

d?S = udt+odB

its logarithm s, = log S; then follows the arithmetic Brownian motion
with drift:

ds = u—lcz dt+odB
2

In discrete time, there is no equivalent simple formula as we have to
integrate over a finite time step. If the logarithms of prices follow a discrete-
time arithmetic random walk with normal increments, the prices them-
selves follow a time series with lognormal multiplicative increments
written as

u+e,

P,=(1+R)P,_| =e P, 4

The arithmetic random walk model of log price processes is sug-
gested by theoretical considerations of market efficiency. As we have seen
in Chapter 3, it was Bachelier who first suggested Brownian motion as a
model of stock prices. Recall that the Brownian motion is the continu-
ous-time version of the random walk. Fama and Samuelson formally
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introduced the notion of efficient markets which makes it reasonable to
assume that log price processes evolve as random walks.

The question of the empirical adequacy of the random walk model
is very important from the practical point of view. Whatever notion or
tools for financial optimization one adopts, a stock price model is a
basic ingredient. Therefore substantial efforts have been devoted to
proving or disproving the random walk hypothesis.’

There are many statistical tests aimed at testing the random walk
hypothesis. A typical test takes the random walk as a null hypothesis.
The number of runs (that is, consecutive sequences of positive or nega-
tive returns) and the linear growth of the variance are parameters used
in classical random walk tests. More recent tests are based on the work
of Aldous and Diaconis!? on the distribution of sequences of positive
and negative returns.

There is no definite response. Typical tests fail to reject the null
hypothesis of random walk behavior with a high level of confidence on
a large percentage of equity price processes. This does not mean that the
random walk hypothesis is confirmed, but only that it is a reasonable
first approximation. As we will see in the following sections, other mod-
els have been proposed.

CORRELATION

Before moving on to more sophisticated models, let’s consider random
walk models of portfolios of equities as opposed to single price pro-
cesses. Let’s therefore consider a multivariate random walk model of an
equity portfolio assuming that each log price process evolves as an
arithmetic random walk. We will consider a set of # time series p; , i =
1, ..., n that represent log price processes. Suppose that each time series
is a random walk written as

Pit = Dir-1tH+E

A multivariate random walk can be represented in vector form as fol-
lows:

?See John Y. Campbell, Andrew W. Lo, and A. Craig MacKinley, The Econometrics
of Financial Markets (Princeton, NJ: Princeton University Press, 1997).

19David Aldous and Persi Diaconis, “Shuffling Cards and Stopping Times,” Ameri-
can Mathematical Monthly 8 (1986), pp. 333-348.



328 The Mathematics of Financial Modeling and Investment Management

P; =P tH+E

The key difference with respect to univariate random walks is that
one needs to consider cross correlations as the random disturbances &,
will be characterized by a covariance matrix Q whose entries o ; are the
covariances between asset i and asset j. Covariance and correlation are
one way of expressing the notion of functional dependence between ran-
dom variables. Consider two random variables X, Y.

The covariance between the two variables is defined as

ox y = Cov(X,Y) = E{[X-EX)I[Y-E(Y)]} = E(XY)-E(X)E(Y)

The correlation coefficient is the covariance normalized with the prod-
uct of the respective standard deviations:

Py y = Corr(X,Y) = —VX V)
ar(X)Var(Y)
= GX’Y
6xOy

The correlation coefficient expresses a measure of linear dependence.
Suppose that the variables X,Y have finite mean and variance and that
are linearly dependent so that

Y=aX+b+e

The above relationship is called a linear regression (see Chapter 6). It
can be demonstrated that the correlation coefficient between X and Y is
related to the parameter g in the following way:

Ox
a=Ppxy—
Oy

The correlation coefficient can assume values between -1 and +1
inclusive. It can be demonstrated that the variables X,Y are propor-
tional without any noise term if and only if the correlation coefficient is
+/-1. If the regression has a noise term, then the correlation coefficient
assumes a value intermediate between —1 and +1. If variables are inde-
pendent, then the correlation coefficient is zero. The converse is not
true. In fact, it is possible that two variables exhibit nonlinear depen-
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dence though the correlation coefficient is zero. Uncorrelated variables
are not necessarily independent. If the variables X,Y have a nonlinear
dependence relationship, then the correlation coefficient might become
meaningless.!!

RANDOM MATRICES

Modeling log prices of equity portfolios as a set of correlated arithmetic
random walks is only a rough approximation in the sense that this
model, when estimated, has poor forecasting ability. A key reason is
that the full variance-covariance matrix is unstable. This fact can be
ascertained in different ways. A simple test is the computation of the
variance-covariance matrix over a moving window. If one performs this
computation on a broad set of equity price processes such as the S&P
500, the result is a matrix that fluctuates in a nearly random way
although the average correlation level is high, in the range of 15 to
17%. Exhibit 12.1 illustrates the amount of fluctuations in a correlation
matrix estimated over a moving window. The plot represents the aver-
age when the sampling window moves.

An evaluation of the random nature of the variance-covariance
matrix was proposed by Laloux, Cizeau, Bouchaud, and Potters'?
using the Random Matrices Theory (RMT). This theory was developed
in the 1950s in the domain of quantum physics.'> A random matrix is
the variance covariance matrix of a set of independent random walks.
As such, its entries are a set of zero-mean independent and identically
distributed variables. The mean of the random correlation coefficients
is zero as these coefficients have a symmetrical distribution in the range
[-1,+1].

Interesting results can be demonstrated in the case that both the
number of sample points M and the number N of time series tend to
infinity. Suppose that both T and N tend to infinity with a fixed ratio

O=M/N>1

1 See Paul Embrechts, Filip Lindskog, and Alexander McNeil, “Modelling Depen-
dence with Copulas and Applications to Risk Management,” Chapter 8 in S. Rachev
(ed.), Handbook of Heavy Tailed Distributions in Finance (Amsterdam: Elsevier/
North Holland, 2003).

121, Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, “Noise Dressing of Financial
Correlation Matrices,” Physics Review Letter 83 (1999), pp. 1467-1470.

13 M.L. Mehta, Random Matrix Theory (New York: Academic Press, 1995).
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EXHIBIT 12.1  Fluctuations of the Variance-Covariance Matrix
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It can then be demonstrated that the density of eigenvalues of the ran-
dom matrix tends to the following distribution:

Q A/(A’max B x’)(x’min - 7\’)
2 A

p(A) =
2no

M,N—>o, Q=M/N21

kmax,min = (52 1+—1-12/\/—T—
@) )

where 67 is the average eigenvalue of the matrix. Exhibit 12.2 illustrates
the theoretical function and a sample computed on 500 simulated inde-
pendent random walks. The shape of the distribution of the eigenvalues
is the signature of randomness.
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EXHIBIT 122  Theoretical Distribution of the Eigenvalues in a Random Matrix
and Distribution of the Eigenvalues in a Sample of 500 Simulated Independent
Random Walks
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If the variance-covariance matrix entries do not have a zero mean,
then the spectrum of the eigenvalues is considerably different. Malev-
ergne and Sornette!* demonstrate that if the entries of the variance-
covariance matrix are all equal—with the obvious exception of the ele-
ments on the diagonal—then a very large eigenvalue appears while all
the others are equal to a single degenerate eigenvalue. The eigenvector
corresponding to the large eigenvalue has all components proportional
to 1, that is, its components have equal weights.

14y, Malevergne and D. Sornette, “Collective Origin of the Coexistence of Apparent
RMT Noise and Factors in Large Sample Correlation Matrices,” Cond-Mat 02/
0115, 1, no. 4 (October 2002).
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If the entries of the variance-covariance matrix are random but with
nonzero average, it can be demonstrated that a large eigenvalue still
appears. However, a small number of large eigenvalues also appear
while the bulk of the distribution resembles that of a random matrix.
The eigenvector corresponding to the largest eigenvalue includes all
components with all equal weights proportional to 1.

If we compute the distribution of the eigenvalues of the variance-
covariance matrix of the S&P 500 over a window of two years, we
obtain a distribution of eigenvalues which is close to the distribution of
a random matrix with some exception. In particular, the empirical dis-
tribution of eigenvalues fits well the theoretical distribution with the
exception of a small number of eigenvalues that have much larger val-
ues. Following the reasoning of Malevergne and Sornette, the existence
of a large eigenvalue with a corresponding eigenvector of 1s in a large
variance-covariance matrix arises naturally in cases where correlations
have a random distribution with a nonzero mean.

This analysis shows that there is little information in the variance-
covariance matrix of a large portfolio. Only a few eigenvalues carry
information while the others are simply the result of statistical fluctua-
tions in the sample correlation. Note that it is the entire matrix which is
responsible for the structure of eigenvalues, not just a few highly corre-
lated assets. This can be clearly seen in the case of a variance-covariance
matrix whose entries are all equal. Clearly there is no privileged correla-
tion between any couple of assets but a very large eigenvalue nevertheless
appears.

MULTIFACTOR MODELS

The analysis of the previous section demonstrates that modeling an
equity portfolio as a set of correlated random walks is only a rough
approximation. Though the random walk test cannot be rejected at the
level of individual securities and though there are significant empirical
correlations between securities, the global structure of large portfolios is
more intricate than a set of correlated random walks.

Failure in modeling log price processes as correlated random walks
might happen for several reasons: There might be nonlinearities in the
DGPs of price processes; dependence between log price processes might
not be linear. There might be structural changes (which are a discrete
form of nonlinearity). What is empirically ascertained is that the vari-
ance-covariance matrix of a large set of price processes is not stable and
that its eigenvalues have a distribution that resembles the distribution of
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the eigenvalues of a random matrix with the exception of a few large
eigenvalues.

These considerations lead to adopting models where the correlation
structure is concentrated in a number of factors. A model for asset log
prices which is compatible with the findings on the correlation matrices
is the generic multifactor model that we can write as follows:

x = a+Bf+e¢

where x is the n-vector of the process to be modeled, f is a k-vector of
common factors with k << 7, a is an n-vector of constants, B is an nxk
matrix and € is an n-vector of random disturbances such that:

Ele|f] = 0
Eleg’|f] = 2

The key advantage of multifactor models, that we discuss in Chap-
ter 18, is that the number of factors is generally much smaller than the
number of variables, thus implementing a substantial dimensionality
reduction. Note that in the above form, a multifactor model is a static
regression model, not a dynamic econometric model; it describes the
static regression relationship of the process variables on factors.

As explained in the previous chapter, state-space models combine a
multifactor regression model with an autoregressive model for the fac-
tors. This combination of autoregressive models for the factors and of
multifactor regressive models for the process variables result in impor-
tant families of dynamic models including models of cointegrating rela-
tionships.

The latter point raises an important issue in modern econometrics.
In principle, the variables x can be any sort of economic or financial
quantities. However, multifactor models were developed and are used
mainly in the context of financial econometrics. In that context, the
variables x generally represent returns. This is by no means the only
possible or useful interpretation of factor models. In fact, cointegration
models are effectively multifactor models whose main variables are log
prices and whose factors are the common trends.

There are therefore two different interpretations for and uses of fac-
tor models in financial econometrics. The most widely used factor mod-
els are models of returns such that factorization implements a
dimensionality reduction. However, more recently factor models—either
as cointegrated models of returns and prices or, equivalently, as state-
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space models of prices—have been introduced to capture additional eco-
nomic information contained in asset prices, especially equity prices.!’

CAPM

Let’s begin by discussing multifactor models of returns. There are many
different ways of writing such models depending on the nature of the
factors. The first, and most famous, factor model is the Capital Asset
Pricing Model (CAPM) developed by Sharpe-Lintner-Mossin. In the
CAPM there is only one factor given by the portfolio of all investable
assets. Each log price process can be written as follows:

x; = B;+o,f+0

In its original formulation, the CAPM was derived as a general equi-
librium theory; the actual asset price process is the fixed point where the
collective action of all agents trying to maximize their utility does not
produce any change in the price process, thus the situation of equilibrium.

CAPM assumes the joint normality of returns and the independence
of returns from one period to another; the single factor evolves as an
arithmetic random walk. This version of the CAPM is conceptually
restrictive and difficult to test given that the market portfolio, which is
the portfolio of all investable assets, is difficult to define and measure.

A later version of CAPM called Conditional CAPM or C(CAPM) was
proposed. Essentially, the Conditional CAPM assumes that there is only
one factor driving all prices, but does not impose the restriction that such
a factor is the market portfolio or that it evolves as a random walk.

15 The literature on dynamic factor models is ample. Here is a selection of widely
quoted papers: M. Forni, M. Hallin, M. Lippi, and L. Reichlin, “The Generalized
Dynamic Factor Model: Identification and Estimation,” Review of Economics and
Statistics 82, no. 4 (2000), pp. 540-554; ]J.F. Geweke, “The Dynamic Factor Analy-
sis of Economic Time-Series Models” in D.]. Aigner and A.S. Goldberger (eds.) La-
tent Variables in Socioeconomic Models (Amsterdam: North Holland, 1981); J.F.
Geweke and K.]. Singleton, “Maximum Likelihood ‘Confirmatory’ Factor Analysis
of Economic Time Series,” International Economic Review 22, no. 1, pp. 37-54; D.
Quah and T.J. Sargent, “A Dynamic Index Model for Large Cross Sections,” in J.H.
Stock and M.W. Watson (eds.), Business Cycles, Indicators and Forecasting (Chica-
g0, IL: The University of Chicago Press, 1993), pp. 285-309; J.H. Stock and M.W.
Watson, “Diffusion Indexes,” NBER Working Paper W6702, 1998; J.H. Stock and
M.W. Watson, “New Indexes of Coincident and Leading Economic Indications,” in
0O.]. Blanchard and S. Fischer (eds.), NBER Macroeconomics Annual 1989 (Cam-
bridge, MA: M.L.T. Press, 1989); M.W. Watson and R.F. Engle, “Alternative Algo-
rithms for Estimation of Dynamic MIMIC, Factor, and Time Varying Coefficient
Regression Models,” Journal of Econometrics 23 (1983), pp. 385-400.
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Asset Pricing Theory (APT) Models

Asset pricing models based on a single factor have been criticized as
unduly restrictive and truly multifactor models have been proposed. In a
multifactor model of asset prices, the restriction of absence of arbitrage
must be imposed. The Arbitrage Pricing Theory (APT) of Roll and Ross
allows multiple factors and fixes all other price processes on the basis of
absence of arbitrage (see Chapter 14).

APT models can be divided into two different categories in function
of how factors are treated. In the one, factors are portfolios or exoge-
nous variables such as macroeconomic factors; in the other, factors are
either modeled or not.

First consider the case of given exogenous factors. In this case, the APT
model must be estimated as a constrained regressive model. Constraints
typically forbid the possibility of using simple ordinary least square (OLS)
estimates. Thus the estimation procedures are generally based on the direct
application of Maximum Likelihood principles.

PCA and Factor Models

If factors are not given, they must be determined with statistical learning
techniques. Given the variance-covariance matrix, if factors are portfo-
lios, one can determine factors using the technique of Principal Compo-
nents Analysis (PCA).

Principal Components Analysis (PCA) implements a dimensionality
reduction of a set of observations. The concept of PCA is the following.
Consider a set of n time series X;, for example the 500 series of returns
of the S&P 500. Consider next a linear combination of these series, that
is, a portfolio of securities. Each portfolio P is identified by an n-vector
of weightszmp and is characterized by a variance 6p. In general, the
variance 6p will depend on the portfolio’s weights @p. Lastly consider a
normalized portfolio which has the largest possible variance. In this
context, a normalized portfolio is a portfolio such that the squares of
the weights sum to one.

If we assume that returns are IID sequences, jointly normally dis-
tributed with variance-covariance matrix Q, a lengthy direct calculation
demonstrates that each portfolio’s return will be normally distributed
with variance

2 T
GP = O)PQ(DP

Therefore the normalized portfolio of maximum variance can be deter-
mined in the following way:
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. T
Maximize ©pQp
subject to the normalization condition
T
(!)P(I)P = 1

where the product is a scalar product. It can be demonstrated that the
solution of this problem is the eigenvector @ corresponding to the larg-
est eigenvalue A of the variance-covariance matrix Q. As Q is a vari-
ance-covariance matrix, the eigenvalues are all real.

Consider next the set of all normalized portfolios orthogonal to ®;,
that is, portfolios completely uncorrelated with ®;. These portfolios are
identified by the following relationship:

T T
(l)l(l)P = 0)1)0)1 = 0

We can repeat the previous reasoning. Among this set, the portfolio of
maximum variance is given by the eigenvector @, corresponding to the
second largest eigenvalue A, of the variance-covariance matrix Q. If
there are n distinct eigenvalues, we can repeat this process 7 times. In
this way, we determine the 7 portfolios P; of maximum variance. The
weights of these portfolios are the ortho-normal eigenvectors of the
variance-covariance matrix Q. Note that each portfolio is a time series
which is a linear combination of the original time series X;. The coeffi-
cients are the portfolios’ weights.

These portfolios of maximum variance are all mutually uncorre-
lated. It can be demonstrated that we can recover all the original return
time series as linear combinations of these portfolios:

n
i=1

Thus far we have succeeded in replacing the original 7 correlated time
series X; with 7 uncorrelated time series P; with the additional insight
that each X; is a linear combination of the P;. Suppose now that only p
of the portfolios P; have a significant variance, while the remaining 7-p
have very small variances. We can then implement a dimensionality
reduction by choosing only those portfolios whose variance is signifi-
cantly different from zero. Let’s call these portfolios factors F.
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It is clear that we can approximately represent each series X; as a
linear combination of the factors plus a small uncorrelated noise. In fact
we can write

p n p
X; = ZociF,-+ 2 o;P; = ZOLZ-FZ-+8

i=1 i=p+1 i=1

where the last term is a noise term. Therefore to implement PCA one
computes the eigenvalues and the eigenvectors of the variance-covari-
ance matrix and chooses the eigenvalues significantly different from
zero. The corresponding eigenvectors are the weights of portfolios that
form the factors. Criteria of choice are somewhat arbitrary.

Note that PCA works either on the variance-covariance matrix or on
the correlation matrix. The technique is the same but results are gener-
ally different. PCA applied to the variance-covariance matrix is sensitive
to the units of measurement, which determine variances and covariances.
This observation does not apply to returns, which are dimensionless
quantities. However, if PCA is applied to prices and not to returns, the
currency in which prices are expressed matters; one obtains different
results in different currencies. In these cases, it might be preferable to
work with the correlation matrix.

We have described PCA in the case of time series, which is the rele-
vant case in econometrics. However PCA is a generalized dimensionality
reduction technique applicable to any set of multidimensional observa-
tions. It admits a simple geometrical interpretation which can be easily
visualized in the three-dimensional case. Suppose a cloud of points in the
three-dimensional Euclidean space is given. PCA finds the planes that cut
the cloud of points in such a way as to obtain the maximum variance.

Suppose that there is a strict factor structure, which means that
returns exactly follow the model

r=a+Bf+eg
with
Ele|f] = 0
E[ee'|f] = £
The matrix B can be obtained diagonalizing the variance-covariance

matrix. In general, the structure of factors will not be strict and one will
try to find an approximation by choosing only the largest eigenvalues.
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Factors can also be obtained through another statistical procedure
called factor analysis. Factor analysis estimates factors using a maxi-
mum likelihood procedure. Suppose that factors are not portfolios but
exogenous variables, such as macroeconomic variables. In this case, the
factor structure is given and the estimation problem becomes one of esti-
mating a regression relationship. This problem can be solved through
maximum likelihood estimates.

Let’s now summarize the previous discussion on multifactor models.
From the point of view of econometrics, the key justification of factor
models is dimensionality reduction. It can be empirically ascertained
that the empirical variance-covariance matrices computed over reason-
able time windows are unstable and noisy. This might be due to various
reasons, in particular to the fact that functional dependence between
variables is more complex than a simple structure of linear correlation.
The key problem is to extract maximum information from noise. Multi-
factor models attempt to provide a solution to this problem within the
domain of simple regressive models. There are different families of mul-
tifactor models: regression over given exogenous variables, factor analy-
sis under the assumption of multivariate random walks, state-space
models. In addition, multifactor models might be applied to both
returns and prices.

VECTOR AUTOREGRESSIVE MODELS

The next step is to model factors. This requires introducing a broad
family of ARMA models called Vector Autoregressive (VAR) Models. A
VAR model is a multivariate AR(z) model. In a VAR model the current
value of each variable is a linear function of the past values of all vari-
ables plus random disturbances. In full generality, a VAR model can be
written as follows:

X, = Ax, 1 +A)X, 5+ ... +Apxt_p+Dst+8t

where x, = (xy ..., x, ;) is a multivariate stochastic time series in vec-
tor notation, Ai, i = 1,2,...,p, and D are deterministic #xn matrices,
€ = €4 ...,€, , is a multivariate white noise with variance-covariance
matrix Q = {o;} and s, =5y, ...,5,, is a vector of deterministic

terms. Using the lag-operator L notation, a VAR model can be written
in the following form:

x, = (A|L +A2L2 +... +AnLN)xl+Dst+ g,
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VAR models can be written in equivalent forms that will be useful in
the next section. In particular, a VAR model can be written in terms of
the differences Ax, in the following error-correction form:

Ax, = (®,L+®,L7+ .. +®, L" HAx,+TIL" 'x,+Ds,+¢,

where the first 7 — 1 terms are in first differences and the last term is in levels.

The multivariate random walk model of log prices is the simplest
VAR model:

X, = X, +m+§g,
Ax, = m+§

Note that in this model log prices are autoregressive while returns (that
is, the first differences) are simply correlated multivariate white noise
plus a constant term.

As we know from our discussion on ARMA models (see Chapter
11), the stationarity and stability properties of a VAR model depend on
the roots of the polynomial matrix

A1z+A2z2+ AN

n

In particular, if all the roots of the above polynomial are strictly outside
the unit circle, then the VAR process is stationary. In this case, the VAR
process can be inverted and rewritten as an infinite moving average of a
white-noise process. If all the roots are outside the unit circle with the
exception of some root which is on the unit circle, then the VAR process
is integrated. In this case it cannot be inverted as an infinite moving
average. If some of the roots are inside the unit circle, then the process is
explosive. If the VAR process starts at some initial point characterized
by initial values or distributions, then the process cannot be stationary.
However, if all the roots are outside the unit circle, the process is
asymptotically stationary. If some root is equal to 1, then the process
can be differentiated to obtain an asymptotically stationary process.

COINTEGRATION

Let’s now look at the problem of representation of multivariate time
series from a different angle. Recall that a variable is integrated of order
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n if it can be transformed into a stationary series differencing 7 times. In
particular, a univariate time series X is integrated of order 1 if it can be
represented as follows:

X,.1=pX,+b+g,
p=1
€, stationary possibly autocorrelated

The key feature of an integrated time series is that random innova-
tions never decay. Most economic variables are integrated variables. In
particular, testing for integration in log price processes one finds that
the null of integration cannot be rejected in most cases. For instance,
testing the log price processes in the S&P 500 using a standard test such
as the ADF test, the null of integration cannot be rejected in about 90%
of time series as shown in Exhibit 12.3. Nor can the null hypothesis of
integration be rejected for economic time series such as the monetary
mass (M3) or the Gross Disposable Product.

Suppose that a set of time series integrated of order 1 is given.
Though each series is integrated of order 1, for instance they are arith-
metic random walks, there might be linear combinations of the series
which are stationary. If this happens, the series are said to be cointe-
grated. The financial meaning of cointegration is the following. Indi-
vidual log price processes can be arithmetic random walks but there are
portfolios, in general long-short portfolios, which are stationary, and
thus mean reverting around a constant mean. In other words, individ-
ual securities might be totally unpredictable random walks but portfo-
lios might be more predictable. We will come back to the question of
the empirical findings of cointegration in real-world economic time
series and price processes. First, we need to define cointegration mathe-
matically.

EXHIBIT 123  Integratedness of the S&P 500

Number Type
Period of Series of Test Integratedness Percentage

From Jan. 1, 487 series  Augmented Dickey- 422 series I(1) 87%
2001 to in the Fuller test with two 635 series 1(0) integrated
Dec. 31,2003  S&P 500 lags, 95% confi-
dence level.
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The concept of cointegration, introduced by Granger in 1981,'° can
be expressed in the following way. Suppose that a set of # time series,
integrated of order 1, is given. If there is a linear combination of the
series

n
5, = Z Bixi,t

i=1

which is stationary, then the series x; , are said to be cointegrated. Any
linear combination as the one above is called a cointegrating relation-
ship. Given #n time series, there can be from none to at most # — 1 coin-
tegrating relationships.

Though a definition of cointegration of this type is often given in the
literature, it should be clear that it is strictly applicable only to pro-
cesses that extend in time from —eo to +eo. Series that start from some ini-
tial instant cannot be stationary but can be, at most, asymptotically
stationary. To make the definition of cointegration more general, one
should allow asymptotic stationarity instead of strict stationarity.

Cointegrating relationships express long-run equilibrium between
time series. As noted above, in financial terms, cointegrating relation-
ships represent stationary portfolios. Suppose there are 7 time series x; ;,
i = 1,...,n and k < n cointegrating relationships. It can be demonstrated
that there are 7 — k integrated time series u; ;, j = 1,...,n — k, called com-
mon trends, such that every time series x;, can expressed as a linear
combination of the common trends plus a stationary disturbance:

n-k
Xjp = 2 Yitti, e ¥ Ny
i=1

This is clearly a multifactor representation of integrated processes.

Is there a general representation of cointegrated processes? The
answer is affirmative. Granger was able to demonstrate the fundamental
theorem according to which a multivariate integrated process is cointe-
grated if and only if it can be represented in the Error Correction Model
(ECM) form. The ECM representation is a representation of a multi-
variate process in first differences with corrections in levels as follows:

16 C.W.]. Granger, “Some Properties of Time Series Data and Their Use in Econo-
metric Model Specification,” Journal of Econometrics 16 (1981), pp. 121-130.
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n-1
AX,, | = Z AL |Ax, +af'x, + M,
i=1

where o is a pxr matrix, B is a a pxr matrix with o’ = IT and 1, is a vec-
tor of stationary disturbances.

Within the basic framework of ECM, different cointegration models
have been proposed. Two major models need mention:

B The Autoregressive Distributed Lag (ARDL) model which explicitly
takes into account exogenous variables that are not cointegrated
among themselves.!”

B The Dynamic Cointegration Approach which models the long-run
cointegration relationships not as a static regression but as a dynamic
model with a small number of lags.

Cointegration of log price processes makes sense from an economic
point of view. Prices must somehow follow a common trend otherwise
they will, in the long run, diverge indefinitely. This is not a real eco-
nomic justification of cointegration. Even if in the long run all processes
end up as fluctuations around some common trend, it does not mean
that they are cointegrated. Many other possible mechanisms might be at
work, such as discrete adjustment.

State-Space Modeling and Cointegration

The notion of state-space modeling is that empirically measurable eco-
nomic variables are a linear regression over a set of hidden variables
modeled as an autoregressive process. State-space models represent
dynamical factor models as the states are the hidden factors of the
model. The state-space representation introduced above can be general-
ized in many different ways, in particular by letting the noise terms be
different in the state equations and in the regressions.

As we have seen earlier in this chapter, there is equivalence between
state-space models and ARMA models. In particular, there is equiva-
lence between cointegrated models represented by ECM models, and
state-space models. The factors are the common trends.

17See M.H. Pesaran and Y. Shin, “An Autoregressive Distributed Lag Modeling Ap-
proach to Cointegration Analysis,” Chapter 11 in S. Strom (ed.), Econometrics and
Economic Theory in the 20th Century: The Ragnar Fresh Centennial Symposium
(Cambridge: Cambridge University Press, 1999).
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Empirical Evidence of Cointegration in Equity Prices
It is now time to discuss the empirical evidence that support various
types of models. The usual tests do not reject the random walk hypothe-
sis for more than 90% of stocks investigated. The average correlation of
the S&P 500 computed in the 2001-2003 period is roughly 17% as
shown in Exhibit 12.1. The distribution of the eigenvalues of the correla-
tion matrix has the distribution shown in Exhibit 12.4. The distribution
of the eigenvalues is quite close to the theoretical shape for large portfo-
lios of a random matrix with the exception of a number of eigenvalues.
Cointegration is more difficult to ascertain. A number of academic
studies have found contradicting evidence about mean reversion around
exponential trends. Poterba and Summers!® found positive evidence of
mean reversion of stock prices around exponential trends. This early

EXHIBIT 124  Distribution of the Eigenvalues of the S&P 500

S&P 500 closing values (02 January 2001-19 September 2003)
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187, Poterba and L. Summers, “Mean Reversion in Stock Prices: Evidence and Impli-
cations,” Journal of Financial Economics 79 (1988), pp. 22-25.
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evidence has not been confirmed by later studies.!” Kim, Nelson and
Startz have argued that mean-reversion is a pre-World War II phenome-
non.?’ However, more recent papers give new support to the hypothesis
of mean reversion.?!

Common trends in exchange rates have documented by Baillie and
Bollerslev?? and by Kasa?? in equity prices. Cross-correlations at differ-
ent lags between equities have been reported in the literature. For
instance, Campbell, Lo, and MacKinley** report significant autocorrela-
tions of portfolio returns for selected portfolios, a fact that is attributed
to the existence of autocross-correlations. An interpretation of the same
phenomena on the same data set based on cointegration has been pro-
posed by Kanas and Kouretas.?

Evidence on asset price cointegration and the use of cointegration in
asset allocation and portfolio management is discussed in a number of
papers. See, for instance, Lucas,?® Alexander,?” and Alexander and Dim-
itriu.?® In most cases cointegrating relationships are found in small port-
folios. How to select the cointegrated portfolios in large sets of price

19 See: Eugene F. Fama and Kenneth.R. French, “Permanent and Temporary Com-
ponents of Stock Prices,” Journal of Political Economy 96, no. 2 (1988), pp. 246—
273 and Campbell, Lo, and MacKinley, The Econometrics of Financial Markets.

20 M.J. Kim, C.R. Nelson and R. Startz, “Mean Reversion in Stock Prices? A Reapprais-
al of the Empirical Evidence,” Review of Economic Studies 58 (1991), pp. 515-528.
21 See: Kent Daniel (2001) “Power and Size of Mean Reversion Tests,” Journal of
Empirical Finance 8, no. 5 (December 2001), pp. 493-535; Steen Nielsen and Jan
Overgaard Olesen, “Regime-Switching Stock Returns and Mean Reversion,” Work-
ing paper 11-2000, Department of Economics and EPRU, Copenhagen Business
School; and Ole Risager, “Random Walk or Mean Reversion: the Danish Stock Mar-
ket since World War 1,” Working paper 7-98, Department of Economics and EPRU,
Copenhagen Business School.

22R. Baillie and T. Bollerslev, “Common Stochastic Trends in a System of Exchange
Rates,” Journal of Finance 44 (1989), pp. 167-182.

23K. Kasa, “Common Stochastic Trends in International Stock Markets,” Journal of
Monetary Economics 29 (1992), pp. 95-124.

24 See Campbell, Lo, and MacKinley, The Econometrics of Financial Markets.

25 A. Kanas and G.P. Kouretas, “A Cointegration Approach to the Lead-Lag Effect
Among Size-Sorted Equity Portfolios,” 2001.

26 A. Lucas, “Strategic and Tactical Asset Allocation and the Effect of Long-Run
Equilibrium Relations,” Research Memorandum, Vrije Universiteit Amsterdam,
1997-42 (1997).

27 C.0. Alexander, “Optimal Hedging Using Cointegration,” Philosophical Trans-
actions of the Royal Society A 357 (1999), pp. 2039-2058.

28 C.0. Alexander and A. Dimitriu, “The Cointegration Alpha: Enhanced Index
Tracking and Long-Short Equity Market Neutral Strategies,” Discussion Paper
2002-08, ISMA Centre Discussion Papers in Finance Series, 2002.
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processes is a critical issue. Usual tests for cointegration cannot be
applied to large portfolios such as the S&P 500 given the computational
cost: The space of possible cointegrating relationships is simply too
large to be searched effectively.

Effective methods to reduce the search space are needed. The dis-
covery of cointegrating relationships is a tremendous advantage from a
trading point of view. As discussed by Alexander, it allows, for instance,
to engineer parsimonious portfolios for index tracking and to create
profitable trading strategies for hedge funds. Possible solutions to this
problem remain proprietary. The consideration of the equivalence of
cointegration and state-space modeling might be a step in this direction.
Effective algorithms for determining state space models are described in
the engineering and, more recently, in the econometric literature.?’

NONSTATIONARY MODELS OF FINANGIAL TIME SERIES

Let’s now proceed to explore a number of nonlinear models. The exist-
ence of nonlinearities in financial time series has been documented in
many works.?® However identifying and estimating a reasonable non-
linear model remains a highly challenging task. The key problem is the
explosion of the search space, the so called “curse of dimensionality”
entailed by nonlinear models.

Models based on neural networks and many other families of uni-
versal function approximators have been explored both in the literature
and in the practice of financial trading. These models try to estimate a
nonlinear DGP. We will not deal with these models which are highly
specialized and often used as proprietary trading models.

However, a number of relatively simple nonlinear models have dem-
onstrated their ability to capture important nonlinear phenomena. The
first (and perhaps the best known) of such models, is the ARCH/
GARCH family of models. Another class of nonlinear models are the
Markov switching models, where a Markov chain drives discrete
changes in the model parameters. Perhaps the best known of these mod-
els is the Hamilton model, though a variety of Markov switching VAR
models have been proposed. These models are appealing because they
implement, in a coherent statistical framework, the idea of structural
change which is reasonable from an economic standpoint.

2 D. Bauer and M. Wagner, “Estimating Cointegrated Systems Using Subspace Al-
gorithms,” Journal of Econometrics 111 (2002), pp. 47-84.
30 Campbell, Lo, and MacKinley, The Econometrics of Financial Markets.
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The ARCH/GARCH Family of Models

The ARCH models were proposed by Engle®! as a model of inflation.
The empirical fact behind ARCH models is the clustering of volatility
observed in many economic and financial series. If instantaneous volatil-
ity is defined as a hidden variable in a price model and estimated as the
variance of returns over relatively long periods, one finds periods of
high volatility followed by periods of low volatility and vice versa.

Note that a new strain of econometric literature deals with instanta-
neous volatility as an observed variable. The observability of volatility
is made possible by the availability of high frequency data. In this case,
there is a variety of models for the volatility process, in particular long-
memory fractional models.>> We maintain the classical definition of vol-
atility as a hidden variable.

Engle proposed a model in the spirit of state-space modeling where
volatility is modeled by an autoregressive process and then injected mul-
tiplicatively in the price process. More precisely, the simplest ARCH
model is defined as follows:

2
x, = JB+Ax;_qz,

In the above equation, x is the process variable and the terms z form
an IID sequence. The ARCH model was extended by Bollerslev,>* who
proposed the GARCH family of models. In the GARCH models, volatil-
ity is modeled as a more general ARMA process and then treated as
before:

Xy = 042y
r 2 I 2
c, =P+ inxt—i-*_ Zsict—/
i=1 j=1

The key ingredients of ARCH modeling are an ARMA process for vol-
atility and a regressive process where volatility multiplies a white-noise

STR.F. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation,” Econometrica 50 (July 1982), pp. 987-
1007.

32T.G. Andersen, T. Bollerslev, F.X. Diebold, and P. Labys, “Modeling and Fore-
casting Realized Volatility,” Econometrica 71, 2003, pp. 529-626.

33T. Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” Jour-
nal of Econometrics 31 (1986), pp. 307-327.
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process. If the ARMA process for volatility is integrated (that is, it has unit
roots) then the GARCH process is called Integrated GARCH or IGARCH.

The ARCH technology is not restricted to univariate processes but
can be extended to multivariate processes. Multivariate GARCH pro-
cesses model the entire variance-covariance matrix as an autoregressive
process.

Multivariate models of the ARCH-GARCH type become rapidly
unmanageable as the number of parameters to estimate grows with the
fourth power of the number of assets. Dimensionality reduction is called
for. Different proposals have been made, in particular factor models for
the volatility process.

The random terms z might have arbitrary distributions. In practice,
normality is often assumed. However, though the conditional distribu-
tion is normal, the unconditional distribution of a GARCH process is
not normal but exhibits fat tails (see Chapter 13). This feature of
GARCH processes, in addition to the modeling of volatility clustering,
has made them attractive as models of returns. Returns at short time
horizons are, in fact, not normally distributed but exhibit fat tails.
However, fitting different families of GARCH processes to empirical
return data has shown that GARCH models cannot fit simultaneously
the volatility clustering and the fat-tailedness of returns. Distributions
of the shock z other than normal have been tried, for instance T-Student
distributions, but no good fit of volatility and returns has been reported
in the literature. GARCH models can be considered a useful economet-
ric tool, but not a firm theory of price processes.

Markov Switching Models

Markov switching models belong to a vast family of models that have
found applications in many fields other than econometrics, such as
genomics and speech recognition. The economic idea behind Markov
switching models is that the economy undergoes discrete switches
between economic states at random times. To each state corresponds a
set of model parameters.

One of the first Markov switching models proposed is the Hamil-
ton®** model. The Hamilton model is based on two states, a state of
“expansion” and a state of “recession.” Periods of recession are fol-
lowed by periods of expansion and vice versa. The time of transition
between states is governed by a two-state Markov chain. In each state,
price processes follow a random walk model.

34 7.D. Hamilton, “A New Approach to the Economic Analysis of Nonstationary
Time Series and the Business Cycle,” Econometrica 57 (1989), pp. 357-384.
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The Hamilton model can be extended to an arbitrary number of
states and to more general VAR models. In a Markov switching context,
a VAR model

X, = [A;(s)L+A,(s)L* + ... + A, (s )LNIx, + m(s,) + €,

has parameters that depend on a set of hidden states that are governed
by a discrete-state, discrete-time Markov chain with transition probabil-
ity matrix:

pl?l = Pr(st+1 =Z‘St=l)

M
D bij=1

j=1

Estimation of Markov switching VAR models can be done within a
general maximum likelihood framework. The estimation procedure is
rather complex as approximate iteration techniques are used. Hamil-
ton®’ made use of the Expectation Maximization (EM) algorithm which
had been proposed earlier in a broader context.?® Other numerical tech-
niques are available and are now implemented in commercial software
packages.

Markov switching VAR models have been applied to macroeco-
nomic problems, in particular to the explanation of business cycles.
Applications to the modeling of large portfolios present significant
problems of estimation given the large number of data necessary.

Markov switching models are, in fact, typically estimated over long
periods of time, say 20 or 30 years. If one wants to construct coherent
data sets for broad aggregates such as the S&P 500, one rapidly runs
into problems as many firms, over periods of that length, undergo signif-
icant change such as mergers and acquisitions or stock splits. As one can-
not simply exclude these firms as doing so would introduce biases in the
estimation process, ad hoc adjustment procedures are needed to handle
change. Despite these difficulties, however, Markov switching models
can be considered a promising technique for financial econometrics.

357.D. Hamilton, “Analysis of Time Series Subject to Changes in Regime,” Journal
of Econometrics 45 (1990), pp. 39-70.

36 A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Likelihood Estimation
From Incomplete Data Via the EM Algorithm,” Journal of the Royal Statistical So-
ciety 39 (1977), Series B, 1-38.
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SUMMARY

B Model selection cannot be completely automated because the search
space is too large.

B Econometrics constrains the search for an optimal model within model
classes.

B If a family of models can fit data with arbitrary accuracy, then criteria
for choosing the optimal model complexity are needed.

B Overfitting occurs when a model is too complex and thus fits unpre-
dictable noise.

B Akaike Information Criteria and Bayesian Information Criteria are
complexity selection criteria based on information theory.

B The Vapnik-Chervonenkis theory of learning has given a rigorous theo-
retical basis to the principles of statistical learning.

B An estimator is a random variable function of the sample data that
approximates a given parameter of a distribution.

B The Cramer-Rao bound prescribes lower bounds for the variance of
estimators.

B Maximum Likelihood Estimate (MLE) chooses those parameters that
maximize likelihood on samples.

B For unconstrained regressions, MLE coincides with Ordinary Least
Square estimation.

B MLE estimators are efficient estimators, that is, they attain the Cramer-
Rao variance lower bound.

B The simplest asset price model is the random walk.

B A multivariate correlated random walk is a model for the joint price
process of a set of asset prices.

B A large set of price processes exhibits nearly random variance-covari-
ance matrix of the return process.

B Factor models reduce the dimensionality of the variance-covariance
matrix of the return process.

B Principal component analysis identifies a generally small number of sta-
ble factors.

B Vector Autoregressive (VAR) models capture the dynamics of time
series.

H It is impossible to describe large sets of asset price processes with unre-
stricted VAR models because the number of parameters is too high and
therefore not stable.

B Cointegration captures common stable trends thus implementing a
dimensionality reduction.

B Cointegrated time series can be represented with a constrained Error
Correction VAR model.

B State-space models are equivalent to Error Correction models.
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B State-of-the-art nonlinear econometric models use an autoregressive
process to drive the parameters of another model.

B ARCH/GARCH models use an ARMA model to drive the volatility
parameter.

B Markov switching models use a Markov chain to drive the parameters
of an autoregressive model.
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Fat Tails, Scaling, and
Stahle Laws

ost models of stochastic processes and time series examined thus far
Massume that distributions have finite mean and finite variance. In
this chapter we describe fat tailed distributions with infinite variance.
Fat-tailed distributions have been found in many financial economic
variables ranging from forecasting returns on financial assets to model-
ing recovery distributions in bankruptcies. They have also been found in
numerous insurance applications such as catastrophic insurance claims
and in value-at-risk measures employed by risk managers.

In this chapter, we review the related concepts of fat-tailed, power-
law and Levy-stable distributions, scaling and self-similarity, as well as
explore the mechanisms that generate these distributions. We discuss the
key intuition relative to the applicability of fat-tailed or scaling pro-
cesses to finance: In a fat-tailed or scaling world (as opposed to an
ergodic world), the past does not offer an exhaustive set of possible con-
figurations. Adopting, as an approximation, a scaling description of
financial phenomena implies the belief that only a small space of possi-
ble configurations has been explored; vast regions remain unexplored.

We begin with the mathematics of fat-tailed processes, followed by
a discussion of classical Extreme Value Theory for independent and
identically distributed sequences. We then explore the consequences of
eliminating the assumption of independence and discuss different con-
cepts of scaling and self similarity. Finally, we present evidence of fat
tails in financial phenomena and discuss applications of Extreme Value

Theory.

351
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SCALING, STABLE LAWS, AND FAT TAILS

Let’s begin with a review of the different but related concepts and prop-
erties of fat tails, power laws, and stable laws. These concepts appear
frequently in the financial and economic literature, applied to both ran-
dom variables and stochastic processes.

Fat Tails

Consider a random variable X. By definition, X is a real-valued function
from the set Q of the possible outcomes to the set R of real numbers,
such that the set (X < x) is an event. Recall from Chapter 6 that if P(X <
x) is the probability of the event (X < x), the function F(x) = P(X < x) is a
well-defined function for every real number x. The function F(x) is called
the cumulative distribution function, or simply the distribution function,
of the random variable X. Note that X denotes a function Q — R, x is a
real variable, and F(x) is an ordinary real-valued function that assumes
values in the interval [0,1]. If the function F(x) admits a derivative

The function f(x) is called the probability density of the random vari-
able X. The function F(x) = 1- F(x) is the tail of the distribution F(x).
The function F(x) is called the survival function.

Fat tails are somewhat arbitrarily defined. Intuitively, a fat-tailed distri-
bution is a distribution that has more weight in the tails than some refer-
ence distribution. The exponential decay of the tail is generally assumed as
the borderline separating fat-tailed from light-tailed distributions. In the lit-
erature, distributions with a power-law decay of the tails are referred to as
heavy-tailed distributions. It is sometimes assumed that the reference distri-
bution is Gaussian (i.e., normal), but this is unsatisfactory; it implies, for
instance, that exponential distributions are fat-tailed because Gaussian tails
decay as the square of an exponential and thus faster than an exponential.

These characterizations of fat-tailedness (or heavy-tailedness) are not
convenient from a mathematical and statistical point of view. It would be
preferable to define fat-tailedness in terms of a function of some essential
property that can be associated to it. Several proposals have been
advanced. Widely used definitions focus on the moments of the distribu-
tion. Definitions of fat-tailedness based on a single moment focus either on
the second moment, the variance, or the kurtosis, defined as the fourth
moment divided by the square of the variance. In fact, a distribution is
often considered fat-tailed if its variance is infinite or if it is leptokurtic
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(i.e., its kurtosis is greater than 3). However, as remarked by Bryson! defi-
nitions of this type are too crude and should be replaced by more complete
descriptions of tail behavior.

Others consider a distribution fat-tailed if all its exponential moments
are infinite, E[esx] = oo for every s > 0. This condition implies that the
moment-generating function does not exist. Some suggest weakening this
condition, defining fat-tailed distributions as those distributions that do
not have a finite exponential moment of first order. Exponential moments
are particularly important in finance and economics when the logarithm of
variables, for instance logprices, are the primary quantity to be modeled.?

Fat-tailedness has a consequence of practical importance: the proba-
bility of extremal events (i.e., the probability that the random variable
assumes large values) is much higher than in the case of normal distribu-
tions. A fat-tailed distribution assigns higher probabilities to extremal
events than would a normal distribution. For instance, a six-sigma event
(i.e., a realized value of a random variable whose difference from the
mean is six times the size of the standard deviation) has a near zero
probability in a Gaussian distribution but might have a nonnegligible
probability in fat-tailed distributions.

The notion of fat-tailedness can be made quantitative as different
distributions have different degrees of fat-tailedness. The degree of fat-
tailedness dictates the weight of the tails and thus the probability of
extremal events. Extreme Value Theory attempts to estimate the entire
tail region, and therefore the degree of fat-tailedness, from a finite sam-
ple. A number of indicators for evaluating the size of extremal events
have been proposed; among these are the extremal claim index pro-
posed in Embrechts, Kluppelberg, and Mikosch,® which plays an impor-
tant role in risk management.

The Class ¢ of Fat-Tailed Distributions

Many important classes of fat-tailed distributions have been defined;
each is characterized by special statistical properties that are important
in given application domains. We will introduce a number of such
classes in order of inclusion, starting from the class with the broadest
membership: the class €, which is defined as follows. Suppose that F is a

I M.C. Bryson, “Heavy-Tailed Distributions,” in N.L. Kotz and S. Read (eds.), En-
cyclopedia of Statistical Sciences, Vol. 3 (New York: John Wiley & Sons, 1982), pp.
598-601.

2See G. Bamberg and D. Dorfleitner, “Fat Tails and Traditional Capital Market The-
ory,” Working Paper, University of Augsburg, August 2001.

3P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events for In-
surance and Finance (Berlin: Springer, 1999).
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distribution function defined in the domain (0,e) with F < 1 in the entire
domain (i.e., F is the distribution function of a positive random variable
with a tail that never decays to zero). It is said that F € £ if, for any y >
0, the following property holds:

lim EEZY) — g wyso0
T Fx)

We can rewrite the above property in an equivalent (and perhaps more
intuitive from the probabilistic point of view) way. Under the same assump-
tions as above, it is said that, given a positive random variable X, its distri-
bution function F € £ if the following property holds for any y > 0:

lim P(X>x+y X>x) = 1im1—:(xj2 =1,Vy>0
X —> oo X — oo F(x)

Intuitively, this second property means that if it is known that a random
variable exceeds a given value, then it will exceed any bigger value.
Some authors define a distribution as being heavy-tailed if it satisfies
this property. 4

It can be demonstrated that if a distribution F(x) € £, then it has the
following properties:

® Infinite exponential moments of every order: E[e*X] = o for every s > 0

B lim F(x)e™ = o, VA>0

X —> o

As distributions in class £ have infinite exponential moments of every
order, they satisfy one of the previous definitions of fat-tailedness. How-
ever they might have finite or infinite mean and variance.

The class € is in fact quite broad. It includes, in particular, the two
classes of subexponential distributions and distributions with regularly
varying tails that are discussed in the following sections.

Subexponential Distributions
A class of fat-tailed distributions, widely used in insurance and telecom-
munications, is the class S of subexponential distributions. Introduced

*See, for example, K. Sigman, “A Primer on Heavy-Tailed Distributions,” Queueing
Systems, 1999.
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by Chistyakov in 1964, subexponential distributions can be character-
ized by two equivalent properties: (1) the convolution closure property
of the tails and (2) the property of the sums.’

The convolution closure property of the tails prescribes that the
shape of the tail is preserved after the summation of identical and inde-
pendent copies of a variable. This property asserts that, for x — o, the
tail of a sum of independent and identical variables has the same shape
as the tail of the variable itself. As the distribution of a sum of 7 inde-
pendent variables is the #-convolution of their distributions, the convo-
lution closure property can be written as

—n*
im ) =,
*= Fix)

Note that Gaussian distributions do not have this property although
the sum of independent Gaussian distributions is again a Gaussian distri-
bution. Subexponential distributions can be characterized by another
important (and perhaps more intuitive) property, which is equivalent to
the convolution closure property: In a sum of # variables, the largest value
will be of the same order of magnitude as the sum itself. For any 7, define

S,(x) = Y X;

i=1

as a sum of independent and identical copies of a variable X and call M,,
their maxima. In the limit of large x, the probability that the tail of the
sum exceeds x equals the probability that the largest summand exceeds x:

. P(S,>x)
lim ————— =1
x=2<P(M, >x)

The class S of subexponential distributions is a proper subset of the
class £. Every subexponential distribution belongs to the class £ while it
can be demonstrated (but this is not trivial) that there are distributions

5 See, for example, C. M. Goldie and C. Kluppelberg, “Subexponential Distribu-
tions,” in R.J. Adler, R.E. Feldman, and M.S. Taqqu (eds.), A Practical Guide to
Heavy Tails: Statistical Techniques and Applications (Boston: Birkhauser, 1998), pp.
435-459 and Embrechts, Kluppelberg, and Mikosch, Modelling Extremal Events for
Insurance and Finance.
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that belong to the class € but not to the class S. Distributions that have
both properties are called subexponential as it can be demonstrated
that, as all distributions in &, they satisfy the property:

lim F(x)e"™ = oo, VA>0

X —> oo

Note, however, that the class of distributions that satisfies the latter
property is broader than the class of subexponential distributions; this
is because the former includes, for instance, the class £.°

Subexponential distributions do not have finite exponential
moments of any order, that is, E[e*] = « for every s 2 0. They may or
may not have a finite mean and/or a finite variance. Consider, in fact,
that the class of subexponential distributions includes both Pareto and
Weibull distributions. The former have infinite variance but might have
finite or infinite mean depending on the index; the latter have finite
moments of every order (see below).

The key indicators of subexponentiality are (1) the equivalence in
the distribution of the tail between a variable and a sum of independent
copies of the same variable and (2) the fact that a sum is dominated by
its largest term. The importance of the largest terms in a sum can be
made more quantitative using measures such as the large claims index
introduced in Embrechts, Kluppelberg, and Mikosch that quantifies the
ratio between the largest p terms in a sum and the entire sum.

The class of subexponential distributions is quite large. It includes
not only Pareto and stable distributions but also log-gamma, lognormal,
Benkander, Burr, and Weibull distributions. Pareto distributions and sta-
ble distributions are a particularly important subclass of subexponential
distributions; these will be described in some detail below.

Power-Law Distributions
Power-law distributions are a particularly important subset of subexpo-
nential distributions. Their tails follow approximately an inverse power
law, decaying as x™*. The exponent o is called the tail index of the distri-
bution. To express formally the notion of approximate power-law decay,
we need to introduce the class R(a), equivalently written as R, of regu-
larly varying functions.

A positive function f is said to be regularly varying with index o or f
e R(a) if the following condition holds:

®See Sigman, “A Primer on Heavy-Tailed Distributions.”
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lim £0%) _ i
X2 f(x)

A function f e R(0) is called slowly varying. It can be demonstrated that
a regularly varying function f(x) of index o admits the representation
f(x) = x%I(x) where I(x) is a slowly varying function.

A distribution F is said to have a regularly varying tail if the follow-
ing property holds:

F = x%I(x)

where [ is a slowly varying function. An example of a distribution with
a regularly varying tail is Pareto’s law. The latter can be written in vari-
ous ways, including the following:

Cc

F(x) = P(X>x) = forx =0

o
c+Xx

Power-law distributions are thus distributions with regularly vary-
ing tails. It can be demonstrated that they satisfy the convolution clo-
sure property of the tail. The distribution of the sum of 7 independent
variables of tail index o is a power-law distribution of the same index o
Note that this property holds in the limit for x — . Distributions with
regularly varying tails are therefore a proper subset of subexponential
distributions.

Being subexponential, power laws have all the general properties of
fat-tailed distributions and some additional ones. One particularly
important property of distributions with regularly varying tails, valid
for every tail index, is the rank-size order property. Suppose that sam-
ples from a power law of tail index o are ordered by size, and call S, the
size of the rth sample. One then finds that the law

is approximately verified. The well-known Zipf’s law is an example of
this rank-size ordering. Zipf’s law states that the size of an observation
is inversely proportional to its rank. For example, the frequency of
words in an English text is inversely proportional to their rank. The
same is approximately valid for the size of U.S. cities.
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Many properties of power-law distributions are distinctly different in
the three following ranges of o: 0 < <1, 1 < o £2, o > 2. The threshold
o = 2 for the tail index is important as it marks the separation between
the applicability of the standard Central Limit Theorem; the threshold o
= 1 is important as it separates variables with a finite mean from those
with infinite mean. Let’s take a closer look at the Law of Large Numbers
and the Central Limit Theorem.

The Law of Large Numbers and the Central Limit Theorem
There are four basic versions of the Law of the Large Numbers (LLN),
two Weak Laws of Large Numbers (WLLN), and two Strong Laws of
Large Numbers (SLLN).

The two versions of the WLLN are formulated as follows.

1. Suppose that the variables X; are IID with finite mean E[X;] = E[X] = .
Under this condition it can be demonstrated that the empirical average
tends to the mean in probability:

2. If the variables are only independently distributed (ID) but have finite
means and variances (l;,0;), then the following relationship holds:

n n n
in Zii Zui
Xn:i:l 5) i=1  _i=1
n n— o0 n n

In other words, the empirical average of a sequence of finite-mean finite-
variance variables tends to the average of the means.

The two versions of the SLLN are formulated as follows.

1. The empirical average of a sequence of IID variables X; tends almost
surely to a constant a if and only if the expected value of the variables
is finite. In addition, the constant a is equal to WL Therefore, if and only
if |[E[X;]| = [E[X]| = |u| <o the following relationship holds:
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2 X

> _i=1 A.S. _
X, = - E[X]=u
n n—> oo

where convergence is in the sense of almost sure convergence.
2. If the variables X; are only independently distributed (ID) but have
finite means and variances (l,,6;) and

n
.1 2
11m—26i<<>o
n—>o00 )
ni=1

then the following relationship holds:
X X; W
z A.S. Z z

inzzzl i i=1 _i=1
n n n

Suppose the variables are IID. If the scaling factor # is replaced with
Jn, then the limit relation no longer holds as the normalized sum

n
> X
i=1

Jn

diverges. However, if the variables have finite second-order moments,
the classical version of the Central Limit Theorem (CLT) can be demon-
strated. In fact, under the assumption that both first- and second-order
moments are finite, it can be shown that

S —nu D
n—u_%q)
o./n
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where |, 0 are respectively the expected value and standard deviation of X,
and ® the standard normal distribution.

If the tail index o > 1, variables have finite expected value and the
SLNN holds. If the tail index o > 2, variables have finite variance and
the CLT in the previous form holds. If the tail index o < 2, then vari-
ables have infinite variance: The CLT in the previous form does not
hold. In fact, variables with o < 2 belong to the domain of attraction of
a stable law of index a. This means that a sequence of properly normal-
ized and centered sums tends to a stable distribution with infinite vari-
ance. In this case, the CLT takes the form

S,-nu D _
—1—)Ga,lf1<0€S2
a
n

S

n

D
— Gy, if0<as1
a

n

where G are stable distributions as defined below. Note that the case o =
2 is somewhat special: variables with this tail index have infinite vari-
ance but fall nevertheless in the domain of attraction of a normal vari-
able, that is, G,. Below the threshold 1, distributions have neither finite
variance nor finite mean. There is a sharp change in the normalization
behavior at this tail-index threshold.

Stable Distributions

Stable distributions are not, in their generality, a subset of fat-tailed dis-
tributions as they include the normal distribution. There are different,
equivalent ways to define stable distributions. Let’s begin with a key
property: the equality in distribution between a random variable and
the (normalized) independent sum of any number of identical replicas of
the same variable. This is a different property than the closure property
of the tail insofar as (1) it involves not only the tail but the entire distri-
bution and (2) equality in distribution means that distributions have the
same functional form but, possibly, with different parameters. Normal
distributions have this property: The sum of two or more normally dis-
tributed variables is again a normally distributed variable. But this
property holds for a more general class of distributions called stable dis-
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tributions or Levy-stable distributions. Normal distributions are thus a
special type of stable distributions.

The above can be formalized as follows: Stable distributions can be
defined as those distributions for which the following identity in distri-
bution holds for any number # > 2:

" D
Y X; = C,X+D,
i=1

where X; are identical independent copies of X and the C,, D,, are con-
stants. Alternatively, the same property can be expressed stating that
stable distributions are distributions for which the following identity in
distribution holds:

D
AX;+BX, = CX+D

Stable distributions are also characterized by another property that
might be used in defining them: a stable distribution has a domain of
attraction (i.e., it is the limit in distribution of a normalized and cen-
tered sum of identical and independent variables). Stable distributions
coincide with all variables that have a domain of attraction.

Except in the special cases of Gaussian (o0 = 2), symmetric Cauchy
(oo = 1, B = 0) and stable inverse Gaussian (o = %, B = 0) distributions,
stable distributions cannot be written as simple formulas; formulas have
been discovered but are not simple. However, stable distributions can be
characterized in a simple way through their characteristic function, the
Fourier transform of the distribution function. In fact, this function can
be written as

Dy (1) = exp{iyt—clf|“[1 - iBsign(t)z(t, )]}
wherete R, ye R, c>0,a¢e (0,2), B e [-1,1], and

z(t, o) = tanw foaz1l
2

z(t,a) = =2loglt] ifo=1

It can be shown that only distributions with this characteristic function
are stable distributions (i.e., they are the only distributions closed under
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summation). A stable law is characterized by four parameters: o, B, ¢, and
v. Normal distributions correspond to the parameters: oo = 2, 3 = 0, y = 0.

Even if stable distributions cannot be written as simple formulas,
the asymptotic shape of their tails can be written in a simple way. In
fact, with the exception of Gaussian distributions, the tails of stable
laws obey an inverse power law with exponent o (between 0 and 2).
Normal distributions are stable but are an exception as their tails decay
exponentially.

For stable distributions, the CLT holds in the same form as for
inverse power-law distributions. In addition, the functions in the
domain of attraction of a stable law of index o < 2 are characterized by
the same tail index. This means that a distribution G belongs to the
domain of attraction of a stable law of parameter o < 2 if and only if its
tail decays as o. In particular, Pareto’s law belongs to the domain of
attraction of stable laws of the same tail index.

EXTREME VALUE THEORY FOR IID PROCESSES

In this section we introduce a number of important probabilistic con-
cepts that form the conceptual basis of Extreme Value Theory (EVT).
The objective of EVT is to estimate the entire tail of a distribution from
a finite sample by fitting to an appropriate distribution those values of
the sample that fall in the tail. Two concepts play a crucial role in EVT:
(1) the behavior of the upper order statistics (i.e., the largest k values in
a sample) and, in particular, of the sample maxima; and (2) the behavior
of the points where samples exceed a given threshold. We will explore
the limit distributions of maxima and the distribution of the points of
exceedances of a high threshold. Based on these concepts a number of
estimators of the tail index in sequences of independent and identically
distributed (IID) variables are presented.

Maxima
In the previous sections we explored the behavior of sums. The key result
of the theory of sums is that the behavior of sums simplifies in the limit of
properly scaled and centered infinite sums regardless of the shape of indi-
vidual summands. If sums converge, their limit distributions can only be
stable distributions. In addition, the normalized sums of finite-mean,
finite-variance variables always converge to a normal variable.

A parallel theory can be developed for maxima, informally defined
as the largest value in a sample. The limit distribution of maxima, if it
exists, belongs to one of three possible distributions: Frechet, Weibull,
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or Gumbel. This result forms the basis of classical EVT. Each limit dis-
tribution of maxima has its own Maximum Domain of Attraction. In
addition, limit laws are max-stable (i.e., they are closed with respect to
maxima). However, the behavior of maxima is less robust than the
behavior of sums. Maxima do not converge to limit distributions for
important classes of distributions, such as Poisson or geometric distri-
butions.

Consider a sequence of independent variables X; with common,
nondegenerate distribution F and the maxima of samples extracted from
this sequence:

Ml = Xl’ Mn = max(Xl,...,Xn)

The maxima M,, form a new sequence of random variables which are
not, however, independent.

As the variables of the sequence X; are assumed to be independent,
the distribution F,, of the maxima M,, can be immediately written down:

F(x), = P(X;<xv..vX,<x) = F'(x)

where v is the logical symbol for and.
If the distribution F, which is a non-decreasing function, reaches 1
at a finite point xp—that is, if xp = sup{x: F(x) < 1} < o, then

lim P(M,, < x)

lim F,(x) = 0, for x < xp
n—> oo n—> oo
If xp is finite,

P(M,<x) = F,(x) = 1, forx > xp

The point x is called the right endpoint of the distribution E.

Exhibit 13.1 illustrates the behavior of maxima in the case of a nor-
mal distribution. Given a normal distribution with mean zero and vari-
ance one, 100,000 samples of 20 elements each are selected. For each
sample, the maximum is chosen. The distribution of the maxima and the
empirical distribution of independent draws from the same normal are
illustrated in the exhibit.

A deeper understanding of the behavior of maxima can be obtained
considering sequences of normalized and centered maxima. Consider
the following sequence: c;l(Mn—dn) where ¢,, > 0, d, € R are con-
stants.
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EXHIBIT 13.1 The Distribution of the Maxima of a Normal Variable

012
Empirical pdf of the
maxima of 100,000
series of 20 random
01 independent draws
from N(0;1)
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Empirical pdf of 100,000
independent draws
from N(0;1)
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0.02
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A fundamental result on the behavior of maxima is the Fisher-Tip-
pett theorem which can be stated as follows. Consider a sequence of IID
variables X; and the relative sequence of maxima M,,. If there exist two
sequences of constants ¢,, > 0, d,, € R and a nondegenerate distribution
function H such that

_ D
' (M,-d)>H
then H is one of the following distributions:

0 x<0
Frechet: @ (x) = o a>0
exp(—x ) x>0

Weibull: Y, (x) = {exp[—(—x)_a] x<0 o> 0
1 x>0
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Gumbel: A(x) = exp{—e "}, xe R

The limit distribution H is unique, in the sense that different sequences
of normalizing constants determine the same distribution.

The three above distributions—Frechet, Weibull, and Gumbel—are
called standard extreme value distributions. They are continuous func-
tions for every real x. Random variables distributed according to one of
the extreme value distributions are called extremal random variables.

As an example, consider a standard exponential variable X. As F(x)
P(X <x)=1-¢",x20 the distribution of the maxima is P(M,, < x) = F'(x
= (1 -¢e™)" x 2 0. If we choose d,, = In n, we can write: P(M,, —d,, < x) =
PM, <Inn+x) = (1 -n'e™)" x>0. For any given x, (1 — nle™)" —
exp(—e™), which shows that the maxima of standard exponential vari-
ables centered with d,, = In n tend to a Gumbel distribution. Exhibit
13.2 illustrates the three distributions: Frechet, Gumbel, and Weibull.

We can now ask if there are conditions on the distribution F that
ensure the existence of centering and scaling constants and the conver-
gence to an extreme value distribution. To this end, let’s first introduce

~—

EXHIBIT 13.2 The Distribution of Frechet, Gumbel, and Weibull
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the concept of the Maximum Domain of Attraction (MDA) of an
extreme value distribution H or MDA(H).

A random variable X is said to belong to the MDA(H) of the extreme
value distribution H if there exist constants ¢,, > 0, d,, € R such that

', -dySH

Two distribution functions EG are said to be tail equivalent if they
have the same right endpoints and the following condition holds:

lim @
TTG(x)

=c¢c,0<c<o

Tail equivalence is an important concept for characterizing MDAs. In
fact, it can be demonstrated that every MDA(H) is closed with respect
to tail equivalence (i.e., if two distribution functions F and G are tail
equivalent F € MDA(H) if and only if G € MDA(H)). Tail equivalence
allows for a powerful characterization of the three MDAs.

Let’s first define the quantile function. Given a distribution function
F, the quantile function of F, written F(x), is defined as follows:

F(x) =inf[se R: F(s) 2x],0 <x < 1

The MDA of the Frechet Distribution
The Frechet distribution is written as ®,(x) = exp(—x *). Let’s start by
observing that the tail of the Frechet distribution decays as an inverse power
law. In fact, we can write 1 -® (x) =1 - exp(—x %) =x"* for x — oo

It can be demonstrated that a distribution function F belongs to the
MDA of a Frechet distribution ®,(x), oo > 0 if and only if there is a
slowly varying function L such that F(x) = x “L(x). In this case, the
constants assume the values

¢, = (1/F)n),d,=0
We can rewrite this condition more compactly as follows:
Fe MDA(®,) < Fe R_,

From the above definitions it can be demonstrated that the follow-
ing five distributions belong to the MDA of the Frechet distribution: (1)
Pareto; (2) Cauchy; (3) Burr; (4) Stable laws with exponent o < 2; or (5)
log-gamma distribution.
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The MDA of the Weibull Distribution

The Weibull distribution is written as follows:
Y, = exp[—(—x_a)]
The Weibull and the Frechet distributions are closely related to each

other. In fact, it is clear from the definition that the following relation-

ship holds:
W (x) = Dy(-x ), x>0
One can therefore expect that the MDA of the two distributions are
closely related. In fact, it can be demonstrated that a distribution func-
tion F belongs to the MDA of a Weibull distribution o > 0 if and only if
xF < oo
and

Fxp— xil) = x *L(x)

where L is a slowly varying function.

If

Fe MDA(Y¥,)

then
-1 D
¢, M, —xp) =Y,

The MDA of the Weibull distribution includes important distribu-
tions such as the distribution uniform in (0,1), power laws truncated to
the right, and Beta distributions.

The MDA of the Gumbel Distribution

The Gumbel distribution is written as A(x) = exp[-exp(—x)]. Observe
that the Gumbel distribution has exponential tails. This fact can be eas-
ily ascertained through Taylor expansion. There is no simple character-
ization of the MDA of the Gumbel Distribution.
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The MDA of a Gumbel distribution encompasses a large class of dis-
tributions that includes the exponential distribution, the normal distribu-
tion, and the lognormal distribution. Though the Gumbel distribution
has exponential tails, its MDA includes subexponential distributions
such as the Berktander distribution, as explained in Goldie and Resnick.”

Max-Stable Distributions

Stable distributions remain unchanged after summation; max-stable dis-
tributions remain unchanged after taking maxima. A non-degenerate
random variable X and the relative distribution is called max-stable if
there are constants ¢, > 0, d,, € R such that the following conditions are
satisfied

D
max(Xy, ..., X,) = ¢,X+d,

where X, X4, ..., X,, are IID variables.

It can be demonstrated that the class of max-stable distributions
coincides with the class of possible limit laws for normalized and cen-
tered maxima. In view of the previous discussions, the max-stable laws
are the three possible limit laws: Frechet, Weibull, and Gumbel.

Generalized Extreme Value Distributions

The three extreme value distributions, Frechet, Weibull, and Gumbel,
can be represented as a one-parameter family of distributions through
the Standard Generalized Extreme Value Distribution (GEV) of Jenkin-
son and Von Mises. Define the distribution function H as follows:

H, = {exp[—(l + §x)_1/§] for E=0
exp(—exp(—x)) for§=0

where 1 + Ex > 0. One can see from the definition that € = o' > 0 corre-
sponds to the Frechet distribution, § = 0 corresponds to the Gumbel dis-
tribution, and & = —or'! < 0 corresponds to the Weibull distribution. We
can now introduce the related location-scale dependent family He, \, by
replacing the argument x with (x — u)/y.

7 C.M. Goldie and S. Resnick, “Distributions that are Both Subexponential and in
the Domain of Attraction of an Extreme-Value Distribution,” Advanced Applied
Probability, 20 (1988), pp. 706-718.
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Order Statistics
The behavior of order statistics is a useful tool for characterizing fat-
tailed distributions. For instance, the famous Zipf’s law is an example of
the behavior of order statistics. Consider a sample Xy, ..., X,, made of n
independent draws from the same distribution F. Let’s arrange the sam-
ple in decreasing order:

X, <..<X,

,n

The random variable X}, , is called the k#h upper order statistic. It can
be demonstrated that the distribution of the kth upper order statistic is

k-1
Fipn= P(Xp ,<x) = Y F(x)F (x)
r=0

In addition, if F is continuous, it has a density with respect to F such
that

Few = [ foa@dF(2)

where

n! k-1 n—k

= FTF R
(k—1)!(n—k)!

fk,n

The differences between two consecutive variables in a sample Xy ,,
— Xj41,, are random variables called spacings. In the case of variables
with finite right endpoint xp the zero-th spacing is defined as: X , -
Xi, = xp = X1 5 The distribution of spacings depends on the distribu-
tion E For instance, it can be demonstrated that the spacings of an
exponential random variable are independent, exponential random vari-
ables with mean 1/n for a n-sample. Spacings are a key concept for the
definition of the Hill estimator, as explained later in this section.

Another key concept, which is related to spacings, is that of quantile
transformation. Let X1, ..., X,, be IID variables with distribution funec-
tion F and let Uy, ..., U,, be IID variables uniformly distributed on the
interval (0,1). Recall that, given a distribution function F, the quantile
function of F, written F*(x), is defined as follows:
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FT(x) = inf{se R: F(s)2x},0<x<1
It can be demonstrated that the following results hold:

m FO(U 2 X,
D
B (X en X, ) = [F(U,), ... FT (U, )]

B The random variable F(X{) has a uniform distribution on (0,1) if and
only if F is a continuous function.

To appreciate the importance of the quantile transformation, let’s
introduce first the notion of empirical distribution function and second
the Glivenko-Cantelli theorem. The empirical distribution function F,,
of a sample X4, ..., X,, is defined as follows:

F,(x) = ! 2 I(X;<x)
ni-1q

where I is the indicator function. In other words, for each x, the empiri-
cal distribution function counts the number of samples that are less than
or equal to x.

The Glivenko-Cantelli theorem provides the theoretical underpin-
ning of nonparametric statistics. It states that, if the samples X;, ..., X,,
are independent draws from the distribution F, the empirical distribu-
tion function F,, tends to F for large 7 in the sense that

A, = sup|F,(x) - F(x)‘aés' 0,forn— e

x€ R

The quantile transformation tells us that in cases where F is a Pareto
distribution, if we approximate # random draws from a uniformly dis-
tributed variable as the sequence 1,2,...,n, then the corresponding val-
ues of the sample Xy, ..., X,, will be

[EEN U
Do =
N

which is a statement of the Zipf’s law.
From the quantile transformation, the limit law of the ratio between
two successive order statistics can also be inferred. Suppose that an (infinite)
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population is distributed according to a distribution Fe R(o) with regu-
larly varying tails. Suppose that 7 samples are randomly and independently
drawn from this distribution and ordered in function of size: X, ,, > X,,_1 ,, =

.o 2 X1 . It can be demonstrated that the following property holds:

h:l é_)o
Xk+1,n n

Point Process of Exceedances or Peaks over Threshold

We have now reviewed the behavior of sums, maxima, and upper order
statistics of continuous random variables. Yet another approach to EVT
is based on point processes; herein we will use point processes only to
define the point process of exceedances.

Point processes can be defined in many different ways. To illustrate
the mathematics of point processes, let’s first introduce the homoge-
neous Poisson process. A homogeneous Poisson process is defined as a
process N(#) that starts at zero, i.e., N(0) = 0, and has independent sta-
tionary increments. In addition, the random variable N(z) is distributed
as a Poisson variable with parameter At. N(¢) is therefore a time-depen-
dent discrete variable that can assume nonnegative integer values.
Exhibit 13.3 illustrates the distribution of a Poisson variable.

A homogeneous Poisson process can also be defined as a random
sequence of points on the real line. Consider all discrete sequences of
points on the real line separated by random intervals. Intervals are inde-
pendent random variables with exponential distribution. This is the
usual definition of a Poisson process. Call N(¢) the number of points
that fall in the interval [0,z]. It can be demonstrated that N(z) is a homo-
geneous Poisson process according to the previous definition.

This latter definition can be generalized to define point processes. Intu-
itively, a generic point process is a random collection of discrete points in
some space. From a mathematical point of view, it is convenient to
describe a point process through the distribution of the number of points
that fall in an arbitrary set.® In the case of homogeneous Poisson pro-
cesses, we consider the number of points that fall in a given interval; for a
generic point process, it is convenient to consider a wider class of sets.

Consider a subspace E of a finite dimensional Euclidean space of
dimension 7. Consider also the c-algebra B of the Borel sets generated
by open sets in E. The space E is called the state space. For each point x
in E and for each set A € B, define the Dirac measure €, as

8D.R. Cox and V. Isham, Point Processes (London: Chapman and Hall, 1980).
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EXHIBIT 13.3  Distribution of a Poisson Variable
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For any given sequence x;, i 2 1 of points in E, define the following set
function:

m(A) = ngi(A) = card{i:X;e A},Ae DB
i=1

It can be verified that 7(A) is a measure B, called a counting measure. If
a counting measure is finite on each compact set, then it is called a point
measure. In other words, any given countable sequence in E generates a
counting measure on 3.

A point process is obtained associating to each family of sets A; € B
the joint probability distributions:
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Pr{m(A)=n;zi=1,2,..,k;k=1,2,...}

To make this definition mathematically rigorous, a point process
can be defined as a measurable map from some probability space to the
set of all point measures equipped with an appropriate c-algebra.
Besides the mathematical details, it should be clear that point processes
are defined by the probability distribution of the number of points that
fall in each set A of some c-algebra. The key ingredients of point pro-
cesses are (1) counting measures that associate to each set A the number
of points of each discrete sequence that falls in A with the additivity
restrictions of measures and (2) probability distributions defined over
the space of counting measures.

Equipped with the general concept of point processes, we can now
define the point process of exceedances. Consider a threshold formed by
any real number # and a sequence of random variables X;,i =1, 2, .... The
point process of exceedances with state space E = (0,1) counts the number
of instances where the random variables X; exceed the threshold u:

N,(A) = zei/n(A) = card{i<n and X;>u}
i=1

Note that in this case the state space specifies the size of the sample.

Estimation

In the previous sections we presented some key topics related to the prob-
ability structure of the tails of distributions, be they light- or fat-tailed.
Let’s now turn to the problem of estimation which is the key practical
task. The problem of estimation for EVT is essentially the problem of esti-
mating the tail of a distribution from a finite sample. The key statistical
idea of EVT from the point of view of estimation is to use only those sam-
ple data that belong to the tail and not the entire sample. This notion has
to be made precise by finding criteria that allow one to separate the tail
from the bulk of the distribution. Therefore, the estimation problem of
EVT distribution can be broken down into three separate subproblems:

M Identify the beginning of the tail.

M Identify the shape of the tail, in particular discriminate if it is a power-
law tail.

B Estimate the tail parameters, in particular the tail index in the case of a
power-law tail.
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It turns out that these three problems cannot be easily separated. In
fact, there is no reliable constructive theory for solving all these problems
automatically. In particular, the choice of the statistical model (i.e., the
distribution that best describes data) is a classical problem of formulating
and validating a scientific hypothesis in a probabilistic context. However,
there are many tools and tests to help the modeler in this endeavor.

The first fundamental tool is the graphical representation of data, in
particular the quantile plot or QQ-plot defined as the following set:

{xk Yy L b 1,2,...,71}
' n+1

The quantile transformation and the Glivenko-Cantelli theorem
allow concluding that this plot must be approximately linear. Should F
be a Pareto distribution, the linearity of the QQ-plot is another state-
ment of Zipf’s law. The quantile plot allows a quick verification of a sta-
tistical hypotheses by checking the approximate linearity of the plot. It
also allows the modeler to form a preliminary opinion on where the tail
begins and whether the model fails at the far end of the tail.

Though invaluable as an exploratory tool, graphics rely on human
judgment and intuition. Rigorous tests are needed. A starting point is
parameter estimation for the Generalized Extreme Value (GEV) Distri-
bution that we write as

T S 249 _
He,\ y(x) = exp{—(l + éu] }, 1+ &u >0
v v

with the convention that the case § = 0 corresponds to the Gumbel dis-
tribution:

x—p
v

HO;u,\v(x) = expy—e ,Xx€ R

We saw above that these distributions are the limit distributions, if
they exist, of the normalized maxima of IID sequences. Suppose that the
data to be estimated are independent draws from some EGV. This is a
rather strong assumption that we will progressively relax. This assump-
tion might be justified in domains where long series of data are available
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so that the sample data are the maxima of blocks of consecutive data.
Though this assumption is probably too strong in the domain of finance,
it is useful to elaborate its consequences.

Standard methodologies exist for parameter estimation in this case.
In particular, the usual maximum likelihood (ML) methodology can be
used for fitting the best GEV to data. Note that if the above distribu-
tions fit maxima we have to divide data into blocks and consider the
maxima of each block. To apply ML, we have to compute the likelihood
function on the data and choose the parameters that maximize it. This
can be done with numerical integration methods.

An estimation method alternative to ML is the method of moments
which consists in equating empirical moments with theoretical moments.
An ample literature on various versions of the method of moments exists.”

Let’s now release the assumption that the sequence of empirical data
are independent draws from an exact GEV and replace this with the
weaker assumption that empirical data are independent draws from F €
MDA(Hp). If we assume that the limit distribution is a Frechet distribu-
tion, then data must be independent draws from some distribution F
whose tail has the form:

F = x%L(x)

where L is a slowly varying function as described earlier in this chapter.
For this reason, estimation under this weaker assumption is semipara-
metric in nature. We will now introduce a number of estimators of the
shape parameter &.

The Pickand Estimator

The Pickand estimator &ZPL for an n-sample of independent draws from
a distribution F € MDA(H) is defined as

2(P) 1 X/a,n_XZk,n
Gy = o

where the X}, ,, are upper order statistics.

9 For a discussion of the different methods, see R. L. Smith, “Extreme Value Theo-
ry,” in W. Ledermann (ed.), Handbook of Applicable Mathematics, Supplement,
(Chichester, U.K.: John Wiley & Sons, 1990), pp. 437-472. For a discussion of the
method of probability-weighted moments, see J.R.M. Hosking, J.R. Wallis, and E.F.
Wood, “Estimation of the Generalized Extreme-Value Distribution by the Method
of Probability-Weighted Moments,” Technometrics 27 (1985), pp. 251-261.
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It can be demonstrated that the Pickand estimator has the following
properties:

B Weak consistency:

A P k
&ZPL =&, m—>o00, k>0, =0
’ n

W Strong consistency:

&(P)_>§ 1 —> oo, _k — oo lE—)O

In(Inn) " n

B Asymptotic normality under technical conditions.

The Pickand estimator is an estimator of the parameter & that does not
require any assumption on the type of limit distribution. Let’s now examine
the Hill estimator, which requires the prior knowledge that sample data are
independent draws from a Frechet distribution. Later in this chapter we
will see that the assumption of independence can be weakened.

The Hill Estimator

Suppose that Xy, ..., X,, are independent draws from a distribution F €
MDA(®,), o > 0 so that F = x “L(x) where L is a slowly varying func-
tion. The Hill estimator can be obtained as a MLE based on the k upper
order statistics. The Hill estimator takes the following form:

-1
&(H) = A(H) [ 2 1nX lnXk,nJ

7—1

The Hill estimator has the same weak and strong consistency prop-
erty as well as asymptotic normality as the Pickand estimator. The Hill
estimator is by far the most popular estimator of the tail index. It has
the advantage of being robust to some dependency in the data but can
perform very poorly in case of deviations from strict Pareto behavior. In
addition, it is subject to a bias-variance trade-off in the following sense:
The variance of the Hill estimator depends on the ratio k/n: it decreases
for increasing k. However, using a large fraction of the data will intro-
duce bias in the estimator.

As stated above, a critical tenet of EVT is the idea of fitting the tail
rather than the entire distribution. A number of articles on the automatic
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determination of the optimal subset of samples to be included in the tail
have appeared. One approach to the automatic determination of the tail
sample using the variance-bias trade-off was proposed by Drees and Kauf-
mann,'® while Dacorogna, Muller, Pictet, and de Vries'! and Danielsson
and de Vries!? proposed methods based on a bootstrap approach.

The moment ratio estimator is a generalization of the Hill estimator.
Consider the following estimator of the second order moments of the k&
upper order statistic:

k 2
~ 1
M, , = E(Z lnXi,n—lnX,Hl,n]
j=1

The moment ratio estimator is defined as follows:

~m) 1| My,
k, = - —_—
ool e
ak, n

Niklas Wagner and Terry Marsh!® did extensive simulation analysis
of various estimators. Their finding is that the moment ratio estimator
outperforms the Hill estimator in sequences with a dependence structure
(this is discussed further in the next section).

The Hill estimator was extended by Dekkers, Einmal, and de Haan'*
to cover the entire range of shape parameters &. A number of other esti-
mators have been proposed. In particular, under the assumption that
financial data follow a stable process, estimation procedures based on
regression analysis has been suggested. In fact, the assumption of stable

19H. Drees and E. Kaufmann, “Selecting the Optimal Sample Fraction in Univariate
Extreme Value Estimation,” Stochastic Processes and their Application 75 (2000),
pp. 254-274.

M.M. Dacorogna, U.A. Muller, O.V. Pictet, and C.G. de Vries, “The Distribution
of Extremal Foreign Exchange Rate Returns in Extremely Large Data Sets,” Olsen
& Associates preprint, Zurich, 1995.

127, Danielsson and C.G. de Vries, “Tail Index and Quantile Estimation with Very
High Frequency Data,” Journal of Empirical Finance 4 (1977), pp. 241-257.

13N. Wagner and T. Marsh, “On Adaptive Tail Index Estimation for Financial Re-
turn Models,” Research Program in Finance, Working Paper RPF-295, Hans School
of Management, University of California, Berkeley, November 2000.

14 Gee A.L.M. Dekkers and L. de Haan, “On the Estimation of the Extreme-Value
Index and Large Quantile Estimation,” Annals of Statistics 17 (1989), pp. 1795-
1832.
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behavior, or at least of exact Pareto tail, naturally leads to fitting a linear
model in a logarithmic scale. There is an ample literature on this topic
with a number of useful discussions, though empirical studies based on
Monte Carlo simulations are still limited.!®

The estimation methods reviewed above are based on the behavior
of maxima and upper order statistics; another methodology uses the
points of exceedances of high thresholds. Estimation methodologies
based on the points of exceedances require an appropriate model for the
point process of exceedances that was defined in general terms previ-
ously in this chapter.

ELIMINATING THE ASSUMPTION OF IID SEQUENCES

In the previous sections we reviewed a number of mathematical tools
that are used to describe fat-tailed processes under the key assumption
of IID sequences. In this section we discuss the implications of eliminat-
ing this assumption. However, in finance theory the assumption of sta-
tionary sequences of independent variables is only a first approximation;
it has been challenged in several instances. Consider individual price
time series. The autocorrelation function of returns decays exponen-
tially and goes to near zero at very short-time horizons while the auto-
correlation function of volatility decays only hyperbolically and remains
different from zero for long periods. In addition, if we consider portfo-
lios made of many securities, price processes exhibit patterns of cross
correlations at different time-lags and, possibly, cointegrating relation-
ships. These findings offer additional reasons to consider the assump-
tion of serial independence as only a first approximation.

If we now consider the question of stationarity, empirical findings
are more delicate. The non-stationarity that can be removed by differ-
encing is easy to handle and does not present a problem. The critical
issue is whether financial time series can be modeled with a single Data
Generation Process (DGP) that remains the same for the entire period
under consideration or if the model must be modified. Consider, for
instance, the question of structural breaks. At a basic level, structural
breaks entail nonstationarity as the model parameters change with time
and thus the finite-dimension distributions change with time. However,
at a higher level one might try to model structural changes, for instance

13 Francis X. Diebold, Til Schuermann, and John D. Stroughair, “Pitfalls and Oppor-
tunities in the Use of Extreme Value Theory in Risk Management,” The Journal of
Risk Finance (Winter 2000), pp. 30-36.
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through state-space models or Markov switching models. In this way,
stationarity is recovered but at the price of a more complex, serially
autocorrelated model.

EVT for multivariate models with complex patterns of serial corre-
lations loses its generality and becomes model-dependent. One has to
evaluate each model in terms of its behavior as regards extremes. In this
section we will explore a number of models that have been proposed for
modeling financial time series: ARCH and GARCH models and, more in
general, state-space models. First, however, a number of methodological
considerations are in order.

In the context of IID sequences, EVT tries to answer the question of
how to estimate a distribution with heavy tails given only a limited
amount of data. The model is the simplest (i.e., a sequence of IID vari-
ables) and the question is how to extrapolate from finite samples to the
entire tail. In the context of IID distributions, conditional and uncondi-
tional distributions coincide. However, if we release the IID assumption,
we have to specify the model and to estimate the entire model—not just
the tail of one variable. Conditional and unconditional distributions no
longer coincide. For instance, there are families of models that are con-
ditionally normal and unconditionally fat-tailed.

Here difficulties begin as model estimation might be complex. In
addition, estimation of some specific tail might not be the primary con-
cern in model estimation. In the context of variables with a dependence
structure, EVT can be thought of as a methodology to estimate the tails
of the unconditional distribution, leaving aside the question of full
model estimation.

An important methodological question is whether fat-tailedness is
generated by the transformation of a sequence of zero-mean, finite vari-
ance IID variables (i.e., white noise) or whether innovations themselves
have fat tails (i.e., so-called colored noise). For instance, as we will see,
GARCH models entail fat-tailed return distributions as the result of the
transformation of white noise. On the other hand, one might want to
estimate an Autoregressive Moving Average (ARMA) model under the
assumption of innovations with infinite variance.

Understanding how power laws and, more in general, fat tails are
generated from normal variables has been a primary concern of econo-
metrics and econophysics. Given the universality of power laws in eco-
nomics, it is clearly important to understand how they are generated.
These questions go well beyond the statistical analysis of heavy-tailed
processes and involve questions of economic theories. Essentially, one
wants to understand how the decisions of a large number of economic
agents do not average out but produce cascading and amplification phe-
nomena.
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The Law of Large Numbers tells that if individual processes are
independent and have finite variance, then phenomena average out in
aggregate and tend to an average limit. However, if individual processes
have fat tails, phenomena do not average out even in the infinite limit.
The weight of individual tails prevails and drives the aggregate process.
Philip W. Anderson, the corecipient of the 1997 Nobel Prize in Physics,
remarked:

Much of the real world is controlled as much by the
“tails” of distributions as by means or averages: by the
exceptional, not the mean; by the catastrophe, not the
steady drip; by the very rich, not the “middle class.” We
need to free ourselves from “average” thinking.'®

When and if fat-tailed drivers exist, they control the ensemble to
which they belong. But what generates these powerful drivers? Models
that generate fat tails from standard normal innovations attempt to
answer this question. Different types of models have been proposed.
One such category of models is purely geometric and exploits mathe-
matical theories such as percolation and random graph. Others exploit
phenomena of dynamic nonlinear self-reinforcing cascades of events.

Percolation models are based on the well known mathematical fact
that in regular spatial structures of nodes connected by links, a uniform
density of links produces connected subsets of nodes whose size is dis-
tributed according to power laws. Percolation models are time-transver-
sal models: They model aggregation at any given time. They might be
used to explain how fat-tailed IID sequences are generated.

Dynamic financial econometric models exploit cascading phenom-
ena due to nonlinearities, in particular multiplicative noise. In a deter-
ministic setting, it is well known that nonlinear chaotic models generate
sequences that, when analyzed statistically, exhibit fat-tailed distribu-
tions. The same happens when noise is subject to nonlinear transforma-
tion. In the next sections, we explore simple ARMA models, ARCH-
GARCH models, subordinated models, and state-space models, all
examples of dynamic financial econometric models.

Before doing this, however, let’s go back to the question of estima-
tion. As observed above, if variables are not IID but can be considered
generated by a DGP, the question of estimation is no longer the estima-
tion of a variable but that of estimating a model or a theory. The estima-

16 Philip W. Anderson, “Some Thoughts About Distribution in Economics,” in W.
B. Arthur, S. N. Durlaf, and D.A. Lane (eds.), The Economy as an Evolving Complex
System II (Reading, MA: Addison-Wesley, 1997).
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tion of the eventual tail index is part of a larger effort. However,
empirical data are a sequence of samples characterized by an uncondi-
tional distribution. One might want to understand if estimation proce-
dures used for IID sequences can be applied in this more general setting.
For instance, one might want to understand if tail-index estimators such
as the Hill estimator can be used in the case of serially correlated
sequences generated by a generic DGP.

From a practical standpoint, this question is quite important as one
wants to estimate the tails even if one does not know exactly what
model generated the sequence. Clearly, there is no general answer to this
problem. However, the behavior of a number of estimators under differ-
ent DGPs has been explored through simulation as explained in the fol-
lowing section.

Heavy-Tailed ARMA Processes

Let’s first consider the infinite moving average representation of a
univariate stationary series:

xt = Zhl€t71+m
i=0

under the assumption that innovations are IID a-stable laws of tail
index o. By the properties of stable distributions it can be demonstrated
that the finite-dimensional distributions of the process x are o-stable.
However, restrictions on the coefficients need to be imposed. It can be
demonstrated that a sufficient condition to ensure that the process x
exists and is stationary is the following:

oo

Z\bz‘\a“"

i=0

As we have seen in the previous section, a general univariate
ARMA(p,q) model is written as follows:

b q
Xt = 2 OLIXt_1+ Z(X]Zt_l
i=1 i=1

where the Z are IID variables. A
Using the Lag Operator—L—notation, L’ represents the variable at
i lags, the ARMA(p,q) model is written as follows:
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r q
X, = Y L'X,+ Y LZ,
i=1 j=1

The theory of ARMA processes developed in Chapters 11 and 12
can be carried over at least partially to cover the case of fat-tailed inno-
vations. In particular, an ARMA(p,q) process with IID o-stable innova-
tions admits a stationary, infinite moving average representation under
the same conditions as in the classical finite-variance case. The coeffi-
cients of the moving average satisfy the condition

oo

3. i<

i=0

In the case of fat-tailed innovations, covariances, and autocovariances
looses their meaning. It can also be demonstrated, however, that the
empirical autocorrelation function is meaningful and is asymptotically
normal. It can be demonstrated that maximum likelihood estimates can be
extended to the infinite variance case, though through a number of ad hoc
processes.

ARCH/GARCH Processes

As we saw in Chapter 12, The simplest ARCH model can be written as
follows. Suppose that X is the random variable to be modeled, Z is a
sequence of independent standard normal variables, and ¢ is a hidden
variable. The ARCH(1) model is written as

X, = 0,Z,

This basic model was extended by Bollerslev!” who proposed the
GARCH(p,q) model written as

X, = 0,2,

7 Tim Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,”
Journal of Econometrics 31 (1989), pp. 307-327.
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4 q

2 2 2

o, =B+ zviﬁpz’"’ Zaixtfi
i=1 i=1

The IID variables Z can be standard normal variables or other symmet-
rical, eventually fat-tailed, variables.

Let’s first observe that model parameters must be constrained in
order to guarantee the stationarity of the model. Stationarity conditions
depend on each model. No general simple expression for the stationarity
conditions is available.

Due to the multiplicative nature of noise, GARCH models are able
to generate fat-tailed distributions even if innovations have finite vari-
ance. This fact was established by Kesten'® in 1973. The tail index can
be theoretically computed at least in the case GARCH(1,1). Suppose a
GARCH(1,1) stationary process with Gaussian innovation is given. It
can be demonstrated that

P(X>x)=~Sx2"
2

where « is the solution of an integral equation. In the generic p, g case,
the return process is still fat-tailed but no practical way to compute the
index from model parameter is known.

Subordinated Processes
Subordinated processes allow the time scale to vary. Subordinated mod-
els are, in a sense, the counterpart of stochastic volatility models insofar
as they model the change in volatility by contracting and expanding the
time scale. The first model was proposed in 1973 by Clark.!” Subordi-
nated models have been extensively studied by Ghysels, Gourieroux,
and Josiak.?®

Subordinated models can be applied quite naturally in the context
of trading. Individual trades are randomly spaced. In modern electronic
exchanges, the time and size of trades are individually recorded thus
allowing for accurate estimates of the distributional properties of inter-
trades intervals. Consideration of random spacings between trades natu-

18 H. Kesten, “Random Difference Equations and Renewal Theory for Products of
Random Matrices” Acta Mathematica 131 (1973), pp. 207-248.

19p K. Clark, “A Subordinated Stochastic Process Model with Finite Variance for
Speculative Prices,” Econometrica 41 (January 1973), pp. 735-755.

20 E. Ghysels, C. Gourieroux, and J. Josiak, “Market Time and Asset Price Move-
ment Theory and Estimation,” Working Paper 95-32 Cyrano, Montreal, 1995.
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rally leads to the consideration of subordinated models. Subordinated
models generate unconditional fat-tailed distributions.

Markov Switching Models
The GARCH family of models is not the only family of serially corre-
lated models able to produce fat tails starting from normally distributed
innovations. State-space models and Markov-switching models present
the same feature. The basic ideas of state-space models and Markov
switching models is to split the model into two parts: (1) a regressive
model that regresses the model variable over a hidden variable and (2)
an autoregressive model that describes the hidden variables.

In its simplest linear form, a state-space model is written as follows:

X, =aZ,+¢g,
Zt = [.))Zt_1+6t

where €, §, are normally distributed independent white noises. State-
space models can also be written in a multiplicative form:

X, =0Z,_|+¢,

t
o, = Bo,_;+9,

If the second equation is a Markov chain, the model is called a
Markov-switching model. A well-known example of Markov-switching
models is the Hamilton model in which a two-state Markov chain drives
the switch between two different regressions.

Purely linear state-space models exhibit fat tails only if innovations
are fat-tailed. However, multiplicative state-space models and Markov-
switching models can exhibit fat tails even if innovations are normally
distributed. There is a growing literature on Markov-switching and mul-
tiplicative state-space models and a relatively large number of different
models, univariate as well as multivariate, have been proposed. Stochas-
tic volatility models are the continuous-time version of multiplicative
state-space models.

Estimation

Let’s now go back to the question of model estimation in a non-IID frame-
work. Suppose that we want to estimate the tail index of the unconditional
distribution of a set of empirical observations in the general setting of non-
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IID variables. Note that if variables are fat-tailed, we cannot say that they
are serially autocorrelated as moments of second order generally do not
exist. Therefore we have to make some hypothesis on the DGP.

There is no general theory of estimation under arbitrary DGP. Both
theoretical and simulation work are limited to specific DGPs. ARMA
models have been extensively studied. EVT holds for ARMA models
under general non-clustering conditions.?!

Often only simulation results are available. A fairly ample set of
results are available for GARCH(1,1) models. For these models Resnick
and Starica®? showed that the Hill estimator is a consistent estimator of
the tail index. Wagner and Marsh compared the performance of the Hill
estimator and of the moment ratio estimator for three model classes: IID
o-stable returns, ITD symmetric student, and GARCH(1,1) with student-
t innovation. They found that, in an adoptive framework, the moment
ratio estimator generally yields results superior to the Hill estimator.

Scaling and Self-Similarity

The concept of scaling is now quite frequently evoked in economics and
finance. Let’s begin by making a distinction between scaling and self-
similarity and some of the properties associated with inverse power laws
within or outside the Levy-stable scaling regime. These concepts have
different, and not equivalent, definitions.

The concepts of scaling and self-similarity apply to distributions,
processes or structures. Self-similarity was introduced as a property that
applies to geometrical self-similar objects (i.e., fractal structures). In this
context, self-similarity means that a structure can be put into a one-to-
one correspondence with a part of itself. Note that no finite structure
can have this property; self-similarity is the mark of infinite structures.
Self-similarity entails scaling: If a fractal structure is expanded by a
given factor, its measure expands by a power of the same factor.”> The
notion of scaling is often expressed as absence of scale, meaning that a
scaling object looks the same at any scale, large or small: It is impossible
to ascertain the size of a portion of a scaling object by looking at its
shape. The classical illustration is a Norwegian coastline with its fjords
and fjords within fjords that look the same regardless of the scale.

21 See Embrechts, Kluppelberg, and Mikosch, Modelling Extremal Events for Insur-
ance and Finance.

225, Resnick and C. Starica, “Tail Index Estimation for Dependent Data,” Annals of
Applied Probability 8 (1998), pp. 1156-1183.

23 For an introduction to fractals, see J. Falconer, Fractal Geometry (Chichester,
U.K.: John Wiley & Sons, 1990).
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However, scaling can be defined without making reference to frac-
tals. In its simplest form, the notion of scaling entails a variable x and
an observable A which is a function of A = A(x). If the observable obeys
a scaling relationship, there is a constant factor between x and A in the
sense that A(Ax) = A°A(x), where s is the scaling exponent that does not
depend on x. The only function A(x) that satisfies this relationship is a
power law. In the three-dimensional Euclidean space, volume scales as
the third power of linear length and surface as the second power, while
fractals scale according to their fractal dimension.

The same ideas can be applied in a random context, but require
careful reasoning. A power-law distribution has a scaling property as
multiplying the variable by a factor multiplies probabilities by a con-
stant factor, regardless of the level of the variable. This means that the
ratio between the probability of the events X > x and X > ax depends
only on a power of 4, not on x. As an inverse power law is not defined
at zero, scaling in this sense is a property of the tails. The probabilistic
interpretation of this property is the following: the probability that an
observation exceeds ax conditional on the knowledge that the observa-
tion exceeds x does not depend on x but only on a.

There are, however, other meanings attached to scaling and these
might be a source of confusion. In the context of physical phenomena,
scaling is often intended as identity of distribution after aggregation. The
same idea is also behind the theory of groups of renormalization and the
notion of self-similarity applied to structures such as coastlines. In the lat-
ter case, the intuitive meaning of self-similarity is that if one aggregates
portions of the coastline, approximating their shape with a straight line,
and then rescales; the resulting picture is qualitatively similar to the origi-
nal. The same idea applies to percolation structures: By aggregating
“sites” (i.e., points in a percolation lattice) into supersites and carefully
redefining links, one obtains the same distribution of connected clusters.

Applying the idea of aggregation in a random context, self-similar-
ity seems to mean that, after rescaling, the distribution of the sum of
independent copies of a random variable maintains the same shape of
the distribution of the variable itself. Note that this property holds only
for the tails of subexponential distributions—and it holds strictly only
for stable laws that have tails in the (0,2) range but whose shape is not a
power law except, approximately, in the tails. It also holds for Gaussian
distributions that do not have power-law tails.

Scaling acquires yet another meaning when applied to stochastic pro-
cesses that are functions of time. The most common among the different
meanings is the following: A stochastic process is said to have a scaling
property if there is no natural scale for looking at its paths and distribu-
tions. Intuitively, this means that it is not possible to gauge the scale of a
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sample by looking at its distribution; there is absence of scale. An exam-
ple from finance comes from price patterns. If a price pattern is generated
by a process with the scaling property, the plots of average daily and
monthly prices will appear to be perfectly similar in distribution; looking
at the plot, it’s impossible to tell if it refers to daily or monthly prices.

Self-similarity is another way of expressing the same concept. A
process is self-similar if a portion of the process is similar to the entire
process. As we are considering a random environment, self-similarity
applies to distributions, not to the actual realization of a process. Let’s
now make these concepts more precise.

A stochastic process X(z) is said to be self-similar (ss) of index H (H-
ss) if all its finite-dimensional distributions obey the scaling relationship:

D  _
Xpep Xy oo Xpy ) = KX, X0 X, VRS0

O0<H<1,ty,ty,...,t,>0

m

The above expression means that the scaling of time by the factor k
scales the variables X by the factor k. It gives precise meaning to the
notion of self-similarity applied to stochastic processes.

There is a wide variety of self-similar processes that cannot be charac-
terized in a simple way as scaling laws: The scaling property of stochastic
processes might depend upon the shape of distributions as well as the
shape of correlations. Let’s restrict our attention to processes that are self-
similar with stationary increments (sssi) and with index H (H-sssi). These
processes can be either Gaussian or non-Gaussian. Note that a Gaussian
process is a process whose finite-dimensional distributions are all Gaussian.

Gaussian H-sssi processes might have independent increments or
exhibit long-range correlations. The only Gaussian H-sssi process with
independent increment is the Brownian motion, but there are an infinite
number of fractional Brownian motions, which are Gaussian H-sssi pro-
cesses with long-range correlations. Thus there are an infinite variety of
Gaussian self-similar processes. Among the many non-Gaussian H-sssi
processes with independent increments are the stable Levy processes,
which are random walks whose increments follow a stable distribution.?*

There is another definition of self-similarity for stochastic processes
which makes use of the concept of aggregation; it is closer, at least in
spirit, to the theory of renormalization groups. Consider a stationary

24 See G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes
(New York: Chapman & Hall, 1994).
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infinite sequence of independent and identically distributed variables X;,
i 2 1. Create consecutive nonoverlapping blocks of m variables and
define the corresponding aggregated sequence of level m averaging over
each block as follows:

1 km
sz) = - Z X;
M= (h—1)ym+1

A sequence is called exactly self-similar if, for any integer m the fol-
lowing relationship holds:

D _
X = ml HX(m)

A stationary sequence is called asymptotically self-similar if the above
relationship holds only for m — oo,

When we apply the notion of scaling to stochastic processes—the
natural setting for economics and finance—we have to abandon the sim-
ple characterization of scaling as inverse power laws. Though the scal-
ing property is in itself characterized through simple power laws, the
scaling processes are complex and rich mathematical structures entail-
ing a variety of distributions and correlation functions. In particular, the
long-range correlation structure of the process plays a role as important
as the distribution of its variables.

EVIDENCE OF FAT TAILS IN FINANCIAL VARIABLES

To appreciate the applicability of scaling laws, let’s first look at the range of
variation of the economic and financial variables with which they are gen-
erally associated. Variables such as income, personal wealth, corporate size,
and market capitalization span many orders of magnitude. Large insurance
claims cover at least three orders of magnitude, with the largest claims
reaching billions of dollars.>® Bankruptcies cover a similarly broad range of
orders of magnitude.?® Daily stock returns span some two orders of magni-
tude. However, economic variables such as interest rates or GNP rates span
a smaller set of values. Obviously the range of variables is not in itself a

25 See Embrechts, Kluppelberg, and Mikosch, Modelling Extremal Events for Insur-
ance and Finance.

26 For empirical evidence on the Japanese experience, see H. Aoyama, Y. Nagahara,
M. P. Okazaki, W. Souma, H. Takayasu, and M. Takayasu, “Pareto’s Law for In-
come of Individuals and Debt of Bankrupt Companies,” Cond-Mat 0006038, 2000.
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sign of scaling or inverse power laws, but these variables cover a broad
enough range of values to make the scaling approximation meaningful.
The first example of scaling laws in economics is due to the econo-
mist Pareto in the nineteenth century. Pareto observed that, above some
threshold, the proportion of individuals with an income in excess of x is
inversely proportional to x. Generalizing, a distribution of the type

F(x) = P(X>x) = i forx>1
o
x

is called a Pareto law.

The presence of scaling laws has also been researched in price
behavior. In 1963 Mandelbrot*” observed self-similarity in economic
time series when he discovered that cotton price time series had approx-
imately the same shape at different time scales. Based on this empirical
discovery, Mandelbrot later proposed stable laws and fractional Brown-
ian motions as a model for price behavior.

Since Mandelbrot’s observations, researchers have been trying to
prove or disprove the existence of inverse power laws in the area of
asset returns. The jury is still out. A first remark is that scaling laws of
returns apply only to short-term (from one minute to a few days)
returns. Beyond this time horizon, returns exhibit complex behavior
that depends on the length and positioning of the observation periods.

One of the first systematic studies of the distribution of high-fre-
quency data was conducted by Zurich-based Olsen & Associates on
exchange rates.?® Olsen researchers found that many exchange rates fol-
low scaling laws with exponents < 2. More recently, several as yet
unpublished studies have look at fat-tailed returns in less traded curren-
cies: Payaslioglu?’ used tail index estimation for the Turkish lira and
Chobanov, Mateev, Mittnik and Rachev® looked at the Bulgarian lev.

27 Benoit Mandelbrot, “The Variation of Certain Speculative Prices,” Journal of
Business 36 (1963), pp. 394-419.

28U.A. Muller, M.M. Dacorogna, and O.V. Pictet, “Heavy Tails in High Frequency
Financial Data,” in R. Adler, R. Feldman, and M.S. Taqqu (eds.) A Practical Guide
to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions
(Boston: Birkhauser, 1997).

29 Cem Payaslioglu, “Tail Behavior of Return Distributions of Exchange Rates under
Different Regimes: A Case Study for Turkey.”

30 G. Chobanov, P. Mateev, S. Mittnik, and S. Rachev, “Modeling the Distribution
of Highly Volatile Exchange-rate Time Series” in P.M. Robinson and M. Rosenblatt
(eds.), Athens Conference on Applied Probability and Time Series, Volume II: Time
Series Analysis (New York: Springer, 1996).
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In the area of stock price returns at short time horizons, initial find-
ings by Mantegna and Stanley®' seemed to indicate truncated inverse
power laws with exponents in the range 1.4-1.6, well within the scaling
regime. More recent findings by Plerou et al*?> point to an exponent 3
without truncation, well outside the Levy stable regime. Johanson and
Sornette®® suggest that market crashes are not the fat tails of return dis-
tributions, but outliers. Still other studies, for instance Laherre and Sor-
nette,>* found that returns are better described by a function rather than
by a single exponent, thus creating multifractal distributions.

Applying the notion of stable laws to stock price returns raises addi-
tional questions. The infinite variance property of stable laws is some-
what in contrast with empirical findings about stock returns, most of
which seem to indicate finite variance, though higher order moments
might become infinite. This is in agreement with the use of volatility as a
key parameter in financial risk management. Stable laws, on the other
hand, would require abandoning the notion of volatility. It seems fair to
conclude that stable laws are not a good approximation to stock
returns, though inverse power laws with exponent >2 might still hold.

As noted above, the fundamental practical importance of the pres-
ence of stable laws in economic and financial phenomena is that they
would render risk management and financial decision-making difficult:
If variables are governed by stable laws, there is no possibility of diver-
sifying risk. Modeling with fat-tailed distributions has the status of a
theoretical hypothesis as it implies extrapolating that the future will
bring unbounded innovation. In the insurance industry, for example, the
assumption of scaling is appropriate in domains such as catastrophe
insurance, where there is no natural bound to the size of catastrophes
and where experience has shown that very large catastrophic events do
indeed occur.

SIR. N. Mantegna and H.E. Stanley, “Scaling Behavior in the Dynamics of an Eco-
nomic Index,” Nature 46 (1995), p. 376.

32y, Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer, and H.E. Stanley, “Scaling
of the Distribution of Price Fluctuations of Individual Companies,” Physical Review
E 60, no. 6, Part A (December 1999), pp. 6519-6529

33 A. Johansen and D. Sornette, “Stock Market Crashes Are Outliers,” European
Physical Journal B 9, no. 1 (February 1998), pp. 141-143.

347, Laherre and D. Sornette, “Stretched Exponential Distributions in Nature and
Economy: ‘Fat Tails’ with Characteristic Scales,” European Physical Journal B 2
(1998), p. 525.
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ON THE APPLIGABILITY OF EXTREME VALUE
THEORY IN FINANCE

In financial applications, EVT for fat-tailed processes has been applied to
questions of risk management and portfolio optimization, especially port-
folios with exposure to credit risk.

We can illustrate the importance of fat-tailed processes in credit risk
management using an example prepared by Srichander Ramaswamy?’
Exhibit 13.4 shows the credit risk of a 23-corporate bond portfolio
under different modeling assumptions. Risk values in the first column
are computed considering default losses under the assumption that joint
asset return distribution is normal. Values in the second column are
computed under the same distributional assumptions but consider not
only default losses but also the losses incurred due to rating migration.
The values in the third column are computed under the assumption that
the joint distribution of asset returns is a multivariate ¢ with 8 degrees
of freedom.

The risk measures considered are Unexpected Loss (UL) measured
by the standard deviation in the second row, credit risk Value-at-Risk
(CrVaR) in the third row, and Expected Shortfall Risk (ESR) in the
fourth row. (We will discuss these measures in Chapter 22, where we
cover risk management.) The Expected Loss tabulated in the first row is
a measure of credit cost and not of risk.

As explained in Chapter 22, under the assumption of multivariate
normality, the three risk measures UL, VaR, and ES are equivalent; how-
ever, if we drop this assumption, the three risk measures are no longer
equivalent. Observe, in particular, that moving from a multivariate nor-

EXHIBIT 13.4  Portfolio Credit Risk Measures Under Different Modeling
Assumptions

Default Mode Migration Mode Migration Mode
and Multivariate and Multivariate and Multivariate

Description Normal Normal t-Distributed
Expected loss 13.9 bp 34.1 bp 34.0 bp
Unexpected loss 65.9 bp 88.9 bp 105.1 bp
CrVaR at 90% confidence 0.0 bp 102.9 bp 96.6 bp
ESR at 90% confidence 139.0 bp 240.3 bp 256.2 bp

33 This illustration is adapted from his book, Managing Credit Risk in Corporate
Bond Portfolios: A Practitioner’s Guide (Hoboken, NJ: John Wiley & Sons, 2004).
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mal to a multivariate ¢ CrVaR drops from 102.9 basis points to 96.6 basis
points but ES grows from 240.3 basis points to 256.2 basis points. This
happens because the #-distribution is more fat-tailed than the normal dis-
tribution. As a consequence, VaR underestimates the risk of large losses.

Though there are still questions as to whether asset prices have a
finite variance, there is little doubt that financial time series are not
Gaussian. Large events happen at a rate incompatible with Gaussian
behavior. This problem must be addressed from the point of view of
both risk management and financial optimization.

Many issues regarding risk management have been discussed in the
literature. A number of key issues are summarized by Mulvey who
points out the need to correctly address problems stemming from conta-
gion phenomena and from the possibility of joint actions such as those
occurring in market crashes.’® A better understanding of the dynamics
of these events could lead to effective measures to protect market partic-
ipants from unnecessary risk.

SUMMARY

B Fat-tailed laws have been found in many economic variables

M Fully approximating a finite economic system with fat-tailed laws
depends on an accurate statistical analysis of the phenomena, but also
on a number of the theoretical implications of subexponentiality and
scaling.

B Modeling financial variables with stable laws implies the assumption of
infinite variance, which seems to contradict empirical observations.

M Scaling laws might still be an appropriate modeling paradigm given the
complex interaction of distributional shape and correlations in price
processes.

B Scaling laws might help in understanding not only the sheer size of eco-
nomic fluctuations but also the complexity of economic cycles.

3¢ John M. Mulvey, “Risk Management Systems for Long-term Investors: Address-
ing/Managing Extreme Events,” Working Paper, May 2001, Operations Research
and Financial Engineering Department, Bendheim Center for Finance, Princeton
University.



14

Arhitrage Pricing:
Finite-State Models

he Principle of Absence of Arbitrage is perhaps the most fundamental

principle of finance theory. In the presence of arbitrage opportunities,
there is no trade-off between risk and returns because it is possible to
make unbounded risk-free gains. The principle of absence of arbitrage is
fundamental for understanding asset valuation in a competitive market.
This chapter discusses arbitrage pricing in a finite-state, discrete-time
setting. In the following chapter we extend the discussion to a continu-
ous-time, continuous-state setting.

THE ARBITRAGE PRINCIPLE

Let’s begin by defining what is meant by arbitrage. In its simple form,
arbitrage is the simultaneous buying and selling of an asset at two differ-
ent prices in two different markets. The arbitrageur profits without risk
by buying cheap in one market and simultaneously selling at the higher
price in the other market. Such opportunities for arbitrage are rare. In
fact, a single arbitrageur with unlimited ability to sell short could correct
a mispricing condition by financing purchases in the underpriced market
with proceeds of short sales in the overpriced market. (Short-selling
means selling an asset that is not owned in anticipation of a price
decline. The mechanism for doing this is described in Chapter 2.) This
means that riskless arbitrage opportunities are short-lived.

Less obvious arbitrage opportunities exist in situations where a
package of assets can produce a payoff (expected return) identical to an
asset that is priced differently. This arbitrage relies on a fundamental

393
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principle of finance called the law of one price, which states that a given
asset must have the same price regardless of the location where the asset
is traded and the means by which one goes about creating that asset.
The law of one price implies that if the payoff of an asset can be syn-
thetically created by a package of assets, the price of the package and
the price of the asset whose payoff it replicates must be equal.

When a situation is discovered whereby the price of the package of
assets differs from that of an asset with the same payoff, rational inves-
tors will trade these assets in such a way so as to restore price equilib-
rium. This market mechanism is founded on the fact that an arbitrage
transaction does not expose the investor to any adverse movement in
the market price of the assets in the transaction.

For example, consider how we can produce an arbitrage opportu-
nity involving three assets A, B, and C. These assets can be purchased
today at the prices shown below, and can each produce only one of two
payoffs (referred to as State 1 and State 2) a year from now:

Asset  Price  Payoffin State 1  Payoff in State 2

A $70 $50 $100
B 60 30 120
C 80 38 112

While it is not obvious from the data presented above, an investor
can construct a portfolio of assets A and B that will have the identical
return as asset C in both State 1 and State 2. Let w, and wpg be the pro-
portion of assets A and B, respectively, in the portfolio. Then the payoff
(i.e., the terminal value of the portfolio) under the two states can be
expressed mathematically as follows:

W If State 1 occurs: $50 wy + $30 wp
W If State 2 occurs: $100 w, + $120 wp

We create a portfolio consisting of A and B that will reproduce the
payoff of C regardless of the state that occurs one year from now. Here
is how: for either condition (State 1 and State 2) we set the payoff of the
portfolio equal to the payoff for C as follows:

M State 1: $50 w, + $30 wy = $38
M State 2: $100 w4 + $120 wy = $112
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We also know that wy + wpg = 1. If we solved for the weights for w4
and wp that would simultaneously satisfy the above equations, we
would find that the portfolio should have 40% in asset A (i.e., w4 = 0.4)
and 60% in asset B (i.e., wp = 0.6). The cost of that portfolio will be
equal to

(0.4)($70) + (0.6)($60) = $64

Our portfolio (i.e., package of assets) comprised of assets A and B
has the same payoff in State 1 and State 2 as the payoff of asset C. The
cost of asset C is $80 while the cost of the portfolio is only $64. This is
an arbitrage opportunity that can be exploited by buying assets A and B
in the proportions given above and shorting (selling) asset C.

For example, suppose that $1 million is invested to create the port-
folio with assets A and B. The $1 million is obtained by selling short
asset C. The proceeds from the short sale of asset C provide the funds to
purchase assets A and B. Thus, there would be no cash outlay by the
investor. The payoffs for States 1 and 2 are shown below:

Asset Investment State 1 State 2
A $400,000 $285,715 $571,429
B 600,000 300,000 1,200,000
C -1,000,000 -475,000 -1,400,000

Total 0 110,715 371,429

ARBITRAGE PRICING IN A ONE-PERIOD SETTING

We can describe the concepts of arbitrage pricing in a more formal
mathematical context. It is useful to start in a simple one-period, finite-
state setting as in the example of the previous section. This means that
we consider only one period and that there is only a finite number M of
states of the world. In this setting, asset prices can assume only a finite
number of values.

The assumption of finite states is not as restrictive as it might
appear. In practice, security prices can only assume a finite number of
values. Stock prices, for example, are not real numbers but integer frac-
tions of a dollar. In addition, stock prices are nonnegative numbers and
it is conceivable that there is some very high upper level that they can-
not exceed. In addition, whatever simulation we might perform is a
finite-state simulation given that the precision of computers is finite.
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The finite number of states represents uncertainty. There is uncer-
tainty because the world can be in any of the M states. At time 0 it is not
known in what state the world will be at time 1. Uncertainty is quanti-
fied by probabilities but a lot of arbitrage pricing theory can be devel-
oped without any reference to probabilities. Suppose there are N
securities. Each security i pays d;; number of dollars (or of any other
unit of account) in each state of the world j. The payoff of each security
need not be a positive number. For instance, a derivative instrument
might have negative payoffs in some states of the world. Therefore, in a
one-period setting, the securities are formally represented by an NxM
matrix D = {d;;} where the d;; entry is the payoff of security i in state j.
Recall from Cflapter 5 that the matrix D can also be written as a set of
N row vectors:

where the M-vector d; represents the payoffs of security i in each of the
M states.

Each security is characterized by a price S. Therefore, the set of N
securities is characterized by an N-vector S and an NxM matrix D. Sup-
pose, for instance, there are two states and three securities. Then the
three securities are represented by

Sl dll d12
S = Sz s D = le d22
S3 d31 d32

Every row of the D matrix represents one security, every column one
state. Note that in a one-period setting, prices are defined at time 0
while payoffs are defined at time 1. There is no payoff at time 0 and
there is no price at time 1. A portfolio is represented by a N-vector of
weights 0. In our example of a market with two states and three securi-
ties, a portfolio is a 3-vector:
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The market value Sg of a portfolio 0 at time 0 is a scalar given by
the scalar product:

N

Se =86 =) S8,
i=1

Its payoff dg at time 1 is the M-vector:
de = D'(‘)

The price of a security and the market value of a portfolio can be negative
numbers. In the previous example of a two-state, three-security market
we obtain

Se = Se = Slel +8292+S393

0
dg = DO = {dn dyy dﬂ 91 _ {d1191+d2192+d3193
d1201+dyy0, +d3;05

Let’s introduce the concept of arbitrage in this simple setting. As we
have seen, arbitrage is essentially the possibility of making money by trad-
ing without any risk. Therefore, we define an arbitrage as any portfolio 8
which has a negative market value Sg = S8 < 0 and a nonnegative payoff
Dy =D’820 or, alternatively, a nonpositive market value Sg = S0 < 0 and
a positive payoff Dy =D’6>0.

State Prices

Next we define state prices. A state-price vector is a strictly positive M-
vector Y such that security prices can be written as S = Dy. In other
words, given a state-price vector, if it exists, security prices can be
recovered as a weighted average of the securities’ payoffs, where the
state-price vector gives the weights. In the previous two-state, three-security
example we can write:
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Sy dyy dypy 1 diyy+dpy,
S5 = |day day L!j = |dyvy +dyuv,
S3 ds; dyy dy vy +d3y,

Given security prices and payoffs, state prices can be determined
solving the system:

diyy+dpy, = 8
dyyy +dypy, =
dy1yy +dpy, =

| |
“”n ”n
[SSHE )

This system admits solutions if and only if there are two linearly inde-
pendent equations and the third equation is a linear combination of the
other two. Note that this condition is necessary but not sufficient to ensure
that there are state prices as state prices must be strictly positive numbers.

A portfolio 0 is characterized by payoffs dg = D’ . Its price is given,
in terms of state prices, by: Sg = S8 = Dy8 = dgy.

It can be demonstrated that there is no arbitrage if and only if there is
a state-price vector. The formal demonstration is quite complicated given
the inequalities that define an arbitrage portfolio. It hinges on the Separat-
ing Hyperplane Theorem, which says that, given any two convex disjoint
sets in RM, it is possible to find a hyperplane separating them. A hyper-
plane is the locus of points x; that satisfy a linear equation of the type:

M
a0+ Zaixi =0
i=1

Intuitively, however, it is clear that the existence of state prices ensures
that the law of one price introduced in the previous section is automatically
satisfied. In fact, if there are state prices, two identical payoffs have the
same price, regardless of how they are constructed. This is because the price
of a security or of any portfolio is univocally determined as a weighted
average of the payoffs, with the state prices as weights.

Risk-Neutral Probabilities

Let’s now introduce the concept of risk-neutral probabilities. Given a
state-price vector, consider the sum of its components Yy = Wy + Yy + ...
+ Y. Normalize the state-price vector by dividing each component by
the sum (. The normalized state-price vector
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v ={y;} = {E}
Yo

is a set of positive numbers whose sum is one. These numbers can be
interpreted as probabilities. They are not, in general, the real probabili-
ties associated with states. They are called risk-neutral probabilities. We
can then write

S— = Dy
Yo

We can interpret the above relationship as follows: The normalized
security prices are their expected payoffs under these special probabili-
ties. In fact, we can rewrite the above equation as

_ S
Yo

where expectation is taken with respect to risk-neutral probabilities. In
this case, security prices are the discounted expected payoffs under these
special risk-neutral probabilities. - -

Suppose that there is a portfolio  such that dg = D0 = {1,1,...,1}.
This portfolio can be one individual risk-free security. As we have seen
above SO = dgy, which implies that y, = 0S is the discount on riskless
borrowing.

Complete Markets

Let’s now define the concept of complete markets, a concept that plays a
fundamental role in finance theory. In the simple setting of the one-
period finite-state market, a complete market is one in which the set of
possible portfolios is able to replicate an arbitrary payoff. Call span(D)
the set of possible portfolio payoffs which is given by the following
expression:

span(D)={D’0: 0 RM}

A market is complete if span(D) = RM,
A one-period finite-state complete market is one where the equation
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D@ =& £e RM

always admits a solution. Recall from Chapter 5 on matrix algebra that
this is the case if and only if the rank of D is M. This means that there
are at least M linearly independent payoffs—that is, there are as many
linearly independent payoffs as there are states. Let’s write down explic-
itly the system in the two-state three-security market.

DO=¢

0
{dll dll d31} e; — Fl}
d12 d22 d32 93 iz

d101 +dy10,+d;3,05 = &
d1501+dp0,+d5505 =&,

Recall from Chapter 5 that this system of linear equations admits
solutions if and only if the rank of the coefficient matrix is 2. This con-
dition is not verified, for example, if the securities have the same payoff
in each state. In this case, the relationship &; = &, must always be veri-
fied. In other words, the three securities can only replicate portfolios
that have the same payoff in each state.

In this simple setting it is easy to associate risk-neutral probabilities
with real probabilities. In fact, suppose that the vector of real probabili-
ties p is associated to states so that p; is the probability of the i-th state.
For any given M-dimensional vector x, we write its expected value
under the real probabilities as

E[x] = px = Zpixi

It can be demonstrated that there is no arbitrage if and only if there
is a strictly positive M-vector @ such that: S = E[Dm]. Any such vector ©
is called a state-price deflator. To see this point, define
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Prices can then be expressed as

M M v M
S;= X dyw; = X pdyTl = Y pidym;
=1 I

which demonstrates that S = E[Dm].

We can now specialize the above calculations in the numerical case
of the previous section. Recall that in the previous section we gave the
example of three securities with the following prices and payoffs
expressed in dollars:

70
S =160
80

50 100
D = {30 120
38 112

We first compute the relative state prices:

50y, +100y, = 70
30y, + 120y, = 60
38y, + 112y, = 80

Solving the first two equations, we obtain

MR

However, the third equation is not satisfied by these values for the state
prices. As a consequence, there does not exist a state-price vector which
confirms that there are arbitrage opportunities as observed in the first
section.

Now suppose that the price of security C is $64 and not $80. In this
case, the third equation is satisfied and the state-price vector is the one
shown above. Risk-neutral probabilities can now be easily computed.
Here is how. First sum the two state prices: % + %10 = %o to obtain
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Vo = Wi+, = Yo

and consequently the risk-neutral probabilities:

v = i _ (V1 Vo _ [3/11}
\ 2] Y2/ W 2!
Risk-neutral probabilities sum to one while state prices do not. We can
now check if our market is complete. Write the following equations:

The rank of the coefficient matrix is clearly 2 as the determinant of the
first minor is different from zero:

50301 = 50%120-100%30 = 300%0
100 120

Our sample market is therefore complete and arbitrage-free. A portfolio
made with the first two securities can replicate any payoff and the third
security can be replicated as a portfolio of the first two.

ARBITRAGE PRICING IN A MULTIPERIOD FINITE-STATE
SETTING

The above basic results can be extended to a multiperiod finite-state set-
ting using the probabilistic concepts developed in Chapter 6. The econ-
omy is represented by a probability space (Q,3,P) where Q is the set of
possible states, 3 is the algebra of events (recall that we are in a finite-
state setting and therefore there are only a finite number of events), and
P is a probability function. As the number of states is finite, finite prob-
abilities P({w}) = P(®) = p, are defined for each state. There is only a
finite number of dates from 0 to T.

Propagation of Information

Recall from Chapter 6 that the propagation of information is repre-
sented by a filtration 3, that, in the finite case, is equivalent to an infor-
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mation structure I,. The latter is a discrete, hierarchical organization of
partitions I, with the following properties:

I,={A;}); k=0,..,T; i=1,..,M,; 1 = My<-<M,<-<M; =M

M
1=

and, in addition, given any two sets Aj,, Aj,, with b > &, either their
intersection is empty A;, N Aj, = D or Aj, 2 Ajj,. In other words, the par-
titions become more refined with time. _

Each security i is characterized by a payoff process d, and by a
price process S;. In this finite-state setting, d, and S, are discrete vari-
ables that, given that there are M states, can be represented by M-vec-
tors d, = [d,(®)] and S, = [S)(®w)] where d;(®) and Sy(w) are,
respectively, the payoff and the price of the i-th asset at time z, 0 <t < T
and in state ® € Q. Following Chapter 6, all payoffs and prices are sto-
chastic processes adapted to the filtration $,. Recall from Chapter 6
that, given that d; and S, are adapted processes in a finite probability
space, they have to assume a constant value on each partition of the
information structure I,. It is convenient to introduce the following
notation:

dy = diw), 0c A,

%)
e
I

SHw), we Aj,

where. dA and SA represent the constant values that the processes d
and S, assume on the states that belong to the sets Aj; of each partltlon
I,. There is M = 1 value for dA and SA M, values for d’; and SA
and M = M values for dA and SA The same notation and the sane
consideration can be apphed to any process adapted to the filtration S,.

Trading Strategies

We have to define the meaning of trading strategies in this multiperiod
setting. A trading strategy is a sequence of portfolios 6 such that 8, is the
portfolio held at time ¢ after trading. To ensure that there is no anticipa-
tion of information, each trading strategy 6 must be an adapted process.
The payoff d® generated by a trading strategy is an adapted process d
with the following time dynamics:
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d? =0, (S,+d,)-9,S,

An arbitrage is a trading strategy whose payoff process is nonnega-
tive and not always zero. In other words, an arbitrage is a trading strat-
egy which is never negative and which is strictly positive for some
instants and some states. Note that imposing the condition that payoffs
are always nonnegative forbids any initial positive investment that is a
negative payoff.

A consumption process is any nonnegative adapted process. Mar-
kets are said to be complete if any consumption process can be obtained
as the payoff process of a trading strategy with some initial investment.
Market completeness means that any nonnegative payoff process can be
replicated with a trading strategy.

State-Price Deflator

We will now extend the concept of state-price deflator to a multiperiod
setting. A state-price deflator is a strictly positive adapted process m,
such that the following set of M equations hold:

T
Sy = —E,| Y, md;
T j=t+1

In other words, a state-price deflator is a strictly positive process such
that prices S, are random variables equal to the conditional expectation
of discounted payoffs with respect to the filtration 3. As noted above, in
this finite-state setting a filtration is equivalent to an information struc-
ture I,. Note that in the above stochastic equation—which is a set of M
equations, one for each state, the term on the left, the prices S, is an
adapted process that, as mentioned, assumes constant values on each set
of the partition I,. The term on the right is a conditional expectation
multiplied by a factor 1/n,. The process 7, is adapted by definition and,
therefore, assumes constant values 1, —on each set of the partition I;.

In this finite setting, conditional expectations are expectations com-
puted with conditional probabilities. Recall from Chapter 6 that condi-
tional expectations are adapted processes. Therefore they assume one
value at ¢ = 0, M; values for ¢ = j, and M values at the last date.

To illustrate the above, let’s write down explicitly the above equa-
tion in terms of the notation d;‘/_t and S;\ﬂ. Note first that
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PHo}nAy) _ P}
P(Ag) P(Ag)

P({(D}‘Akt) = ,if(,l)e Akt,Olf(De Akt

Given that the probability space is finite,

P(Aj) = Y by

we A;‘z

As we defined P({®}) = p,, the previous equation becomes

P({o}nA,) o
P(0}|A,,) = k) _Poh) _ P
P(Agy) P(Ag,) ( 3 p)
we Akt

if e Akt,Oif(DE Akt'

Pricing Relationships
We can now write the pricing relationship as follows:

T
Sh,, = 1 > P({m}Akt)[ Y, m(0)di(o) }

j=t+1

T
-1 ¥ L[ 3 n,.(m)d;(m)]
TAp|we Ay, ( z Pw) j=t+1

we Ay,

A el 1<k<M,

The above formulas generalize to any trading strategy. In particular,
if there is a state-price deflator, the market value of any trading strategy
is given by
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T
(0,5,), = 1 PUMA| Y, m(o)d]()
kt

j=t+1

T
= L 2 L[ 2 ni(m)d?(m)]
T, we Ay, ( Z pw) j=t+1

we Ay,

It is possible to demonstrate that the payoff-price pair (d}, S;) admits
no arbitrage if and only if there is a state-price deflator. These concepts
and formulas generalize those of a one-period setting to a multiperiod
setting. o

Given a payoff-price pair (d,, S;) it is possible to compute the state-
price deflator, if it exists, from the previous equations. In fact, it is possi-
ble to write a set of linear equations in the m;, m, _ for each period. One
can proceed backward from the period T to period 1 writing a homoge-
neous system of linear equations. As the system is homogeneous, one of
the variables can be arbitrarily fixed; for example, the initial value ny can
be assumed equal to 1. If the system admits nontrivial solutions and if all
solutions are strictly positive, then there are state-price deflators.

Examples

To illustrate the above, let’s write down explicitly the previous formulas
for prices, extending the example of the previous section to a two-
period setting. We assume there are three securities and two periods,
that is, three dates (0,1,2) and four states, indicated with the integers
1,2,3,4, so that Q = {1,2,3,4}. Assume that the information structure is
given by the following partitions of events:

Ii=,= {Al,O}’ I = {Al, 10 Az, 1h 1= {A1,z’ Az, 25 A3,z: A4,z})

A, ={1LA,,={2} A5, ={3} Ay, ={4}

where we use + to indicate logical union, so that, for example, {1 + 2} is
the event formed by states 1 and 2. The interpretation of the above
notation is the following. At time zero the world can be in any possible
state, that is, the securities can take any possible path. Therefore the
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partition at time zero is formed by the event {1 + 2 + 3 + 4}. At time 1,
the set of states is partitioned into two mutually exclusive events, {1 + 2}
or {3 + 4}. At time 2 the partition is formed by all individual states.
Note that this is a particular example; different partitions would be log-
ically admissible.

Exhibit 14.1 represents the above structure. Each security is character-
ized by a price process and a payoff process adapted to the information
structure. Each process is a collection of three discrete random variables
indexed with the time indexes 0,1,2. Each discrete random variable is a 4-
vector as it assumes as many values as states. However, as processes are
adapted, they must assume the same value on each partition of the infor-
mation structure. Note also that payoffs are zero at date zero and prices
are zero at date 2. Therefore, in this example, we can put together these
vectors in two 3x4 matrices for each security as follows

Sp(1) $3(1) 0 0 diy(1) di(1)

: SE2) SH2) 0 : 0d @) d @
i@y =| 0 212 O g )y = | 12 2)
Sp(3) $1(3) 0 0 d1(3) d>(3)

So(4) S1(4) 0 0 dy(4) d5(4)

The following relationships hold:
So(1) = $5(2) = So(3) = So(4) = Sy 5 S1(D) = $1(2) = Sy, 5

EXHIBIT 14.1  An Information Structure with Four States and Three Dates

A\ o [1]
(Aé”) [2]

L

[3]
[4]

L 2

C' D <
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$13) = S1(4) = S, |

di(1) = di2) = dy 5 di3) = dy(4) = d) |

where, as above, Sj(w) is the price of security i in state ® at moment ¢
and dj(w) is the payoff of security 7 in state ® at time ¢ with the restric-
tion that processes must assume the same value on partitions. This is
because processes are adapted to the information structure so that there
is no anticipation of information. One must not be able to discriminate
at time 0 events that will be revealed at time 1 and so on.

Observe that there is no payoff at time 0 and no price at time 2 and
that the payoffs at time 2 have to be intended as the final liquidation of
the security as in the one-period case. Payoffs at time 1, on the other
hand, are intermediate payments. Note that the number of states is cho-
sen arbitrarily for illustration purposes. Each state of the world repre-
sents a path of prices and payoffs for the set of three securities. To keep
the example simple, we assume that of all the possible paths of prices
and payoffs only four are possible.

The state-price deflator can be represented as follows:

To(1) Ty (1) my(1)
To(2) T(2) m,(2)
To(3) m1(3) m,(3)
Ty(4) T (4) m,(4)

{rm(0)}=

(1) = mp(2) = my(3) = my(4)
(1) = m(2) (3) = m(4)

A probability p,, is assigned to each of the four states of the world.
The probability of each event is simply the sum of the probabilities of its
states. We can write down the formula for security prices in this way:

S, = S2(1) = Sy, = $H2) = Sy, = $2(3) = Sy, , = $H(4) = 0
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Si,, = Si(1) = $1(2)

= L[P(Al,z‘Al,l)nz(l)dg(l)+P(A2’2‘Al,l)n2(2)d§(2)]
TEAL]

1 p i p i
= — |1 n,(dy(1) + —2—7,(2)d5(2)
TA, [P1¥ P2 b1+D2

Sh,, = S13) = Si(4)
= L[P(A3,2‘A271)n2(3)d;(3)+P(A4,2‘A271)7c2(4)d;(4)]

TAy,
1 p i p i
= _{ 3 m,(3)d5(3) + 4 n2(4)d2(4)}
Ta, |[P3+P4 b3+D4

Shuo = {Pl[“Al,ldf%“ s (D] +plmy, iy, |+ (2)d5(2)]
+ps3lma, dy  +ma(3)dr(3)] + palmy iy +n2(4)d3<4>]}

These equations illustrate how to compute the state-price deflator
knowing prices, payoffs, and probabilities. They form a homogeneous sys-
tem of linear equations in (1), m,(2), T, (3), T, (4), Ta, s Ta, o Ta, -

0

p1dy (DT (1) + prdy(2)my(2) =Sy (p1+D)T
p3ds(3)my(3) + pady(my(4) =Sy, (D3 +PITa, | = O

Prdy (DT (1) + prd5(2)T5(2) + p3di(3)T5(3) + pady(4)T5 (4)
+(1+ pz)di‘\l,lnAl,l +(p3 +p4)di“z,3EAz,3 _Sf“l,onAl,o =0

Substituting, we obtain

Pld;(l)nzﬂ) + pzd;(Z)nz(Z) _Sf‘h,l(pl *P2)Ta, =0
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p3d§(3)n2(3)+p4di(4)ﬂz(4)—5ixz,](173+P4)75A271 =0

(P + Pz)SfL\l’l +(py ‘*172)6121’1]TCA171

+[(p3 +p4)Si\2y1 +(p3+ p4)df42!1]7tA2,1 _Sf“l,onAl,o =0

This homogeneous system must admit a strictly positive solution to
yield a state-price deflator. There are seven unknowns. However, as the
system is homogeneous, if nontrivial solutions exist, one of the
unknowns can be arbitrarily fixed, for example 7, . Therefore, six
independent equations are needed. Each asset providés two conditions,
so a minimum of three assets are needed.

To illustrate the point, we assume that all states (which are also
events in this discrete example) have the same probability 0.25. Thus
the events of the information structure have the following probabilities:
the single event at time zero has probability 1, the two events at time 1
have probability 0.5, and the four events at time 2 coincide with indi-
vidual states and have probability 0.25. Conditional probabilities are
shown in Exhibit 14.2.

For illustration purposes, let’s write the following matrices for pay-
offs for each security at each date in each state:

015 50 0 8 30 05 38

i 0 15 100 i 0 8 120 i 05 112
d = : {d = : =

{di(w)} 020 70 s {dy(o)} 015 40 5 {d3(0)} 08 42

020 110 0 15 140 0 8 130

We will assume that the state-price deflator is the following given pro-
cess:

10.8 0.7
1 0.8 0.75
109 0.75
109 0.8

{n(w)}=

Each price is computed according to the previous equations. For exam-
ple, calculations related to asset 1 are as follows:

Sy(1) = $5(2) = $5(3) = S5(4) = 0
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N2

811“1 = L(0.5 x0.7x50+0.5x075x100) = 68.75

Sh, . = —=(0.5x0.75x 70+ 0.5 x 0.8 x 110) = 78.05
109

51‘1 . = 1[0.25(0.8 X15+0.7x50)+ 0.25(0.8 x 15+ 0.75 x 100)
’ 1

+0.25(0.9%x20+0.75x70) +0.25(0.9x 20 + 0.8 x 110) ]
= 68.75

$3(1) = $3(2) = $5(3) = $3(4) = 0

S3, = L 0.5%0.7%30 +0.5%0.75 x 120) = 69.37
108

$3,, = L (0.5%0.75 x40 +0.5% 0.8 x 140) = 78.88
0.9

S, = 110.25(0.8 x 8+ 0.7 % 30) + 0.25(0.8 x 8 + 0.75 x 120)
0

+0.25(0.9x15+0.75 x40) + 0.25(0.9 x 15 + 0.8 x 140) ]

- 732
S3(1) = $3(2) = $3(3) = $3(4) = 0
Sh, = —=(0.5%0.7x38+0.5x0.75 x 112) = 69.12
108
$3 = L 0.5%0.75x42+0.5%0.8x130) = 75.27
Ayq

0.9

S, , = 110.25(0.8x 5+0.7x38) +0.25(0.8 x 5+ 0.75 x 112)
0
+0.25(0.9% 8 +0.75 x 42) + 0.25(0.9 x 8 + 0.8 x 130) |

= 67.125



Arbitrage Pricing: Finite-State Models 413

With the above equations we computed prices from payoffs and state-
price deflators. If prices and payoffs were given, we could compute state-
price deflators from the homogeneous system for state prices established
above. Suppose that the following price processes were given:

68.75 68.75 0
68.75 68.75 0
68.75 78.05 0
68.75 78.05 0

{S}(@)} =

73.2 69.37 0
) 73.2 69.37 0

S -
(@) =137 7888 0
73.2 78.88 0

67.125 69.12 0
5 167125 69.12 0
U500} = 1627135 7527 0
67.125 75.27 0

We could then write the following system of equations to compute state-
price deflators:

0.25 x S0 X T5(1) +0.25 X 100 X 5(2) ~ 68.75 X 0.5 Xy =

|
o

0.25x70xm,y(1)+0.25x 110 xm,(2) - 78.05 % 0.5 XT4,

(55%0.5+0.5x15)x 7,y +(70.25 X 0.5+0.5x20) X7, _
~68.75xm, =0
1,0

0.25x30xm,(1)+0.25 x 120 X ,(2) - 69.37 x 0.5 XMy, | = 0

|
o

0.25 x40 xm, (1) +0.25 x 140 x ,(2) — 78.88 x 0.5 XMy, | =

(55.5><0.5+0.5><8)><7rA1 1+(71><0.5+O.5>< 15)><7tA21
-732xm, =10
1,0
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|
o

0.25x 38 xmy (1) +0.25 x 115 xmy(2) - 69.12x 0.5 X1y =

|
o

0.25x42 xm,y(1)+0.25 x 130 x 1, (2) - 75.27 x 0.5 Xy, | =

(55%x0.5+0.5x% 15)><1tAl 1+(7O.25><O.5+O.5><20)><TEIA‘2 .
-67125xmn, =0
1,0

It can be verified that this system, obviously, is solvable and returns the
same state-price deflators as in the previous example.

Equivalent Martingale Measures

We now introduce the concept and properties of equivalent martingale
measures. This concept has become fundamental for the technology of
derivative pricing. The idea of equivalent martingale measures is the fol-
lowing. Recall from Chapter 6 that a martingale is a process X, such
that at any time ¢ its conditional expectation at time s, s > ¢ coincides
with its present value: X, = E,[X,]. In discrete time, a martingale is a
process such that its value at any time is equal to its conditional expec-
tation one step ahead. In our case, this principle can be expressed in a
different but equivalent way by stating that prices are the discounted
expected values of future payoffs. The law of iterated expectation then
implies that price plus payoff processes are martingales.

In fact, assume that we can write

-] 3 4]

j=t+1

then the following relationship holds:

T T
S, = E{ Z d;} = E{dt+l+Et+1& 2 djﬂ = Et[dt+l+St+1]

j=t+1 =t+1+1

Given a probability space, price processes are not, in general, martin-
gales. However it can be demonstrated that, in the absence of arbitrage,
there is an artificial probability measure in which all price processes,
appropriately discounted, become martingales. More precisely, we will see
that in the absence of arbitrage there is an artificial probability measure Q
in which the following discounted present value relationship holds:
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A 0 T 7
Si:Etiz e

We can rewrite this equation explicitly as follows:

T i i T i

; d; d d

Slt = Etg{ z _/} — EtQ t+1 + 1 2 i
Rf,i R Rt,t+1j=t+2Rt+1,j

j=t+1 t,t+1
i o T i i i
EQ dt+1 t+1 dj (6] dz+1+St+1
= ¢ 4+ —_— 2 —— =Et —_—
Rt,t+1 Rt,t+1 j=z+2Rt,/ tt+1

which shows that the discounted price plus payoff process is a martin-
gale. The terms on the left are the price processes, the terms on the right
are the conditional expectations under the probability measure O of the
payoffs discounted with the risk-free payoff.

The measure Q is a mathematical construct. The important point is
that this new probability measure can be computed either from the real
probabilities if the state-price deflators are known or directly from the
price and payoff processes. This last observation illustrates that the con-
cept of arbitrage depends only on the structure of the price and payoff
processes and not on the actual probabilities. As we will see later in this
chapter, equivalent martingale measures greatly simplify the computa-
tion of the pricing of derivatives.

Let’s assume that there is short-term risk-free borrowing in the sense
that there is a trading strategy able to pay for any given interval (¢,s) one
sure dollar at time s given that (d,d, , 1...d;_1)™" has been invested at
time ¢. Equivalently, we can define for any time interval (z,s) the payoff
of a dollar invested risk-free at time # as R, ; = (dyd; , 1...ds _ 1)

We now define the concept of equivalent probability measures.
Given a probability measure P the probability measure QO is said to be
equivalent to P if both assign probability zero to the same events. An
equivalent probability measure Q is an equivalent martingale measure if
all price processes discounted with R;; become martingales. More pre-
cisely, Q is an equivalent martingale measure if and only if the market
value of any trading strategy is a martingale:

0,xS, = E?{ Y —’}

/':t+]Rt,j
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Risk-Neutral Probabilities

Probabilities computed according to the equivalent martingale measure
QO are the risk-neutral probabilities. Risk-neutral probabilities can be
explicitly computed. Here is how. Call g, the risk-neutral probability of
state ®. Let’s write explicitly the relationship

, 4
S = E?{—’}

£
as follows:
T i T i
i 9o d(o) o dj(®)
- 3 ey A2y ey O
“’EAsz( kt)j=t+1 t,j weAkt( 2 qw);‘=t+1 tj

we Ay,

The above system of equations determines the risk-neutral probabil-
ities. In fact, we can write, for each risky asset, M, linear equations,
where M, is the number of sets in the partition I; plus the normalization
equation for probabilities. From the above equation, one can see that
the system can be written as

r 4 :
» q{ Y ’“’”—szkt}o

oedp, [j=t+1 Bej

S

o=1

This system might be determined, indetermined, or impossible. The
system will be impossible if there are arbitrage opportunities. This sys-
tem will be indetermined if there is an insufficient number of securities.
In this case, there will be an infinite number of equivalent martingale
measures and the market will not be complete.

Now consider the relationship between risk-neutral probabilities and
state-price deflators. Consider a probability measure P and a nonnegative
random variable Y with expected value on the entire space equal to 1.
Define a new probability measure as Q(B) = E[135Y] for any event B and
where 15 is the indicator function of the event B. The random variable Y
is called the Radon-Nikodym derivative of O and it is written
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It is clear from the definition that P and Q are equivalent probabil-
ity measures as they assign probability zero to the same events. Note
that in the case of a finite-state probability space the new probability
measure is defined on each state and is equal to

do = Y((,O)Pw

Suppose T, is a state-price deflator. Let Q be the probability measure
defined by the Radon-Nikodym derivative:

Ry
Er =
o

The new state probabilities under O are the following:

B Tr(®)R
o~ Fto
To()

Define the density process &, for O as &, = E/[&7]. As & = E/[&7] is an
adapted process, we can write:

Ef&rD, =&, = @)= |
(E&1D,, = Ca,, 2 S1(®) 2 P(A,) myH(w)

we Ay, we Ay,
Ta, Ro s q p Ty, Ro
= k- 2 nny(®)]R, p= —
Ty (®) TA,, e Ak,P(Akt) T

As R, = (dyd; , 1...ds _ 1) is the payoff at time s of one dollar invested in
a risk-free asset at time ¢, s > ¢, we can then write the following equations:

1
1 = —Et[nth, N
U

Therefore,
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1= L{ D P({m}Akt)ns((o)Rt’s} = L{ D Lo T ()R,

s
Apttoe Ay,

1<k<M,

Substituting in the previous equation, we obtain, for each interval (z,T),

T4, Ro. s

Say, = (Bl&TD,, = .
Ay

which we can rewrite in the usual notation as

We can now state the following result. Consider any 3;-measurable
variable x;. This condition can be expressed equivalently stating that x;
assumes constant values on each set of the partition I;. Then the follow-
ing relationship holds:

EQLx;) = EFLigx)
&

To see this, consider the following demonstration, which hinges on the
fact that x; assumes a constant value on each Aj; and, therefore, can be
taken out of sums. In addition, as demonstrated above, from

1
1= _Et[nth, N
T

the following relationship holds:

P(Akt)nAkt = 2 pmns(m)Rt,s

we Ay,

1<k<M,
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M9

R
(EtQ[xj])Akt= z 1o x() = Y bo Tr(®Ro 1
we Ath(Akt) meAth(Akt) Tp(®)
_ 1 2 | 2 RO,;‘R;',TP(DTCT(@)X/(‘D)}
Q(Akt)Ahchkt;coe Ap; TCO(O‘))
1 3 [%a,Ro, z N ( )}
= - TP T (®
Q(Akt)A,,ch,\, ”0(‘9) we Ay, ’
1 ¥ (x4, Ro,ma, P(Ap)
Q(Ara, cayl o ()
1
2 [xAh/é;Ah;‘P(Ahf)]

Q(Ak‘)Ah Ay,

:LZ

E"Akt ApjC Ay

X, 54, P(Ap)

[E (&

XAl
éAkz

P(AL,)

Let’s now apply the above result to the relationship:

T
) TR ; t Z

T T
- L6f 3 nel - 26 3 2t
‘ T |jor+1 To Ry

j=t+1

R, . d

x,»((x))

We have thus demonstrated the following results: There is no arbitrage
if and only if there is an equivalent martingale measure. In addition, T,
is a state-price deflator if and only if an equivalent martingale measure
O has the density process defined by

§t=

TR ;

Ty

In addition, it can be demonstrated that, if there is no arbitrage,
markets are complete if and only if there is a unique equivalent martin-

gale measure.
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Examples

To illustrate the above we now proceed to detail the calculations for the
previous example of three assets, three dates, and four states. Let’s first
write the equations for the risk-free asset:

oAy e ns(w)Rt,s}

nAkt e AktP(A/et)

1 p p
Ta, \P1t+ D2 b1+D,

1 p p
T, \P3+ D4 b3+D4

1
1 = —[plnz(l)RO’z+p2n2(2)R0’2+p3n2(3)R0,2+p41t2(4)R0’2]
TAs

Mo, = n (1) = m(2)

Ta,, = n(3) = my(4)

ma, = To(1) = Tp(2) = my(3) = me(4)

We can now rewrite the pricing relationships for the other risky
assets as follows:

At date 2, prices are zero: S; =0.
At date 1, the relationship

A d
Rl,Z

holds. In fact, we can write the following:
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Sa,, = $i(1) = $1(2)

1 i i
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At date 0, the relationship
- dy  d
R,
0,1 Ro2

holds. In fact we can write the following:

S, , = So(1) = 85(2) = SH(3) = Sp(4)

Pl (1)dy (1) +my(D)dy(1)]

1] plm@)di2) +my(2)dh(2)]
+ 03[ (3)dy(3) + 7y (3)dy(3)]
+ Pl (D) (4) + 1, (4)dy (4)]
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PATH DEPENDENCE AND MARKOV MODELS

The value of a derivative instrument might depend on the path of its past
values. Consider a lookback option on a stock—that is, a derivative
instrument on a stock whose payoff at time ¢ is the maximum difference
between the price of the stock and a given value K at any moment prior to
t. Call V, the payoff of the lookback option at time z. We can then write:

V, = max (S, -K)"

0<k<t

The notation (S, —K)" means S, — K if the difference is positive, 0 oth-
erwise, that is, (S, —K)" = max(S,-K, 0). Because its value depends
on the entire path taken by the underlying stock, a lookback option is a
path-dependent security.

An adapted process X; is said to be a Markov process if its condi-
tional distribution at time ¢ depends only on the value of the process at
time ¢ — 1 and not on the value of the process at dates t —2, ¢ - 3, .... The
Markov property can be formally stated as follows:

P(X,|X,_1) = P(X,|X,_ 1. X,_5. ... Xp)

THE BINOMIAL MODEL

Let’s now introduce the simple but important multiperiod finite-state
model known as the binomial model. The binomial model is important
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because it gives a simple and mathematically tractable model of stock
price behavior that tends, in the limit of a zero time step, to a Brownian
motion. We introduce a market populated by one risk-free asset and by
one or more risky assets whose price(s) follow(s) a binomial or trino-
mial model. In the next section we will see how to compute the price of
derivative instruments in this market.

In the binomial model of stock prices, we assume that at each time
step the stock price will assume one of two possible values. This is a
restriction of the general multiperiod finite-state model described in the
previous sections and in Chapter 6 on probability. The latter is, as we
have seen in the previous section, a hierarchical structure of partitions
of the set of states. The number of sets in any partition is arbitrary, pro-
vided that partitions grow more refined with time.

The binomial model assumes that there are two positive numbers, d
and u, such that 0 < d < # and such that at each time step the price S, of
the risky asset changes to dS, or to uS,. In general one assumes that 0 < d
< 1 < u so that d represents a price decrease (a movement down) while u
represents a price increase (a movement up). It is often required that

d =

N

In this case an equal number of movements up and down leave prices
unchanged. The binomial model is a Markov model as the distribution
of §; clearly depends only on the value of S, _ ;.

A binomial model can be graphically represented by a tree. For
example, Exhibit 14.3 shows a binomial model for three periods. A
binomial model over T time steps, from 0 to T, produces a total of 27
paths. Therefore, the corresponding space of states has 27 states. How-
ever, the number of different final prices St = ude‘kSo, k=0,1,...,T is
determined solely by the number of # and d in each path and increases
by 1 at each time step; there are as many final prices as dates. For exam-
ple, the model in Exhibit 14.3 shows three final prices and four states.

Note that there is a simple relationship between the numbers d and
u and returns. In fact, we can write,

S, -8 S,-S
R,(up) = z+; z=”t t o1

t

R,(down) = d-1
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EXHIBIT 14.3 Binomial Model: The Figure Illustrates a Binomial Tree with Three
Dates, Three Final Prices, and Four States: uu,ud,du,dd

Real probabilities of states are typically constructed from the proba-
bilities of a movement up or down. Call p the probability of a move-
ment up; 1 — p is thus the probability of a movement down. Suppose
that the state s, which is identified by a price path, has ¢ movements up
and T - k movements down. The probability of the state s is

po = pta-p)"F

Consider the final date T. Each of the possible final prices St = ufd” ~*S,,,
k = 0,1,...,T can be obtained through

(D ) /e!(]:Fik)!

paths with £ movements up and T - k£ movements down. The probabil-
ity distribution of final prices is therefore a binomial distribution:

P(Sy=u"d" ks = (Dpku_p)“k

Following the same reasoning, one can demonstrate that at any interme-
diate date the probability distribution of prices is a binomial distribu-
tion as follows:
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Ps,=udFsy) = (T)phca-py !

Next introduce a risk-free security. In the setting of a binomial
model, a risk-free security is simply a security such that d = u =1 + r
where 7 > 0 is the positive risk-free rate. To avoid arbitrage it is clearly
necessary that d < 1 + 7 < u. In fact, if the interest rate is inferior to both
the up and down returns, one can make a sure profit by buying the risky
asset and shorting the risk-free asset. If the interest rate is superior to
both the up and down returns, one can make a sure profit by shorting
the risky asset and buying the risk-free asset. Denote by b, the price of
the risk-free asset at time ¢. From the definition of price movement in
the binomial model we can write: b, = (1 + )by

Risk-Neutral Probabilities for the Binomial Model

Let’s now compute the risk-neutral probabilities. In the setting of bino-
mial models, the computation of risk-neutral probabilities is simple. In
fact we have to impose the condition:

q; = EtQ[qt+1]

which we can explicitly write as follows:

- quS,+(1-q)dS,

t

1+7
1+r =qu+d-qd
g = 1+r-d
u—d
u-1-r
1-qg = ———
u-d

As we have assumed 0 < d < 1 + 7 < u, the condition 0 <g <1 holds.
Therefore we can state that the unique risk-neutral probabilities are

_1+r-d
u—d
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u-1-r

1-gq =
u-d

The binomial model is complete and arbitrage free.

Suppose that there is more than one risky asset, for example two
risky assets, in addition to the risk-free asset. At each time step each
risky asset can go either up or down. Therefore there are four possible
joint movements at each time step: uu,ud,du,dd that we identify with
the states 1,2,3,4. Four probabilities must be determined at each time
step; four equations are therefore needed. Two equations are provided
by the martingale conditions:

1 1 1 1
1 qquS, +qauS, +q3uS, + quus,

1+7

2 2 2 2
2 - quS; + q3uS; + q,uS; + q4us;
L=

1+7

A third equation is provided by the fact that probabilities must sum to
1. The fourth condition, however, is missing. The model is incomplete.

The problem of approximating price processes when there are two
stocks and one bond and where the stock prices follow two correlated
lognormal processes has long been of interest to financial economists.
As seen above, with two stocks and one bond available for trading, mar-
kets cannot be completed by dynamic trading. This is not the case in the
continuous-time model, in which markets can be completed by continu-
ous trading in the two stocks and the bond. Different solutions to this
problem have been proposed in the literature.’

VALUATION OF EUROPEAN SIMPLE DERIVATIVES

Consider a market formed by a risky asset (a stock) that follows the
binomial model plus a risk-free asset. As we have seen in the previous
section, this market is complete and its risk-neutral probabilities are

! Hua He, “Convergence from Discrete- to Continuous-Time Contingent Claims
Prices,” Review of Financial Studies 3, no. 4 (1990), pp. 523-546.
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_ 1+r-d
u—d

u-1-r

u—d

1-g =

Let’s introduce in this market a derivative instrument. The condition
of absence of arbitrage univocally determines the price of this third secu-
rity. Consider first a European call option on the stock with expiration
date T < T and with exercise price K > 0. Recall from Chapter 2 that a
European call option is a security that gives its holder the right but not
the obligation to purchase the stock at time 7 at price K. Therefore, the
payoff process of the option is zero before time T and, at time T, is

C; = max(S,-K,0)
Let’s compute the value of the option C; at any time 0 < ¢ < 1. Given
that the binomial model is complete, the value C; can be computed as
the discounted payoff at time ¢ using the risk-neutral probabilities.
Using the formulas of the previous sections, we can therefore write

C‘E
(1+nr)°

This formula can be explicitly computed as follows. The distribution
of the payoff of the option at time T under the risk-neutral probabilities is
the following:

P[Cz _ (Mde_t_kSO—K)+] _ (T;t)qk(l _q)r—t—k
Therefore the conditional expectation under the risk-neutral probabili-
ties becomes
Tt
1

o1 Z (ukdrftkao—K)Jr(T;t)qk(l—q)Titik
(1+7)" k=0



Arbitrage Pricing: Finite-State Models 429

More generally, we give the following definition: A simple European
derivative instrument with expiration time T is a financial instrument
whose payoff is zero for 0 < # < T and is an 3 ,measurable random vari-
able V_ at time 7. Recall from Chapter 6 that in this finite-state context, a
variable is 3,-measurable if it assumes a constant value on each of the sets
of the partition I,.

Given the risk-neutral probability measure Q, the value at time ¢ of
the simple European derivative instrument can be computed as follows:

Vv

T

A
1+

If the underlying stock is represented by a binomial model, the value of
the European derivative instrument can be explicitly computed as:

T—1
Vt _ 1 z VT(T/;t)qk(l_q)T—t—k
1+ "k=0

VALUATION OF AMERICAN OPTIONS

In order to define American options we have first to define the concept
of a stopping time. In fact, American options can be exercised at any
moment prior to expiration date in function of some exercising policy.
These policies define a stopping time. A stopping time is a random time
s, i.e., a random variable s such that

{we Q;s(w)=k}e 3,

Consider now an adapted process X, and a stopping time s. Define a
payoff process d° as d; = 0 if t#s and d; = X, . Under the risk-neutral
probabilities we can write a valuation formula:

(1+r)°7"

These formulas allow the valuation of American securities in complete
markets.
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ARBITRAGE PRICING IN A DISCRETE-TIME,
CONTINUOUS-STATE SETTING

Let’s now discuss the discrete-time, continuous-state setting. This is an
important setting as it is, for example, the setting of the Arbitrage Pric-
ing Theory (APT) Model that we will discuss later in this chapter.

As in the previous discrete-time, discrete-state setting, we use the
probabilistic concepts developed in Chapter 6. The economy is repre-
sented by a probability space (Q,3,P) where Q is the set of possible
states, 3 is the G-algebra of events (formed, in this continuous-state set-
ting, by a nondenumerable number of events), and P is a probability
function. As the number of states is infinite, the probability of each state
is zero and only events, in general, formed by nondenumerable states,
have a finite probability. There are only a finite number of dates from 0
to T. Recall from Chapter 6 that the propagation of information is rep-
resented by a finite filtration 3, ¢ = 0,1,...,T. In this case, the filtration S,
is not equivalent to an information structure I,. '

Each security i is characterized by a payoff process d; and by a
price process S;. In this continuous-state setting, d; and S, are formed
by a finite number of continuous variables. As before, d;(®) and S}(w)
are, respectively, the payoff and the price of the i-th asset at time #, 0 < ¢
< T and in state ® € Q. Following Chapter 6, all payoffs and prices are
stochastic processes adapted to the filtration 3.

To develop an intuition for continuous-state arbitrage pricing, con-
sider the previous multiperiod, finite-state case with a very large number
M of states, M>>N where N is the number of securities. Recall from our
earlier discussion in this chapter that risk-neutral probabilities can be
computed solving the following system of linear equations:

T

Y o 2

“’eAk,t j=t+1 t,j

dio)
i( )_SlAkt _ 0

M
w=1
Recall also that at each date ¢ the information structure I, partitions the

set of states into M, subsets. Each partition therefore yields N x M,
equations and the system is formed by a total of
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T-1
Nx > M,
t=0

equation plus the probability normalizing equation. Consider that the
previous system can be broken down, at each date ¢, into separate
blocks formed by N equations (one for each asset) of the following type:

* ]
RIS MO
we Ay, j=t+1 )
* q
qw = —(D_
2 o
we Ay,

Each of these systems can be solved individually for the conditional
probabilities g;,. Recall that a system of this type admits a solution if
and only if the coefficient matrix and the augmented coefficient matrix
have the same rank. If the system is solvable, its solution will be unique
if and only if the number of unknowns is equal to the rank of the coeffi-
cient matrix.

If the above system is not solvable then there are arbitrage opportuni-
ties. This occurs if the payoffs of an asset are a linear combination of those
of other assets, but its price is not the same linear combination of the prices
of the other assets. This happens, in particular, if two assets have the same
payoff in each state but different prices. In these cases, in fact, the rank of
the coefficient matrix is inferior to the rank of the augmented matrix.

Under the assumption

T-1
M » N x th
t=0

this system, if it is solvable, will be undetermined. Therefore, there will
be infinite equivalent risk-neutral probabilities and the market will not
be complete. Going to the limit of an infinite number of states, the
above reasoning proves, heuristically, that a discrete-time continuous-
state market with a finite number of securities is inherently incomplete.
In addition, there will be arbitrage opportunities only if the random
variable that represents the payoff of an asset is a linear combination of
the random variables that represent the payoffs of other assets, but the
random variables that represent prices are not in the same relationship.
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The above discussion can be illustrated in the case of multiple
assets, each following a binomial model. If there are N linearly indepen-
dent assets, the price paths in the interval (0,T) will form a total of 2NT
states. In a binomial model, we can limit our considerations to one time
step as the other steps are identical. In one step, each price S} at time ¢
can go up to S;ulNor down to S,d' at time ¢ + 1. Given the prices
{8,3=1{S,.S;,....S, } at time ¢, there will be, at the next time step, 2N

: St i Ny i i
possible combinations {S,w ", S;w", ..., S, w '}, w' = u' or d'.

Suppose that there are 2NT states and that each combination of
prices identifies a state. This means that at each date ¢ the information
structure I, partitions the set of states into 2N’ subsets. Fach set of the
partition is partitioned into 2N subsets at the next time step. This yields
2NED subsets at time ¢ + 1.

Note that this partitioning is compatible with any correlation struc-
ture between the random variables that represent prices. In fact, correla-
tions depend on the value of the probability assigned to each state while
the partitioning we assume depends on how different prices are assigned
to different states.

Risk-neutral probabilities g;, i = 1,2,...,2N can be determined solving
the following system of martingale conditions:

2I\I

3 g8 () = 8,
ji=1

j=1,2,.,2N,i=1.2,...N
which becomes, after dividing each equation by Si , the following:

2N

> qu'() =1

where w'(j) = u’ or d' for asset i in state ;.
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It can be verified that, under the previous assumptions and provided
prices are positive, the above system admits infinite solutions. In fact, as
N + 1 < 2N the number of equations is larger than the number of
unknowns. Therefore, if the system is solvable it admits infinite solu-
tions. To verify that the system is indeed solvable, let’s choose the first
asset and partition the set of states into two events corresponding to the
movement up or down of the same asset. Assign to these events proba-
bilities as in the binomial model

1-r+d;
qt1 = — ' and 1_%1

Choose a second asset and partition each of the previous events into
two events corresponding to the movements up or down of the second
asset. We can now assign the following probabilities to each of the fol-
lowing four events:

1.2 1 2 1, 2 2 1
qtqt’ qt(l—qt),(1—€I¢)qt,(1—61¢)(1—61¢)

It can be verified that these numbers sum to one. The same process
can be repeated for each additional asset. We obtain a set of positive
numbers that sum to one and that satisfy the system by construction.
There are infinite other possible constructions. In fact, at each step, we
could multiply probabilities by “correlation factors” (i.e., numbers that
form a 2 x 2 correlation matrix) and still obtain solutions to the system.

We can therefore conclude that a system of positive binomial prices
such as the one above plus a risk-free asset is arbitrage-free and forms
an incomplete market. Recall from Chapter 8 that if we let the number
of states tend to infinity, the binomial distribution converges to a nor-
mal distribution. We have therefore demonstrated heuristically that a
multivariate normal distribution plus a risk-free asset forms an incom-
plete and arbitrage-free market. Note that the presence of correlations
does not change this conclusion.

Let’s now see under what conditions this conclusion can be changed.
Go back to the multiple binomial model, assuming, as before, that there
are N assets and T time steps. There is no logical reason to impose that
the number of states be 2NT. As we can consider each time step sepa-
rately, suppose that there is only one time step and that there are a num-
ber of states less than or equal to the number of assets plus 1: M < N + 1.
In this case, the martingale condition that determines risk-neutral proba-
bilities becomes:
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There are M equations and N + 1 unknowns with M < N + 1. This
system will either determine unique risk-neutral probabilities or will be
unsolvable. Therefore, the market will be either complete and arbitrage-
free or will exhibit arbitrage opportunities. Note that in this case we
cannot use the constructive procedure used in the previous case.

What is the economic meaning of the condition that the number of
states be less than or equal to the number of assets? To illustrate this
point, assume that the number of states is M = 2K < N + 1. This means
that we can choose K assets whose independent price processes identify
all the states as in the previous case. Now add one more asset. This asset
will go up or down not in specific states but in events formed by a num-
ber of states. Suppose it goes up in the event A and goes down in the
event B. These events are determined by the value of the first K assets. In
other words, the new asset will be a function of the first K assets. An
interesting case is when the new asset can be expressed as a linear func-
tion of the first K assets. We can then say that the first K assets are fac-
tors and that any other asset is expressed as a linear combination of the
factors.

Consider that, given the first K assets, it is possible to determine
state-price deflators. These state-price deflators will not be uniquely
determined. Any other price process must be expressed as a linear com-
bination of state-price deflators to avoid arbitrage. If all price processes
are arbitrage-free, the market will be complete if it is possible to deter-
mine uniquely the risk-neutral probabilities.

If we let the number of states become very large, the number of
assets must become large as well. Therefore it is not easy to develop
simple heuristic arguments in the limit of a large economy. What we can
say is that in a large discrete economy where the number of states is less
than or equal to the number of assets, if there are no arbitrage opportu-
nities the market might be complete. If the market is complete and arbi-
trage-free, there will be a number of factors while all other processes
will be linear combinations of these factors. These considerations will
be further developed in Chapter 18.
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APT VIODELS

In the previous sections we presented the general theory of arbitrage
pricing. The most fundamental principle of finance theory, absence of
arbitrage, applies to all price processes. In this section we present a spe-
cial case of the theory which applies to equity prices. In 1976 Stephen
Ross published a seminal paper? where he argued that equity returns
can be represented as a linear regression over a small set of factors and
that expected returns are determined by principle of absence of arbi-
trage. This pricing theory is called the Arbitrage Pricing Theory (APT).

APT is formulated in a one period setting. Suppose that equity
returns can be written as follows:

r =a+Bf+e

where r is the z-vector of returns to be modeled, f is a k-vector of com-
mon factors with k << 7, a is an n-vector of constants, B is a 7#xk matrix
and € is an n-vector of random disturbances such that:

Elg|f] = 0
Elee’|f] = £

In the above relationships, the factors are stochastic variables. APT
states that, if there is no arbitrage, the constants a in the above relation-
ship must all be equal to the risk-free rate.

In a one period setting, if there are only a finite number of securities
traded at discrete dates and if the price of each security can take any
value regardless of the prices of other securities, clearly no arbitrage
opportunity is possible. In fact, given any portfolio, infinite price paths
can assume negative values. In a probabilistic context it might happen
that the probability of making a loss starting from zero investment
might be small but not zero.

APT holds in the limit of a large economy. Ross assumed that well-
diversified portfolios exist; this implies that stochastic fluctuations go to
zero in the limit of very large portfolios. This is not to say that portfolio
behavior becomes deterministic in the limit of large portfolios as factors are
assumed to be stochastic; it does however mean that uncertainty is com-
pletely captured by the dynamics of factors. Under this assumption, Ross
demonstrated that the following relationship holds for large economies:

2 Stephen Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Eco-
nomic Theory 13, no. 3 (December 1976), pp. 341-360.
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where A are risk premia. This relationship says that each asset’s return is
equal to the risk-free rate A plus a linear combination of factors.

In the original formulation, the above linear relationship holds only
approximately in the limit of an infinite economy. Any finite number of
assets can be mispriced, that is, violate the above relationship. The APT
relationship can be made rigorous with additional restrictions on agent
behavior.

Testing APT

The original formulation of APT does not identify factors. Subsequently
a number of researchers tried to tackle the problem. As we will see in
Chapter 18, factors can be either exogenously given factors or abstract
factors formed by particular portfolios. A number of studies have tried
to identify macroeconomic factors responsible for stock returns.® Statis-
tical techniques such as factor analysis or principal components analysis
have also been used.

The approximate nature of APT makes it difficult to test it. In fact,
the APT holds only in the limit of an infinite economy while any finite
number of securities can be arbitrarily priced without affecting the arbi-
trage principle. For this reason it has been suggested that APT cannot be
tested at all.* Based on a given selection of factors APT has been tested
with the techniques that we will explain in the following sections.

Testing APT when Factors are Portfolios

Suppose that factors are given portfolios and that there is a risk-free
asset. This means that it is known (or at least assumed) that the model
in excess returns takes the form

z, = a+Bf, +¢,

3 See, for example, Chen, Nai-Fu, Richard R. Roll, and Stephen A. Ross, “Economic
Forces and the Stock Market,” Journal of Business 59, no. 3 (1986), pp. 383-404
and Michael A. Berry, Edwin Burmeister, and Marjorie B. McElroy, “Sorting out
Risk Using Known APT Factors,” Financial Analysts Journal 44, no. 2 (1988), pp.
29-42.

*Phoebus J. Dhrymes, Irwin Friend, and N. Bulent Gultekin, “A Critical Re-Exami-
nation of the Empirical Evidence on the Arbitrage Pricing Theory,” Journal of Fi-
nance 39, no. 2 (1988), pp. 323-346.
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f=(f,...fr),K<<N

Si
fi = 2 (XsriS

s=1

where 7; = z; —a; and oy are the weights of those portfolios that iden-
tify factors. =~

APT requires that the constants a, when the model is formulated in
excess returns, are zero. To test APT the model parameters have first to
be estimated. Suppose that returns are normal IID variables and that the
multifactor model is unconstrained. Model estimation can be done by
Maximum Likelihood methods which are, in this case, identical to Ordi-
nary Least Square (OLS) estimates. The model parameters are then
obtained as the empirical moments, as follows:

b= [-Bi,

T
Y (2~ W)(zg, — k)

B _t=1
T
2 (Zg; = M) (Zg, — Uk)
t=1
1 T
u = —Zzt
Tt:l
1 T
Ug = —ZZKt
Tt:l

Now suppose that there is a risk-free asset and that the model is
constrained by the APT constraints. In this case, we can still use MLE
estimation which yields a zero intercept and the following sensitivities:
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T
2 2,2y

B= t=1

T
2 Zg 2Ky

t=1

The APT restriction can be tested with Likelihood Ratio methods which
compare the likelihood of the constrained and unconstrained model.

Testing and Estimating APT When Factors are not Portfolios

If factors are not portfolios and if they are given exogenous processes,
multifactor models are multivariate regressions on the factors. If the
regression innovations are assumed to be jointly normally distributed and
no restriction is imposed, models can be estimated with MLE methods
that are, in this case, equivalent to OLS estimates. Writing the multifactor
model in real returns, OLS estimation yields the following results:

A= h-Bl,
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Testing the zero intercept restriction from the above estimates can be
performed using MLE methods. Note that in this case only one model is
estimated because factors are given. Should factors be portfolios, the
constrained and unconstrained models yield different factors.
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SUMMARY

B The law of one price states that a given asset must have the same price
regardless of the means by which one goes about creating that asset.

B Arbitrage is the simultaneous buying and selling of an asset at two dif-
ferent prices in two different markets.

B A finite-state one-period market is represented by a vector of prices and
a matrix of payoffs.

B A state-price vector is a strictly positive vector such that prices are the
product of the state-price vector and the payoff matrix.

B There is no arbitrage if and only if there is a state-price vector.

B A market is complete if an arbitrary payoff can be replicated by a port-
folio.

B A finite-state one-period market is complete if there are as many lin-
early independent assets as states.

B A multiperiod finite-state economy is represented by a probability
space plus an information structure.

B In a multiperiod finite-state market each security is represented by a
payoff process and a price process.

B An arbitrage is a trading strategy whose payoff process is nonnegative
and not always zero.

B A market is complete if any nonnegative payoff process can be repli-
cated with a trading strategy.

B A state-price deflator is a strictly positive process such that prices are
random variables equal to the conditional expectation of discounted
payoffs.

B A martingale is a process such that at any time ¢ its conditional expec-
tation at time s, s > ¢ coincides with its present value.

B In absence of arbitrage there is an artificial probability measure in
which all price processes, appropriately discounted, become martin-
gales.

B Given a probability measure P, the probability measure Q is said to be
equivalent to P if both assign probability zero to the same events.

B The binomial model assumes that there are two positive numbers, d,
and u, such that 0 < d < u and such that at each time step the price S of
the risky asset changes to dS or to uS.

B The distribution of prices of a binomial model is a binomial distribu-
tion.

B The binomial model is complete.

B The Arbitrage Pricing Theory (APT) asserts that each asset’s return is
equal to the risk-free rate plus a linear combination of factors.

B The APT can be tested with maximum likelihood methods.
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Arhitrage Pricing:
Gontinuous-State,
Continuous-Time Models

n the previous chapter we described arbitrage pricing using finite-state

models. In this chapter we describe arbitrage pricing in the continuous-
state, continuous-time setting. There are a number of important conceptual
changes in going from a discrete-state, discrete-time setting to a continuous-
state, continuous-time setting. First, each state of the world has probability
zero. As described in Chapter 6, this precludes the use of standard con-
ditional probabilities for the definition of conditional expectation and
requires the use of filtrations (rather than of information structures) to
describe the propagation of information. Second, the tools of matrix
algebra are inadequate; the more complex tools of calculus and stochas-
tic calculus described in Chapters 4, 8, 9, and 10, respectively, are
required. Third, simple generalizations are rarely possible as many patho-
logical cases appear in connection with infinite sets.

THE ARBITRAGE PRINCIPLE IN CONTINUOUS TIME

Let’s start with the definition of basic concepts. The economy is repre-
sented by a probability space (@, 3, P) where Q is the set of possible
states, 3 is the c-algebra of events, and P is a probability measure. Time
is a continuous variable in the interval [0,T]. Recall from Chapter 6 that
the propagation of information is represented by a filtration 3;. The lat-
ter is a family of c-algebras such that 3, c S, t < s.

a1
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Each security i is characterized by a payoff-rate process §, and by a
price process S, . In this continuous-state setting, 3, and S, are real vari-
ables with a continuous range such that 8,(®) and S;(®) are, respectively,
the payoff-rate and the price of the i-th asset at time ¢, 0 < ¢ < T and in state
o € Q. Note that §; represents a rate of payoff and not a payoff as was the
case in the discrete-time setting. The payoff-rate process must be inter-
preted in the sense that the cumulative payoff of each individual asset is

t

Di = J.Sids
0

We assume that the number of assets is finite. We can therefore use
the vector notation to indicate a set of processes. For example, we write
8, and S, to indicate the vector process of payoff rates and prices respec-
tively. Following Chapter 6, all payoff-rates and prices are stochastic
processes adapted to the filtration 3. One can make assumptions about
the price and the payoff-rate processes. For example, it can be assumed
that price and payoff-rate processes satisfy a set of stochastic differen-
tial equations or that they exhibit finite jumps. Later in this chapter we
will explore a number of these processes.

As explained in Chapter 6, conditional expectations are defined as
partial averaging. In fact, given a variable X, s > #, its conditional
expectation E,[X] is defined as a variable that is 3;,-measurable and
whose average on each set A € 3, is the same as that of X:

Y, = E,[X,] & E[Y,(0)] = E[X,(0)]

forme A, VA € 3, and Y is 3,-measurable.
The law of iterated expectations applies as in the finite-state case:

EAE,(Xs)] = EfX{]

In a continuous-state setting, conditional expectations are variables
that assume constant values on the sets of infinite partitions. Imagine
the evolution of a variable X. At the initial date, X identifies the entire
space Q. At each subsequent date #, the space Q is partitioned into an
infinite number of sets, each determined by one of the infinite values of
X,.! However, these sets have measure zero. In fact, they are sets of the

! One can visualize this process as a tree structure with an infinite number of branch-
es and an infinite number of branching points. However, as the number of branches
and of branching points is a continuum, intuition might be misleading.
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type: {A: e A & X, (®) = x} determined by specific values of the vari-
able X;. These sets have probability zero as there is an infinite number
of values X,. As a consequence, we cannot define conditional expecta-
tion as expectation under the usual definition of conditional probabili-
ties the same way we did in the case of finite-state setting.

Trading Strategies and Trading Gains
We have to define the meaning of trading strategies in the continuous-
state, continuous-time setting; this requires the notion of continuous
trading. Mathematically, continuous trading means that the composi-
tion of portfolios changes continuously at every instant and that these
changes are associated with trading gains or losses. A trading strategy is
a (vector-valued) process 8 = {6} such that 0, = {Glt}is the portfolio
held at time . To ensure that there is no anticipation of information,
each trading strategy 6 must be an adapted process.

Given a trading strategy, we have to define the gains or losses asso-
ciated with it. In discrete time, the trading gains equal the sum of pay-
offs plus the change of a portfolio’s value

T
Y (Sdior)+ Y5107 3530
0 1 1 1

t=

over a finite interval [0,T].

We must define trading gains when time is a continuous variable.
Recall from Chapter 8 that it is not possible to replace finite sums of
stochastic increments with pathwise Riemann-Stieltjes integrals after
letting the time interval go to zero. The reason is that, though we can
assume that paths are continuous, we cannot assume that they have
bounded variation. As a consequence, pathwise Riemann-Stieltjes inte-
grals generally do not exist. However, we can assume that paths are of
bounded quadratic variation. Under this latter assumption, using It
isometry, we can define pathwise Itd integrals and stochastic integrals.

Let’s first assume that the payoff-rate process is zero, so that there
are only price processes. Under this assumption, the trading gain T, of a
trading strategy can be represented by a stochastic integral:

t
T, = [8.ds, = [6.ds.
0 Lo

In the rest of this section, we will not strictly adhere to the vector
notation when there is no risk of confusion. For example, we will write
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0 - S to represent the scalar product 0 - S. If a payoff-rate process is asso-
ciated with each asset, we have to add the gains consequent to the pay-
off-rate process. We therefore define the gain process

G, = S,+D,

as the sum of the price processes plus the cumulative payoff-rate pro-
cesses and we define the trading gains as the stochastic integral

t t
T, = [8,dG, = ¥ [0.dG,
0 Lo

How can we match the abstract notion of a stochastic integral with
the buying and selling of assets? In discrete time, trading gains have a
meaning that is in agreement with the practical notion of buying a port-
folio of assets, holding it for a period, and then selling it at market
prices, thus realizing either a gain or a loss. One might object that in
continuous time this meaning is lost. How can a process where prices
change so that their total variation is unbounded be a reasonable repre-
sentation of financial reality? This is a question of methodology that is
relevant to every field of science. In classical physics, the use of continu-
ous models was assumed to reflect reality; time and space, for example,
were considered continuous. Quantum physics upset the conceptual cart
of classical physics and the reality of continuous processes has since been
questioned at every level. In quantum physics, a theory is considered to
be nothing but a model useful as a mathematical device to predict mea-
surements. This is, in essence, the theory set forth in the 1930s by Niels
Bohr and the School of Copenhaghen; it has now become mainstream
methodology in physics. It is also, ultimately, the point of view of posi-
tive economics. In a famous and widely quoted essay, Milton Friedman,
recipient of the 1976 Nobel Prize in Economic Science, wrote:

The relevant question to ask about the “assumptions” of a theory
is not whether they are descriptively “realistic,” for they never are,
but whether they are sufficiently good approximations for the pur-
pose in hand. And this question can be answered only by seeing
whether the theory works, which means if it yields sufficiently
accurate predictions.?

2 Milton Friedman, Essays in the Theory of Positive Economics (Chicago: University
of Chicago Press, 1953).
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In the spirit of positive economics, continuous-time financial models
are mathematical devices used to predict, albeit in a probabilistic sense,
financial observations made at discrete intervals of time. Stochastic
gains predict trading gains only at discrete intervals of time—the only
intervals that can be observed. Continuous-time finance should be seen
as a logical construction that meets observations only at a finite number
of dates, not as a realistic description of financial trading.

Let’s consider processes without any intermediate payoff. A self-
financing trading strategy is a trading strategy such that the following
relationships hold:

t
0,5, = >05; = Z[egsg+ | eidsi], te [0, T]
1 1 0

We first define arbitrage in the absence of a payoff-rate process. An
arbitrage is a self-financing trading strategy such that: 8;Sy < 0 and 61St
>0, or 0pSg < 0 and 67ST > 0. If there is a payoff-rate process, a self-
financing trading strategy is a trading strategy such that the following
relationships hold:

t
05, = 6.5, = Z[egsg+feidcﬁ], te [0,T]
1 1 0

where Gi = S;+ D; is the gain process as previously defined. An arbi-
trage is a self-financing trading strategy such that: 8¢Sy < 0 and 678 2
0, or 8,8y < 0 and 675> 0.

ARBITRAGE PRICING IN CONTINUOUS-STATE,
CONTINUOUS-TIME

The abstract principles of arbitrage pricing are the same in a discrete-
state, discrete-time setting as in a continuous-state, continuous-time set-
ting. Arbitrage pricing is relative pricing. In the absence of arbitrage, the
price and payoff-rate processes of a set of basic assets fix the prices of
other assets given the payoff-rate process of the latter. If markets are com-
plete, every price process can be computed in this way. In a discrete-state,
discrete-time setting, the computation of arbitrage pricing is done with
matrix algebra. In fact, in the absence of arbitrage, every price process
can be expressed in two alternative ways:
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1. Prices Si are equal to the normalized conditional expectation of pay-
offs deflated with state prices under the real probabilities:

T
i 1 i
St = —E >, md;
t j=t+1

2. Prices S} are equal to the conditional expectation of discounted payoffs
under the risk-neutral probabilities

T 4
R, .

L]

i _ 0
S, = E,
j=t+1

State-price deflators and risk-neutral probabilities can be computed solv-
ing systems of linear equations for a kernel of basic assets. The above
relationships are algebraic linear equations that fix all price processes.

In a continuous-state, continuous-time setting, the principle of arbi-
trage pricing is the same. In the absence of arbitrage, given a number of
basic price and payoff stochastic processes, other processes are fixed.
The latter are called redundant securities as they are not necessary to fix
prices. If markets are complete, every price process can be fixed in this
way. In order to make computations feasible, some additional assump-
tions are made, in particular all payoff-rate and price processes are
assumed to be It6 processes.

The theory of arbitrage pricing in a continuous-state, continuous-
time setting uses the same tools as in a discrete-state, discrete-time set-
ting. Under an equivalent martingale measure, all price processes
become martingales. Therefore prices can be determined as discounted
present value relationships. Equivalent martingale measures are the
same concept as state-price deflators: After appropriate deflation, all
processes become martingales. The key point of arbitrage pricing theory
is that both equivalent martingale measures and state-price deflators can
be determined from a subset of the market. All other processes are
redundant.

In the following sections we will develop the theory of arbitrage
pricing in steps. First, we will illustrate the principles of arbitrage pric-
ing in the case of options, arriving at the Black-Scholes option pricing
formula. We will then extend this theory to more general derivative
securities. Subsequently, we will state arbitrage pricing theory in the
context of equivalent martingale measures and of state-price deflators.
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OPTION PRICING

We will now apply the concepts of arbitrage pricing to option pricing in a
continuous-state, continuous-time setting. Suppose that a market consists
of three assets: a risk-free asset (which allows risk-free borrowing and lend-
ing at the risk-free rate of interest), a stock, and a European option. We will
show that the price processes of a stock and of a risk-free asset fix the price
process of an option on that stock.

Suppose the risk-free rate is a constant 7. Recall from Chapter 4 that
the value V, of a risk-free asset with constant rate » evolves according to
the deterministic differential equation of continually compounding
interest rates:

dV,=rV,dt

The above is a differential equation with separable variables. After sep-
arating the variables, the equation can be written as

d—Vt=rdt

Vi

which admits the solution V, = Vye'" where V| is the initial value of
the bank account. This formula can also be interpreted as the price pro-
cess of a risk-free bond with deterministic rate 7.

Stock Price Processes

Let’s now examine the price process of the stock. Consider the process y
= of + 6B, where B, is a standard Brownian motion. From the definition
of Itd integrals, it can be seen that this process, which is called an arith-
metic Brownian motion, is the solution of the following diffusion equa-
tion:

dy, = adt + 6dB;

where o is a constant called the drift of the diffusion and G is a constant
called the volatility of the diffusion.

Consider now the process S, = Sje , t > 0. Applying Itd’s
lemma it is easy to see that this process, which is called a geometric
Brownian motion, is an Itd process that satisfies the following stochastic
differential equation:

(at+0B,)

ds, = uS,dt+08S,dB,; Sy =x
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where x is an initial value, g = o + %0? and B, is a standard Brownian
motion. We assume that the stock price process follows a geometric
Brownian motion and that there is no payoff-rate process.

Now consider a European call option which gives the owner the right
but not the obligation to buy the underlying stock at the exercise price K
at the expiry date T. Call Y, the price of the option at time z. The price of
the option as a function of the stock price is known at the final expiry
date. If the option is rationally exercised, the final value of the option is

Y1 = max(Sr-K,0)

In fact, the option can be rationally exercised only if the price of the
stock exceeds K. In that case, the owner of the option can buy the
underlying stock at the price K, sell it immediately at the current price S,
and make a profit equal to (St — K). If the stock price is below K, the
option is clearly worthless. After T, the option ceases to exist.

How can we compute the option price at every other date? We can
arrive at the solution in two different but equivalent ways: (1) through
hedging arguments and (2) the equivalent martingale measures. In the
following sections we will introduce hedging arguments and equivalent
martingale measures.

Hedging

To hedge means to protect against an adverse movement. The seller of an
option is subject to a liability as, from his point of view, the option has a
negative payoff in some states. In our context, hedging this option means
to form a self-financing trading strategy formed with the stock plus the
risk-free asset in appropriate proportions such that the option plus this
hedging portfolio is risk free. Hedging the option implies that the hedging
portfolio perfectly replicates the option payoff in every possible state.

A European call option has only one payoff at the expiry date. It
therefore suffices that the hedging portfolio replicates the option payoff
at that date. Suppose that there is a self-financing trading strategy
(th, Gtz) in the bond and the stock such that

0!V, + 028, = Yo

To avoid arbitrage, the price of the option at any moment must be equal
to the value of the hedging self-financing trading strategy. In fact, sup-
pose that at any time ¢ < T the self-financing strategy (9,, (-)tz) has a
value lower than the option:
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0, V,+0°S,<Y,

An 1nvestor could then sell the option for Y, make an investment
6 V, +07 ; S, in the trading strategy, and at tlme T liquidate both the
optlon and the trading strategy. As GTVT+ 0’ ; St = Y the final liquida-
tion has Value zero in every state of the world so that the initial profit
Y, - 0, VT+9 St is a risk-free profit. A 51m11ar reasoning could be
apphed if, at any time # < T, the strategy (Gt, 0’ ;) had a value higher
than the option. Therefore, we can conclude that 1f there is a self-financ-
ing trading strategy that replicates the option’s payoff, the value of the
strategy must coincide with the option’s price at every instant prior to
the expiry date.

Observe that the above reasoning is an instance of the law of one
price that we discussed in the previous chapter. If two portfolios have
the same payoffs at every moment and in every state of the world, their
price must be the same. In particular, if a trading strategy has the same
payoffs of an asset, its value must coincide with the price of that asset.

The Black-Scholes Option Pricing Formula

Let’s now see how the price of the option can be computed. Assume that
the price of the option is a function of time and of the price of the
underlying stock: Y, = C(S,¢). This assumption is reasonable but needs
to be justified; for the moment it is only a hint as to how to proceed
with the calculations. It will be justified later by verifying that the pric-
ing formula produces the correct final payoff.

As S, is assumed to be an Itd process, in particular a geometric
Brownian motion, Y, = C(S,¢)—which is a function of S,—is an Itd pro-
cess as well. Therefore, using 1td’s formula, we can write down the sto-
chastic equation that Y, must satisfy. Recall from Chapter 8 that Itd’s
formula prescribes that:

2
0C(S, 1) . aC(S,, t)S e la C(S,, t)Sfcsz dr+ dC(S,, 1)

dYt = 3 ¢
t aSt 2 853 BSt

6S,dB

. . . 1
Suppose now that there is a self-financing trading strategy Y, = 6, V,
+ 0;S,. We can write this equation as

t t t
[dv, = 0,[dV,+07[ds,
0 0 0
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or, in differential form, as
1 2 1 2 2
dY, = 0,dV,+6,dS, = (6,rV,+06,uS,)dt+6,6S,dB,

If the trading strategy replicates the option price process, the two
expressions for dY,—the one obtained through It6’s lemma and the
other obtained through the assumption that there is a replicating self-
financing trading strategy—must be equal:

0,7V, +07uS,)dt +0,06S,dB,

2
dC(S,, 1) . aC(S,, t)StM . 13 C(S, t)Sfoz dr+ aC(S,, t)G

S,dB,
ot 3, 2 ¢ 3,

The equality of these two expressions implies the equality of the
coefficients in dt and dB respectively. Equating the coefficients in dB
yields,

2 aC(St, £)
0, = ——
as,

As Y, = C(S,.t) = th V,+ BfSt, substituting, we obtain

1 1
0, = V{C(St’ t) —

t

aC(S,, t)St}
dS

t

We have now obtained the self-financing trading strategy in function of
the stock and option prices. Substituting and equating the coefficients of

dt yields,

dC(S,, t dC(S, ¢t
1 C(S, t)—MSt rV,+ Must
V., aS, aS,
AC(S *C(s
_ aC(St’ t)+ ( t t)Stll‘l'l ( ) t)SfGZ
ot aSt 2 astz

Simplifying and eliminating common terms, we obtain
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-rC(S, t) +7r =0

2
BC(St, t)St N BC(St, t) N 18 C(St, t)SfGZ
E)St ot 2 an

If the function C(S,,t) satisfies this relationship, then the coefficients
in dt match. The above relationship is a partial differential equation
(PDE). In Chapter 9 we discussed how to solve this equation with suit-
able boundary conditions. Boundary conditions are provided by the
payoff of the option at the expiry date:

The closed-form solution of the above PDE with the above boundary
conditions was derived by Fischer Black and Myron Scholes® and
referred to as the Black-Scholes option pricing formula:

C(S,t) = x®(z)—e T PKD(z— 0 /T-1)
with
log(S,/K) + (r + %cz)(T- )

o JT -t

Zz =

and where ® is the cumulative normal distribution.

Let’s stop for a moment and review the logical steps we have fol-
lowed thus far. First, we defined a market made by a stock whose price
process follows a geometric Brownian motion and a bond whose price
process is a deterministic exponential. We introduced into this market a
European call option. We then made two assumptions: (1) The option’s
price process is a deterministic function of the stock price process; and
(2) the option’s price process can be replicated by a self-financing trad-
ing strategy.

If the above assumptions are true, we can write a stochastic differ-
ential equation for the option’s price process in two different ways: (1)
Using Itd’s lemma, we can write the option price stochastic process as a
function of the stock stochastic process; and (2) using the assumption
that there is a replicating trading strategy, we can write the option price

3 Fischer Black and Myron Scholes, “The Pricing of Options and Corporate Liabili-
ties,” Journal of Political Economy 81 (1973), pp. 637-654.
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stochastic process as the stochastic process of the trading strategy. As
the two equations describe the same process, they must coincide. Equat-
ing the coefficients in the deterministic and stochastic terms, we can
determine the trading strategy and write a deterministic partial differen-
tial equation (PDE) that the pricing function of the option must satisfy.
The latter PDE together with the boundary conditions provided by the
known value of the option at the expiry date uniquely determine the
option pricing function.

Note that the above is neither a demonstration that there is an
option pricing function, nor a demonstration that there is a replicating
trading strategy. However, if both a pricing function and a replicating
trading strategy exist, the above process allows one to determine both
by solving a partial differential equation. After determining a solution
to the PDE, one can verify if it provides a pricing function and if it
allows the creation of a self-financing trading strategy. Ultimately, the
justification of the existence of an option’s pricing function and of a rep-
licating self-financing trading strategy resides in the possibility of actu-
ally determining both. Absence of arbitrage assures that this solution is
unique.

Generalizing the Pricing of European Options

We can now generalize the above pricing methodology to a generic
European option and to more general price processes for the bond and
for the underlying stock. In the most general case, the process underly-
ing a derivative need not be a stock price process. However, we suppose
that the underlying is a stock price process so that replicating portfolios
can be formed. We generalize in three ways:

B The option’s payoff is an arbitrary finite-variance random variable.
B The stock price process is an Ito process.
B The short-rate process is stochastic.

Following the definition given in the finite-state setting, we define a
European option on some underlying process S, as an asset whose pay-
off at time T is given by the random variable Y1 = g(S7) where g(x), x €
R is a continuous real-valued function. In other words, a European
option is defined as a security whose payoff is determined at a given
expiry date T as a function of some underlying random variable. The
option has a zero payoff at every other date ¢ € [0,T]. This definition
clearly distinguishes European options from American options which
yield payoffs at random stopping times.
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Let’s now generalize the price process of the underlying stock. We
represent the underlying stock price process as a generic Itd process.
Recall from Chapter 8 that a generic univariate Itd process can be repre-
sented through the differential stochastic equation:

ds, = W(S,, t)dt+o(S, t)dB,; Sy = x

where x is the initial condition, B is a standard Brownian motion, and
W(S,t) and (S,f) are given functions R X [0,0) — R. The geometric
Brownian motion is a particular example of an Itd process.

Let’s now define the bond price process. We retain the risk-free
nature of the bond but let the interest rate be stochastic. Recall that in a
discrete-state, discrete-time setting, a bond was defined as a process
that, at each time step, exhibits the same return for each state though
the return can be different in different time steps. Consequently, in con-
tinuous-time we define a bond price process as the following integral:

fr(Su,u)du
V, = Vye''

where 7 is a given function that represents the stochastic rate. In fact,
the rate r depends on the time ¢ and on the stock price process S,. Appli-
cation of Itd’s lemma shows that the bond price process satisfies the fol-
lowing equation:

dv, = Vr(S,t)dt

We can now use the same reasoning that led to the Black-Scholes
formula. Suppose that there are both an option pricing function Y, =
C(Syt) and a replicating self-financing trading strategy

Y, = 0]V, +0.S,

We can now write a stochastic differential equation for the process Y, in
two ways:

1. Applying It6’s lemma to Yf = C(Spt)
2. Directly to Y, = 93 V.+6,S,

The first approach yields
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aC(S 2C(S
206, 0 90D, s, t>+%M62(5t, t) |dt

dy, =
ot aSt asf

dC(S,, 1)
+ a—sfc(st, t)dB,

t
The second approach yields
dY, = [0,7(S, )V, + 07 u(S,, t)1dt +0;6(S, t)dB,

Equating coefficients in dt, Db we obtain the trading strategy

t t

9C(S
o) = %{C(St, p- 28D t)st}

2 aC(St, t)
0y = —
as,

and the PDE

0C(x, 1), 9C(x. 1) L 19%Cex, 12

—r(x, 1)C(x, t) + r(x, t
r(x, 1) Cx, 1) + 7. 1) TR

(x,t) =0

with the boundary conditions C(ST) = g(St). Solving this equation we
obtain a candidate option pricing function. In each specific case, one
can then verify that the option pricing function effectively solves the
option pricing problem.

STATE-PRICE DEFLATORS

We now extend the concepts of state prices and equivalent martingale
measures to a continuous-state, continuous-time setting. As in the previ-
ous sections, the economy is represented by a probability space (Q, 3, P)
where Q is the set of possible states, 3 is the c-algebra of events, and P
is a probability measure. Time is a continuous variable in the interval
[0,T]. The propagation of information is represented by a filtration 3,.
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A multivariate standard Brownian motion B = (Bj,...,Bp) in RP adapted
to the filtration 3, is defined over this probability space. From Chapter
10 we know that there are mathematical subtleties that we will not take
into consideration, as regards whether (1) the filtration is given and the
Brownian motion is adapted to the filtration or (2) the filtration is gen-
erated by the Brownian motion.

Suppose that there are N price processes X = (X1,...,X"N) that form a
multivariate Itd process in RN, Trading strategies are adapted processes 0
= (81,...,0N) that represent the quantity of each asset held at each instant.
In order to ensure the existence of stochastic integrals, we require the
processes (X',...,X"N) and any trading strategy to be of bounded varia-
tion. Let’s first suppose that there is no payoff-rate process. This assump-
tion will be relaxed in a later section. Suppose also that one of these
processes, say Xt , is defined by a short-rate process 7, so that

or
dX; = r,X/dt

where 7; is a deterministic function of ¢ called the short-rate process.
Note that X could be replaced by a trading strategy. We can think of r,
as the risk- free short-term continuously compounding interest rate and
of X} as a risk-free continuously compounding bank account.

The concept of arbitrage and of trading strategy was defined in the
previous section. We now introduce the concept of deflators in a contin-
uous-time continuous-state setting. Any strictly positive It0 process is
called a deflator. Given a deflator Y we can deflate any process X,
obtaining a new deflated process

XtY = X,Y,

For example, any stock price process of a nondefaulting firm or the risk-
free bank account is a deflator. For technical reasons it is necessary to intro-
duce the concept of regular deflators. A regular deflator is a deflator that,
after deflation, leaves unchanged the set of admissible bounded-variation
trading strategies.

We can make the first step towards defining a theory of pricing
based on equivalent martingale measures. It can be demonstrated that if
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Y is a regular deflator, a trading strategy 0 is self-financing with respect
to the price process X = (X1,...,XN) if and only if it is self-financing with
respect to the deflated price process
Y 1
X' = (v, x), ... v, XN

In addition, it can be demonstrated that the price process X =
(X1,...,XN) admits no arbitrage if and only if the deflated price process

N

X" = (V,X,, ..., Y, XN
admits no arbitrage.

A state-price deflator is a deflator m with the property that the
deflated price process X" is a martingale. As explained in Chapter 6, a
martingale is a stochastic process M, such that its current value equals
the conditional expectation of the process at any future time: M, =
E,M], s > t. For each price process X;, the following relationship
therefore holds:

TCtX§ = Et[nin] ,S§>1

This definition is the equivalent in continuous time of the definition of a
state-price deflator that was given in discrete time in the previous chap-
ter. In fact, recall that we defined a state-price deflator as a process ©
such that

T
S; = —Et z TCid;

T j=t+1

If there is no intermediate payoff, as in our present case, the previous
relationship can be written as

n,S; = ElngStl = EJE,, [xeS7l] = Ejlm,, 1S;, 4]

The next proposition states that if there is a regular state-price
deflator then there is no arbitrage. The demonstration of this proposi-
tion hinges on the fact that, as the deflated price process is a martingale,
the following relationship holds:



Arbitrage Pricing: Continuous-State, Continuous-Time Models 457

T
E@euds;ﬂ =0
0
and therefore any self-financing trading strategy is a martingale. We can
thus write
0,S; = E[0,ST]
If
0,57 >0 then 8,S;>0 and if 8;S7>0 then 8,S;> 0

which shows that there cannot be any arbitrage.

We have now stated that the existence of state-price deflators ensures
the absence of arbitrage. The converse of this statement in a continuous-
state, continuous-time setting is more delicate and will be dealt with later.
We will now move on to equivalent martingale measures.

EQUIVALENT MARTINGALE MEASURES

In the previous section we saw that if there is a regular state-price deflator
then there is no arbitrage. A state-price deflator transforms every price pro-
cess and every self-financing trading strategy into a martingale. We will
now see that, after discounting by an appropriate process, price pro-
cesses become martingales through a transformation of the real probability
measure into an equivalent martingale measure.* This theory parallels the
theory of equivalent martingale measures developed in the discrete-state,
discrete-time setting. First some definitions must be discussed.

Given a probability measure P, the probability measure Q is said to
be equivalent to P if both assign probability zero to the same events,
that is, if P(A) = 0 if and only if Q(A) = 0 for every event A. The equiva-
lent probability measure Q is said to be an equivalent martingale mea-

*The theory of equivalent martingale measures was developed in the following arti-
cles: J.M. Harrison and S.R. Pliska, “A Stochastic Calculus Model of Continuous
Trading: Complete Markets,” Stochastic Process Application 15 (1985), pp. 313—
316; J.M. Harrison and S.R. Pliska, “Martingales and Stochastic Integrals in the
Theory of Continuous Trading,” Stochastic Process Application 11 (1981), pp. 215-
260 and, J.M. Harrison and D.M. Kreps, “Martingales and Arbitrage in Multiperiod
Securities Markets,” Journal of Economic Theory 20 (June 1979), pp. 381-408.
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sure for the process X if X is a martingale with respect to Q and if the
Radon-Nikodym derivative

has finite variance. The definition of the Radon-Nikodym derivative is
the same here as it is in the finite-state context. The Radon-Nikodym
derivative is a random variable & such that Q(A) = EF[EI4] for every
event A where I is the indicator function of the event A.

To develop an intuition for this definition, consider that any sto-
chastic process X is a time-dependent random variable X;. The latter is
a family of functions Q — R from the set of states to the real numbers
indexed with time such that the sets {X,(®) < x} are events for any real
x. Given the probability measure P, the finite-dimension distributions of
the process X are determined. The equivalent measure Q determines
another set of finite-dimension distributions. However, the correspon-
dence between the process paths and the states remains unchanged.

The requirement that P and Q are equivalent is necessary to ensure
that the process is effectively the same under the two measures. There is
no assurance that given an arbitrary process an equivalent martingale
measure exists. Let’s assume that an equivalent martingale measure does
exist for the N-dimensional price process X = (X1,...,XN). It can be dem-
onstrated that if the price process X = (X1,...,X"N) admits an equivalent
martingale measure then there is no arbitrage.

The proof is similar to that for state-price deflators as discussed
above. Under the equivalent martingale measure Q, which we assume
exists, every price process and every self-financing trading strategy
becomes a martingale. Using the same reasoning as above it is easy to
see that there is no arbitrage.

This result can be generalized; here is how If there is a regular defla-
tor Y such that the deflated price process x¥ = (Y Xz’ e Y, X ) admits
an equivalent martingale measure, then there is no arbltrage. The proof
hinges on the result established in the previous section that, if there is a
regular deflator Y, the price process X admits no arbitrage if and only if
the deflated price process XY admits no arbitrage.

Note that none of these results is constructive. They only state that
the existence of an equivalent martingale measure with respect to a price
process ensures the absence of arbitrage. Conditions to ensure the exist-
ence of an equivalent martingale measure with respect to a price process
are given in the next section.



Arbitrage Pricing: Continuous-State, Continuous-Time Models 459

EQUIVALENT MARTINGALE MEASURES AND
GIRSANOV'S THEOREM

We first need to establish an important mathematical result known as
Girsanov’s Theorem. This theorem applies to Itd processes. Let’s first
state Girsanov’s theorem in simple cases. Let X be a single-valued It6
process where B is a single-valued standard Brownian motion:

t t
X, =x+ J.usds + J.GSdBS
0 0

Suppose that a process v and a process 0 such that 6,0, = 1, — v, are
given. Suppose, in addition, that the process 0 satisfies the Novikov con-
dition which requires

Then, there is a probability measure Q equivalent to P such that the fol-
lowing integral

t
B, = B, + J.GSdS
0

defines a standard Brownian motion Bt in R on (Q,3,0) with the same
standard filtration of the original Brownian motion B, In addition,
under O the process X becomes

t t
X, = x+ jvsds + Icsdﬁs
0 0

Girsanov’s Theorem states that we can add drift to a standard
Brownian motion and still obtain a standard Brownian motion under
another probability measure. In addition, by changing the probability
measure we can arbitrarily change the drift of an It process.

The same theorem can be stated in multiple dimensions. Let X be an
N-valued It6 process:
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t t
X, =x+ J.usds + jGSst
0 0

In this process, p, is an N-vector process and o, is an N X D matrix.
Suppose that there are both a vector process v = (v!,...,vN) and a vector
process 0 = (8',...,0N) such that 6,0, = W, — v, where the product 6,0, is
not a scalar product but is performed component by component. Sup-

pose, in addition, that the process 0 satisfies the Novikov condition:

[ )

< oo

Then there is a probability measure Q equivalent to P such that the fol-
lowing integral

t
B, = B, + jesds
0
defines a standard Brownian motion Bt in RP on (Q,3,0) with the same

standard filtration of the original Brownian motion B;. In addition,
under Q the process X becomes

t t
X, =x+ J.vsds + jcsdﬁs
0 0

Girsanov’s Theorem essentially states that under technical condi-
tions (the Novikov condition) by changing the probability measure, it is
possible to transform an Itd process into another Itd process with arbi-
trary drift. Prima facie, this result might seem unreasonable. In the end
the drift of a process seems to be a fundamental feature of the process as
it defines, for example, the average of the process. Consider, however,
that a stochastic process can be thought as the set of all its possible
paths. In the case of an Itd process, we can identify the process with the
set of all continuous and square integrable functions. As observed
above, the drift is an average and it is determined by the probability
measure on which the process is defined. Therefore, it should not be sur-
prising that by changing the probability measure it is possible to change
the drift.
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The Diffusion Invariance Principle

Note that Girsanov’s Theorem requires neither that the process X be a
martingale nor that Q be an equivalent martingale measure. If X is
indeed a martingale under Q, an implication of Girsanov’s Theorem is
the diffusion invariance principle which can be stated as follows. Let X
be an It6 process:

dX, = wdt + 6,dB,

If X is a martingale with respect to an equivalent probability measure Q,
then there is a standard Brownian motion B in R” under O such that

dX, = o,dB,

Let’s now apply the previous results to a price process X = (V,S,...,.SN1)
where

dS; = u,dt + c,dB,
and

dV,=r,Vdt

. 1.
If the short-term rate 7 is bounded, V,” is a regular deflator. Con-
sider the deflated processes:

Z, = StV;

By Itd’s lemma, this process satisfies the following stochastic equation:

dz, = (—rtZt ¥ %)dt +2t4B,

t t

Suppose there is an equivalent martingale measure Q. Under the
equivalent martingale measure Q, the discounted price process

Z, = Stvjl

is a martingale. In addition, by the diffusion invariance principle there is
a standard Brownian motion B, in R” under Q such that:
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O, -~
dz, = —LdB,

t

Applying It6’s lemma, given that Z,V, = S,, we obtain the fundamen-
tal result:

ds, = r,dt +oc,dB,

This result states that, under the equivalent martingale measure, all
price processes become It processes with the same drift.

Application of Girsanov’s Theorem to Black-Scholes
Option Pricing Formula

To illustrate Girsanov’s Theorem, let’s see how the Black-Scholes option
pricing formula can be obtained from an equivalent martingale mea-
sure. In the previous setting, let’s assume that N = 3, d = 1, r, is a con-
stant and

6, = oS,

with ¢ constant. Let § be the stock price process and C be the option
price process. The option’s price at time T is

C= max(SlT—K)
In this setting, therefore, the following three equations hold:
ds, = ufdt+ GStSdBt
dC; = uidt+o'dB,
dv, = rV,dt

. 1. . .
Given that C,V, " is a martingale, we can write

2
C _H(T—
C, = Vﬁ?{ﬂ = E2le ™" Pmax(Sp- K)]
t
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It can be demonstrated by direct computation that the above for-
mula is equal to the Black-Scholes option pricing formula presented ear-
lier in this chapter.

EQUIVALENT MARTINGALE MEASURES AND
COMPLETE MARKETS

In the continuous-state, continuous-time setting, a market is said to be
complete if any finite-variance random variable Y can be obtained as the
terminal value at time T of a self-financing trading strategy 6: Y = 01X 1.
A fundamental theorem of arbitrage pricing states that, in the absence
of arbitrage, a market is complete if and only if there is a unique equiv-
alent martingale measure. This is condition can be made more specific
given that the market is populated with assets that follow It6 processes.
Suppose that the price process is X = (V,S1,...,SN!) where, as in the pre-
vious section:

ds, = wdt+0c,dB,
dv, = rV,dt

and B is a standard Brownian motion B = (B',...,BP) in RP.

It can be demonstrated that markets are complete if and only if
rank(c) = d almost everywhere. This condition should be compared with
the conditions for completeness we established in the discrete-state set-
ting in the previous chapter. In that setting, we demonstrated that mar-
kets are complete if and only if the number of linearly independent price
processes is equal to the maximum number of branches leaving a node.
In fact, market completeness is equivalent to the possibility of solving a
linear system with as many equations as branches leaving each node.

In the present continuous-state setting, there are infinite states and
so we need different types of considerations. Roughly speaking, each
price process (which is an Itd process) depends on D independent
sources of uncertainty as we assume that the standard Brownian motion
is D-dimensional. In a finite-state setting this means that, if processes
are Markovian, at each time step any process can jump to D different
values. The market is complete if there are D independent price pro-
cesses. Note that the number D is arbitrary.
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EQUIVALENT MARTINGALE MEASURES AND STATE PRICES

We will now show that equivalent martingale measures and state prices
are the same concept. We use the same setting as in the previous sec-
tions. Suppose that Q is an equivalent martingale measure after defla-

tion by the process
Jj—rudu
1 0

=e
\%

~ =

where 7 is a bounded short-rate process. The density process &, for Q is

defined as

dQ

g, = E{—}te 0,T]

where
@

is the Radon-Nikodym derivative of O with respect to P. As in the dis-
crete-state setting, the Radon-Nikodym derivative of Q with respect to
P is a random variable

(4

with average value on the entire space equal to 1 and such that, for
every event A, the probability of A under Q is the average of &:

PO(A) = E4[E]

It can be demonstrated that, given any 3,-measurable random vari-
able W, the density process &, for O has the following property:
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To gain an intuition for the Radon-Nikodym derivative in a contin-
uous-state setting, let’s assume that the probability space is the real line
equipped with the Borel 6-algebra and with a probability measure P. In
this case, € = (x), R — R and we can write

0(A) = [edp
A

or, dQ = &dP. Given any random variable X with density f under P and
density g under Q, we can then write

ECIX] = [xq(x)dx = [xE(x)f(x)dx
R R

In other words, the random variable & is a function that multiplies the
density f to yield the density q.

We can now show the following key result. Given an equivalent
martingale measure with density process &, a state-price deflator is given

by the process
f—rudu
0

Conversely, given a state-price deflator m,, the density process

n, = e

defines an equivalent martingale measure. In fact, suppose that Q is an
equivalent martingale measure for X¥ with n, = £,Y, where

'r -r,du
0

Then, using the above relationship we can write:

Y

t

E,[n,X,] = Et[&tXtY] = &tEtQ[E-»tXtY] = atXtY = X,
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which shows that m, is a state-price deflator. The same reasoning in
reverse order demonstrates that if 7, is a state-price deflator then:

r,du
J:M L
e —

Ty

is a density process for Q.

ARBITRAGE PRICING WITH A PAYOFF RATE

In the analysis thus far, we assumed that there is no intermediate payoff.
The owner of an asset makes a profit or a loss due only to the changes in
value of the asset. Let’s now introduce a payoff-rate process &, for each
asset i. The payoff-rate process must be interpreted in the sense that the
cumulative payoff of each individual asset is

t

i i
D, = JSsds
0
We define a gain process
i i i
G, = S,+D,
By the linearity of the It0 integrals, we can write any trading strategy as

t t t
[6,dG, = [6,dX,+[6,dD,
0 0 0

If there is a payoff-rate process, a self-financing trading strategy is a
trading strategy such that the following relationships hold:

1 1

t
0,5, = >0)S, = 2(e§5§+ | eidc’;], t e [0,T]
0

An arbitrage is, as before, a self-financing trading strategy such that
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eoso <0 and GTST 2> 0, or eoso <0 and GTST >0

The previous arguments extend to this case. An equivalent martingale
measure for the pair (D,S) is defined as an equivalent probability mea-
sure Q such that the Radon-Nikodym derivative

(4

has finite variance and the process G = S + D is a martingale. Under these
conditions, the following relationship holds:

T
j —r,du T f"ud”
! + J.e ! dD,

t

StzEth

IMPLICATIONS OF THE ABSENCE OF ARBITRAGE

We saw that the existence of an equivalent martingale measure or of
state-price deflators implies absence of arbitrage. We have also seen
that, in the absence of arbitrage, markets are complete if and only if
there is a unique equivalent martingale measure.

In a discrete-state, discrete-time context we could establish the com-
plete equivalence between the existence of state-price deflators, equiva-
lent martingale measures and absence of arbitrage, in the sense that any
of these conditions implies the other two. In addition, the existence of a
unique equivalent martingale measure implies absence of arbitrage and
market completeness.

In the present continuous-state context, however, absence of arbi-
trage implies the existence of an equivalent martingale measure and of
state price deflators only under rather restrictive and complex technical
conditions. If we want to relax these conditions, the condition of
absence of arbitrage has to be slightly modified. These discussions are
quite technical and will not be presented in this chapter.’

5 See F. Delbaen and W. Schachermayer, “The Fundamental Theorem of Asset Pric-
ing for Unbounded Stochastic Processes,” Mathematische Annalen 312, no. 2 (Oc-
tober 1999), pp. 215-250 and F. Delbaen and W. Schachermayer, “A General
Version of the Fundamental Theorem of Asset Pricing,” Mathematische Annalen
300, no. 3 (November 1994), pp. 463-520.
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WORKING WITH EQUIVALENT MARTINGALE MEASURES

The concepts established in the preceding sections of this chapter might
seem very complex, abstract, and scarcely useful. On the contrary, they
entail important simplifications in the computation of derivative prices.
We will see examples of these computations when we cover bond pric-
ing and credit derivatives in later chapters. Here we want to make a few
general comments on how these tools are used.

The key result of the arbitrage pricing theory is that, under the
equivalent martingale measure, all discounted price processes become
martingales and all price processes have the same drift. Therefore, all
calculations can be performed under the assumption that the change to
an equivalent martingale measure has been made. This environment
allows important simplifications. For example, as we have seen, the
option pricing problem becomes a problem of computing the present
value of simpler processes.

Obviously one has to go back to a real environment at the end of
the pricing exercise. This is essentially a calibration problem, as risk-
neutral probabilities have to be estimated from real probabilities.
Despite this complication, the equivalent martingale methodology has
proved to be an important tool in derivative pricing.

SUMMARY

B A trading strategy is a vector-valued process that represents portfolio
weights at each moment.

B Trading gains are defined as stochastic integrals.

B A self-financing trading strategy is one whose value at every moment is
the initial value plus the trading gains at that moment.

M An arbitrage is a self-financing trading strategy whose initial value is
either negative and the final value nonnegative or the initial value non-
negative and the final value positive.

B The Black-Scholes option pricing formula can be established by repli-
cating self-financing trading strategies.

B The Black-Scholes pricing argument is based on constructing a self-
financing trading strategy that replicates the option price in each state
and for each time.

B Absence of arbitrage implies that a replicating self-financing trading
strategy must have the same price as the option.
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The Black-Scholes option pricing formula is obtained solving the par-
tial differential equation implied by the equality of the replicating self-
financing trading strategy and the option price process.

A deflator is any strictly positive Ito process; a state-price deflator is a
deflator with the property that the deflated price process is a martin-
gale.

If there is a (regular) state-price deflator then there is no arbitrage; the
converse is true only under a number of technical conditions.

Two probability measures are said to be equivalent if they assign prob-
ability zero to the same event.

Given a process X on a probability space with probability measure P,
the probability measure Q is said to be an equivalent martingale mea-
sure if it is equivalent to P and X is a martingale with respect to QO
(plus other conditions).

If there is a regular deflator such that the deflated price process admits
an equivalent martingale measure, then there is no arbitrage.

Under the equivalent martingale measure, all 1td price processes have
the same drift.

In the absence of arbitrage, a market is complete if and only if there is a
unique equivalent martingale measure.






16

Portfolio Selection Using
Mean-Variance Analysis

As explained in Chapter 3, a major step in the direction of the quanti-
tative management of portfolios was made in the 1950s by Harry
Markowitz in his paper “Portfolio Selection” published in 1952 in the
Journal of Finance.' The ideas introduced in this article have come to
form the foundations of what is now popularly referred to as mean-vari-
ance analysis (M-V analysis) for reasons explained in this chapter, and
Modern Portfolio Theory (MPT). Initially, M-V analysis generated rela-
tively little interest, but with time, the financial community adopted the
thesis, and now 50 years later, financial models based on those very
same principles are constantly being reinvented to incorporate new find-
ings that result from that seminal work.

Though widely applicable, M-V analysis has had the most influence
in the practice of portfolio management. In its simplest form, M-V anal-
ysis provides a framework to construct and select portfolios based on
the expected performance of the investments and the risk appetite of the
investor. M-V analysis also introduced a whole new terminology, which
now has become the norm in the area of investment management.

It may be useful to mention here that the theory of portfolio selec-
tion is a normative theory. A normative theory is one that describes a
standard or norm of behavior that investors should pursue in construct-
ing a portfolio, in contrast to a theory that is actually followed. Asset

"Harry M. Markowitz, “Portfolio Selection,” Journal of Finance (March 1952), pp.
77-91.In 1959 Markowitz expanded his ideas in book form: Harry M. Markowitz,
Portfolio Selection: Efficient Diversification of Investments (New York: John Wiley,
1959).

4n
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pricing theory such as the capital asset pricing model, which we discuss
in the next chapter, goes on to formalize the relationship that should
exist between asset returns and risk if investors constructed and selected
portfolios according to mean-variance analysis. In contrast to a norma-
tive theory, asset pricing theory is a positive theory—a theory that
hypothesizes how investors behave rather than how investors should
behave. Based on that hypothesized behavior of investors, we derive an
asset pricing model that provides the expected return is derived.

Our objective in this chapter is to explain the principles of mean-vari-
ance analysis and present a formal mathematical treatment for determin-
ing “efficient portfolios.” The extensions of Markowitz’s formulation
includes the case where a risk-free asset is available in the capital mar-
ket. This leads to efficient portfolio’s that dominate efficient portfolios
that can be constructed in a capital market in which there is no risk-free
asset. We then provide an application of how M-V analysis is used in
portfolio selection. While there have been many applications of M-V
analysis in the areas of finance and insurance, we present an application
to the asset allocation problem. This decision involves deciding how to
allocate funds across major asset classes.

DIVERSIFICATION AS A CENTRAL THEME IN FINANCE

Conventional wisdom has always dictated “not putting all your eggs in
one basket.” In more technical terms, this old adage is addressing the
benefits of diversification. Markowitz quantified the concept of diversifi-
cation, or “undiversification” through the statistical notion of covari-
ance, or correlation. In essence, the old adage is saying that putting all
your money in investments that may all perform poorly at the same
time—that is, whose returns are highly correlated—is not a very prudent
investment strategy—no matter how small the chance is that any one
single investment will perform poorly. This is because if any one single
investment performs poorly, it is very likely, due to its high correlation
with the other investments, that the other investments are also going to
perform poorly, leading to the poor performance of the portfolio.

The concept of diversification is so intuitive and so strong that it has
been continuously applied to different areas within finance. Indeed, a
vast number of the innovations surrounding finance have either been an
application of the concept of diversification, or the introduction of new
methods of obtaining improved estimates of the variances and covari-
ances, thereby, allowing for a more precise measure of diversification,
and consequently, for a more precise measure of risk.
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Markowitz considered an investor who, at time ¢, decides what
portfolio of investments to choose; the time horizon of the investor is
At. The investor makes decisions on the gains and losses he or she will
make at time ¢ + At, without considering eventual gains and losses either
during or after the period At. At time # + At, the investor will reconsider
the situation and decide anew; this last condition is called myopic.

Nonmyopic investment strategies must be adopted when it is necessary
to make trade-offs at future dates between consumption and investment or
when significant trading costs related to specific subsets of investments are
incurred. We will handle these issues later in this chapter and when we dis-
cuss bond portfolio management in Chapter 21 where we apply the multi-
stage optimization technology discussed in Chapter 7.

Markowitz reasoned that investors should decide on the basis of a
trade-off between risk and return. He made the assumption that returns
are normally distributed and that risk is measured by the variance of the
return distribution. In the 1950s when asset pricing theories were not
yet developed, the assumption of joint normality of returns was a rea-
sonable statistical assumption. It was based on the fact that asset
returns are influenced by many different independent facts. Recall from
Chapter 6 on probability theory that the sum of many small random
disturbances tends to a normal distribution.

Markowitz argued that for any given level of expected returns
investors should choose the portfolios with minimum variance from
amongst the set of all possible portfolios that can be constructed. The
set of all possible portfolios that can be constructed is called the feasible
set. In this simple one-period model, variance of returns is a measure of
uncertainty and thus of risk. Minimum variance portfolios are called
mean-variance-efficient portfolios. The set of all mean-variance efficient
portfolios is called the efficient frontier.

Exhibit 16.1 presents the MPT investment process (mean-variance
optimization or the theory of portfolio selection). Notice in the exhibit
that the result of the analysis is the selection of the optimal portfolio.
We describe what is meant by an optimal portfolio later in this chapter.

Though its implementation can get quite complicated, the theory is
relatively straightforward. Here we want to give an intuitive and practi-
cal view of MPT. The theory dictates that given estimates of the returns,
volatilities, and correlations of a set of investments, and constraints on
investment choices (for example, maximum exposures and turnover

2 There are applications of multistage optimization in equity portfolio management
though these are not as common in the bond portfolio management area. See, for ex-
ample, John M. Mulvey and Hercules Vladimirou, “Stochastic Network Optimization
Models for Investment Planning,” Management Science 38, no. 11, pp. 1642-1664.
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EXHIBIT 16.1 The MPT Investment Process

Expected Return
Model

Volatility & Correlation PORTFOLIO Risk-Return
Estimates OPTIMIZATION Efficient Frontier

3

Constraints on
Portfolio Choice

Investor . Optimal
Objectives Portfolio

Source: Exhibit 2 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markowitz,
“The Legacy of Modern Portfolio Theory,” Journal of Investing (Fall 2002), p. 8.

constraints) it is possible to perform an optimization that results in the
risk-return or mean-variance efficient frontier.> This frontier is efficient
because underlying every point on this frontier is a portfolio that results
in the greatest possible return for that level of risk, or results in the
smallest possible risk for that level of return. The portfolios that lie on
the frontier make up the set of efficient portfolios.

When the efficient frontier is constructed using the M-V formula-
tion developed by Markowitz, they are referred to as Markowitz effi-
cient portfolios and the set or frontier of these portfolios is called the
Markowitz efficient frontier. Exhibit 16.2 provides a graphical depiction
of the Markowitz efficient frontier based on the feasible portfolios that
can be constructed. The Markowitz efficient frontier is the upper por-
tion of the curve from II to III.

MARKOWITZ'S MEAN-VARIANCE ANALYSIS

Let’s now place the above in a formal mathematical context developing
the analysis of mean-variance optimization. Suppose first that an inves-
tor has to choose a portfolio formed of N risky assets. The investor’s
choice is embodied in an N-vector w = {w;} of weights where each
weight i represents the percentage of the i-th asset held in the portfolio.
Suppose assets’ returns are jointly normally distributed with an N-vec-

3 In practice this optimization is performed using an off-the-shelf asset allocation
package.
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EXHIBIT 16.2  Feasible and Markowitz Efficient Portfolios®

E(R,)

© Feasible set: all portfolios on and bounded by

curve I=lI-1ll
Markowitz efficient set: all portfolios on
curve H-llI

Ml

Risk [SD (R,)]

2 The picture is for illustrative purposes only. The actual shape of the feasible region
depends on the returns and risks of the assets chosen and the correlation among

them.

tor of expected returns W = {Y;} and an NxN variance-covariance matrix
L = {0;}. Under these assumptions, the return of a portfolio a with
= {w;}, is a random variable, which is the sum of normally
distributed random variables. Therefore, it is a normally distributed
random variable with the following mean and variance:

weights w,

’

p‘a=wau
2,
6, = w,/Zw,

For instance, if there are only two assets with weights w,,” = {w 1w 5},
then the portfolios expected return is

Wg = Wyl W0l
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and its variance is

G11 O12| | W1

Q
|

a = [wal wal}
Go1 O (W)

Wy
{w, 1011 +w,10,1 W01y + W05} w
2

2 2
W, 011 + W,y0) + 21,1 ,501)

2 2 2 2.,
Wy101 T Wy0) + 2W, W50

By choosing the portfolio’s weights, an investor chooses among the
available mean-variance pairs. Following Markowitz, the investor’s
problem is a constrained minimization problem in the sense that the
investor must seek

min(c2) = min(w,/Ew,)

subject to the constraints

This is a constrained optimization problem which can be solved
with the method of Lagrange multipliers. Recall from Chapter 7 that
this method transforms a constrained optimization problem into an
unconstrained optimization problem by forming the Lagrangian, that is,
the sum of the function to be optimized and a linear combination of the
constraints. In this case, the Lagrangian is

L =w,/Zw,+06;(L,—w,/ W) +6,(1-w,1)

The original optimization problem becomes the problem of uncon-
strained maximization of the Lagrangian. To solve this problem, it is
sufficient to set to zero the partial derivatives of the Lagrangian. Solving
yields

w, = g+hp,

where g and h are two vectors which are functions of pwand Z.
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Consider the mean-variance plane, that is, a two-dimensional Carte-
sian plane whose coordinates are mean and variance. In this plane, each
portfolio is represented by a point. Consider now the set of all efficient
portfolios with all possible efficient mean-variance pairs. This set is
what we referred to earlier as the efficient frontier. Later in this chapter
we show actual efficient frontiers.

CAPITAL MARKET LINE

As demonstrated by William Sharpe,* James Tobin,> and John Lintner °
the efficient set of portfolios available to investors who employ M-V anal-
ysis in the absence of a risk-free asset is inferior to that available when
there is a risk-free asset.” We present this formulation in this section.®
Assume a risk-free asset with a risk-free return denoted by Ry The
investor has to choose a combination of the N risky assets plus the risk-
free asset. The weights wg = {w;}g do not have to sum to 1 as the remain-
ing part (1 — wg"t) can be invested in the risk-free asset. Note that this
portion of investment can be positive or negative if we allow risk-free
borrowing and lending. The portfolio’s expected return and variance are:

My = WR'H+ (1-wg'URy

2,
th = Wp EWR

The portfolio variance is the same expression as before because the
risk-free asset has zero variance and zero covariances with the risky assets.

*William F. Sharpe, “Capital Asset Prices: A Theory of Market Equilibrium Under
Conditions of Risk,” Journal of Finance (September 1964), pp. 425-442.

5 James Tobin, “Liquidity Preference as a Behavior Towards Risk,” Review of Eco-
nomic Studies (February 1958), pp. 65-86.

¢ John Lintner, “The Valuation of Risk Assets and the Selection of Risky Investments
in Stock Portfolios and Capital Budgets,” Review of Economics and Statistics (Feb-
ruary 1965), pp. 13-37.

7The portfolio selection model was further extended by Fischer Black in the case of
a restriction on short selling. See “Capital Market Equilibrium with Restricted Bor-
rowings,” Journal of Business (July 1972), pp. 444-455.

8 For a comprehensive discussion of these models and computational issues, see Har-
ry M. Markowitz (with a chapter and program by Peter Todd), Mean-Variance Anal-
ysis in Portfolio Choice and Capital Markets (New Hope, PA: Frank ]. Fabozzi
Associates, 2000, originally published in 1987).
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The investor’s problem is again a constrained optimization problem
that can be stated as

min(Gtzz) = min(wy'Zwy)
subject to the constraints
I.La = WR’u‘l' (1 —WR,l)Rf

This problem can be solved again with the method of Lagrange multipli-
ers. The Lagrangian is

L = wp'Zwg+dp, - wg'h—(1-wg'YR/]

Equating to zero the derivatives of the Lagrangian with respect to
the weights and to the Lagrange multiplier d, we obtained the solution
of the constrained minimization problem. The solution of this problem
has an interesting feature that leads to the CAPM as we will see in the
next chapter. In fact, developing the lengthy computations, the optimal
portfolio weights can be written as

wg = CZ ' (L-Rp)

Ma - Rf
(m-RAZ ™ (u-Rp)

C =

The above formula shows that the weights of the risky assets of any
minimum-variance portfolio are proportional to the same vector. The
proportionality constant is C. Therefore, with a risk-free asset, all mini-
mum variance portfolios are a combination of the risk-free asset and of a
given risky portfolio. This risky portfolio is called the tangency portfolio.

With the exception of the tangency portfolio, the minimum variance
portfolios that are a combination of the tangency portfolio and the risk-
free asset are superior to the portfolio on the Markowitz efficient frontier
that has the same level of risk.

Deriving the Capital Market Line

To derive the Capital Market Line (CML), we begin with the efficient fron-
tier. In the absence of a risk-free asset, Markowitz efficient portfolios can
be constructed as a constrained minimum problem based on expected
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return and variance, with the optimal portfolio being the one portfolio
selected based on the investor’s preference (which later we will see is quan-
tified by the investor’s utility function). The efficient frontier changes, how-
ever, once a risk-free asset is introduced and assuming that investors can
borrow and lend at the risk-free rate. This is illustrated in Exhibit 16.3.

Every combination of the risk-free asset and the efficient portfolio
M, which we referred to as the tangency portfolio in the previous sec-
tion, is shown on the line drawn from the vertical axis at the risk-free
rate tangent to the Markowitz efficient frontier. All the portfolios on the
line are feasible for the investor to construct. Portfolios to the left of
portfolio M represent combinations of risky assets and the risk-free
asset. Portfolios to the right of portfolio M include purchases of risky
assets made with funds borrowed at the risk-free rate. Such a portfolio
is called a leveraged portfolio because it involves the use of borrowed
funds. The line from the risk-free rate that is tangent to the efficient
frontier of risky assets is called the capital market line (CML).

Let’s compare a portfolio on the CML to a portfolio on the
Markowitz efficient frontier with the same risk in Exhibit 16.3. For

EXHIBIT 16.3  Capital Market Line and the Markowitz Efficient Frontier

Capital
_-market line
Markowitz
efficient
- frontier
mh.
g
Ry

SD(R,)
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example, compare portfolio P4, which is on the Markowitz efficient
frontier, with portfolio Pg, which is on the CML and therefore some
combination of the risk-free asset and the efficient portfolio M. Notice
that for the same risk the expected return is greater for Pp than for Py.
By Assumption 2, a risk-averse investor will prefer P to P4. That is, Pp
will dominate P,4. In fact, this is true for all but one portfolio on the
CML, portfolio M, which is on the Markowitz efficient frontier. With
the introduction of the risk-free asset, we can now say that an investor
will select a portfolio on the CML that represents a combination of bor-
rowing or lending at the risk-free rate and the efficient portfolio M.

We can derive a formula for the CML algebraically. Based on the
assumption of homogeneous expectations regarding the inputs in the
portfolio construction process, all investors can create an efficient port-
folio consisting of wy placed in the risk-free asset and wy in the tan-
gency portfolio, portfolio M, where w represents the corresponding
percentage (weight) of the portfolio allocated to each asset.

Thus, wg+ wy = 1 or wp=1-w,, The expected return is equal to
the weighted average of the expected returns of the two assets. There-
fore, the expected portfolio return, E(R,), is equal to

E(Rp) = wyRp+wy E(Rypy)

Since we know that wg=1-wy, we can rewrite E(R,) as follows:
E(R,) = (1= wy) Ry + wy E(Ry)
This can be simplified as follows:
E(Rp) = Re+ wy [E(Rp) — Rf

Earlier in this chapter we derived the variance of a portfolio con-
taining only two assets. The variance of the portfolio consisting of the
risk-free asset and portfolio M is

var(R,) = wy var(Rp) + wyy var(Ry) + 2wswyy cov(Rr, Ry)

We know that the variance of the risk-free asset, var(Ry), is equal to
zero. This is because there is no possible variation in the return since the
future return is known. The covariance between the risk-free asset and
portfolio M, cov(RsR ), is zero. This is because the risk-free asset has
no variability and therefore does not move at all with the return on
portfolio M which is a risky portfolio. Substituting these two values into
the formula for the portfolio’s variance, we get
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var(R,) = wyy var(Ry)

In other words, the variance of the portfolio is represented by the
weighted variance of portfolio M. We can solve for the weight of portfo-
lio M by substituting standard deviations for variances. Since the stan-
dard deviation is the square root of the variance, we can write

and therefore

_ SD(R,)

Wy =
T SD(R,))

If we substitute the above result and rearrange terms we get the CML:

E(Ry) - R,
SD(R )

E(R,) = Rs+ SD(R

p)

What is Portfolio M?
Now we know that portfolio M is pivotal to the CML; we now need to
know what portfolio M is. That is, how does an investor construct port-
folio M? Eugene Fama demonstrated that portfolio M must consist of
all assets available to investors, and each asset must be held in propor-
tion to its market value relative to the total market value of all assets.’”
That is, tangency portfolio M is the “market portfolio.” So, rather than
referring to the market portfolio, we can simply refer to the “market.”
Recall that using Lagrange multipliers we formally demonstrated in
a previous section that in the presence of risk-free lending and borrow-
ing the optimal portfolio held by investors is made up of the risk-free
asset and of one special portfolio called the tangency portfolio. This
important property is called separation. We can now complete the previ-
ous demonstration: if risk-free lending and borrowing is allowed the
market is M-V efficient and each investor holds the risk-free asset plus a
portfolio proportional to the market.

? Eugene F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical
Work,” Journal of Finance (May 1970), pp. 383-417.
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Risk Premium in the CML

With homogeneous expectations, SD(R,;) and SD(R,) are the market’s
consensus for the expected return distributions for portfolio M and
portfolio p. The risk premium for the CML is

E(Ry) - R;
SD(R,,)

SD(R,)

Let’s examine the economic meaning of the risk premium.

The numerator of the first term is the expected return from investing
in the market beyond the risk-free return. It is a measure of the reward
for holding the risky market portfolio rather than the risk-free asset. The
denominator is the market risk of the market portfolio. Thus, the first
term measures the reward per unit of market risk. Since the CML repre-
sents the return offered to compensate for a perceived level of risk, each
point on the CML is a balanced market condition, or equilibrium. The
slope of the CML (i.e., the first term) determines the additional return
needed to compensate for a unit change in risk. That is why the slope of
the CML is also referred to as the equilibrium market price of risk.

The CML says that the expected return on a portfolio is equal to the
risk-free rate plus a risk premium equal to the market price of risk (as mea-
sured by the reward per unit of market risk) times the quantity of risk for the
portfolio (as measured by the standard deviation of the portfolio). That is,

ER, = Ry + market price of risk X quantity of risk

THE CML AND THE OPTIMAL PORTFOLIO

Given that the new efficient frontier is the CML, how does one select the
optimal portfolio? That is, how does one determine the optimal combi-
nation of the market portfolio and the risk-free asset in which to invest?
This depends on the preferences of the investors. To understand this, we
must introduce the notion of utility functions and indifference curves.

Utility Functions and Indifference Curves

In life there are many situations where entities (i.e., individuals and
firms) face two or more choices. The economic “theory of choice” uses
the concept of a utility function to describe the way entities make deci-
sions when faced with a set of choices. A wutility function assigns a
(numeric) value to all possible choices faced by the entity. The utility
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index has the property that pair a is preferred to pair b if and only if the
utility of a is higher than that of b. The higher the value of a particular
choice, the greater the utility derived from that choice. The choice that
is selected is the one that results in the maximum utility given a set of
constraints faced by the entity.

The assumption that an investor’s decision-making process can be
represented as optimization of a utility function goes back to Pareto (see
Chapter 3). Utility functions can represent a broad set of preference
ordering. The precise conditions under which a preference ordering can
be expressed through a utility function have been widely explored in the
literature.'®

In portfolio theory too, entities are faced with a set of choices. Dif-
ferent portfolios have different levels of expected return and risk. Also,
the higher the level of expected return, the larger the risk. Entities are
faced with the decision of choosing a portfolio from the set of all possi-
ble risk/return combinations. Whereas they like return, they dislike risk.
Therefore, entities obtain different levels of utility from different risk/
return combinations. The utility obtained from any possible risk/return
combination is expressed by the utility function. Put simply, the utility
function expresses the preferences of entities over perceived risk and
expected return combinations.

A utility function can be expressed in graphical form by a set of
indifference curves. Exhibit 16.4 shows indifference curves labeled uq,
u,, and u3. By convention, the horizontal axis measures risk and the
vertical axis measures expected return. Each curve represents a set of
portfolios with different combinations of risk and return. All the points
on a given indifference curve indicate combinations of risk and expected
return that will give the same level of utility to a given investor. For
example, on utility curve #; there are two points # and #’, with # having
a higher expected return than #’, but also having a higher risk.

Because the two points lie on the same indifference curve, the inves-
tor has an equal preference for (or is indifferent between) the two
points, or, for that matter, any point on the curve. The (positive) slope
of an indifference curve reflects the fact that, to obtain the same level of
utility, the investor requires a higher expected return in order to accept
higher risk. For the three indifference curves shown in Exhibit 16.4, the
utility the investor receives is greater the further the indifference curve is
from the horizontal axis because that curve represents a higher level of
return at every level of risk. Thus, for the three indifference curves
shown in the exhibit, #3 has the highest utility and #; the lowest.

10 See, for example, Akira Takayama, Mathematical Economics (Cambridge, U.K.:
Cambridge University Press, 1985).
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EXHIBIT 16.4 Indifference Curves

Utility
increases

Expected return

Risk

Selection of the Optimal Portfolio

A reasonable assumption is that investors are risk averse. A risk-averse
investor is an investor who, when faced with choosing between two
investments with the same expected return but two different risks, pre-
fers the one with the lower risk.

In selecting portfolios, an investor seeks to maximize the expected
portfolio return given his tolerance for risk. Given a choice from the set
of efficient portfolios, the optimal portfolio is the one that is preferred
by the investor. In terms of utility functions, the optimal portfolio is the
efficient portfolio which has the maximum utility.

The particular efficient portfolio on the CML that the investor will
select will depend on the investor’s risk preference. This can be seen in
Exhibit 16.5, which is the same as Exhibit 16.2 but has the investor’s
indifference curves included. The investor will select the portfolio on the
CML that is tangent to the highest indifference curve, 5 in the exhibit.

Notice that without the risk-free asset, an investor could only get to
u,, which is the indifference curve that is tangent to the Markowitz effi-
cient frontier. Thus, the opportunity to borrow or lend at the risk-free
rate results in a capital market where risk-averse investors will prefer to
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EXHIBIT 16.5  Optimal Portfolio and the Capital Market Line

Capital
_— market line

- Efficient
W frontier

E(R,)

=

SD(R,)

Uy, Uy, Uy = Indifference curves with v, < 1, < 1y

M= Market portfolio
R; =Risk-free rate
P & = Optimal portfolio on capital market line

P s = Optimal portfolio on efficient frontier

hold portfolios consisting of combinations of the risk-free asset and the
tangency portfolio M on the Markowitz efficient frontier.

EXTENSION OF THE MARKOWITZ MEAN-VARIANCE MODEL TO
INEQUALITY CONSTRAINTS

The earlier optimization model introduced by Markowitz is useful from
a theoretical point of view, but it is insufficient from the point of view of
a portfolio manager who wants to optimize a real portfolio. In fact, the
above model has a number of serious shortcomings. In the next chapter
we will introduce the notion of systematic risk and nonsystematic risk.
A limitation of the Markowitz model presented above is that it only
minimizes systematic risk given a target expected return, but it does not
set any objectives for systematic risk. The latter can be set by constrain-
ing the portfolio exposure to selected risk factors. We will discuss these
risk factors in the next chapter.
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Suppose asset returns are determined by a multifactor model (as
described in Chapter 18) so that the expected return of the i-th security
is a linear combination of p factors. We can then write

b
uz’ = (X‘i+ 2 Bijf/')]-: 1929'--3p
=1

where ; are expected returns and f; are the expectations of factors.
Exposure to the j-th factor can be controlled by constraining the
beta B,; of portfolio a relative to that factor:

where w,; are the weights of portfolio a.

A portfolio manager might want to maximize a portfolio’s return
given a target level of risk. This problem would lead to maximizing a
linear function subject to quadratic constraints of the form

’ —_—
w,/Ew, = w,

In practice, however, a portfolio manager prefers to minimize a
function of the type:

w,Zw,—Aw, I

where W is the vector of securities’ expected returns and A is a risk-aver-
sion parameter. A function of this type implements a compromise
between risk and returns.

Finally, a portfolio manager needs to impose lower thresholds on
portfolio weights to avoid portfolios being made up of a large number
of small holdings. This implies the constraints w,; > b;. In practice,
therefore, mean-variance portfolio selection leads to a quadratic optimi-
zation problem of the following type:

Minimize
’ ’
w, Zw,—Aw, I

subject to
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and

W, > bi

where the equation Aw, = ¢ constrains sector exposure. This is a qua-
dratic programming problem of the type described in Chapter 7.

In addition to the above, managers might want to impose turnover
or tradability constraints in the sense that assets can only be traded in
given lots. As observed in Chapter 7, these constraints result in a mixed-
integer programming problem, which is generally more difficult to solve
than quadratic programming problems.

The technology of optimization is presently available on desktop
computers. Mathematical software such as Matlab routinely solves qua-
dratic portfolio optimization problems of the type described above.
However special care is still needed in applying optimization technol-
ogy. In fact, optimization is sensitive to expected return forecasts that
are themselves typically unreliable.!!

A SECOND LOOK AT PORTFOLIO CHOICE

The mean-variance framework suggested by Markowitz is based on util-
ity functions defined on expected returns and variance. We now have to
generalize the optimization framework proposed by Markowitz in a
fully probabilistic setting. This generalization allows the consideration
of nonnormal distributions and paves the way for multiperiod portfolio
choice. The three key ingredients in a portfolio optimization methodol-
ogy are (1) a return forecast, (2) a utility function, and (3) an optimizer.

The Return Forecast
The return forecast has to be intended as a probabilistic forecast. This
means that models supply a joint pdf of all the assets that might contrib-
ute to forming the optimal portfolio. A return forecast implies a process
dynamics.

The first, and simplest, dynamics is the assumption that returns are
independent and identical normal (IIN) variables and, therefore, price

1 See, for example, Peter Muller, “Empirical Tests of Biases in Equity Portfolio Op-
timization,” in Stavros Zenios (ed.), Financial Optimization (Cambridge, MA, Cam-
bridge University Press, 1993).
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processes are random walks. This assumption entails that the expected
returns of each asset are known constants. Later in this chapter we will
consider autoregressive linear models and nonlinear models that follow
a more complex dynamics than the assumption of IID variables.

The Utility Function

In the mean-variance framework, utility functions are defined on
expected returns and variances. The probability structure of returns is
summarized by returns and variances. Utility functions express the
trade-off between risk and return preferred by the investor or by the
asset manager. By choosing a utility function, an investor decides how
much return he or she wants to be compensated for taking more risk.
The choice of utility functions is dictated by (1) a question of mathemat-
ical and computational tractability and (2) the risk-return preferences of
the investor.

In the one-period framework of Markowitz, utility is a function of
two variables: mean and variance. In this way, the problem of portfolio
choice becomes a problem of finding the return-variance pair with the
maximum utility:

arg maxU(w/, X)

where “arg” is shorthand to denote “argument” and with the con-
straints

This is a problem of constrained maximum. Additional constraints
might be imposed, for instance, that weights are all positive and/or that
weights are within given intervals. The first condition precludes short
selling; the second condition ensures that no asset has a weight either
too big or too small.

In a more general probabilistic setting, utility functions are defined on
the variables of interest, be they returns or consumption. The investor’s risk
preference is represented by the shape of the utility function. A linear func-
tion corresponds to risk neutrality. A concave function, that is, a function
with negative second derivative, expresses risk aversion in so far as utility
grows less rapidly than the variable.

A formal measure of absolute risk aversion is defined as
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r4(x) = =U"(x)/U’(x)

This measure expresses the intuitive fact that the more the utility func-
tion is curved, the more the investor is risk-averse. Listed below are
some examples of utility functions:
W Linear utility function:
Ux)=a+bx,U(x)=b,U"(x) =0

The linear function is not concave; it represents a risk-neutral investor.

B Power utility function:

1-a
Ux) = %=1 () = x, U”(x) = —ax “"'<0
1-a

The power utility function is concave; it represents a risk-averse investor.

B Logarithmic utility function:
U(x) = In(x), U'(x) = 1/x, U’(x) = -1/x><0

The logarithmic utility function is concave; it represents a risk-averse
investor.

B Quadratic utility function:

U(x) = a+bx—£x2, Ux) =b-cx, U’ (x) = <0
2

The quadratic utility function is concave; it represents a risk-averse
investor.

In a probabilistic setting, the utility function is a monotone function
of a random variable and is, therefore, a random variable itself. To opti-
mize, one single utility number must be defined for each portfolio
choice. Utility is therefore defined as the expected value of stochastic
utility:
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+o0

U = E[U)] = [ p(x)U(x)dx

From this definition, it is clear why concavity represents risk aver-
sion. To see this point, it is useful to imagine a discrete world where
only a discrete set of states is possible. In a discrete setting, utility is
defined as a discrete, finite or infinite sum:

U= E[U®)] = Y px)Ux)

To each state corresponds a discrete finite probability. A risk-neutral
investor does not require any compensation for risk-taking: the investor is
indifferent to choices where the increment in the variable is inversely pro-
portional to the decrease in probability. For instance, a risk-neutral investor
will be indifferent to choices where the halving of probability is compen-
sated with the doubling of consumption. However, a risk-averse investor
will require more than a simple proportionality: a halving of probability
must be compensated with more than a doubling of consumption.

Optimizers

An optimizer is a software program that searches the maximum of a
(multivariate) function. If we know both the analytical expression of the
function to be optimized and the constraints to be applied, the method
of Lagrange multiplier yields closed-form solutions. However, if no ana-
lytical expression is available or if the function is too complex, numeri-
cal optimization techniques must be used. Numerical optimizers work
by searching a space of likely maxima or minima.

Mathematical optimization is a well-established technology and,
outside of finance, is also used in many areas of science and technology.
Different optimization technologies are employed, depending on the
functions to be optimized and the constraints to be imposed. Statistical
optimization technologies such as simulated annealing and genetic algo-
rithms have been employed to allow the optimization of generic func-
tions with multiple local minima and/or maxima. Chapter 7 provides a
brief introduction to optimization technology.

A Glohal Probahilistic Framework for Portfolio Selection

We are now ready to state the global principles of portfolio selection.
Portfolio selection works by finding those portfolio weights that maxi-
mize expected portfolio utility. Formally, we will have a joint probabil-
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ity distribution of returns p(x) defined over the vector of returns r. For
each vector of portfolio weights w, the portfolio return will be w,r. The
portfolio’s utility will be a stochastic variable U with a pdf that can be
computed from the joint pdf of returns. For instance, if returns are
jointly normal, the portfolio pdf will be normal. The portfolio selection
problem is to maximize the expected value of this stochastic utility in
function of portfolio weights:

arg maxE[U(r,w,)]

Portfolio optimization is a relatively mature technology, though its
formal implementation is not yet widespread in the industry. The prob-
lem is one of sensitivity to forecasts. Practitioners who have imple-
mented the optimization technology typically report a great sensitivity
of the optimization to forecast errors. Because the optimizer looks for
the best opportunities within the pdf that has been fed to it, any mistake
in the estimation of the pdf is magnified by the optimizer. This has led
some in the industry to refer to optimization as “error maximization.”!?

RELAXING THE ASSUMPTION OF NORMALITY

We can relax the assumption that returns are jointly normally distrib-
uted. It is a well known fact that returns are not normally distributed at
short-time horizons of the order of days. As we saw in Chapter 13, fat-
tailed distributions were proposed to represent returns at such short
time horizons. At the longer time horizons typical of portfolio manage-
ment, the assumption of normality is more plausible empirically speak-
ing. However, deviations from normality exist, either because of rare
large price movements or because of the importance of moments of
order higher than variance.

The general utility maximization framework discussed above is very
general and can be applied, in principle, to arbitrary distribution func-
tions provided that the maxima exist. Henrik Dahl, Alexander Meeraus,
and Stavros Zenios'® argue that most financial engineering problems
can be cast into an optimization framework. However practical statisti-
cal and computational problems arise when there is the need to estimate
moments of high order in a multivariate environment. Extreme Value

12 Muller, “Empirical Tests of Biases in Equity Portfolio Optimization.”
13 Henrik Dahl, Alexander Meeraus, and Stavros Zenios, “Some Financial Optimi-
zation Models: I and II,” in Financial Optimization.
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Theory (EVT) might help to determine the tails of some distributions. In
this way, as we have seen in Chapter 13, it becomes possible to manage
the risk associated with large movements. As observed by Jobst and
Zenios'* the tails of the return distribution significantly affect portfolio
performance.

A new framework for portfolio selection with arbitrary distribu-
tions was proposed by Malevergne and Sornette.!® Their framework is
based on transforming arbitrary variables into normal variables. The
distribution of the transformed variables is then determined via the
principle of entropy maximization.!® They showed that the new trans-
formed variables conserve the structure of correlation of the original
variables as measured by copula functions. In this way they recovered
the multivariate distribution of the original variables.

MULTIPERIOD STOCHASTIC OPTIMIZATION

The factor market models explored thus far are static linear regressions
with an underlying dynamic that is either exogenously given or consists
of the assumption of IID returns; these optimization models are myopic
one-period optimization models. From the point of view of investor
behavior, one-period models are based on the assumption that wealth is
consumed at the end of the period.

An investor must solve the problem of optimal portfolio selection.
This means that at every trading moment the investor has to revise the
selected portfolio and to decide what fraction of wealth is consumed
and what fraction is reinvested. Suppose that an investor is character-
ized by a time-separable utility function defined over the consumption
process. A time-separable utility function is such that the total utility is
the sum of utility in different periods, each discounted by an appropri-
ate time-discount factor. It is implicitly assumed that the utility derived
by the consumption of one unit at some future date is less than the util-
ity derived from the same consumption at the present date.

Call C, consumption at time #. The investor’s consumption of period #
is a fraction of his or her wealth at the beginning of period ¢. The remaining

14 Norbert J. Jobst and Stavros A. Zenios, “The Tail That Wags the Dog: Integrating
Credit Risk in Asset Portfolios,” The Journal of Risk Finance (Fall 2001), pp. 31-44.
15y, Malevergne and D. Sornette, “Higher-Moment Portfolio Theory with Multi-
variate Weibull Distributions,” unpublished paper.

16 The Principle of Entropy Maximization chooses the distribution that has the max-
imum entropy among those compatible with a set of constraints. In general, con-
straints are given by the values of empirically determined moments.
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wealth is invested at a rate R,. An infinite stream of consumption is possible
if the return rate is positive. We will write utility in the following form:

ULC) = Y d'UC,, )
i=0

where C is a shorthand for a realization of the consumption process and
d < 1 is the time discount factor of utility. In the following formulation
we will consider an infinite horizon, i.e., consumption extends over an
infinite stream at all future dates. It is also possible to consider only a
finite number of steps ahead; in this case, one needs to write a utility
function for final wealth in order to establish a trade-off between con-
sumption and final wealth. As in the previous single-period case, utility is
a random variable as consumption is a stochastic process. We will there-
fore define utility as the expected value of stochastic utility as follows:

U, =E ZdiU(CH,-)
i=0

The process dynamics are given by the following equation:

W1 = (1+RYIW,-C]

where R; is the portfolio stochastic return. The investor’s portfolio
selection consists of maximizing his expected utility given a return rate
process for the portfolio and an initial endowment. The solution of this
problem can be obtained through the methods of stochastic multistage
optimization. The solution of the infinite horizon problem implies that
first-order conditions, called Euler conditions, are satisfied for each
asset. Euler conditions are the following:

U'(Cy) = dEJI(1+R,; ,, DU (C,, ]

where R;; is the period ¢ return of the i-th asset. The left hand side of
the equation is the utility the investor derives from consuming one unit
less at time ¢ while the right hand side is the additional expected utility
that derives from consuming at time # + 1 the unit saved at time ¢ and
invested at rate R,. Optimality implies that the two coincide.

If we take the unconditional expectation and divide by U’(C,) we
can write the above equations in the following form:
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1 = E[(1+R; )M,]

where

U'(Ct+ l)
U'(C))

=d

is a random variable known as the stochastic discount factor.

APPLICATION TO THE ASSET ALLOCATION DECISION'’

One of the most direct and widely used applications of MPT is asset
allocation. Because the asset allocation decision is so important, almost
all financial advisors determine an optimal portfolio for their clients—
be they institutional or individual—by performing an asset allocation
analysis using a set of asset classes.!® They begin by selecting a set of
asset classes (e.g., domestic large cap and small cap stocks, long-term
bonds, international stocks, etc.). To obtain estimates of the returns and
volatilities and correlations they generally start with the historical per-
formance of the indexes representing these asset classes.!” Exhibit 16.6
shows the major asset classes and an index commonly used to represent
the performance characteristics of that asset class (i.e., mean and stan-
dard deviation of return). These estimates are used as inputs in the
mean-variance optimization which results in an efficient frontier. Then
using some criteria (for instance, using Monte Carlo simulations to
compute the wealth distributions of the candidate portfolios), they pick
an optimal portfolio allocation. Finally, this portfolio is implemented
using either index or actively managed funds.

7 This illustration draws from Frank J. Fabozzi, Francis Gupta, and Harry M.
Markowitz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry
M. Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002).

18 The following two studies conclude that asset allocation is a major determinant of
portfolio performance: Gary L. Brinson, Randolph Hood, and Gilbert Beebower,
“Determinants of Portfolio Performance,” Financial Analysts Journal (July/August
1986), pp. 39-44 and Gary L. Brinson, Randolph Hood, and Gilbert Beebower,
“Determinants of Portfolio Performance II: An Update,” Financial Analysts Journal
(May/June 1991), pp. 40-48.

9 Not all institutional asset managers use this method to obtain estimates of expect-
ed returns.



Portfolio Selection Using Mean-Variance Analysis 495

EXHIBIT 16.6  Asset Classes and Commonly Used Indexes

Index Asset Class Inception Date
U.S. 30 day T-bill U.S. Cash 1/26
Lehman Brothers aggregate bond ~ U.S. Bonds 1/76
S&P 500 U.S. Large Cap Equity 126
Russell 2000 U.S. Small Cap Equity 1/79
MSCI EAFE Europe/Japan Equity 1/70
MSCI EM Free Emerging Markets Equity 1/88

Source: Exhibit 3.6 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank ]J. Fabozzi and Harry M.
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 49.

Once the funds are allocated to portfolio managers who specialize
in the asset class, each portfolio manager selects the specific securities to
be included in the portfolio. The portfolio can be actively managed or
indexed. In fact, M-V analysis can be employed to construct the specific
securities from within an asset class.

The Inputs

There are a number of approaches that can be used to obtain estimates
of the inputs that are used in a mean-variance optimization, and all
approaches have their pros and cons. Since the use of historical returns
is the approach that is most commonly used, it may be useful to present
a discussion on this method.

As explained in Chapters 11 and 12, in the language of economet-
rics the above means that historical returns (i.e., the empirical average
of past returns), are an estimate of the expected values of returns. This
entails a model of returns, in particular a stationary model of returns.
The assumption that returns are independent and identically distributed
(IID) sequences?® is the simplest model where historical returns are an
estimate of expected returns.

Exhibit 16.7 uses monthly returns over different and varying time peri-
ods to present the annualized historical returns for four market indexes.

One drawback of using the historical performance to obtain esti-
mates is clearly evident from this exhibit. Historical returns are not sta-
ble, the future does not repeat the past. This is one of the reasons

20 See Chapter 6 for the definition of an IID sequence.
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EXHIBIT 16.7 Annualized Returns Using Historical Performance Depend on the
Time Period

Period Lehman Aggregate S&P 500 MSCIEAFE MSCI EM Free
Five year
1990-1995 9.2% 15.9% 10.5% 16.3%
1996-2000 6.3 18.3 8.2 0.1
Ten year
1990-2000 7.7 171 9.3 8.2

Note: Based on monthly returns of Ibbotson Associates.

Source: Exhibit 3.3 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M.
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 46.

econometricians have pushed to study dynamic return models, for
instance Markov switching Hamilton models, that might capture fluctu-
ations such as those that appear in the exhibit.?! Note that, even using
more complex models, fluctuations of the estimates will still exist. They
are an ineliminable consequence of the global uncertainty in financial
markets. The point is that the fluctuation of the estimates should not be
too large to invalidate the model that is assumed.

Based on historical performance, a portfolio manager looking for
estimates of the expected returns for these four asset classes to use as
inputs for obtaining the set of efficient portfolios at the end of 1995 might
have used the estimates from the five-year period, 1990-1995. Then
according to the portfolio manager’s expectations, over the next five
years, only the U.S. equity market (as represented by the S&P 500) out-
performed, while U.S. bonds, Europe and Japan and Emerging Markets
all underperformed. In particular, the performance of Emerging Markets
was dramatically different from its expected performance (actual perfor-
mance of 0.1% versus an expected performance of 16.3%). This finding
is disturbing, because if portfolio managers cannot have faith in the
inputs that are used to solve for the efficient portfolios, then it is not pos-
sible for them to have much faith in the outputs (i.e., the makeup and
expected performance of the efficient and optimal portfolios).

Portfolio managers who were performing the exercise at the begin-
ning of 2001 faced a similar dilemma. Should they use the historical
returns for the 1996-2000 period? That would generally imply that the

21 For a discussion of these techniques, see Chapter 18.
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optimal allocation has a large holding of U.S. equity (since that was the
asset class that performed well), and an underweighting to U.S. bonds
and emerging markets equity. But then what if the actual performance
over the next five years is more like the 1990-1995 period? In that case
the optimal portfolio is not going to perform as well as a portfolio that
had a good exposure to bonds and emerging markets equity. (Note that
emerging markets equity outperformed U.S. equity under that scenario.)
Or, should the portfolio managers use the estimates computed by using
10 years of monthly performance?

This is also true when trying to obtain estimates for the variances
and correlations. Exhibit 16.8 presents the standard deviations for the
same indexes over the same time periods. Though the risk estimates for
the Lehman Aggregate and EAFE indexes are quite stable, the estimates
for the S&P 500 and EM Free are significantly different over different
time periods. However, the volatility of the indexes does shed some light
on the problem of estimating expected returns as presented in Exhibit
16.8. MSCI EM Free, the index with the largest volatility, also has the
largest difference in the estimate of the expected return. Intuitively, this
makes sense—the greater the volatility of an asset, the harder it is to
predict its future performance.

Exhibit 16.9 shows the five-year rolling correlation between the
S&P 500 and MSCI EAFE. In January 1996, the correlation between the
returns of the S&P 500 and EAFE was about 0.45 over the prior five
years (1991-1995). Consequently, a portfolio manager would have
expected the correlation over the next five years to be around that esti-
mate. However, for the five-year period ending December 2000, the cor-

EXHIBIT 16.8  Annualized Standard Deviations Using Historical Performance
Depend on the Time Period

Period Lehman Aggregate S&P 500 MSCIEAFE MSCI EME Free

Five year
1990-1995 4.0% 10.1% 15.5% 18.0%
1996-2000 4.8 17.7 15.6 27.4
Ten year
1990-2000 3.7 13.4 15.0 22.3

Note: Source of monthly returns is Ibbotson Associates.

Source: Exhibit 3.4 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M.
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 47.
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EXHIBIT 16.9 Correlation Between Returns of the S&P 500 and MSCI EAFE
Indexes
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Source: Exhibit 3.5 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M.
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 48.

relation between the assets slowly increased to 0.73. Historically, this
was an all-time high. In January 2001, should the portfolio manager
assume a correlation 0.45 or 0.73 between the S&P 500 and EAFE over
the next five years? Or does 0.59, the correlation over the entire ten-
year period (1991-2000) sound more reasonable?

In reality, if portfolio managers believe that the inputs based on the
historical performance of an asset class are not a good reflection of the
future expected performance of that asset class, they may objectively or
subjectively alter the inputs. Different portfolio managers may have dif-
ferent beliefs, in which case the alterations will be different.?”> The
important thing here is that all alterations have theoretical justifica-
tions, which, in turn, ultimately leads to an optimal portfolio that
closely aligns to the future expectations of 