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Preface 

Since the pioneering work of Harry Markowitz in the 1950s, sophisti-
cated statistical and mathematical techniques have increasingly made 
their way into finance and investment management. One might question 
whether all this mathematics is justified, given the present state of eco-
nomics as a science. However, a number of laws of economics and finance 
theory with a bearing on investment management can be considered 
empirically well established and scientifically sound. This knowledge can 
be expressed only in the language of statistics and mathematics. As a 
result, practitioners must now be familiar with a vast body of statistical 
and mathematical techniques. 

Different areas of finance call for different mathematics. Investment 
management is primarily concerned with understanding hard facts about 
financial processes. Ultimately the performance of investment manage-
ment is linked to an understanding of risk and return. This implies the 
ability to extract information from time series that are highly noisy and 
appear nearly random. Mathematical models must be simple, but with a 
deep economic meaning. 

In other areas, the complexity of instruments is the key driver behind 
the growing use of sophisticated mathematics in finance. There is the need 
to understand how relatively simple assumptions on the probabilistic behav-
ior of basic quantities translate into the potentially very complex probabilis-
tic behavior of financial products. Derivatives are the typical example. 

This book is designed to be a working tool for the investment man-
agement practitioner, student, and researcher. We cover the process of 
financial decision-making and its economic foundations. We present 
financial models and theories, including CAPM, APT, factor models, 
models of the term structure of interest rates, and optimization method-
ologies. Special emphasis is put on the new mathematical tools that 
allow a deeper understanding of financial econometrics and financial 
economics. For example, tools for estimating and representing the tails 
of the distributions, the analysis of correlation phenomena, and dimen-
sionality reduction through factor analysis and cointegration are recent 
advances in financial economics that we discuss in depth. 

xiv 
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Preface xv 

Special emphasis has been put on describing concepts and mathe-
matical techniques, leaving aside lengthy demonstrations, which, while 
the substance of mathematics, are of limited interest to the practitioner 
and student of financial economics. From the practitioner’s point of 
view, what is important is to have a firm grasp of the concepts and tech-
niques, which will allow one to interpret the results of simulations and 
analyses that are now an integral part of finance. 

There is no prerequisite mathematical knowledge for reading this 
book: all mathematical concepts used in the book are explained, starting 
from ordinary calculus and matrix algebra. It is, however, a demanding 
book given the breadth and depth of concepts covered. Mathematical 
concepts are in bolded type when they appear for the first time in the 
book, economic and finance concepts are italicized when they appear for 
the first time. 

In writing this book, special attention was given to bridging the gap 
between the intuition of the practitioner and academic mathematical 
analysis. Often there are simple compelling reasons for adopting sophisti-
cated concepts and techniques that are obscured by mathematical details; 
whenever possible, we tried to give the reader an understanding of the 
reasoning behind these concepts. The book has many examples of how 
quantitative analysis is used in practice. These examples help the reader 
appreciate the connection between quantitative analysis and financial 
decision-making. A distinctive feature of this book is the integration of 
notions deeply rooted in the practice of investment management with 
methods based on finance theory and statistical analysis.

 Sergio M. Focardi
 Frank J. Fabozzi 
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CHAPTER 1 
From Art to Engineering in 

Finance 

t is often said that investment management is an art, not a science. 
However since early 1990s the market has witnessed a progressive 

shift towards a more industrial view of the investment management pro-
cess. There are several reasons for this change. First, with globalization 
the universe of investable assets has grown many times over. Asset man-
agers might have to choose from among several thousand possible 
investments from around the globe. The S&P 500 index is itself chosen 
from a pool of 8,000 investable U.S. stocks. Second, institutional inves-
tors, often together with their investment consultants, have encouraged 
asset management firms to adopt an increasingly structured process 
with documented steps and measurable results. Pressure from regulators 
and the media is another factor. Lastly, the sheer size of the markets 
makes it imperative to adopt safe and repeatable methodologies. The 
volumes are staggering. With the recent growth of the world’s stock 
markets, total market capitalization is now in the range of tens of tril-
lions of dollars1 while derivatives held by U. S. commercial banks 
topped $65.8 trillion in the second quarter of 2003.2 

1 Exact numbers are difficult to come up with as information about many markets is 
missing and price fluctuations remain large. 
2 Office of the Comptroller of the Currency, Quarterly Derivatives Report, Second 
Quarter 2003. 

1 
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INVESTMENT MANAGEMENT PROCESS 

The investment management process involves the following five steps: 

Step 1: Setting investment objectives 
Step 2: Establishing an investment policy 
Step 3: Selecting an investment strategy 
Step 4: Selecting the specific assets 
Step 5: Measuring and evaluating investment performance 

The overview of the investment management process described below 
should help in understanding the activities that the portfolio manager 
faces and the need for the analytical tools that are described in the chap-
ters that follow in this book. 

Step 1: Setting Investment Objectives 
The first step in the investment management process, setting investment 
objectives, begins with a thorough analysis of the investment objectives 
of the entity whose funds are being managed. These entities can be clas-
sified as individual investors and institutional investors. Within each of 
these broad classifications is a wide range of investment objectives. 

The objectives of an individual investor may be to accumulate funds 
to purchase a home or other major acquisitions, to have sufficient funds to 
be able to retire at a specified age, or to accumulate funds to pay for col-
lege tuition for children. An individual investor may engage the services of 
a financial advisor/consultant in establishing investment objectives. 

In Chapter 3 we review the different types of institutional investors. 
We will also see that in general we can classify institutional investors into 
two broad categories—those that must meet contractually specified liabil-
ities and those that do not. We can classify those in the first category as 
institutions with “liability-driven objectives” and those in the second cat-
egory as institutions with “nonliability driven objectives.” Some institu-
tions have a wide range of investment products that they offer investors, 
some of which are liability driven and others that are nonliability driven. 
Once the investment objective is understood, it will then be possible to (1) 
establish a “benchmark” or “bogey” by which to evaluate the performance 
of the investment manager and (2) evaluate alternative investment strate-
gies to assess the potential for realizing the specified investment objective. 

Step 2: Establishing an Investment Policy 
The second step in the investment management process is establishing 
policy guidelines to satisfy the investment objectives. Setting policy 
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begins with the asset allocation decision. That is, a decision must be 
made as to how the funds to be invested should be distributed among 
the major classes of assets. 

Asset Classes 
Throughout this book we refer to certain categories of investment prod-
ucts as an “asset class.” From the perspective of a U.S. investor, the con-
vention is to refer the following as traditional asset classes:

 ■ U.S. common stocks
 ■ Non-U.S. (or foreign) common stocks
 ■ U.S. bonds
 ■ Non-U.S. (or foreign) bonds
 ■ Cash equivalents
 ■ Real estate 

Cash equivalents are defined as short-term debt obligations that have 
little price volatility and are covered in Chapter 2. 

Common stocks and bonds are further divided into asset classes. 
For U.S. common stocks (also referred to as U.S. equities), the following 
are classified as asset classes: 

■ Large capitalization stocks
 ■ Mid-capitalization stocks
 ■ Small capitalization stocks
 ■ Growth stocks
 ■ Value stocks 

By “capitalization,” it is meant the market capitalization of the com-
pany’s common stock. This is equal to the total market value of all of 
the common stock outstanding for that company. For example, suppose 
that a company has 100 million shares of common stock outstanding 
and each share has a market value of $10. Then the capitalization of 
this company is $1 billion (100 million shares times $10 per share). The 
market capitalization of a company is commonly referred to as the 
“market cap” or simply “cap.” 

For U.S. bonds, also referred to as fixed-income securities, the fol-
lowing are classified as asset classes:

 ■ U.S. government bonds
 ■ Investment-grade corporate bonds
 ■ High-yield corporate bonds 
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 ■ U.S. municipal bonds (i.e., state and local bonds)
 ■ Mortgage-backed securities
 ■ Asset-backed securities 

All of these securities are described in Chapter 2, where what is meant by 
“investment grade” and “high yield” are also explained. Sometimes, the 
first three bond asset classes listed above are further divided into “long 
term” and “short term.” 

For non-U.S. stocks and bonds, the following are classified as asset 
classes:

 ■ Developed market foreign stocks
 ■ Emerging market foreign stocks
 ■ Developed market foreign bonds
 ■ Emerging market foreign bonds 

In addition to the traditional asset classes, there are asset classes 
commonly referred to as alternative investments. Two of the more pop-
ular ones are hedge funds and private equity. 

How does one define an asset class? One investment manager, Mark 
Kritzman, describes how this is done as follows: 

... some investments take on the status of an asset class simply 
because the managers of these assets promote them as an asset 
class. They believe that investors will be more inclined to allocate 
funds to their products if they are viewed as an asset class rather 
than merely as an investment strategy.3 

He then goes on to propose criteria for determining asset class status. 
We won’t review the criteria he proposed here. They involve concepts 
that are explained in later chapters. After these concepts are explained it 
will become clear how asset class status is determined. However, it 
should not come as any surprise that the criteria proposed by Kritzman 
involve the risk, return, and the correlation of the return of a potential 
asset class with that of other asset classes. 

Along with the designation of an investment as an asset class comes 
a barometer to be able to quantify performance—the risk, return, and 
the correlation of the return of the asset class with that of another asset 
class. The barometer is called a “benchmark index,” “market index,” or 
simply “index.” 

3 Mark Kritzman, “Toward Defining an Asset Class,” The Journal of Alternative In-
vestments (Summer 1999), p. 79. 
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Constraints 
There are some institutional investors that make the asset allocation deci-
sion based purely on their understanding of the risk-return characteristics 
of the various asset classes and expected returns. The asset allocation 
will take into consideration any investment constraints or restrictions. 
Asset allocation models are commercially available for assisting those 
individuals responsible for making this decision. 

In the development of an investment policy, the following factors 
must be considered:

 ■ Client constraints
 ■ Regulatory constraints 
■ Tax and accounting issues 

Client-Imposed Constraints Examples of client-imposed constraints would 
be restrictions that specify the types of securities in which a manager 
may invest and concentration limits on how much or little may be 
invested in a particular asset class or in a particular issuer. Where the 
objective is to meet the performance of a particular market or custom-
ized benchmark, there may be a restriction as to the degree to which the 
manager may deviate from some key characteristics of the benchmark. 

Regulatory Constraints There are many types of regulatory constraints. 
These involve constraints on the asset classes that are permissible and 
concentration limits on investments. Moreover, in making the asset allo-
cation decision, consideration must be given to any risk-based capital 
requirements. For depository institutions and insurance companies, the 
amount of statutory capital required is related to the quality of the 
assets in which the institution has invested. There are two types of risk-
based capital requirements: credit risk-based capital requirements and 
interest rate-risk based capital requirements. The former relates statu-
tory capital requirements to the credit-risk associated with the assets in 
the portfolio. The greater the credit risk, the greater the statutory capi-
tal required. Interest rate-risk based capital requirements relate the stat-
utory capital to how sensitive the asset or portfolio is to changes in 
interest rates. The greater the sensitivity, the higher the statutory capital 
required. 

Tax and Accounting Issues Tax considerations are important for several rea-
sons. First, in the United States, certain institutional investors such as pen-
sion funds, endowments, and foundations are exempt from federal income 
taxation. Consequently, the assets in which they invest will not be those 
that are tax-advantaged investments. Second, there are tax factors that 
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must be incorporated into the investment policy. For example, while a pen-
sion fund might be tax-exempt, there may be certain assets or the use of 
some investment vehicles in which it invests whose earnings may be taxed. 

Generally accepted accounting principles (GAAP) and regulatory 
accounting principles (RAP) are important considerations in developing 
investment policies. An excellent example is a defined benefit plan for a 
corporation. GAAP specifies that a corporate pension fund’s surplus is 
equal to the difference between the market value of the assets and the 
present value of the liabilities. If the surplus is negative, the corporate 
sponsor must record the negative balance as a liability on its balance 
sheet. Consequently, in establishing its investment policies, recognition 
must be given to the volatility of the market value of the fund’s portfolio 
relative to the volatility of the present value of the liabilities. 

Step 3: Selecting a Portfolio Strategy 
Selecting a portfolio strategy that is consistent with the investment 
objectives and investment policy guidelines of the client or institution is 
the third step in the investment management process. Portfolio strate-
gies can be classified as either active or passive. 

An active portfolio strategy uses available information and forecast-
ing techniques to seek a better performance than a portfolio that is sim-
ply diversified broadly. Essential to all active strategies are expectations 
about the factors that have been found to influence the performance of 
an asset class. For example, with active common stock strategies this 
may include forecasts of future earnings, dividends, or price-earnings 
ratios. With bond portfolios that are actively managed, expectations 
may involve forecasts of future interest rates and sector spreads. Active 
portfolio strategies involving foreign securities may require forecasts of 
local interest rates and exchange rates. 

A passive portfolio strategy involves minimal expectational input, 
and instead relies on diversification to match the performance of some 
market index. In effect, a passive strategy assumes that the marketplace 
will reflect all available information in the price paid for securities. 
Between these extremes of active and passive strategies, several strategies 
have sprung up that have elements of both. For example, the core of a 
portfolio may be passively managed with the balance actively managed. 

In the bond area, several strategies classified as structured portfolio 
strategies have been commonly used. A structured portfolio strategy is 
one in which a portfolio is designed to achieve the performance of some 
predetermined liabilities that must be paid out. These strategies are fre-
quently used when trying to match the funds received from an invest-
ment portfolio to the future liabilities that must be paid. 
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Given the choice among active and passive management, which 
should be selected? The answer depends on (1) the client’s or money 
manager’s view of how “price-efficient” the market is, (2) the client’s 
risk tolerance, and (3) the nature of the client’s liabilities. By market-
place price efficiency we mean how difficult it would be to earn a greater 
return than passive management after adjusting for the risk associated 
with a strategy and the transaction costs associated with implementing 
that strategy. Market efficiency is explained in Chapter 3. 

Step 4: Selecting the Specific Assets 
Once a portfolio strategy is selected, the next step is to select the specific 
assets to be included in the portfolio. It is in this phase of the investment 
management process that the investor attempts to construct an efficient 
portfolio. An efficient portfolio is one that provides the greatest 
expected return for a given level of risk or, equivalently, the lowest risk 
for a given expected return. 

Inputs Required 
To construct an efficient portfolio, the investor must be able to quantify 
risk and provide the necessary inputs. As will be explained in the next 
chapter, there are three key inputs that are needed: future expected 
return (or simply expected return), variance of asset returns, and correla-
tion (or covariance) of asset returns. All of the investment tools 
described in the chapters that follow in this book are intended to provide 
the investor with information with which to estimate these three inputs. 

There are a wide range of approaches to obtain the expected return 
of assets. Investors can employ various analytical tools that will be dis-
cussed throughout this book to derive the future expected return of an 
asset. For example, we will see in Chapter 18 that there are various 
asset pricing models that provide expected return estimates based on 
factors that historically have been found to systematically affect the 
return on all assets. Investors can use historical average returns as their 
estimate of future expected returns. Investors can modify historical 
average returns with their judgment of the future to obtain a future 
expected return. Another approach is for investors to simply use their 
intuition without any formal analysis to come up with the future 
expected return. 

In Chapter 16, the reason why the variance of asset returns should 
be used as a measure of an asset’s risk will be explained. This input can 
be obtained for each asset by calculating the historical variance of asset 
returns. There are sophisticated time series statistical techniques that 
can be used to improve the estimated variance of asset returns that are 
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discussed in Chapter 18. Some investors calculate the historical variance 
of asset returns and adjust them based on their intuition. 

The covariance (or correlation) of returns is a measure of how the 
return of two assets vary together. Typically, investors use historical 
covariances of asset returns as an estimate of future covariances. But 
why is a covariance of asset returns needed? As will be explained in 
Chapter 16, the covariance is important because the variance of a port-
folio’s return depends on it and the key to diversification is the covari-
ance of asset returns. 

Approaches to Portfolio Construction 
Constructing an efficient portfolio based on the expected return for a 
portfolio (which depends on the expected return of all the asset returns 
in the portfolio) and the variance of the portfolio’s return (which 
depends on the variance of the return of all of the assets in the portfolio 
and the covariance of returns between all pairs of assets in the portfolio) 
are referred to as “mean-variance” portfolio management. The term 
“mean” is used because the expected return is equivalent to the “mean” 
or “average value” of returns. This approach also allows for the inclu-
sion of constraints such as lower and upper bounds on particular assets 
or assets in particular industries or sectors. The end result of the analy-
sis is a set of efficient portfolios—alternative portfolios from which the 
investor can select—that offer the maximum expected portfolio return 
for a given level of portfolio risk. 

There are variations on this approach to portfolio construction. 
Mean-variance analysis can be employed by estimating risk factors that 
historically have explained the variance of asset returns. The basic princi-
ple is that the value of an asset is driven by a number of systematic factors 
(or, equivalently, risk exposures) plus a component unique to a particular 
company or industry. A set of efficient portfolios can be identified based 
on the risk factors and the sensitivity of assets to these risk factors. This 
approach is referred to the “multifactor risk approach” to portfolio con-
struction and is explained in Chapter 19 for common stock portfolio 
management and Chapter 21 for fixed-income portfolio management. 

With either the full mean-variance approach or the multifactor risk 
approach there are two variations. First, the analysis can be performed 
by investors using individual assets (or securities) or the analysis can be 
performed on asset classes. 

The second variation is one in which the input used to measure risk is 
the tracking error of a portfolio relative to a benchmark index, rather 
than the variance of the portfolio return. By a benchmark index it is 
meant the benchmark that the investor’s performance is compared against. 
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As explained in Chapter 19, tracking error is the variance of the difference 
in the return on the portfolio and the return on the benchmark index. 
When this “tracking error multifactor risk approach” to portfolio con-
struction is applied to individual assets, the investor can identify the set of 
efficient portfolios in terms of a portfolio that matches the risk profile of 
the benchmark index for each level of tracking error. Selecting assets that 
intentionally cause the portfolio’s risk profile to differ from that of the 
benchmark index is the way a manager actively manages a portfolio. In 
contrast, indexing means matching the risk profile. “Enhanced” indexing 
basically means that the assets selected for the portfolio do not cause the 
risk profile of the portfolio constructed to depart materially from the risk 
profile of the benchmark. This tracking error multifactor risk approach to 
common stock and fixed-income portfolio construction will be explained 
and illustrated in Chapters 19 and 21, respectively. 

At the other extreme of the full mean-variance approach to portfolio 
management is the assembling of a portfolio in which investors ignore all 
of the inputs—expected returns, variance of asset returns, and covariance 
of asset returns—and use their intuition to construct a portfolio. We refer 
to this approach as the “seat-of-the-pants approach” to portfolio con-
struction. In a rising stock market, for example, this approach is too often 
confused with investment skill. It is not an approach we recommend. 

Step 5: Measuring and Evaluating Performance 
The measurement and evaluation of investment performance is the last step 
in the investment management process. Actually, it is misleading to say that 
it is the last step since the investment management process is an ongoing 
process. This step involves measuring the performance of the portfolio and 
then evaluating that performance relative to some benchmark. 

Although a portfolio manager may have performed better than a 
benchmark, this does not necessarily mean that the portfolio manager 
satisfied the client’s investment objective. For example, suppose that a 
financial institution established as its investment objective the maximi-
zation of portfolio return and allocated 75% of its funds to common 
stock and the balance to bonds. Suppose further that the manager 
responsible for the common stock portfolio realized a 1-year return that 
was 150 basis points greater than the benchmark.4 Assuming that the 
risk of the portfolio was similar to that of the benchmark, it would 
appear that the manager outperformed the benchmark. However, sup-
pose that in spite of this performance, the financial institution cannot 

4 A basis point is equal to 0.0001 or 0.01%. This means that 1% is equal to 100 basis 
points. 
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meet its liabilities. Then the failure was in establishing the investment 
objectives and setting policy, not the failure of the manager. 

FINANCIAL ENGINEERING IN HISTORICAL PERSPECTIVE 

In its modern sense, financial engineering is the design (or engineering) 
of contracts and portfolios of contracts that result in predetermined 
cash flows contingent to different events. Broadly speaking, financial 
engineering is used to manage investments and risk. The objective is the 
transfer of risk from one entity to another via appropriate contracts. 
Though the aggregate risk is a quantity that cannot be altered, risk can 
be transferred if there is a willing counterparty. Just why and how risk 
transfer is possible will be discussed in Chapter 23 on risk management. 

Financial engineering came to the forefront of finance in the 1980s, 
with the broad diffusion of derivative instruments. However the concept 
and practice of financial engineering are quite old. Evidence of the use 
of sophisticated cross-border instruments of credit and payment dating 
from the time of the First Crusade (1095–1099) has come down to us 
from the letters of Jewish merchants in Cairo. The notion of the diversi-
fication of risk (central to modern risk management) and the quantifica-
tion of insurance risk (a requisite for pricing insurance policies) were 
already understood, at least in practical terms, in the 14th century. The 
rich epistolary of Francesco Datini, a 14th century merchant, banker 
and insurer from Prato (Tuscany, Italy), contains detailed instructions to 
his agents on how to diversify risk and insure cargo.5 It also gives us an 
idea of insurance costs: Datini charged 3.5% to insure a cargo of wool 
from Malaga to Pisa and 8% to insure a cargo of malmsey (sweet wine) 
from Genoa to Southampton, England. These, according to one of 
Datini’s agents, were low rates: He considered 12–15% a fair insurance 
premium for similar cargo. 

What is specific to modern financial engineering is the quantitative 
management of uncertainty. Both the pricing of contracts and the opti-
mization of investments require some basic capabilities of statistical 
modeling of financial contingencies. It is the size, diversity, and effi-
ciency of modern competitive markets that makes the use of modeling 
imperative. 

5 Datini wrote the richest medieval epistolary that has come down to us. It includes 
500 ledgers and account books, 300 deeds of partnership, 400 insurance policies, 
and 120,000 letters. For a fascinating portrait of the business and private life of a 
medieval Italian merchant, see Iris Onigo, The Merchant of Prato (London: Penguin 
Books, 1963). 
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THE ROLE OF INFORMATION TECHNOLOGY


Advances in information technology are behind the widespread adop-
tion of modeling in finance. The most important advance has been the 
enormous increase in the amount of computing power, concurrent with 
a steep fall in prices. Government agencies have long been using com-
puters for economic modeling, but private firms found it economically 
justifiable only as of the 1980s. Back then, economic modeling was con-
sidered one of the “Grand Challenges” of computational science.6 

In the late 1980s, firms such as Merrill Lynch began to acquire super-
computers to perform derivative pricing computations. The overall cost 
of these supercomputing facilities, in the range of several million dollars, 
limited their diffusion to the largest firms. Today, computational facilities 
ten times more powerful cost only of a few thousand dollars. 

To place today’s computing power in perspective, consider that a 
1990 run-of-the-mill Cray supercomputer cost several million U.S. dol-
lars and had a clock cycle of 4 nanoseconds (i.e., 4 billionths of a sec-
ond or 250 million cycles per second, notated as 250 MHz). Today’s fast 
laptop computers are 10 times faster with a clock cycle of 2.5 GHz and, 
at a few thousand dollars, cost only a fraction of the price. Supercom-
puter performance has itself improved significantly, with top computing 
speed in the range of several teraflops7 compared to the several mega-
flops of a Cray supercomputer in the 1990s. In the space of 15 years, 
sheer performance has increased 1,000 times while the price-perfor-
mance ratio has decreased by a factor of 10,000. Storage capacity has 
followed similar dynamics. 

The diffusion of low-cost high-performance computers has allowed 
the broad use of numerical methods. Computations that were once per-
formed by supercomputers in air-conditioned rooms are now routinely 

6 Kenneth Wilson, “Grand Challenges to Computational Science,” Future Genera-
tion Computer Systems 5 (1989), p. 171. The term “Grand Challenges” was coined 
by Kenneth Wilson, recipient of the 1982 Nobel Prize in Physics, and later adopted 
by the U.S. Department Of Energy (DOE) in its High Performance Communications 
and Computing Program which included economic modeling among the grand chal-
lenges. Wilson was awarded the Nobel Prize in Physics for discoveries he made in 
understanding how bulk matter undergoes “phase transition,” i.e., sudden and pro-
found structural changes. The mathematical techniques he introduced—the renor-
malization group theory—is one of the tools used to understand economic phase 
transitions. Wilson is an advocate of computational science as the “third way” of do-
ing science, after theory and experiment. 
7 A flops (Floating Point Operations Per Second) is a measure of computational 
speed. A Teraflop computer is a computer able to perform a trillion floating point 
operations per second. 
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performed on desk-top machines. This has changed the landscape of 
financial modeling. The importance of finding closed-form solutions and 
the consequent search for simple models has been dramatically reduced. 
Computationally-intensive methods such as Monte Carlo simulations 
and the numerical solution of differential equations are now widely 
used. As a consequence, it has become feasible to represent prices and 
returns with relatively complex models. Nonnormal probability distri-
butions have become commonplace in many sectors of financial model-
ing. It is fair to say that the key limitation of financial econometrics is 
now the size of available data samples or training sets, not the computa-
tions; it is the data that limits the complexity of estimates. 

Mathematical modeling has also undergone major changes. Tech-
niques such as equivalent martingale methods are being used in deriva-
tive pricing (Chapter 15) and cointegration (Chapter 11), the theory of 
fat-tailed processes (Chapter 13), and state-space modeling (including 
ARCH/GARCH and stochastic volatility models) are being used in 
econometrics (Chapter 11). 

Powerful specialized mathematical languages and vast statistical 
software libraries have been developed. The ability to program sequences 
of statistical operations within a single programming language has been 
a big step forward. Software firms such as Mathematica and Math-
works, and major suppliers of statistical tools such as SAS, have created 
simple computer languages for the programming of complex sequences 
of statistical operations. This ability is key to financial econometrics 
which entails the analysis of large portfolios.8 

Presently only large or specialized firms write complex applications 
from scratch; this is typically done to solve specific problems, often in 
the derivatives area. The majority of financial modelers make use of 
high-level software programming tools and statistical libraries. It is dif-
ficult to overestimate the advantage brought by these software tools; 
they cut development time and costs by orders of magnitude. 

In addition, there is a wide range of off-the-shelf financial applica-
tions that can be used directly by operators who have a general under-
standing of the problem but no advanced statistical or mathematical 
training. For example, powerful complete applications from firms such as 
Barra and component applications from firms such as FEA make sophisti-
cated analytical methods available to a large number of professionals. 

Data have, however, remained a significant expense. The diffusion 
of electronic transactions has made available large amounts of data, 

8 A number of highly sophisticated statistical packages are available to economists. 
These packages, however, do not serve the needs of the financial econometrician who 
has to analyze a large number of time series. 
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including high-frequency data (HFD) which gives us information at the 
transaction level. As a result, in budgeting for financial modeling, data 
have become an important factor in deciding whether or not to under-
take a new modeling effort. 

A lot of data are now available free on the Internet. If the required 
granularity of data is not high, these data allow one to study the viabil-
ity of models and to perform rough tuning. However, real-life applica-
tions, especially applications based on finely grained data, require data 
streams of a higher quality than those typically available free on the 
Internet. 

INDUSTRY’S EVALUATION OF MODELING TOOLS 

A recent study by The Intertek Group9 tried to assess how the use of 
financial modeling in asset management had changed over the highly 
volatile period from 2000 to 2002. Participants in the study included 44 
heads of asset management firms in Europe and North America; more 
than half were from the biggest firms in their home markets. 

The study found that the role of quantitative methods in the invest-
ment decision-making process had increased at almost 75% of the firms 
while it had remained stable at about 15% of the firms; five reported 
that their process was already essentially quantitative. Demand pull and 
management push were among the reasons cited for the growing role of 
models. The head of risk management and product control at an inter-
national firm said, “There is genuinely a portfolio manager demand pull 
plus a top-down management push for a more systematic, robust pro-
cess.” Many reported that fund managers have become more eager con-
sumers of modeling. “Fund managers now perceive that they gain 
increased insights from the models,” the head of quantitative research at 
a large northern European firm commented. 

In another finding, over one half of the participants evaluated that 
models had performed better in 2002 than two years ago; some 20% 
evaluated 2002 model performance to be stable with respect to the previ-
ous two years while another 20% considered that performance worsened. 
Performance was widely considered to be model-dependent. Among 
those that believed that model performance had improved, many attrib-
uted better performance to a better understanding of models and the 
modeling process at asset management firms. Some firms reported hav-

9 Caroline Jonas and Sergio Focardi, Trends in Quantitative Methods in Asset Man-
agement, 2003, The Intertek Group, Paris, 2003. 
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ing in place a formal process in which management was systematically 
trained in modeling and mathematical methods. 

The search for a silver bullet typical of the early days of “rocket sci-
ence” in finance has passed; modeling is now widely perceived as an 
approximation, with the various models shedding different light on the 
same phenomena. Just under 60% of the participants in the 2002 study 
indicated having made significant changes to their modeling approach 
from 2000 to 2002; for many others, it was a question of continuously 
recalibrating and adapting the models to the changing environment.10 

Much of the recent attention on quantitative methods has been 
focused on risk management—a relatively new function at asset man-
agement firms. More than 80% of the firms participating in the Intertek 
study reported a significant evolution of the role of risk management 
from 2000 to 2002. Some of the trends revealed by the study included 
daily or real-time risk measurement and the splitting of the role of risk 
management into two separate functions, one a support function to the 
fund managers, the other a central control function reporting to top 
management. These issues will be discussed in Chapter 23. 

In another area which is a measure of an increasingly systematic 
process, more than 60% of the firms in the 2002 study reported having 
formalized procedures for integrating quantitative and qualitative input, 
though half mentioned that the process had not gone very far and 30% 
reported no formalization at all. One way the integration is being han-
dled is through management structures for decision-making. A source at 
a large player in the bond market said, “We have regularly scheduled 
meetings where views are expressed. There is a good combination of 
views and numbers crunched. The mix between quantitative and quali-
tative input will depend on the particular situation. For example, if 
models are showing a 4 or 5 standard deviation event, fundamental 
analysis would have to be very strong before overriding the models.” 

Many firms have cast integration in a quantitative framework. The 
head of research at a large European firm said, “One year ago, the inte-
gration was totally fuzzy, but during the past year we have made the 
integration extremely rigorous. All managers now need to justify their 
statements and methods in a quantitative sense.” Some firms are priori-
tizing the inputs from various sources. A business manager at a Swiss 
firm said, “We have recently put in place a scoring framework which 
pulls together the gut feeling of the fund manager and the quantitative 

10 Financial models are typically statistical models that have to be estimated and cal-
ibrated. The estimation and calibration of models will be discussed in Chapter 23. 
The above remarks reflect the fact that financial models are not “laws of nature” but 
relationships valid only for a limited span of time. 
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models. We will be taking this further. The objective is to more tightly 
link the various inputs, be they judgmental or model results.” 

Some firms see the problem as one of model performance evalua-
tion. “The integration process is becoming more and more institutional-
ized,” said the head of quantitative research at a big northern European 
firm. “Models are weighted in terms of their performance: if a model 
has not performed so well, its output is less influential than that of mod-
els which have performed better.” 

In some cases, it is the portfolio manager himself who assigns weights 
to the various inputs. A source at a large firm active in the bond markets 
said, “Portfolio managers weight the relative importance of quantitative 
and qualitative input in function of the security. The more complex the 
security, the greater the quantitative weighting; the more macro, long-
term, the less the quantitative input counts: Models don’t really help 
here.” Other firms have a fixed percentage, such as 50/50, as corporate 
policy. Outside of quantitatively run funds, the feeling is that there is a 
weight limit in the range of 60–80% for quantitative input. “There will 
always be a technical and a tactical element,” said one source. 

Virtually all firms reported a partial automation in the handling of 
qualitative information, with some 30% planning to add functionality over 
and above the filtering and search functionality now typically provided by 
the suppliers of analyst research, consensus data and news. About 25% of 
the participants said that they would further automate the handling of 
information in 2003. The automatic summarization and analysis of news 
and other information available electronically was the next step for several 
firms that had already largely automated the investment process. 

INTEGRATING QUALITATIVE AND QUANTITATIVE INFORMATION 

Textual information has remained largely outside the domain of quanti-
tative modeling, having long been considered the domain of judgment. 
This is now changing as financial firms begin to tackle the problem of 
what is commonly called information overload; advances in computer 
technology are again behind the change.11 

Reuters publishes the equivalent of three bibles of (mostly financial) 
news daily; it is estimated that five new research documents come out of 
Wall Street every minute; asset managers at medium-sized firms report 
receiving up to 1,000 e-mails daily and work with as many as five 

11 Caroline Jonas and Sergio Focardi, Leveraging Unstructured Data in Investment 
Management, The Intertek Group, Paris, 2002. 
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screens on their desk. Conversely, there is also a lack of “digested” 
information. It has been estimated that only one third of the roughly 
10,000 U.S. public companies are covered by meaningful Wall Street 
research; there are thousands of companies quoted on the U.S. 
exchanges with no Wall Street research at all. It is unlikely the situation 
is better relative to the tens of thousands of firms quoted on other 
exchanges throughout the world. Yet increasingly companies are pro-
viding information, including press releases and financial results, on 
their Web sites, adding to the more than 3.3 billion pages on the World 
Wide Web as of mid-2003. 

Such unstructured (textual) information is progressively being 
transformed into self-describing, semistructured information that can be 
automatically categorized and searched by computers. A number of 
developments are making this possible. These include:

 ■ The development of XML (eXtensible Markup Language) standards 
for tagging textual data. This is taking us from free text search to que-
ries on semi-structured data.

 ■ The development of RDF (Resource Description Framework) stan-
dards for appending metadata. This provides a description of the 
content of documents.

 ■ The development of algorithms and software that generate taxonomies 
and perform automatic categorization and indexation.

 ■ The development of database query functions with a high level of 
expressive power.

 ■ The development of high-level text mining functionality that allows 
“discovery.” 

The emergence of standards for the handling of “meaning” is a 
major development. It implies that unstructured textual information, 
which some estimates put at 80% of all content stored in computers, 
will be largely replaced by semistructured information ready for 
machine handling at a semantic level. Today’s standard structured data-
bases store data in a prespecified format so that the position of all ele-
mentary information is known. For example, in a trading transaction, 
the date, the amount exchanged, the names of the stocks traded and so 
on are all stored in predefined fields. However, textual data such as 
news or research reports, do not allow such a strict structuring. To 
enable the computer to handle such information, a descriptive metafile 
is appended to each unstructured file. The descriptive metafile is a struc-
tured file that contains the description of the key information stored in 
the unstructured data. The result is a semistructured database made up 
of unstructured data plus descriptive metafiles. 
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Industry-specific and application-specific standards are being devel-
oped around the general-purpose XML. At the time of this writing, 
there are numerous initiatives established with the objective of defining 
XML standards for applications in finance, from time series to analyst 
and corporate reports and news. While it is not yet clear which of the 
competing efforts will emerge as the de facto standards, attempts are 
now being made to coordinate standardization efforts, eventually 
adopting the ISO 15022 central data repository as an integration point. 

Technology for handling unstructured data has already made its 
way into the industry. Factiva, a Dow Jones-Reuters company, uses 
commercially available text mining software to automatically code and 
categorize more than 400,000 news items daily, in real time (prior to 
adopting the software, they manually coded and categorized some 
50,000 news articles daily). Users can search the Factiva database which 
covers 118 countries and includes some 8,000 publications, and more 
than 30,000 company reports with simple intuitive queries expressed in 
a language close to the natural language. Suppliers such as Multex use 
text mining technology in their Web-based research portals for clients 
on the buy and sell sides. Such services typically offer classification, 
indexation, tagging, filtering, navigation, and search. 

These technologies are helping to organize research flows. They 
allow to automatically aggregate, sort, and simplify information and 
provide the tools to compare and analyze the information. In serving to 
pull together material from myriad sources, these technologies will not 
only form the basis of an internal knowledge management system but 
allow to better structure the whole investment management process. 
Ultimately, the goal is to integrate data and text mining in applications 
such as fundamental research and event analysis, linking news, and 
financial time series. 

PRINCIPLES FOR ENGINEERING A SUITE OF MODELS 

Creating a suite of models to satisfy the needs of a financial firm is engi-
neering in full earnest. It begins with a clear statement of the objectives. 
In the case of financial modeling, the objective is identified by the type of 
decision-making process that a firm wants to implement. The engineering 
of a suite of financial models requires that the process on which decisions 
are made is fully specified and that the appropriate information is sup-
plied at every step. This statement is not as banal as it might seem. 

We have now reached the stage where, in some markets, financial 
decision–making can be completely automated through optimizers. As we 
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will see in the following chapters, one can define models able to construct 
a conditional probability distribution of returns. An optimizer will then 
translate the forecast into a tradable portfolio. The manager becomes a 
kind of high-level supervisor of an otherwise automated process. 

However, not all financial decision-making applications are, or can 
be, fully automated. In many cases, it is the human operator who makes 
the decision, with models supplying the information needed to arrive at 
the decision. Building an effective suite of financial models requires 
explicit decisions as to (1) what level of automation is feasible and 
desirable and (2) what information or knowledge is required. 

The integration of different models and of qualitative and quantita-
tive information is a fundamental need. This calls for integration of dif-
ferent statistical measures and points of view. For example, an asset 
management firm might want to complement a portfolio optimization 
methodology based on Gaussian forecasting with a risk management 
process based on Extreme Value Theory (see Chapter 13). The two pro-
cesses offer complementary views. In many cases, however, different 
methodologies give different results though they work on similar princi-
ples and use the same data. In these cases, integration is delicate and 
might run against statistical principles. 

In deciding which modeling efforts to invest in, many firms have in 
place a sophisticated evaluation system. “We look at the return on 
investment [ROI] of a model: How much will it cost to buy the data 
necessary to run the model? Then we ask ourselves: What are the factors 
that are remunerated? Our decision on what data to buy and where to 
spend on models is made in function of what indicators are the most 
‘remunerated,’” commented the head of quantitative management at a 
major European asset management firm. 

SUMMARY

 ■ The investment management process is becoming increasingly struc-
tured; the objective is a well-defined, repeatable investment process.

 ■ This requires measurable objectives and measurable results, financial 
engineering, risk control, feedback processes and, increasingly, knowl-
edge management.

 ■ In general, the five steps in the investment management process are set-
ting investment objectives, establishing an investment policy, selecting 
an investment strategy, selecting the specific assets, and measuring and 
evaluating investment performance. 
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■ Changes in the investment management business are being driven by 
the explosion in the universe of investable assets brought about by glo-
balization, investors, and especially institutional investors and their 
consultants, pressure from regulators and the media, and the sheer size 
of the markets.

 ■ Given the size, diversity, and efficiency of modern markets, a more dis-
ciplined process can be achieved only in a quantitative framework.

 ■ Key to a quantitative framework is the measurement and management 
of uncertainty (i.e., risk) and financial engineering.

 ■ Modeling is the tool to achieve these objectives; advances in informa-
tion technology are the enabler.

 ■ Unstructured textual information is progressively being transformed 
into self-describing, semistructured information, allowing a better 
structuring of the research process.

 ■ After nearly two decades of experience with quantitative methods, 
market participants now more clearly perceive the benefits and the lim-
its of modeling; given today’s technology and markets, the need to bet-
ter integrate qualitative and quantitative information is clearly felt. 
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CHAPTER 2 
Overview of Financial Markets, 

Financial Assets, and Market 
Participants 

n a market economy, the allocation of economic resources is driven by 
the outcome of many private decisions. Prices are the signals that 

direct economic resources to their best use. The types of markets in an 
economy can be divided into (1) the market for products (manufactured 
goods and services), or the product market; and (2) the market for the 
factors of production (labor and capital), or the factor market. Our pri-
mary application of the mathematical techniques presented in this book 
is to one part of the factor market, the market for financial assets, or, 
more simply, the financial market. In this chapter we review the basic 
characteristics and functions of financial assets and financial markets, 
the major players in the financial market, and the major financial assets 
(common stock, bonds, and derivatives). 

FINANCIAL ASSETS 

An asset is any possession that has value in an exchange. Assets can be 
classified as tangible or intangible. The value of a tangible asset depends 
on particular physical properties—examples include buildings, land, or 
machinery. Tangible assets may be classified further into reproducible 
assets such as machinery, or nonreproducible assets such as land, a 
mine, or a work of art. Intangible assets, by contrast, represent legal 

21 



2-Financial Markets  Page 22  Wednesday, February 4, 2004  1:15 PM

22 The Mathematics of Financial Modeling and Investment Management 

claims to some future benefit. Their value bears no relation to the form, 
physical or otherwise, in which the claims are recorded. 

Financial assets (also referred to as financial instruments, or securi-
ties) are intangible assets. For these instruments, the typical future bene-
fit comes in the form of a claim to future cash. The entity that agrees to 
make future cash payments is called the issuer of the financial asset; the 
owner of the financial asset is referred to as the investor. 

The claims of the holder of a financial asset may be either a fixed 
dollar amount or a varying, or residual, amount. In the former case, the 
financial asset is referred to as a debt instrument. Bonds and bank loans 
are examples of debt instruments. An equity claim (also called a residual 
claim) obligates the issuer of the financial asset to pay the holder an 
amount based on earnings, if any, after holders of debt instruments have 
been paid. Common stock is an example of an equity claim. A partner-
ship share in a business is another example. Some financial assets fall 
into both categories. Preferred stock, for example, represents an equity 
claim that entitles the investor to receive a fixed dollar amount. This 
payment is contingent, however, due only after payments to debt instru-
ment holders are made. Another instrument is convertible bonds, which 
allow the investor to convert debt into equity under certain circum-
stances. Both debt and preferred stock that pays a fixed dollar amount 
are called fixed income instruments. 

Financial assets serve two principal economic functions. First, finan-
cial assets transfer funds from those parties who have surplus funds to 
invest to those who need funds to invest in tangible assets. As their sec-
ond function, they transfer funds in such a way as to redistribute the 
unavoidable risk associated with the cash flow generated by tangible 
assets among those seeking and those providing the funds. However, the 
claims held by the final wealth holders generally differ from the liabili-
ties issued by the final demanders of funds because of the activity of 
entities operating in financial markets, called financial intermediaries, 
who seek to transform the final liabilities into different financial assets 
preferred by the public. We discuss financial intermediaries later in this 
chapter. 

Financial assets possess the following properties that determine or 
influence their attractiveness to different classes of investors: (1) money-
ness; (2) divisibility and denomination; (3) reversibility; (4) term to 
maturity; (5) liquidity; (6) convertibility; (7) currency; (8) cash flow and 
return predictability; and (9) tax status.1 

1 Some of these properties are taken from James Tobin, “Properties of Assets,” un-
dated manuscript, Yale University. 
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Some financial assets act as a medium of exchange or in settlement 
of transactions. These assets are called money. Other financial assets, 
although not money, closely approximate money in that they can be 
transformed into money at little cost, delay, or risk. Moneyness clearly 
offers a desirable property for investors. Divisibility and denomination 
divisibility relates to the minimum size at which a financial asset can be 
liquidated and exchanged for money. The smaller the size, the more the 
financial asset is divisible. 

Reversibility, also called round-trip cost, refers to the cost of invest-
ing in a financial asset and then getting out of it and back into cash 
again. For financial assets traded in organized markets or with “market 
makers,” the most relevant component of round-trip cost is the so-
called bid-ask spread, to which might be added commissions and the 
time and cost, if any, of delivering the asset. The bid-ask spread consists 
of the difference between the price at which a market maker is willing to 
sell a financial asset (i.e., the price it is asking) and the price at which a 
market maker is willing to buy the financial asset (i.e., the price it is bid-
ding). The spread charged by a market maker varies sharply from one 
financial asset to another, reflecting primarily the amount of risk the 
market maker assumes by “making” a market. This market-making risk 
can be related to two main forces. 

One is the variability of the price as measured, say, by some measure 
of dispersion of the relative price over time. The greater the variability, 
the greater the probability of the market maker incurring a loss in excess 
of a stated bound between the time of buying and reselling the financial 
asset. The variability of prices differs widely across financial assets. The 
second determining factor of the bid-ask spread charged by a market 
maker is what is commonly referred to as the thickness of the market, 
which is essentially the prevailing rate at which buying and selling orders 
reach the market maker (i.e., the frequency of transactions). A “thin 
market” sees few trades on a regular or continuing basis. Clearly, the 
greater the frequency of orders coming into the market for the financial 
asset (referred to as the “order flow”), the shorter the time that the finan-
cial asset must be held in the market maker’s inventory, and hence the 
smaller the probability of an unfavorable price movement while held. 
Thickness also varies from market to market. A low round-trip cost is 
clearly a desirable property of a financial asset, and as a result thickness 
itself is a valuable property. This attribute explains the potential advan-
tage of large over smaller markets (economies of scale), and a market’s 
endeavor to standardize the instruments offered to the public. 

The term to maturity, or simply maturity, is the length of the inter-
val until the date when the instrument is scheduled to make its final pay-
ment, or the owner is entitled to demand liquidation. Maturity is an 
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important characteristic of financial assets such as debt instruments. 
Equities set no maturity and are thus a form of perpetual instrument. 
Liquidity serves an important and widely used function, although no 
uniformly accepted definition of liquidity is presently available. A useful 
way to think of liquidity and illiquidity, proposed by James Tobin, is in 
terms of how much sellers stand to lose if they wish to sell immediately 
against engaging in a costly and time consuming search.2 Liquidity may 
depend not only on the financial asset but also on the quantity one 
wishes to sell (or buy). Even though a small quantity may be quite liq-
uid, a large lot may run into illiquidity problems. Note that liquidity 
again closely relates to whether a market is thick or thin. Thinness 
always increases the round-trip cost, even of a liquid financial asset. But 
beyond some point it becomes an obstacle to the formation of a market, 
and directly affects the illiquidity of the financial asset. 

An important property of some financial assets is their convertibility 
into other financial assets. In some cases, the conversion takes place 
within one class of financial assets, as when a bond is converted into 
another bond. In other situations, the conversion spans classes. For 
example, with a corporate convertible bond the bondholder can change 
it into equity shares. Most financial assets are denominated in one cur-
rency, such as U.S. dollars or yen or euros, and investors must choose 
them with that feature in mind. Some issuers have issued dual-currency 
securities with certain cash flows paid in one currency and other cash 
flows in another currency. 

The return that an investor will realize by holding a financial asset 
depends on the cash flow expected to be received, which includes divi-
dend payments on stock and interest payments on debt instruments, as 
well as the repayment of principal for a debt instrument and the 
expected sale price of a stock. Therefore, the predictability of the 
expected return depends on the predictability of the cash flow. Return 
predictability, a basic property of financial assets, provides the major 
determinant of their value. Assuming investors are risk averse, as we 
will see in later chapters, the riskiness of an asset can be equated with 
the uncertainty or unpredictability of its return. 

An important feature of any financial asset is its tax status. Govern-
mental codes for taxing the income from the ownership or sale of finan-
cial assets vary widely if not wildly. Tax rates differ from year to year, 
country to country, and even among municipalities or provinces within 
a country. Moreover, tax rates may differ from financial asset to finan-
cial asset, depending on the type of issuer, the length of time the asset is 
held, the nature of the owner, and so on. 

2 Tobin, “Properties of Assets.” 
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FINANCIAL MARKETS


Financial assets are traded in a financial market. Below we discuss how 
financial markets can be classified and the functions of financial mar-
kets. 

Classification of Financial Markets 
There are five ways that one can classify financial markets: (1) nature of 
the claim, (2) maturity of the claims, (3) new versus seasoned claims, (4) 
cash versus derivative instruments, and (5) organizational structure of 
the market. 

The claims traded in a financial market may be either for a fixed 
dollar amount or a residual amount and financial markets can be classi-
fied according to the nature of the claim. As explained earlier, the 
former financial assets are referred to as debt instruments, and the 
financial market in which such instruments are traded is referred to as 
the debt market. The latter financial assets are called equity instruments 
and the financial market where such instruments are traded is referred 
to as the equity market or stock market. Preferred stock represents an 
equity claim that entitles the investor to receive a fixed dollar amount. 
Consequently, preferred stock has in common characteristics of instru-
ments classified as part of the debt market and the equity market. Gen-
erally, debt instruments and preferred stock are classified as part of the 
fixed income market. 

A second way to classify financial markets is by the maturity of the 
claims. For example, a financial market for short-term financial assets is 
called the money market, and the one for longer maturity financial 
assets is called the capital market. The traditional cutoff between short 
term and long term is one year. That is, a financial asset with a maturity 
of one year or less is considered short term and therefore part of the 
money market. A financial asset with a maturity of more than one year 
is part of the capital market. Thus, the debt market can be divided into 
debt instruments that are part of the money market, and those that are 
part of the capital market, depending on the number of years to matu-
rity. Because equity instruments are generally perpetual, a third way to 
classify financial markets is by whether the financial claims are newly 
issued. When an issuer sells a new financial asset to the public, it is said 
to “issue” the financial asset. The market for newly issued financial 
assets is called the primary market. After a certain period of time, the 
financial asset is bought and sold (i.e., exchanged or traded) among 
investors. The market where this activity takes place is referred to as the 
secondary market. 
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Some financial assets are contracts that either obligate the investor 
to buy or sell another financial asset or grant the investor the choice to 
buy or sell another financial asset. Such contracts derive their value 
from the price of the financial asset that may be bought or sold. These 
contracts are called derivative instruments and the markets in which 
they trade are referred to as derivative markets. The array of derivative 
instruments includes options contracts, futures contracts, forward con-
tracts, swap agreements, and cap and floor agreements. 

Although the existence of a financial market is not a necessary con-
dition for the creation and exchange of a financial asset, in most econo-
mies financial assets are created and subsequently traded in some type of 
organized financial market structure. A financial market can be classi-
fied by its organizational structure. These organizational structures can 
be classified as auction markets and over-the-counter markets. We 
describe each type later in this chapter. 

Economic Functions of Financial Markets 
The two primary economic functions of financial assets were already dis-
cussed. Financial markets provide three additional economic functions. 

First, the interactions of buyers and sellers in a financial market 
determine the price of the traded asset; or, equivalently, the required 
return on a financial asset is determined. The inducement for firms to 
acquire funds depends on the required return that investors demand, and 
this feature of financial markets signals how the funds in the economy 
should be allocated among financial assets. It is called the price discovery 
process. Whether these signals are correct is an issue that we discuss 
when we examine the question of the efficiency of financial markets. 

Second, financial markets provide a mechanism for an investor to 
sell a financial asset. This feature offers liquidity in financial markets, an 
attractive characteristic when circumstances either force or motivate an 
investor to sell. In the absence of liquidity, the owner must hold a debt 
instrument until it matures and an equity instrument until the company 
either voluntarily or involuntarily liquidates. Although all financial 
markets provide some form of liquidity, the degree of liquidity is one of 
the factors that differentiates various markets. 

The third economic function of a financial market reduces the 
search and information costs of transacting. Search costs represent 
explicit costs, such as the money spent to advertise the desire to sell or 
purchase a financial asset, and implicit costs, such as the value of time 
spent in locating a counterparty. The presence of some form of orga-
nized financial market reduces search costs. Information costs are 
incurred in assessing the investment merits of a financial asset, that is, 
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the amount and the likelihood of the cash flow expected to be gener-
ated. In an efficient market, prices reflect the aggregate information col-
lected by all market participants. 

Secondary Markets 
The secondary market is where already-issued financial assets are 
traded. The key distinction between a primary market and a secondary 
market is that in the secondary market the issuer of the asset does not 
receive funds from the buyer. Rather, the existing issue changes hands in 
the secondary market, and funds flow from the buyer of the asset to the 
seller. Below we explain the various features of secondary markets. 
These features are common to any type of financial instrument traded. 

It is in the secondary market where an issuer of securities, whether 
the issuer is a corporation or a governmental unit, may be provided 
with regular information about the value of the security. The periodic 
trading of the asset reveals to the issuer the consensus price that the 
asset commands in an open market. Thus, firms can discover what value 
investors attach to their stocks, and firms and noncorporate issuers can 
observe the prices of their bonds and the implied interest rates investors 
expect and demand from them. Such information helps issuers assess 
how well they are using the funds acquired from earlier primary market 
activities, and it also indicates how receptive investors would be to new 
offerings. 

The other service a secondary market offers issuers is that it pro-
vides the opportunity for the original buyers of the asset to reverse their 
investment by selling it for cash. Unless investors are confident that they 
can shift from one financial asset to another as they may deem neces-
sary, they would naturally be reluctant to buy any financial asset. Such 
reluctance would harm potential issuers in one of two ways: either issu-
ers would be unable to sell new securities at all or they would have to 
pay a high rate of return, as investors would demand greater compensa-
tion for the expected illiquidity of the securities. 

Investors in financial assets receive several benefits from a secondary 
market. Such a market obviously offers them liquidity for their assets as 
well as information about the assets’ fair or consensus values. Further, 
secondary markets bring together many interested parties and so can 
reduce the costs of searching for likely buyers and sellers of assets. 
Moreover, by accommodating many trades, secondary markets keep the 
cost of transactions low. By keeping the costs of both searching and 
transacting low, secondary markets encourage investors to purchase 
financial assets. 
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Perfect Market 
In order to explain the characteristics of secondary markets, we will first 
describe a “perfect market” for a financial asset. Then we can show how 
common occurrences in real markets keep them from being theoretically 
perfect. 

In general, a perfect market results when the number of buyers and 
sellers is sufficiently large, and all participants are small enough relative 
to the market so that no individual market agent can influence the com-
modity’s price. Consequently, all buyers and sellers are price takers, and 
the market price is determined where there is equality of supply and 
demand. This condition is more likely to be satisfied if the commodity 
traded is fairly homogeneous (for example, corn or wheat). 

There is more to a perfect market than market agents being price 
takers. It is also required that there are no transaction costs or impedi-
ments that interfere with the supply and demand of the commodity. 
Economists refer to these various costs and impediments as “frictions.” 
The costs associated with frictions generally result in buyers paying 
more than in the absence of frictions, and/or sellers receiving less. 

In the case of financial markets, frictions would include: 

■ Commissions charged by brokers.
 ■ Bid-ask spreads charged by dealers.
 ■ Order handling and clearance charges.
 ■ Taxes (notably on capital gains) and government-imposed transfer fees.
 ■ Costs of acquiring information about the financial asset.
 ■ Trading restrictions, such as exchange-imposed restrictions on the size 

of a position in the financial asset that a buyer or seller may take.
 ■ Restrictions on market makers.
 ■ Halts to trading that may be imposed by regulators where the financial 

asset is traded. 

Role of Brokers and Dealers in Real Markets 
Common occurrences in real markets keep them from being theoreti-
cally perfect. Because of these occurrences, brokers and dealers are nec-
essary to the smooth functioning of a secondary market. 

One way in which a real market might not meet all the exacting 
standards of a theoretically perfect market is that many investors may 
not be present at all times in the marketplace. Further, a typical investor 
may not be skilled in the art of the deal or completely informed about 
every facet of trading in the asset. Clearly, most investors in even 
smoothly functioning markets need professional assistance. Investors 
need someone to receive and keep track of their orders for buying or 
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selling, to find other parties wishing to sell or buy, to negotiate for good 
prices, to serve as a focal point for trading, and to execute the orders. 
The broker performs all of these functions. Obviously, these functions 
are more important for the complicated trades, such as the small or 
large trades, than for simple transactions or those of typical size. 

A broker is an entity that acts on behalf of an investor who wishes to 
execute orders. In economic and legal terms, a broker is said to be an 
“agent” of the investor. It is important to realize that the brokerage activ-
ity does not require the broker to buy and hold in inventory or sell from 
inventory the financial asset that is the subject of the trade. (Such activity 
is termed “taking a position” in the asset, and it is the role of the dealer.) 
Rather, the broker receives, transmits, and executes investors’ orders with 
other investors. The broker receives an explicit commission for these ser-
vices, and the commission is a “transaction cost” of the capital markets. 

A real market might also differ from the perfect market because of 
the possibly frequent event of a temporary imbalance in the number of 
buy and sell orders that investors may place for any security at any one 
time. Such unmatched or unbalanced flow causes two problems. First, 
the security’s price may change abruptly even if there has been no shift 
in either supply or demand for the security. Second, buyers may have to 
pay higher than market-clearing prices (or sellers accept lower ones) if 
they want to make their trade immediately. 

For example, suppose the consensus price for ABC security is $50, 
which was determined in several recent trades. Also suppose that a flow 
of buy orders from investors who suddenly have cash arrives in the mar-
ket, but there is no accompanying supply of sell orders. This temporary 
imbalance could be sufficient to push the price of ABC security to, say, 
$55. Thus, the price has changed sharply even though there has been no 
change in any fundamental financial aspect of the issuer. Buyers who 
want to buy immediately must pay $55 rather than $50, and this differ-
ence can be viewed as the price of “immediacy.” By immediacy, we 
mean that buyers and sellers do not want to wait for the arrival of suffi-
cient orders on the other side of the trade, which would bring the price 
closer to the level of recent transactions. 

The fact of imbalances explains the need for the dealer or market 
maker, who stands ready and willing to buy a financial asset for its own 
account (add to an inventory of the security) or sell from its own 
account (reduce the inventory of the security). At a given time, dealers 
are willing to buy a security at a price (the bid price) that is less than 
what they are willing to sell the same security for (the ask price). 

In the 1960s, economists George Stigler3 and Harold Demsetz4 ana-
lyzed the role of dealers in securities markets. They viewed dealers as the 
suppliers of immediacy—the ability to trade promptly—to the market. 
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The bid-ask spread can be viewed in turn as the price charged by dealers 
for supplying immediacy, together with short-run price stability (continu-
ity or smoothness) in the presence of short-term order imbalances. There 
are two other roles that dealers play: they provide better price informa-
tion to market participants, and in certain market structures they provide 
the services of an auctioneer in bringing order and fairness to a market.5 

The price-stabilization role relates to our earlier example of what 
may happen to the price of a particular transaction in the absence of 
any intervention when there is a temporary imbalance of order. By tak-
ing the opposite side of a trade when there are no other orders, the 
dealer prevents the price from materially diverging from the price at 
which a recent trade was consummated. 

Investors are concerned with immediacy, and they also want to 
trade at prices that are reasonable, given prevailing conditions in the 
market. While dealers cannot know with certainty the true price of a 
security, they do have a privileged position in some market structures 
with respect to the flow of market orders. They also have a privileged 
position regarding “limit” orders, the special orders that can be exe-
cuted only if the market price of the security changes in a specified way. 

Finally, the dealer acts as an auctioneer in some market structures, 
thereby providing order and fairness in the operations of the market. 
For example, the market maker on organized stock exchanges in the 
United States performs this function by organizing trading to make sure 
that the exchange rules for the priority of trading are followed. The role 
of a market maker in a call market structure is that of an auctioneer. 
The market maker does not take a position in the traded security, as a 
dealer does in a continuous market. 

One of the most important factors that determine the price dealers 
should charge for the services they provide (i.e., the bid-ask spread) is 
the order processing costs incurred by dealers, such as the costs of 
equipment necessary to do business and the administrative and opera-
tions staff. The lower these costs, the narrower the bid-ask spread. With 
the reduced cost of computing and better-trained personnel, these costs 
have declined over time. 

Dealers also have to be compensated for bearing risk. A dealer’s 
position may involve carrying inventory of a security (along position) or 

3 George Stigler, “Public Regulation of Securities Markets,” Journal of Business 
(April 1964), pp. 117–34. 
4 Harold Demsetz, “The Cost of Transacting,” Quarterly Journal of Economics 
(October 1968), pp. 35–6. 
5 Robert A. Schwartz, Equity Markets: Structure, Trading, and Performance (New 
York: Harper & Row Publishers, 1988), pp. 389–397. 
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selling a security that is not in inventory (a short position). There are 
three types of risks associated with maintaining a long or short position 
in a given security. First, there is the uncertainty about the future price 
of the security. A dealer who has a long position in the security is con-
cerned that the price will decline in the future; a dealer who is in a short 
position is concerned that the price will rise. 

The second type of risk has to do with the expected time it will take 
the dealer to unwind a position and its uncertainty. And this, in turn, 
depends primarily on the rate at which buy and sell orders for the secu-
rity reaches the market (i.e., the thickness of the market). Finally, while 
a dealer may have access to better information about order flows than 
the general public, there are some trades where the dealer takes the risk 
of trading with someone who has better information6 This results in the 
better-informed trader obtaining a better price at the expense of the 
dealer. Consequently, in establishing the bid-ask spread for a trade, a 
dealer will assess whether the trader might have better information. 
Some trades that we will discuss below can be viewed as “information-
less trades.” This means that the dealer knows or believes a trade is 
being requested to accomplish an investment objective that is not moti-
vated by the potential future price movement of the security. 

Market Price Efficiency 
The term “efficient” capital market has been used in several contexts to 
describe the operating characteristics of a capital market. There is a dis-
tinction, however, between an operationally (or internally) efficient mar-
ket and a pricing (or externally) efficient capital market.7 In this section 
we describe pricing efficiency. 

Pricing efficiency refers to a market where prices at all times fully 
reflect all available information that is relevant to the valuation of secu-
rities. That is, relevant information about the security is quickly 
impounded into the price of securities. In his seminal review article on 
pricing efficiency, Eugene Fama points out that in order to test whether 
a market is price efficient, two definitions are necessary.8 First, it is nec-
essary to define what it means that prices “fully reflect” information. 
Second, the “relevant” set of information that is assumed to be “fully 
reflected” in prices must be defined. 

6 Walter Bagehot, “The Only Game in Town,” Financial Analysts Journal (March-
April 1971), pp. 12–14, 22. 
7 Richard R. West, “Two Kinds of Market Efficiency,” Financial Analysts Journal 
(November–December 1975), pp. 30–34. 
8 Eugene F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical 
Work,” Journal of Finance (May 1970), pp. 383–417. 
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Fama, as well as others, defines “fully reflects” in terms of the 
expected return from holding a security. The expected return over some 
holding period is equal to expected cash distributions plus the expected 
price change, all divided by the initial price. The price formation process 
defined by Fama and others is that the expected return one period from 
now is a stochastic (i.e., random) variable that already takes into 
account the “relevant” information set. 

In defining the “relevant” information set that prices should reflect, 
Fama classified the pricing efficiency of a market into three forms: weak, 
semistrong, and strong. The distinction between these forms lies in the 
relevant information that is hypothesized to be impounded in the price 
of the security. Weak efficiency means that the price of the security 
reflects the past price and trading history of the security. Semistrong effi-
ciency means that the price of the security fully reflects all public infor-
mation (which, of course, includes but is not limited to historical price 
and trading patterns). Strong-form efficiency exists in a market where 
the price of a security reflects all information, whether or not it is pub-
licly available. 

A price-efficient market has implications for the investment strategy 
that investors may wish to pursue. Throughout this book, we shall refer 
to various active strategies employed by investors. In an active strategy, 
investors seek to capitalize on what they perceive to be the mispricing of 
a security or securities. In a market that is price efficient, active strate-
gies will not consistently generate a return after taking into consider-
ation transaction costs and the risks associated with a strategy that is 
greater than simply buying and holding securities. This has lead inves-
tors in certain markets that empirical evidence suggests are price effi-
cient to pursue a strategy of indexing, which simply seeks to match the 
performance of some financial index. 

Operational Efficiency 
In an operationally efficient market, investors can obtain transaction 
services as cheaply as possible, given the costs associated with furnish-
ing those services. Commissions are only part of the cost of transacting 
as we noted above. The other part is the dealer spread. Bid-ask spreads 
for bonds vary by type of bond. Other components of transaction costs 
are discussed below. 

In an investment era where one-half of one percentage point can 
make a difference when an asset manager is compared against a perfor-
mance benchmark, an important aspect of the investment process is the 
cost of implementing an investment strategy. Transaction costs are more 
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than merely brokerage commissions—they consist of commissions, fees, 
execution costs, and opportunity costs.9 

Commissions are the fees paid to brokers to trade securities. Execu-
tion costs represent the difference between the execution price of a secu-
rity and the price that would have existed in the absence of the trade. 
Execution costs can be further decomposed into market (or price) 
impact and market-timing costs. Market impact cost is the result of the 
bid-ask spread and a price concession extracted by dealers to mitigate 
their risk that an investor’s demand for liquidity is information-moti-
vated. Market-timing cost arises when an adverse price movement of the 
security during the time of the transaction can be attributed in part to 
other activity in the security and is not the result of a particular transac-
tion. Execution costs, then, are related to both the demand for liquidity 
and the trading activity on the trade date. 

There is a distinction between information-motivated trades and 
informationless trades. Information-motivated trading occurs when inves-
tors believe they possess pertinent information not currently reflected in 
the security’s price. This style of trading tends to increase market impact 
because it emphasizes the speed of execution, or because the market 
maker believes a desired trade is driven by information and increases the 
bid-ask spread to provide some protection. It can involve the sale of one 
security in favor of another. Informationless trades are the result of either 
a reallocation of wealth or implementation of an investment strategy that 
utilizes only existing information. An example of the former is a pension 
fund’s decision to invest cash in the stock market. Other examples of 
informationless trades include portfolio rebalances, investment of new 
money, or liquidations. In these circumstances, the demand for liquidity 
alone should not lead the market maker to demand the significant price 
concessions associated with new information. 

The problem with measuring execution costs is that the true mea-
sure—which is the difference between the price of the security in the 
absence of the investor’s trade and the execution price—is not observ-
able. Furthermore, the execution prices are dependent on supply and 
demand conditions at the margin. Thus, the execution price may be 
influenced by competitive traders who demand immediate execution, or 
other investors with similar motives for trading. This means that the 
execution price realized by an investor is the consequence of the struc-
ture of the market mechanism, the demand for liquidity by the marginal 

9 For a further discussion of these costs, see Bruce M. Collins and Frank J. Fabozzi, 
“A Methodology for Measuring Transaction Costs,” Financial Analysts Journal 
(March-April 1991), pp. 27–36. 
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investor, and the competitive forces of investors with similar motiva-
tions for trading. 

The cost of not transacting represents an opportunity cost. Oppor-
tunity costs may arise when a desired trade fails to be executed. This 
component of costs represents the difference in performance between an 
investor’s desired investment and the same investor’s actual investment 
after adjusting for execution costs, commissions, and fees. Opportunity 
costs have been characterized as the hidden cost of trading, and it has 
been suggested that the shortfall in performance of many actively man-
aged portfolios is the consequence of failing to execute all desired 
trades.14 Measurement of opportunity costs is subject to the same prob-
lems as measurement of execution costs. The true measure of opportu-
nity cost depends on knowing what the performance of a security would 
have been if all desired trades had been executed at the desired time 
across an investment horizon. As these are the desired trades that the 
investor could not execute, the benchmark is inherently unobservable 

OVERVIEW OF MARKET PARTICIPANTS 

With an understanding of what financial assets are and the role of finan-
cial assets and financial markets, we can now identify who the players are 
in the financial markets. By this we mean the entities that issue financial 
assets and the entities that invest in financial assets. We will focus on one 
particular group of market players, called financial intermediaries, because 
of the key economic functions that they perform in financial markets. In 
addition to reviewing their economic function, we will set forth the basic 
asset/liability problem faced by managers of financial intermediaries. 

There are entities that issue financial assets, both debt instruments 
and equity instruments. There are investors who purchase these finan-
cial assets. This does not mean that these two groups are mutually 
exclusive—it is common for an entity to both issue a financial asset and 
at the same time invest in a different financial asset. 

A simple classification of these entities is as follows: (1) central gov-
ernments; (2) agencies of central governments; (3) municipal govern-
ments; (4) supranationals; (5) nonfinancial businesses; (6) financial 
enterprises; and (7) households. Central governments borrow funds for 
a wide variety of reasons. Many central governments establish agencies 
to raise funds to perform specific functions. Most countries have munic-
ipalities or provinces that raise funds in the capital market. A suprana-
tional institution is an organization that is formed by two or more 
central governments through international treaties. Businesses are classi-
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fied into nonfinancial and financial businesses. These entities borrow 
funds in the debt market and raise funds in the equity market. Nonfinan-
cial businesses are divided into three categories: corporations, farms, 
and nonfarm/noncorporate businesses. The first category includes cor-
porations that manufacture products (e.g., cars, steel, computers) and/or 
provide nonfinancial services (e.g., transportation, utilities, computer 
programming). In the last category are businesses that produce the same 
products or provide the same services but are not incorporated. 

Financial businesses, more popularly referred to as financial institu-
tions, provide services related to one or more of the following: 

1. Transforming financial assets acquired through the market and consti-
tuting them into a different and more preferable type of asset—which 
becomes their liability. This is the function performed by financial 
intermediaries, the most important type of financial institution. 

2. Exchanging financial assets on behalf of customers. 
3. Exchanging financial assets for their own account. 
4. Assisting in the creation of financial assets for their customers and then 

selling those financial assets to other market participants. 
5. Providing investment advice to other market participants. 
6. Managing the portfolios of other market participants. 

Financial intermediaries include: depository institutions that 
acquire the bulk of their funds by offering their liabilities to the public 
mostly in the form of deposits; insurance companies (life and property 
and casualty companies); pension funds; and finance companies. Later 
in this chapter we will discuss these entities. The second and third ser-
vices in the list above are the broker and dealer functions. The fourth 
service is referred to as securities underwriting. Typically, a financial 
institution that provides an underwriting service also provides a broker-
age and/or dealer service. 

Some nonfinancial businesses have subsidiaries that provide finan-
cial services. For example, many large manufacturing firms have subsid-
iaries that provide financing for the parent company’s customer. These 
financial institutions are called captive finance companies. 

Role of Financial Intermediaries 
Financial intermediaries obtain funds by issuing financial claims against 
themselves to market participants and then investing those funds. The 
investments made by financial intermediaries—their assets—can be in 
loans and/or securities. These investments are referred to as direct 
investments. As just noted, financial intermediaries play the basic role of 
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transforming financial assets that are less desirable for a large part of 
the public into other financial assets—their own liabilities—which are 
preferred more by the public. This transformation involves at least one 
of four economic functions: (1) providing maturity intermediation; (2) 
risk reduction via diversification; (3) reducing the costs of contracting 
and information processing; and (4) providing a payments mechanism. 

Maturity intermediation involves a financial intermediary issuing lia-
bilities against itself that have a maturity different from the assets it 
acquires with the fund raised. An example is a commercial bank that 
issues short-term liabilities (i.e., deposits) and invests in assets with a 
longer maturity than those liabilities. Maturity intermediation has two 
implications for financial markets. First, investors have more choices con-
cerning maturity for their investments; borrowers have more choices for 
the length of their debt obligations. Second, because investors are reluctant 
to commit funds for a long period of time, they will require that long-term 
borrowers pay a higher interest rate than on short-term borrowing. In con-
trast, a financial intermediary will be willing to make longer-term loans, 
and at a lower cost to the borrower than an individual investor would, by 
counting on successive deposits providing the funds until maturity 
(although at some risk as discussed below). Thus, the second implication is 
that the cost of longer-term borrowing is likely to be reduced. 

To illustrate the economic function of risk reduction via diversifica-
tion, consider an investor who invests in a mutual fund. Suppose that 
the mutual fund invests the funds received in the stock of a large num-
ber of companies. By doing so, the mutual fund has diversified and 
reduced its risk. Investors who have a small sum to invest would find it 
difficult to achieve the same degree of diversification because they 
would not have sufficient funds to buy shares of a large number of com-
panies. Yet by investing in the investment company for the same sum of 
money, investors can accomplish this diversification, thereby reducing 
risk. This economic function of financial intermediaries—transforming 
more risky assets into less risky ones—is called diversification. While 
individual investors can do it on their own, they may not be able to do it 
as cost effectively as a financial intermediary, depending on the amount 
of funds they have to invest. Attaining cost-effective diversification in 
order to reduce risk by purchasing the financial assets of a financial 
intermediary is an important economic benefit for financial markets. 

Investors purchasing financial assets should develop skills necessary 
to understand how to evaluate an investment. Once those skills are 
developed, investors should apply them to the analysis of specific finan-
cial assets that are candidates for purchase (or subsequent sale). Inves-
tors who want to make a loan to a consumer or business will need to 
write the loan contract (or hire an attorney to do so). While there are 
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some people who enjoy devoting leisure time to this task, most of us 
find that leisure time is in short supply, so to sacrifice it, we have to be 
compensated. The form of compensation could be a higher return 
obtained from an investment. In addition to the opportunity cost of the 
time to process the information about the financial asset and its issuer, 
there is the cost of acquiring that information. All these costs are called 
information processing costs. The costs of writing loan contracts are 
referred to as contracting costs. Another dimension to contracting costs 
is the cost of enforcing the terms of the loan agreement. There are econ-
omies of scale in contracting and processing information about financial 
assets, because of the amount of funds managed by financial intermedi-
aries. The lower costs accrue to the benefit of the investor who pur-
chases a financial claim of the financial intermediary and to the issuers 
of financial assets, who benefit from a lower borrowing cost. 

While the previous three economic functions may not have been 
immediately obvious, this last function should be. Most transactions 
made today are not done with cash. Instead, payments are made using 
checks, credit cards, debit cards, and electronic transfers of funds. These 
methods for making payments are provided by certain financial interme-
diaries. The ability to make payments without the use of cash is critical 
for the functioning of a financial market. In short, depository institu-
tions transform assets that cannot be used to make payments into other 
assets that offer that property. 

Institutional Investors 
Managers of the funds of financial entities manage those funds to meet 
specified investment objectives. For many institutional investors (insur-
ance companies, pension funds, investment companies, depository institu-
tions, and endowments and foundations), those objectives are dictated by 
the nature of their liabilities. It is within the context of the asset/liability 
problem faced by managers of institutional funds that investment vehicles 
and investment strategies make any sense. Therefore, in this section we 
provide an overview of the investment objectives of institutional investors 
and the constraints imposed on managers of the funds of these entities. 

Nature of Liabilities 
The nature of an institutional investor’s liabilities will dictate the gen-
eral investment strategy to pursue. Depository institutions, for example, 
seek to generate income by the spread between the return that they earn 
on their assets and the cost of their funds. Life insurance companies are 
in the spread business. Pension funds are not in the spread business, in 
that they themselves do not raise funds in the market. Certain types of 
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pension funds seek to cover the cost of pension obligations at a mini-
mum cost to the plan sponsor. Most investment companies face no 
explicit costs for the funds they acquire and must satisfy no specific lia-
bility obligations, the exception being target-term trusts. 

A liability is a cash outlay that must be made at a specific time to 
satisfy the contractual terms of an obligation. An institutional investor 
is concerned with both the amount and timing of liabilities, because its 
assets must produce the cash flow to meet any payments it has promised 
to make in a timely way. In fact, liabilities are classified according to the 
degree of certainty of their amount and timing, as shown in Exhibit 2.1. 
This exhibit assumes that the holder of the obligation will not cancel it 
prior to any actual or projected payout date. 

The descriptions of cash outlays as either known or uncertain are 
undoubtedly broad. When we refer to a cash outlay as being uncertain, 
we do not mean that it cannot be predicted. There are some liabilities 
where the “law of large numbers” makes it easier to predict the timing 
and/or amount of cash outlays. This work is typically done by actuaries, 
but even actuaries have difficulty predicting natural catastrophes such 
as floods and earthquakes. 

In our description of each type of risk category, it is important to note 
that, just like assets, there are risks associated with liabilities. Some of 
these risks are affected by the same factors that affect asset risks. 

A Type I liability is one for which both the amount and timing of 
the liabilities are known with certainty. An example would be when an 
institution knows that it must pay $8 million six months from now. 
Banks and thrifts know the amount that they are committed to pay 
(principal plus interest) on the maturity date of a fixed-rate certificate of 
deposit (CD), assuming that the depositor does not withdraw funds 
prior to the maturity date. Type I liabilities, however, are not limited to 
depository institutions. A product sold by life insurance companies is a 
guaranteed investment contract, popularly referred to as a GIC (dis-
cussed below). The obligation of the life insurance company under this 
contract is that, for a sum of money (called a premium), it will guaran-
tee an interest rate up to some specified maturity date. 

EXHIBIT 2.1 Classification of Liabilities of Institutional Investors 

Liability Type Amount of Outlay Timing of Cash Outlay 

Type I Known Known 
Type II Known Uncertain 
Type III Uncertain Known 
Type IV Uncertain Uncertain 
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A Type II liability is one for which the amount of the cash outlay is 
known, but the timing of the cash outlay is uncertain. The most obvious 
example of a Type II liability is a life insurance policy. There are many 
types of life insurance policies, but the most basic type provides that, for 
an annual premium, a life insurance company agrees to make a specified 
dollar payment to policy beneficiaries upon the death of the insured. 
Naturally, the timing of the insured’s death is uncertain. 

A Type III liability is one for which the timing of the cash outlay is 
known, but the amount is uncertain. A 2-year, floating-rate CD for 
which the interest rate resets quarterly, based on some market interest 
rate, is an example. 

A Type IV liability is one for which there is uncertainty as to both the 
amount and the timing of the cash outlay. There are numerous insurance 
products and pension obligations in this category. Probably the most 
obvious examples are automobile and home insurance policies issued by 
property and casualty insurance companies. When, and if, a payment will 
have to be made to the policyholder is uncertain. Whenever damage is 
done to an insured asset, the amount of the payment that must be made is 
uncertain. The liabilities of pension plans can also be Type IV liabilities. 
In defined benefit plans, retirement benefits depend on the participant’s 
income for a specified number of years before retirement and the total 
number of years the participant worked. This will affect the amount of 
the cash outlay. The timing of the cash outlay depends on when the 
employee elects to retire, and whether the employee remains with the 
sponsoring plan until retirement. Moreover, both the amount and the tim-
ing will depend on how the employee elects to have payments made— 
over only the employee’s life or those of the employee and spouse. 

Overview of Asset/liability Management 
The two goals of a financial institution are (1) to earn an adequate 
return on funds invested and (2) to maintain a comfortable surplus of 
assets beyond liabilities. The task of managing funds of a financial insti-
tution to accomplish these goals is referred to as asset/liability manage-
ment or surplus management. This task involves a trade-off between 
controlling the risk of a decline in the surplus and taking on acceptable 
risks in order to earn an adequate return on the funds invested. With 
respect to the risks, the manager must consider the risks of both the 
assets and the liabilities. 

Institutions may calculate three types of surpluses: economic, account-
ing, and regulatory. The method of valuing assets and liabilities greatly 
affects the apparent health of a financial institution. Unrealistic valuation, 
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although sometimes allowable under accounting procedures and regula-
tions, is not sound investment practice. 

The economic surplus of any entity is the difference between the mar-
ket value of all its assets and the market value of its liabilities. That is, 

Economic surplus = Market value of assets – Market value of liabilities 

The market value of the liabilities is simply the present value of the lia-
bilities, where the liabilities are discounted at an appropriate interest rate. 

Institutional investors must prepare periodic financial statements. 
These financial statements must be prepared in accordance with “gener-
ally accepted accounting principles” (GAAP). Thus, the assets and lia-
bilities reported are based on GAAP accounting and the resulting 
surplus is referred to as accounting surplus. 

Institutional investors that are regulated at the state or federal levels 
must also provide financial reports to regulators based on regulatory 
accounting principles (RAP). RAP accounting for a regulated institution 
need not use the same rules as set forth in GAAP accounting. Liabilities 
may or may not be reported at their present value, depending on the 
type of institution and the type of liability. The surplus, as measured 
using RAP accounting, is called regulatory surplus or statutory surplus, 
and, as in the case of accounting surplus, may be materially different 
from economic surplus. 

Benchmarks for Nonliability Driven Entities 
Thus far, our discussion has focused on institutional investors that face 
liabilities. However, not all financial institutions face liabilities. An 
investment company (discussed later) is an example. Also, while an 
entity such as a pension plan may face liabilities, it may engage external 
asset managers and set for those managers an objective that is unrelated 
to the pension fund’s liabilities. For such asset managers who do not 
face liabilities, the objective is to outperform some client-designated 
benchmark. In bond portfolio management, the benchmark may be one 
of the bond indexes described in Chapter 21. In general, the perfor-
mance of the money manager will be measured as follows: 

Return on the portfolio – Return on the benchmark 

Active money management involves creating a portfolio that will 
earn a return (after adjusting for risk) greater than the benchmark. In 
contrast, a strategy of indexing is one in which an asset manager creates 
a portfolio that only seeks to match the return on the benchmark. 
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From our discussion of asset/liability management and the manage-
ment of funds in the absence of liabilities, we can see that the invest-
ment strategy of one institutional investor may be inappropriate for 
another. As with investment strategies, a security or asset class that may 
be attractive for one institutional investor may be inappropriate for the 
portfolio of another. 

In the remainder of this section we look at the investment objective 
of the major institutional investors. For each entity, the nature of the 
liabilities and the strategies they use to accomplish their investment 
objectives are also reviewed, as well as regulations that influence invest-
ment decisions. 

Insurance Companies 
Insurance companies are financial intermediaries that, for a price, will 
make a payment if a certain event occurs. They function as risk bearers. 
There are two types of insurance companies: life insurance companies 
(“life companies”) and property and casualty insurance companies 
(“P&C companies”). The principal event that the former insures against 
is death. Upon the death of a policyholder, a life insurance company 
agrees to make either a lump sum payment or a series of payments to 
the beneficiary of the policy. Life insurance protection is not the only 
financial product sold by these companies; a major portion of the busi-
ness of life companies is in the area of providing retirement benefits. In 
contrast, P&C companies insure against a wide variety of occurrences. 
Two examples are automobile insurance and home insurance. 

The key distinction between life and P&C companies lies in the dif-
ficulty of projecting whether a policyholder will be paid off and, if so, 
how much the payment will be. While this is no simple task for either 
type of insurance company, from an actuarial perspective it is easier for 
a life company. The amount and timing of claims on P&C companies 
are more difficult to predict because of the randomness of natural catas-
trophes and the unpredictability of court awards in liability cases. This 
uncertainty about the timing and amount of cash outlays to satisfy 
claims affects the investment strategies used by the managers of P&C 
companies’ funds. 

Pension Funds 
A pension plan is a fund that is established for the payment of retire-
ment benefits. The entities that establish pension plans—called plan 
sponsors—are private business entities acting for their employees, state 
and local entities on behalf of their employees, unions on behalf of their 
members, and individuals for themselves. In the United States, corporate 
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pension plans are governed by the Employee Retirement Income Secu-
rity Act of 1974 (ERISA). Pension funds are exempt from taxation. 

There are two basic and widely used types of pension plans: defined 
contribution plans and defined benefit plans. In a defined contribution 
plan, the plan sponsor is responsible only for making specified contribu-
tions into the plan on behalf of qualifying participants. The payments 
that will be made to qualifying participants upon retirement will depend 
on the growth of the plan assets; that is, payment is determined by the 
investment performance of the assets in which the pension fund is 
invested. Therefore, in a defined contribution plan, the employee bears 
all the investment risk. In a defined benefit plan, the plan sponsor agrees 
to make specified dollar payments to qualifying employees at retirement 
(and some payments to beneficiaries in case of death before retirement). 
The retirement payments are determined by a formula that usually takes 
into account both the length of service and the earnings of the 
employee. The pension obligations are effectively the liability of the 
plan sponsor, who assumes the risk of having insufficient funds in the 
plan to satisfy the contractual payments that must be made to retired 
employees. Thus, unlike a defined contribution plan, in a defined benefit 
plan, all the investment risks are borne by the plan sponsor. 

Investment Companies 
Investment companies sell shares to the public and invest the proceeds 
in a diversified portfolio of securities. Each share they sell represents a 
proportionate interest in a portfolio of securities. The securities pur-
chased could be restricted to specific types of assets such as common 
stock, government bonds, corporate bonds, or money market instru-
ments. The investment strategies followed by investment companies 
range from high-risk active portfolio strategies to low-risk passive port-
folio strategies. 

There are two types of managed investment companies: open-end 
funds and closed-end funds. An open-end fund, more popularly referred 
to as a mutual fund, continually stands ready to sell new shares to the 
public and to redeem its outstanding shares on demand at a price equal 
to an appropriate share of the value of its portfolio, which is computed 
daily at the close of the market. A mutual fund’s share price is based on 
its net asset value (NAV) per share, which is found by subtracting from 
the market value of the portfolio the mutual fund’s liabilities and then 
dividing by the number of mutual fund shares outstanding. 

In contrast to mutual funds, closed-end funds sell shares like any 
other corporation and usually do not redeem their shares. Shares of 
closed-end funds sell on either an organized exchange, such as the New 
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York Stock Exchange, or in the over-the-counter market. The price of a 
share in a closed-end fund is determined by supply and demand, so the 
price can fall below or rise above the net asset value per share. 

Depository Institutions 
Depository institutions are financial intermediaries that accept deposits. 
They include commercial banks (or simply banks), savings and loan 
associations (S&Ls), savings banks, and credit unions. It is common to 
refer to depository institutions other than banks as “thrifts.” Deposi-
tory institutions are highly regulated and supervised because of the 
important role that they play in the financial system. 

The asset/liability problem that depository institutions face is quite 
simple to explain—although not necessarily easy to solve. A depository 
institution seeks to earn a positive spread between the assets it invests in 
(loans and securities) and the cost of its funds (deposits and other 
sources). This difference between income and cost is referred to as spread 
income or margin income. The spread income should allow the institu-
tion to meet operating expenses and earn a fair profit on its capital. 

In generating spread income a depository institution faces several 
risks. These include credit risk, regulatory risk, and interest rate risk. 
Regulatory risk is the risk that regulators will change the rules so as to 
adversely impact the earnings of the institution. Simply put, interest rate 
risk is the risk that a depository institution’s spread income and capital 
will suffer because of changes in interest rates. This kind of risk can be 
explained best by an illustration. To illustrate the impact on spread 
income, suppose that a depository institution raises $100 million by 
issuing a certificate of deposit that has a maturity of one year and by 
agreeing to pay an interest rate of 7%. Ignoring for the time being the 
fact that the depository institution cannot invest the entire $100 million 
because of reserve requirements, suppose that $100 million is invested 
in a U.S. Treasury security that matures in 15 years paying an interest 
rate of 9%. Because the funds are invested in a U.S. Treasury security, 
there is no credit risk. 

It seems at first that the depository institution has locked in a spread 
of 2% (9% minus 7%). This spread can be counted on only for the first 
year, though, because the spread in future years will depend on the 
interest rate this depository institution will have to pay depositors in 
order to raise $100 million after the 1-year certificate of deposit 
matures. If interest rates decline, the spread income will increase 
because the depository institution has locked in the 9% rate. If interest 
rates rise, however, the spread income will decline. In fact, if this depos-
itory institution must pay more than 9% to depositors for the next 14 
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years, the spread income will be negative. That is, it will cost the depos-
itory institution more to finance the purchase of the Treasury security 
than it will earn on the funds invested in that security. 

In our example, the depository institution has “borrowed short” (bor-
rowed for one year) and “lent long” (invested for 15 years). This invest-
ment policy will benefit from a decline in interest rates, but suffer if 
interest rates rise. Suppose the institution could have borrowed funds for 
15 years at 7% and invested in a U.S. Treasury security maturing in one 
year earning 9%—borrowing long (15 years) and lending short (one year). 
A rise in interest rates will benefit the depository institution because it can 
then reinvest the proceeds from the maturing 1-year government security 
in a new 1-year government security offering a higher interest rate. In this 
case a decline in interest rates will reduce the spread income. If interest 
rates fall below 7%, there will be a negative spread income. 

All depository institutions face this interest rate risk problem. Man-
agers of a depository institution who have particular expectations about 
the future direction of interest rates will seek to benefit from these expec-
tations. Those who expect interest rates to rise may pursue a policy to 
borrow funds long term and lend funds short term. If interest rates are 
expected to drop, managers may elect to borrow short and lend long. 

The problem of pursuing a strategy of positioning a depository insti-
tution based on expectations is that considerable adverse financial conse-
quences will result if those expectations are not realized. The evidence on 
interest rate forecasting suggests that it is a risky business. We doubt if 
there are managers of depository institutions who have the ability to 
forecast interest rate moves so consistently that the institution can bene-
fit with any regularity. The goal of management should be to lock in a 
spread as best as possible, not to wager on interest rate movements. 

Some interest rate risk, however, is inherent in any balance sheet of 
a depository institution. Managers must be willing to accept some inter-
est rate risk, but they can take various measures to address the interest 
rate sensitivity of the institution’s liabilities and its assets. A depository 
institution should have an asset/liability committee that is responsible 
for monitoring the exposure to interest rate risk. There are several asset/ 
liability strategies for controlling interest rate risk. 

Because of the special role that depository institutions play in the 
financial system, they are highly regulated and supervised by either fed-
eral and/or state government entities. Regulators have placed restric-
tions on the types of securities that depository institutions can take a 
position in for their investment portfolio. There are risk-based capital 
requirements for depository institutions that specify capital require-
ments based on their credit risk and the interest rate risk exposures. 
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Endowments and Foundations 
Endowments and foundations include colleges, private schools, muse-
ums, and hospitals. The investment income generated from the funds 
invested by endowments and foundations is used for the operation of 
the entity. In the case of a college, the investment income is used to meet 
current operating expenses and capital expenditures (i.e., the construc-
tion of new buildings or sports facilities). 

As with pension funds, qualified endowments and foundations are 
exempt from taxation. The board of trustees, just like the plan sponsor 
for a pension fund, specifies the investment objectives and the accept-
able investment alternatives. Typically, the managers of endowments 
and foundations invest in long-term assets and have the primary goal of 
safeguarding the principal of the entity. The second goal, and an impor-
tant one, is to generate a stream of earnings that allow the endowment 
or foundation to perform its functions of supporting certain operations. 
There is a constraint imposed on an endowment or foundation in that it 
must maintain its tax-exempt status. 

COMMON STOCK 

Common stocks are also called equity securities. Equity securities repre-
sent an ownership interest in a corporation. Holders of equity securities 
are entitled to the earnings of the corporation when those earnings are 
distributed in the form of dividends; they are also entitled to a pro rata 
share of the remaining equity in case of liquidation. 

Trading Locations 
In the United States, the secondary market that trades in common stocks 
has occurred in two ways. The first is on organized exchanges, which 
are specific geographical locations called trading floors, where represen-
tatives of buyers and sellers physically meet. The trading mechanism on 
exchanges is the auction system, which results from the presence of 
many competing buyers and sellers assembled in one place. The second 
type is via over-the-counter (OTC) trading, which results from geo-
graphically dispersed traders or market-makers linked to one another 
via telecommunication systems. That is, there is no trading floor. This 
trading mechanism is a negotiated system whereby individual buyers 
negotiate with individual sellers. 

Exchange markets are called central auction specialist systems and 
OTC markets are called multiple market maker systems. In recent years 
a new method of trading common stocks via independently owned and 
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operated electronic communications networks (ECNs) has developed 
and is growing quickly. 

In the United States there are two national stock exchanges: the New 
York Stock Exchange (NYSE) and the American Stock Exchange (AMEX 
or ASE). In addition to the national exchanges, there are regional stock 
exchanges in Boston, Chicago (called the Midwest Exchange), Cincinnati, 
San Francisco (called the Pacific Coast Exchange) and Philadelphia. 
Regional exchanges primarily trade stocks from corporations based within 
their region. The major OTC market in the United States is NASDAQ (the 
National Association of Securities Dealers Automated Quotation System. 
In 1998, NASDAQ and AMEX merged to form the NASDAQ-AMEX 
Market Group, Inc. 

Stock Market Indicators 
Stock market indicators have come to perform a variety of functions, 
from serving as benchmarks for evaluating the performance of profes-
sional money managers to answering the question, “How did the mar-
ket do today?” Thus, stock market indicators (indexes or averages) have 
become a part of everyday life. Even though many of the stock market 
indicators are used interchangeably, it is important to realize that each 
indicator applies to, and measures, a different facet of the stock market. 

The most commonly quoted stock market indicator is the Dow 
Jones Industrial Average (DJIA). Other popular stock market indicators 
cited in the financial press are the Standard & Poor’s 500 Composite 
(S&P 500), the New York Stock Exchange Composite Index (NYSE 
Composite), the NASDAQ Composite Index, and the Value Line Com-
posite Average (VLCA). There are a myriad of other stock market indi-
cators such as the Wilshire stock indexes and the Russell stock indexes, 
which are followed primarily by institutional money managers. 

In general, market indexes rise and fall in fairly similar patterns. 
Although the correlations among indexes are high, the indexes do not 
move in exactly the same way at all times. The differences in movement 
reflect the different manner in which the indexes are constructed. Three 
factors enter into that construction: the universe of stocks represented by 
the sample underlying the index, the relative weights assigned to the stocks 
included in the index, and the method of averaging across all the stocks. 

Some indexes represent only stocks listed on an exchange. Examples 
are the DJIA and the NYSE Composite, which represent only stocks 
listed on the NYSE or Big Board. By contrast, the NASDAQ includes 
only stocks traded over the counter. A favorite of professionals is the 
S&P 500 because it is a broader index containing both NYSE-listed and 
OTC-traded shares. Each index relies on a sample of stocks from its 
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universe, and that sample may be small or quite large. The DJIA uses 
only 30 of the NYSE-traded shares, while the NYSE Composite includes 
every one of the listed shares. The NASDAQ also includes all shares in 
its universe, while the S&P 500 has a sample that contains only 500 of 
the more than 8,000 shares in the universe it represents. 

The stocks included in a stock market index must be combined in cer-
tain proportions, and each stock must be given a weight. The three main 
approaches to weighting are: (1) weighting by the market capitalization, 
which is the value of the number of shares times price per share; (2) 
weighting by the price of the stock; and (3) equal weighting for each 
stock, regardless of its price or its firm’s market value. With the exception 
of the Dow Jones averages (such as the DJIA) and the VLCA, nearly all of 
the most widely used indexes are market-value weighted. The DJIA is a 
price-weighted average, and the VLCA is an equally weighted index. 

Stock market indicators can be classified into three groups: (1) those 
produced by stock exchanges based on all stocks traded on the 
exchanges; (2) those produced by organizations that subjectively select 
the stocks to be included in indexes; and (3) those where stock selection 
is based on an objective measure, such as the market capitalization of 
the company. The first group includes the New York Stock Exchange 
Composite Index, which reflects the market value of all stocks traded on 
the NYSE. While it is not an exchange, the NASDAQ Composite Index 
falls into this category because the index represents all stocks traded on 
the NASDAQ system. 

The three most popular stock market indicators in the second group 
are the Dow Jones Industrial Average, the Standard & Poor’s 500, and 
the Value Line Composite Average. The DJIA is constructed from 30 of 
the largest blue chip industrial companies traded on the NYSE. The 
companies included in the average are those selected by Dow Jones & 
Company, publisher of the Wall Street Journal. The S&P 500 represents 
stocks chosen from the two major national stock exchanges and the 
over-the-counter market. The stocks in the index at any given time are 
determined by a committee of Standard & Poor’s Corporation, which 
may occasionally add or delete individual stocks or the stocks of entire 
industry groups. The aim of the committee is to capture present overall 
stock market conditions as reflected in a very broad range of economic 
indicators. The VLCA, produced by Value Line Inc., covers a broad 
range of widely held and actively traded NYSE, AMEX, and OTC issues 
selected by Value Line. 

In the third group we have the Wilshire indexes produced by 
Wilshire Associates (Santa Monica, California) and Russell indexes pro-
duced by the Frank Russell Company (Tacoma, Washington), a consult-
ant to pension funds and other institutional investors. The criterion for 
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inclusion in each of these indexes is solely a firm’s market capitalization. 
The most comprehensive index is the Wilshire 5000, which actually 
includes more than 6,700 stocks now, up from 5,000 at its inception. 
The Wilshire 4500 includes all stocks in the Wilshire 5000 except for 
those in the S&P 500. Thus, the shares in the Wilshire 4500 have 
smaller capitalization than those in the Wilshire 5000. The Russell 3000 
encompasses the 3,000 largest companies in terms of their market capi-
talization. The Russell 1000 is limited to the largest 1,000 of those, and 
the Russell 2000 has the remaining smaller firms. 

Two methods of averaging may be used. The first and most common 
is the arithmetic average. An arithmetic mean is just a simple average of 
the stocks, calculated by summing them (after weighting, if appropriate) 
and dividing by the sum of the weights. The second method is the geo-
metric mean, which involves multiplication of the components, after 
which the product is raised to the power of 1 divided by the number of 
components. 

Trading Arrangements 
Below we describe the key features involved in trading stocks. 

Types of Orders 
When an investor wants to buy or sell a share of common stock, the 
price and conditions under which the order is to be executed must be 
communicated to a broker. The simplest type of order is the market 
order, an order to be executed at the best price available in the market. 

The danger of a market order is that an adverse move may take 
place between the time the investor places the order and the time the 
order is executed. To avoid this danger, the investor can place a limit 
order that designates a price threshold for the execution of the trade. 
The key disadvantage of a limit order is that there is no guarantee that it 
will be executed at all; the designated price may simply not be obtain-
able. The limit order is a conditional order: It is executed only if the 
limit price or a better price can be obtained. 

Another type of conditional order is the stop order, which specifies 
that the order is not to be executed until the market moves to a desig-
nated price, at which time it becomes a market order. There are two 
dangers associated with stop orders. Stock prices sometimes exhibit 
abrupt price changes, so the direction of a change in a stock price may 
be quite temporary, resulting in the premature trading of a stock. Also, 
once the designated price is reached, the stop order becomes a market 
order and is subject to the uncertainty of the execution price noted ear-
lier for market orders. A stop-limit order, a hybrid of a stop order and a 
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limit order, is a stop order that designates a price limit. In contrast to 
the stop order, which becomes a market order if the stop is reached, the 
stop-limit order becomes a limit order if the stop is reached. The stop-
limit order can be used to cushion the market impact of a stop order. 
The investor may limit the possible execution price after the activation 
of the stop. As with a limit order, the limit price may never be reached 
after the order is activated, which therefore defeats one purpose of the 
stop order—to protect a profit or limit a loss. 

Short Selling 
Short selling involves the sale of a security not owned by the investor at 
the time of sale. The investor can arrange to have her broker borrow the 
stock from someone else, and the borrowed stock is delivered to imple-
ment the sale. To cover her short position, the investor must subsequently 
purchase the stock and return it to the party that lent the stock. The 
investor benefits if the price of the of the security sold short declines. Two 
costs will reduce the profit on a short sale. First, a fee will be charged by 
the lender of the stock. Second, if there are any dividends paid, the short 
seller must pay those dividends to the lender of the security. 

Exchanges impose restrictions as to when a short sale may be exe-
cuted; these so-called tick-test rules are intended to prevent investors 
from destabilizing the price of a stock when the market price is falling. 
A short sale can be made only when either (1) the sale price of the par-
ticular stock is higher than the last trade price (referred to as an “uptick 
trade”), or (2) if there is no change in the last trade price of the particu-
lar stock (referred to as a “zero uptick”), the previous trade price must 
be higher than the trade price that preceded it. 

Margin Transactions 
Investors can borrow cash to buy securities and use the securities them-
selves as collateral. A transaction in which an investor borrows to buy 
shares using the shares themselves as collateral is called buying on mar-
gin. By borrowing funds, an investor creates financial leverage. The 
funds borrowed to buy the additional stock will be provided by the bro-
ker, and the broker gets the money from a bank. The interest rate that 
banks charge brokers for these funds is the call money rate (also labeled 
the broker loan rate). The broker charges the borrowing investor the 
call money rate plus a service charge. 

The brokerage firm is not free to lend as much as it wishes to the 
investor to buy securities. The Securities Exchange Act of 1934 prohib-
its brokers from lending more than a specified percentage of the market 
value of the securities. The initial margin requirement is the proportion 
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of the total market value of the securities that the investor must pay as 
an equity share, and the remainder is borrowed from the broker. The 
1934 act gives the Board of Governors of the Federal Reserve (the Fed) 
the responsibility to set initial margin requirements. The initial margin 
requirement has been below 40% and is 50% as of this writing. 

The Fed also establishes a maintenance margin requirement. This is 
the minimum proportion of (1) the equity in the investor’s margin 
account to (2) the total market value. If the investor’s margin account 
falls below the minimum maintenance margin (which would happen if 
the share price fell), the investor is required to put up additional cash. 
The investor receives a margin call from the broker specifying the addi-
tional cash to be put into the investor’s margin account. If the investor 
fails to put up the additional cash, the broker has the authority to sell 
the securities in the investor’s account. 

Trading Arrangements Used by Institutional Investors 
With the increase in trading by institutional investors, trading arrange-
ments more suitable to these investors were developed. Institutional 
needs included trading in large size and trading groups of stocks, both 
at a low commission and with low market impact. This has resulted in 
the evolution of special arrangements for the execution of certain types 
of orders commonly sought by institutional investors: (1) orders requir-
ing the execution of a trade of a large number of shares of a given stock 
and (2) orders requiring the execution of trades in a large number of dif-
ferent stocks at as near the same time as possible. The former types of 
trades are called block trades; the latter are called program trades. 

On the NYSE, block trades are defined as either trades of at least 
10,000 shares of a given stock, or trades of shares with a market value 
of at least $200,000, whichever is less. Program trades involve the buy-
ing and/or selling of a large number of names simultaneously. Such 
trades are also called basket trades because effectively a “basket” of 
stocks is being traded. The NYSE defines a program trade as any trade 
involving the purchase or sale of a basket of at least 15 stocks with a 
total value of $1 million or more. 

The institutional arrangement that has evolved to accommodate 
these two types of institutional trades is the development of a network 
of trading desks of the major securities firms and other institutional 
investors that communicate with each other by means of electronic dis-
play systems and telephones. This network is referred to as the “upstairs 
market.” Participants in the upstairs market play a key role by (1) pro-
viding liquidity to the market so that such institutional trades can be 
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executed, and (2) by arbitrage activities that help to integrate the frag-
mented stock market. 

BONDS 

In its simplest form, a bond is a financial obligation of an entity that 
promises to pay a specified sum of money at specified future dates. The 
entity that promises to make the payment is called the bond issuer and is 
referred to as the borrower. Bond issuers include central governments, 
municipal/provincial governments, supranational (e.g., the World 
Bank), and corporations. The investor who purchases bond is said to be 
the lender or creditor. The promised payments that the bond issuer 
agrees to make at the specified dates consist of two components: interest 
payments and repayment of the amount borrowed. 

Prior to the 1980s, bonds were simple investment vehicles. Holding 
aside default by the bond issuer, the investor knew how much interest 
would be received periodically and when the amount borrowed would 
be repaid. Moreover, most investors purchased bonds with the intent of 
holding them to their maturity date. Beginning in the 1980s, the bond 
world changed. First, bond structures became more complex. There are 
features in many bonds that make it difficult to determine when the 
amount borrowed will be repaid. For some bonds it is difficult to 
project the amount of interest that will be received periodically. Second, 
the hold-to-maturity investor has been replaced by the institutional 
investor who actively trades bonds. These new product design features 
in bonds and the shift in trading strategies have lead to the increased use 
of the mathematical techniques described in later chapters. 

Maturity 
The term to maturity of a bond is the number of years over which the 
issuer has promised to meet the conditions of the obligation. The matu-
rity of a bond refers to the date that the debt will cease to exist, at 
which time the bond issuer will redeem the bond by paying the amount 
borrowed. The maturity date of a bond is always identified when 
describing a bond. For example, a description of a bond might state 
“due 12/1/2020.” The practice in the bond market is to refer to the 
“term to maturity” of a bond as simply its “maturity” or “term.” As we 
explain later, there may be provisions in the bond agreement that allow 
either the bond issuer or bondholder to alter a bond’s term to maturity. 

There are three reasons why the term to maturity of a bond is 
important. The most obvious is that it indicates the time period over 
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which the bondholder can expect to receive interest payments and the 
number of years before the principal will be paid in full. The second rea-
son is that the yield on a bond depends on it. Finally, the price of a bond 
will fluctuate over its life as interest rates in the market change. The 
price volatility of a bond is dependent on its maturity. More specifically, 
with all other factors constant, the longer the maturity of a bond, the 
greater the price volatility resulting from a change in interest rates. We 
will demonstrate these two properties in Chapter 4 as an application of 
calculus. 

Par Value 
The par value of a bond is the amount that the issuer agrees to repay the 
bondholder by the maturity date. This amount is also referred to as the 
principal, face value, redemption value, or maturity value. Bonds can 
have any par value. 

Because bonds can have a different par value and currency (e.g., 
U.S. dollar, euro, pound sterling), the practice is to quote the price of a 
bond as a percentage of its par value. A value of 100 means 100% of 
par value. So, for example, if a bond has a par value of $1,000 and the 
issue is selling for $900, this bond would be said to be selling at 90. If a 
bond with a par value of Eur 5,000 is selling for Eur 5,500, the bond is 
said to be selling for 110. 

Coupon Rate 
The coupon rate, also called the nominal rate, is the interest rate that 
the bond issuer agrees to pay each year. The annual amount of the inter-
est payment made to bondholders during the term of the bond is called 
the coupon. The coupon is determined by multiplying the coupon rate 
by the par value of the bond. For example, a bond with an 8% coupon 
rate and a par value of $1,000 will pay annual interest of $80. 

When describing a bond of an issuer, the coupon rate is indicated along 
with the maturity date. For example, the expression “6s of 12/1/2020” 
means a bond with a 6% coupon rate maturing on 12/1/2020. 

In the United States, the usual practice is for the issuer to pay the cou-
pon in two semiannual installments. Outside the U.S., bond payments 
with semiannual and annual payments are found. For certain sectors of 
the bond market—mortgage-backed and asset-backed securities—pay-
ments are made monthly. If the bondholder sells a bond between coupon 
payments and the buyer holds it until the next coupon payment, then the 
entire coupon interest earned for the period will be paid to the buyer of 
the bond since the buyer will be the holder of record. The seller of the 
bond gives up the interest from the time of the last coupon payment to the 



2-Financial Markets  Page 53  Wednesday, February 4, 2004  1:15 PM

53 Overview of Financial Markets, Financial Assets, and Market Participants 

time until the bond is sold. The amount of interest over this period that 
will be received by the buyer, even though it was earned by the seller, is 
called accrued interest. In the United States and in many countries, the 
bond buyer must pay the bond seller the accrued interest. The amount 
that the buyer pays the seller is the agreed-upon price for the bond plus 
accrued interest. This amount is called the dirty price. The agreed-upon 
bond price without accrued interest is called the clean price. 

In addition to indicating the coupon payments that the investor 
should expect to receive over the term of the bond, the coupon rate also 
affects the bond’s price sensitivity to changes in market interest rates. As 
illustrated later, all other factors constant, the higher the coupon rate, 
the less the price will change in response to a change in market interest 
rates. Again, this property will be demonstrated as an application of cal-
culus in Chapter 4. 

Not all bonds make periodic coupon payments. Bonds that are not 
contracted to make periodic coupon payments are called zero-coupon 
bonds. The holder of a zero-coupon bond realizes interest by buying the 
bond substantially below its par value. Interest then is paid at the matu-
rity date, with the interest being the difference between the par value 
and the price paid for the bond. So, for example, if an investor pur-
chases a zero-coupon bond for 70, the interest is 30. This is the differ-
ence between the par value (100) and the price paid (70). 

The coupon rate on a bond need not be fixed over the bond’s term. 
Floating-rate securities have coupon payments that reset periodically 
according to some reference rate. The typical formula for the coupon 
rate at the dates when the coupon rate is reset is: 

Reference rate + Quoted margin 

The quoted margin is the additional amount that the issuer agrees to 
pay above the reference rate. For example, suppose that the reference 
rate is the 1-month London interbank offered rate (LIBOR). Suppose 
that the quoted margin is 100 basis points. Then the coupon reset for-
mula is: 

1-month LIBOR + 100 basis points 

So, if 1-month LIBOR on the coupon reset date is 5%, the coupon rate 
is reset for that period at 6% (5% plus 100 basis points). 

The reference rate for most floating-rate securities is an interest rate 
or an interest rate index. There are some issues where this is not the 
case. Instead, the reference rate is some financial index such as the 
return on the Standard & Poor’s 500 or a nonfinancial index such as the 
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price of a commodity. Through financial engineering, issuers have been 
able to structure floating-rate securities with almost any reference rate. 
In several countries, there are government bonds whose coupon reset 
formula is tied to an inflation index. 

A floating-rate security may have a restriction on the maximum cou-
pon rate that will be paid at a reset date. The maximum coupon rate is 
called a cap. Because a cap restricts the coupon rate from increasing, a 
cap is an unattractive feature for the investor. In contrast, there could be 
a minimum coupon rate specified for a floating-rate security. The mini-
mum coupon rate is called a floor. If the coupon reset formula produces 
a coupon rate that is below the floor, the floor is paid instead. Thus, a 
floor is an attractive feature for the investor. 

Financial engineering has also allowed bond issuers to create inter-
esting floating-rate structures. These include the following:

 ■ Inverse floaters. Typically, the coupon reset formula on floating-rate 
securities is such that the coupon rate increases when the reference rate 
increases, and decreases when the reference rate decreases. With an 
inverse floater the coupon rate moves in the opposite direction from the 
change in the reference rate. A general formula for an inverse floater is 
K – L (Reference rate) with a floor of zero.

 ■ Range notes. A range note is a bond whose coupon rate is equal to the 
reference rate as long as the reference rate is within a certain range at 
the reset date. If the reference rate is outside of the range, the coupon 
rate is zero for that period. For example, a 3-year range note might 
specify that the reference rate is 1-year LIBOR and that the coupon rate 
resets every year. The coupon rate for the year will be 1-year LIBOR as 
long as 1-year LIBOR at the coupon reset date falls within the range as 
specified below: 

Year 1 Year 2 Year 3 

Lower limit of range 4.5% 5.25% 6.00% 
Upper limit of range 5.5% 6.75% 7.50% 

If 1-year LIBOR is outside of the range, the coupon rate is zero.

 ■ Stepup notes. There are bonds whose coupon rate increases over time. 
These securities are called stepup notes because the coupon rate “steps 
up” over time. For example, a 5-year stepup note might have a coupon 
rate that is 5% for the first 2 years and 6% for the last 3 years. Or, the 
stepup note could call for a 5% coupon rate for the first 2 years, 5.5% 
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for the third and fourth years, and 6% for the fifth year. When there is 
only one change (or stepup), as in our first example, the issue is 
referred to as a single stepup note. When there is more than one 
increase, as in our second example, the issue is referred to as a multiple 
stepup note. 

Provisions for Paying off Bonds 
The bond issuer of a bond agrees to repay the principal by the stated 
maturity date. The issuer can agree to repay the entire amount bor-
rowed in one lump sum payment at the maturity date. That is, the issuer 
is not required to make any principal repayments prior to the maturity 
date. Such bonds are said to have a bullet maturity. Bonds backed by 
pools of loans (mortgage-backed securities and asset-backed securities) 
often have a schedule of principal repayments. Such bonds are said to be 
amortizing securities. For many loans, the payments are structured so 
that when the last loan payment is made, the entire amount owed is 
fully paid off. 

There are bond issues that have a provision granting the bond issuer 
an option to retire all or part of the issue prior to the stated maturity 
date. This feature is referred to as a call feature and a bond with this 
feature is said to be a callable bond. If the issuer exercises this right, the 
issuer is said to “call the bond.” The price that the bond issuer must pay 
to retire the issue is referred to as the call price. Typically, there is not 
one call price but a call schedule, which sets forth a call price based on 
when the issuer can exercise the call option. When a bond is issued, typ-
ically the issuer may not call the bond for a number of years. That is, 
the issue is said to have a deferred call. 

A bond issuer generally wants the right to retire a bond issue prior 
to the stated maturity date because it recognizes that at some time in the 
future the general level of interest rates may fall sufficiently below the 
issue’s coupon rate so that redeeming the issue and replacing it with 
another issue with a lower coupon rate would be economically benefi-
cial. This right is a disadvantage to the bondholder since proceeds 
received must be reinvested at a lower interest rate. As a result, an issuer 
who wants to include this right as part of a bond offering must compen-
sate the bondholder when the issue is sold by offering a higher coupon 
rate, or equivalently, accepting a lower price than if the right is not 
included. 

If a bond issue does not have any protection against early call, then 
it is said to be a currently callable issue. But most new bond issues, even 
if currently callable, usually have some restrictions against certain types 
of early redemption. The most common restriction is prohibiting the 
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refunding of the bonds for a certain number of years. Refunding a bond 
issue means redeeming bonds with funds obtained through the sale of a 
new bond issue. Call protection is much more absolute than refunding 
protection. While there may be certain exceptions to absolute or com-
plete call protection in some cases, it still provides greater assurance 
against premature and unwanted redemption than does refunding pro-
tection. Refunding prohibition merely prevents redemption only from 
certain sources of funds, namely the proceeds of other debt issues sold 
at a lower cost of money. The bondholder is only protected if interest 
rates decline, and the borrower can obtain lower-cost money to pay off 
the debt. 

For amortizing securities that are backed by loans and have a sched-
ule of principal repayments, individual borrowers typically have the 
option to pay off all or part of their loan prior to the scheduled date. 
Any principal repayment prior to the scheduled date is called a prepay-
ment. The right of borrowers to prepay is called the prepayment option. 
Basically, the prepayment option is the same as a call option. However, 
unlike a call option, there is not a call price that depends on when the 
borrower pays off the issue. Typically, the price at which a loan is pre-
paid is par value. 

Options Granted to Bondholders 
A bond issue may include a provision that gives either the bondholder 
and/or the issuer an option to take some action against the other party. 
The most common type of option embedded in a bond is a call feature, 
which was discussed earlier. This option is granted to the issuer. There 
are two options that can be granted to the bondholder: the right to put 
the issue and the right to convert the issue. 

An issue with a put provision grants the bondholder the right to sell 
the issue back to the issuer at a specified price on designated dates. The 
bond with this feature is called a putable bond and the specified price is 
called the put price. The advantage of the put provision to the bondholder 
is that if after the issue date market rates rise above the issue’s coupon 
rate, the bondholder can force the issuer to redeem the bond at the put 
price and then reinvest the proceeds at the prevailing higher rate. 

A convertible bond is an issue giving the bondholder the right to 
exchange the bond for a specified number of shares of common stock. 
Such a feature allows the bondholder to take advantage of favorable 
movements in the price of the bond issuer’s common stock. An 
exchangeable bond allows the bondholder to exchange the issue for a 
specified number of shares of common stock of a corporation different 
from the issuer of the bond. 
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FUTURES AND FORWARD CONTRACTS


A futures contract is an agreement that requires a party to the agree-
ment either to buy or sell something at a designated future date at a pre-
determined price. Futures contracts are products created by exchanges. 
To create a particular futures contract, an exchange must obtain 
approval from the Commodity Futures Trading Commission (CFTC), a 
government regulatory agency. When applying to the CFTC for 
approval to create a futures contract, the exchange must demonstrate 
that there is an economic purpose for the contract. Futures contracts are 
categorized as either commodity futures or financial futures. Commod-
ity futures involve traditional agricultural commodities (such as grain 
and livestock), imported foodstuffs (such as coffee, cocoa, and sugar), 
and industrial commodities. Futures contracts based on a financial 
instrument or a financial index are known as financial futures. Financial 
futures can be classified as (1) stock index futures, (2) interest rate 
futures, and (3) currency futures. 

A party to a futures contract has two choices on liquidation of the 
position. First, the position can be liquidated prior to the settlement 
date. For this purpose, the party must take an offsetting position in the 
same contract. For the buyer of a futures contract, this means selling the 
same number of identical futures contracts; for the seller of a futures 
contract, this means buying the same number of identical futures con-
tracts. The alternative is to wait until the settlement date. At that time 
the party purchasing a futures contract accepts delivery of the underly-
ing (financial instrument, currency, or commodity) at the agreed-upon 
price; the party that sells a futures contract liquidates the position by 
delivering the underlying at the agreed-upon price. For some futures 
contracts settlement is made in cash only. Such contracts are referred to 
as cash-settlement contracts. 

Associated with every futures exchange is a clearinghouse, which 
performs two key functions. First, the clearinghouse guarantees that the 
two parties to the transaction will perform. It does so as follows. When 
an investor takes a position in the futures market, the clearinghouse 
takes the opposite position and agrees to satisfy the terms set forth in 
the contract. Because of the clearinghouse, the investor need not worry 
about the financial strength and integrity of the party taking the oppo-
site side of the contract. After initial execution of an order, the relation-
ship between the two parties ends. The clearinghouse interposes itself as 
the buyer for every sale and the seller for every purchase. Thus investors 
are free to liquidate their positions without involving the other party in 
the original contract, and without worry that the other party may 
default. In addition to the guarantee function, the clearinghouse makes 
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it simple for parties to a futures contract to unwind their positions prior 
to the settlement date. 

When a position is first taken in a futures contract, the investor 
must deposit a minimum dollar amount per contract as specified by the 
exchange. This amount is called the initial margin and is required as 
deposit for the contract. The initial margin may be in the form of an 
interest-bearing security such as a Treasury bill. As the price of the 
futures contract fluctuates, the value of the investor’s equity in the posi-
tion changes. At the end of each trading day, the exchange determines 
the settlement price for the futures contract. This price is used to mark 
to market the investor’s position, so that any gain or loss from the posi-
tion is reflected in the investor’s equity account. 

Maintenance margin is the minimum level (specified by the 
exchange) by which an investor’s equity position may fall as a result of 
an unfavorable price movement before the investor is required to 
deposit additional margin. The additional margin deposited is called 
variation margin, and it is an amount necessary to bring the equity in 
the account back to its initial margin level. Unlike initial margin, varia-
tion margin must be in cash not interest-bearing instruments. Any 
excess margin in the account may be withdrawn by the investor. If a 
party to a futures contract who is required to deposit variation margin 
fails to do so within 24 hours, the futures position is closed out. 

Although there are initial and maintenance margin requirements for 
buying securities on margin, the concept of margin differs for securities and 
futures. When securities are acquired on margin, the difference between the 
price of the security and the initial margin is borrowed from the broker. 
The security purchased serves as collateral for the loan, and the investor 
pays interest. For futures contracts, the initial margin, in effect, serves as 
“good faith” money, an indication that the investor will satisfy the obliga-
tion of the contract. Normally no money is borrowed by the investor. 

Futures versus Forward Contracts 
A forward contract, just like a futures contract, is an agreement for the 
future delivery of something at a specified price at the end of a desig-
nated period of time. Futures contracts are standardized agreements as 
to the delivery date (or month) and quality of the deliverable, and are 
traded on organized exchanges. A forward contract differs in that it is 
usually nonstandardized (that is, the terms of each contract are negoti-
ated individually between buyer and seller), there is no clearinghouse, 
and secondary markets are often nonexistent or extremely thin. Unlike a 
futures contract, which is an exchange-traded product, a forward con-
tract is an over-the-counter instrument. 
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Futures contracts are marked to market at the end of each trading 
day. Consequently, futures contracts are subject to interim cash flows as 
additional margin may be required in the case of adverse price move-
ments, or as cash is withdrawn in the case of favorable price move-
ments. A forward contract may or may not be marked to market, 
depending on the wishes of the two parties. For a forward contract that 
is not marked to market, there are no interim cash flow effects because 
no additional margin is required. 

Finally, the parties in a forward contract are exposed to credit risk 
because either party may default on the obligation. Credit risk is mini-
mal in the case of futures contracts because the clearinghouse associated 
with the exchange guarantees the other side of the transaction. 

Other than these differences, most of what we say about futures 
contracts applies equally to forward contracts. 

Risk and Return Characteristics of Futures Contracts 
When an investor takes a position in the market by buying a futures 
contract, the investor is said to be in a long position or to be long 
futures. If, instead, the investor’s opening position is the sale of a 
futures contract, the investor is said to be in a short position or short 
futures. The buyer of a futures contract will realize a profit if the futures 
price increases; the seller of a futures contract will realize a profit if the 
futures price decreases; if the futures price decreases, the buyer of the 
futures contract realizes a loss while the seller of a futures contract real-
izes a profit. Notice that the risk-return is symmetrical for a favorable 
and adverse price movement. 

When a position is taken in a futures contract, the party need not 
put up the entire amount of the investment. Instead, only initial margin 
must be put up. Thus a futures contract, as with other derivatives, 
allows a market participant to create leverage. While the degree of 
leverage available in the futures market varies from contract to contract, 
the leverage attainable is considerably greater than in the cash market 
by buying on margin. While at first the leverage available in the futures 
market may suggest that the market benefits only those who want to 
only speculate on price movements. This is not true. Futures markets 
can be used to reduce price risk. Without the leverage possible in futures 
transactions, the cost of reducing price risk using futures would be too 
high for many market participants. 

Pricing of Futures Contracts 
In later chapters we will see how the mathematical tools presented in 
this book can be applied to valuing complex financial instruments. 
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However, the pricing of futures contracts does not require any high level 
mathematical analysis. Rather it is based on simple arbitrage arguments 
discussed in Chapter 14. To see this, let’s derive the theoretical price of a 
futures contract using simple algebra. All we need to know is the fol-
lowing:

 ■ The price that the underlying asset for the futures contract is selling for 
in the cash market.

 ■ The cash yield earned on the underlying asset until the settlement date.
 ■ The interest rate for borrowing and lending until the settlement date. 

Let 

r = financing cost 
y = cash yield on underlying asset 
P = cash market price ($) of the underlying asset 
F = futures price ($) 

Now consider the following strategy, referred to as a cash and carry 
trade:

 ■ Sell the futures contract at F
 ■ Purchase the underlying asset in the cash market for P
 ■ Borrow P until the settlement date at the financing cost of r 

The outcome at the settlement date then is: 

1. From Settlement of the Futures Contract 

Proceeds from sale of the underlying asset to settle the = F 
futures contract 

Payment received from investing in the underlying asset for = yP 
3 months 

Total proceeds = F + yP 

2. From the Loan 

Repayment of the principal of loan = P 
Interest on loan = rP 
Total outlay = P + rP 

The profit will equal: 
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Profit = Total proceeds – Total outlay 
= F + yP – (P + rP) 

The theoretical futures price is where the profit from this strategy is 
zero. Thus, to have equilibrium, the following must hold: 

0 = F + yP – (P + rP) 

Solving for the theoretical futures price, we have: 

F = P + P (r – y) 

Alternatively, consider the following strategy called a reverse cash 
and carry trade:

 ■ Buy the futures contract at F
 ■ Sell (short) the underlying asset for P
 ■ Invest (lend) P at r until the settlement date 

The outcome at the settlement date would be: 

1. From Settlement of the Futures Contract 

Price paid for purchase of the underlying asset to settle = F 
futures contract 

Payment to lender of the underlying asset in order to borrow = yP 
the asset 

Total outlay = F + yP 

2. From the Loan 

Proceeds received from maturing of the loan investment = P 
Interest earned = rP 
Total proceeds = P + rP 

The profit will equal: 

Profit = Total proceeds – Total outlay 
= P + rP – (F + yP) 

Setting the profit equal to zero so that there will be no arbitrage profit 
and solving for the futures price, we would obtain the same equation for 
the theoretical futures price as given from the cash and carry trade. 
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The theoretical futures price may be at a premium to the cash market 
price (higher than the cash market price) or at a discount from the cash 
market price (lower than the cash market price) depending on P(r – y). 
The term r – y, which reflects the difference between the cost of financing 
and the asset’s cash yield, is called the net financing cost. The net financ-
ing cost is more commonly called the cost of carry or, simply, carry. Posi-
tive carry means that the yield earned is greater than the financing cost; 
negative carry means that the financing cost exceeds the yield earned. 

At the delivery date, the futures price must be equal to the cash market 
price. Thus, as the delivery date approaches, the futures price will con-
verge to the cash market price. This can be seen by looking at the equation 
for the theoretical futures price. As the delivery date approaches, the 
financing cost approaches zero, and the yield that can be earned by hold-
ing the investment approaches zero. Hence the cost of carry approaches 
zero, and the futures price will approach the cash market price. 

To derive the theoretical futures price using the arbitrage argument, 
several assumptions are made. When the assumptions are violated, there 
will be a divergence between the actual futures price and the theoretical 
futures price as derived above; that is, the difference between the two 
prices will differ from carry. The reasons for the deviation of the actual 
futures price from the theoretical futures price are as follows. 

First, no interim cash flows due to variation margin are assumed. In 
addition, any cash flows payments from the underlying asset are assumed 
to be paid at the delivery date rather than at an interim date. However, we 
know that interim cash flows can occur for both of these reasons. Because 
we assume no variation margin, the theoretical price for the contract is 
technically the theoretical price for a forward contract that is not marked 
to market, not the theoretical price for a futures contract. This is because, 
unlike a futures contract, a forward contract that is not marked to market 
at the end of each trading day does not require additional margin. 

Second, in deriving the theoretical futures price it is assumed that 
the borrowing rate and lending rate are equal. Typically, however, the 
borrowing rate is greater than the lending rate. Letting rB denote the 
borrowing rate and rL denote the lending rate, then the following 
boundaries would exist for the theoretical futures price: 

Upper boundary: F = P + P(rB – y) 

Lower boundary: F = P + P(rL – y) 

Third, in determining the theoretical futures price, transaction costs 
involved in establishing the positions are ignored. In actuality, there are 
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transaction costs of entering into and closing the cash position as well 
as round-trip transactions costs for the futures contract that do affect 
the theoretical futures price. Transaction costs widen the boundaries for 
the theoretical futures price. 

In the strategy involving short-selling of the underlying asset, it is 
assumed that the proceeds from the short sale are received and rein-
vested. In practice, for individual investors, the proceeds are not 
received, and, in fact, the individual investor is required to put up mar-
gin (securities margin not futures margin) to short-sell. For institutional 
investors, the asset may be borrowed, but there is a cost to borrowing. 
This cost of borrowing can be incorporated into the model by reducing 
the yield on the asset. 

In our derivation, we assumed that only one asset is deliverable. 
There are futures contracts, such as the government bond futures con-
tract in the United States and other countries, where the short has the 
option of delivering one of several acceptable issues to satisfy the 
futures contract. Thus, the buyer of a futures contract with this feature 
does not know what the deliverable asset will be. This leads to the 
notion of the “cheapest to deliver asset.” It is not difficult to value this 
option granted to the short. 

Finally, the underlying for some futures contracts is not a single 
asset but a basket of assets, or an index. Stock index futures contracts 
are an example. The problem in arbitraging these futures contracts on 
an index is that it is too expensive to buy or sell every asset included in 
the index. Instead, a portfolio containing a smaller number of assets 
may be constructed to “track” the index. The arbitrage, however, is no 
longer risk-free because there is the risk that the portfolio will not track 
the index exactly. All of this leads to higher transaction costs and uncer-
tainty about the outcome of the arbitrage. 

The Role of Futures in Financial Markets 
Without financial futures, investors would have only one trading loca-
tion to alter portfolio positions when they get new information that is 
expected to influence the value of assets—the cash market. If economic 
news that is expected to impact the value of an asset adversely is 
received, investors can reduce their price risk exposure to that asset. The 
opposite is true if the new information is expected to impact the value 
of that asset favorably: an investor would increase price-risk exposure 
to that asset. There are, of course, transaction costs associated with 
altering exposure to an asset—explicit costs (commissions), and hidden 
or execution costs (bid-ask spreads and market impact costs). 
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Futures provide another market that investors can use to alter their 
risk exposure to an asset when new information is acquired. An investor 
will transact in the market that is the more efficient to use in order to 
achieve the objective. The factors to consider are liquidity, transaction 
costs, taxes, and leverage advantages of the futures contract. The mar-
ket that investors feel is the one that is more efficient to use to achieve 
their investment objective should be the one where prices will be estab-
lished that reflect the new economic information. That is, this will be 
the market where price discovery takes place. Price information is then 
transmitted to the other market. It is in the futures market that it is eas-
ier and less costly to alter a portfolio position. Therefore, it is the 
futures market that will be the market of choice and will serve as the 
price discovery market. It is in the futures market that investors send a 
collective message about how any new information is expected to 
impact the cash market. 

How is this message sent to the cash market? We know that the 
futures price and the cash market price are tied together by the cost of 
carry. If the futures price deviates from the cash market price by more 
than the cost of carry, arbitrageurs (in attempting to obtain arbitrage 
profits) would pursue a strategy to bring them back into line. Arbitrage 
brings the cash market price into line with the futures price. It is this 
mechanism that assures that the cash market price will reflect the infor-
mation that has been collected in the futures market. 

OPTIONS 

An option is a contract in which the writer of the option grants the buyer 
of the option the right, but not the obligation, to purchase from or sell to 
the writer something at a specified price within a specified period of time 
(or at a specified date). The writer, also referred to as the seller, grants 
this right to the buyer in exchange for a certain sum of money, which is 
called the option price or option premium. The price at which the asset 
may be bought or sold is called the exercise or strike price. The date after 
which an option is void is called the expiration date. 

When an option grants the buyer the right to purchase the desig-
nated instrument from the writer (seller), it is referred to as a call 
option, or call. When the option buyer has the right to sell the desig-
nated instrument to the writer, the option is called a put option, or put. 
Buying calls or selling puts allows the investor to gain if the price of the 
underlying asset rises. Selling calls and buying puts allows the investor 
to gain if the price of the underlying asset falls. 
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An option is also categorized according to when the option buyer may 
exercise the option. There are options that may be exercised at any time up 
to and including the expiration date. Such an option is referred to as an 
American option. There are options that may be exercised only at the 
expiration date. An option with this feature is called a European option. 

There are no margin requirements for the buyer of an option once 
the option price has been paid in full. Because the option price is the 
maximum amount that the investor can lose, no matter how adverse the 
price movement of the underlying asset, there is no need for margin. 
Because the writer of an option has agreed to accept all of the risk (and 
none of the reward) of the position in the underlying asset, the writer is 
generally required to put up the option price received as margin. In 
addition, as price changes occur that adversely affect the writer’s posi-
tion, the writer is required to deposit additional margin (with some 
exceptions) as the position is marked to market. 

Options, like other financial instruments, may be traded either on 
an organized exchange or in the over-the-counter market. An exchange 
that wants to create an options contract must obtain approval from 
either the Commodities Futures Trading Commission or the Securities 
and Exchange Commission. Exchange-traded options have three advan-
tages. First, the exercise price and expiration date of the contract are 
standardized. Second, as in the case of futures contracts, the direct link 
between buyer and seller is severed after the order is executed because 
of the interchangeability of exchange-traded options. The clearinghouse 
associated with the exchange where the option trades performs the same 
function in the options market that it does in the futures market. 
Finally, the transaction costs are lower for exchange-traded options 
than for OTC options. The higher cost of an OTC option reflects the 
cost of customizing the option for the many situations where an institu-
tional investor needs to have a tailor-made option because the standard-
ized exchange-traded option does not satisfy its investment objectives. 
Some commercial and investment and banking firms act as principals as 
well as brokers in the OTC options market. OTC options are sometimes 
referred to as dealer options. 

OTC options can be customized in any manner sought by an institu-
tional investor. Basically, if a dealer can reasonably hedge the risk asso-
ciated with the opposite side of the option sought, it will create the 
option desired by a customer. OTC options are not limited to European 
or American type expiration designs. An option can be created in which 
the option can be exercised at several specified dates as well as the expi-
ration date of the option. Such options are referred to as limited exer-
cise options, Bermuda options, and Atlantic options. 
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Risk-Return for Options 
The maximum amount that an option buyer can lose is the option price. 
The maximum profit that the option writer can realize is the option 
price. The option buyer has substantial upside return potential, while 
the option writer has substantial downside risk. 

Notice that, unlike in a futures contract, one party to an option con-
tract is not obligated to transact—specifically, the option buyer has the 
right but not the obligation to transact. The option writer does have the 
obligation to perform. In the case of a futures contract, both buyer and 
seller are obligated to perform. Of course, a futures buyer does not pay 
the seller to accept the obligation, while an option buyer pays the seller 
an option price. 

Consequently, the risk/reward characteristics of the two contracts are 
also different. In the case of a futures contract, the buyer of the contract 
realizes a dollar-for-dollar gain when the price of the futures contract 
increases and suffers a dollar-for-dollar loss when the price of the futures 
contract drops. The opposite occurs for the seller of a futures contract. 
Options do not provide this symmetric risk/reward relationship. The most 
that the buyer of an option can lose is the option price. While the buyer of 
an option retains all the potential benefits, the gain is always reduced by the 
amount of the option price. The maximum profit that the writer may real-
ize is the option price; this is offset against substantial downside risk. This 
difference is extremely important because investors can use futures to pro-
tect against symmetric risk and options to protect against asymmetric risk. 

The Option Price 
Determining the value of an option is not as simple as the value of a 
futures contract. In Chapter 15 we will present a model employing sto-
chastic calculus and arbitrage arguments to determine the theoretical 
price of an option. In this section we simply present the factors that 
affect the valuation of an option. 

Basic Components of the Option Price 
The option price is a reflection of the option’s intrinsic value and any 
additional amount over its intrinsic value. The premium over intrinsic 
value is often referred to as the time premium. 

The intrinsic value of an option is the economic value of the option 
if it is exercised immediately, except that if there is no positive economic 
value that will result from exercising immediately then the intrinsic 
value is zero. The intrinsic value of a call option is the difference 
between the current price of the underlying asset and the strike price if 
positive; it is otherwise zero. For example, if the strike price for a call 
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option is $100 and the current asset price is $105, the intrinsic value is 
$5. That is, an option buyer exercising the option and simultaneously 
selling the underlying asset would realize $105 from the sale of the 
asset, which would be covered by acquiring the asset from the option 
writer for $100, thereby netting a $5 gain. 

When an option has intrinsic value, it is said to be “in the money.” 
When the strike price of a call option exceeds the current asset price, the 
call option is said to be “out of the money”; it has no intrinsic value. An 
option for which the strike price is equal to the current asset price is 
said to be “at the money.” Both at-the-money and out-of-the-money 
options have an intrinsic value of zero because it is not profitable to 
exercise the option. Our call option with a strike price of $100 would 
be: (1) in the money when the current asset price is greater than $100; 
(2) out of the money when the current asset price is less than $100; and
(3) at the money when the current asset price is equal to $100.

For a put option, the intrinsic value is equal to the amount by which 
the current asset price is below the strike price. For example, if the strike 
price of a put option is $100 and the current asset price is $92, the intrin-
sic value is $8. That is, the buyer of the put option who exercises the put 
option and simultaneously sells the underlying asset will net $8 by exer-
cising. The asset will be sold to the writer for $100 and purchased in the 
market for $92. For our put option with a strike price of $100, the option 
would be: (1) in the money when the asset price is less than $100; (2) out 
of the money when the current asset price exceeds the strike price; and (3) 
at the money when the strike price is equal to the asset’s price. 

The time premium of an option is the amount by which the option 
price exceeds its intrinsic value. The option buyer hopes that, at some 
time prior to expiration, changes in the market price of the underlying 
asset will increase the value of the rights conveyed by the option. For 
this prospect, the option buyer is willing to pay a premium above the 
intrinsic value. For example, if the price of a call option with a strike 
price of $100 is $9 when the current asset price is $105, the time pre-
mium of this option is $4 ($9 minus its intrinsic value of $5). Had the 
current asset price been $90 instead of $105, then the time premium of 
this option would be the entire $9 because the option has no intrinsic 
value. Clearly, other things being equal, the time premium of an option 
will increase with the amount of time remaining to expiration. 

There are two ways in which an option buyer may realize the value 
of a position taken in the option. First is to exercise the option. The sec-
ond is by selling the call option for $9. In the first example above, sell-
ing the call is preferable because the exercise of an option will realize a 
gain of only $5—it will cause the immediate loss of any time premium. 
There are circumstances under which an option may be exercised prior 
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to the expiration date; they depend on whether the total proceeds at the 
expiration date would be greater by holding the option or exercising 
and reinvesting any cash proceeds received until the expiration date. 

Factors that Influence the Option Price 
There are six factors that influence the option price: 

1. Current price of the underlying asset. 
2. Strike price. 
3. Time to expiration of the option. 
4. Expected return volatility of the underlying asset over the life of the 

option. 
5. Short-term risk-free interest rate over the life of the option. 
6. Anticipated cash payments on the underlying asset over the life of the 

option. 

The impact of each of these factors may depend on whether the option 
is a call or a put, and whether the option is an American option or a 
European option. A summary of the effect of each factor on put and call 
option prices is presented in Exhibit 2.2. 

Option Pricing Models 
Earlier we illustrated that the theoretical price of a futures contract can 
be determined on the basis of arbitrage arguments. Theoretical bound-
ary conditions for the price of an option also can be derived through 
arbitrage arguments. For example, using arbitrage arguments it can be 
shown that the minimum price for an American call option is its intrin-
sic value; that is: 

EXHIBIT 2.2 Summary of Factors that Affect the Price of an Option 

Effect of an Increase of Factor on 

Factor Call Price Put Price 

Current price of underlying asset Increase Decrease 
Strike price Decrease Increase 
Time to expiration of option Increase Increase 
Expected price volatility Increase Increase 
Short-term interest rate Increase Decrease 
Anticipated cash payments Decrease Increase 
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Call option price = ≥ Max (0, Price of asset – Strike price)


This expression says that the call option price will be greater than or 
equal to the difference between the price of the underlying asset and the 
strike price (intrinsic value), or zero, whichever is higher. 

The boundary conditions can be “tightened” by using arbitrage argu-
ments coupled with certain assumptions about the cash distribution of the 
asset.10 The extreme case is an option pricing model that uses a set of 
assumptions to derive a single theoretical price, rather than a range. Deriv-
ing a theoretical option price is much more complicated than deriving a 
theoretical futures price, because the option price depends on the expected 
return volatility of the underlying asset over the life of the option. 

Several models have been developed to determine the theoretical 
value of an option. The most popular one was developed by Fischer 
Black and Myron Scholes in 1973 for valuing European call options.11 

Several modifications to their model have followed since then. We shall 
discuss the Black-Scholes model and its assumptions in Chapter 15. 
Basically, the idea behind the arbitrage argument is that if the payoff 
from owning a call option can be replicated by purchasing the asset 
underlying the call option and borrowing funds, the price of the option 
is then (at most) the cost of creating the replicating strategy. 

SWAPS 

A swap is an agreement whereby two parties (called counterparties) 
agree to exchange periodic payments. The dollar amount of the pay-
ments exchanged is based on some predetermined dollar principal, 
which is called the notional principal amount or notional amount. The 
dollar amount each counterparty pays to the other is the agreed-upon 
periodic rate times the notional principal amount. The only dollars that 
are exchanged between the parties are the agreed-upon payments, not 
the notional principal amount. In a swap, there is the risk that one of 
the parties will fail to meet its obligation to make payments (default). 
This is referred to as counterparty risk. 

Swaps are classified based on the characteristics of the swap payments. 
There are four types of swaps: interest rate swaps, interest rate-equity 
swaps, equity swaps, and currency swaps. In an interest rate swap, the 

10 See Chapter 4 in John C. Cox and Mark Rubinstein, Option Markets (Englewood 
Cliffs, N.J.: Prentice Hall, 1985), Chapter 4. 
11 Fischer Black and Myron Scholes, “The Pricing of Corporate Liabilities,” Journal 
of Political Economy (May–June 1973), pp. 637–659. 
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counterparties swap payments in the same currency based on an interest 
rate. For example, one of the counterparties can pay a fixed-interest rate 
and the other party a floating interest rate. The floating-interest rate is 
commonly referred to as the reference rate. In an interest rate-equity swap, 
one party is exchanging a payment based on an interest rate and the other 
party based on the return of some equity index. The payments are made in 
the same currency. In an equity swap, both parties exchange payments in 
the same currency based on some equity index. Finally, in a currency swap, 
two parties agree to swap payments based on different currencies. 

A swap is not a new derivative instrument. Rather, it can be decom-
posed into a package of forward contracts. While a swap may be nothing 
more than a package of forward contracts, it is not a redundant contract 
for several reasons. First, in many markets where there are forward and 
futures contracts, the longest maturity does not extend out as far as that of 
a typical swap. Second, a swap is a more transactionally efficient instru-
ment. By this we mean that in one transaction an entity can effectively 
establish a payoff equivalent to a package of forward contracts. The for-
ward contracts would each have to be negotiated separately. Third, the 
liquidity of some swap markets is now better than many forward con-
tracts, particularly long-dated (i.e., long-term) forward contracts. 

CAPS AND FLOORS 

There are agreements available in the financial market whereby one 
party, for a fee (premium), agrees to compensate the other if a desig-
nated reference is different from a predetermined level. The party that 
will receive payment if the designated reference differs from a predeter-
mined level and pays a premium to enter into the agreement is called the 
buyer. The party that agrees to make the payment if the designated ref-
erence differs from a predetermined level is called the seller. 

When the seller agrees to pay the buyer if the designated reference 
exceeds a predetermined level, the agreement is referred to as a cap. The 
agreement is referred to as a floor when the seller agrees to pay the 
buyer if a designated reference falls below a predetermined level. The 
designated reference could be a specific interest rate such as LIBOR or 
the prime rate, the rate of return on some domestic or foreign stock 
market index such as the S&P 500 or the DAX, or an exchange rate 
such as the exchange rate between the U.S. dollar and the Japanese yen. 
The predetermined level is called the strike. As with a swap, a cap and a 
floor have a notional principal amount. Only the buyer of a cap or a 
floor is exposed to counterparty risk. 
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In general, the payment made by the seller of the cap to the buyer 
on a specific date is determined by the relationship between the desig-
nated reference and the strike. If the former is greater that the latter, 
then the seller pays the buyer: 

Notional principal amount × [Actual value of designated reference – Strike] 

If the designated reference is less than or equal to the strike, then the 
seller pays the buyer nothing. 

For a floor, the payment made by the seller to the buyer on a specific 
date is determined as follows. If the designated reference is less than the 
strike, then the seller pays the buyer: 

Notional principal amount × [Strike – Actual value of designated reference] 

If the designated reference is greater than or equal to the strike, then the 
seller pays the buyer nothing. 

In a cap or floor, the buyer pays a fee which represents the maxi-
mum amount that the buyer can lose and the maximum amount that the 
seller of the agreement can gain. The only party that is required to per-
form is the seller. The buyer of a cap benefits if the designated reference 
rises above the strike because the seller must compensate the buyer. The 
buyer of a floor benefits if the designated reference falls below the strike 
because the seller must compensate the buyer. 

In essence the payoff of these contracts is the same as that of an 
option. A call option buyer pays a fee and benefits if the value of the 
option’s underlying asset (or equivalently, designated reference) is 
higher than the strike price at the expiration date. A cap has a similar 
payoff. A put option buyer pays a fee and benefits if the value of the 
option’s underlying asset (or equivalently, designated reference) is less 
than the strike price at the expiration date. A floor has a similar payoff. 
An option seller is only entitled to the option price. The seller of a cap 
or floor is only entitled to the fee. Thus, a cap and a floor can be viewed 
as simply a package of options. As with a swap, a complex contract can 
be seen to be a package of basic contracts (forward contracts in the case 
of swaps and options in the case of caps and floors). 

SUMMARY

 ■ The claims of the holder of a financial asset may be either a fixed dollar 
amount (fixed income instrument or bond) or a varying, or residual, 
amount (common stock). 
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 ■ The two principal economic functions of financial assets are to (1) 
transfer funds from those parties who have surplus funds to invest to 
those who need funds to invest in tangible assets; and (2) transfer funds 
in such a way as to redistribute the unavoidable risk associated with 
the cash flow generated by tangible assets among those seeking and 
those providing the funds. 

■ Financial assets possess the following properties that determine or 
influence their attractiveness to different classes of investors: (1) mon-
eyness; (2) divisibility and denomination; (3) reversibility; (4) term to 
maturity; (5) liquidity; (6) convertibility; (7) currency; (8) cash flow 
and return predictability; and (9) tax status.

 ■ There are five ways to classify financial markets: (1) nature of the 
claim; (2) maturity of the claims; (3) new versus seasoned claims; (4) 
cash versus derivative instruments; and (5) organizational structure of 
the market.

 ■ Financial markets provide the following economic functions: (1) They 
signal how the funds in the economy should be allocated among finan-
cial assets (i.e., price discovery); (2) they provide a mechanism for an 
investor to sell a financial asset (i.e., provide liquidity); and (3) they 
reduce search and information costs of transacting.

 ■ Pricing efficiency refers to a market where prices at all times fully 
reflect all available information that is relevant to the valuation of 
securities.

 ■ Financial intermediaries obtain funds by issuing financial claims 
against themselves to market participants, then investing those funds. 

■ Asset managers manage funds to meet specified investment objectives— 
either based on a market benchmark or based on liabilities.

 ■ Common stocks, also called equity securities, represent an ownership 
interest in a corporation; holders of this types of security are entitled to 
the earnings of the corporation when those earnings are distributed in 
the form of dividends.

 ■ A bond is a financial obligation of an entity that promises to pay a 
specified sum of money at specified future dates; a bond may include a 
provision that grants the issuer or the investor an option to alter the 
effective maturity.

 ■ A futures contract and forward contract are agreements that require a 
party to the agreement either to buy or sell the underlying at a desig-
nated future date at a predetermined price.

 ■ Futures contracts are standardized agreements as to the delivery date 
and quality of the deliverable, and are traded on organized exchanges; 
a forward contract differs in that it is usually nonstandardized, there is 
no clearinghouse (and therefore counterparty risk), and secondary 
markets are often nonexistent or extremely thin. 
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■ An option is a contract in which the writer of the option grants the 
buyer of the option the right, but not the obligation, to purchase from 
the writer (a call option) or sell to the writer (a put option) the underly-
ing at the strike (or exercise) price within a specified period of time (or 
at a specified date); the option price is a reflection of the option’s intrin-
sic value and any additional amount over its intrinsic value. 

■ A swap is an agreement whereby the counterparties agree to exchange 
periodic payments; the dollar amount of the payments exchanged is 
based on a notional amount.

 ■ A cap and a floor are agreements whereby one party, for a fee (pre-
mium), agrees to compensate the other if a designated reference is dif-
ferent from a predetermined level. 
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CHAPTER 3 
Milestones in Financial Modeling 

and Investment Management 

The mathematical development of present-day economic and finance 
theory began in Lausanne, Switzerland at the end of the nineteenth 

century, with the development of the mathematical equilibrium theory by 
Leon Walras and Wilfredo Pareto.1 Shortly thereafter, at the beginning of 
the twentieth century, Louis Bachelier in Paris and Filip Lundberg in Upp-
sala (Sweden) made two seminal contributions: they developed sophisti-
cated mathematical tools to describe uncertain price and risk processes. 

These developments were well in advance of their time. Further 
progress was to be made only much later in the twentieth century, thanks 
to the development of digital computers. By making it possible to com-
pute approximate solutions to complex problems, digital computers 
enabled the large-scale application of mathematics to business problems. 

A first round of innovation occurred in the 1950s and 1960s. Ken-
neth Arrow and Georges Debreu introduced a probabilistic model of 
markets and the notion of contingent claims. (We discuss their contribu-
tions in Chapter 6.) In 1952, Harry Markowitz described mathemati-
cally the principles of the investment process in terms of utility 
optimization. In 1961, Franco Modigliani and Merton Miller clarified 
the nature of economic value, working out the implications of absence 
of arbitrage. Between 1964 and 1966, William Sharpe, John Lintner, 

1 References for some of the works cited in this chapter will be provided in later chap-
ters in this book. For an engaging description of the history of capital markets see 
Peter L. Bernstein, Capital Ideas (New York: The Free Press, 1992). For a history of 
the role of risk in business and investment management, see Peter L. Bernstein, 
Against the Gods (New York: John Wiley & Sons, 1996). 

75 
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and Jan Mossin developed a theoretical model of market prices based 
on the principles of financial decision-making laid down by Markowitz. 
The notion of efficient markets was introduced by Paul Samuelson in 
1965, and five years later, further developed by Eugene Fama. 

The second round of innovation started at the end of the 1970s. In 
1973, Fischer Black, Myron Scholes, and Robert Merton discovered how to 
determine option prices using continuous hedging. Three years later, 
Stephen Ross introduced arbitrage pricing theory (APT). Both were major 
developments that were to result in a comprehensive mathematical method-
ology for investment management and the valuation of derivative financial 
products. At about the same time, Merton introduced a continuous-time 
intertemporal, dynamic optimization model of asset allocation. Major 
refinements in the methodology of mathematical optimization and new 
econometric tools were to change the way investments are managed. 

More recently, the diffusion of electronic transactions has made 
available a huge amount of empirical data. The availability of this data 
created the hope that economics could be given a more solid scientific 
grounding. A new field—econophysics—opened with the expectation 
that the proven methods of the physical sciences and the newly born sci-
ence of complex systems could be applied with benefit to economics. It 
was hypothesized that economic systems could be studied as physical 
systems with only minimal a priori economic assumptions. Classical 
econometrics is based on a similar approach; but while the scope of 
classical econometrics is limited to dynamic models of time series, 
econophysics uses all the tools of statistical physics and complex sys-
tems analysis, including the theory of interacting multiagent systems. 

THE PRECURSORS: PARETO, WALRAS, AND THE 
LAUSANNE SCHOOL 

The idea of formulating quantitative laws of economic behavior in ways 
similar to the physical sciences started in earnest at the end of the nineteenth 
century. Though quite accurate economic accounting on a large scale dates 
back to Assyro-Babylonian times, a scientific approach to economics is a 
recent endeavor. 

Leon Walras and Wilfredo Pareto, founders of the so-called Lausanne 
School at the University of Lausanne in Switzerland, were among the first 
to explicitly formulate quantitative principles of market economies, stating 
the principle of economic equilibrium as a mathematical theory. Both 
worked at a time of great social and economic change. In Pareto’s work in 
particular, pure economics and political science occupy a central place. 



3-Milestones  Page 77  Wednesday, February 4, 2004  12:47 PM

77 Milestones in Financial Modeling and Investment Management 

Convinced that economics should become a mathematical science, 
Walras set himself the task of writing the first mathematical general 
equilibrium system. The British economist Stanley Jevons and the Aus-
trian economist Carl Menger had already formulated the idea of eco-
nomic equilibrium as a situation where supply and demand match in 
interrelated markets. Walras’s objective—to prove that equilibrium was 
indeed possible—required the explicit formulation of the equations of 
supply-and-demand equilibrium. 

Walras introduced the idea of tatonemment (French for groping) as a 
process of exploration by which a central auctioneer determines equilib-
rium prices. A century before, in 1776, in his book An Inquiry into the 
Nature and Causes of the Wealth of Nations, Adam Smith had introduced 
the notion of the “invisible hand” that coordinates the activity of inde-
pendent competitive agents to achieve desirable global goals.2 Walras was 
to make the hand “visible” by defining the process of price discovery. 

Pareto followed Walras in the Chair of Economics at the University of 
Lausanne. Pareto’s focus was the process of economic decision-making. He 
replaced the idea of supply-and-demand equilibrium with a more general 
idea of the ordering of preferences through utility functions.3 Equilibrium 
is reached where marginal utilities are zero. The Pareto system hypothe-
sized that agents are able to order their preferences and take into account 
constraints in such a way that a numerical index—“utility” in today’s ter-
minology—can be associated to each choice.4 Economic decision-making 
is therefore based on the maximization of utility. As Pareto assumed utility 
to be a differentiable function, global equilibrium is reached where mar-
ginal utilities (i.e., the partial derivatives of utility) vanish. 

Pareto was especially interested in the problem of the global opti-
mum of utility. The Pareto optimum is a state in which nobody can be 
better off without making others worse off. A Pareto optimum does not 
imply the equal division of resources; quite the contrary, a Pareto opti-
mum might be a maximally unequal distribution of wealth. 

2 In the modern parlance of complex systems, the “invisible hand” would be called 
an “emerging property” of competitive markets. Much recent work on complex sys-
tems and artificial life has focused on understanding how the local interaction of in-
dividuals might result in complex and purposeful global behavior. 
3 Pareto used the word “ophelimity” to designate what we would now call utility. 
The concept of ophelimity is slightly different from the concept of utility insofar as 
ophelimity includes constraints on people’s preferences. 
4 It was not until 1944 that utility theory was formalized in a set of necessary and 
sufficient axioms by von Neumann and Morgenstern and applied to decision-making 
under risk and uncertainty. See John von Neumann and Oskar Morgenstern, Theory 
of Games and Economic Behavior (Princeton, NJ: Princeton University Press, 
1944). 
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A lasting contribution of Pareto is the formulation of a law of 
income distribution. Known as the Pareto law, this law states that there 
is a linear relationship between the logarithm of the income I and the 
number N of people that earn more than this income: 

Log N = A + s log I 

where A and s are appropriate constants. 
The importance of the works of Walras and Pareto were not appre-

ciated at the time. Without digital computers, the equilibrium systems 
they conceived were purely abstract: There was no way to compute 
solutions to economic equilibrium problems. In addition, the climate at 
the turn of the century did not allow a serene evaluation of the scientific 
merit of their work. The idea of free markets was at the center of heated 
political debates; competing systems included mercantile economies 
based on trade restrictions and privileges as well as the emerging cen-
trally planned Marxist economies. 

PRICE DIFFUSION: BACHELIER 

In 1900, the Sorbonne University student Louis Bachelier presented a 
doctoral dissertation, Théorie de la Spéculation, that was to anticipate 
much of today’s work in finance theory. Bachelier’s advisor was the 
great French mathematician Henri Poincaré. There were three notable 
aspects in Bachelier’s thesis:

 ■ He argued that in a purely speculative market stock prices should be 
random.

 ■ He developed the mathematics of Brownian motion.
 ■ He computed the prices of several options. 

To appreciate the importance of Bachelier’s work, it should be 
remarked that at the beginning of the 20th century, the notion of proba-
bility was not yet rigorous; the formal mathematical theory of probabil-
ity was developed only in the 1930s (see Chapter 6). In particular, the 
precise notion of the propagation of information essential for the defini-
tion of conditional probabilities in continuous time had not yet been 
formulated. 

Anticipating the development of the theory of efficient markets 60 
years later, the key economic idea of Bachelier was that asset prices in a 
speculative market should be a fair game, that is, a martingale process 
such that the expected return is zero (see Chapter 15). According to Bach-
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elier, “The expectation of the speculator is zero.” The formal concept of a 
martingale (i.e., of a process such that its expected value at any moment 
coincides with the present value) had not yet been introduced in probabil-
ity theory. In fact, the rigorous notion of conditional probability and fil-
tration (see Chapter 6) were developed only in the 1930s. In formulating 
his hypothesis on market behavior, Bachelier relied on intuition. 

Bachelier actually went much further. He assumed that stock prices 
evolve as a continuous-time Markov process. This was a brilliant intu-
ition: Markov was to start working on these problems only in 1906. 
Bachelier established the differential equation for the time evolution of 
the probability distribution of prices, noting that this equation was the 
same as the heat diffusion equation. Five years later, in 1905, Albert 
Einstein used the same diffusion equation for the Brownian motion (i.e., 
the motion of a small particle suspended in a fluid). Bachelier also made 
the connection with the continuous limit of random walks, thus antici-
pating the work of the Japanese mathematician Kiyosi Itô at the end of 
the 1940s and the Russian mathematician and physicist Ruslan L. Stra-
tonovich on stochastic integrals at the end of the 1950s. 

By computing the extremes of Brownian motion, Bachelier computed 
the price of several options. He also computed the distributions of a 
number of functionals of Brownian motion. These were remarkable 
mathematical results in themselves. Formal proof was given only much 
later. Even more remarkable, Bachelier established option pricing formu-
las well before the formal notion of absence of arbitrage was formulated. 

Though the work of Bachelier was correctly assessed by his advisor 
Poincaré, it did not bring him much recognition at the time. Bachelier 
succeeded in getting several books on probability theory published, but 
his academic career was not very successful. He was offered only minor 
positions in provincial towns and suffered a major blow when in 1926, 
at the age of 56, he was refused a permanent chair at the University of 
Dijon under the pretext (false) that his 1900 thesis contained an error.5 

Bachelier’s work was outside the mainstream of contemporary 
mathematics but was too mathematically complex for the economists of 
his time. It wasn’t until the formal development of probability theory in 
1930s that his ideas became mainstream mathematics and only in the 
1960s, with the development of the theory of efficient markets, that his 
ideas became part of mainstream finance theory. In an efficient market, 
asset prices should, in each instant, reflect all the information available 
at the time, and any event that causes prices to move must be unex-

5 The famous mathematician Paul Levy who, apparently in bona fide, initially en-
dorsed the claim that Bachelier’s thesis contained an error, later wrote a letter of 
apology to Bachelier. 
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pected (i.e., a random disturbance). As a consequence, prices move as 
martingales, as argued by Bachelier. Bachelier was, in fact, the first to 
give a precise mathematical structure in continuous time to price pro-
cesses subject to competitive pressure by many agents. 

THE RUIN PROBLEM IN INSURANCE: LUNDBERG 

In Uppsala, Sweden, in 1903, three years after Bachelier defended his 
doctoral dissertation in Paris, Filip Lundberg defended a thesis that was 
to become a milestone in actuarial mathematics: He was the first to 
define a collective theory of risk and to apply a sophisticated probabilis-
tic formulation to the insurance ruin problem. The ruin problem of an 
insurance company in a nonlife sector can be defined as follows. Sup-
pose that an insurance company receives a stream of sure payments 
(premiums) and is subject to claims of random size that occur at random 
times. What is the probability that the insurer will not be able to meet 
its obligations (i.e., the probability of ruin)? 

Lundberg solved the problem as a collective risk problem, pooling 
together the risk of claims. To define collective risk processes, he intro-
duced marked Poisson processes. Marked Poisson processes are pro-
cesses where the random time between two events is exponentially 
distributed. The magnitude of events is random with a distribution inde-
pendent of the time of the event. Based on this representation, Lundberg 
computed an estimate of the probability of ruin. 

Lundberg’s work anticipated many future developments of probability 
theory, including what was later to be known as the theory of point pro-
cesses. In the 1930s, the Swedish mathematician and probabilist Harald 
Cramer gave a rigorous mathematical formulation to Lundberg’s work. A 
more comprehensive formal theory of insurance risk was later developed. 
This theory now includes Cox processes—point processes more general 
than Poisson processes—and fat-tailed distributions of claim size. 

A strong connection between actuarial mathematics and asset pric-
ing theory has since been established.6 In well-behaved, complete mar-
kets (see Chapter 23), establishing insurance premiums entails principles 
that mirror asset prices. In the presence of complete markets, insurance 
would be a risk-free business: There is always the possibility of reinsur-
ance. In markets that are not complete—essentially because they make 
unpredictable jumps—hedging is not possible; risk can only be diversi-

6 Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch, Modelling Extremal 
Events for Insurance and Finance (Berlin: Springer, 1996). 
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fied and options are inherently risky. Option pricing theory again mir-
rors the setting of insurance premiums. 

Lundberg’s work went unnoticed by the actuarial community for 
nearly 30 years, though this did not stop him from enjoying a successful 
career as an insurer. Both Bachelier and Lundberg were in advance of 
their time; they anticipated, and probably inspired, the subsequent 
development of probability theory. But the type of mathematics implied 
by their work could not be employed in full earnest prior to the devel-
opment of digital computers. It was only with digital computers that we 
were able to tackle complex mathematical problems whose solutions go 
beyond closed-form formulas. 

THE PRINCIPLES OF INVESTMENT: MARKOWITZ 

Just how an investor should allocate his resources has long been 
debated. Classical wisdom suggested that investments should be allo-
cated to those assets yielding the highest returns, without the consider-
ation of correlations. Before the modern formulation of efficient 
markets, speculators widely acted on the belief that positions should be 
taken only if they had a competitive advantage in terms of information. 
A large amount of resources were therefore spent on analyzing financial 
information. John Maynard Keynes suggested that investors should 
carefully evaluate all available information and then make a calculated 
bet. The idea of diversification was anathema to Keynes, who was actu-
ally quite a successful investor. 

In 1952, Harry Markowitz, then a graduate student at the University 
of Chicago, and a student member of the Cowles Commission,7 published a 
seminal article on optimal portfolio selection that upset established wis-
dom. He advocated that, being risk adverse, investors should diversify their 
portfolios.8 The idea of making risk bearable through risk diversification 
was not new: It was widely used by medieval merchants. Markowitz under-
stood that the risk-return trade-off of investments could be improved by 
diversification and cast diversification in the framework of optimization. 

7 The Cowles Commission is a research institute founded by Alfred Cowles in 1932.

Originally based in Colorado Springs, the Commission later moved to the University

of Chicago and thereafter to Yale University. Many prominent American economists

have been associated with the Commission.

8 See Harry M. Markowitz, “Portfolio Selection,” Journal of Finance (March 1952),

pp. 77–91. The principles in Markowitz’s article were then expanded in his book

Portfolio Selection, Cowles Foundation Monograph 16 (New York: John Wiley,

1959).
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Markowitz was interested in the investment decision-making pro-
cess. Along the lines set forth by Pareto 60 years earlier, Markowitz 
assumed that investors order their preferences according to a utility 
index, with utility as a convex function that takes into account inves-
tors’ risk-return preferences. Markowitz assumed that stock returns are 
jointly normal. As a consequence, the return of any portfolio is a nor-
mal distribution, which can be characterized by two parameters: the 
mean and the variance. Utility functions are therefore defined on two 
variables—mean and variance—and the Markowitz framework for 
portfolio selection is commonly referred to as mean-variance analysis. 
The mean and variance of portfolio returns are in turn a function of a 
portfolio’s weights. Given the variance-covariance matrix, utility is a 
function of portfolio weights. The investment decision-making process 
involves maximizing utility in the space of portfolio weights. 

After writing his seminal article, Markowitz joined the Rand Corpo-
ration, where he met George Dantzig. Dantzig introduced Markowitz to 
computer-based optimization technology.9 The latter was quick to appre-
ciate the role that computers would have in bringing mathematics to bear 
on business problems. Optimization and simulation were on the way to 
becoming the tools of the future, replacing the quest for closed-form solu-
tions of mathematical problems. 

In the following years, Markowitz developed a full theory of the invest-
ment management process based on optimization. His optimization theory 
had the merit of being applicable to practical problems, even outside of the 
realm of finance. With the progressive diffusion of high-speed computers, 
the practice of financial optimization has found broad application.10 

9 The inputs to the mean-variance analysis include expected returns, variance of re-
turns, and either covariance or correlation of returns between each pair of securities. 
For example, an analysis that allows 200 securities as possible candidates for port-
folio selection requires 200 expected returns, 200 variances of return, and 19,900 
correlations or covariances. An investment team tracking 200 securities may reason-
ably be expected to summarize their analyses in terms of 200 means and variances, 
but it is clearly unreasonable for them to produce 19,900 carefully considered corre-
lation coefficients or covariances. It was clear to Markowitz that some kind of model 
of the covariance structure was needed for the practical application of the model. He 
did little more than point out the problem and suggest some possible models of co-
variance for research to large portfolios. In 1963, William Sharpe suggested the sin-
gle index market model as a proxy for the covariance structure of security returns 
(“A Simplified Model for Portfolio Analysis,” Management Science (January 1963), 
pp. 277–293). 
10 In Chapter 16 we illustrate one application. For a more detailed discussion, see 
Frank J. Fabozzi, Francis Gupta, and Harry M. Markowitz, “The Legacy of Modern 
Portfolio Theory,” Journal of Investing (Summer 2002), pp. 7–22. 
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UNDERSTANDING VALUE: MODIGLIANI AND MILLER


At about the same time that Markowitz was tackling the problem of 
how investors should behave, taking asset price processes as a given, 
other economists were trying to understand how markets determine 
value. Adam Smith had introduced the notion of perfect competition 
(and therefore perfect markets) in the second half of the eighteenth cen-
tury. In a perfect market, there are no impediments to trading: Agents 
are price takers who can buy or sell as many units as they wish. The 
neoclassical economists of the 1960s took the idea of perfect markets as 
a useful idealization of real free markets. In particular, they argued that 
financial markets are very close to being perfect markets. The theory of 
asset pricing was subsequently developed to explain how prices are set 
in a perfect market. 

In general, a perfect market results when the number of buyers and 
sellers is sufficiently large, and all participants are small enough relative 
to the market so that no individual market agent can influence a com-
modity’s price. Consequently, all buyers and sellers are price takers, and 
the market price is determined where there is equality of supply and 
demand. This condition is more likely to be satisfied if the commodity 
traded is fairly homogeneous (for example, corn or wheat). 

There is more to a perfect market than market agents being price 
takers. It is also required that there are no transaction costs or impedi-
ments that interfere with the supply and demand of the commodity. 
Economists refer to these various costs and impediments as “frictions.” 
The costs associated with frictions generally result in buyers paying 
more than in the absence of frictions, and/or sellers receiving less. In the 
case of financial markets, frictions include: 

■ Commissions charged by brokers.
 ■ Bid-ask spreads charged by dealers.
 ■ Order handling and clearance charges.
 ■ Taxes (notably on capital gains) and government-imposed transfer fees.
 ■ Costs of acquiring information about the financial asset.
 ■ Trading restrictions, such as exchange-imposed restrictions on the size 

of a position in the financial asset that a buyer or seller may take.
 ■ Restrictions on market makers.
 ■ Halts to trading that may be imposed by regulators where the financial 

asset is traded. 
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Modigliani-Miller Irrelevance Theorems and the 
Absence of Arbitrage 
A major step was taken in 1958 when Franco Modigliani and Merton 
Miller published a then-controversial article in which they maintained 
that the value of a company does not depend on the capital structure of 
the firm.11 (The capital structure of a firm is the mix of debt and equity.) 
The traditional view prior to the publication of the article by 
Modigliani and Miller was that there existed a capital structure that 
maximized the value of the firm (i.e., there is an optimal capital struc-
ture). Modigliani and Miller demonstrated that in the absence of taxes 
and in a perfect capital market, the capital structure was irrelevant (i.e., 
the capital structure does not affect the value of a firm).12 

In 1961, Modigliani and Miller published yet another controversial 
article where they argued that the value of a company does not depend 
on the dividends it pays but on its earnings.13 The basis for valuing a 
firm—earnings or dividends—had always attracted considerable atten-
tion. Because dividends provide the hard cash which remunerates inves-
tors, they were considered by many as key to a firm’s value. 

Modigliani and Miller’s challenge to the traditional view that capi-
tal structure and dividends matter when determining a firm’s value was 
founded on the principle that the traditional views were inconsistent 
with the workings of competitive markets where securities are freely 
traded. In their view, the value of a company is independent of its finan-
cial structure: from a valuation standpoint, it does not matter whether 
the firm keeps its earnings or distributes them to shareholders. 

Known as the Modigliani-Miller theorems, these theorems paved the 
way for the development of arbitrage pricing theory. In fact, to establish 
their theorems, Modigliani and Miller made use of the notion of absence 
of arbitrage. Absence of arbitrage means that there is no possibility of 
making a risk-free profit without an investment. This implies that the 
same stream of cash flows should be priced in the same way across dif-

11 Franco Modigliani and Merton H. Miller, “The Cost of Capital, Corporation Fi-
nance, and the Theory of Investment,” American Economic Review (June 1958), 
pp. 261–297. In a later article, they corrected their analysis for the impact of corpo-
rate taxes: Franco Modigliani and Merton H. Miller, “Corporate Income Taxes and 
the Cost of Capital: A Correction,” American Economic Review (June 1963), pp. 
433–443. 
12 By extension, the irrelevance principle applies to the type of debt a firm may select 
(e.g., senior, subordinated, secured, and unsecured). 
13 Merton H. Miller and Franco Modigliani, “Dividend Policy, Growth, and the Val-
uation of Shares,” Journal of Business (October 1961), pp. 411–433. 
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ferent markets. Absence of arbitrage is the fundamental principle for rel-
ative asset pricing; it is the pillar on which derivative pricing rests. 

EFFICIENT MARKETS: FAMA AND SAMUELSON 

Absence of arbitrage entails market efficiency. Shortly after the Modigliani-
Miller theorems had been established, Paul Samuelson in 196514 and 
Eugene Fama in 197015 developed the notion of efficient markets: A 
market is efficient if prices reflect all available information. Bachelier 
had argued that prices in a competitive market should be random condi-
tionally to the present state of affairs. Fama and Samuelson put this 
concept into a theoretical framework, linking prices to information. 

As explained in the previous chapter, in general, an efficient market 
refers to a market where prices at all times fully reflect all available infor-
mation that is relevant to the valuation of securities. That is, relevant infor-
mation about the security is quickly impounded into the price of securities. 

Fama and Samuelson define “fully reflects” in terms of the expected 
return from holding a security. The expected return over some holding 
period is equal to expected cash distributions plus the expected price 
change, all divided by the initial price. The price formation process 
defined by Fama and Samuelson is that the expected return one period 
from now is a stochastic variable that already takes into account the “rel-
evant” information set. They argued that in a market where information 
is shared by all market participants, prices should fluctuate randomly. 

A price-efficient market has implications for the investment strategy 
that investors may wish to pursue. In an active strategy, investors seek 
to capitalize on what they perceive to be the mispricing of financial 
instruments (cash instruments or derivative instruments). In a market 
that is price efficient, active strategies will not consistently generate a 
return after taking into consideration transaction costs and the risks 
associated with a strategy that is greater than simply buying and hold-
ing securities. This has lead investors in certain sectors of the capital 
market where empirical evidence suggests the sector is price efficient to 
pursue a strategy of indexing, which simply seeks to match the perfor-
mance of some financial index. However Samuelson was careful to 
remark that the notion of efficient markets does not make investment 
analysis useless; rather, it is a condition for efficient markets. 

14 Paul A. Samuelson, “Proof the Properly Anticipated Prices Fluctuate Randomly,”

Industrial Management Review (Spring 1965), pp. 41–50.

15 Eugene F. Fama, “The Behavior of Stock Market Prices,” Journal of Business (Jan
-
uary 1965), pp. 34–105.
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Another facet in this apparent contradiction of the pursuit of active 
strategies despite empirical evidence on market efficiency was soon to be 
clarified. Agents optimize a risk-return trade-off based on the stochastic 
features of price processes. Price processes are not simply random but 
exhibit a rich stochastic behavior. The objective of investment analysis 
is to reveal this behavior (see Chapters 16 and 19). 

CAPITAL ASSET PRICING MODEL: SHARPE, LINTNER, AND 
MOSSIN 

Absence of arbitrage is a powerful economic principle for establishing 
relative pricing. In itself, however, it is not a market equilibrium model. 
William Sharpe (in 1964),16 John Lintner (in 1965),17 and Jan Mossin 
(in 1966),18 developed a theoretical equilibrium model of market prices 
called the Capital Asset Pricing Model (CAPM). As anticipated 60 years 
earlier by Walras and Pareto, Sharpe, Lintner, and Mossin developed the 
consequences of Markowitz’s portfolio selection into a full-fledged sto-
chastic general equilibrium theory. 

Asset pricing models categorize risk factors into two types. The first 
type is risk factors that cannot be diversified away via the Markowitz 
framework. That is, no matter what the investor does, the investor can-
not eliminate these risk factors. These risk factors are referred to as sys-
tematic risk factors or nondiversifiable risk factors. The second type is 
risk factors that can be eliminated via diversification. These risk factors 
are unique to the asset and are referred to as unsystematic risk factors 
or diversifiable risk factors. 

The CAPM has only one systematic risk factor—the risk of the over-
all movement of the market. This risk factor is referred to as “market 
risk.” This is the risk associated with holding a portfolio consisting of 
all assets, called the “market portfolio.” In the market portfolio, an 
asset is held in proportion to its market value. So, for example, if the 
total market value of all assets is $X and the market value of asset j is 
$Y, then asset j will comprise $Y/$X of the market portfolio. 

16 William F. Sharpe, “Capital Asset Prices,” Journal of Finance (September 1964),

pp. 425–442.

17 John Lintner, “The Valuation of Risk Assets and the Selection of Risky Invest
-
ments in Stock Portfolio and Capital Budgets,” Review of Economics and Statistics

(February 1965), pp. 13–37.

18 Jan Mossin, “Equilibrium in a Capital Asset Market,” Econometrica (October

1966), pp. 768–783.
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The expected return for an asset i according to the CAPM is equal to 
the risk-free rate plus a risk premium. The risk premium is the product of 
(1) the sensitivity of the return of asset i to the return of the market port-
folio and (2) the difference between the expected return on the market 
portfolio and the risk-free rate. It measures the potential reward for tak-
ing on the risk of the market above what can be earned by investing in an 
asset that offers a risk-free rate. Taken together, the risk premium is a 
product of the quantity of market risk and the potential compensation of 
taking on market risk (as measured by the second component). 

The CAPM was highly appealing from the theoretical point of view. 
It was the first general-equilibrium model of a market that admitted 
testing with econometric tools. A critical challenge to the empirical test-
ing of the CAPM is the identification of the market portfolio.19 

THE MULTIFACTOR CAPM: MERTON 

The CAPM assumes that the only risk that an investor is concerned with 
is uncertainty about the future price of a security. Investors, however, 
are usually concerned with other risks that will affect their ability to 
consume goods and services in the future. Three examples would be the 
risks associated with future labor income, the future relative prices of 
consumer goods, and future investment opportunities. 

Recognizing these other risks that investors face, in 1976 Robert 
Merton extended the CAPM based on consumers deriving their optimal 
lifetime consumption when they face these “extra-market” sources of 
risk.20 These extra-market sources of risk are also referred to as “fac-
tors,” hence the model derived by Merton is called a multifactor CAPM. 

The multifactor CAPM says that investors want to be compensated 
for the risk associated with each source of extra-market risk, in addition 
to market risk. In the case of the CAPM, investors hedge the uncertainty 
associated with future security prices by diversifying. This is done by 
holding the market portfolio. In the multifactor CAPM, in addition to 
investing in the market portfolio, investors will also allocate funds to 
something equivalent to a mutual fund that hedges a particular extra-
market risk. While not all investors are concerned with the same sources 
of extra-market risk, those that are concerned with a specific extra-mar-
ket risk will basically hedge them in the same way. 

19 Richard R. Roll, “A Critique of the Asset Pricing Theory’s Tests,” Journal of Fi-
nancial Economics (March 1977), pp. 129–176. 
20 Robert C. Merton, “An Intertemporal Capital Asset Pricing Model,” Econometri-
ca (September 1973), pp. 867–888. 
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The multifactor CAPM is an attractive model because it recognizes 
nonmarket risks. The pricing of an asset by the marketplace, then, must 
reflect risk premiums to compensate for these extra-market risks. Unfor-
tunately, it may be difficult to identify all the extra-market risks and to 
value each of these risks empirically. Furthermore, when these risks are 
taken together, the multifactor CAPM begins to resemble the arbitrage 
pricing theory model described next. 

ARBITRAGE PRICING THEORY: ROSS 

An alternative to the equilibrium asset pricing model just discussed, an 
asset pricing model based purely on arbitrage arguments, was derived 
by Stephen Ross.21 The model, called the Arbitrage Pricing Theory 
(APT) Model, postulates that an asset’s expected return is influenced by 
a variety of risk factors, as opposed to just market risk as assumed by 
the CAPM. The APT model states that the return on a security is lin-
early related to H systematic risk factors. However, the APT model does 
not specify what the systematic risk factors are, but it is assumed that 
the relationship between asset returns and the risk factors is linear. 

The APT model as given asserts that investors want to be compen-
sated for all the risk factors that systematically affect the return of a secu-
rity. The compensation is the sum of the products of each risk factor’s 
systematic risk and the risk premium assigned to it by the capital market. 

Proponents of the APT model argue that it has several major advan-
tages over the CAPM. First, it makes less restrictive assumptions about 
investor preferences toward risk and return. As explained earlier, the 
CAPM theory assumes investors trade off between risk and return solely 
on the basis of the expected returns and standard deviations of prospec-
tive investments. The APT model, in contrast, simply requires that some 
rather unobtrusive bounds be placed on potential investor utility func-
tions. Second, no assumptions are made about the distribution of asset 
returns. Finally, since the APT model does not rely on the identification 
of the true market portfolio, the theory is potentially testable. The 
model simply assumes that no arbitrage is possible. That is, using no 
additional funds (wealth) and without increasing risk, it is not possible 
for an investor to create a portfolio to increase return. 

The APT model provides theoretical support for an asset pricing 
model where there is more than one risk factor. Consequently, models of 

21 Stephen A. Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Economic 
Theory (December 1976), pp. 343–362. 
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this type are referred to as multifactor risk models. These models are 
applied to portfolio management. 

ARBITRAGE, HEDGING, AND OPTION THEORY: BLACK, SCHOLES, 
AND MERTON 

The idea of arbitrage pricing can be extended to any price process. A 
general model of asset pricing will include a number of independent 
price processes plus a number of price processes that depend on the first 
process by arbitrage. The entire pricing structure may or may not be 
cast in a general equilibrium framework. 

Arbitrage pricing allowed derivative pricing. With the development 
of derivatives trading, the requirement of a derivative valuation and 
pricing model made itself felt. The first formal solution of the option 
pricing model was developed independently by Fisher Black and Myron 
Scholes in 1976,22 working together, and in the same year by Robert 
Merton.23 

The solution of the option pricing problem proposed by Black, 
Scholes, and Merton was simple and elegant. Suppose that a market 
contains a risk-free bond, a stock, and an option. Suppose also that the 
market is arbitrage-free and that stock price processes follow a continu-
ous-time geometric Brownian motion (see Chapter 8). Black, Scholes, 
and Merton demonstrated that it is possible to construct a portfolio 
made up of the stock plus the bond that perfectly replicates the option. 
The replicating portfolio can be exactly determined, without anticipa-
tion, solving a partial differential equation. 

The idea of replicating portfolios has important consequences. 
Whenever a financial instrument (security or derivative instrument) pro-
cess can be exactly replicated by a portfolio of other securities, absence 
of arbitrage requires that the price of the original financial instrument 
coincide with the price of the replicating portfolio. Most derivative pric-
ing algorithms are based on this principle: to price a derivative instru-
ment, one must identify a replicating portfolio whose price is known. 

Pricing by portfolio replication received a powerful boost with the 
discovery that calculations can be performed in a risk-neutral probabil-
ity space where processes assume a simplified form. The foundation was 
thus laid for the notion of equivalent martingales, developed by Michael 

22 Fischer Black and Myron Scholes, “The Pricing of Options and Corporate Liabil-
ities,” Journal of Political Economy (1973), pp. 637–654. 
23 Robert C. Merton, “Theory of Rational Option Pricing,” Bell Journal of Econom-
ics and Management Science (1973), pp. 141–183. 
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Harrison and David Kreps24 and Michael Harrison and Stanley Pliska25 

in the late 1970s and early 1980s. Not all price processes can be 
reduced in this way: if price processes do not behave sufficiently well 
(i.e., if the risk does not vanish with the vanishing time interval), then 
replicating portfolios cannot be found. In these cases, risk can be mini-
mized but not hedged. 

SUMMARY

 ■ The development of mathematical finance began at the end of the nine-
teenth century with work on general equilibrium theory by Walras and 
Pareto.

 ■ At the beginning of the twentieth century, Bachelier and Lundberg 
made a seminal contribution, introducing respectively Brownian 
motion price processes and Markov Poisson processes for collective 
risk events.

 ■ The advent of digital computers enabled the large-scale application of 
advanced mathematics to finance theory, ushering in optimization and 
simulation.

 ■ In 1952, Markowitz introduced the theory of portfolio optimization 
which advocates the strategy of portfolio diversification.

 ■ In 1961, Modigliani and Miller argued that the value of a company is 
based not on its dividends and capital structure, but on its earnings; 
their formulation was to be called the Modigliani-Miller theorem.

 ■ In the 1960s, major developments include the efficient market hypothe-
sis (Samuelson and Fama), the capital asset pricing model (Sharpe, 
Lintner, and Mossin), and the multifactor CAPM (Merton).

 ■ In the 1970s, major developments include the arbitrage pricing theory 
(Ross) that lead to multifactor models and option pricing formulas 
(Black, Scholes, and Merton) based on replicating portfolios which are 
used to price derivatives if the underlying price processes are known. 

24 J. Michael Harrison and David M. Kreps, “Martingale and Arbitrage in Multipe-
riod Securities Markets,” Journal of Economic Theory 20 (1979), pp. 381–408. 
25 Michael Harrison and Stanley Pliska, “Martingales and Stochastic Integrals in the 
Theory of Continuous Trading,” Stochastic Processes and Their Applications 
(1981), pp. 313–316. 
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CHAPTER 4 
Principles of Calculus


nvented in the seventeenth century independently by the British physi-
cist Isaac Newton and the German philosopher G.W. Leibnitz, (infini-

tesimal) calculus was a major mathematical breakthrough; it was to 
make possible the modern development of the physical sciences. Calcu-
lus introduced two key ideas:

 ■ The concept of instantaneous rate of change.
 ■ A framework and rules for linking together quantities and their instan-

taneous rates of change. 

Suppose that a quantity such as the price of a financial instrument 
varies as a function of time. Given a finite interval, the rate of change of 
that quantity is the ratio between the amount of change and the length 
of the time interval. Graphically, the rate of change is the steepness of 
the straight line that approximates the given curve.1 In general, the rate 
of change will vary as a function of the length of the time interval. 

What happens when the length of the time interval gets smaller and 
smaller? Calculus made the concept of infinitely small quantities precise 
with the notion of limit. If the rate of change can get arbitrarily close to 
a definite number by making the time interval sufficiently small, that 
number is the instantaneous rate of change. The instantaneous rate of 
change is the limit of the rate of change when the length of the interval 
gets infinitely small. This limit is referred to as the derivative of a func-
tion, or simply, derivative. Graphically, the derivative is the steepness of 
the tangent to a curve. 

Starting from this definition and with the help of a number of rules 
for computing a derivative, it was shown that the instantaneous rate of 

1 The rate of change should not be confused with the return on an asset, which is the 
asset’s percentage price change. 

91 
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change of a number of functions—such as polynomials, exponentials, 
logarithms, and many more—can be explicitly computed as a closed for-
mula. For example, the rate of change of a polynomial is another poly-
nomial of a lower degree. 

The process of computing a derivative, referred to as differentiation, 
solves the problem of finding the steepness of the tangent to a curve; the 
process of integration solves the problem of finding the area below a 
given curve. The reasoning is similar. The area below a curve is approx-
imated as the sum of rectangles and is defined as the limit of these sums 
when the rectangles get arbitrarily small. 

A key result of calculus is the discovery that integration and deriva-
tion are inverse operations: Integrating the derivative of a function 
yields the function itself. What was to prove even more important to the 
development of modern science was the possibility of linking together a 
quantity and its various instantaneous rates of change, thus forming dif-
ferential equations, the subject of Chapter 9. 

A solution to a differential equation is any function that satisfies it. 
A differential equation is generally satisfied by an infinite family of func-
tions; however, if a number of initial values of the solutions are 
imposed, the solution can be uniquely identified. This means that if 
physical laws are expressed as differential equations, it is possible to 
exactly forecast the future development of a system. For example, 
knowing the differential equations of the motion of bodies in empty 
space, it is possible to predict the motion of a projectile knowing its ini-
tial position and speed. It is difficult to overestimate the importance of 
this principle. The fact that most laws of physics can be expressed as 
relationships between quantities and their instantaneous rates of change 
prompted the physicist Eugene Wigner’s remark on the “unreasonable 
effectiveness of mathematics in the natural sciences.”2 

Mathematics has, however, been less successful in describing human 
artifacts such as the economy or financial markets. The problem is that 
no simple mathematical law can faithfully represent the evolution of 
observed quantities. A description of economic behavior requires the 
introduction of a certain amount of uncertainty in economic laws. 

Uncertainty can be represented in various ways. It can, for example, 
be represented with concepts such as fuzziness and imprecision or more 
quantitatively as probability. In economics, uncertainty is usually repre-
sented within the framework of probability. Probabilistic laws can be 
cast in two mathematically equivalent ways: 

2 Eugene Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural 
Sciences,” Communications in Pure and Applied Mathematics 13, no. 1 (February 
1960). 
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■ The evolution of probability distributions is represented through differ-
ential equations. This is the case within the framework of calculus.

 ■ The evolution of random phenomena is represented through direct 
relationships between stochastic processes. This is the case within the 
framework of stochastic calculus. 

Stochastic calculus has been adopted as the preferred framework in 
finance and economics. We will start with a review of the key concepts 
of calculus and then introduce the concepts of its stochastic evolution. 

SETS AND SET OPERATIONS 

The basic concept in calculus (and in the theory of probability) is that of 
a set. A set is a collection of objects called elements. The notions of both 
element and set should be considered primitive. Following a common 
convention, let’s denote sets with capital Latin or Greek letters: 
A,B,C,Ω… and elements with small Latin or Greek letters: a,b,ω. Let’s 
then consider collections of sets. In this context, a set is regarded as an 
element at a higher level of aggregation. In some instances, it might be 
useful to use different alphabets to distinguish between sets and collec-
tions of sets. 

Piling up sets and sets of sets is not as innocuous as it might seem; it 
is effectively the source of subtle and basic fundamental logical contra-
dictions called antinomies. Mathematics requires that a distinction be 
made between naive set theory, which deals with basic set operations, 
and axiomatic set theory, which deals with the logical structure of set 
theory. In working with calculus, we can stay within the framework of 
naive set theory and thus consider only basic set operations. 

Proper Subsets 
An element a of a set A is said to belong to the set A written as a ∈ A. If 
every element that belongs to a set A also belongs to a set B, we say that 
A is contained in B and write: A ⊂ B. We will distinguish whether A is a 
proper subset of B (i.e., whether there is at least one element that 
belongs to B but not to A) or if the two sets might eventually coincide. 
In the latter case we write A ⊆ B. 

For example, as explained in Chapter 2, in the United States there 
are indexes that are constructed based on the price of a subset of com-
mon stocks from the universe of all common stock in the country. There 
are three types of common stock (equity) indexes: 
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1. Produced by stock exchanges based on all stocks traded on the particu-
lar exchanges (the most well known being the New York Stock 
Exchange Composite Index). 

2. Produced by organizations that subjectively select the stocks included 
in the index (the most popular being the Standard & Poor’s 500). 

3. Produced by organizations where the selection process is based on an 
objective measure such as market capitalization. 

The Russell equity indexes, produced by Frank Russell Company, 
are examples of the third type of index. The Russell 3000 Index includes 
the 3,000 largest U.S. companies based on total market capitalization. It 
represents approximately 98% of the investable U.S. equity market. The 
Russell 1000 Index includes 1,000 of the largest companies in the Rus-
sell 3000 Index while the Russell 2000 Index includes the 2,000 smallest 
companies in the Russell 3000 Index. The Russell Top 200 Index 
includes the 200 largest companies in the Russell 1000 Index and the 
Russell Midcap Index includes the 800 smallest companies in the Rus-
sell 1000 Index. None of the indexes include non-U.S. common stocks. 

Let us introduce the notation: 

A = all companies in the United States that have issued common 
stock 

I3000 = companies included in the Russell 3000 Index 
I1000 = companies included in the Russell 1000 Index 
I2000 = companies included in the Russell 2000 Index 
ITop200 = companies included in the Russell Top 200 Index 
IMicap = companies included in the Russell Midcap200 Index 

We can then write the following: 

I3000 ⊂ A	 (every company that is contained in the Russell 3000 
Index is contained in the set of all companies in the 
United States that have issued common stock) 

I1000 ⊂ I3000	 (the largest 1,000 companies contained in the Rus-
sell 1000 Index are contained in the Russell 3000 
Index) 

IMicap ⊂ I1000	 (the 800 smallest companies in the Russell Midcap 
Index are contained in the Russell 1000 Index) 

ITop200 ⊂ I1000 ⊂ I3000 ⊂ A 

IMicap ⊂ I1000 ⊂ I3000 ⊂ A 
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Throughout this book we will make use of the convenient logic sym-
bols ∀ and ∃ that mean respectively, “for any element” and “an element 
exists such that.” We will also use the symbol ⇒ that means “implies.” 
For instance, if A is a set of real numbers and a ∈ A, the notation ∀a: a 
< x means “for any number a smaller than x” and ∃a: a < x means 
“there exists a number a smaller than x.” 

Empty Sets 
Given a subset B of a set A, the complement of B with respect to A writ-
ten as BC is formed by all elements of A that do not belong to B. It is 
useful to consider sets that do not contain any elements called empty 
sets. The empty set is usually denoted by ∅. For example, using the Rus-
sell Indexes, the set of non-U.S. companies in the Russell 3000 Index 
whose stock is not traded in the United States is an empty set. 

Union of Sets 
Given two sets A and B, their union is formed by all individuals that 
belong to either A or B. This is written as C = A ∪ B. For example, 

I1000 ∪ I2000 = I3000	 (the union of the companies contained in 
the Russell 1000 Index and the Russell 
2000 Index is the set of all companies 
contained in the Russell 3000 Index) 

IMicap ∪ ITop200 = I1000	 (the union of the companies contained in 
the Russell Midcap Index and the Russell 
Top 200 Index is the set of all companies 
contained in the Russell 1000 Index) 

Intersection of Sets 
Given two sets A and B, their intersection is formed by all elements that 
belong to both A and B. This is written as C = A ∩ B. For example, let 

IS&P = companies included in the S&P 500 Index 

The S&P 500 is a stock market index that includes 500 widely held 
common stocks representing about 77% of the New York Stock Exchange 
market capitalization. (Market capitalization for a company is the product 
of the market value of a share and the number of shares outstanding.) 
Then 
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IS&P ∩ ITop200 = C (the stocks contained in the S&P 500 Index 
that are the largest 200 companies in the Rus-
sell Index) 

We can also write: 

I1000 ∩ I2000 = ∅ (companies included in both the Russell 2000 
and the Russell 1000 Index is the empty set since 
there are no companies that are in both indexes) 

Elementary Properties of Sets 
Suppose that the set Ω includes all elements that we are presently con-
sidering (i.e., that it is the total set). Three elementary properties of sets 
are given below:

 ■ Property 1. The complement of the empty set is the total set: 

ΩC = ∅, ∅C = Ω

 ■ Property 2. If A,B,C are subsets of Ω, then the distribution properties 
of union and intersection hold: 

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

 ■ Property 3. The complement of the union is the intersection of the 
complements and the complement of the intersection is the union of the 
complements: 

(B ∪ C)C = BC ∩ CC 

(B ∩ C)C = BC ∪ CC 

DISTANCES AND QUANTITIES 

Calculus describes the dynamics of quantitative phenomena. This calls 
for equipping sets with a metric that defines distances between elements. 
Though many results of calculus can be derived in abstract metric 
spaces, standard calculus deals with sets of n-tuples of real numbers. In 



4-PrincipCalculus  Page 97  Friday, March 12, 2004  12:39 PM

97 Principles of Calculus 

a quantitative framework, real numbers represent the result of observa-
tions (or measurements) in a simple and natural way. 

n-tuples 
An n-tuple, also called an n-dimensional vector, includes n components: 
(a1, a2, ..., an). The set of all n-tuples of real numbers is denoted by Rn . 
The R stands for real numbers.3 

For example, suppose the monthly rates of return on a portfolio in 
2002 are as shown below along with the actual return for the S&P 500 
(the benchmark index for the portfolio manager):4 

Month Portfolio S&P 500 

January  1.10% –1.46% 
February  1.37%  1.93% 
March  2.95%  3.76% 
April  5.78%  6.06% 
May  0.51%  0.74% 
June  7.32%  7.09% 
July  7.13%  7.80% 
August  1.47%  0.66% 
September  9.54% 10.87% 
October  7.32%  8.80% 
November  6.19%  5.89% 
December –4.92% –5.88% 

Then the monthly returns rport for the portfolio can be written as a 12-
tuple and has the following 12 components: 

= 1.10% 1.37% 2.95% 5.78% 0.51% 7.32% ,rport 
, , , , , 

7.13% 1.47% 9.54% 7.32% 6.19% , –4.92% , , , , 

Similarly, the return rS&P on the S&P 500 can be expressed as a 12-
tuple as follows: 

3 Where the components of an n-tuple are only integers, the set of n-tuples is denoted

by Zn , Z representing zahlen, which is German for integer.

4 The monthly rate of return on the S&P 500 is computed as follows


Dividends paid on all + Change in the index 
the stock in the index value for the month ------------------------------------------------------------------------------------------------------------------------------ – 1 

Value of the index at the beginning of the period 
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rS&P = , , , , ,–1.46% 1.93% 3.76% 6.06% 0.74% 7.09% , 
7.80% 0.66% 10.87% 8.80% 5.89% , –5.88%, , , , 

One can perform standard operations on n-tuples. For example, 
consider the portfolio returns in the two 12-tuples. The 12-tuple that 
expresses the deviation of the portfolio’s performance from the bench-
mark index is computed by subtracting from each component of the 
return 12-tuple from the corresponding return on the S&P 500. That is, 

–rport rS&P


1.10% 1.37% 2.95% 5.78% 0.51% 7.32% ,
= , , , , , 
7.13% 1.47% 9.54% 7.32% 6.19% , –4.92%, , , , 

–1.46% , 1.93% 3.76% 6.06% 0.74% 7.09% ,–	 , , , , 
7.80% 0.66% 10.87% 8.80% 5.89% , –5.88%, , , , 

= 2.56% , –0.56%, –0.81% , –0.28%, –0.23% 0.23% ,, 
, ,–0.67% 0.81% , –1.33%, –1.48% , 0.30% 1.26% 

It is the resulting 12-tuple that is used to compute the tracking error of a 
portfolio—the standard deviation of the variation of the portfolio’s return 
from its benchmark index’s return described in Chapter 19. 

Coming back to the portfolio return, one can compute a logarithmic 
return for each month by adding 1 to each component of the 12-tuple 
and then taking the natural logarithm of each component. One can then 
obtain a geometric average, called the geometric return, by multiplying 
each component of the resulting vector and taking the 12th root. 

Distance 
Consider the real line R1 (i.e., the set of real numbers). Real numbers 
include rational numbers and irrational numbers. A rational number is 
one that can be expressed as a fraction, c/d, where c and d are integers 
and d ≠ 0. An irrational number is one that cannot be expressed as a 
fraction. Three examples of irrational numbers are 

2 ≅ 1.4142136 

Ratio between diameter and circumference 
= π ≅ 3.1415926535897932384626 

Natural logarithm = e ≅ 2.7182818284590452353602874713526 
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On the real line, distance is simply the absolute value of the difference 
between two numbers a b– which also can be written as 

(a b)2 – 

Rn is equipped with a natural metric provided by the Euclidean distance 
between any two points 

[(d a1, a2, …, a ), (b1, b2, …, b )] = ∑(ai – bi)
2 

n n 

Given a set of numbers A, we can define the least upper bound of 
the set. This is the smallest number s such that no number contained in 
the set exceeds s. The quantity s is called the supremum and written as s 
= supA. More formally, the supremum is that number, if it exists, that 
satisfies the following properties: 

∀a: a ∈ A, s ≥ a 

∀ε > 0, ∃a: s – a ≤ ε  

The supremum need not to belong to the set A. If it does, it is called the 
maximum. 

Similarly, infimum is the greatest lower bound of a set A, defined as 
the greatest number s such that no number contained in the set is less 
than s. If infimum belongs to the set it is called the minimum. 

Density of Points 
A key concept of set theory with a fundamental bearing on calculus is 
that of the density of points. In fact, in financial economics we distin-
guish between discrete and continuous quantities. Discrete quantities 
have the property that admissible values are separated by finite dis-
tances. Continuous quantities are such that one might go from one to 
any of two possible values passing through every possible intermediate 
value. For instance, the passing of time between two dates is considered 
to occupy every possible instant without any gap. 

The fundamental continuum is the set of real numbers. A contin-
uum can be defined as any set that can be placed in a one-to-one rela-
tionship with the set of real numbers. Any continuum is an infinite non-
countable set; a proper subset of a continuum can be a continuum. It 
can be demonstrated that a finite interval is a continuum as it can be 
placed in a one-to-one relationship with the set of all real numbers. 
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EXHIBIT 4.1 Bernoulli’s Construction to Enumerate Rational Numbers 

1/1 1/2 1/3 1/4 
2/1 2/2 2/3 2/4 
3/1 3/2 3/3 3/4 
4/1 4/2 4/3 4/4 

The intuition of a continuum can be misleading. To appreciate this, 
consider that the set of all rational numbers (i.e., the set of all fractions 
with integer numerator and denominator) has a dense ordering, i.e., has 
the property that given any two different rational numbers a,b with a < 
b, there are infinite other rational numbers in between. However, ratio-
nal numbers have the cardinality of natural numbers. That is to say 
rational numbers can be put into a one-to-one relationship with natural 
numbers. This can be seen using a clever construction that we owe to 
the seventeenth century Swiss mathematician Jacob Bernoulli. 

Using Bernoulli’s construction, we can represent rational numbers 
as fractions of natural numbers arranged in an infinite two-dimensional 
table in which columns grow with the denominators and rows grow 
with the numerators. A one-to-one relationship with the natural num-
bers can be established following the path: (1,1) (1,2) (2,1) (3,1) (2,2) 
(1,3) (1,4) (2,3) (3,2) (4,1) and so on (see Exhibit 4.1). 

Bernoulli thus demonstrated that there are as many rational num-
bers as there are natural numbers. Though the set of rational numbers 
has a dense ordering, rational numbers do not form a continuum as they 
cannot be put in a one-to-one correspondence with real numbers. 

Given a subset A of Rn, a point a ∈ A is said to be an accumulation 
point if any sphere centered in a contains an infinite number of points 
that belong to A. A set is said to be “closed” if it contains all of its own 
accumulation points and “open” if it does not. 

FUNCTIONS 

The mathematical notion of a function translates the intuitive notion of a 
relationship between two quantities. For example, the price of a security is a 
function of time: to each instant of time corresponds a price of that security. 

Formally, a function f is a mapping of the elements of a set A into 
the elements of a set B. The set A is called the domain of the function. 
The subset R = f(A) ⊆ B of all elements of B that are the mapping of 
some element in A is called the range R of the function f. R might be a 
proper subset of B or coincide with B. 
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The concept of function is general: the sets A and B might be any two 
sets, not necessarily sets of numbers. When the range of a function is real 
numbers, the function is said to be a real function or a real-valued function. 

Two or more elements of A might be mapped into the same element 
of B. Should this situation never occur, that is, if distinct elements of A 
are mapped into distinct elements of B, the function is called an injection. 
If a function is an injection and R = f(A) = B, then f represents a one-to-
one relationship between A and B. In this case the function f is invertible 
and we can define the inverse function g = f –1 such that f(g(a)) = a. 

Suppose that a function f assigns to each element x of set A some ele-
ment y of set B. Suppose further that a function g assigns an element z of 
set C to each element y of set B. Combining functions f and g, an element 
z in set C corresponds to an element x in set A. This process results in a 
new function, function h, and that function takes an element in set A and 
assigns it to set C. The function h is called the composite of functions g 
and f, or simply a composite function, and is denoted by h(x) = g[f(x)]. 

VARIABLES 

In calculus one usually deals with functions of numerical variables. Some 
distinctions are in order. A variable is a symbol that represents any element 
in a given set. For example, if we denote time with a variable t, the letter t 
represents any possible moment of time. Numerical variables are symbols 
that represent numbers. These numbers might, in turn, represent the ele-
ments of another set. They might be thought of as numerical indexes which 
are in a one-to-one relationship with the elements of a set. For example, if 
we represent time over a given interval with a variable t, the letter t repre-
sents any of the numbers in the given interval. Each of these numbers in 
turn represents an instant of time. These distinctions might look pedantic 
but they are important for the following two reasons. 

First, we need to consider numeraire or units of measure. Suppose, 
for instance, that we represent the price P of a security as a function of 
time t: P = f(t). The function f links two sets of numbers that represent 
the physical quantities price and time. If we change the time scale or the 
currency, the numerical function f will change accordingly though the 
abstract function that links time and price will remain unchanged. 

Second, in probability theory we will have to introduce random vari-
ables which are functions from states of the world to real numbers and not 
from real numbers to real numbers. 

One important type of function is a sequence. A sequence is a mapping 
of the set of natural numbers into another set. For example a discrete-time, 
real-valued time series maps discrete instants of time into real numbers. 



4-PrincipCalculus  Page 102  Friday, March 12, 2004  12:39 PM

102 The Mathematics of Financial Modeling and Investment Management 

LIMITS


The notion of limit is fundamental in calculus. It applies to both func-
tions and sequences. Consider an infinite sequence S of real numbers 

S ≡ (a1, a2, ..., ai,...) 

If, given any real number ε > 0, it is always possible to find a natural 
number i(ε ) such that 

i i ε ( )  implies≥ ai – a ε < 

then we write 

lim a = a 
n → ∞ n 

and say that the sequence S tends to a when n tends to infinity, or that a 
is the limit of the sequence S. 

Two aspects of this definition should be noted. First, ε can be chosen 
arbitrarily small. Second, for every choice of ε the difference, in absolute 
value, between the elements of the sequence S and the limit a is smaller 
than ε for every index i above i(ε ). This translates the notion that the 
sequence S gets arbitrarily close to a as the index i grows. 

We can now define the concept of limit for functions. Suppose that a 
real function y = f(x) is defined over an open interval (a,b), i.e., an inter-
val that excludes its end points. If, given any real number ε > 0, it is 
always possible to find a positive real number r(ε ) such that 

x c– < r ε ( )  implies y d– ε < 

then we write 

lim f x( )  = d 
x → c 

and say that the function f tends to the limit d when x tends to c. 
These basic definitions can be easily modified to cover all possible 

cases of limits: infinite limits, limits from the left or from the right or 
finite limits when the variable tends to infinity. Exhibit 4.2 presents in 
graphical form these cases. Exhibit 4.3 lists the most common defini-
tions, associating the relevant condition to each limit. 
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EXHIBIT 4.2 Graphical Presentation of Infinite Limits, Limits from the Left or 
Right, and Finite Limits 

Note that the notion of limit can be defined only in a continuum. In 
fact, the limit of a sequence of rational numbers is not necessarily a 
rational number. 

CONTINUITY 

Continuity is a property of functions, a continuous function being a 
function that does not make jumps. Intuitively, a continuous function 
might be considered one that can be represented through an uninter-
rupted line in a Cartesian diagram. Its formal definition relies on limits. 

A function f is said to be continuous at the point c if 

( ) = f clim f x ( )  
x → c 
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EXHIBIT 4.3 Most Common Definitions Associating the Relevant Condition to 
Each Limit 

The sequence tends to a finite 
limit 

The sequence tends to plus 
infinity 

The sequence tends to minus 
infinity 

Finite limit of a function 

Finite left limit of a function 

Finite right limit of a function 

Finite limit of a function when 
x tends to plus infinity 

Finite limit of a function when 
x tends to minus infinity 

Infinite limit of a function 

Infinite limit of a function 
when x tends to plus infinity 

lim a = a ∀ε > 0, ∃i(ε): |a  – a| < εn
n ∞ → n 

for n > i(ε) 

lim a = +∞ ∀D > 0, ∃i(D): a  > D 
n ∞ → n 

for n > i(ε) 
n

lim a = –∞ ∀D < 0, ∃i(D): a  < Dn
n ∞ → n 

for n > i(ε) 

lim f x( )  = d ∀ε > 0, ∃r(ε): |f(x) – d| < ε 
x → c 

for |x – c| < r(ε)


lim f x 
( )  = d ∀ε > 0, ∃r(ε): |f(x) – d| < ε 
– x → c for |x – c| < r(ε), x < c 

lim f x( )  = d ∀ε > 0, ∃r(ε): |f(x) – d| < ε 
+ x → c for |x – c| < r(ε), x > c 

lim f x( )  = d ∀ε > 0, ∃R(ε) > 0: |f(x) – a| < ε 
x → +∞ for x > R(ε) 

lim f x( )  = d ∀ε > 0, ∃R(ε) > 0: |f(x) – a| < ε 
x → –∞ 

for x < –R(ε) 

lim f x( )  = ∞ ∀D > 0, ∃r(D): |f(x)| > D 
x → c 

for |x – c| < r(D)


lim f x 
( )  = +∞ ∀D > 0, ∃R(D): f(x) > D 
x → +∞ 

for x > r(D) 

This definition does not imply that the function f is defined in an inter-
val; it requires only that c be an accumulation point for the domain of 
the function f. 

A function can be right continuous or left continuous at a given 
point if the value of the function at the point c is equal to its right or left 
limit respectively. A function f that is right or left continuous at the 
point c can make a jump provided that its value coincides with one of 
the two right or left limits. (See Exhibit 4.4.) A function y = f(x) defined 
on an open interval (a,b) is said to be continuous on (a,b) if it is contin-
uous for all x ∈ (a,b). 

A function can be discontinuous at a given point for one of two rea-
sons: (1) either its value does not coincide with any of its limits at that 
point or (2) the limits do not exist. For example, consider a function f 
defined in the interval [0,1] that assumes the value 0 at all rational 
points in that interval, and the value 1 at all other points. Such a func-
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EXHIBIT 4.4 Graphical Illustration of Right Continuous and Left Continuous 

tion is not continuous at any point of [0,1] as its limit does not exist at 
any point of its domain. 

TOTAL VARIATION 

Consider a function f(x) defined over a closed interval [a,b]. Then con-
sider a partition of the interval [a,b] into n disjoint subintervals defined 
by n + 1 points: a = x0 < x1 < ... < xn–1 < xn = b and form the sum 

n 

T = ∑ ( ) – f xif  xi ( – 1) 
i = 1 

The supremum of the sum T over all possible partitions is called the 
total variation of the function f on the interval [a,b]. If the total varia-
tion is finite, the function f is said to have bounded variation or finite 
variation. Note that a function can be of infinite variation even if the 
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function itself remains bounded. For example, the function that assumes 
the value 1 on rational numbers and 0 elsewhere is of infinite variation 
in any interval, though the function itself is finite. 

Continuous functions might also exhibit infinite variation. The follow-
ing function is continuous but with infinite variation in the interval [0,1]: 

0 for x = 0 
  ( ) = π 

--- xf x 
x sin  for 0 ≤< 1 
 x   

DIFFERENTIATION 

Given a function y = f(x) defined on the open interval (a,b), consider its 
increments around a generic point x consequent to an increment h of the 
variable x ∈ (a,b) 

∆y = f(x + h) – f(x) 

Consider now the ratio ∆y/h between the increments of the depen-
dent variable y and the independent variable x. Called the difference 
quotient, this quantity measures the average rate of change of y in some 
interval around x. For instance, if y is the price of a security and t is 
time, the difference quotient 

( ( )y t  + h) – y t∆y = ------------------------------------
h 

represents the average price change per unit time over the interval 
[t,t+h]. The ratio ∆y/h is a function of h. We can therefore consider its 
limit when h tends to zero. 

If the limit 

( ( )f x  + h) – f xxf ′( ) = lim ------------------------------------
h → 0 h 

exists, we say that the function f is differentiable at x and that its deriv-
ative is f ′, also written as

df dy
------- or -------
dx dx 
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The derivative of a function represents its instantaneous rate of change. 
If the function f is differentiable for all x ∈  (a,b), then we say that f is 
differentiable in the open interval (a,b). 

Introduced by Leibnitz, the notation dy/dx has proved useful; it sug-
gests that the derivative is the ratio between two infinitesimal quantities 
and that calculations can be performed with infinitesimal quantities as 
well as with discrete quantities. When first invented, calculus was 
thought of as the “calculus of infinitesimal quantities” and was there-
fore called “infinitesimal calculus.” Only at the end of the nineteenth 
century was calculus given a sound logical basis with the notion of the 
limit.5 The infinitesimal notation remained, however, as a useful 
mechanical device to perform calculations. The danger in using the 
infinitesimal notation and computing with infinitesimal quantities is 
that limits might not exist. Should this be the case, the notation would 
be meaningless. 

In fact, not all functions are differentiable; that is to say, not all 
functions possess a derivative. A function might be differentiable in 
some domain and not in others or be differentiable in a given domain 
with the exception of a few singular points. A prerequisite for a function 
to be differentiable at a point x is that it is continuous at the point. 

However, continuity is not sufficient to ensure differentiability. This 
can be easily illustrated. Consider the Cartesian plot of a function f. 
Derivatives have a simple geometric interpretation: The value of the 
derivative of f at a point x equals the angular coefficient of the tangent 
of its plot in the same point (see Exhibit 4.5). A continuous function 
does not make jumps, while a differentiable function does not change 
direction by discrete amounts (i.e., it does not have cusps). A function 
can be continuous but not differentiable at some points. For example, 
the function y = x at x = 0 is continuous but not differentiable. How-
ever, there are examples of functions that defy visual intuition; in fact, it 
is possible to demonstrate that there are functions that are continuous 
in a given interval but never differentiable. One such example is the 
path of a Brownian motion which we will discuss in Chapter 8. 

Commonly Used Rules for Computing Derivatives 
There are rules for computing derivatives. These rules are mechanical rules 
that apply provided that all derivatives exist. The proofs are provided in all 
standard calculus books. The basic rules are: 

5 In the 1970s the mathematician Abraham Robinson reintroduced on a sound logi-
cal basis the notion of infinitesimal quantities as the basis of a generalized calculus 
called “nonstandard analysis.” See Abraham Robinson, Non-Standard Analysis 
(Princeton, NJ: Princeton University Press, 1996). 
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EXHIBIT 4.5 Geometric Interpretation of a Derivative 

d 
c■ Rule 1: -------( ) = 0 , where c is a real constant.


dx


d 
■ Rule 2: -------(bxn ) = nbxn – 1 , where b is a real constant.


dx


d d d 
■ Rule 3: -------(af x ( )) = a-------f x ( ) , where a and b are( ) + bg x ( ) + b-------g x

dx dx dx 

real constants. 

Rule 3 is called the rule of termwise differentiation and shows that dif-
ferentiation is a linear operation. 

Let’s apply the basic rules to the following function: 

ky = a + b1x + b2x2 + b3x3 + ... + bkx

where a, b1, b2, b3, ..., bk are the constants. 
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The first term is just a and as per Rule 1 the derivative is zero. The 
derivative of b1x by Rule 2 is b1. For each term bnxn by Rule 2 the 
derivative is nbnxn–1. Thus, the derivative of 

b2x2 2b2x1is 


b3x3 3b3x2
is 


b4x4 4b4x3
is 

etc.


Therefore, the derivative of y is 

dy 2 n – 1 
------- = b1 + 2b2x 1 + 3b3x + 4b4x 3 + … + nb xn
dx 

There is a special rule for a composite function. Consider a compos-
ite function: h(x) = f[g(x)]. Provided that h and g are differentiable at 
the point x and that f is derivable at the point s = g(x), then the follow-
ing rule, called the chain rule, applies: 

x ( ))g′( )h′( ) = f ′(g x x

( ) = f g xh x ( ( )) 

df     dh   dg
------- =       
dx       dg dx 

Exhibit 4.6 shows the sum rule, product rule, quotient rule, and 
chain rule for calculating derivatives in both standard and infinitesimal 
notation. In Exhibit 4.6 it is assumed that a,b are real constants (i.e., 
fixed real numbers), that f, g, and h are functions defined in the same 
domain, and that all functions are differentiable at the point x. Exhibit 
4.7 lists (without proof) a number of commonly used derivatives.

Given a function f(x), its derivative f ′(x) represents its instanta-
neous rate of change. The logarithmic derivative 

xd f ′( )
------- ln P x( ) = ------------
dx f x( )  

for all x such that P(x) ≠ 0, represents the instantaneous percentage 
change. In finance, the function p = p(t) represents prices; its logarith-
mic derivative represents the instantaneous returns. 
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Principles of Calculus 

EXHIBIT 4.7 Commonly Used Derivatives 

f(x) 

xn 

α 

sin x 
cos x 
tan x 

ln x 

ex 

log (f(x)) 

df 

dx 

nxn–1 

α–1ax
cos x 
–sin x 

1 

2 cos ( )x

1 

x 

ex 

f ′( )x


f x 
( )  

Domain of P 

R, x ≠ 0 if n < 0 

x > 0 

R 
R 

π π π π 
x– --- + n--- < < --- + n---

2 2 2 2 

x > 0 

R 

f(x) ≠ 0 

Note: Where R denotes real numbers. 

Given a function y = f(x), its increments ∆f = f(x + ∆x) – f(x) can be 
approximated by 

f x x( )∆ = f ′( )∆x

The quality of this approximation depends on the function itself. 

HIGHER ORDER DERIVATIVES 

Suppose that a function f(x) is differentiable in an interval D and its 
derivative is given by 

df x( )xf′( ) = --------------
dx 

The derivative might in turn be differentiable. The derivative of a deriv-
ative of a function is called a second-order derivative and is denoted by 
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df x( ) 

d2f x
d-------------- 

( )   dx  xf″( ) = ---------------- = -----------------------
dxdx2 

Provided that the derivatives exist, this process can be iterated, pro-
ducing derivatives of any order. A derivative of order n is written in the 
following way: 

– 1 xdf n ( ) 
d------------------------ 

f x  dxn – 1 ( ) x d n ( )f n ( ) = ----------------- = ----------------------------------
dxdxn 

Application to Bond Analysis 
Two concepts used in bond portfolio management, duration and con-
vexity, provide an illustration of derivatives. A bond is a contract that 
provides a predetermined stream of positive cash flows at fixed dates 
assuming that the issuer does not default nor prepay the bond issue 
prior to the stated maturity date. If the interest rate is the same for each 
period, the present value of a risk-free bond has the following expres-
sion: 

C C C M+V =	 ------------------ + ------------------ + … + -------------------- , i = 1,...,N 
(1 + i)1 (1 + i)2 (1 + i)N 

If interest rates are different for each period, the previous formula 
becomes 

C C C M+V =	 --------------------- + --------------------- + … + ------------------------ , i = 1,...,N 
(1 + i1)1 (1 + i2)2 (1 + iN)N 

In Chapter 8, we introduce the concept of continuous compound-
ing. With continuous compounding, if the short-term interest rate is 
constant, the bond valuation formula becomes6 

6 If the short-term rate is variable: 

–∫1
–∫2	

–∫N
i s ( ) sd	 i s( ) sd i s 	 ( ) sd 

+V = Ce  0 + Ce 0 + … + (C M)e 0 
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C C C M+V = ------- + ------- + … + ----------------
1i 2i Ni e e e 

Application of the First Derivative 
The sensitivity of the bond price V to a change in interest rates is given 
by the first derivative of V with respect to the interest rate i. The first 
derivative of V with respect to the interest rate i is called dollar dura-
tion. We can compute dollar duration in each case using the derivation 
formulas defined thus far. In the discrete-time case we can write 

dV i	 +( )  d  C C C M  
-------------- = ----------------------- + ------------------ + … + -------------------- 

1di di(1 + i) (1 + i)2 (1 + i)N 

d C d C M+ 
=	 ----- ------------------ + … + ----- --------------------

di (1 + i)1 di (1 + i)N 

d 1	 d 1
+= C	----- ------------------ + … + (C M)----- --------------------

di (1 + i)1 di (1 + i)N 

We can use the quotient rule 

d	 1 1 -------	 ---------- = – -------------f ' ( )x
dx f x x( )  f2( )  

to compute the derivatives of the generic summand as follows: 

d 1 1	 1 
----- ----------------- = – --------------------i(1 + i)i – 1 = –i-------------------------
di (1 + i)i (1 + i)2i (1 + i)i + 1 

Therefore, the derivative of the bond value V with respect to the interest 
rates is 

dV –1	 ( –N 
-------- = –(1 + i)–1[C(1 + i) + 2C(1 + i)–2 + … + N C  + M)(1 + i) ] 
di 

Using a similar reasoning, we can slightly generalize this formula, 
allowing the interest rates to be different for each period. Call it the 
interest rate for period t. The sequence of values is called the yield 
curve. We will have more to say about the yield curve in Chapter 20. 
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Now suppose that interest rates are subject to a parallel shift. In other 
words, let’s assume that the interest rate for period t is (it + x). If we 
compute the first derivative with respect to x for x = 0, we obtain 

 
dV i( )  d C C C = -------------------------------------- + ------------------------------- + … + ---------------------------------1dx 

x = 0 
dx


(1 + i1 + x) (1 + i2 + x)2 (1 + iN + x)N 

x = 0 
–3 (= –[C(1 + i1)–2 + 2C(1 + i2) + … + N C  + M)(1 + iN)– N – 1] 

In this case we cannot factorize any term as interest rates are different in 
each period. Obviously, if interest rates are constant, the yield curve is a 
straight line and a change in the interest rates can be thought of as a 
parallel shift of the yield curve. 

In the continuous-time case, assuming that interest rates are con-
stant, the dollar duration is7 

[ – – –Ni+dV d Ce  1i + Ce 2i + … + (C M)e ]
-------- = ----------------------------------------------------------------------------------------------
di di 

– – ( –Ni = – 1Ce 1i – 2Ce 2i – … – N C  + M)e 

where we make use of the rule 

7 When interest rates are deterministic but time-dependent, the derivative dV/di is 
computed as follows. Assume that interest rates experience a parallel shift i(t) + x and 
compute the derivative with respect to x evaluated at x = 0. To do this, we need to 
compute the following derivative: 

–∫t
( ) + x] sd i s d ( ) sd d –∫t

[i s ( ) sd –∫t
x s i s

0 d –∫t

0 0 0 d-------e = ------- e e = e -------(e –xt) 
dx dx dx 

–∫t
i s( ) sd 

= –te –xte 0 

–∫t
–∫t

d –∫t
[i s( ) + x] sd i s( ) sd i s( ) sd –xt 00 0 -------e = –te e = –te 

x = 0dx 
x = 0 

Therefore, we can write the following: 

–∫1
–∫2

–∫N
i s ( ) sd i s( ) sd i s ( ) sd dV 

= – Ce 0 – 2Ce 0 – … – N C  + M)e 0( 
dx 

x = 0 

For i = constant we find again the formula established above. 
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d x x -------( ) = ee 
dx 

Application of the Chain Rule 
The above formulas express dollar duration which is the derivative of 
the price of a bond with respect with the interest rate and which 
approximates price changes due to small parallel interest rate shifts. 
Practitioners, however, are more interested in the percentage change of a 
bond price with respect to small parallel changes in interest rates. The 
percentage change is the price change divided by the bond value: 

dV 1 

di V 

The percentage price change is approximated by duration, which is the 
derivative of a bond’s value with respect to interest rates divided by the 
value itself. Recall from the formulas for derivatives that the latter is the 
logarithmic derivative of a bond’s price with respect to interest rates: 

dV 1 d(log V)Duration = ------------ = ---------------------
di V di 

Based on the above formulas, we can write the following formulas 
for duration: 

Duration for constant interest rates in discrete time: 

dV 1 1 C 2C N C  + M)(------------ = – -------------------- ---------------- + ------------------ + … + --------------------------
di V V(1 + i) (1 + i) (1 + i)2 (1 + i)N 

Duration for variable interest rates in discrete time: 

dV 1 1 C 2C N C  + M)(------------ = – ---- --------------------- + --------------------- + … + -------------------------------
dx V V (1 + i1)2 (1 + i2)3 (1 + iN)N + 1 
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Duration for continuously compounding constant interest rate in dis-
crete time:8 

dV 1 1 – ( –Ni ------------ = – ----[Ce –i + 2Ce 2i + … + N C  + M)e ]
di V V 

We will now illustrate the chain rule of derivation by introducing 
the concept of effective duration. In Chapter 2, we described the differ-
ent features of bonds. The bond valuation we presented earlier is for an 
option-free bond. But when a bond has an embedded option, such as a 
call option as discussed in Chapter 2, it is more complicated to value. 
Similarly, the sensitivity of the value of a bond to changes in interest 
rates is more complicated to assess when there is an embedded call 
option. Intuitively, we know that the sensitivity of the value of a bond 
with an embedded option would be sensitive to not only how changes in 
interest rates affect the present value of the cash flows as shown above 
for an option-free bond, but also how they would affect the value of the 
embedded option. 

We will use the following notation to assess the sensitivity of a call-
able bond’s value (i.e., a bond with an embedded call option) to a 
change in interest rates. The value of an option-free bond can be decom-
posed as follows: 

= Vcb + VcoVofb

where 

= value of an option-free bondVofb 
= value of a callable bondVcb 
= value of a call option on the bondVco 

The above equation says that an option-free bond’s value depends 
on the sum of the value of a callable bond’s value and a call option on 
that option-free bond. The equation can be rewritten as follows: 

Vcb = Vofb – Vco 

8 The duration for continuously compounding variable interest rate in discrete time is 

dV 

di 
-
1 

V 
-

1 

V 
- Ce 

i s( )
0 

1∫– 
2Ce 

i s( )
0 

2∫– 
… N C  M+( )e 

i s( )
0 

N∫– 
+ + +–= 

sd sd sd 
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That is, the value of a callable bond is found by subtracting the value of 
the call option from the value of the option-free bond. Both components 
on the right side of the valuation equation depend on the interest rate i. 
Using linearity to compute the first derivative of the valuation equation 
with respect to i and dividing both sides of the equation by the callable 
bond’s value gives 

dVcb 1 dVofb 1 dVco 1 
---------------------- = ------------------------ – ----------------------

di Vcb di Vcb di Vcb 

Multiplying the numerator and denominator of the right-hand side 
by the value of the option-free bond and rearranging terms gives 

dVcb 1 dVofb 1 Vofb dVco 1 Vofb ---------------------- = ------------------------------------- – -----------------------------------
di Vcb di Vofb Vcb di Vofb Vcb 

The above equation is the sensitivity of a callable bond’s value to 
changes in interest rates. That is, it is the duration of a callable bond, 
which we denote by DurCB.9 The component given by 

dVofb 1 

di Vofb 

is the duration of an option-free bond’s value to changes in interest 
rates, which we denote by Durofb. Thus, we can have 

Vofb dVco 1 VofbDurcb = Durofb ----------- – -----------------------------------
Vcb di Vofb Vcb 

Now let’s look at the derivative, which is the second term in the 
above equation. The change in the value of an option when the price of 
the underlying changes is called the option’s delta. In the case of an 
option on a bond, as explained above, changes in interest rates change 
the value of a bond. In turn, the change in the value of the bond changes 
the value of the embedded option. Here is where we see a function of a 
function and the need to apply the chain rule. That is, 

9 Actually, it is equal to –Durcb, but because we will be omitting the negative sign for 
the durations on the right-hand side, this will not affect our derivation. 
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i f Vofb iV ( ) = [ ( )]co 

This tells us that the value of the call option on an option-free bond 
depends on the value of the option-free bond and the value of the 
option-free bond depends on the interest rate. Now let’s apply the chain 
rule. We get 

idV ( )  df dVofbco ------------------- = ------------------------------
didi dVofb 

The first term on the right-hand side of the equation is the change in 
the value of the call option for a change in the value of the option-free 
bond. This is the delta of the call option, ∆co. Thus, 

dV ( )  dVofbico ------------------- = –∆ ---------------co
di di 

Substituting this equation into the equation for the duration and rear-
ranging terms we get 

VofbDurcb = Durofb -----------(1 – ∆ )co
Vcb 

This equation tells us that the duration of the callable bond depends on 
the following three quantities. The first quantity is the duration of the 
corresponding option-free bond. The second quantity is the ratio of the 
value of the option-free bond to the value of the callable bond. The dif-
ference between the value of an option-free bond and the value of a call-
able bond is equal to the value of the call option. The greater (smaller) 
the value of the call option, the higher (lower) the ratio. Thus, we see 
that the duration of the callable bond will depend on the value of the 
call option. Basically, this ratio indicates the leverage effectively associ-
ated with the position. The third and final quantity is the delta of the 
call option. The duration of the callable bond as given by the above 
equation is called the option-adjusted duration or effective duration. 

Application of the Second Derivative 
We can now compute the second derivative of the bond value with 
respect to interest rates. Assuming cash flows do not depend on interest 
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rates, this second derivative is called dollar convexity. Dollar convexity 
divided by the bond’s value is called convexity. In the discrete-time fixed 
interest rate case, the computation of convexity is based on the second 
derivatives of the generic summand: 

  
d2 1 d  d 1  d 1 
--------	 ----------------- = ---------- -----------------  = ----- –t-------------------------

tdi2 (1 + i) didi (1 + i)t 
 

di (1 + i)t + 1 
 

d 1	 1 
= –t	----- ------------------------- = t(1 + t)-------------------------

di (1 + i)t + 1 (1 + i)t + 2 

Therefore, dollar convexity assumes the following expression: 

d2	 ( )  d2 C C C MV i 	 + 
----------------- = -------- ------------------ + ------------------ + … + --------------------

1di2 di2 (1 + i) (1 + i)2 (1 + i)N 

d2 1	 d2 1
+= C-------- ------------------ + … + (C M)-------- --------------------

1 Ndi2 (1 + i)	 di2 (1 + i)
–4 ⋅= [2C(1 + i)–3 + 2 3C(1 + i) + … 

( ++ N N  + 1)(C M)(1 + i) –(N + 2) ] 

Using the same reasoning as before, in the variable interest rate case, 
dollar convexity assumes the following expression: 

d2V i( )  3 –4 = [2C(1 + i1)–3 + 2 ⋅ ⋅ C(1 + i2) + … 
dx2


x = 0


( ++ N N  + 1)(C M)(1 + iN)– N – 2 ] 

This scheme changes slightly in the continuous-time case, where, 
assuming that interest rates are constant, the expression for convexity is10 

10 For variable interest rates this expression becomes 

( ) sd i s 	 ( ) sd i s ( ) sd	 i sdV 0 0	 0+= 12Ce 
–∫1

+ 22Ce 
–∫2

+ … + N2(C M)e 
–∫N

dx 
x = 0 
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i –Ni+d2V d2[Ce –i + Ce –2 + … + (C M)e ]
---------- = ----------------------------------------------------------------------------------------------
di2 di2 

i –Ni+= 12 ⋅ Ce –i + 22 ⋅ Ce –2 + … + N2 ⋅ (C M)e 

where we make use of the rule 

d2 
xe---------( ) = ex 

dx2 

We can now write the following formulas for convexity: 

Convexity for constant interest rates in discrete time: 

dV2 1 1 2C ( ) 2 ( +3 ( )C N N  + 1)(C M)-------------- = ----------------------- ---------------- + --------------------- + … + ----------------------------------------------
di2 V V(1 + i)2 (1 + i) (1 + i)2 (1 + i)N 

Convexity for variable interest rates in discrete time: 

d2V 1 1 2C ( ) 2 ( +3 ( )C N N  + 1)(C M)-------------- = ---- --------------------- + --------------------- + … + ----------------------------------------------
dx2 V V (1 + i1)3 (1 + i2)4 (1 + iN)N + 2 

Convexity for continuously compounding constant interest rate in dis-
crete time:11 

d2V 1 1 – –Ni+-------------- = ----[Ce –i + 22Ce 2i + … + N2(C M)e ]
V Vdi2 

11 The convexity for continuously compounding variable interest rate in discrete time 
is 

( ) sd i s( ) sd –∫2
i s ( ) sd d2V 1 1 –∫1

i s
+ 22Ce 0 0+-------------- = ---- Ce 0 + … + N2(C M)e 

–∫N


V V
di2 
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TAYLOR SERIES EXPANSION


An important relationship used in economics and finance theory to 
approximate how the value of a function, such as a price function, will 
change is the Taylor series expansion. We begin by establishing Taylor’s 
theorem. Consider a continuous function with continuous derivatives 
up to order n in the closed interval [a,b] and differentiable with contin-
uous derivatives in the open interval (a,b) up to order n + 1. It can be 
demonstrated that there exists a point ξ ∈ (a,b) such that 

( ) af ″( )(b a)2 f n ( )(b a)n – ( ) = f a a – 
a – f b ( ) + f ′( )(b a) + --------------------------------- + … + ------------------------------------- + Rn

2! n! 

where the residual Rn can be written in either of the following forms: 

f (n + 1)( )(b a)n + 1ξ – 
Lagrange’s form: R = ----------------------------------------------------n 

(n + 1)! 

ξ –f (n + 1)( )(b – ξ)n(b a)
Cauchy’s form: R = --------------------------------------------------------------n 

n! 

In general, the point ξ ∈ (a,b) is different in the two forms. This 
result can be written in an alternative form as follows. Suppose x and x0 
are in (a,b). Then, using Lagrange’s form of the residual, we can write 

( ) xx – –f″( )(x x0)2 f n ( )(x x0)n 

( ) = f x0 x –f x ( ) + f′( )(x x0) + ------------------------------------ + … + ----------------------------------------
2! n! 

f (n + 1) ξ –( )(x x0)n + 1 

+ -------------------------------------------------------

(n + 1)!


If the function f is infinitely differentiable, i.e., it admits derivatives 
of every order and if 

lim R = 0 
n → ∞ n 

the infinite series obtained is called a Taylor series expansion (or simply 
Taylor series) for f(x). If x0 = 0, the series is called a Maclaurin series. 
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Such series, called power series, generally converge in some interval, 
called interval of convergence, and diverge elsewhere. 

The Taylor series expansion is a powerful analytical tool. To appre-
ciate its importance, consider that a function that can be expanded in a 
power series is represented by a denumerable set of numbers even if it is 
a continuous function. Consider also that the action of any linear oper-
ator on the function f can be represented in terms of its action on pow-
ers of x. 

The Maclaurin expansion of the exponential and of trigonometric 
functions are given by: 

2 n 
x x x xe = 1 + +  ------ + … + ------ + Rn

2! n! 

3 5 (–1)nx 2n + 1 x x
sin x = x – ------ + ------ + … + ------------------------------ + Rn

3! 5! (2n + 1)! 

2 4 x x (–1)nx 2n 

cos x = 1 – ------ + ------ + … + ----------------------- + Rn
2! 4! (2n)! 

Application to Bond Analysis 
Let’s illustrate Taylor and Maclaurin power series by computing a sec-
ond-order approximation of the changes in the present value of a bond 
due to a parallel shift of the yield curve. This information is important 
to portfolio managers and risk managers to control the interest rate risk 
exposure of a position in bonds. In bond portfolio management, the first 
two terms of the Taylor expansion series are used to approximate the 
change in an option-free bond’s value when interest rates change. An 
approximation based on the first two terms of the Taylor series is called 
a second order approximation, because it considers only first and sec-
ond powers of the variable. 

We begin with the bond valuation equation, again assuming a single 
discount rate. We first compute dollar duration and convexity, i.e., the 
first and second derivatives with respect to x evaluated at x = 0, and we 
expand in Maclaurin power series. We obtain 

( ) = V 0 1
V x ( ) – (Dollar duration)x + ---(Dollar convexity)x 2 + R3

2 

We can write this expression explicitly as: 



4-PrincipCalculus  Page 123  Friday, March 12, 2004  12:39 PM

-------- -------------------------------

123 Principles of Calculus 

C C C M+V x( ) =	 ------------------ + ------------------ + … + --------------------

(1 + i)1 (1 + i)2 (1 + i)N


( +C C N C  M)
– x ------------------ + ------------------ + … + ---------------------------

(1 + i)2 (1 + i)3 (1 + i)N + 1 

1 2	 2C 3 2  ( +⋅ ⋅ C (N N + 1))(C M)
+ ---x ------------------ + -------------------- + … + ---------------------------------------------------

2 (1 + i)3 (1 + i)4 (1 + i)N + 2 

1 3 3 2  ⋅ ⋅ ⋅ C⋅ ⋅ C 4 3 2  
– -----------x ---------------------------- + ---------------------------- + … 

⋅ i ξ)4 (1 + +3 2 (1 + +  i ξ)5 

( +N N + 1)(N + 2)(C M)
+ ------------------------------------------------------------------

i ξ)N + 3(1 + +  

Asset managers, however, are primarily interested in percentage price 
change. We can now compute the percentage price change as follows: 

( ) V 0∆V =	 V x – ( )  
V V 0( )  

( +C C N C  M)
= –x	 ------------------ + ------------------ + … + ---------------------------

(1 + i)2 (1 + i)3 (1 + i)N + 1 

1× ------------------------------------------------------------------------------------
C C C M+ 

------------------ + ------------------ + … + --------------------
(1 + i)1 (1 + i)2 (1 + i)N 

1 2	 2 ⋅ C 3 2  ( +⋅ ⋅ C N N + 1)(C M)
+ ---x ------------------ + -------------------- + … + ----------------------------------------------

2 (1 + i)3 (1 + i)4 (1 + i)N + 2 

1× -----------------------------------------------------------------------------------------

C C C M+ 
------------------ + ------------------ + … + --------------------
(1 + i)1 (1 + i)2 (1 + i)N 
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The first term in the square brackets on the right-hand side of the equa-
tion is the first approximation and is the approximation based on the 
duration of the bond. The second term in the square brackets on the 
right-hand side is the second derivative, the convexity measure, multi-
plied by one half. The third term is the residual. Its size is responsible 
for the quality of the approximation. 

The residual is proportional to the third power of the interest rate 
shift x. The term in the square bracket of the residual is a rather com-
plex function of C,M,N, and i. A rough approximation of this term is 
N(N + 1)(N + 2). In fact, in the case of zero-coupon bonds, i.e., C = 0, 
the residual can be written as 

1 

3 2⋅ 
-x 3 3 2  C 

1 i ξ+ +( )4 
- … N N  1+( ) N 2+( ) C M+( ) 

1 i ξ+ +( )N 3+ 
-+ +– 

1 

C 

1 i+( )1 

C 

1 i+( )2 
… C M+ 

1 i+( )N 
-+ + + 

-

 (1 N N  + 1)(N + 2)M 1
R3 = – ------------x 3 

 --------------------------------------------------
 -------------------------

× i3 2 (1 + + ξ)N + 3  
M 

(1 + i)N 

(1 + i)N 

(= N N  + 1)(N + 2)------------------------------------
i(1 + + ξ)N + 3 

which is a third order polynomial in N. 
Therefore, the error of the second order approximation is of the 

order [1/(3 × 2)](xN)3. For instance, if x = 0.01 and N = 20 years, the 
approximation error is of the order 0.001. The following numerical 
example will clarify these derivations. 

In Chapter 2 we discussed the features of bonds. In our illustration 
to demonstrate how to use the Taylor series, we will use an option-free 
bond with a coupon rate of 9% that pays interest semiannually and has 
20 years to maturity. Suppose that the initial yield is 6%. In terms of 



4-PrincipCalculus  Page 125  Friday, March 12, 2004  12:39 PM

125 Principles of Calculus 

our bond valuation equation, this means C = $4.5, M = $100, and i  = 
0.06. Substituting these values into the bond valuation equation, the
price of the bond is $134.6722. 

Suppose that we want to know the approximate percentage price 
change if the interest rate (i.e., i) increases instantaneously from 6% to 
8%. In the bond market, a change in interest rates is referred to in terms 
of basis points. One basis point is equal to 0.0001 and therefore 1 per-
centage point is 100 basis points. In our illustration we are looking at 
an instantaneous change in interest rates of 200 basis points. We will 
use the two terms of the Taylor expansion series to show the approxi-
mate percentage change in the bond’s value for a 200 basis point 
increase in interest rates. 

We do know what the answer is already. The initial value for this 
bond is $134.6722. If the interest rate is 8%, the value of this bond 
would be $109.8964. This means that the bond’s value declines by 
18.4%. Let’s see how well the Taylor expansion series using only two 
terms approximates this change. 

The first approximation is the estimate using duration. The duration 
for this bond is 10.66 found by using the formula above for duration. 
The convexity measure for this bond is 164.11 The change in interest 
rates, di, is 200 basis points. Expressed in decimal it is 0.02. The first 
term of the Taylor expansion series gives 

–10.66 × (0.02) = –0.2132 = –21.32% 

Notice that this approximation overestimates the actual change in 
value, which is –18.4% and means that the estimated new value for the 
bond is underestimated. 

Now we add the second approximation. The second term of the 
Taylor series gives 

¹�₂(164.11) × (0.02)2 = 3.28% 

The approximate percentage change in the bond’s value found by using 
the first term of the Taylor series and the second term of the Taylor series 
is –21.32% + 3.28% = –18.0%. The actual percentage change in value is 
–18.4%. Thus the two terms of the Taylor series do an excellent job of 
approximating the percentage change in value. 

Let’s look at what would happen if the change in interest rates is a 
decline from 6% to 4%. The exact percentage change in value is +25.04% 
(from 134.6722 to 168.3887). Now the change in interest rates di is –0.02. 
Notice that the approximate change in value due to duration is the same 
except for a change in sign. That is, the approximate change based on the 
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first term (duration) is +21.32%. Since the percentage price change is 
underestimated, the new value of the bond is underestimated. The change 
due to the second term of the Taylor series is the same in magnitude and 
sign since when –0.02 is squared, it gives a positive value. Thus, the 
approximate change is 21.32% + 3.28% = 24.6%. Using the terms of the 
Taylor series does a good job of estimating the change in the bond’s value. 

We used a relatively large change in interest rates to see how well the 
two terms of the Taylor series approximate the percentage change in a 
bond’s value. For a small change in interest rates, duration does an effec-
tive job. For example, suppose that the change in interest rates is 10 basis 
points. That is, di is 0.001. For an increase in interest rates from 6% to 
6.1% the actual change in the bond’s value would be –1.06% ($134.6722 
to $133.2472). Using just the first term of the Taylor series, the approxi-
mate change in the bond’s value gives the precise change: 

–10.66 × 0.001 = –1.066% 

For a decrease in interest rates by 10 basis points, the result would be 
1.066%. 

What this illustration shows is that for a small change in a variable, 
a linear approximation does a good job of estimating the change in the 
value of the price function of a bond. A different interpretation, how-
ever, is possible. Note that in general convexity is computed as a num-
ber, which is a function of the term structure of interest rates as follows: 

Dollar convexity = [2C(1 + i1)–3 + 2 3⋅ ⋅ C(1 + i2)–4 + … 

⋅ ( ++ N N  + 1) ⋅ (C M)(1 + iN)– N – 2 ] 

This expression is a nonlinear function of all the yields. It is sensitive to 
changes of the curvature of the term structure. In this sense it is a mea-
sure of the convexity of the term structure. 

Let’s suppose now that the term structure experiences a change that 
can be represented as a parallel shift plus a change in slope and curva-
ture. In general both duration and convexity will change. The previous 
Maclaurin expansion, which is valid for parallel shifts of the term struc-
ture, will not hold. However, we can still attempt to represent the 
change in a bond’s value as a function of duration and convexity. In par-
ticular, we could represent the changes in a bond’s value as a linear 
function of duration and convexity. This idea is exploited in more gen-
eral terms by assuming that the term structure changes are a linear com-
bination of factors. 
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INTEGRATION


Differentiation addresses the problem of defining the instantaneous rate 
of change, whereas integration addresses the problem of calculating the 
area of an arbitrary figure. Areas are easily defined for rectangles and 
triangles, and any plane figure that can be decomposed into these 
objects. While formulas for computing the area of polygons have been 
known since antiquity, a general solution of the problem was arrived at 
first in the seventeenth century, with the development of calculus. 

Riemann Integrals 
Let’s begin by defining the integral in the sense of Riemann, so called after 
the German mathematician Bernhard Riemann who introduced it. Con-
sider a bounded function y = f(x) defined in some domain which includes 
the interval [a,b]. Consider the partition of the interval [a,b] into n disjoint 
subintervals a = x0 < x1 < ... < xn–1 < xn = b, and form the sums: 

n 

SU = ∑ fM( )(xi – xi – 1)n xi
i = 1 

xi ( ) ∈ , [xi – 1, xi] andwhere fM( ) = supf x x 

n 

SL = ∑ f ( )(xi – xi – 1)n m xi
i = 1 

m xi ( ) ∈ , [xi – 1, xi] .where f ( ) = inf f x x 
Exhibit 4.8 illustrates this construction. Sn 

LU , Sn are called, respec-
tively, the upper Riemann sum and lower Riemann sum. Clearly an infi-

U Lnite number of different sums, Sn , Sn can be formed depending on the 
choice of the partition. Intuitively, each of these sums approximates the 
area below the curve y = f(x), the upper sums from above, the lower 
sums from below. Generally speaking, the more refined the partition the 
more accurate the approximation. 

U LConsider the sets of all the possible sums {  }  and { } for everySn Sn 
Lpossible partition. If the supremum of the set { } (which in generalSn 

Uwill not be a maximum) and the infimum of the set {  }  (which in gen-Sn 
eral will not be a minimum) exist, respectively, and if the minimum and 
the supremum coincide, the function f is said to be “Riemann integrable 
in the interval (a,b).” 

If the function f is Riemann integrable in [a,b], then 
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EXHIBIT 4.8 Riemann Sums 

( ) xd = sup SL {  }  I = ∫ 
b

f  x { } = inf SU 
n n 

a 

is called the proper integral of f on [a,b] in the sense of Riemann. 
An alternative definition of the proper integral in the sense of Rie-

mann is often given as follows. Consider the Riemann sums: 

n 
*( )(xi – xSn =	 ∑ f xi x – 1) 

i = 1 

*where xi is an arbitrary point in the interval [x1,xi–1]. Call ∆xi = (xi  – 
xi–1) the length of the i-th interval. The proper integral I between a and 
b in the sense of Riemann can then be defined as the limit (if the limit 
exists) of the sums Sn when the maximum length of the subintervals 
tends to zero: 
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I = lim S
max∆xi → 0 n 

In the above, the limit operation has to be defined as the limit for 
any sequence of sums Sn as for each n there are infinitely many sums. 
Note that the function f need not be continuous to be integrable. It 
might, for instance, make a finite number of jumps. However every 
function that is integrable must be of bounded variation. 

Properties of Riemann Integrals 
Let’s now introduce a number of properties of the integrals (we will 
state these without proof). These properties are simple mechanical rules 
that apply provided that all integrals exist. Suppose that a,b,c are fixed 
real numbers, that f,g,h are functions defined in the same domain, and 
that they are all integrable on the same interval (a,b). The following 
properties apply: 

Properties of Riemann Integrals

a 
Property 1 f x( ) xd = 0∫ a


c b c

( ) xd = ∫ a f x

b 
( ) xd , a b cProperty 2 f x ( ) xd + ∫ f x ≤ ≤∫ a 

b b b 
Property 3 h x = ( )  βg x ( ) xd = α f x ( ) xd ( )  αf x + ( ) ⇒ h x ( ) xd + β g x∫ ∫ ∫a a a 

b b b 
Property 4 f′( )g x ( )g xx ( ) xd = f x ( ) – ∫ f x x( )g′( ) xd ∫ a a a 

■ Properties 1 and 2 establish that integrals are additive with respect to 
integration limits.

 ■ Property 3 is the statement of the linearity of the operation of integra-
tion.

 ■ Property 4 is the rule of integration by parts. 

Now consider a composite function: h(x) = f(g(x)). Provided that g is 
integrable on the interval (a,b) and that f is integrable on the interval corre-
sponding to all the points s = g(x), the following rule, known as the chain 
rule of integration, applies: 
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b b

∫ ( ) yd = ∫
g –1( )

f g x xf y ( ( ))g′( ) xd 
–1 aa g ( )  

Lebesque-Stieltjes Integrals 
Most applications of calculus require only the integral in the sense of 
Riemann. However, a number of results in probability theory with a 
bearing on economics and finance theory can be properly established 
only in the framework of Lebesgue-Stieltjes integral. Let’s therefore 
extend the definition of integrals by introducing the Lebesgue-Stieltjes 
integral. 

The integral in the sense of Riemann takes as a measure of an inter-
val its length, also called the Jordan measure. The definition of the inte-
gral can be extended in the sense of Lebesgue-Stieltjes by defining the 
integral with respect to a more general Lebesgue-Stieltjes measure. 

Consider a non-decreasing, left-continuous function g(x) defined on a 
domain which includes the interval [xi – xi–1] and form the differences 

= g(xi) – g(xi–1). These quantities are a generalization of the concept mLi
of length. They are called Lebesgue measures. Suppose that the interval 
(a,b) is divided into a partition of n disjoint subintervals by the points 
a = x0 < x1 < ... < xn = b and form the Lebesgue-Stieltjes sums 

n


S = ∑ f xi

* * ∈ (xi,( )mLi 

, xi xi – 1)n

i = 1


where xi 
* is any point in i-th subinterval of the partition. 

Consider the set of all possible sums {Sn}. These sums depend on the 
partition and the choice of the midpoint in each subinterval. We define 
the integral of f(x) in the sense of Lebesgue-Stieltjes as the limit, if the 
limit exists, of the Lebesgue-Stieltjes sums {Sn} when the maximum 
length of the intervals in the partition tends to zero. We write, as in the 
case of the Riemann integral: 

b 
( ) g xI = ∫ f  x d ( ) = lim Sn 

a 

The integral in the sense of Lebesgue-Stieltjes can be defined for a 
broader class of functions than the integral in the sense of Riemann. If f 
is an integrable function and g is a differentiable function, the two inte-
grals coincide. In the following chapters, all integrals are in the sense of 
Riemann unless explicitly stated to be in the sense of Lebesgue-Stieltjes. 
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INDEFINITE AND IMPROPER INTEGRALS


In the previous section we defined the integral as a real number associ-
ated with a function on an interval (a,b). If we allow the upper limit b to 
vary, then the integral defines a function: 

x 
( ) = f u( ) ud F x ∫ a 

which is called an indefinite integral. 
Given a function f, there is an indefinite integral for each starting 

point. From the definition of integral, it is immediate to see that any two 
indefinite integrals of the same function differ only by a constant. In 
fact, given a function f, consider the two indefinite integrals: 

x x 
( )du, Fb x ( )duF ( ) = f u ( ) = ∫b

f ua x ∫ a 

If a < b, we can write 

x b x 
F ( ) = f u ( ) ud + ∫ f u ( )( ) ud = f u ( ) ud = constant + Fb xa x ∫a ∫a b 

We can now extend the definition of proper integrals by introducing 
improper integrals. Improper integrals are defined as limits of indefinite 
integrals either when the integration limits are infinite or when the inte-
grand diverges to infinity at a given point. Consider the improper integral 

∞ 
f x( ) xd ∫ a 

This integral is defined as the limit 

∞ x 
( ) xd = lim f uf x ( ) ud ∫ a x → ∞ ∫ a 

if the limit exists. Consider now a function f that goes to infinity as x 
approaches the upper integration limit b. We define the improper integral 

b 
f x( ) xd ∫ a 
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as the left limit


b x 
( ) xd = lim f u( ) ud∫ f x

– ∫aa x → b 

A similar definition can be established for the lower integration 
limit. Improper integrals exist only if these limits exist. For instance, the 
integral 

1 1 1
1  1  

--- xd = lim – ------ = lim ------ – 1 = ∞∫0 x x → 0+ 
x 2 x → 0+ 2  

0 x 

does not exist. 

THE FUNDAMENTAL THEOREM OF CALCULUS 

The fundamental theorem of calculus shows that integration is the 
inverse operation of derivation; it states that, given a continuous func-
tion f, any of its indefinite integrals F is a differentiable function and the 
following relationship holds: 

x 
d f  u( ) ud 

dF x( )  ∫ a ( )--------------- = --------------------------- = f x
dx dx 

If the function f is not continuous, then the fundamental theorem 
still holds, but in any point of discontinuity the derivative has to be 
replaced with the left or right derivative dependent on whether or not 
the function f is left or right continuous at that point. 

Given a continuous function f, any function F such that 

dF x( )  ( )--------------- = f x
dx 

is called a primitive or an indefinite integral of the function f. It can be 
demonstrated that any two primitives of a function f differ only by a 
constant. Any primitive of a function f can therefore be represented 
generically as an indefinite integral plus a constant. 
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As an immediate consequence of the fundamental theorem of calculus 
we can now state that, given a primitive F of a function f, the definite integral 

b 
f x( )dx∫ a 

can be computed as 

b 
( )dx = F b ( )f x ( ) – F a∫ a 

All three properties—the linearity of the integration operation, the chain 
rule, and the rule of integration by parts—hold for indefinite integrals: 

h x ( ) + bg x ( )dx = a f x ( )dx( ) = af x ( ) ⇒ h x ( )dx + b g x∫ ∫ ∫ 

∫ x ( )dx = f x ( ) – ∫ f x xf ′( )g x ( )g x ( )g ′( )dx

( ) ⇒ ∫f y d ( )g ′( )dxy = g x ( ) y = f x x∫ 
The differentiation formulas established in the previous section can now 
be applied to integration. Exhibit 4.9 lists a number of commonly used 
integrals. 

EXHIBIT 4.9 Commonly Used Integrals 

f(x) ∫ ( )dx Domainf x

xn 1 n + 1 n ≠ –1, R, x ≠ 0 if n < 0 
-------------x 
n + 1 

xα 1 α + 1 x > 0 
-------------x 
α + 1 

sin x –cos x R 

cos x sin x R 

1 log x x > 0 

x 

ex ex R 

f ′( )  log [f(x)] f(x) > 0x


f x 
( )  
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INTEGRAL TRANSFORMS


Integral transforms are operations that take any function f(x) into 
another function F(s) of a different variable s through an improper inte-
gral 

∞ 

( , ( )dx( ) = G s x  )f xF s ∫ 
–∞ 

The function G(s,x) is referred to as the kernel of the transform. The 
association is one-to-one so that f can be uniquely recovered from its 
transform F. For example, linear processes can be studied in the time 
domain or in the frequency domain: The two are linked by integral 
transforms. We will see how integral transforms are applied to several 
applications in finance. The two most important types of integral trans-
forms are the Laplace transform and Fourier transform. We discuss both 
in this section. 

Laplace Transform 
Given a real-valued function f, its one-sided Laplace transform is an 
operator that maps f to the function L(s) = L(f(x)) defined by the 
improper integral 

∞ 

( ) = L[f x ( )dxL s ( )] = e –sxf x∫ 
0 

if it exists. 
The Laplace transform of a real-valued function is thus a real-valued 

function. The one-sided transform is the most common type of Laplace 
transform used in physics and engineering. However in probability theory 
Laplace transforms are applied to density functions. As these functions are 
defined on the entire real axis, the two-sided Laplace transforms are used. 
In probability theory, the two-sided Laplace transform is called the 
moment generating function. The two-sided Laplace transform is defined 
by 

∞ 

( ) = L[f x ( )dxL s ( )] = e –sxf x∫ 
–∞ 
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if the improper integral exists. 
Laplace transforms “project” a function into a different function 

space, that of their transforms. Laplace transforms exist only for func-
tions that are sufficiently smooth and decay to zero sufficiently rapidly 
when x → ∞. The following conditions ensure the existence of the 
Laplace transform:

 ■ f(x) is piecewise continuous.
 ■ f(x) is of exponential order as x → ∞, that is, there exist positive real 

Keaxconstants K, a, and T, such that f x( ) ≤ , for x > T. 

Note that the above conditions are sufficient but not necessary for 
Laplace transforms to exist. It can be demonstrated that, if they exist, 
Laplace transforms are unique in the sense that if two functions have 
the same Laplace transform they coincide pointwise. As a consequence, 
the Laplace transforms are invertible in the sense that the original func-
tion can be fully recovered from its transform. In fact, it is possible to 
define the inverse Laplace transform as the operator L–1(F(s)) such that 

L–1[L(s)] = f(x) 

The inverse Laplace transform can be represented as a Bromwich 
integral, that is, an integral defined on a contour in the complex plane 
that leaves all singularities of the transform to the left: 

γ + i∞ 
1( ) = --------- esxL s( ) sd f X ∫2πi γ – i∞ 

The following conditions ensure the existence of an inverse Laplace 
transform: 

lim F s( ) = 0 
s → ∞ 
lim sF s( ) is finite 

s → ∞ 

We will now list (without proof) some key properties of Laplace 
transforms; both the one-sided and two-sided Laplace transforms have 
similar properties. The Laplace transform is a linear operator in the 
sense that, if f,g are real-valued functions that have Laplace transforms 
and a,b are real-valued constants, then the following property holds: 
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∞ 

[ ( ) + bg x ( ) + bg xL af x ( )] = e –sx(af x ( ))dx∫ 
–∞ 

∞ ∞ 

∫ –sx ( )dx + b e–sxg x= a e  f x ∫ ( )dx
–∞ –∞ 

( )] + bL[g x= aL[f x ( )] 

Laplace transforms turn differentiation, integration, and convolu-
tion (defined below) into algebraic operations. For derivatives the fol-
lowing property holds for the two-sided transform: 

L df x( )  ( )]-------------- = sL[f x
dx 

and 

L df x( )  ( )] – f 0-------------- = sL[f x ( )
dx 

for the one-sided transform. For higher derivatives the following for-
mula holds for the two-sided transform 

( ) x n	 0 f(n – 1)( )( )] – sn – 1f 0L[f n ( )] = s L[f x ( ) – sn – 2f ' ( ) – … – 0

An analogous property holds for integration for one-sided trans-
forms 

t 

L ∫ f x
1 ( )] for the one-sided transform( )  =	 ---L[f x 

s


0 
t 

L ∫ f x
1 ( )] for the two-sided transform( )  =	 ---L[f x 

s


0 

Consider now the convolution. Given two functions f and g, their 
convolution h(x) = f(x) ∗ g(x) is defined as the integral 
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∞ 

h x x ∫ ( – ( )dt( ) = (f ∗ g)( ) = f x  t  )g t
–∞ 

It can be demonstrated that the following property holds: 

( )] = L[f ∗ g] = L[f x ( )]L[h x ( )]L[g x

As we will see in Chapter 9, when we cover differential equations, 
these properties are useful in solving differential equations, turning the 
latter into algebraic equations. These properties are also used in repre-
senting probability distributions of sums of variables. 

Fourier Transforms 
Fourier transforms are similar in many respects to Laplace transforms. 
Given a function f, its Fourier transform f̂ (ω) = F[f(x)] is defined as the 
integral 

f̂ ω ( )] = 
+∞ 

e –2πiωxf x( ) = F[f x ∫ –∞ 
( )dx

if the improper integral exists, where i is the imaginary unity. The Fou-
rier transform of a real-valued function is thus a complex-valued func-
tion. For a large class of functions the Fourier transform exists and is 
unique, so that the original function, f, can be recovered from its trans-
form, f̂ . 

The following conditions are sufficient but not necessary for a func-
tion to have a forward and inverse Fourier transform:

∞ 
■ f x( ) dx exists.∫ –∞ 

■ The function f(x) is piecewise continuous.
 ■ The function f(x) has bounded variation. 

The inverse Fourier transform can be represented as: 

∞ 

f x ( )] = e 2πiωxf̂ ω( ) = F –1[ f̂ ω ( )dω∫ 
–∞ 
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Fourier transforms are linear operators. The Fourier transform of 
the convolutions is the product of Fourier transforms; the Fourier trans-
form of derivatives and integrals have similar properties to the Laplace 
transform. 

CALCULUS IN MORE THAN ONE VARIABLE 

The previous concepts of calculus can be extended in a multivariate envi-
ronment, that is, they can be extended to functions of several variables. 
Given a function of n variables, y = f(x1,...,x ), we can define n partialn
derivatives 

∂f x1,  ,  x )( … n 

∂xi 

i = 1,...,n holding constant n – 1 variables and then using the definition 
for derivatives of univariate functions: 

( … f x1 … ,  ,  xn) – f x1,  , ,  ,  x )∂f x1,  ,  xn) ( ,  ,  xi + h … ( … xi … n---------------------------------- = lim ----------------------------------------------------------------------------------------------------------------
∂xi h → 0 h 

Repeating this process we can define partial derivatives of any order. 
Consider, for example, the following function of two variables: 

2 

f x y  ) = e –(x 2 + σxy y )( , + 

Its partial derivatives up to order 2 are given by the following formulas 

2∂f + 
------ = –(2x + σy)e –(x 2 + σxy y ) 

∂x 

2∂f + 
------ = –(2y + σx)e –(x 2 + σxy y ) 

∂y 

2 2∂2f –(x 2 + σxy y ) + (2x + σy)2 e –(x + σxy y 2)+ 
--------- = – 2e +


∂x 2
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2 2∂2f –(x 2 + σxy + y ) + (2y + σx)2 e –(x 2 + σxy + y )
--------- = – 2e 
∂y 2 

2 2∂2f –(x 2 + σxy + y )
------------- = (2x + σy)(2y + σx)e –(x 2 + σxy + y ) – σe 
∂x∂y 

In bond analysis, we can also compute partial derivatives in the case 
where each interest rate is not the same for each time period in the bond 
valuation formula. In that case, derivatives can be computed for each 
time period’s interest rate. When the percentage price sensitivity of a 
bond to a change in the interest rate for a particular time period is com-
puted, the resulting measure is called rate duration or partial duration.12 

The definition of the integral can be obtained in the same way as in 
the one variable case. The integral is defined as the limit of sums of 
multidimensional rectangles. Multidimensional integrals represent the 
ordinary concept of volume in three dimensions and n-dimensional 
hypervolume in more that three dimensions. A more general definition 
of integral that includes both the Riemann and the Riemann-Stieltjes as 
special cases, will be considered in the chapter on probability. 

SUMMARY 

We can now summarize our discussion of calculus as follows:

 ■ The infinitesimally small and infinitely large. Through the concept of 
the limit, calculus has rendered precise the notion of infinitesimally 
small and infinitely large.

 ■ Rules for computing limits. A sequence or a function tends to a finite 
limit if there is a number to which the sequence or the function can get 
arbitrarily close; a sequence or a function tends to infinity if it can 
exceed any given quantity. Starting from these simple concepts, rules 
for computing limits can be established and limits computed.

 ■ Derivatives. A derivative of a function is the limit of its incremental 
ratio when the interval tends to zero. Derivatives represent the rate of 
change of quantities.

 ■ Integrals. Integrals represent the area below a curve; they are the limit 
of sums of rectangles that approximate the area below the curve. More 

12 There is a technical difference between rate duration and partial duration but the 
difference is not important here. 
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in general, integrals can be used to represent cumulated quantities such 
as cumulated gains.

 ■ Integrals and derivatives. The fundamental theorem of calculus proves 
that integrals and derivatives are inverse operations, insofar as the 
derivative of the integral of a function returns the function. 

■ The derivative of the product of a constant and a function is the prod-
uct of the constant and the derivative of the function.

 ■ The integral of the product of a constant and a function is the product 
of the constant and the integral of the function.

 ■ The derivative and the integral of a sum of functions is the sum of 
derivatives or integrals.

 ■ Derivation and integration are linear operations.
 ■ The derivative of a product of functions is the derivative of the first 

function times the second plus the first function times the derivative of 
the second.

 ■ The derivative of a function of function is the product of outer function 
with respect to the inner function times the derivative of the inner func-
tion.

 ■ A derivative of order n of a function is defined as the function that 
results from applying the operation of derivation n times.

 ■ A function that is differentiable to any order at a given point a can be 
represented as a series of the powers of (x – a) times the n-th derivative 
at a times the reciprocal of n!; this expansion is called a Taylor series 
expansion.

 ■ Taylor series truncated to the first or second terms are called first and 
second order approximations, respectively.

 ■ Laplace and Fourier transforms of a function are the integral of that 
function times an exponential. 

■ Laplace and Fourier transforms are useful because they transform dif-
ferentiation and integration into algebraic operations, thereby provid-
ing a method for solving linear differential equations.

 ■ Differentiation and integration can be extended to functions of more 
than one variable.

 ■ A function of n variables has n first derivatives, n-square second deriv-
atives and so on. 
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CHAPTER 5 
Matrix Algebra


Ordinary algebra deals with operations such as addition and multiplica-
tion performed on individual numbers. In many applications, however, 

it is useful to consider operations performed on ordered arrays of num-
bers. This is the domain of matrix algebra. Ordered arrays of numbers are 
called vectors and matrices while individual numbers are called scalars. In 
this chapter, we will discuss the basic operations of matrix algebra. 

VECTORS AND MATRICES DEFINED 

Let’s now define precisely the concepts of vector and matrix. Though 
vectors can be thought of as particular matrices, in many cases it is use-
ful to keep the two concepts—vectors and matrices—distinct. In partic-
ular, a number of important concepts and properties can be defined for 
vectors but do not generalize easily to matrices.1 

Vectors 
An n-dimensional vector is an ordered array of n numbers. Vectors are 
generally indicated with bold-face lower case letters. Thus a vector x is 
an array of the form 

x = [x1…x ]n 

The numbers xi are called the components of the vector x. 
A vector is identified by the set of its components. Consider the vec-

tors x = [x1…xn] and y = [y1…ym]. Two vectors are said to be equal if 

1 Vectors can be thought as the elements of an abstract linear space while matrices 
are operators that operate on linear spaces. 

141 
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and only if they have the same dimensions n = m and the same compo-
nents: 

x = y ⇔ xi = yi, i = 1, …, n 

Vectors can be row vectors or column vectors. If the vector compo-
nents appear in a horizontal row, then the vector is called a row vector, 
as for instance the vector 

x = [1 2 8 7] 

Here are two examples. Suppose that we let wn be a risky asset’s 
weight in a portfolio. Assume that there are N risky assets. Then the fol-
lowing vector, w, is a row vector that represents a portfolio’s holdings of 
the N risky assets: 

w w1 w2 ……… wN = 

As a second example of a row vector, suppose that we let rn be the 
excess return for a risky asset. (The excess return is the difference 
between the return on a risky asset and the risk-free rate.) Then the fol-
lowing row vector is the excess return vector: 

r r1 r2 ……… rN = 

If the vector components are arranged in a column, then the vector 
is called a column vector as, for instance, the vector 

x =


1 
2 
8 
7 

For example, as explained in Chapter 19, a portfolio’s excess return 
will be affected by what can be different characteristics or attributes that 
affect all asset prices. A few examples would be the price-earnings ratio, 
market capitalization, and industry. We can denote for a particular 
attribute a column vector, a, that shows the exposure of each risky asset 
to that attribute: 
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a = 

a1 

a2 

· 
· 

aN 

where an is the exposure of asset n to attribute a. 
Vector components can be either real or complex numbers. Return-

ing to the row vector w of a portfolio of holdings, a positive value for 
wn would mean that some of the risky asset n is held in the portfolio; a 
value of zero would mean that the risky asset n is not held in the portfo-
lio. If the value of wn is negative, this means that there is a short posi-
tion in risky asset n. 

While in most applications in economics and finance vector compo-
nents are real numbers, recall that a complex number is a number which 
can be represented in the form 

c = a + bi  

where i is the imaginary unit. One can operate on complex numbers2 as if 
they were real numbers but with the additional rule: i2 = –1. In the follow-
ing we will assume that vectors have real components unless we explicitly 
state the contrary. 

Vectors admit a simple graphic representation. Consider an n-dimensional 
Cartesian space. An n-dimensional vector is represented by a segment 
that starts from the origin and such that its projections on the n-th axis 
are equal to the n-th component of the vector. The direction of the vec-
tor is assumed to be from the origin to the tip of the segment. Exhibit 
5.1 illustrates this representation in the case of the usual three spatial
dimensions x,y,z. 

The (Euclidean) length of a vector x, also called the norm of a vec-
tor, denoted as x , is defined as the square root of the sum of the 
squares of its components: 

2 2 x = x1 + … + xn 

2 In rigorous mathematical terms, complex numbers are defined as ordered pairs of 
real numbers. Operations on complex numbers are defined as operations on pairs of 
real numbers. The representation with the imaginary unit is a shorthand based on a 
rigorous definition of complex numbers. 
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EXHIBIT 5.1 Graphical Representation of Vectors 

Matrices 
An n××××m matrix is a bidimensional ordered array of n×m numbers. 
Matrices are usually indicated with bold-face upper case letters. Thus, 
the generic matrix A is an n×m array of the form 

· · , a1 1 a1, j a1, m 

·  · · ·  ·  
· ·A = ai, 1 ai j ai m, , 

· 	· · ·  ·  
· · aan, 1 an j n m, , 

Note that the first subscript indicates rows while the second sub-
script indicates columns. The entries aij—called the elements of the 
matrix A—are the numbers at the crossing of the i-th row and the j-th 
column. The commas between the subscripts of the matrix entries are 
omitted when there is no risk of confusion: ai j ≡ aij . A matrix A is often , 
indicated by its generic element between brackets: 

A = { }nm or A = [ ]nm aij aij
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where the subscripts nm are the dimensions of the matrix. 
The elements of a matrix can be either real numbers or complex 

numbers. In the following, we will assume that elements are real num-
bers unless explicitly stated otherwise. If the matrix entries are real 
numbers, the matrix is called a real matrix; if the aij are complex num-
bers, the matrix is called a complex matrix. 

Two matrices are said to be equal if they are of the same dimensions 
and have the same elements. Consider two matrices A = {aij}nm and B = 
{bij}nm of the same order n×m: 

A = B means { }nm = bijaij { }nm 

Vectors are matrices with only one column or only one row. An n-
dimensional row vector is an n×1 matrix, an n-dimensional column vec-
tor is a 1×n matrix. A matrix can be thought of as an array of vectors. 
Denote by aj the column vector formed by the j-th column of the matrix 
A. The matrix A can then be written as A = [ ] . This notation can beaj
generalized. Suppose that the two matrices B, C have the same number 
n of rows and mB, mC columns respectively. The matrix A = [B C] is the 
matrix whose first mB columns are formed by the matrix B and the fol-
lowing mC columns are formed by the matrix C. 

SQUARE MATRICES 

There are several types of matrices. First there is a broad classification 
of square and rectangular matrices. A rectangular matrix can have dif-
ferent numbers of rows and columns; a square matrix is a rectangular 
matrix with the same number n of rows as of columns. 

Diagonals and Antidiagonals 
An important concept for a square matrix is the diagonal. The diagonal 
includes the elements that run from the first row, first column to the last 
row, last column. For example, consider the following square matrix: 

· · , a1 1 a1, j a1, n 

·  · · ·  ·  
· · , , A = ai, 1 ai j ai n

· 	· · ·  ·  
· · aan, 1 an j n n, , 

The diagonal terms are the aj,j terms. 
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The antidiagonals of a square matrix are the other diagonals that do 
not run from the first row, first column to the last row, last column. For 
example, consider the following 4×4 square matrix: 

5 9 14 8 
2 6 12 11 
17 21 42 2 
19 73 7 8 

The diagonal terms include 5, 6, 42, 8. One antidiagonal is 2, 9. Another 
antidiagonal is 17, 6, 14. Note that there are antidiagonal terms in rect-
angular matrices. 

Identity Matrix 
The n×n identity matrix, indicated as the matrix In, is a square matrix 
whose diagonal elements (i.e., the entries with the same row and column 
suffix) are equal to one while all other entries are zero: 

1  0 · · · 0  
0  1 · · · 0  
· · ·  ·  I = n · ·  ·  ·  
· ·  · ·  
0  0 · · · 1  

A matrix whose entries are all zero is called a zero matrix. 

Diagonal Matrix 
A diagonal matrix is a square matrix whose elements are all zero except 
the ones on the diagonal: 

a11 0  · · ·  0  
0 a22 · · ·  0  

A = · · · · 
· · · · 
· · · · 
0  0  · · ·  ann 

Given a square n×n matrix A, the matrix dg A is the diagonal matrix 
extracted from A. The diagonal matrix dg A is a matrix whose elements 
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are all zero except the elements on the diagonal that coincide with those 
of the matrix A: 

· · ·  a11 0  · · ·  0a11 a12 a1n 

· · ·  · · ·  0a21 a22 a2n 0 a22 

A = · · · · · ⇒ dgA = · · · 
· · · · · · · · 
· · · · · · · · 

an1 an2 · · ·  ann 0  0  · · ·  ann 

The trace of a square matrix A is the sum of its diagonal elements: 

n 

trA = ∑ aii 
i = 1 

A square matrix is called symmetric if the elements above the diago-
nal are equal to the corresponding elements below the diagonal: aij = aji. 
A matrix is called skew-symmetric if the diagonal elements are zero and 
the elements above the diagonal are the opposite of the corresponding 
elements below the diagonal: aij = –aji, i ≠ j, aii = 0. 

The most commonly used symmetric matrix in finance and econo-
metrics is the covariance matrix, also referred to as the variance-covari-
ance matrix. (See Chapter 6 for a detailed explanation of variances and 
covariances.) For example, suppose that there are N risky assets and 
that the variance of the excess return for each risky asset and the covari-
ances between each pair of risky assets are estimated. As the number of 
credit risky assets is N there are N2 elements, consisting of N variances 
(along the diagonal) and N2 – N covariances. Symmetry restrictions 
reduce the number of independent elements. In fact the covariance σij(t) 
between risky asset i and risky asset j will be equal to the covariance 
between risky asset j and risky asset i. We can therefore arrange the 
variances and covariances in the following square matrix V: 

, σ1 1 · σ1, i · σ1, N 

· · · ·  ·  

, , V = σ1, i · σi i · σi N

· · · ·  ·  
σ1, N · σi N · σN N, , 

Notice that V is a symmetric matrix. 
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Upper and Lower Triangular Matrix 
A matrix A is called upper triangular if aij = 0, i > j. In other words, an 
upper triangular matrix is a matrix whose elements in the triangle below 
the diagonal are all zero as is illustrated below:

· · , a1 1 a1, i a1, n 

·  · · ·  ·  
A = 0 ·  ai i · ai n  [upper triangular], , 

·  · · ·  ·  
0 · 0 ·  an n, 

A matrix A is called lower triangular if aij = 0, i < j. In other words, 
a lower triangular matrix is a matrix whose elements in the triangle 
above the diagonal are zero as is illustrated below: 

a1 1 · 0 ·  0  , 
· · · · ·  

A = · ·  ai i · 0  [lower triangular], 
· 	· · ·  ·  

· · aan, 1 an i n n, , 

DETERMINANTS 

Consider a square, n×n, matrix A. The determinant of A, denoted A , is 
defined as follows: 

n 

= ∑(–1)
t j1, …, j )( nA ∏ aij 

i = 1 

where the sum is extended over all permutations (j1,…,jn) of the set (1, 
2,…,n) and t(j1,…,jn) is the number of transpositions (or inversions of 
positions) required to go from (1,2,…,n) to (j1,…,jn). 

Otherwise stated, a determinant is the sum of all different products 
formed taking exactly one element from each row with each product 
multiplied by 

(–1)
t j1, …, j )( n 
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Consider, for instance, the case n = 2, where there is only one possi-
ble transposition: 1,2 ⇒ 2,1. The determinant of a 2×2 matrix is there-
fore computed as follows: 

1A = (–1)0 a11a22 + (–1) a12a21 = a11a22 – a12a21 

Consider a square matrix A of order n. Consider the matrix Mij 
obtained by removing the ith row and the jth column. The matrix Mij is 
a square matrix of order (n – 1). The determinant of the matrixMij
Mij is called the minor of aij. The signed minor 

+(–1)(i j) Mij 

is called the cofactor of aij and is generally denoted as αij. The r-minors 
of the n×m rectangular matrix A are the determinants of the matrices 
formed by the elements at the crossing of r different rows and r different 
columns of A. 

A square matrix A is called singular if its determinant is equal to 
zero. An n×m matrix A is of rank r if at least one of its (square) r-minors 
is different from zero while all (r + 1)-minors, if any, are zero. A non-
singular square matrix is said to be of full rank if its rank r is equal to 
its order n. 

SYSTEMS OF LINEAR EQUATIONS 

A system of n linear equations in m unknown variables is a set of n 
simultaneous equations of the following form: 

a1 1x1 + … + a1, mx = b1, m 

…………………… 
an, 1x1 + … + a1, mxm = bm 

The n×m matrix 

· · , a1 1 a1, j a1, m 

·  · · ·  ·  
A = ai, 1 · ai j · ai m, , 

· 	· · ·  ·  
· · aan, 1 an j n m, , 
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formed with the coefficients of the variables is called the coefficient 
matrix. The terms bi are called the constant terms. The augmented 
matrix [A b]—formed by adding to the coefficient matrix a column 
formed with the constant term—is represented below: 

· , a1 1 a1, j · a1, m b1 

·  · · ·  ·  

, ,[A b] = ai, 1 · ai j · ai m bi 

·  · · ·  ·  
· · a, , an, 1 an j n m bn 

If the constant terms on the right side of the equations are all zero, the 
system is called homogeneous. If at least one of the constant terms is dif-
ferent from zero, the system is called nonhomogeneous. A system is called 
consistent if it admits a solution, i.e., if there is a set of values of the vari-
ables that simultaneously satisfy all the equations. A system is called 
inconsistent if there is no set of numbers that satisfy the system equations. 

Let’s first consider the case of nonhomogeneous linear systems. The 
fundamental theorems of linear systems state that: 

■ Theorem 1. A system of n linear equations in m unknowns is consistent 
(i.e., it admits a solution) if and only if the coefficient matrix and the 
augmented matrix have the same rank. 

■ Theorem 2. If a consistent system of n equations in m variables is of 
rank r < m, it is possible to choose n–r unknowns so that the coefficient 
matrix of the remaining r unknowns is of rank r. When these m–r vari-
ables are assigned any arbitrary value, the value of the remaining vari-
ables is uniquely determined. 

An immediate consequence of the fundamental theorems is that (1) a 
system of n equations in n unknown variables admits a solution and (2) the 
solution is unique if and only if both the coefficient matrix and the aug-
mented matrix are of rank n. 

Let’s now examine homogeneous systems. The coefficient matrix and 
the augmented matrix of a homogeneous system always have the same 
rank and thus a homogeneous system is always consistent. In fact, the 
trivial solution x1 = … = xm = 0 always satisfies a homogeneous system. 

Consider now a homogeneous system of n equations in n unknowns. 
If the rank of the coefficient matrix is n, the system has only the trivial 
solution. If the rank of the coefficient matrix is r < n, then Theorem 2 
ensures that the system has a solution other than the trivial solution. 
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LINEAR INDEPENDENCE AND RANK


Consider an n×m matrix A. A set of p columns extracted from the 
matrix A 

· · ·a1, i1 
a1, ip 

· · · · · 
· · · · · 
· · · · · 
· · ·an i, 1 

an i, p 

are said to be linearly independent if it is not possible to find p constants 
βs, s = 1,…,p such that the following n equations are simultaneously sat-
isfied: 

+β1a1, i1 
+ … βpa1, ip 

= 0 

…………………… 
+β1an i, 1 

+ … βpan i = 0 , p 

Analogously, a set of q rows extracted from the matrix A are said to 
be linearly independent if it is not possible to find q constants λs, s  = 
1,…,q, such that the following m equations are simultaneously satisfied: 

+λ1ai1, 1 + … λqaiq, 1 = 0 

…………………… 
+λ1ai1, m + … λqaiq, m = 0 

It can be demonstrated that in any matrix the number p of linearly 
independent columns is the same as the number q of linearly indepen-
dent rows. This number is equal, in turn, to the rank r of the matrix. 
Recall that an n×m matrix A is said to be of rank r if at least one of its 
(square) r-minors is different from zero while all (r+1)-minors, if any, 
are zero. The constant, p, is the same for rows and for columns. We can 
now give an alternative definition of the rank of a matrix: 

Given an n×m matrix A, its rank, denoted rank(A), is the number r of 
linearly independent rows or columns. This definition is meaningful 
because the row rank is always equal to the column rank. 
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HANKEL MATRIX


For the theoretical analysis of the autoregressive integrated moving 
averages (ARMA) processes described in Chapter 11, it is important to 
understand a special type of matrix, a Hankel matrix. A Hankel matrix 
is a matrix where for each antidiagonal the element is the same. For 
example, consider the following square Hankel matrix: 

17 16 15 24 
16 15 24 33 
15 24 33 72 
24 33 72 41 

Each antidiagonal has the same value. Now consider the elements of the 
antidiagonal running from the second row, first column and first row, 
second column. Both elements have the value 16. Consider another 
antidiagonal running from the fourth row, second column to the second 
row, fourth column. All of the elements have the value 33. 

An example of a rectangular Hankel matrix would be 

72 60 55 43 30 21 
60 55 43 30 21 10 
55 43 30 21 10 80 

Notice that a Hankel matrix is a symmetric matrix.3 

Consider an infinite sequence of square n×n matrices: 

H0, H1, …, Hi, … 

The infinite Hankel matrix H is the following matrix: 

3 A special case of a Hankel matrix is when the values for the elements in the first 
row of the matrix are repeated in each successive row such that its value appears one 
column to the left. For example, consider the following square Hankel matrix: 

41 32 23 14 
32 23 14 41 
23 14 41 32 
14 41 32 23 

This type of Hankel matrix is called an anticirculant matrix. 
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H0 H1 H2 … 
H1 H2 … …  

H = H2 … … …  
… 
… 

The rank of a Hankel matrix can be defined in three different ways: 

1. The 	 column rank is the largest number of linearly independent 
sequence columns. 

2. The row rank is the largest number of linearly independent sequence 
rows. 

3. The rank is the superior of the ranks of all finite matrices of the type: 

H0 H1 · HN' 

H1 H2 · · 
=HN N', · · · · 

HN · · HN N'+ 

As in the finite-dimensional case, the three definitions are equivalent in 
the sense that the three numbers are equal, if finite, or they are all three 
infinite. 

VECTOR AND MATRIX OPERATIONS 

Let’s now introduce the most common operations performed on vectors 
and matrices. An operation is a mapping that operates on scalars, vectors, 
and matrices to produce new scalars, vectors, or matrices. The notion of 
operations performed on a set of objects to produce another object of the 
same set is the key concept of algebra. Let’s start with vector operations. 

Vector Operations 
The following operations are usually defined on vectors: (1) transpose, 
(2) addition, and (3) multiplication.

Transpose 
The transpose operation transforms a row vector into a column vector and 
vice versa. Given the row vector x = [x1…x ] its transpose, denoted as xT 

n
or x′, is the column vector: 
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x1 

· 
T x =	 · 

· 
xn 

Clearly the transpose of the transpose is the original vector: 

(x T)
T 

= x 

Addition 
Two row (or column) vectors x = [x1…xn], y = [y1…yn] with the same 
number n of components can be added. The addition of two vectors is a 
new vector whose components are the sums of the components: 

+x y = [x1 + y1…x + yn]n 

This definition can be generalized to any number N of summands: 

N N N 

∑ xi = ∑ x1i… ∑ yni 
i = 1 i = 1 i = 1 

The summands must be both column or row vectors; it is not possible to 
add row vectors to column vectors. 

It is clear from the definition of addition that addition is a commu-
tative operation in the sense that the order of the summands does not 
matter: x + y = y + x. Addition is also an associative operation in the 
sense that x + (y + z) = (x + y) + z. 

Multiplication 
We define two types of multiplication: (1) multiplication of a scalar and 
a vector and (2) scalar multiplication of two vectors (inner product).4 

The multiplication of a scalar λ and a row (or column) vector x, 
denoted as λx, is defined as the multiplication of each component of the 
vector by the scalar: 

4 Different types of products between vectors can be defined: the vector product be-
tween vectors produces a third vector and the outer product produces a matrix. We 
do not define them here, as, though widely used in the physical sciences, they are not 
typically used in economics. 
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λx = [λx1…λx ]n 

As an example of the multiplication of a vector by a scalar, consider 
the vector of portfolio weights w = [w1…wn]. If the total portfolio value 
at a given moment is P, then the holding in each asset is the product of 
the value by the vector of weights: 

Pw = [Pw1…Pw ]n 

A similar definition holds for column vectors. It is clear from this defini-
tion that 

ax = a x 

and that multiplication by a scalar is associative as 

a(x y)+ = ax + ay 

The scalar (or inner) product of two vectors of the same dimensions 
x, y, denoted as x · y, is defined between a row vector and a column vec-
tor. The scalar product between two vectors produces a scalar according 
to the following rule: 

n 

⋅x y =	 ∑ xiyi 
i = 1 

For example, consider the column vector a of a particular attribute dis-
cussed earlier and the row vector w of portfolio weights. Then a · w is a 
scalar that shows the exposure of the portfolio to the particular 
attribute. That is, 

a w⋅ 

a1 

a2 

· 
· 

aN 

w1 w2 …… wN = 

N 

= ∑ anwN 
n = 1 
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As another example, a portfolio’s excess return is found by taking 
the transpose of the excess return vector, r, and multiplying it by the 
vector of portfolio weights, w. That is, 

r T w⋅ 

r1 

r2 

· 
· 

rN 

w1 w2 …… wN = 

N 

= ∑ rnwN 
n = 1 

Two vectors x, y are said to be orthogonal if their scalar product is 
zero. The scalar product of two vectors can be interpreted geometrically 
as an orthogonal projection. In fact, the inner product of vectors x and 
y, divided by the square norm of y, can be interpreted as the orthogonal 
projection of x onto y. The following two properties are an immediate 
consequence of the definitions: 

x = x ⋅ x 

ax( ) ⋅ by( ) = abx y⋅ 

Matrix Operations 
The following five operations on matrices are usually defined: (1) trans-
pose, (2) addition, (3) multiplication, (4) inverse, and (5) adjoint. 

Transpose 
The definition of the transpose of a matrix is an extension of the trans-
pose of a vector. The transpose operation consists in exchanging rows 
with columns. Consider the n×m matrix 

A = { }nm aij

The transpose of A, denoted AT or A′ is the m×n matrix whose ith row is 
the ith column of A: 

AT = { }mn aji
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The following should be clear from this definition:


(AT)
T 

= A 

and that a matrix is symmetric if and only if 

AT = A 

Addition 
Consider two n×m matrices 

A = { }nm aij

and 

B = { }nm bij 

The sum of the matrices A and B is defined as the n×m matrix obtained 
by adding the respective elements: 

+A B = {aij + bij}nm 

Note that it is essential for the definition of addition that the two matri-
ces have the same order n×m. 

The operation of addition can be extended to any number N of 
summands as follows: 

N  N 
∑ Ai =  ∑ asij 

 
s = 1 s = 1 nm 

where a  is the generic i,j element of the sth summand.sij 

The following properties of addition are immediate from the defini-
tion of addition: 

A B + = + B A

+ ( + + + +A  B C  ) = (A B) + C = A B C
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+tr(A B) = trA + trB 

The operation of addition of vectors defined above is clearly a special 
case of the more general operation of addition of matrices. 

Multiplication 
Consider a scalar c and a matrix: 

A = { }nm aij

The product cA = Ac is the n×m matrix obtained by multiplying each 
element of the matrix by c: 

cA = Ac = {  }nm caij 

Multiplication of a matrix by a scalar is associative with respect to 
matrix addition: 

+c(A B) = cA + cB 

Let’s now define the product of two matrices. Consider two matrices: 

A = { }np ait

and 

B = {  }pm bsj 

The product C = AB is defined as follows: 

p  
C = AB  = { } =  ∑ aitbtj cij

t = 1 

The product C = AB is therefore a matrix whose generic element {cij} is 
the scalar product of the ith row of the matrix A and the jth column of 
the matrix B. This definition generalizes the definition of scalar product 
of vectors: The scalar product of two n-dimensional vectors is the product 
of an n×1 matrix (a row vector) for a 1×n matrix (the column vector). 

Following the above definition, the matrix product operation is per-
formed rows by columns. Therefore, two matrices can be multiplied 
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only if the number of columns (i.e., the number of elements in each row) 
of the first matrix equals the number of rows (i.e., the number of ele-
ments in each column) of the second matrix. 

The following two distributive properties hold: 

(C A  + B) = CA + CB 

+(A B)C = AC  + BC  

The associative property also holds: 

((AB)C = A  BC  ) 

However, the matrix product operation is not commutative. In fact, if A 
and B are two square matrices, in general AB ≠ BA. Also AB = 0 does 
not imply A = 0 or B = 0. 

Inverse and Adjoint 
Consider two square matrices of order n, A and B. If AB = BA = I, then 
the matrix B is called the inverse of A and is denoted as A–1. It can be 
demonstrated that the two following properties hold:

 ■ Property 1. A square matrix A admits an inverse A–1 if and only if it is 
nonsingular, i.e., if and only if its determinant is different from zero. 
Otherwise stated, a matrix A admits an inverse if and only if it is of full 
rank.

 ■ Property 2. The inverse of a square matrix, if it exists, is unique. This 
property is a consequence of the property that, if A is nonsingular, then 
AB = AC implies B = C. 

Consider now a square matrix of order n A = {aij} and consider its 
cofactors αij. Recall that the cofactors αij are the signed minors 

+(–1)(i j) of the matrix A. The adjoint of the matrix A, denoted asMij 
Adj(A), is the following matrix: 

, , , α1 1 · α1, j · α1, n
T α1 1 · α2 1 · αn, 1 

· · · · ·  · · · · ·  
Adj A , ,( ) = αi, 1 · αi j · αi n = α1, i · α2, i · αn i, 

· · · · ·  · · · · ·  
αn, 1 · αn j · α, n n α1, n · α2, n · αn n, , 
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The adjoint of a matrix A is therefore the transpose of the matrix 
obtained by replacing the elements of A with their cofactors. 

If the matrix A is nonsingular, and therefore admits an inverse, it 
can be demonstrated that 

A –1 Adj A( )  
= ------------------

A 

A square matrix A of order n is said to be orthogonal if the follow-
ing property holds: 

AA′ = A′A = In 

Because in this case A must be of full rank, the transpose of an orthogo-
nal matrix coincides with its inverse: A–1 = A′. 

EIGENVALUES AND EIGENVECTORS 

Consider a square matrix A of order n and the set of all n-dimensional 
vectors. The matrix A is a linear operator on the space of vectors. This 
means that A operates on each vector producing another vector and that 
the following property holds: 

A(ax + by) = aAx + bAy 

Consider now the set of vectors x such that the following property 
holds: 

Ax = λx 

Any vector such that the above property holds is called an eigenvector 
of the matrix A and the corresponding value of λ is called an eigenvalue. 

To determine the eigenvectors of a matrix and the relative eigenval-
ues, consider that the equation Ax = λx can be written as follows: 

(A – λI)x = 0 

which can, in turn, be written as a system of linear equations:
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, a1 1 – λ · a1, j · a1, n x1 

· · · · · · 
(A – λI)x = ai, 1 · ai i – λ · ai n xi = 0 , , 

· · · · · · 
an, 1 · an j · an n – λ x, , n 

This system of equations has nontrivial solutions only if the matrix A – 
λI is singular. To determine the eigenvectors and the eigenvalues of the 
matrix A we must therefore solve the equation 

a1 1 – λ · · , a1, j a1, n 

· · · · · 
A – λI = = 0ai, 1 · ai i – λ · ai n, , 

· · · · · 
an, 1 · an j · an n – λ , , 

The expansion of this determinant yields a polynomial φ(λ) of 
degree n known as the characteristic polynomial of the matrix A. The 
equation φ(λ) = 0 is known as the characteristic equation of the matrix 
A. In general, this equation will have n roots λs which are the eigenval-
ues of the matrix A. To each of these eigenvalues corresponds a solution 
of the system of linear equations as illustrated below: 

a1 1 – λ · · a1, n x1, s a1, j s 

· · · · · · 
ai, 1 · ai i – λ · ai n xi = 0, s , s 

· · · · · · 
· a x, , an, 1 · an j n n – λs ns 

Each solution represents the eigenvector xs corresponding to the eigen-
vector λs. As we will see in Chapter 12, the determination of eigenvalues 
and eigenvectors is the basis for principal component analysis. 

DIAGONALIZATION AND SIMILARITY 

Diagonal matrices are much easier to handle than fully populated matri
-
ces. It is therefore important to create diagonal matrices equivalent (in a

sense to be precisely defined) to a given matrix. Consider two square
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matrices A and B. The matrices A and B are called similar if there exists 
a nonsingular matrix R such that 

B = R–1AR 

The following two theorems can be demonstrated:

 ■ Theorem 1. Two similar matrices have the same eigenvalues. 

■ Theorem 2. If yi is an eigenvector of the matrix B = R–1AR corre-
sponding to the eigenvalue λ i, then the vector xi = Ryi is an eigenvector 
of the matrix A corresponding to the same eigenvalue λ i. 

A diagonal matrix of order n always has n linearly independent eigen-
vectors. Consequently, a square matrix of order n has n linearly inde-
pendent eigenvectors if and only if it is similar to a diagonal matrix. 

Suppose the square matrix of order n has n linearly independent 
eigenvectors xi and n distinct eigenvalues λ i. This is true, for instance, if 
A is a real, symmetric matrix of order n. Arrange the eigenvectors, 
which are column vectors, in a square matrix: P = {xi}. It can be demon-
strated that P–1AP is a diagonal matrix where the diagonal is made up of 
the eigenvalues: 

λ 1 0 0 0 0  
0  ·  0 0 0  

P –1AP = 0 0  λ i 0 0  
0 0 0 · 0  
0 0 0 0  λ n 

SINGULAR VALUE DECOMPOSITION 

Suppose that the n× m matrix A with m ≥ n has rank(A) = r > 0. It can be 
demonstrated that there exists three matrices U, W, V such that the fol-
lowing decomposition, called singular value decomposition, holds: 

A = UWV′′′′

and such that U is n× r with U′′′′ U = Ir; W is diagonal, with non-negative 
diagonal elements; and V is m× r with V′′′′ V = Ir. 
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SUMMARY


 ■ In representing and modeling economic and financial phenomena it is 
useful to consider ordered arrays of numbers as a single mathematical 
object.

 ■ Ordered arrays of numbers are called vectors and matrices; vectors are 
a particular type of matrix.

 ■ It is possible to consistently define operations on vectors and matrices 
including the multiplication of matrices by scalars, sum of matrices, 
product of matrices, and inversion of matrices.

 ■ Determinants are numbers associated with square matrices defined as 
the sum of signed products of elements chosen from different rows and 
columns.

 ■ A matrix can be inverted only if its determinant is not zero.
 ■ The eigenvectors of a square matrix are those vectors that do not 

change direction when multiplied by the matrix. 
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CHAPTER 6 
Concepts of Probability


P robability is the standard mathematical representation of uncertainty in 
finance. In this chapter we present concepts in probability theory that 

are applied in many areas in financial modeling and investment manage-
ment. Here are just a few applications: The set of possible economic states 
is represented as a probability space; prices, cash flows, and other eco-
nomic quantities subject to uncertainty are represented as time-dependent 
random variables (i.e., stochastic processes); conditional probabilities are 
used in representing the dynamics of asset prices; and, probability distribu-
tions are used in finding the optimal risk-return tradeoff. 

REPRESENTING UNCERTAINTY WITH MATHEMATICS 

Because we cannot build purely deterministic models of the economy, we 
need a mathematical representation of uncertainty. Probability theory is the 
mathematical description of uncertainty that presently enjoys the broadest 
diffusion. It is the paradigm of choice for mainstream finance theory. But it 
is by no means the only way to describe uncertainty. Other mathematical 
paradigms for uncertainty include, for example, fuzzy measures.1 

Though probability as a mathematical axiomatic theory is well 
known, its interpretation is still the subject of debate. There are three 
basic interpretations of probability:

 ■ Probability as “intensity of belief” as suggested by John Maynard 
Keynes.2 

1 Lotfi A. Zadeh, “Fuzzy Sets,” Information and Control 8 (1965), pp. 338–353. 
2 John Maynard Keynes, Treatise on Probability (McMillan Publishing, 1921). 

165 
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 ■ Probability as “relative frequency” as formulated by Richard von Mises.3

 ■ Probability as an axiomatic system as formulated by Andrei N. Kol-
4mogorov. 

The idea of probability as intensity of belief was introduced by John 
Maynard Keynes in his Treatise on Probability. In science as in our daily 
lives, we have beliefs that we cannot strictly prove but to which we 
attribute various degrees of likelihood. We judge not only the likelihood of 
individual events but also the plausibility of explanations. If we espouse 
probability as intensity of belief, probability theory is then a set of rules 
for making consistent probability statements. The obvious difficulty here is 
that one can judge only the consistency of probability reasoning, not its 
truth. Bayesian probability theory (which we will discuss later in the chap-
ter) is based on the interpretation of probability as intensity of belief. 

Probability as relative frequency is the standard interpretation of 
probability in the physical sciences. Introduced by Richard Von Mises in 
1928, probability as relative frequency was subsequently extended by 
Hans Reichenbach.5 Essentially, it equates probability statements with 
statements about the frequency of events in large samples; an unlikely 
event is an event that occurs only a small number of times. The difficulty 
with this interpretation is that relative frequencies are themselves uncer-
tain. If we accept a probability interpretation of reality, there is no way 
to leap to certainty. In practice, in the physical sciences we usually deal 
with very large numbers—so large that nobody expects probabilities to 
deviate from their relative frequency. Nevertheless, the conceptual diffi-
culty exists. As the present state of affairs might be a very unlikely one, 
probability statements can never be proved empirically. 

The two interpretations of probability—as intensity of belief and as 
relative frequency—are therefore complementary. We make probability 
statements such as statements of relative frequency that are, ultimately, 
based on an a priori evaluation of probability insofar as we rule out, in 
practice, highly unlikely events. This is evident in most procedures of 
statistical estimation. A statistical estimate is a rule to choose the proba-
bility scheme in which one has the greatest faith. In performing statisti-
cal estimation, one chooses the probabilistic model that yields the 

3 Richard von Mises, Wahrscheinlichkeitsrechnung, Statistik unt Wahrheit (Vienna:

Verlag von Julius Spring, 1928). (English edition published in 1939, Probability, Sta
-
tistics and Truth.)

4 Andrei N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin:

Springer, 1933). (English edition published in 1950, Foundations of the Theory of

Probability.)

5 At the time, both were German professors working in Constantinople. 
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highest probability on the observed sample. This is strictly evident in 
maximum likelihood estimates but it is implicit in every statistical esti-
mate. Bayesian statistics allow one to complement such estimates with 
additional a priori probabilistic judgment. 

The axiomatic theory of probability avoids the above problems by 
interpreting probability as an abstract mathematical quantity. Devel-
oped primarily by the Russian mathematician Andrei Kolmogorov, the 
axiomatic theory of probability eliminated the logical ambiguities that 
had plagued probabilistic reasoning prior to his work. The application 
of the axiomatic theory is, however, a matter of interpretation. 

In economics and finance theory, probability might have two differ-
ent meanings: (1) as a descriptive concept and (2) as a determinant of 
the agent decision-making process. As a descriptive concept, probability 
is used in the sense of relative frequency, similar to its use in the physical 
sciences: the probability of an event is assumed to be approximately 
equal to the relative frequency of its occurrence in a large number of 
experiments. There is one difficulty with this interpretation, which is 
peculiar to economics: empirical data (i.e., financial and economic time 
series) have only one realization. Every estimate is made on a single 
time-evolving series. If stationarity (or a well-defined time process) is 
not assumed, performing statistical estimation is impossible. 

PROBABILITY IN A NUTSHELL 

In making probability statements we must distinguish between outcomes 
and events. Outcomes are the possible results of an experiment or an obser-
vation, such as the price of a security at a given moment. However, proba-
bility statements are not made on outcomes but on events, which are sets of 
possible outcomes. Consider, for example, the probability that the price of 
a security be in a given range, say from $10 to $12, in a given period. 

In a discrete probability model (i.e., a model based on a finite or at 
most a countable number of individual events), the distinction between 
outcomes and events is not essential as the probability of an event is the 
sum of the probabilities of its outcomes. If, as happens in practice, 
prices can vary by only one-hundredth of a dollar, there are only a 
countable number of possible prices and the probability of each event 
will be the sum of the individual probabilities of each admissible price. 

However, the distinction between outcomes and events is essential 
when dealing with continuous probability models. In a continuous proba-
bility model, the probability of each individual outcome is zero though the 
probability of an event might be a finite number. For example, if we repre-
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sent prices as continuous functions, the probability that a price assumes 
any particular real number is strictly zero, though the probability that 
prices fall in a given interval might be other than zero. 

Probability theory is a set of rules for inferring the probability of an 
event from the probability of other events. The basic rules are surprisingly 
simple. The entire theory is based on a few simple assumptions. First, the 
universe of possible outcomes or measurements must be fixed. This is a 
conceptually important point. If we are dealing with the prices of an 
asset, the universe is all possible prices; if we are dealing with n assets, the 
universe is the set of all possible n-tuples of prices. If we want to link n 
asset prices with k economic quantities, the universe is all possible (n + 
k)-tuples made up of asset prices and values of economic quantities. 

Second, as our objective is to interpret probability as relative frequen-
cies (i.e., percentages), the scale of probability is set to the interval [0,1]. 
The maximum possible probability is one, which is the probability that 
any of the possible outcomes occurs. The probability that none of the out-
comes occurs is 0. In continuous probability models, the converse is not 
true as there are nonempty sets of measure zero. In other words, in con-
tinuous probability models, a probability of one is not equal to certainty. 

Third, and last, the probability of the union of disjoint events is the 
sum of the probabilities of individual events. 

All statements of probability theory are logical consequences of these 
basic rules. The simplicity of the logical structure of probability theory 
might be deceptive. In fact, the practical difficulty of probability theory 
consists in the description of events. For instance, derivative contracts 
link in possibly complex ways the events of the underlying with the events 
of the derivative contract. Though the probabilistic “dynamics” of the 
underlying phenomena can be simple, expressing the links between all 
possible contingencies renders the subject mathematically complex. 

Probability theory is based on the possibility of assigning a precise 
uncertainty index to each event. This is a stringent requirement that 
might be too strong in many instances. In a number of cases we are sim-
ply uncertain without being able to quantify uncertainty. It might also 
happen that we can quantify uncertainty for some but not all events. 
There are representations of uncertainty that drop the strict requirement 
of a precise uncertainty index assigned to each event. Examples include 
fuzzy measures and the Dempster-Schafer theory of uncertainty.6 The 
latter representations of uncertainty have been widely used in Artificial 

6 See G. Schafer, A Mathematical Theory of Evidence (Princeton, NJ: Princeton Uni-
versity Press, 1976); Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Beliefs (San Mateo, CA: Morgan Kaufmann, 1988); and, Zadeh, 
“Fuzzy Sets.” 
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Intelligence and engineering applications, but their use in economics 
and finance has so far been limited. 

Let’s now examine probability as the key representation of uncer-
tainty, starting with a more formal account of probability theory. 

OUTCOMES AND EVENTS 

The axiomatic theory of probability is based on three fundamental con-
cepts: (1) outcomes, (2) events, and (3) measure. The outcomes are the 
set of all possible results of an experiment or an observation. The set of 
all possible outcomes is often written as the set Ω. For instance, in the 
dice game a possible outcome is a pair of numbers, one for each face, 
such as 6 + 6 or 3 + 2. The space Ω is the set of all 36 possible out-
comes. 

Events are sets of outcomes. Continuing with the example of the 
dice game, a possible event is the set of all outcomes such that the sum 
of the numbers is 10. Probabilities are defined on events, not on out-
comes. To render definitions consistent, events must be a class ℑ of sub-
sets of Ω with the following properties: 

■ Property 1. ℑ is not empty

 ■ Property 2. If A ∈ ℑ then AC ∈ ℑ; AC is the complement of A with 
respect to Ω, made up of all those elements of Ω that do not belong to 
A

∞
 ■ Property 3. If Ai ∈ ℑ for i = 1,2,… then ∪ Ai ℑ ∈ 

i = 1 

Every such class is called a σ-algebra. Any class for which Property 3 is 
valid only for a finite number of sets is called an algebra. 

Given a set Ω and a σ-algebra G of subsets of Ω, any set A ∈ G is said 
to be measurable with respect to G. The pair (Ω,G) is said to be a mea-
surable space (not to be confused with a measure space, defined later in 
this chapter). Consider a class G of subsets of Ω and consider the small-
est σ-algebra that contains G, defined as the intersection of all the σ-
algebras that contain G. That σ-algebra is denoted by σ{G} and is said 
to be the σ-algebra generated by G. 

A particularly important space in probability is the Euclidean space. 
Consider first the real axis R (i.e., the Euclidean space R1 in one dimen-
sion). Consider the collection formed by all intervals open to the left and 
closed to the right, for example, (a,b]. The σ-algebra generated by this 
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set is called the 1-dimensional Borel σ-algebra and is denoted by B . The 
sets that belong to B  are called Borel sets. 

Now consider the n-dimensional Euclidean space Rn, formed by n-
tuples of real numbers. Consider the collection of all generalized rectan-
gles open to the left and closed to the right, for example, ((a1,b1] × ... 
×(an,bn]). The σ-algebra generated by this collection is called the n-
dimensional Borel σ-algebra and is denoted by B n. The sets that belong 
to B n are called n-dimensional Borel sets. 

The above construction is not the only possible one. The B n, for any 
value of n, can also be generated by open or closed sets. As we will see 
later in this chapter, B n is fundamental to defining random variables. It 
defines a class of subsets of the Euclidean space on which it is reasonable 
to impose a probability structure: the class of every subset would be too 
big while the class of, say, generalized rectangles would be too small. The 
B n is a sufficiently rich class. 

PROBABILITY 

Intuitively speaking, probability is a set function that associates to every 
event a number between 0 and 1. Probability is formally defined by a 
triple (Ω,ℑ,P) called a probability space, where Ω is the set of all possi-
ble outcomes, ℑ the event σ-algebra, and P a probability measure. 

A probability measure P is a set function from ℑ to R (the set of real 
numbers) that satisfies three conditions: 

■ Condition 1. 0 ≤ P(A), for all A ∈ ℑ

 ■ Condition 2. P(Ω) = 1

 ■ Condition 3. P(∪ Ai) = ∑P(Ai) for every finite or countable collection 
of disjoint events {Ai} such that Ai ∈ ℑ 

ℑ does not have to be a σ-algebra. The definition of a probability space 
can be limited to algebras of events. However it is possible to demon-
strate that a probability defined over an algebra of events ℵ can be 
extended in a unique way to the σ-algebra generated by ℵ. 

Two events are said to be independent if: 

P(A ∩ B) = P(A)P(B) 

The (conditional) probability of event A given event B, written as P(A|B), 
is defined as follows: 



6-ConceptsProbability  Page 171  Wednesday, February 4, 2004  3:00 PM

171 Concepts of Probability 

P A  ∩ B)(
B) = ------------------------

P B
P A( 

( )  

It is possible to deduct from simple properties of set theory and from the 
disjoint additivity of probability that 

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) ≤ P(A) + P(B) 

P(A) = 1 – P(AC) 

Bayes theorem is a rule that links conditional probabilities. It can be 
stated in the following way: 

P A( )P A  ∩ B) P A  ∩ B)P A( ( ( ) (P A( A)-------------
( )  P B ( )  

B) = ------------------------ = -------------------------------------- = P B  
P B( )P B ( )P A

Bayes theorem allows one to recover the probability of the event A 
given B from the probability of the individual events A, B, and the prob-
ability of B given A. 

Discrete probabilities are a special instance of probabilities. Defined 
over a finite or countable set of outcomes, discrete probabilities are non-
zero over each outcome. The probability of an event is the sum of the 
probabilities of its outcomes. In the finite case, discrete probabilities are 
the usual combinatorial probabilities. 

MEASURE 

A measure is a set function defined over an algebra or σ-algebra of sets, 
denumerably additive, and such that it takes value zero on the empty set 
but can otherwise assume any positive value including, conventionally, 
an infinite value. A probability is thus a measure of total mass 1 (i.e., it 
takes value 1 on the set Ω). 

A measure can be formally defined as a function M(A) from an alge-
bra or a σ-algebra ℑ to R (the set of real numbers) that satisfies the fol-
lowing three properties:

 ■ Property 1. 0 ≤ M(A), for every A ∈ ℑ

 ■ Property 2. M(∅) = 0 



6-ConceptsProbability  Page 172  Wednesday, February 4, 2004  3:00 PM

172 The Mathematics of Financial Modeling and Investment Management

 ■ Property 3. M(∪ Ai) = ∑M(Ai) for every finite or countable collection 
of disjoint events {Ai} such that Ai ∈ ℑ 

If M is a measure defined over a σ-algebra ℑ, the triple (Ω,ℑ,M) is 
called a measure space (this term is not used if ℑ is an algebra). Recall 
that the pair (Ω,ℑ) is a measurable space if ℑ is a σ-algebra. Measures in 
general, and not only probabilities, can be uniquely extended from an 
algebra to the generated σ-algebra. 

RANDOM VARIABLES 

Probability is a set function defined over a space of events; random vari-
ables transfer probability from the original space Ω into the space of 
real numbers. Given a probability space (Ω,ℑ,P), a random variable X is 
a function X(ω) defined over the set Ω that takes values in the set R of 
real numbers such that 

(ω: X(ω) ≤ x) ∈ ℑ 

for every real number x. In other words, the inverse image of any inter-
val (–∞,x] is an event. It can be demonstrated that the inverse image of 
any Borel set is also an event. 

A real-valued set function defined over Ω is said to be measurable 
with respect to a σ-algebra ℑ if the inverse image of any Borel set 
belongs to ℑ. Random variables are real-valued measurable functions. A 
random variable that is measurable with respect to a σ-algebra cannot 
discriminate between events that are not in that σ-algebra. This is the 
primary reason why the abstract and rather difficult concept of measur-
ability is important in probability theory. By restricting the set of events 
that can be identified by a random variable, measurability defines the 
“coarse graining” of information relative to that variable. A random 
variable X is said to generate G if G is the smallest σ-algebra in which it 
is measurable. 

INTEGRALS 

In Chapter 4 on calculus we defined the integral of a real-valued function 
on the real line. However, the notion of the integral can be generalized to 
a general measure space. Though a bit technical, these definitions are 
important in the context of probability theory. 
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For each measure M, the integral is a number that is associated to 
every integrable function f. It is defined in the following two steps:

 ■ Step 1. Suppose that f is a measurable, non-negative function and con-
sider a finite decomposition of the space Ω, that is to say a finite collection 
of disjoint subsets Ai ⊂ Ω whose union is Ω: 

Ai ⊂ Ω such that Ai ∩ Ai = ∅ for i ≠ j and ∪ Ai = Ω 

Consider the sum 

( ): ω ∈ Ai )M Ai∑ inf(f ω ( )  
i 

The integral 

f Md∫ 
Ω 

is defined as the supremum, if it exists, of all these sums over all possible 
decompositions of Ω. Suppose that f is bounded and non-negative and 
M(Ω) < ∞. Let’s call 

( )M AiS– = sup
∑(inf f ω ( ))ω ∈ Aii 

the lower integral and 

 ( )M AiS+ = inf∑(sup f ω ( )) 
i ω ∈ Ai 

the upper integral. It can be demonstrated that if the integral exists then 
S+ = S–. It is possible to define the integral as the common value S = S+ = 
S–. This approach is the Darboux-Young approach to integration.7

 ■ Step 2. Given a measurable function f not necessarily non-negative, 
consider its decomposition in its positive and negative parts f = f + – f –. 
The integral of f is defined as the difference, if a difference exists, 
between the integrals of its positive and negative parts. 

7 See Patrick Billingsley, Probability and Measure, Second edition (New York: Wiley, 
1985). 
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The integral can be defined not only on Ω but on any measurable 
set G. In order to define the integral over a measurable set G, consider 
the indicator function IG, which assumes value 1 on each point of the 
set G and 0 elsewhere. Consider now the function f · IG. The integral 
over the set G is defined as 

d ⋅f M = ∫ f IG Md ∫ 
G Ω 

The integral f M  is called the indefinite integral of f.d∫ 
G 

Given a σ-algebra ℑ, suppose that G and M are two measures and 
that a function f exists such that for A ∈ ℑ 

( )  = f MdG A ∫ 
A 

In this case G is said to have density f with respect to M. 
The integrals in the sense of Riemann and in the sense of Lebesgue-

Stieltjes (see Chapter 4 on calculus) are special instances of this more 
general definition of the integral. Note that the Lebesgue-Stieltjes inte-
gral was defined in Chapter 4 in one dimension. Its definition can be 
extended to n-dimensional spaces. In particular, it is always possible to 
define the Lebesgue-Stieltjes integral with respect to a n-dimensional dis-
tribution function. We omit the definitions which are rather technical.8 

Given a probability space (Ω,ℑ,P) and a random variable X, the 
expected value of X is its integral with respect to the probability measure P 

E[X] = X Pd∫ 
Ω 

where integration is extended to the entire space. 

DISTRIBUTIONS AND DISTRIBUTION FUNCTIONS 

Given a probability space (Ω,ℑ,P) and a random variable X, consider a set 
A ∈ B 1. Recall that a random variable is a real-valued measurable func-

8 For details, see Yuan Shih Chow and Henry Teicher, Probability Theory: Second 
Edition (New York: Springer, 1988). 
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tion defined over the set of outcomes. Therefore, the inverse image of A, 
X–1(A) belongs to ℑ and has a well-defined probability P(X–1(A)). 

The measure P thus induces another measure on the real axis called 
distribution or distribution law of the random variable X given by: 
µX(A) = P(X–1(A)). It is easy to see that this measure is a probability 
measure on the Borel sets. A random variable therefore transfers the 
probability originally defined over the space Ω to the set of real numbers. 

The function F defined by: F(x) = P(X ≤ x) for x ∈ R is the cumula-
tive distribution function (c.d.f.), or simply distribution function  (d.f.), 
of the random variable X. Suppose that there is a function f such that 

x 

( )  = f ydF x ∫ 
–∞ 

or F′(x) = f(x), then the function f is called the probability density func-
tion of the random variable X. 

RANDOM VECTORS 

After considering a single random variable, the next step is to consider 
not only one but a set of random variables referred to as random vectors. 
Random vectors are formed by n-tuples of random variables. Consider a 
probability space (Ω,ℑ,P). A random variable is a measurable function 
from Ω to R1; a random vector is a measurable function from Ω to Rn . 

We can therefore write a random vector X as a vector-valued function 

f(ω) = [f1(ω) f2(ω) ... fn(ω)] 

Measurability is defined with respect to the Borel σ-algebra B n. It can 
be demonstrated that the function f is measurable ℑ if and only if each 
component function fi(ω) is measurable ℑ. 

Conceptually, the key issue is to define joint probabilities (i.e., the 
probabilities that the n variables are in a given set). For example, con-
sider the joint probability that the inflation rate is in a given interval 
and the economic growth rate in another given interval. 

Consider the Borel σ-algebra B n on the real n-dimensional space Rn . 
It can be demonstrated that a random vector formed by n random vari-
ables Xi, i = 1,2,...,n induces a probability measure over B n. In fact, the 
set (ω ∈ Ω: (X1(ω),X2(ω),...,Xn(ω)) ∈ H; H ∈ B n) ∈ ℑ (i.e., the inverse 
image of every set of the σ-algebra B n belongs to the σ-algebra ℑ). It is 
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therefore possible to induce over every set H that belongs to B n a prob-
ability measure, which is the joint probability of the n random variables 
Xi. The function 

( (F x1, …, x ) = P X1 ≤ x1, …, X ≤ x )n n n 

where xi ∈ R is called the n-dimensional cumulative distribution func-
tion or simply n-dimensional distribution function (c.d.f. or d.f.). Sup-
pose there exists a function f(x1,...,xn) for which the following relationship 
holds: 

x1 xn 

( f u1, …, u )du1…duF x1, …, xn) = ∫ … ∫ ( n n 

–∞ –∞ 

The function f(x1,...,xn) is called the n-dimensional probability density 
function (p.d.f.) of the random vector X. Given a n-dimensional probabil-
ity density function f(x1,...,xn), if we integrate with respect to all variables 
except the j-th variable, we obtain the marginal density of that variable: 

∞ ∞ 

y (fXj
( ) = f u1, …, u )du1 ⋅ duj – 1duj + 1 ⋅ du∫ … ∫ n n 

–∞ –∞ 

Given a n-dimensional d.f. we define the marginal distribution func-
y (tion with respect to the j-th variable, FX ( ) = P Xj ≤ y) as follows: 

j 

Fxj
( ) = lim F x1, …, xj – 1 y xj + 1, …, xn)y ( ,  ,  

xi → ∞ 
i j≠ 

If the distribution admits a density we can also write 

y 

y uFXj
( ) = fXj

( ) ud ∫ 
–∞ 

These definitions can be extended to any number of variables. Given 
a n-dimensional p.d.f., if we integrate with respect to k variables 
(xi1

, …, xik
) over Rk, we obtain the marginal density functions with 

respect to the remaining variables. Marginal distribution functions with 
respect to any subset of variables can be defined taking the infinite limit 
with respect to all other variables. 
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yAny d.f. FXj
( ) defines a Lebesgue-Stieltjes measure and a Lebesgue-

Stieltjes integral. For example, as we have seen in Chapter 4, in the 1-dimen-
sional case, the measure is defined by the differences FXj

( ) – FX (xi – 1) .xi j
We can now write expectations in two different, and more useful, ways. 
In an earlier section in this chapter, given a probability space (Ω,ℑ,P), we 
defined the expectation of a random variable X as the following integral 

[ ] = X PdE X ∫ 
Ω 

Suppose now that the random variable X has a d.f. FX(u). It can be dem-
onstrated that the following relationship holds: 

∞ 

d ∫ u[ ] = X P = u Fd X( )E X ∫ 
Ω –∞ 

where the last integral is intended in the sense of Riemann-Stieltjes. If, 
in addition, the d.f. FXj

( ) has a density fX u uu ( ) = FX 
′ ( ) , then we can 

write the expectation as follows: 

∞ ∞ 

E X ∫ d ∫ ( ) ud [ ] = X P = u Fd X( ) = uf uu ∫ 
Ω –∞ –∞ 

where the last integral is intended in the sense of Riemann. More in gen-
eral, given a measurable function g the following relationship holds: 

∞ ∞ 

[ ( )] = g u ( )f uE g X ( )dFX( ) = g u ( ) ud ∫ u ∫ 
–∞ –∞ 

This latter expression of expectation is the most widely used in practice. 
In general, however, knowledge of the distributions and of distribu-

tion functions of each random variable is not sufficient to determine the 
joint probability distribution function. As we will see later in this chap-
ter, the joint distribution is determined by the marginal distributions 
plus the copula function. 

Two random variables X,Y are said to be independent if 

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) 
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for all A ∈ B , B ∈ B . This definition generalizes in obvious ways to any 
number of variables and therefore to the components of a random vec-
tor. It can be shown that if the components of a random vector are inde-
pendent, the joint probability distribution is the product of distributions. 
Therefore, if the variables (X1,...,Xn) are all mutually independent, we 
can write the joint d.f. as a product of marginal distribution functions: 

n 

F x1,  ,  xn) = ∏ FX ( )( …
j 

xj
j = 1 

It can also be demonstrated that if a d.f. admits a joint p.d.f., the 
joint p.d.f. factorizes as follows: 

n 

f x1,  ,  xn) = ∏ fX ( )( …
j 

xj
j = 1 

Given the marginal p.d.f.s the joint d.f. can be recovered as follows: 

x1 xn 

( … ( …F x1,  ,  xn) = … f u1,  ,  un)du1…du∫ ∫	 n 

–∞ –∞ 
x1 xn n 

… ∫ ∏ fX ( ) du1…du= ∫ j
uj n 

–∞ –∞	 j = 1 

n	 xj 

ujfX ( )duj = ∏ ∫ j 
j = 1 –∞ 

n 

= ∏ FX ( )xjj 
j = 1 

STOCHASTIC PROCESSES 

Given a probability space (Ω,ℑ,P) a stochastic process is a parameterized 
collection of random variables {Xt}, t ∈ [0,T] that are measurable with 
respect to ℑ. The parameter t is often interpreted as time. The interval in 
which a stochastic process is defined might extend to infinity in both 
directions. 
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When it is necessary to emphasize the dependence of the random 
variable from both time t and the element ω, a stochastic process is 
explicitly written as a function of two variables: X = X(t,ω). Given ω, 
the function X = Xt(ω) is a function of time that is referred to as the 
path of the stochastic process. 

The variable X might be a single random variable or a multidimen-
sional random vector. A stochastic process is therefore a function X  = 
X(t,ω) from the product space [0,T] × Ω into the n-dimensional real space 
Rn. Because to each ω corresponds a time path of the process—in general 
formed by a set of functions X = Xt(ω)—it is possible to identify the space 
Ω with a subset of the real functions defined over an interval [0,T]. 

Let’s now discuss how to represent a stochastic process X = X(t,ω) 
and the conditions of identity of two stochastic processes. As a stochas-
tic process is a function of two variables, we can define equality as 
pointwise identity for each couple (t,ω). However, as processes are 
defined over probability spaces, pointwise identity is seldom used. It is 
more fruitful to define equality modulo sets of measure zero or equality 
with respect to probability distributions. In general, two random vari-
ables X,Y will be considered equal if the equality X(ω) = Y(ω) holds for 
every ω with the exception of a set of probability zero. In this case, it is 
said that the equality holds almost everywhere (denoted a.e.). 

A rather general (but not complete) representation is given by the 
finite dimensional probability distributions. Given any set of indices 
t1,...,tm, consider the distributions 

H [(µt1, …, t ( )  = P Xt1
, …, Xt ) ∈ H, H ∈ Bn ]

m m 

These probability measures are, for any choice of the ti, the finite-
dimensional joint probabilities of the process. They determine many, 
but not all, properties of a stochastic process. For example, the finite 
dimensional distributions of a Brownian motion do not determine 
whether or not the process paths are continuous. 

In general, the various concepts of equality between stochastic pro-
cesses can be described as follows:

 ■ Property 1. Two stochastic processes are weakly equivalent if they have 
the same finite-dimensional distributions. This is the weakest form of 
equality.

 ■ Property 2. The process X = X(t,ω) is said to be equivalent or to be a 
modification of the process Y = Y(t,ω) if, for all t, 
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P(Xt = Yt) = 1

 ■ Property 3. The process X = X(t,ω) is said to be strongly equivalent to 
or indistinguishable from the process Y = Y(t,ω) if 

P(Xt = Yt, for all t) = 1 

Property 3 implies Property 2, which in turn implies Property 1. 
Implications do not hold in the opposite direction. Two processes hav-
ing the same finite distributions might have completely different paths. 
However it is possible to demonstrate that if one assumes that paths are 
continuous functions of time, Properties 2 and 3 become equivalent. 

PROBABILISTIC REPRESENTATION OF FINANCIAL MARKETS 

We are now in the position to summarize the probabilistic representation 
of financial markets. From a financial point of view, an asset is a contract 
which gives the right to receive a distribution of future cash flows. In the 
case of a common stock, the stream of cash flows will be uncertain. It 
includes the common stock dividends and the proceeds of the eventual 
liquidation of the firm. A debt instrument is a contract that gives its 
owner the right to receive periodic interest payments and the repayment 
of the principal by the maturity date. Except in the case of debt instru-
ments of governments whose risk of default is perceived as extremely 
low, payments are uncertain as the issuing entity might default. 

Suppose that all payments are made at the trading dates and that no 
transactions take place between trading dates. Let’s assume that all 
assets are traded (i.e., exchanged on the market) at either discrete fixed 
dates, variable dates or continuously. At each trading date there is a 
market price for each asset. Each asset is therefore modeled with two 
time series, a series of market prices and a series of cash flows. As both 
series are subject to uncertainty, cash flows and prices are time-depen-
dent random variables (i.e., they are stochastic processes). The time 
dependence of random variables in this probabilistic setting is a delicate 
question and will be examined shortly. 

Following Kenneth Arrow9 and using a framework now standard, 
the economy and the financial markets in a situation of uncertainty are 
described with the following basic concepts: 

9 Kenneth Arrow, “The Role of Securities in the Optimal Allocation of Risk Bear-
ing,” Review of Economic Studies (April 1964), pp. 91–96. 
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■ It is assumed that the economy is in one of the states of a probability 
space (Ω,ℑ,P).

 ■ Every security is described by two stochastic processes formed by two 
time-dependent random variables St(ω) and dt(ω) representing prices 
and cash flows of the asset. 

This representation is completely general and is not linked to the 
assumption that the space of states is finite. 

INFORMATION STRUCTURES 

Let’s now turn our attention to the question of time. The previous dis-
cussion considered a space formed by states in an abstract sense. We 
must now introduce an appropriate representation of time as well as 
rules that describe the evolution of information, that is, information 
propagation, over time. The concepts of information and information 
propagation are fundamental in economics and finance theory. 

The concept of information in finance is different from both the 
intuitive notion of information and that of information theory in which 
information is a quantitative measure related to the a priori probability 
of messages.10 In our context, information means the (progressive) reve-
lation of the set of events to which the current state of the economy 
belongs. Though somewhat technical, this concept of information sheds 
light on the probabilistic structure of finance theory. The point is the 
following. Assets are represented by stochastic processes, that is, time-
dependent random variables. But the probabilistic states on which these 
random variables are defined represent entire histories of the economy. 
To embed time into the probabilistic structure of states in a coherent 
way calls for information structures and filtrations (a concept we 
explain in the next section). 

Recall that it is assumed that the economy is in one of many possible 
states and that there is uncertainty on the state that has been realized. 
Consider a time period of the economy. At the beginning of the period, 
there is complete uncertainty on the state of the economy (i.e., there is 
complete uncertainty on what path the economy will take). Different 
events have different probabilities, but there is no certainty. As time 
passes, uncertainty is reduced as the number of states to which the econ-

10 There is indeed a deep link between information theory and econometrics embod-
ied in concepts such as the Fisher Information Matrix, see Chapter 12. 
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omy can belong is progressively reduced. Intuitively, revelation of infor-
mation means the progressive reduction of the number of possible states; 
at the end of the period, the realized state is fully revealed. In continuous 
time and continuous states, the number of events is infinite at each 
instant. Thus its cardinality remains the same. We cannot properly say 
that the number of events shrinks. A more formal definition is required. 

The progressive reduction of the set of possible states is formally 
expressed in the concepts of information structure and filtration. Let’s 
start with information structures. Information structures apply only to 
discrete probabilities defined over a discrete set of states. At the initial 
instant T0, there is complete uncertainty on the state of the economy; 
the actual state is known only to belong to the largest possible event 
(that is, the entire space Ω). At the following instant T1, assuming that 
instants are discrete, the states are separated into a partition, a partition 
being a denumerable class of disjoint sets whose union is the space 
itself. The actual state belongs to one of the sets of the partitions. The 
revelation of information consists in ruling out all sets but one. For all 
the states of each partition, and only for these, random variables assume 
the same values. 

Suppose, to exemplify, that only two assets exist in the economy 
and that each can assume only two possible prices and pay only two 
possible cash flows. At every moment there are 16 possible price-cash 
flow combinations. We can thus see that at the moment T1 all the states 
are partitioned into 16 sets, each containing only one state. Each parti-
tion includes all the states that have a given set of prices and cash distri-
butions at the moment T1. The same reasoning can be applied to each 
instant. The evolution of information can thus be represented by a tree 
structure in which every path represents a state and every point a parti-
tion. Obviously the tree structure does not have to develop as symmetri-
cally as in the above example; the tree might have a very generic 
structure of branches. 

FILTRATION 

The concept of information structure based on partitions provides a 
rather intuitive representation of the propagation of information through 
a tree of progressively finer partitions. However, this structure is not suffi-
cient to describe the propagation of information in a general probabilistic 
context. In fact, the set of possible events is much richer than the set of 
partitions. It is therefore necessary to identify not only partitions but also 
a structure of events. The structure of events used to define the propaga-
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tion of information is called a filtration. In the discrete case, however, the 
two concepts—information structure and filtration—are equivalent. 

The concept of filtration is based on identifying all events that are 
known at any given instant. It is assumed that it is possible to associate 
to each trading moment t a σ-algebra of events ℑt ⊂ ℑ formed by all 
events that are known prior to or at time t. It is assumed that events are 
never “forgotten,” that is, that ℑt ⊂ ℑs, if t < s. An ordering of time is 
thus created. This ordering is formed by an increasing sequence of σ-
algebras, each associated to the time at which all its events are known. 
This sequence is a filtration. Indicated as {ℑt}, a filtration is therefore an 
increasing sequence of all σ-algebras ℑt, each associated to an instant t. 

In the finite case, it is possible to create a mutual correspondence 
between filtrations and information structures. In fact, given an infor-
mation structure, it is possible to associate to each partition the algebra 
generated by the same partition. Observe that a tree information struc-
ture is formed by partitions that create increasing refinement: By going 
from one instant to the next, every set of the partition is decomposed. 
One can then conclude that the algebras generated by an information 
structure form a filtration. 

On the other hand, given a filtration {ℑt}, it is possible to associate a 
partition to each ℑt. In fact, given any element that belongs to Ω, con-
sider any other element that belongs to Ω such that, for each set of ℑt, 
both either belong to or are outside this set. It is easy to see that classes 
of equivalence are thus formed, that these create a partition, and that 
the algebra generated by each such partition is precisely the ℑt that has 
generated the partition. 

A stochastic process is said to be adapted to the filtration {ℑt} if the 
variable Xt is measurable with respect to the σ-algebra ℑt. It is assumed 
that the price and cash distribution processes St(ω) and dt(ω) of every 
asset are adapted to {ℑt}. This means that, for each t, no measurement 
of any price or cash distribution variable can identify events not 
included in the respective algebra or σ-algebra. Every random variable 
is a partial image of the set of states seen from a given point of view and 
at a given moment. 

The concepts of filtration and of processes adapted to a filtration 
are fundamental. They ensure that information is revealed without 
anticipation. Consider the economy and associate at every instant a par-
tition and an algebra generated by the partition. Every random variable 
defined at that moment assumes a value constant on each set of the par-
tition. The knowledge of the realized values of the random variables 
does not allow identifying sets of events finer than partitions. 

One might well ask: Why introduce the complex structure of σ-alge-
bras as opposed to simply defining random variables? The point is that, 
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from a logical point of view, the primitive concept is that of states and 
events. The evolution of time has to be defined on the primitive struc-
ture—it cannot simply be imposed on random variables. In practice, fil-
trations become an important concept when dealing with conditional 
probabilities in a continuous environment. As the probability that a 
continuous random variable assumes a specific value is zero, the defini-
tion of conditional probabilities requires the machinery of filtration. 

CONDITIONAL PROBABILITY AND CONDITIONAL EXPECTATION 

Conditional probabilities and conditional averages are fundamental in 
the stochastic description of financial markets. For instance, one is gen-
erally interested in the probability distribution of the price of an asset at 
some date given its price at an earlier date. The widely used regression 
models are an example of conditional expectation models. 

The conditional probability of event A given event B was defined 
earlier as 

P A ∩ B)(P A( B) = ------------------------
P B( )  

This simple definition cannot be used in the context of continuous ran-
dom variables because the conditioning event (i.e., one variable assum-
ing a given value) has probability zero. To avoid this problem, we 
condition on σ-algebras and not on single zero-probability events. In 
general, as each instant is characterized by a σ-algebra ℑ , the condition-t
ing elements are the ℑt. 

The general definition of conditional expectation is the following. 
Consider a probability space (Ω,ℑ,P) and a σ-algebra G contained in ℑ 
and suppose that X is an integrable random variable on (Ω,ℑ,P). We 
define the conditional expectation of X with respect to G, written as 
E[X|G], as a random variable measurable with respect to G such that 

E X[ G]dP = X Pd∫ ∫ 
G G 

for every set G ∈ G. In other words, the conditional expectation is a 
random variable whose average on every event that belongs to G is 
equal to the average of X over those same events, but it is G-measurable 
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while X is not. It is possible to demonstrate that such variables exist and 
are unique up to a set of measure zero. 

Econometric models usually condition a random variable given 
another variable. In the previous framework, conditioning one random 
variable X with respect to another random variable Y means condition-
ing X given σ{Y} (i.e., given the σ-algebra generated by Y). Thus E[X|Y] 
means E[X|σ{Y}]. 

This notion might seem to be abstract and to miss a key aspect of 
conditioning: intuitively, conditional expectation is a function of the 
conditioning variable. For example, given a stochastic price process, X ,t
one would like to visualize conditional expectation E[X Xs], s < t as at
function of Xs that yields the expected price at a future date given the 
present price. This intuition is not wrong insofar as the conditional 
expectation E[XY] of X given Y is a random variable function of Y. 
For example, the regression function that will be explained later in this 
chapter is indeed a function that yields the conditional expectation. 

However, we need to specify how conditional expectations are 
formed, given that the usual conditional probabilities cannot be applied 
as the conditioning event has probability zero. Here is where the above 
definition comes into play. The conditional expectation of a variable X 
given a variable Y is defined in full generality as a variable that is measur-
able with respect to the σ-algebra σ(Y) generated by the conditioning 
variable Y and has the same expected value of Y on each set of σ(Y). Later 
in this section we will see how conditional expectations can be expressed 
in terms of the joint p.d.f. of the conditioning and conditioned variables. 

One can define conditional probabilities starting from the concept 
of conditional expectations. Consider a probability space (Ω,ℑ,P), a sub-
σ-algebra G of ℑ, and two events A ∈ ℑ, B ∈ ℑ. If IA,IB are the indicator 
functions of the sets A,B (the indicator function of a set assumes value 1 
on the set, 0 elsewhere), we can define conditional probabilities of the 
event A, respectively, given G or given the event B as 

P(AG) = E[IAG] P(AB) = E[IAIB] 

Using these definitions, it is possible to demonstrate that given two ran-
dom variables X and Y with joint density f(x,y), the conditional density 
of X given Y is 

f x  y  )( ,f x( y) = ----------------
fY y( )  

where the marginal density, defined as 
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∞ 

fY y ( ,( ) = f x y  )dx∫ 
–∞ 

is assumed to be strictly positive. 
In the discrete case, the conditional expectation is a random variable 

that takes a constant value over the sets of the finite partition associated 
to ℑt. Its value for each element of Ω is defined by the classical concept of 
conditional probability. Conditional expectation is simply the average 
over a partition assuming the classical conditional probabilities. 

An important econometric concept related to conditional expecta-
tions is that of a martingale. Given a probability space (Ω,ℑ,P) and a fil-
tration {ℑ }, a sequence of ℑi-measurable random variables Xi is called at
martingale if the following condition holds: 

[ ℑ ] =E Xi + 1 i Xi 

A martingale translates the idea of a “fair game” as the expected value 
of the variable at the next period is the present value of the same value. 

MOMENTS AND CORRELATION 

If X is a random variable on a probability space (Ω,ℑ,P), the quantity 
pE X[ ] , p > 0 is called the p-th absolute moment of X. If k is any posi-

tive integer, E[Xk], if it exists, is called the k-th moment. In the general 
case of a probability measure P we can therefore write:

p P■ E X[ p] = X d , p > 0, is the p-th absolute moment.∫ 
Ω 

■ E Xk] = XkdP , if it exists for k positive integer, is the k-th moment. [ ∫ 
Ω 

In the case of discrete probabilities pi, Σpi = 1 the above expressions 
become 

pE X[ p] = ∑ pxi i 

and 



6-ConceptsProbability  Page 187  Wednesday, February 4, 2004  3:00 PM

187 Concepts of Probability 

[ kE Xk] = ∑x pii 

respectively. If the variable X is continuous and has a density p(x) such 
that 

∞ 

p x( )dx = 1∫ 
–∞ 

we can write 

∞ 

∫ pE X[ p] = x p x( )dx
–∞ 

and 

∞ 

E Xk] = x p x[ ( )dx∫ k 

–∞ 

respectively. 
The centered moments are the moments of the fluctuations of the 

variables around its mean. For example, the variance of a variable X is 
defined as the centered moment of second order: 

( ) = σ2 = σ ( ) = E X  X  ) ]var X 2 X [( – 
2 

x 
∞ ∞ ∞ 2 

(x X)2 
p x ( )dx –– ( )dx = x 2 p x xp x( )dx= ∫ ∫ ∫ 

–∞ –∞ –∞ 

where X = E X[ ] . 
The positive square root of the variance, σ is called the standardx

deviation of the variable. 
We can now define the covariance and the correlation coefficient of 

a variable. Correlation is a quantitative measure of the strength of the 
dependence between two variables. Intuitively, two variables are depen-
dent if they move together. If they move together, they will be above or 
below their respective means in the same state. Therefore, in this case, 
the product of their respective deviations from the means will have a 
positive mean. We call this mean the covariance of the two variables. 
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The covariance divided by the product of the standard deviations is a 
dimensionless number called the correlation coefficient. 

Given two random variables X,Y with finite expected values and 
finite variances, we can write the following definitions:

 ■ cov(X Y) = , = E X  X  )(Y Y)] is the covariance of X,Y., [( – –σX Y

σX Y,

,
■ ρX Y = -------------- is the correlation coefficient of X,Y. 

σXσY 

The correlation coefficient can assume values in the interval [–1,1]. 
If two variables X,Y are independent, their correlation coefficient van-
ishes. However, uncorrelated variables, that is, variables whose correla-
tion coefficient is zero, are not necessarily independent. 

It can be demonstrated that the following property of variances holds: 

  

 i 
( ) + ∑cov(Xi, Xj)var∑X  = ∑var Xi

i i i j≠ 

Further, it can be demonstrated that the following properties hold: 

[ [ ]E Y= E XY] – E X [ ]σX Y, 

= σY XσX Y ,, 

= abσY XσaX bY ,, 

σX Y, Z = σX Z + σY Z+ , , 

  
cov∑a Xi, ∑bjYj = ∑∑aibjcov(Xi, Yj) i 

i i i j 

COPULA FUNCTIONS 

Understanding dependences or functional links between variables is a 
key theme of modern econometrics. In general terms, functional depen-
dences are represented by dynamic models. As we will see in Chapter 
11, many important models are linear models whose coefficients are 
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correlations coefficients. In many instances, in particular in risk man-
agement, it is important to arrive at a quantitative measure of the 
strength of dependencies. 

The correlation coefficient provides such a measure. In many instances, 
however, the correlation coefficient might be misleading. In particular, there 
are cases of nonlinear dependencies that result in a zero correlation coeffi-
cient. From the point of view of risk management this situation is particu-
larly dangerous as it leads to substantially underestimated risk. 

Different measures of dependence have been proposed, in particular 
copula functions. We will give only a brief introduction to copula func-
tions.11 Copula functions are based on the Theorem of Sklar. Sklar dem-
onstrated12 that any joint probability distribution can be written as a 
functional link, i.e., a copula function, between its marginal distribu-
tions. Let’s suppose that F(x1,x2,...,xn) is a joint multivariate distribu-
tion function with marginal distribution functions F1(x1), F2(x2), ..., 
Fn(xn). Then there is a copula function C such that the following rela-
tionship holds: 

F x1,  ,  ,  x ) = C F1 x1 ( ),  ,  F ( )]( x2 … [ ( ), F2 x2 … xn n n

The joint probability distribution contains all the information 
related to the co-movement of the variables. The copula function allows 
to capture this information in a synthetic way as a link between mar-
ginal distributions. We will see an application of the concept of copula 
functions in Chapter 22 on credit risk modeling. 

SEQUENCES OF RANDOM VARIABLES 

Consider a probability space (Ω,ℑ,P). A sequence of random variables is an 
infinite family of random variables Xi on (Ω,ℑ,P) indexed by integer num-
bers: i = 0,1,2,...,n... If the sequence extends to infinity in both directions, it 
is indexed by positive and negative integers: i = ...,–n,..., 0,1,2,...,n....

 A sequence of random variables can converge to a limit random 
variable. Several different notions of the limit of a sequence of random 
variables can be defined. The simplest definition of convergence is that 

11 The interested reader might consult the following reference: P. Embrechts, F. Lind-
skog, and A. McNeil, “Modelling Dependence with Copulas and Applications to 
Risk Management,” Chapter 8 in S.T. Rachev (ed.), Handbook of Heavy Tailed Dis-
tributions in Finance (Amsterdam: North Holland, 2003). 
12 A. Sklar, “Random Variables, Joint Distribution Functions and Copulas,” Kyber-
netika 9 (1973), pp. 449–460. 
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of pointwise convergence. A sequence of random variables Xi, i ≥ 1 on 
(Ω,ℑ,P), is said to converge almost surely to a random variable X, 
denoted 

a.s. 
Xi → X 

if the following relationship holds: 

( ) = X ωP{ω: lim Xi ω ( )} = 1 
i → ∞ 

In other words, a sequence of random variables converges almost surely 
to a random variable X if the sequence of real numbers Xi(ω) converges 
to X(ω) for all ω except a set of measure zero. 

A sequence of random variables Xi, i ≥ 1 on (Ω,ℑ,P), is said to con-
verge in mean of order p to a random variable X if 

p[ ( ) – X ωlim E Xi ω ( ) ] = 0 
i → ∞ 

provided that all expectations exist. Convergence in mean of order one 
and two are called convergence in mean and convergence in mean 
square, respectively. 

A weaker concept of convergence is that of convergence in probabil-
ity. A sequence of random variables Xi, i ≥ 1 on (Ω,ℑ,P), is said to con-
verge in probability to a random variable X, denoted 

P 
Xi → X 

if the following relationship holds: 

lim P{ω: ( ) – X ωXi ω ( ) ≤ ε} = 1 , ∀ε > 0 
i → ∞ 

It can be demonstrated that if a sequence converges almost surely 
then it also convergences in probability while the converse is not gener-
ally true. It can also be demonstrated that if a sequence converges in 
mean of order p > 0, then it also convergences in probability while the 
converse is not generally true. 

A sequence of random variables Xi, i ≥ 1 on (Ω,ℑ,P) with distribution 
functions FXi 

is said to converge in distribution to a random variable X 
with distribution function FX, denoted 
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d 
Xi → X 

if 

x ( ) ∈ , Clim FXi
( ) = FX x x 

i → ∞ 

where C is the set of points where all the functions FXi 
and FX are con-

tinuous. 
It can be demonstrated that if a sequence converges almost surely 

(and thus converges in probability) it also converges in distribution 
while the converse is not true in general. 

INDEPENDENT AND IDENTICALLY DISTRIBUTED SEQUENCES 

Consider a probability space (Ω,ℑ,P). A sequence of random variables Xi 
on (Ω,ℑ,P) is called a sequence of independent and identically distributed 
(IID) sequence if the variables Xi have all the same distribution and are 
all mutually independent. An IID sequence is the strongest form of white 
noise, that is, of a completely random sequence of variables. Note that in 
many applications white noise is defined as a sequence of uncorrelated 
variables. This is a weaker definition as an uncorrelated sequence might 
be forecastable. 

An IID sequence is completely unforecastable in the sense that the 
past does not influence the present or the future in any possible sense. In 
an IID sequence all conditional distributions are identical to uncondi-
tional distributions. Note, however, that an IID sequence presents a sim-
ple form of reversion to the mean. In fact, suppose that a sequence Xi 
assumes at a given time t a value larger than the common mean of all 
variables: Xt > E[X]. By definition of mean it is more likely that Xt be 
followed by a smaller value: P(Xt+1 < Xt) > P(Xt+1 > Xt). 

Note that this type of mean reversion does not imply forecastability 
as the probability distribution of asset returns at time t + 1 is indepen-
dent from the distribution at time t. 

SUM OF VARIABLES 

Given two random variables X(ω), Y(ω) on the same probability space

(Ω,ℑ,P), the sum of variables Z(ω) = X(ω) + Y(ω) is another random

variable. The sum associates to each state ω a value Z(ω) equal to the
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sum of the values taken by the two variables X,Y. Let’s suppose that the 
two variables X(ω), Y(ω) have a joint density p(x,y) and marginal densi-
ties pX(x) and pY(x), respectively. Let’s call H the cumulative distribu-
tion of the variable Z. The following relationship holds 

H u [ ( ) ≤ u] = p x  y  )d y( ) = P Z  ω ( , xd∫ ∫ 
A 

A = {y ≤ –x + u} 

In other words, the probability that the sum X + Y be less than or equal 
to a real number u is given by the integral of the joint probability distri-
bution function in the region A. The region A can be described as the 
region of the x,y plane below the straight line y = –x + u. 

If we assume that the two variables are independent, then the distri-
bution of the sum admits a simple representation. In fact, under the 
assumption of independence, the joint density is the product of the mar-
ginal densities: p(x,y) = pX(x)pY(x). Therefore, we can write 

∞


u y– 


( ) = P Z  ω ( , xd ( ) xd pY yH u [ ( ) ≤ u] = ∫ ∫p x  y  )d y = ∫ 
 ∫ pX x ( ) yd 

A –∞ –∞ 

We can now use a property of integrals called the Leibnitz rule, 
which allows one to write the following relationship: 

∞ 
dH ( ) = pX(u y)pY y-------- = pZ u – ( ) yd ∫du –∞ 

Recall from Chapter 4 that the above formula is a convolution of 
the two marginal distributions. This formula can be reiterated for any 
number of summands: the density of the sum of n random variables is 
the convolution of their densities. 

Computing directly the convolution of a number of functions might 
be very difficult or impossible. However, if we take the Fourier transforms 
of the densities, PZ(s), PX(s), PY(s) computations are substantially simpli-
fied as the transform of the convolution is the product of the transforms: 

∞ 

pZ u – ( ) yd ⇒ PZ s ( ) × PY s( ) = pX(u y)pY y ( ) = PX s ( )∫ 
–∞ 
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This relationship can be extended to any number of variables. 
In probability theory, given a random variable X, the following 

expectation is called the characteristic function (c.f.) of the variable X 

ϕX t [( ) = E eitX] = E[ cos tX  ] + iE[ sin tX] 

If the variable X admits a d.f. FX(y), it can be demonstrated that the 
following relationship holds: 

∞ ∞ ∞ 

∫ itXϕX t [ x x( ) = E eitX] = e dFX( ) = cos tx dFX( ) + ∫ sin tx dFX( )x ∫ 
–∞ –∞ –∞ 

In this case, the characteristic function therefore coincides with the Fou-
rier-Stieltjes transform. It can be demonstrated that there is a one-to-one 
correspondence between c.d.s and d.f.s. In fact, it is well known that the 
Fourier-Stieltjes transform can be uniquely inverted. 

In probability theory convolution is defined, in a more general way, 
as follows. Given two d.f.s FX(y) and FY(y), their convolution is defined 
as: 

∞ 

F* u u ∫ – ( )( ) = (FX*FY)( ) = FX(u y)dFY y
–∞ 

It can be demonstrated that the d.f. of the sum of two variables X,Y 
with d.f.s FX(y) and FY(y) is the convolution of their respective d.f.s: 

∞ 

( u ( ) = (FX*FY)( ) = FX(u y)dFY yP X  + Y ≤ u) = ( ) = F* u – ( )+FX Y u ∫ 
–∞ 

If the d.f.s admits p.d.f.s, then the inversion formulas are those estab-
lished earlier. Inversion formulas also exist in the case that the d.f.s do 
not admit densities but these are more complex and will not be given 
here.13 

We can therefore establish the following property: the characteristic 
function of the sum of n independent random variables is the product of 
the characteristic functions of each of the summands. 

13 See Chow and Teicher, Probability Theory. 
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GAUSSIAN VARIABLES


Gaussian random variables are extremely important in probability the-
ory and statistics. Their importance stems from the fact that any phe-
nomenon made up of a large number of independent or weakly 
dependent variables has a Gaussian distribution. Gaussian distributions 
are also known as normal distributions. The name Gaussian derives 
from the German mathematician Gauss who introduced them. 

Let’s start with univariate variables. A normal variable is a variable 
whose probability distribution function has the following form: 

  
1  (x – µ)2  

f x( ,µ σ2) = ---------------exp– --------------------  
2σ2 σ 2π  

  

The univariate normal distribution is a distribution characterized by 
only two parameters, (µ,σ2), which represent, respectively, the mean and 
the variance of the distribution. We write X ∼ N(µ,σ2) to indicate that 
the variable X has a normal distribution with parameters (µ,σ2). We 
define the standard normal distribution as the normal distribution with 
zero mean and unit variance. It can be demonstrated by direct calcula-
tion that if X ∼ N(µ,σ2) then the variable 

X – µZ = --------------
σ 

is standard normal. The variable Z is called the score or Z-score. The 
cumulative distribution of a normal variable is generally indicated as 

– µ 
F x ------------( ) = Φ

x 

 σ  

where Φ(x) is the cumulative distribution of the standard normal. 
It can be demonstrated that the sum of n independent normal distribu-

tions is another normal distribution whose expected value is the sum of 
the expected values of the summands and whose variance is the sum of the 
variances of the summands. 

The normal distribution has a typical bell-shaped graph symmetrical 
around the mean. Exhibit 6.1 shows the graph of a normal distribution. 
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EXHIBIT 6.1 Graph of a Normal Variable with Zero Mean and σ = 100 

Multivariate normal distributions are characterized by the same 
exponential functional form. However, a multivariate normal distribu-
tion in n variables is identified by n means, one for each axis, and by a 
n×n symmetrical variance-covariance matrix. For instance, a bivariate 
normal distribution is characterized by two expected values, two vari-
ances and one covariance. We can write the general expression of a 
bivariate normal distribution as follows: 

 1  
exp	– ---Q 

 2 ( ,f x y) = -----------------------------------------

2πσXσY 1 – ρ2 

1  x – µX 2  x – µX  y – µY  y – µY 2  
Q = --------------- ---------------- – 2ρ ----------------  --------------- +  ---------------  

σX   σX   σY   σY  1 – ρ2 

where ρ is the correlation coefficient. 
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This expression generalizes to the case of n random variables. Using 
matrix notation, the joint normal probability distributions of the random 
n vector V = {Xi}, i = 1,2,...,n has the following expression: 

V = { } ∼ N (µµµµ ΣΣΣ)Xi n , 

where 

µ = E Xi[ ]i 

and ΣΣΣΣ is the variance-covariance matrix of the {Xi} 

ΣΣΣΣ = E[(V – µµµµ)(V – µµµµ)T] 

–¹�₂
f v( ) = [(2π)n ΣΣΣΣ ] exp[(–¹�₂)(v – µµµµ)TΣΣΣΣ–1(v – µµµµ)] 

where ΣΣΣΣ = detΣΣΣΣ , the determinant of ΣΣΣΣ. 
For n = 2 we find the previous expression for bivariate normal, tak-

ing into account that variances and correlation coefficients have the fol-
lowing relationship 

σij = ρijσiσj 

It can be demonstrated that a linear combination 

n 

W = ∑ αiXi 
i = 1 

of n jointly normal random variables Xi ∼ N(µi, σ2) with cov(Xi,Xj) =i 
∼ W) whereσij is a normal random variable W N(µW, σ2 

n 

µ = ∑ αiµW i 
i = 1 

n n 
2σW = ∑ ∑ αiαjσij 

i = 1 j = 1 
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THE REGRESSION FUNCTION


Given a probability space (Ω,ℑ,P), consider a set of p + 1 random variables. 
Let’s suppose that the random vector {X Z1 ... Zp} ≡ {X Z}, Z = {Z1 ... Z }p
has the joint multivariate probability density function: 

f xz1…zp) = f x, z) , z = {z1…zp}( ( 

Let’s consider the conditional density 

f x( z1, …, zp) = f x,( z) 

and the marginal density of Z, 

∞ 

(( ) = f x, z)dxfz z ∫ 
–∞ 

Recall from an earlier section that the joint multivariate density f(x,z) 
factorizes as 

f x, z) = f x( ( z)f ( )zz 

Let’s consider now the conditional expectation of the variable X given Z 
= z = {z1 ... zp}: 

∞ 

( ) = E Xg z [ Z = z] = vf v( z)dv∫ 
–∞ 

The function g, that is, the function which gives the conditional expec-
tation of X given the variables Z, is called the regression function. Oth-
erwise stated, the regression function is a real function of real variables 
which is the locus of the expectation of the random variable X given 
that the variables Z assume the values z. 

Linear Regression 
In general, the regression function depends on the joint distribution of 
[X Z1 ... Zp]. In financial econometrics it is important to determine 
what joint distributions produce a linear regression function. It can be 
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demonstrated that joint normal distributions produce a linear regression 
function. Consider the joint normal distribution 

1 
– ---

1
f v( ) = [(2π)n ΣΣΣΣ ]

2
exp – ---(v – µµµµ)TΣΣΣΣ–1(v – µµµµ)

2 

where parameters are those defined in an earlier section in this chapter. 
Let’s partition the parameters as follows: 

       σ σ x µx x x z, x,v =   , µ =   , Σ =   
z µ       σx, z Σz z

where µ , µz are respectively a scalar and a p-vector of expected values,x
σx,x, σx,z, σz,x, and Σz are respectively a scalar, p-vectors and a p×p

2matrix of variances and covariances and σx x = σ2 , σzi, zi 
= σ . It can , x zi

be demonstrated that the variable (X|Z = z) is normally distributed with 
the following parameters: 

–1(X Z = z) ∼ N[µx – (Σ–1σz, x)' (µ – z), σx x – σx, zΣz σ +]z z , z, x 

From the above expression we can conclude that the conditional 
expectation is linear in the conditioning variables. Let’s call 

α = µx – (Σ– 
z 
1σz, x)' µ  and β = Σz 

–1σz, xz 

We can therefore write 

( ) = E Xg z [ Z = z] = α β′z+ 

If the matrix Σ is diagonal, the random variables (X,Z1,...,Zp) are 
independent, such that σz,x = 0 and β = Σz 

–1σ = 0 and therefore thez, x 
regression function is a constant that does not depend on the condition-
ing variables. If the matrix Σz is diagonal but σ ,z, σz,x do not vanish,x
then the linear regression takes the following form 

p pσ σ, i x zx z , i( ) = E Xg z [ Z = z] = µ – ∑ -----------µ + ∑ -----------zix 
i = 1 σ2 

zi 
i = 1 σ2 

zi zi 
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In particular, a bivariate normal distribution factorizes in a linear 
regression as follows: 

)2σ (σ ,x z x z,(X Z = z) ∼ N µ – ----------(µ – z), σ2 – ------------------x z x 
σ2 σ2 

z z 

σ σx z x z, ,( ) = E Xg z [ Z = z] = µx – ----------µ + ----------zz 
σ2 σ2 

z z 

SUMMARY

 ■ Probability is a set function defined over a class of events where events 
are sets of possible outcomes of an experiment. A probability space is a 
triple formed by a set of outcomes, a σ-algebra of events, and a proba-
bility measure.

 ■ A random variable is a real-valued function defined over the set of out-
comes such that the inverse image of any interval is an event. n-dimen-
sional random vectors are functions from the set of outcomes into the 
n-dimensional Euclidean space with the property that the inverse image 
of n-dimensional generalized rectangles is an event.

 ■ Stochastic processes are time-dependent random variables.
 ■ An information structure is a collection of partitions of events associ-

ated to each instant of time that become progressively finer with the 
evolution of time. A filtration is an increasing collection of σ-algebras 
associated to each instant of time.

 ■ The states of the economy, intended as full histories of the economy, 
are represented as a probability space. The revelation of information 
with time is represented by information structures or filtrations. Prices 
and other financial quantities are represented by adapted stochastic 
processes.

 ■ By conditioning is meant the change in probabilities due to the acqui-
sition of some information. It is possible to condition with respect to 
an event if the event has nonzero probability. In general terms, condi-
tioning means conditioning with respect to a filtration or an informa-
tion structure.

 ■ A martingale is a stochastic process such that the conditional expected 
value is always equal to its present value. It embodies the idea of a fair 
game where today’s wealth is the best forecast of future wealth. 
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 ■ The variance of a random variable measures the average size of its fluc-
tuations around the mean.

 ■ The correlation coefficient between two variables is a number that 
measures how the two variables move together. It is zero for inde-
pendent variables, plus/minus one for linearly dependent determin-
istic variables. 

■ An infinite sequence of random variables might converge to a limit ran-
dom variable. Different types of convergence can be defined: pointwise 
convergence, convergence in probability, or convergence in distribu-
tion.

 ■ Random variables can be added to produce another random variable. 
■ The characteristic function of the sum of two random variables is the 

product of the characteristic functions of each random variable.
 ■ Given a multivariate distribution, the regression function of one ran-

dom variable with respect to the others is the conditional expectation 
of that random variable given the values of the others.

 ■ Joint normal distributions admits a linear regression function. 
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CHAPTER 7 
Optimization


The concept of optimization is intrinsic to finance theory. The seminal 
work of Harry Markowitz demonstrated that financial decision-mak-

ing is essentially a question of an optimal trade-off between risk and 
returns. While Markowitz was developing his theory of investment in 
the 1950s, as we will see in Chapter 16, Georg Dantzig, the father of 
linear programming, was laying down the foundations of the modern 
computerized approach to optimization.1 

Purely mathematical solutions to optimization problems were proposed 
early in the history of calculus. In the eighteenth century, the French mathe-
matician Lagrange introduced a general methodology for finding the 
maxima or minima of a multivariate function subject to constraints; the 
Swiss-born mathematician Euler2 introduced the mathematics of the calculus 
of variations.3 Nevertheless, no matter how important from the concep-
tual point of view, optimization had limited practical applications in 
engineering, business, and financial planning until the recent develop-
ment of high-performance computing. 

In modern terminology, an optimization problem is called a mathe-
matical programming problem. From an analytical perspective, a static 
mathematical program attempts to identify the maxima or minima of a 
function f(x1,...,xn) of n real-valued variables, called the objective func-
tion, in a domain identified by a set of constraints. The latter might take 
the general form of inequalities gi(x1,...,xn) ≥ bi. Linear programming is 
the specialization of mathematical programming to instances where 

1 Dantzig and Markowitz worked together at the Rand Corporation in the 1950s.

2 Euler was born in Basel, Switzerland, but spent a large part of his long career in

Russia.

3 The calculus of variations played a fundamental role in the development of modern

science.
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both f and the constraints are linear. Quadratic programming is the spe-
cialization of mathematical programming to instances where f is a qua-
dratic function. The Markowitz mean-variance approach leads to a 
quadratic programming problem. 

A different, and more difficult, problem is the optimization of a 
dynamic process. In this case, the objective function depends on the entire 
realization of a process, which is often not deterministic but stochastic. 
Decisions might be taken at intermediate steps on the basis of information 
revealed up to that point. This is the concept of recourse, that is, revision of 
past decisions. This area of optimization is called stochastic programming. 

From an application perspective, mathematical programming is an 
optimization tool that allows the rationalization of many business or 
technological decisions. The computational tractability of the resulting 
analytical models is a key issue in mathematical programming. The sim-
plex algorithm, developed in 1947 by George Dantzig, was one of the 
first tractable mathematical programming algorithms to be developed 
for linear programming. Its subsequent successful implementation con-
tributed to the acceptance of optimization as a scientific approach to 
decision-making and initiated the field known as operations research. 

Optimization is a highly technical subject, which we will not fully 
develop in this chapter. Instead, our objective is to give the reader a gen-
eral understanding of the technology. We begin with an explanation of 
maxima or minima of a multivariate function subject to constraints. We 
then discuss the basic tools for static optimization: linear programming 
and quadratic programming. After introducing the idea of optimizing a 
process and defining the concepts of the calculus of variations and con-
trol theory, we briefly cover the techniques of stochastic programming.4 

MAXIMA AND MINIMA 

Consider a multivariate function f(x1,...,xn) of n real-valued variables. Sup-
pose that f is twice differentiable. Define the gradient of f, gradf, also written 
∇f, as the vector whose components are the first order partial derivatives of f 

 ∂f ∂f  
(grad[f x1, …, x )] = ∇f = ---------, …, ---------n ∂x1 ∂x  n 

4 For a good introduction to stochastic programming, see, among others, J.R. Birge 
and F. Louveaux, Introduction to Stochastic Programming (Heidelberg: Springer, 
1997) and Peter Kall and Stein W. Wallace, Stochastic Programming (Chichester, 
West Sussex: Wiley, 1995). 
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Given a multivariate function f(x1,...,x ), consider the matrixn
formed by the second order partial derivatives. This matrix is called the 
Hessian matrix and its determinant, denoted by H, is called the Hessian 
determinant (see Chapter 5 for definition of matrix and determinants): 

∂2f ∂2f 
--------- · · ·  -------------------

2 ∂x1∂x∂x1 n 

· · · 
H = · · 

· 

∂2f 

· 
· · 

∂2f · · ·  ---------
∂x2∂x1∂xn n 

A point (a1,...,a ) is called a relative local maxima or a relative localn
minima of the function f if the relationship 

f a1 + h1, …, x + h ) ≤ f a1, …, a ) ,( ( h ≤ d > 0n n n 

or, respectively, 

f a1 + h1, …, x + h ) ≥ f a1, …, a ) ,( ( h ≤ d > 0n n n 

holds for any real positive number d > 0. 
A necessary, but not sufficient, condition for a point (x1,...,x ) to ben

a relative maximum or minimum is that all first order partial derivatives 
evaluated at that point vanish, that is, that the following relationship 
holds: 

 ∂f ∂f  ---------…---------(grad[f x1, …, x )] =  = (0, …, 0)n ∂x1 ∂xn 

A point where the gradient vanishes is called a critical point. 
A critical point can be a maximum, a minimum or a saddle point. 

For functions of one variable, the following sufficient conditions hold:

 ■ If the first derivative evaluated at a point a vanishes and the second 
derivative evaluated at a is positive, then the point a is a (relative) min-
imum. 
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 ■ If the first derivative evaluated at a point a vanishes and the second 
derivative evaluated at a is negative, then the point a is a (relative) 
maximum.

 ■ If the first derivative evaluated at a point a vanishes and the second 
derivative evaluated at a also vanishes, then the point a is a saddle point. 

In the case of a function f(x,y) of two variables x,y, the following 
conditions hold:

 ■ If ∇f = 0 at a given point a and if the Hessian determinant evaluated at 
a is positive, then the function f has a relative maximum in a if fxx < 0 
or f < 0 and a relative minimum if fxx > 0 or fyy > 0. Note that if theyy 
Hessian is positive the two second derivatives fxx and fyy must have the 
same sign.

 ■ If ∇f = 0 at a given point a and if the Hessian determinant evaluated at 
a is negative, then the function f has a saddle point in a.

 ■ If ∇f = 0 at a given point a and if the Hessian determinant evaluated at 
a vanishes, then the point a is degenerate and no conclusion can be 
drawn in this case. 

The above conditions can be expressed in a more compact way if we 
consider the eigenvalues (see Chapter 5) of the Hessian matrix. If both 
eigenvalues are positive at a critical point a, the function has a local 
minimum at a; if both are negative the function has a local maximum; if 
they have opposite signs, the function has a saddle point; and if at least 
one of them is 0, the critical point is degenerate. Recall that the product 
of the eigenvalues is equal to the Hessian determinant. 

This analysis can be carried over in the three-dimensional case. In this 
case there will be three eigenvalues, all of which are positive at a local 
minimum and negative at a local maximum. A critical point of a function 
of three variables is degenerate if at least one of the eigenvalues of the 
Hessian determinant is 0 and has a saddle point if at least one eigenvalue 
is positive, at least one is negative, and none is 0. 

In higher dimensions, the situation is more complex and goes beyond 
the scope of our introduction to optimization. 

LAGRANGE MULTIPLIERS 

Consider a multivariate function f(x1,...,xn) of n real-valued variables. 
In the previous section we saw that, if the n variables are unconstrained, 
a local optimum of f can be found by solving the n equations: 
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 ∂f ∂f  
∇f =	 ---------, …, --------- = (0, …, 0)

∂x1 ∂x  n 

Let’s now discuss how to find maxima and minima when the optimi-
zation problem has equality constraints. Suppose that the n variables 
(x1,...,xn) are not independent, but satisfy m < n constraint equations 

g1(x1,...,xn) = 0 
. 
. 
. 
gm(x1,...,xn) = 0 

These equations define, in general, an (n-m)-dimensional surface. 
For instance, in the case of two variables, a constraint g1(x,y) = 0 
defines a line. In the case of three variables, one constraint g1(x,y,z) = 0 
defines a two-dimensional surface while two constraints g1(x,y,z) = 0, 
g2(x,y,z) = 0 define a line in the three-dimensional space, and so on. 

Our objective is to find the maxima or minima of the function f for 
the set of points that also satisfy the constraints. It can be demonstrated 
that, under this restriction, the gradient ∇f of f need not vanish at the 
maxima or minima, but need only be orthogonal to the (n-m)-dimen-
sional surface described by the constraint equations. That is, the follow-
ing relationships must hold 

∇f = λλλλT∇g , for some λλλλ = (λ1, … λ ), m 

or, in the usual notation 

m
∂f ∂gj-------- = ∑ λj -------- , i = 1,...,n 
∂xi j = 1 ∂xi 

The coefficients (λ1,...,λm) are called Lagrange multipliers. 
If we define the function 

m 

( , m (F x1, …, x , λ1, … λ ) = f x1, …, x ) – ∑ λjgjn n 
j = 1 
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the above equations together may be written as 

∇F = 0 

or 

∂F ∂F ∂F ∂F 
--------- = … = --------- = --------- = … = ---------- = 0 
∂x1 ∂x ∂λ1 ∂λn m 

In other words, the method of Lagrange multipliers transforms a con-
strained optimization problem into an unconstrained optimization 
problem. The method consists in replacing the original objective func-
tion f to be optimized subject to the constraints g with another objective 
function 

m 

F = f – ∑ λjgj 
j = 1 

to be optimized without constraints in the variables (x1,...,xn,λ1,...,λm). 
The Lagrange multipliers are not only a mathematical device. In many 
applications they have a useful physical or economic interpretation. 

NUMERICAL ALGORITHMS 

The method of Lagrange multiplers works with equality constraints, 
that is, when the solution is constrained to stay on the surface defined 
by the constraints. Optimization problems become more difficult if ine-
quality constraints are allowed. This means that the admissible solu-
tions must stay within the boundary defined by the constraints. In this 
case, approximate numerical methods are often needed. Numerical 
algorithms or “solvers” to many standard optimization problems are 
available in many computer packages. 

Linear Programming 
The general form for a linear programming (LP) problem is as follows. 
Minimize a linear objective function 

(f x1, …, x ) = c1x1 + … + c xn n n 

or, in vector notation, 
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f x1, …, x ) = c T x , c = (c1, ..., cn), x = (x1,...,xn)( n 

subject to the constraints 

   
   
≤ 

+ … + ai nx = bi , i = 1,2,...,mai, 1x1 , n   
≥   

or, in matrix notation 

   
Ax  b 

≤ 
=   
≥   

with additional sign restrictions such as xi ≤ 0, xi ≥ 0, or xi unrestricted 
in sign. 

The largest or smallest value of the objective function is called the 
optimal value, and a vector [x1 ... xn] that gives the optimal value con-
stitutes an optimal solution. The variables x1,...,xn are called the deci-
sion variables. The feasible region determined by a collection of linear 
inequalities is the collection of points that satisfy all of the inequalities. 
The optimal solution belongs to the feasible region. 

The above formulation has the general structure of a mathematical 
programming problem as outlined in the introduction to the chapter, 
but is characterized, in addition, by the fact that the objective function 
and the constraints are linear. 

LP problems can be transformed into standard form. An LP is said 
to be in standard form if (1) all constraints are equality constraints and 
(2) all the variables have a nonnegativity sign restriction. An LP prob-
lem in standard form can therefore be written as follows 

min cTx 

subject to constraints 

Ax = b  
 x ≥ 0  

where A is an m × n matrix and b is an m-vector. 
Every LP can be brought into standard form through the following 

transformations: 
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1. An inequality constraint 

   
   
≤ 

+ … + ai nx =ai, 1x1 , n  bi 
≥   

can be converted into an equality constraint through the introduction 
of a slack variable, denoted by S, or an excess variable, denoted by E, 
such that 

+ … + ai nx + S = biai, 1x1 , n 

or 

+ … + ai nx – E = biai, 1x1 , n 

2. A variable with negative sign restriction xi ≤ 0 can be substituted by 
xi = –xi ′ , xi ′ ≥ 0 while an unrestricted variable can be substituted by 
xi = xi ′ – xi ″ , xi ′, xi ″ ≥ 0 . 

There are two major techniques for solving an LP problem: the sim-
plex method and the interior-point method. The simplex method was 
discovered by Dantzig in the 1940s. Although the number of iterations 
may be exponential in the number of unknowns, the simplex method 
proved very useful and was unrivaled until the late 1980s. The exponen-
tial computational complexity of the simplex method led to a search for 
algorithms with better computational complexity features, in particular 
polynomial complexity. Khachiyan’s ellipsoid method—the first polyno-
mial-time algorithm—appeared in the 1970s. Most interior-point meth-
ods also have polynomial complexity. We will briefly describe both the 
simplex and the interior-point methods. 

The Simplex Algorithm 
Linear constraints identify a region called a simplex. The simplex 
method searches for optima on the vertices of the simplex. Recall from 
Chapter 5 on matrix algebra that the system Ax = b admits solutions if 
and only if rank [Ab] = rank A. We can assume without loss of general-
ity that rank A = m, otherwise we drop redundant equations. The feasi-
ble set is the set B of points that satisfy the constraints 

B = {x: Ax = b, x ≥ 0} 
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A feasible basic solution is a solution x̂ ≡ ( x̂ 1… x̂ ) ∈ B with the followingn 
additional properties. For each solution x consider the set I of indices such 
that the respective variables are strictly positive: I(x) ≡ (i: xi > 0), with x ∈ 
B. A feasible basic solution x is a feasible solution such that the set

I x̂{ Ai: i ( )  ∈ } of columns of the matrix A are linearly independent. There-
I x̂fore, the components x̂ i , i ( )  ∈ are the unique solutions of the system 

∑ Aixi = bi 
i ( )  ∈ I x̂

In fact, it is possible to demonstrate the following two important 
results:

 ■ If an LP has a bounded optimal solution, then there exists an extreme 
point, that is, a minimum or maximum, of the feasible (on one of the 
vertices) region, which is optimal. 

■ Extreme points of the feasible region of an LP correspond to basic fea-
sible solutions of the standard form representation of the problem. 

The first result implies that in order to obtain an optimal solution of 
an LP, we can constrain our search on the set of the extreme points of its 
feasible region. The second result implies that each of these points is 
determined by selecting a set of basic variables, with cardinality equal to 
the number of the constraints of the LP and the additional requirement 
that the (uniquely determined) values of these variables are nonnegative. 

This further implies that the set of extreme points for an LP with m con-
straints and N variables in its standard form representation can have only a 
finite number of extreme points. A naive approach to the problem would be 
to enumerate the entire set of extreme points and select one which minimizes 
the objective function over this set. However, for reasonably sized LP prob-
lems, the set of extreme points, even though finite, can become extremely 
large. Hence a more systematic approach to organize the search is needed. 
The simplex algorithm provides such a systematic approach. 

The algorithm starts with an initial basic feasible solution and tests its 
optimality. If an optimality condition is verified, then the algorithm termi-
nates. Otherwise, the algorithm identifies an adjacent feasible solution 
with a better objective value. The optimality of this new solution is tested 
again and the entire scheme is repeated until an optimal solution is found. 
The algorithm will terminate in a finite number of steps except in special 
pathological cases. In other words, the simplex algorithm starts from 
some initial extreme point and follows a path along the edges of the feasi-
ble region towards an optimal extreme point, such that all the intermedi-
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ate extreme points visited improve the objective function. Many standard 
optimization software packages contain the simplex algorithm. However, 
the simplex method exhibits exponential complexity. This means that the 
number of steps required for finding a solution grows exponentially with 
the number of unknowns. 

Interior-Point Methods 
The exponential complexity of the simplex method was behind the search 
for more computationally efficient methods. The 1980s saw the introduc-
tion of the first fast algorithms that generate iterates lying in the interior 
of the feasible set rather than on the boundary, as simplex methods do. 
The primal-dual class of interior-points algorithms is today considered 
the state-of-the-art technique for the practical solution of LP problems. 
Furthermore, this class of methods are also very amenable to theoretical 
analysis, and has opened up a new area of research within optimization. 
We will limit our brief discussion to this class of interior-point algorithms. 

Let’s begin by formulating the concept of duality. Every problem of 
the type 

maximize c1x1 + ... + cnxn 

subject to 

ai,1x1 + ... + ai,nxn ≥ bi, i = 1,2,...,m 

xj ≥ 0, j = 1,2,...,n 

has a dual problem 

minimize b1y1 + ... + bmym 

subject to 

y1a1,i + ... + ymam,i ≤ ci, i = 1,2,...,n 

yj ≥ 0, j = 1,2,...,m 

The original problem is called the primal problem. The primal-dual gap 
is the difference, if it exists, between the largest primal value and the small-
est dual value. The Strong Duality Theorem states that, if the primal prob-
lem has an optimal solution x* = (x1,...,xn), the dual also has an optimal 
solution y* = (y1,...,ym) and there is no primal-dual gap in the sense that 
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∑cixi = ∑bjyj 

i j 

Interior-point algorithms generate iterates such that the duality gap is 
driven to zero, yielding a limiting point that solves the primal and dual 
linear programs. Commercial software packages that contain primal-
dual interior-point solvers are available. 

Quadratic Programming 
The general quadratic programming (QP) problem is a mathematical 
programming problem where the objective function is quadratic and 
constraints are linear as follows: 

( 1minimize f x1, …, x ) = c T x + ---x TDxn 
2 

where c = (c1,...,cn), x = (x1,...,xn) are n-vectors and D is a n×n matrix, 
subject to 

aix ≤ bi, i ∈ I 

aix = bi, i ∈ E 

x ≥ 0 

where b is an m-vector b = (b1,...,bm), A = [ai] is an m×n matrix, and I 
and E specify the nonequality and equality constraints respectively. 

The major classification criteria for these problems come from the 
characteristics of the matrix D as follow:

 ■ If the matrix D is positive semidefinite or positive definite, then the QP 
problem is a convex quadratic problem. For convex quadratic prob-
lems, every local maximum is a global maximum. Algorithms exist for 
solving this problem in polynomial time.5 The Markowitz mean-vari-
ance optimization problem is of this type.

 ■ If the matrix D is negative semidefinite, that is, its eigenvalues are all 
nonpositive, then the QP problem is a concave quadratic problem. All 
solutions lie at some vertex of the feasible regions. There are efficient 
algorithms for solving this problem. 

5 A problem is said to be solvable in polynomial time if the time needed to solve the 
problem scales with the number of variables as a polynomial. 
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 ■ If the matrix D is such that the problem is bilinear, that is, the variables 
x can be split into two subvectors such that the problem is linear when 
one of the two subvectors is fixed, then the QP problem is bilinear. 
There are efficient algorithms for solving this problem.

 ■ If the matrix D is indefinite, that is, it has both positive and negative 
eigenvalues, then the QP problem is very difficult to solve. Depending 
on the matrix D, the complexity of the problem might grow exponen-
tially with the number of variables. 

Many modern software optimization packages have solvers for several 
of these problems. 

CALCULUS OF VARIATIONS AND OPTIMAL CONTROL THEORY 

We have thus far discussed the problem of finding the maxima or min-
ima of a function of n real variables. The solution to these problems is 
typically one point in a domain. This formulation is sufficient for prob-
lems such as finding the optimal composition of a portfolio for a single 
period of a finite horizon: An investment is made at the initial time and 
a payoff is received at the end of the period. However, many other 
important optimization problems in finance require finding an optimal 
function or path throughout time and over multiple periods. The mathe-
matical foundation for problems whose solution requires finding an 
optimal function or path of this kind is the calculus of variations. The 
basic setting of the calculus of variations is the following. An infinite set 
of admissible functions y = f(x), x0 ≤ x ≤ x1 is given. The end points 
might vary from curve to curve. Let’s assume all curves are differentia-
ble in the given interval [x0,x1]. A function of three variables F(x,y,z) is 
given such that the integral 

x1 

J = ∫ F  x y y( ′ , ,  ) xd y 

x0 

is well defined where y′ = dy/dx. The value of J depends on the curve y. The 
basic problem of the calculus of variations is to find the curve y = f(x) that 
minimizes J. This problem could be easily reformulated in many variables. 

One strategy for solving this problem is the following. Any solution 
y = f(x) has the property that, if we slightly displace the curve y, the 
integral assumes higher values. Therefore if we parameterize parallel 
displacements with a variable ε (denoting by {yε} the collection of all 
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such displacements from the optimal y such that y = y ), the deriv-ε ε = 0ative of J with respect to ε must vanish for ε = 0. 
If we compute this derivative, we arrive at the following differential 

equation that must be satisfied by the optimal solution y 

( ′ , ,  ) d ∂F x y y∂F x y y ( ′ , ,  )
----------------------------- – ------------------------------------ = 0 

∂y dx ∂y′ 

First established by Leonard Euler in 1744, this differential equation is 
known as the Euler equation or the Euler-Lagrange equation.6 

Though fundamental in the physical sciences, this formulation of 
variational principles, is rarely encountered in finance theory. In finance 
theory, as in engineering, one is primarily interested in controlling the 
evolution of a process. For instance, in investment management, one is 
interested in controlling the composition of a portfolio in order to attain 
some objective. This is the realm of control theory. Let’s now define con-
trol theory in a deterministic setting. The following section will discuss 
stochastic programming—a computational implementation of control 
theory in a stochastic setting. 

Consider a dynamic process which starts at a given initial time t0 and 
ends at a given terminal time t1. Let’s suppose that the state of the system is 
described by only one variable x(t) called the state variable. The state of the 
system is influenced by a set of control variables that we represent as a vec-
tor u(t) = [u1(t),...,u (t)]. The control vector must lie inside a given subset ofn
a Euclidean r-dimensional space, U which is assumed to be closed and time-
invariant. An entire path of the control vector is called a control. A control 
is admissible if it stays in U and satisfies some regularity conditions. 

The dynamics of the state variables are specified through the differ-
ential equation 

dx ( ) u t------- = f1[x t ( )  , ] 
dt 

where f1 is assumed to be continuously differentiable with respect to 
both arguments. Suppose that the initial state is given but the terminal 
state is unrestricted. 

The problem to be solved is that of maximizing the objective func-
tional: 

6 Lagrange himself attributed the equation to Euler. 
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t1 

, ( ), u t [ x t1J = ∫ f0[t x  t ( )] td + S t1 ( )  , ]y


t0


A functional is a mapping from a set of functions into the set of real 
numbers; it associates a number to each function. The definite integral is 
an example of a functional. 

To solve the above optimal control problem, a useful strategy is to find 
a set of differential equations that must be satisfied by the control. Two 
major approaches for solving this problem are available: Bellman’s 
Dynamic Programming7 and Pontryagin’s Maximum Principle.8 The 
former approach is based on the fact that the value of the state variable at 
time t captures all the necessary information for the decision-making from 
time t and onward: The paths of the control vector and the state variable 
up to time t do not make any difference as long as the state variable at time 
t is the same. Bellmann showed how to derive from this observation a par-
tial differential equation that uniquely determines the control. Pontryagin’s 
Maximum Principle introduces additional auxiliary variables and derives 
differential equations via the calculus of variations that might be simpler to 
solve than those of Bellmann’s dynamic programming. 

STOCHASTIC PROGRAMMING 

The model formulations discussed thus far assume that the data for the 
given problem are known precisely. However, in financial economics, data 
are stochastic and cannot be known with certainty. Stochastic program-
ming can be used to make optimal decisions under uncertainty. The fun-
damental idea behind stochastic programming is the concept of stages 
and recourse. Recourse is the ability to take corrective action at a future 
time, that is, a decision stage, after a random event has taken place. 

To formulate problems of dynamic decision-making under uncer-
tainty as a stochastic program, we must first characterize the uncertainty 
in the model. The most common method is to formulate scenarios and to 
assign to each scenario a probability. A scenario is a complete path of 
data. To illustrate the problem of stochastic programming, let’s consider 

7 R. Bellman, Dynamic Programming (Princeton, NJ: Princeton University Press,

1957).

8 For a discussion of Pontryagin’s Maximum Principle see, for instance: E.B. Lee, and

L. Marcus, Foundations of Optimal Control Theory (New York: John Wiley & 
Sons, 1967). 
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a two-stage program that seeks to minimize the cost of the first-period 
decision plus the expected cost of the second-period recourse decision. In 
Chapter 21 we provide an example related to bond portfolio manage-
ment. 

To cast the stochastic programming problem in the framework of LP, 
we need to create a deterministic equivalent of the stochastic problem. 
This is obtained introducing a new set of variables at each stage and tak-
ing expectations. The first-period direct cost is cTx while the recourse 

Tcost at the second stage is di yi where i = 1,...,S represents the different 
states. The first-period constraints are represented as Ax = b. At each 
stage, recourse is subject to some recourse function Tx + Wy = h. This 
constraint can be, for example, self-financing conditions in portfolio 
management. It should be noted that in stochastic programs the first-
period decision is independent of which second-period scenario actually 
occurs. This is called the nonanticipativity property. 

A two-stage problem can be formulated as follows 

S 
Tminimize c T x + ∑ pidi yi 

i = 1 

subject to 

Ax = b 

Tix + Wiyi = hi, i = 1,...,S 

x ≥ 0 

yi ≥ 0 

where S is the number of states and pi is the probability of each state 
such that 

S 

∑ pi = 1 
i = 1 

Notice that the nonanticipativity constraint is met. There is only one 
first-period decision whereas there are S second-period decisions, one 
for each scenario. In this formulation, the stochastic programming 
problem has been reduced to an LP problem. This formulation can be 
extended to any number of intermediate stages. 
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SUMMARY


 ■ Optimizing means finding the maxima or minima of a function or of a 
functional.

 ■ Optimization is a fundamental principle of financial decision-making 
insofar as financial decisions are an optimal trade-off between risk and 
return.

 ■ The partial derivatives of an unconstrained function vanish at maxima 
and minima.

 ■ The maxima and minima of a function subject to equality constraints 
can be found equating to zero the derivatives of the corresponding 
Lagrangian function, which is the sum of the original function and of a 
linear combination of the constraints.

 ■ If constraints are linear inequalities, the problem can be solved numeri-
cally with the techniques of linear programming, quadratic program-
ming, or nonlinear mathematical programming.

 ■ There are two major solution strategies for a linear programming prob-
lem: the simplex method and the interior points method.

 ■ The simplex method searches for a solution by moving on the vertices 
of the simplex, that is, the area identified by the constraint equations.

 ■ The interior points method allows movement in the interior points of 
the area identified by the constraint equations.

 ■ Quadratic and, more in general, nonlinear optimization problems are 
more difficult to solve and more computationally intensive. 

■ Functionals are functions defined on other functions.
 ■ Calculus of variations deals with the problem of finding those func-

tions that optimize a functional.
 ■ Control theory deals with the problem of optimizing a functional by 

controlling some of the variables while other variables are subject to 
exogenous dynamics.

 ■ Bellmann’s Dynamic Programming and Pontryagin’s Maximum Princi-
ple are the key mathematical tools of control theory.

 ■ Multistage stochastic programming is a set of numerical techniques for 
finding the maxima and minima of a functional defined on a stochastic 
process.

 ■ Multistage stochastic optimization is based on formalizing the rules for 
recourse, that is, how decisions are made at each stage and on describ-
ing possible scenarios. 
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CHAPTER 8 
Stochastic Integrals


n Chapter 4, we explained definite and indefinite integrals for deter-
ministic functions. Recall that integration is an operation performed 

on single, deterministic functions; the end product is another single, 
deterministic function. Integration defines a process of cumulation: The 
integral of a function represents the area below the function. However, 
the usefulness of deterministic functions in economics and finance the-
ory is limited. Given the amount of uncertainty, few laws in economics 
and finance theory can be expressed through them. It is necessary to 
adopt an ensemble view, where the path of economic variables must be 
considered a realization of a stochastic process, not a deterministic 
path. We must therefore move from deterministic integration to stochas-
tic integration. In doing so we have to define how to cumulate random 
shocks in a continuous-time environment. These concepts require rigor-
ous definition. This chapter defines the concept and the properties of 
stochastic integration. Based on the concept of stochastic integration, 
Chapter 10 defines stochastic differential equations. 

Two observations are in order:

 ■ While ordinary integrals and derivatives operate on functions and 
yield either individual numbers or other functions, stochastic integra-
tion operates on stochastic processes and yield either random vari-
ables or other stochastic processes. Therefore, while a definite 
integral is a number and an indefinite integral is a function, a stochas-
tic integral is a random variable or a stochastic process. A differential 
equation—when equipped with suitable initial or boundary condi-
tions—admits as a solution a single function while a stochastic differ-
ential equations admits as a solution a stochastic process. 

217 
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 ■ Moving from a deterministic to a stochastic environment does not 
necessarily require leaving the realm of standard calculus. In fact, all 
the stochastic laws of economics and finance theory could be 
expressed as laws that govern the distribution of transition probabili-
ties. We will see an example of this mathematical strategy when we 
introduce the Fokker-Planck differential equations (Chapter 20). The 
latter are deterministic partial differential equations that govern the 
probability distributions of prices. Nevertheless it is often convenient 
to represent uncertainty directly through stochastic integration and 
stochastic differential equations. This approach is not limited to eco-
nomics and finance theory: it is also used in the domain of the physi-
cal sciences. In economics and finance theory, stochastic differential 
equations have the advantage of being intuitive: thinking in terms of 
a deterministic path plus an uncertain term is easier than thinking in 
terms of abstract probability distributions. There are other reasons 
why stochastic calculus is the methodology of choice in economics 
and finance but easy intuition plays a key role. 

For example, a risk-free bank account, which earns a deterministic 
instantaneous interest rate f(t), evolves according to the deterministic law: 

y = Aexp( f t( ) td )∫ 
which is the general solution of the differential equation: 

------ = f tdy ( ) td y 

The solution of this differential equation tells us how the bank account 
cumulates over time. 

However if the rate is not deterministic but is subject to volatility— 
that is, at any instant the rate is f(t) plus a random disturbance—then 
the bank account evolves as a stochastic process. That is to say, the 
bank account might follow any of an infinite number of different paths: 
each path cumulates the rate f(t) plus the random disturbance. In a sense 
that will be made precise in this chapter and in Chapter 10 on stochastic 
differential equations, we must solve the following equation: 

------ = f t
dy ( )dt plus random disturbance 
y 
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Here is where stochastic integration comes into play: It defines how the 
stochastic rate process is transformed into the stochastic account pro-
cess. This is the direct stochastic integration approach. 

It is possible to take a different approach. At any instant t, the 
instantaneous interest rate and the cumulated bank account have two 
probability distributions. We could use a partial differential equation to 
describe how the probability distribution of the cumulated bank 
account is linked to the interest rate probability distribution. 

Similar reasoning applies to stock and derivative price processes. In 
continuous-time finance, these processes are defined as stochastic pro-
cesses which are the solution of a stochastic differential equation. 
Hence, the importance of stochastic integrals in continuous-time finance 
theory should be clear. 

Following some remarks on the informal intuition behind stochastic 
integrals, this chapter proceeds to define Brownian motions and outlines 
the formal mathematical process through which stochastic integrals are 
defined. A number of properties of stochastic integrals are then estab-
lished. After introducing stochastic integrals informally, we go on to 
define more rigorously the mathematical process for defining stochastic 
integrals. 

THE INTUITION BEHIND STOCHASTIC INTEGRALS 

Let’s first contrast ordinary integration with stochastic integration. A 
definite integral 

b 

A = ∫f  x( ) xd 
a 

is a number A associated to each function f(x) while an indefinite inte-
gral 

x 

( ) = f sy x ( ) sd ∫ 
a 

is a function y associated to another function f. The integral represents 
the cumulation of the infinite terms f(s)ds over the integration interval. 

A stochastic integral, that we will denote by 
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b 

W = ∫XtdBt 

a 

or 

b 

W = ∫XtºdBt 

a 

is a random variable W associated to a stochastic process if the time 
interval is fixed or, if the time interval is variable, is another stochastic 
process Wt. The stochastic integral represents the cumulation of the sto-
chastic products XtdBt. As we will see in Chapter 10, the rationale for 
this approach is that we need to represent how random shocks feed back 
into the evolution of a process. We can cumulate separately the deter-
ministic increments and the random shocks only for linear processes. In 
nonlinear cases, as in the simple example of the bank account, random 
shocks feed back into the process. For this reason we define stochastic 
integrals as the cumulation of the product of a process X by the random 
increments of a Brownian motion. 

Consider a stochastic process Xt over an interval [S,T]. Recall that a 
stochastic process is a real variable X(ω)t that depends on both time and 
the state of the economy ω. For any given ω, X(⋅)t is a path of the process 
from the origin S to time T. A stochastic process can be identified with 
the set of its paths equipped with an appropriate probability measure. A 
stochastic integral is an integral associated to each path; it is a random 
variable that associates a real number, obtained as a limit of a sum, to 
each path. If we fix the origin and let the interval vary, then the stochas-
tic integral is another stochastic process. 

It would seem reasonable, prima facie, to define the stochastic inte-
gral of a process X(ω)t as the definite integral in the sense of Rieman-
Stieltjes associated to each path X(⋅)t of the process. If the process X(ω)t 
has continuous paths X(⋅,ω), the integrals 

T 

( )  = X s ω , ) sd W ω ∫ ( 
S 

exist for each path. However, as discussed in the previous section, this is 
not the quantity we want to represent. In fact, we want to represent the 
cumulation of the stochastic products XtdBt. Defining the integral 
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b 

W = ∫XtdBt 

a 

pathwise in the sense of Rieman-Stieltjes would be meaningless because 
the paths of a Brownian motion are not of finite variation. If we define 
stochastic integrals simply as the limit of XtdBt sums, the stochastic 
integral would be infinite (and therefore useless) for most processes. 

However, Brownian motions have bounded quadratic variation. 
Using this property, we can define stochastic integrals pathwise through 
an approximation procedure. The approximation procedure to arrive at 
such a definition is far more complicated than the definition of the Rie-
man-Stieltjes integrals. Two similar but not equivalent definitions of sto-
chastic integral have been proposed, the first by the Japanese 
mathematician Kyosi Itô in the 1940s, the second by the Russian physi-
cist Ruslan Stratonovich in the 1960s. The definition of stochastic inte-
gral in the sense of Itô or of Stratonovich replaces the increments ∆xi 
with the increments ∆Bi of a fundamental stochastic process called 
Brownian motion. The increments ∆Bi represent the “noise” of the pro-
cess.1 The definition proceeds in the following three steps:

 ■ Step 1. The first step consists in defining a fundamental stochastic pro-
cess—the Brownian motion. In intuitive terms, a Brownian motion 
Bt(ω) is a continuous limit (in a sense that will be made precise in the 
following sections) of a simple random walk. A simple random walk is 
a discrete-time stochastic process defined as follows. A point can move 
one step to the right or to the left. Movement takes place only at dis-
crete instants of time, say at time 1,2,3,…. At each discrete instant, the 
point moves to the right or to the left with probability ¹�₂. 

The random walk represents the cumulation of completely uncer-
tain random shocks. At each point in time, the movement of the point 
is completely independent from its past movements. Hence, the 
Brownian motion represents the cumulation of random shocks in the 
limit of continuous time and of continuous states. It can be demon-
strated that a.s. each path of the Brownian motion is not of bounded 
total variation but it has bounded quadratic variation. 

1 The definition of stochastic integrals can be generalized by taking a generic square 
integrable martingale instead of a Brownian motion. Itô defined stochastic integrals 
with respect to a Brownian motion. In 1967 H. Kunita and S. Watanabe extended 
the definition of stochastic integrals to square integrable martingales. 
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Recall that the total variation of a function f(x) is the limit of the 
sums 

( ) – f xif xi ( – 1)∑ 
while the quadratic variation is defined as the limit of the sums 

∑ 2( ) – f xif xi ( – 1) 

Quadratic variation can be interpreted as the absolute volatility of a 
process. Thanks to this property, the ∆Bi of the Brownian motion 
provides the basic increments of the stochastic integral, replacing the 
∆xi of the Rieman-Stieltjes integral.

 ■ Step 2. The second step consists in defining the stochastic integral for a 
class of simple functions called elementary functions. Consider the time 
interval [S,T] and any partition of the interval [S,T] in N subintervals: 

≡ t1S t0 <  < …ti < …tN ≡ T . An elementary function φ is a function 
defined on the time t and the outcome ω such that it assumes a constant 
value on the i-th subinterval. Call I[ti+1,ti) the indicator function of the 
interval [ti+1,ti). The indicator function of a given set is a function that 
assumes value 1 on the points of the set and 0 elsewhere. We can then 
write an elementary function φ as follows: 

φ(t, ω) = ∑εi ω [ + 1, )( )I ti ti
i 

In other words, the constants εi(ω) are random variables and the 
function φ(t,ω) is a stochastic process made up of paths that are con-
stant on each i-th interval. 

We can now define the stochastic integral, in the sense of Itô, of 
elementary functions φ(t,ω) as follows: 

T 

W = ∫φ(t, ω)dBt( ) = ∑εi ω ω ( )]ω ( )[Bi + 1( ) – Bi ω
S i 

where B is a Brownian motion. 
It is clear from this definition that W is a random variable ω →  

W(ω). Note that the Itô integral thus defined for elementary functions 
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cumulates the products of the elementary functions φ(t,ω) and of the 
increments of the Brownian motion Bt(ω). 

It can be demonstrated that the following property, called Itô 
isometry, holds for Itô stochastic integrals defined for bounded ele-
mentary functions as above: 

 2 TT 

ωφ(t, ω)dBt( ) = E ∫φ(t, ω)2 td E ∫ 
S S 

The Itô isometry will play a fundamental role in Step 3.

 ■ Step 3. The third step consists in using the Itô isometry to show that 
each function g which is square-integrable (plus other conditions that 
will be made precise in the next section) can be approximated by a 
sequence of elementary functions φn(t,ω) in the sense that 

T 

E ∫ [g – φ (t, ω)]2 td → 0n 

S 

If g is bounded and has a continuous time-path, the functions φn(t,ω) 
can be defined as follows: 

( [φ (t, ω) = ∑g ti , ω)I ti + 1, ti )n 
i 

where I is the indicator function. We can now use the Itô isometry to 
define the stochastic integral of a generic function f(t,ω) as follows: 

T T 

f t, ω)dBt( ) = lim φ (t, ω)dBt( )n∫ ( ω
n → ∞∫ ω

S S 

The Itô isometry insures that the Cauchy condition is satisfied 
and that the above sequence thus converges. 

In outlining the above definition, we omitted an important point 
that will be dealt with in the next section: The definition of the stochas-
tic integral in the sense of Itô requires that the elementary functions be 
without anticipation—that is, they depend only on the past history of 
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the Brownian motion. In fact, in the case of continuous paths, we wrote 
the approximating functions as follows: 

( ω ( )]φ (t, ω) = ∑g ti, ω)[Bi + 1( ) – Bi ωn


i


taking the function g in the left extreme of each subinterval. 
However, the definition of stochastic integrals in the sense of Stra-

tonovich admits anticipation. In fact, the stochastic integral in the sense 
of Stratonovich, written as follows: 

T 

( ωf t, ω)°dBt( )∫ 
S 

uses the following approximation under the assumption of continuous 
paths: 

( * ω ( )]φ (t, ω) = ∑g ti , ω)[Bi + 1( ) – Bi ωn


i


where 

– titi + 1*ti = --------------------
2 

is the midpoint of the i-th subinterval. 
Whose definition—Itô’s or Stratonovich’s—is preferable? Note that 

neither can be said to be correct or incorrect. The choice of the one over 
the other is a question of which one best represents the phenomena 
under study. The lack of anticipation is one reason why the Itô integral 
is generally preferred in finance theory. 

We have just outlined the definition of stochastic integrals leaving 
aside mathematical details and rigor. The following two sections will 
make the above process mathematically rigorous and will discuss the 
question of anticipation of information. While these sections are a bit 
technical and might be skipped by those not interested in the mathemat-
ical details of stochastic calculus, they explain a number of concepts 
that are key to the modern development of finance theory. 
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BROWNIAN MOTION DEFINED


The previous section introduced Brownian motion informally as the 
limit of a simple random walk when the step size goes to zero. This sec-
tion defines Brownian motion formally. The term “Brownian motion” is 
due to the Scottish botanist Robert Brown who in 1828 observed that 
pollen grains suspended in a liquid move irregularly. This irregular 
motion was later explained by the random collision of the molecules of 
the liquid with the pollen grains. It is therefore natural to represent 
Brownian motion as a continuous-time stochastic process that is the 
limit of a discrete random walk. 

Let’s now formally define Brownian motion and demonstrate its 
existence. Let’s first go back to the probabilistic representation of the 
economy. Recall from Chapter 6 that the economy is represented as a 
probability space (Ω,ℑ,P), where Ω is the set of all possible economic 
states, ℑ is the event σ-algebra, and P is a probability measure. Recall 
that the economic states ω ∈ Ω are not instantaneous states but repre-
sent full histories of the economy for the time horizon considered, 
which can be a finite or infinite interval of time. In other words, the eco-
nomic states are the possible realization outcomes of the economy. 

Recall also that, in this probabilistic representation of the economy, 
time-variable economic quantities—such as interest rates, security prices 
or cash flows as well as aggregate quantities such as economic output— 
are represented as stochastic processes Xt(ω). In particular, the price and 
dividend of each stock are represented as two stochastic processes St(ω) 
and dt(ω). 

Stochastic processes are time-dependent random variables defined 
over the set Ω. It is critical to define stochastic processes so that there is no 
anticipation of information, i.e., at time t no process depends on variables 
that will be realized later. Anticipation of information is possible only 
within a deterministic framework. However the space Ω in itself does not 
contain any coherent specification of time. If we associate random vari-
ables Xt(ω) to a time index without any additional restriction, we might 
incur in the problem of anticipation of information. Consider, for instance, 
an arbitrary family of time-indexed random variables Xt(ω) and suppose 
that, for some instant t, the relationship Xt(ω) = Xt+1(ω) holds. In this case 
there is clearly anticipation of information as the value of the variable 
Xt+1(ω) at time t+1 is known at an earlier time t. All relationships that lead 
to anticipation of information must be treated as deterministic. 

The formal way to specify in full generality the evolution of time and 
the propagation of information without anticipation is through the con-
cept of filtration. Recall from Chapter 6 that the concept of filtration is 
based on identifying all events that are known at any given instant. It is 
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assumed that it is possible to associate to each moment t a σ-algebra of 
events ℑt ⊂ ℑ formed by all events that are known prior to or at time t. It 
is assumed that events are never “forgotten,” i.e., that ℑt ⊂ ℑs, if t < s. 
An increasing sequence of σ-algebras, each associated to the time at 
which all its events are known, represents the propagation of informa-
tion. This sequence (called a filtration) is typically indicated as ℑt. 

The economy is therefore represented as a probability space (Ω,ℑ,P) 
equipped with a filtration {ℑt}. The key point is that every process Xt(ω) 
that represents economic or financial quantities must be adapted to the 
filtration {ℑt}, that is, the random variable Xt(ω) must be measurable 
with respect to the σ-algebras ℑt. In simple terms, this means that each 
event of the type Xt(ω) ≤ x belongs to ℑt while each event of the type 
Xs(ω) ≤ y for t ≤ s belongs to ℑs. For instance, consider a process Pt(ω) 
which might represent the price of a stock. Any coherent representation 
of the economy must ensure that events such as {ω: Ps(ω) ≤ c} are not 
known at any time t < s. The filtration {ℑt} prescribes all events admissi-
ble at time t. 

Why do we have to use the complex concept of filtration? Why can’t 
we simply identify information at time t with the values of all the vari-
ables known at time t as opposed to identifying a set of events? The 
principal reason is that in a continuous-time continuous-state environ-
ment any individual value has probability zero; we cannot condition on 
single values as the standard definition of conditional probability would 
become meaningless. In fact, in the standard definition of conditional 
probability (see Chapter 6) the probability of the conditioning event 
appears in the denominator and cannot be zero. 

It is possible, however, to reverse this reasoning and construct a fil-
tration starting from a process. Suppose that a process Xt(ω) does not 
admit any anticipation of information, for instance because the Xt(ω) 
are all mutually independent. We can therefore construct a filtration ℑt 
as the strictly increasing sequence of σ-algebras generated by the process 
Xt(ω). Any other process must be adapted to ℑt. 

Let’s now go back to the definition of the Brownian motion. Sup-
pose that a probability space (Ω,ℑ,P) equipped with a filtration ℑt is 
given. A one-dimensional standard Brownian motion is a stochastic 
process Bt(ω) with the following properties:

 ■ Bt(ω) is defined over the probability space (Ω,ℑ,P).
 ■ Bt(ω) is continuous for 0 ≤ t < ∞.
 ■ B0(ω) = 0.
 ■ Bt(ω) is adapted to the filtration ℑt.
 ■ The increments Bt(ω) –Bs(ω) are independent and normally distributed 

with variance (t–s) and zero mean. 
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The above conditions2 state that the standard Brownian motion is a 
stochastic process that starts at zero, has continuous paths and normally 
distributed increments whose variance grows linearly with time. Note 
that in the last condition the increments are independent of the σ-alge-
bra ℑs and not of the previous values of the process. As noted above, 
this is because any single realization of the process has probability zero 
and it is therefore impossible to use the standard concept of conditional 
probability: conditioning must be with respect to a σ-algebra ℑs. Once 
this concept has been firmly established, one might speak loosely of 
independence of the present values of a process from its previous values. 
It should be clear, however, that what is meant is independence with 
respect to a σ-algebra ℑs. 

Note also that the filtration ℑt is an integral part of the above defini-
tion of the Brownian motion. This does not mean that, given any proba-
bility space and any filtration, a standard Brownian motion with these 
characteristics exists. For instance, the filtration generated by a discrete-
time continuous-state random walk is insufficient to support a Brown-
ian motion. The definition states only that we call a one-dimensional 
standard Brownian motion a mathematical object (if it exists) made up 
of a probability space, a filtration and a time dependent random vari-
able with the properties specified in the definition 

However it can be demonstrated that Brownian motions exist by 
constructing them. Several construction methodologies have been pro-
posed, including methodologies based on the Kolmogorov extension 
theorem or on constructing the Brownian motion as the limit of a 
sequence of discrete random walks. To prove the existence of the stan-
dard Brownian motion, we will use the Kolmogorov extension theorem. 

The Kolmogorov theorem can be summarized as follows. Consider 
the following family of probability measures 

[(µt1, …, t (H1 … × × H ) = P Xt1 
∈ H1, …, Xt ∈ H ), Hi ∈ Bn ]m mm m 

for all t1,...,tk ∈ [0,∞), k ∈ N and where the Hs are n-dimensional Borel 
sets. Suppose that the following two consistency conditions are satisfied 

2 The set of conditions defining a Brownian motion can be more parsimonious. If a 
process has stationary, independent increments and continuous paths a.s. it must 
have normally distributed increments. A process with stationary independent incre-
ments and with paths that are continuous to the right and limited to the left (the cad-
lag functions), is called a Levy process. In Chapter 13 we will generalize Brownian 
motion to α-stable Levy processes that admit distributions with infinite variance and/ 
or infinite mean. 
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( H1 …× × H ) = µ t1 … …× × H 
σ –1( )

)…µ tσ( ), , tσ( )  m , , t 11 m m
( H 

σ –1( )  m

for all permutations σ on {1,2,...,k}, and 

µ t1 … ( H1 …× × Hk) = µ t1, , , , , t ( H1 …× × Hk × Rn …× × Rn), , tk …… tk tk + 1 m 

for all m. The Kolmogorov extension theorem states that, if the above 
conditions are satisfied, then there is (1) a probability space (Ω ,ℑ ,P) and 
(2) a stochastic process that admits the probability measures

µ t1 … ( H1 …× × H ) = P Xt1 
∈ H1, , Xtm ∈ H ), Hi ∈ Bn][( … , , t m mm 

as finite dimensional distributions. 
The construction is lengthy and technical and we omit it here, but it 

should be clear how, with an appropriate selection of finite-dimensional 
distributions, the Kolmogorov extension theorem can be used to prove 
the existence of Brownian motions. The finite-dimensional distributions 
of a one-dimensional Brownian motion are distributions of the type 

µ t1 … ( H1 …× × Hk), , tk 

p  t x x1) p t2 – t1, , x2)… p tk – , , xk) dx1… dxk = ∫ ( , ,  ( x1 ( tk – 1 xk – 1 
H1 …× × Hk 

where 

1 
– --- 22 x y– ( , ,p  t x y) = ( 2π t) exp

 – ------------------
2t  

and with the convention that the integrals are taken with respect to the 
Lebesgue measure. The distribution p(t,x,x1) in the integral is the initial 
distribution. If the process starts at zero, p(t,x,x1) is a Dirac delta, that 
is, it is a distribution of mass 1 concentrated in one point. 

It can be verified that these distributions satisfy the above consis-
tency conditions; the Kolmogorov extension theorem therefore ensures 
that a stochastic process with the above finite dimensional distributions 
exists. It can be demonstrated that this process has normally distributed 
independent increments with variance that grows linearly with time. It 
is therefore a one-dimensional Brownian motion. These definitions can 
be easily extended to a n-dimensional Brownian motion. 
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In the initial definition of a Brownian motion, we assumed that a fil-
tration ℑ t was given and that the Brownian motion was adapted to the 
filtration. In the present construction, however, we reverse this process. 
Given that the process we construct has normally distributed, station-
ary, independent increments, we can define the filtration ℑ t as the filtra-

Btion ℑ t generated by Bt(ω ). The independence of the increments of the 
Brownian motion guarantee the absence of anticipation of information. 
Note that if we were given a filtration ℑ t larger than the filtration ℑ Bt , 
Bt(ω ) would still be a Brownian motion with respect to ℑ t. 

As we will see in Chapter 10 when we cover stochastic differential 
equations, there are two types of solutions of stochastic differential equa-
tions—strong and weak—depending on whether the filtration is given or 
generated by the Brownian motion. The implications of these differences 
for economics and finance will be discussed in the same section. 

The above construction does not specify uniquely the Brownian 
motion. In fact, there are infinite stochastic processes that start from the 
same point and have the same finite dimensional distributions but have 
totally different paths. However it can be demonstrated that only one 
Brownian motion has continuous paths a.s. Recall that a.s. means 
almost surely, that is, for all paths except a set of measure zero. This 
process is called the canonical Brownian motion. Its paths can be identi-
fied with the space of continuous functions. 

The Brownian motion can also be constructed as the continuous limit 
of a discrete random walk. Consider a simple random walk Wi where i are 
discrete time points. The random walk is the motion of a point that moves 
∆ x to the right or to the left with equal probability ¹�₂ at each time incre-
ment ∆ x. The total displacement Xi at time i is the sum of i independent 
increments each distributed as a Bernoulli variable. Therefore the random 
variable X has a binomial distribution with mean zero and variance: 

∆ 2 x 
∆ t

Suppose that both the time increment and the space increment 
approach zero: ∆ t → 0 and ∆ x → 0. Note that this is a very informal 
statement. In fact what we mean is that we can construct a sequence of 

nrandom walk processes Wi , each characterized by a time step and by a 
time displacement. It can be demonstrated that if 

∆ 2 x 
---------- σ → 
∆ t
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(i.e., the square of the spaced interval and the time interval are of the 
same order) then the sequence of random walks approaches a Brownian 
motion. Though this is intuitive as the binomial distributions approach 
normal distributions, it should be clear that it is far from being mathe-
matically obvious. 

Exhibit 8.1 illustrates 100 realizations of a Brownian motion 
approximated as a random walk. The exhibit clearly illustrates that the 
standard deviation grows with the square root of the time as the vari-
ance grows linearly with time. In fact, as illustrated, most paths remain 
confined within a parabolic region. 

PROPERTIES OF BROWNIAN MOTION 

The paths of a Brownian motion are rich structures with a number of 
surprising properties. It can be demonstrated that the paths of a canoni-
cal Brownian motion, though continuous, are nowhere differentiable. It 
can also be demonstrated that they are fractals of fractal dimension ³�₂. 

EXHIBIT 8.1 Illustration of 100 Paths of a Brownian Motion Generated as an 
Arithmetic Random Walk 
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The fractal dimension is a concept that measures quantitatively how a 
geometric object occupies space. A straight line has fractal dimension 
one, a plane has fractal dimension two, and so on. Fractal objects might 
also have intermediate dimensions. This is the case, for example of the 
path of a Brownian motion which is so jagged that, in a sense, it occu-
pies more space than a straight line. 

The fractal nature of Brownian motion paths implies that each path is 
a self-similar object. This property can be illustrated graphically. If we 
generate random walks with different time steps, we obtain jagged paths. 
If we allow paths to be graphically magnified, all paths look alike regard-
less of the time step with which they have been generated. In Exhibit 8.2, 
samples paths are generated with different time steps and then portions of 
the paths are magnified. Note that they all look perfectly similar. 

This property was first observed by Benoit Mandelbrot in sequences 
of cotton prices in the 1960s. In general, if one looks at asset or com-
modity price time series, it is difficult to recognize their time scale. For 

EXHIBIT 8.2 Illustration of the Fractal Properties of the Paths of a Brownian Motiona 

a Five paths of a Brownian motion are generated as random walks with different time 
steps and then magnified. 
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instance, weekly or monthly time series look alike. Recent empirical and 
theoretical research work has made this claim more precise as we will 
see in Chapter 13. 

Let’s consider a one-dimensional standard Brownian motion. If we 
wait a sufficiently long period of time, every path except a set of paths 
of measure zero will return to the origin. The path between two consec-
utive passages through zero is called an excursion of the Brownian 
motion. The distribution of the maximum height attained by an excur-
sion and of the time between two passages through zero or through any 
level have interesting properties. The distribution of the time between 
two passages through zero has infinite mean. This is at the origin of the 
so-called St. Petersburg paradox described by the Swiss mathematician 
Bernoulli. The paradox consists of the following. Suppose a player bets 
increasing sums on a game which can be considered a realization of a 
random walk. As the return to zero of a random walk is a sure event, 
the player is certain to win—but while the probability of winning is one, 
the average time before winning is infinite. To stay the game, the capital 
required is also infinite. Difficult to imagine a banker ready to put up 
the money to back the player. 

The distribution of the time to the first passage through zero of a 
Brownian motion is not Gaussian. In fact, the probability of a very long 
waiting time before the first return to zero is much higher than in a nor-
mal distribution. It is a fat-tailed distribution in the sense that it has 
more weight in the tail regions than a normal distribution. The distribu-
tion of the time to the first passage through zero of a Brownian motion 
is an example of how fat-tailed distributions can be generated from 
Gaussian variables. We will come back on this subject in Chapter 13 
where we deal with the question of how the fat-tailed distributions 
observed in financial markets are generated from a large number of 
apparently independent events. 

STOCHASTIC INTEGRALS DEFINED 

Let’s now go back to the definition of stochastic integrals, starting with 
one-dimensional stochastic integrals. Suppose that a probability space 
(Ω,ℑ,P) equipped with a filtration ℑt is given. Suppose also that a 
Brownian motion Bt(ω) adapted to the filtration ℑt is given. We will 
define Itô integrals following the three-step procedure outlined earlier in 
this chapter. We have just completed the first step defining Brownian 
motion. The second step consists in defining the Itô integral for elemen-
tary functions. 
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Let’s first define the set Φ(S,T) of functions Φ(S,T) ≡ {f(t,ω): [(0,∞) × 
Ω → R]} with the following properties:

 ■ Each f is jointly B × ℑ measurable.
 ■ Each f(t,ω) is adapted to ℑt.

 ■ . 3E f2 t( ) 
S 

T 

∫ ω , td ∞ < 

This is the set of paths for which we define the Itô integral. 
Consider the time interval [S,T] and, for each integer n, partition 

the interval [S,T] in subintervals: S t0 < t1 < …ti < …t < …tN ≡ T in≡ n 
this way: 

k2 –n if S k2 –n ≤ T≤ntk = tk = S if k2 –n < S
 
T if k2 –n > T 

This rule provides a family of partitions of the interval [S,T] which can 
be arbitrarily refined. 

Consider the elementary functions φ(t,ω) ∈ Φ which we write as 

( )I tiφ(t ω , ) = ∑εi ω [ + 1 – ti ) 
i 

As φ(t,ω) ∈ Φ, εi(ω) are ℑti 
measurable random variables. 

We can now define the stochastic integral, in the sense of Itô, of ele-
mentary functions φ(t,ω) as 

T 

W = ∫φ(t ω , )dBt( )  = ∑ εi ω ω ( )]ω ( )[Bi + 1( )  – Bi ω
S i ≥ 0 

where B is a Brownian motion. Note that the εi(ω) and the increments

j ω ( )  are independent for j > i. The key aspect of this definitionB ( )  – Bi ω
that was not included in the informal outline is the condition that the 
εi(ω) are ℑti 

measurable. 
For bounded elementary functions φ(t,ω) ∈ Φ the Itô isometry holds 

3 This condition can be weakened. 
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 2 T T 

φ( t ω , ) dBt ω( ) = E ∫φ( t ω , ) 2 td E ∫  
S S 

The demonstration of the Itô isometry rests on the fact that 

 0 if  i j≠ 
E[ε iε j( Bti 

– Bti
)( Bt – Btj

)] =  ( ) if i = j+ 1 j + 1  E ε 2i 

This completes the definition of the stochastic integral for elementary 
functions. 

We have now completed the introduction of Brownian motions and 
defined the Itô integral for elementary functions. Let’s next introduce 
the approximation procedure that allows to define the stochastic inte-
gral for any φ (t,ω ). We will develop the approximation procedure in the 
following three additional steps that we will state without demonstra-
tion:

 ■ Step 1. Any function g(t,ω ) ∈ Φ that is bounded and such that all its 
time paths φ (·,ω ) are continuous functions of time can be approximated 
by 

( [φ ( t ω , ) = ∑ g ti ω , ) I ti + 1 – ti )n 
i 

in the sense that: 

T 

[( g – φ ) 2 td ] → 0 , n → ∞ , ∀ωE∫ n


S


where the intervals are those of the partition defined above. Note that
φ ( t ω , ) ∈ Φ given that g t ω , ) ∈ Φ .(n 

■ Step 2. We release the condition of time-path continuity of the 
(φ ( t ω , ) . It can be demonstrated that any function h t ω , ) ∈ Φ whichn 

is bounded but not necessarily continuous can be approximated by 
functions gn( t ω , ) ∈ Φ which are bounded and continuous in the sense 
that 
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T 

E ∫ ( h – gn ) 
2 td → 0 

S 

■ Step 3. It can be demonstrated that any function f t ω , ) ∈ Φ , not nec-( 
essarily bounded or continuous, can be approximated by a sequence of 
bounded functions h ( t ω , ) ∈ Φ in the sense thatn 

T 

E ∫ ( f – h ) 2 td → 0n 

S 

We now have all the building blocks to complete the definition of 
Itô stochastic integrals. In fact, by virtue of the above three-step 
approximation procedure, given any function f t ω , ) ∈ Φ , we can( 
choose a sequence of elementary functions φ ( t ω , ) ∈ Φ such that then 
following property holds: 

T 

E ∫ ( f – φ ) 2 td → 0n 

S 

Hence we can define the Itô stochastic integral as follows: 

T T 

([ ]( )w = f t ω , ) dBt ω( )  = lim φ ( t ω , ) td nI f ∫ n → ∞ ∫ 
S S 

The limit exists as 

T


∫φ n( t ω , ) dBt ω( ) 


S


forms a Cauchy sequence by the Itô isometry, which holds for every 
bounded elementary function. 

Let’s now summarize the definition of the Itô stochastic integral: 
Given any function f t ω , ) ∈ Φ , we define the Itô stochastic integral( 

by 
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T T 

([ ]( )w = f t ω , ) dB ω( )  = lim φ ( t ω , ) dtnI f ∫ t n → ∞ ∫ 
S S 

where the functions φ ( t ω , ) ∈ Φ are a sequence of elementary functionsn 
such that 

T 

E ∫ ( f – φ ) 2dt → 0n 

S 

The multistep procedure outlined above ensures that the sequence 
φ ( t ω , ) ∈ Φ exists. In addition, it can be demonstrated that the Itôn 
isometry holds in general for every f t ω , ) ∈ Φ( 

 2 T T 

E ∫ ( t (f t ω , ) dB ω( ) = E f t ω , ) 2dt∫ 
S S 

SOME PROPERTIES OF ITÔ STOCHASTIC INTEGRALS 

Suppose that f g ∈ Φ( S T, )  and let 0 < S < U < T. It can be demon-, 
strated that the following properties of Itô stochastic integrals hold: 

T U T 

f Bt = f Bt + ∫ f B  for a.a. ωd ∫ d d t∫ 
S S U 

T 

dE f  Bt = 0∫ 
S 

T T T


( cf + dg) dB = c f  Bt + ∫ d
d d g  B , for a.a. ω, ,c d constantst


S S S

∫ t ∫ 

If we let the time interval vary, say (0,t), then the stochastic integral 
becomes a stochastic process: 
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=It ω( )  
t 

∫ f Bd t 

0 

It can be demonstrated that a continuous version of this process exists. 
The following three properties can be demonstrated from the definition 
of integral: 

t 

∫ dB = Bts 

0 

t 

∫ t –


t 

∫ s B tBd = B dss s 

0 0 

t 

∫ 1 2 1
B dB = ---Bt – ---ts s 2 2 

0 

The last two properties show that, after performing stochastic integra-
tion, deterministic terms might appear. 

SUMMARY

 ■ Stochastic integration provides a coherent way to represent that instan-
taneous uncertainty (or volatility) cumulates over time. It is thus funda-
mental to the representation of financial processes such as interest 
rates, security prices or cash flows as well as aggregate quantities such 
as economic output.

 ■ Stochastic integration operates on stochastic processes and produces 
random variables or other stochastic processes.

 ■ Stochastic integration is a process defined on each path as the limit of a 
sum. However, these sums are different from the sums of the Riemann-
Lebesgue integrals because the paths of stochastic processes are gener-
ally not of bounded variation.

 ■ Stochastic integrals in the sense of Itô are defined through a process of 
approximation.

 ■ Step 1 consists in defining Brownian motion, which is the continuous 
limit of a random walk. 
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 ■ Step 2 consists in defining stochastic integrals for elementary functions 
as the sums of the products of the elementary functions multiplied by 
the increments of the Brownian motion.

 ■ Step 3 extends this definition to any function through approximating 
sequences. 
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CHAPTER 9 
Differential Equations and 

Difference Equations 

n Chapter 4, we explained how to obtain the derivative of a function. 
In this chapter we will introduce differential equations. In nontechnical 

terms, differential equations are equations that express a relationship 
between a function and one or more derivatives (or differentials) of that 
function. 

It would be difficult to overemphasize the importance of differential 
equations in modern science: they are used to express the vast majority 
of the laws of physics and engineering principles. In economics and 
finance, differential equations are used to express various laws and con-
ditions including the following:

 ■ The laws of deterministic quantities such as the accumulation of risk-
free bank deposits. 

■ The laws that govern the evolution of price probability distributions.
 ■ The solution of economic variational problems, such as intertemporal 

optimization.
 ■ Conditions of continuous hedging, such as the Black-Scholes equation 

that we will describe in Chapter 15. 

A large number of properties of differential equations have been 
established over the last three centuries. This chapter provides only a 
brief introduction to the concept of differential equations and their 
properties, limiting our discussion to the principal concepts. 

239 
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DIFFERENTIAL EQUATIONS DEFINED 


A differential equation is a condition expressed as a functional link 
between one or more functions and their derivatives. It is expressed as 
an equation (that is, as an equality between two terms). 

A solution of a differential equation is a function that satisfies the 
given condition. For example, the condition 

Y″( )  αY′( )  βY x ( ) = 0x + x + ( ) – b x

equates to zero a linear relationship between an unknown function Y(x), 
its first and second derivatives Y′(x),Y″(x), and a known function b(x).1 

The unknown function Y(x) is the solution of the equation that is to be 
determined. 

There are two broad types of differential equations: ordinary differ-
ential equations and partial differential equations. Ordinary differential 
equations are equations or systems of equations involving only one 
independent variable. Another way of saying this is that ordinary differ-
ential equations involve only total derivatives. In contrast, partial differ-
ential equations are differential equations or systems of equations 
involving partial derivatives. That is, there is more than one indepen-
dent variable. 

As we move from deterministic equations to stochastic equations, 
we introduce stochastic differential equations. In these differential equa-
tions, a random or stochastic term is included. 

ORDINARY DIFFERENTIAL EQUATIONS 

In full generality, an ordinary differential equation (ODE) can be expressed 
as the following relationship: 

F x Y x x ( ) x[ , ( ), Y 1( ), …, Y n ( )] = 0 

where Y(m)(x) denotes the m-th derivative of an unknown function Y(x). If 
the equation can be solved for the n-th derivative, it can be put in the form: 

( ) x ( ) x Y(n – 1)( )]Y n ( ) = G x Y x[ , ( ), Y 1 ( ), …, x

1 In some equations we will denote the first and second derivatives by a single and 
double prime, respectively. 
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Order and Degree of an ODE 
A differential equation is classified in terms of its order and its degree. 
The order of a differential equation is the order of the highest derivative 
in the equation. For example, the above differential equation is of order n 
since the highest order derivative is Y(n)(x). The degree of a differential 
equation is determined by looking at the highest derivative in the differen-
tial equation. The degree is the power to which that derivative is raised. 

For example, the following ordinary differential equations are first 
degree differential equations of different orders: 

(1)(xY ) – 10Y(x) + 40 = 0 (order 1) 

(3)(x (2)(x (1)(x4Y ) + Y ) + Y ) – 0.5Y(x) + 100 = 0 (order 3) 

The following ordinary differential equations are of order 3 and fifth 
degree: 

(3)(x (2)(x (1)(x4 [Y )]5 + [Y )]2 + Y ) – 0.5Y(x) + 100 = 0 

(3)(x (2)(x (1)(x4 [Y )]5 + [Y )]3 + Y ) – 0.5Y(x) + 100 = 0 

When an ordinary differential equation is of the first degree, it is said to 
be a linear ordinary differential equation. 

Solution to an ODE 
Let’s return to the general ODE. A solution of this equation is any function 
y(x) such that: 

nF x y x 1 ( ), …, y( ) x[ , ( ), y( ) x ( )] = 0 

In general there will be not one but an infinite family of solutions. For 
example, the equation 

( ) x ( )Y 1 ( ) = αY x

admits, as a solution, all the functions of the form 

y x( ) = C exp(αx) 

To identify one specific solution among the possible infinite solu-
tions that satisfy a differential equation, additional restrictions must be 
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imposed. Restrictions that uniquely identify a solution to a differential 
equation can be of various types. For instance, one could impose that a 
solution of an n-th order differential equation passes through n given 
points. A common type of restriction—called an initial condition—is 
obtained by imposing that the solution and some of its derivatives 
assume given initial values at some initial point. 

Given an ODE of order n, to ensure the uniqueness of solutions it 
will generally be necessary to specify a starting point and the initial 
value of n–1 derivatives. It can be demonstrated, given the differential 
equation 

( ) xF x  Y x ( ) x[ , ( ), Y 1 ( ), …, Y n ( )] = 0 

that if the function F is continuous and all of its partial derivatives up to 
order n are continuous in some region containing the values y0,..., 
y( 

0 
n – 1) , then there is a unique solution y(x) of the equation in some 

Y(n–1)(x0).2interval I = (M ≤ x ≤ L) such that y0 = Y(x0),...,y( 
0 
n – 1) = 

Note that this theorem states that there is an interval in which the solu-
tion exists. Existence and uniqueness of solutions in a given interval is a 
more delicate matter and must be examined for different classes of 
equations. 

The general solution of a differential equation of order n is a func-
tion of the form 

y = ϕ(x C1, …, C ), n 

that satisfies the following two conditions:

 ■ Condition 1. The function y = ϕ(x,C1,...,Cn) satisfies the differential 
equation for any n-tuple of values (C1,...,Cn).

 ■ Condition 2. Given a set of initial conditions y(x0) = y0,...,y(n–1)(x0) = 
y( 

0 
n–1) that belong to the region where solutions of the equation exist, 

it is possible to determine n constants in such a way that the function y 
= ϕ(x,C1,...,Cn) satisfies these conditions. 

The coupling of differential equations with initial conditions embod-
ies the notion of universal determinism of classical physics. Given initial 

2 The condition of existence and continuity of derivatives is stronger than necessary. 
The Lipschitz condition, which requires that the incremental ratio be uniformly 
bounded in a given interval, would suffice. 
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conditions, the future evolution of a system that obeys those equations is 
completely determined. This notion was forcefully expressed by Pierre-
Simon Laplace in the eighteenth century: a supernatural mind who 
knows the laws of physics and the initial conditions of each atom could 
perfectly predict the future evolution of the universe with unlimited pre-
cision. 

In the twentieth century, the notion of universal determinism was 
challenged twice in the physical sciences. First in the 1920s the develop-
ment of quantum mechanics introduced the so called indeterminacy 
principle which established explicit bounds to the precision of measure-
ments.3 Later, in the 1970s, the development of nonlinear dynamics and 
chaos theory showed how arbitrarily small initial differences might become 
arbitrarily large: the flapping of a butterfly’s wings in the southern hemi-
sphere might cause a tornado in northern hemisphere. 

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

Differential equations can be combined to form systems of differential 
equations. These are sets of differential conditions that must be satisfied 
simultaneously. A first-order system of differential equations is a system 
of the following type: 

dy1
--------- = f1(x y1 …, , ,  yn)
 dx 
dy2--------- = f2(x y1 … dx 

, , ,  yn) 
 
. 

.

.

dyn
--------- = f (x y1 …
 dx 

, , ,  yn)n 

 

3 Actually quantum mechanics is a much deeper conceptual revolution: it challenges 
the very notion of physical reality. According to the standard interpretation of quan-
tum mechanics, physical laws are mathematical recipes that link measurements in a 
strictly probabilistic sense. According to quantum mechanics, physical states are 
pure abstractions: they can be superposed, as the celebrated “Schrodinger’s cat” 
which can be both dead and alive. 
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Solving this system means finding a set of functions y1,...,yn that satisfy 
the system as well as the initial conditions: 

( ) = y10, ,  yn( ) = yn0y1 x0 … x0

Systems of orders higher than one can be reduced to first-order systems 
in a straightforward way by adding new variables defined as the deriva-
tives of existing variables. As a consequence, an n-th order differential 
equation can be transformed into a first-order system of n equations. 
Conversely, a system of first-order differential equations is equivalent to 
a single n-th order equation. 

To illustrate this point, let’s differentiate the first equation to obtain 

d2 y1 ∂f1 ∂f1 dy1 ∂f1 dyn ------------ = -------- + ------------------ + … + ------------------
∂x ∂y1 dx ∂yn dxdx2 

Replacing the derivatives 

dy1 dyn ---------, ,  ---------… 
dx dx 

with their expressions f1,...,fn from the system’s equations, we obtain 

d2 y1 ------------ = F2(x y1 …, , ,  yn) 
dx2 

If we now reiterate this process, we arrive at the n-th order equation: 

( )d n y1 , , ,  yn)--------------- = F (x y1 …
( )  n 

dx n

We can thus write the following system: 
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dy1--------- = f1(x y1 …, , ,  yn)
 dx 
 
d2 y1------------ = F2(x y1 …, , ,  yn)
 dx2 


.
 

.

.



d n( )
 y1 
--------------- = F (x y1 …, , ,  yn)

( )  n 
 dx n
 

We can express y2,...,yn as functions of x y1 y′ …, ,  , ,  y( 
1 
n – 1) by solving, 

if possible, the system formed with the first n – 1 equations: 
1 

 , ,  , ,  y( 
1 
n – 1))y2 = ϕ2(x y1 y′ …1 

 
, ,  , ,  y( 

1 
n – 1))y3 = ϕ3(x y1 y′ …1 

 .

.


. 
 

n , ,  , ,  y( 
1 
n – 1))1yn = ϕ (x y1 y′ …

Substituting these expressions into the n-th equation of the previous sys-
tem, we arrive at the single equation: 

( )d n y1 ,  , ,  y( 
1 
n – 1))--------------- = Φ(x y′ …1

( )dx n

Solving, if possible, this equation, we find the general solution 

y1 = y1(x C1 …,  , ,  Cn) 

Substituting this expression for y1 into the previous system, y2,...,yn can 
be computed. 
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CLOSED-FORM SOLUTIONS OF ORDINARY 
DIFFERENTIAL EQUATIONS 

Let’s now consider the methods for solving two types of common differ-
ential equations: equations with separable variables and equations of lin-
ear type. Let’s start with equations with separable variables. Consider the 
equation 

------- = f x ( )dy ( )g y
dx 

This equation is said to have separable variables because it can be writ-
ten as an equality between two sides, each depending on only y or only 
x. We can rewrite our equation in the following way: 

dy ( )dx 
g y
----------- = f x

( )  

This equation can be regarded as an equality between two differentials 
in y and x respectively. Their indefinite integrals can differ only by a 
constant. Integrating the left side with respect to y and the right side 
with respect to x, we obtain the general solution of the equation: 

∫ dy
----------- = ∫f x( ) xd  + C 
g y( )  

For example, if g(y) ≡ y, the previous equation becomes 

------ = f x
dy ( )dx 
y 

whose solution is 

yd 
------ = ∫f x ( ) xd + C ⇒ y = A exp( f x∫ y 

( ) xd + C ⇒ log y = ∫f  x ∫ ( ) xd ) 

where A = exp(C). 
A differential equation of this type describes the continuous com-

pounding of time-varying interest rates. Consider, for example, the 
growth of capital C deposited in a bank account that earns the variable 
but deterministic rate r = f(t). When interest rates Ri are constant for dis-
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crete periods of time ∆ti, compounding is obtained by purely algebraic 
formulas as follows: 

C ti (( ) – C ti – ∆ti
) 

Ri∆ti = -----------------------------------------
(C ti – ∆ti

) 

Solving for C(ti): 

C ti (( ) = (1 + Ri∆ti)C ti – ∆ti
) 

By recursive substitution we obtain 

( ) = (1 + Ri∆ti)(1 + ∆ti – 1)…(1 + R1∆t1)C t0C ti ( )Ri – 1 

However, market interest rates are subject to rapid change. In the 
limit of very short time intervals, the instantaneous rate r(t) would be 
defined as the limit, if it exists, of the discrete interest rate: 

C t  + ∆t) – C t( ( )r t( ) = lim -----------------------------------------
→ ∆ 0 ∆tC tt ( )  

The above expression can be rewritten as a simple first-order differential 
equation in C: 

dC t
r t ( ) = ---------------

dt
( )C t

( )  

In a simple intuitive way, the above equation can be obtained consider-
ing that in the elementary time dt the bank account increments by the 
amount dC = C(t)r(t)dt. In this equation, variables are separable. It 
admits the family of solutions: 

C = A exp( r t( ) td )∫ 
where A is the initial capital. 

Linear Differential Equation 
Linear differential equations are equations of the following type: 
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n 1xa ( )y( ) + an–1( )y(n–1) ( )y( ) + a0 x + ( ) = 0x + … + a1 x ( )y b xn 

If the function b is identically zero, the equation is said to be homoge-
neous. 

In cases where the coefficients a’s are constant, Laplace transforms 
provide a powerful method for solving linear differential equation. Con-
sider, without loss of generality, the following linear equation with con-
stant coefficients: 

n
( ) + an – 1 

(n – 1) ( )  ( )n 1a y y + … + a1y + a0y = b x

together with the initial conditions: y(0) = y0,...,y(n–1)(0) = y(n–1) . In cases in 0 
which the initial point is not the origin, by a variable transformation we 
can shift the origin. 

Let’s recall the formula to Laplace-transform derivatives presented 
in Chapter 4. For one-sided Laplace transforms the following formulas 
hold: 

L
df x
-------------- = sL[f x ( )
 dx  

( ) 
( )] – f 0

n

L
d f x

0 … f(n – 1)( )---------------- = s L[f x
 dxn  

( ) n ( )] – sn – 1f' ( ) – – 0

Suppose that a function y = y(x) satisfies the previous linear equation 
with constant coefficients and that it admits a Laplace transform. Apply 
one-sided Laplace-transform to both sides of the equation. If Y(s) = 
L[y(x)], the following relationships hold: 

( n 1 [ ( )]L a y( ) + an – 1y(n – 1) + … + a1y( ) + a0y) = L b xn

( ) 0a [snY s 1 0( ) – sn – 1 y ( ) – … – y(n – 1)( )]n 

+ an – 1[sn – 1 1Y s ( ) 0 0( ) – sn – 2 y ( ) – … – y(n – 2)( )] 
( ) = B s+ … + a0Y s ( )  
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Solving this equation for Y(s), that is, Y(s) = g[s,y(t)(0),...,y(n–1)(0)] the 
inverse Laplace transform y(t) = L–1[Y(s)] uniquely determines the solu-
tion of the equation. 

Because inverse Laplace transforms are integrals, with this method, 
when applicable, the solution of a differential equation is reduced to the 
determination of integrals. Laplace transforms and inverse Laplace 
transforms are known for large classes of functions. Because of the 
important role that Laplace transforms play in solving ordinary differ-
ential equations in engineering problems, there are published reference 
tables.4 Laplace transform methods also yield closed-form solutions of 
many ordinary differential equations of interest in economics and 
finance. 

NUMERICAL SOLUTIONS OF ORDINARY 
DIFFERENTIAL EQUATIONS 

Closed-form solutions are solutions that can be expressed in terms of 
known functions such as polynomials or exponential functions. Before 
the advent of fast digital computers, the search for closed-form solu-
tions of differential equations was an important task. Today, thanks to 
the availability of high-performance computing, most problems are 
solved numerically. This section looks at methods for solving ordinary 
differential equations numerically. 

The Finite Difference Method 
Among the methods used to numerically solve ordinary differential 
equations subject to initial conditions, the most common is the finite 
difference method. The finite difference method is based on replacing 
derivatives with difference equations; differential equations are thereby 
transformed into recursive difference equations. 

Key to this method of numerical solution is the fact that ODEs sub-
ject to initial conditions describe phenomena that evolve from some 
starting point. In this case, the differential equation can be approxi-
mated with a system of difference equations that compute the next point 
based on previous points. This would not be possible should we impose 
boundary conditions instead of initial conditions. In this latter case, we 
have to solve a system of linear equations. 

4 See, for example, “Laplace Transforms,” Chapter 29 in Milton Abramowitz and 
Irene A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables (New York: Dover, 1972). 



9-DifferntEquations  Page 250  Wednesday, February 4, 2004  12:51 PM

-----

250 The Mathematics of Financial Modeling and Investment Management 

To illustrate the finite difference method, consider the following 
simple ordinary differential equation and its solution in a finite interval: 

f ′( ) = f xx ( )  

df 
= dx

f 

( ) = x Clog f x + 

f x +( ) = exp(x C) 

As shown, the closed-form solution of the equation is obtained by separa-
tion of variables, that is, by transforming the original equation into 
another equation where the function f appears only on the left side and 
the variable x only on the right side. 

Suppose that we replace the derivative with its forward finite differ-
ence approximation and solve 

( ( )f xi + 1) – f xi------------------------------------- = f xi( )  
– xixi + 1 

( ( )f xi = [1 + (xi + 1 – xi)]f xi+ 1) 

If we assume that the step size is constant for all i: 

( ) = [1 + ∆x]if x0f xi ( )  

The replacement of derivatives with finite differences is often called the 
Euler approximation. The differential equation is replaced by a recur-
sive formula based on approximating the derivative with a finite differ-
ence. The i-th value of the solution is computed from the i–1-th value. 
Given the initial value of the function f, the solution of the differential 
equation can be arbitrarily approximated by choosing a sufficiently 
small interval. Exhibit 9.1 illustrates this computation for different val-
ues of ∆x. 

In the previous example of a first-order linear equation, only one ini-
tial condition was involved. Let’s now consider a second-order equation: 

x ( ) = 0f ″( ) + kf x
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EXHIBIT 9.1 Numerical Solutions of the Equation f ′ = f with the Euler 
Approximation for Different Step Sizes 

This equation describes oscillatory motion, such as the elongation of a 
pendulum or the displacement of a spring. 

To approximate this equation we must approximate the second 
derivative. This could be done, for example, by combining difference 
quotients as follows: 

( ( )f x + ∆x) – f x
f ′( ) ≈ ----------------------------------------

∆x
x

f x + 2∆x) – f x + ∆x)( (
f ′(x + ∆x) ≈ ---------------------------------------------------------

∆x



9-DifferntEquations  Page 252  Wednesday, February 4, 2004  12:51 PM

252 The Mathematics of Financial Modeling and Investment Management 

f ′(x + ∆x) – f ′( )x
f ″( ) ≈ ----------------------------------------------

∆x
( ( ( ( )  

x

f x + 2∆x) – f x + ∆x) f x + ∆x) – f x
--------------------------------------------------------- – ----------------------------------------

∆x ∆x
= --------------------------------------------------------------------------------------------------------

∆x
f x + 2∆x) – 2f x + ∆x) + f x( ( ( )

= ------------------------------------------------------------------------------
(∆x)2 

With this approximation, the original equation becomes 

f″( ) + kf x
f x + 2∆x) – 2f x + ∆x) + f x

x ( ) ≈ ------------------------------------------------------------------------------ + kf x
( ( ( ) ( ) = 0 

(∆x)2 

( ( (∆ ( ) = 0f x + 2∆x) – 2f x + ∆x) + (1 + k x)2)f x

We can thus write the approximation scheme: 

f x + ∆x) = f x x( ( ) + ∆xf ′( )  

( ( (∆ ( )f x + 2∆x) = 2f x + ∆x) – (1 + k x)2)f x

Given the increment ∆x and the initial values f(0),f ′(0), using the above 
formulas we can recursively compute f(0 + ∆x), f(0 + 2∆x), and so on. 
Exhibit 9.2 illustrates this computation. 

In practice, the Euler approximation scheme is often not sufficiently 
precise and more sophisticated approximation schemes are used. For 
example, a widely used approximation scheme is the Runge-Kutta 
method. We give an example of the Runge-Kutta method in the case of 
the equation f ′′ + f = 0 which is equivalent to the linear system: 

x′ = y 

y′ = –x 

In this case the Runge-Kutta approximation scheme is the following: 

= hy i( )k1 

= –hx i( )h1 
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EXHIBIT 9.2 Numerical Solution of the Equation f ′′ + f = 0 with the Euler 
Approximation 

= h y i
1
( ) + ---hk2 1
2


1

= –h x i 1( ) + ---kh2 

2


= h y i
1
( ) + ---hk3 2
2


1

= –h x i 2( ) + ---kh3 

2


= h y i[ ( ) + hk4 3 ] 
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= –h[x i( ) + kh4 3] 

x i + 1) = x i
1( ( ) + ---(k1 + 2k2 + 2k3 + k4)
6 

y i + 1) = y i
1( ( ) + ---(h1 + 2h2 + 2h3 + h4)
6 

Exhibits 9.3 and 9.4 illustrate the results of this method in the two cases 
f ′ = f and f ′′ + f = 0. 

As mentioned above, this numerical method depends critically on our 
having as givens (1) the initial values of the solution and (2) its first deriv-
ative. Suppose that instead of initial values two boundary values were 
given, for instance the initial value of the solution and its value 1,000 
steps ahead, that is, f(0) = f0, f(0 + 1,000∆x) = f1000. Conditions like these 
are rarely used in the study of dynamical systems as they imply foresight, 

EXHIBIT 9.3 Numerical Solution of the Equation f ′ = f with the Runge-Kutta 
Method After 10 Steps 
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EXHIBIT 9.4 Numerical Solution of the Equation f ″ + f = 0 with the Runge-Kutta 
Method 

that is, knowledge of the future position of a system. However, they often 
appear in static systems and when trying to determine what initial condi-
tions should be imposed to reach a given goal at a given date. 

In the case of boundary conditions, one cannot write a direct recur-
sive scheme; it’s necessary to solve a system of equations. For instance, we 
could introduce the derivative f ′(x) = δ as an unknown quantity. The dif-
ference quotient that approximates the derivative becomes an unknown. 
We can now write a system of linear equations in the following way: 

∆(f x

∆x

)
 δ
∆x= f0 +












2(
 )
 ∆(2f x

∆x

)
 (
 (
∆x
)
 )
f
2 1f k+= – 0 
2(
 ∆x
)
 (
 )
 (
 (
∆x
)
 )
 )∆(f x3 2f
 2
 1f k+= – 

.


.


.

2f1000 =
 2f
(
999
∆x
)
–
(
1
+
k
(
∆x
)
 )
f
(
998
∆x
)
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This is a system of 1,000 equations in 1,000 unknowns. Solving the 
system we compute the entire solution. In this system two equations, the 
first and the last, are linked to boundary values; all other equations are 
transfer equations that express the dynamics (or the law) of the system. 
This is a general feature of boundary value problems. We will encounter it 
again when discussing numerical solutions of partial differential equations. 

In the above example, we chose a forward scheme where the derivative 
is approximated with the forward difference quotient. One might use a dif-
ferent approximation scheme, computing the derivative in intervals cen-
tered around the point x. When derivatives of higher orders are involved, 
the choice of the approximation scheme becomes critical. Recall that when 
we approximated first and second derivatives using forward differences, we 
were required to evaluate the function at two points (i,i + 1) and three 
points (i,i + 1,i + 2) ahead respectively. If purely forward schemes are 
employed, computing higher-order derivatives requires many steps ahead. 
This fact might affect the precision and stability of numerical computations. 

We saw in the examples that the accuracy of a finite difference 
scheme depends on the discretization interval. In general, a finite differ-
ence scheme works, that is, it is consistent and stable, if the numerical 
solution converges uniformly to the exact solution when the length of 
the discretization interval tends to zero. Suppose that the precision of an 
approximation scheme depends on the length of the discretization inter-

( ) – f xval ∆x. Consider the difference δf = f̂ x ( ) between the approxi-
mate and the exact solutions. We say that δf → 0 uniformly in the 
interval [a,b] when ∆x → 0 if, given any ε arbitrarily small, it is possible 
to find a ∆x such that δf < ε , ∀x ∈ [a b] ., 

NONLINEAR DYNAMICS AND CHAOS 

Systems of differential equations describe dynamical systems that evolve 
starting from initial conditions. A fundamental concept in the theory of 
dynamical system is that of the stability of solutions. This topic has 
become of paramount importance with the development of nonlinear 
dynamics and with the discovery of chaotic phenomena. We can only 
give a brief introductory account of this subject whose role in econom-
ics is still the subject of debate. 

Intuitively, a dynamical system is considered stable if its solutions 
do not change much when the system is only slightly perturbed. There 
are different ways to perturb a system: changing parameters in its equa-
tions, changing the known functions of the system by a small amount, 
or changing the initial conditions. 
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Consider an equilibrium solution of a dynamical system, that is, a 
solution that is time invariant. If a stable system is perturbed when it is 
in a position of equilibrium, it tends to return to the equilibrium posi-
tion or, in any case, not to diverge indefinitely from its equilibrium posi-
tion. For example, a damped pendulum—if perturbed from a position of 
equilibrium—will tend to go back to an equilibrium position. If the pen-
dulum is not damped it will continue to oscillate forever. 

Consider a system of n equations of first order. (As noted above, 
systems of higher orders can always be reduced to first-order systems by 
enlarging the set of variables.) Suppose that we can write the system 
explicitly in the first derivatives as follows: 

dy1
--------- = f1(x y1 …, , ,  yn)
 dx 
dy2--------- = f2(x y1 … dx 

, , ,  yn) 
 
. 

.

.

dyn
--------- = f (x y1 …
 dx 

, , ,  yn)n 

 

If the equations are all linear, a complete theory of stability has been 
developed. Essentially, linear dynamical systems are stable except possi-
bly at singular points where solutions might diverge. In particular, a 
characteristic of linear systems is that they incur only small changes in 
the solution as a result of small changes in the initial conditions. 

However, during the 1970s, it was discovered that nonlinear sys-
tems have a different behavior. Suppose that a nonlinear system has at 
least three degrees of freedom (that is, it has three independent nonlin-
ear equations). The dynamics of such a system can then become chaotic 
in the sense that arbitrarily small changes in initial conditions might 
diverge. This sensitivity to initial conditions is one of the signatures of 
chaos. Note that while discrete systems such as discrete maps can 
exhibit chaos in one dimension, continuous systems require at least 
three degrees of freedom (that is, three equations). 

Sensitive dependence from initial conditions was first observed in 
1960 by the meteorologist Edward Lorenz of the Massachusetts Institute 
of Technology. Lorenz remarked that computer simulations of weather 
forecasts starting, apparently, from the same meteorological data could 
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yield very different results. He argued that the numerical solutions of 
extremely sensitive differential equations such as those he was using pro-
duced diverging results due to rounding-off errors made by the computer 
system. His discovery was published in a meteorological journal where it 
remained unnoticed for many years. 

Fractals 
While in principle deterministic chaotic systems are unpredictable 
because of their sensitivity to initial conditions, the statistics of their 
behavior can be studied. Consider, for example, the chaos laws that 
describe the evolution of weather: while the weather is basically unpre-
dictable over long periods of time, long-run simulations are used to pre-
dict the statistics of weather. 

It was discovered that probability distributions originating from cha-
otic systems exhibit fat tails in the sense that very large, extreme events 
have nonnegligible probabilities.5 It was also discovered that chaotic sys-
tems exhibit complex unexpected behavior. The motion of chaotic sys-
tems is often associated with self-similarity and fractal shapes. 

Fractals were introduced in the 1960s by Benoit Mandelbrot, a 
mathematician working at the IBM research center in Yorktown Heights, 
New York. Starting from the empirical observation that cotton price 
time-series are similar at different time scales, Mandelbrot developed a 
powerful theory of fractal geometrical objects. Fractals are geometrical 
objects that are geometrically similar to part of themselves. Stock prices 
exhibit this property insofar as price time-series look the same at differ-
ent time scales. 

Chaotic systems are also sensitive to changes in their parameters. In 
a chaotic system, only some regions of the parameter space exhibit cha-
otic behavior. The change in behavior is abrupt and, in general, it can-
not be predicted analytically. In addition, chaotic behavior appears in 
systems that are apparently very simple. 

While the intuition that chaotic systems might exist is not new, the 
systematic exploration of chaotic systems started only in the 1970s. The 
discovery of the existence of nonlinear chaotic systems marked a con-
ceptual crisis in the physical sciences: it challenges the very notion of the 
applicability of mathematics to the description of reality. Chaos laws 
are not testable on a large scale; their applicability cannot be predicted 

5 See W. Brock, D. Hsieh, and B. LeBaron, Nonlinear Dynamics, Chaos, and Insta-
bility (Cambridge, MA: MIT Press, 1991) and D. Hsieh, “Chaos and Nonlinear Dy-
namics: Application to Financial Markets,” Journal of Finance 46 (1991), pp. 1839– 
1877. 
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analytically. Nevertheless, the statistics of chaos theory might still prove 
to be meaningful. 

The economy being a complex system, the expectation was that its 
apparently random behavior could be explained as a deterministic cha-
otic system of low dimensionality. Despite the fact that tests to detect 
low-dimensional chaos in the economy have produced a substantially 
negative response, it is easy to make macroeconomic and financial 
econometric models exhibit chaos.6 As a matter of fact, most macroeco-
nomic models are nonlinear. Though chaos has not been detected in eco-
nomic time-series, most economic dynamic models are nonlinear in 
more than three dimensions and thus potentially chaotic. At this stage 
of the research, we might conclude that if chaos exists in economics it is 
not of the low-dimensional type. 

PARTIAL DIFFERENTIAL EQUATIONS 

To illustrate the notion of a partial differential equation (PDE), let’s 
start with equations in two dimensions. A n-order PDE in two dimen-
sions x,y is an equation of the form 

∂( ) ∂f ∂f i f  
 , , ------, ------,  ,  ------------------------------- = 0 0  k i ≤ ≤  , F x  y  … ≤ ≤  , 0 i n

k – ∂x ∂y ∂( )x∂(i k)y 

A solution of the previous equation will be any function that satisfies 
the equation. 

In the case of PDEs, the notion of initial conditions must be 
replaced with the notion of boundary conditions or initial plus bound-
ary conditions. Solutions will be defined in a multidimensional domain. 
To identify a solution uniquely, the value of the solution on some sub-
domain must be specified. In general, this subdomain will coincide with 
the boundary (or some portion of the boundary) of the domain. 

Diffusion Equation 
Different equations will require and admit different types of boundary 
and initial conditions. The question of existence and uniqueness of solu-

6 See W.A. Brock, W.D. Dechert, J.A. Scheinkman, and B. LeBaron, “A Test for In-
dependence Based on the Correlation Dimension,” Econometric Reviews, 15(3) 
(1996); and W. Brock and C. Hommes, “A Rational Route to Randomness,” Econo-
metrica 65 (1997), pp. 1059–1095. 
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tions of PDEs is a delicate mathematical problem. We can only give a 
brief account by way of an example. 

Let’s consider the diffusion equation. This equation describes the 
propagation of the probability density of stock prices under the ran-
dom-walk hypothesis: 

∂f 2 ∂2f 
----- = a ---------
∂t ∂x 2 

The Black-Scholes equation, which describes the evolution of option 
prices (see Chapter 15), can be reduced to the diffusion equation. 

The diffusion equation describes propagating phenomena. Call 
f(t,x) the probability density that prices have value x at time t. In 
finance theory, the diffusion equation describes the time-evolution of the 
probability density function f(t,x) of stock prices that follow a random 
walk. 7 It is therefore natural to impose initial and boundary conditions 
on the distribution of prices. 

In general, we distinguish two different problems related to the diffu-
sion equation: the first boundary value problem and the Cauchy initial 
value problem, named after the French mathematician Augustin Cauchy 
who first formulated it. The two problems refer to the same diffusion 
equation but consider different domains and different initial and bound-
ary conditions. It can be demonstrated that both problems admit a 
unique solution. 

The first boundary value problem seeks to find in the rectangle 0 ≤ x 
≤ l, 0 ≤ t ≤ T a continuous function f(t,x) that satisfies the diffusion equa-
tion in the interior Q of the rectangle plus the following initial condition, 

f(0, x) = φ x x l( ), 0 ≤ ≤  

and boundary conditions, 

( ( ), f t  l) = f2 t t Tf t, 0) = f1 t ( , ( ), 0 ≤ ≤  

The functions f1, f2 are assumed to be continuous and f1(0) = φ(0), f2(0) 
= φφφφ(l). 

The Cauchy problem is related to an infinite half plane instead of a 
finite rectangle. It is formulated as follows. The objective is to find for 

7 In physics, the diffusion equation describes phenomena such as the diffusion of par-
ticles suspended in some fluid. In this case, the diffusion equation describes the den-
sity of particles at a given moment at a given point. 
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any x and for t ≥ 0 a continuous and bounded function f(t,x) that satis-
fies the diffusion equation and which, for t = 0, is equal to a continuous 
and bounded function f(0,x) = φ(x), ∀x. 

Solution of the Diffusion Equation 
The first boundary value problem of the diffusion equation can be 
solved exactly. We illustrate here a widely used method based on the 
separation of variables which is applicable if the boundary conditions 
on the vertical sides vanish (that is, if f1(t) = f2(t) = 0). The method 
involves looking for a tentative solution in the form of a product of two 
functions, one that depends only on t and the other that depends only 
on x: f(t,x) = h(t)g(x). 

If we substitute the previous tentative solution in the diffusion equation 

∂f 2 ∂2f ----- = a ---------
∂t ∂x 2 

we obtain an equation where the left side depends only on t while the 
right side depends only on x: 

dh t ( )
--------------g x ( )-----------------( ) ( ) = a 2h t

d2 g x

dt dx2 

( )  1 2d2 g xdh t ( )  1 
------------------------ = a ----------------------------

dt h t dx2 g x( )  ( )  

This condition can be satisfied only if the two sides are equal to a con-
stant. The original diffusion equation is therefore transformed into two 
ordinary differential equations: 

1 dh t( )  ( )----- -------------- = bh t
2 dta 

d2 g x( )  ( )----------------- = bg x
dx2 
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with boundary conditions g(0) = g(l) = 0. From the above equations and 
boundary conditions, it can be seen that b can assume only the negative 
values, 

2k2πb = – ------------, k = 1 2, , … 
l2 

while the functions g can only be of the form 

kπ 
g x( ) = sin------xBk

l 

Substituting for h, we obtain 

2 2  a k2π( ) = Bk′ exp	– ------------------t 
 l2  

h t

Therefore, we can see that there are denumerably infinite solutions of 
the diffusion equation of the form 

 a 2k2π2  kπ
fk(t x) = exp– ------------------t sin ------x, Ck  l2  l 

All these solutions satisfy the boundary conditions f(t,0) = f(t,l) = 0. By 
linearity, we know that the infinite sum 

∞ ∞  a 2k1π2  kπ( , ,f t x  ) = ∑ fk(t x) = ∑ Ck exp– ------------------t sin ------x 
 l2  lk = 1 k = 1 

will satisfy the diffusion equation. Clearly f(t,x) satisfies the boundary 
conditions f(t,0) = f(t,l) = 0. In order to satisfy the initial condition, 
given that φ(x) is bounded and continuous and that φ(0) = φ(l) = 0, it can 
be demonstrated that the coefficients Cs can be uniquely determined 
through the following integrals, which are called the Fourier integrals: 
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L 
2 πk  

Ck = ----∫φ ξ( ) sin ------ξ dξ
L  L 

0 

The previous method applies to the first boundary value problem 
but cannot be applied to the Cauchy problem, which admits only an ini-
tial condition. It can be demonstrated that the solution of the Cauchy 
problem can be expressed in terms of a convolution with a Green’s func-
tion. In particular, it can be demonstrated that the solution of the 
Cauchy problem can be written in closed form as follows: 

1 
∞ 

( )   (x – ξ)2 
( , -----------exp– ------------------- dξ 

t  4t  
f t  x) = ----------- ∫ φ ξ

2 π–∞ 

for t > 0 and f(0,x) = φ(x). It can be demonstrated that the Black-Scholes 
equation (see Chapter 15), which is an equation of the form 

∂f 1 2 ∂2f ∂f ----- + ---σ2 x --------- + rx------ – rf = 0 
∂x∂t 2 ∂x 2 

can be reduced through transformation of variables to the standard dif-
fusion equation to be solved with the Green’s function approach. 

Numerical Solution of PDEs 
There are different methods for the numerical solution of PDEs. We 
illustrate the finite difference methods which are based on approximat-
ing derivatives with finite differences. Other discretization schemes, 
such as finite elements and spectral methods are possible but, being 
more complex, they go beyond the scope of this book. 

Finite difference methods result in a set of recursive equations when 
applied to initial conditions. When finite difference methods are applied 
to boundary problems, they require the solution of systems of simulta-
neous linear equations. PDEs might exhibit boundary conditions, initial 
conditions or a mix of the two. 

The Cauchy problem of the diffusion equation is an example of initial 
conditions. The simplest discretization scheme for the diffusion equation 
replaces derivatives with their difference quotients. As for ordinary differ-
ential equations, the discretization scheme can be written as follows: 
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∂f f t + ∆t, x) – f t x  )( ( ,
----- ≈ -------------------------------------------------
∂t ∆t

∂2f f t x  + ∆x) – 2f t x  ) + f t x  – ∆x)( , ( , ( ,
--------- ≈ -----------------------------------------------------------------------------------------
∂x 2 (∆x)2 

In the case of the Cauchy problem, this approximation scheme 
defines the forward recursive algorithm. It can be proved that the algo-
rithm is stable only if the Courant-Friedrichs-Lewy (CFL) conditions 

(∆x)2 

∆t < --------------
2a 2 

are satisfied. 
Different approximation schemes can be used. In particular, the for-

ward approximation to the derivative used above could be replaced by 
centered approximations. Exhibit 9.5 illustrates the solution of a Cauchy 
problem for initial conditions that vanish outside of a finite interval. The 
simulation shows that solutions diffuse in the entire half space. 

EXHIBIT 9.5 Solution of the Cauchy Problem by the Finite Difference Method 
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EXHIBIT 9.6 Solution of the First Boundary Problem by the Finite Difference Method 

Applying the same discretization to a first boundary problem would 
require the solution of a system of linear equations at every step. 
Exhibit 9.6 illustrates this case. 

SUMMARY

 ■ Derivatives can be combined to form differential equations.
 ■ Differential equations are conditions that must be satisfied by their 

solutions.
 ■ Differential equations generally admit infinite solutions.
 ■ Initial or boundary conditions are needed to identify solutions uniquely.
 ■ Differential equations are the key mathematical tools for the develop-

ment of modern science; in finance they are used in arbitrage pricing, to 
define stochastic processes, and to compute the time evolution of aver-
ages.

 ■ Ordinary differential equations include only total derivatives; partial 
differential equations include partial derivatives.

 ■ Differential equations can be solved in closed form or with numerical 
methods. 
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 ■ Finite difference methods approximate derivatives with difference quo-
tients.

 ■ Initial conditions yield recursive algorithms.
 ■ Boundary conditions require the solution of linear equations. 
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CHAPTER 10 
Stochastic Differential Equations


Chapter 8 introduced stochastic integrals, a mathematical concept 
used for defining stochastic differential equations, the subject of this 

chapter. Stochastic differential equations solve the problem of giving 
meaning to a differential equation where one or more of its terms are 
subject to random fluctuations. For instance, consider the following 
deterministic equation: 

dy
------ = f t( )y
dt 

We know from our discussion on differential equations (Chapter 9) 
that, by separating variables, the general solution of this equation can 
be written as follows: 

y = A exp[ f t( ) td ]∫ 
A stochastic version of this equation might be obtained, for instance, by 
perturbing the term f, thus resulting in the “stochastic differential equa-
tion” 

------ = [f t +
dy ( )  ε]dt 
y 

where ε is a random noise process. 
As with stochastic integrals, in defining stochastic differential equa-

tions it is necessary to adopt an ensemble view: The solution of a stochas-
tic differential equation is a stochastic process, not a single function. We 

267 
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will first provide the basic intuition behind stochastic differential equa-
tions and then proceed to formally define the concept and the properties. 

THE INTUITION BEHIND STOCHASTIC DIFFERENTIAL EQUATIONS 

Let’s go back to the equation 

------ = [f t +
dy ( )  ε]y
dt 

where ε is a continuous-time noise process. It would seem reasonable to 
define a continuous-time noise process informally as the continuous-
time limit of a zero-mean, IID sequence, that is, a sequence of indepen-
dent and identically distributed variables with zero mean (see Chapter 
6). In a discrete time setting, a zero-mean, IID sequence is called a white 
noise. We could envisage defining a continuous-time white noise as the 
continuous-time limit of a discrete-time white noise. Each path of ε is a 
function of time ε(⋅,ω). It would therefore seem reasonable to define the 
solution of the equation pathwise, as the family of functions that are 
solutions of the equations, 

------ = [f t +
dy ( )  ε(t ω , )]y
dt 

where each equation corresponds to a specific white noise path. 
However this definition would be meaningless in the domain of 

ordinary functions. In other words, it would generally not be possible to 
find a family of functions y(⋅,ω) that satisfy the above equations for each 
white-noise path and that form a reasonable stochastic process. 

The key problem is that it is not possible to define a white noise pro-
cess as a zero-mean stationary stochastic process with independent 
increments and continuous paths. Such a process does not exist in the 
domain of ordinary functions.1 In discrete time the white noise process 
is obtained as the first-difference process of a random walk. Anticipat-
ing concepts that will be developed in Chapter 12 on time series analy-
sis, the random walk is an integrated nonstationary process, while its 
first-difference process is a stationary IID sequence. 

1 It is possible to define a “generalized white noise process” in the domain of “tem-
pered distributions.” See Bernd Oksendal, Stochastic Differential Equations: Third 
Edition (Berlin: Springer, 1992). 
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The continuous-time limit of the random walk is the Brownian 
motion. However the paths of a Brownian motion are not differentiable. 
As a consequence, it is not possible to take the continuous-time limit of 
first differences and to define the white noise process as the derivative of 
a Brownian motion. In the domain of ordinary functions in continuous 
time, the white noise process can be defined only through its integral, 
which is the Brownian motion. The definition of stochastic differential 
equations must therefore be recast in integral form. 

A sensible definition of a stochastic differential equation must 
respect a number of constraints. In particular, the solution of a stochas-
tic differential equation should be a “perturbation” of the associated 
deterministic equation. In the above example, for instance, we want the 
solution of the stochastic equation 

------ = [f t +
dy ( )  ε(t ω , )]dt 
dy 

to be a perturbation of the solution 

y = A exp( f t( ) td )∫ 
of the associated deterministic equation 

dy ( )dt------ = f t
y 

In other words, the solution of a stochastic differential equation should 
tend to the solution of the associated deterministic equation in the limit 
of zero noise. In addition, the solutions of a stochastic differential equa-
tion should be the continuous-time limit of some discrete-time process 
obtained by discretization of the stochastic equation. 

A formal solution of this problem was proposed by Kyosi Itô in the 
1940s and, in a different setting, by Ruslan Stratonovich in the 1960s. 
Itô and Stratonovich proposed to give meaning to a stochastic differen-
tial equation through its integral equivalent. The Itô definition proceeds 
in two steps: in the first step, Itô processes are defined; in the second 
step, stochastic differential equations are defined. 

■ Step 1: Definition of Itô processes. Given two functions ϕ(t ω , ) and 
ψ(t ω , ) that satisfy usual conditions to be defined later, an Itô pro-
cess—also called a stochastic integral—is a stochastic process of the 
form: 
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t t 

(Z t ω , ) = ϕ( s ω , ) sd + ∫ψ( s ω , ) dB ( s ω , )∫ s 

0 0 

An Itô process is a process that is the result of the sum of two sum-
mands: the first is an ordinary integral, the second an Itô integral. Itô 
processes are stable under smooth maps, that is, any smooth function 
of an Itô process is an Itô process that can be determined through the 
Itô formula (see Itô processes below).

 ■ Step 2: Definition of stochastic differential equations. As we have seen, 
it is not possible to write a differential equation plus a white-noise term 
which admits solutions in the domain of ordinary functions. However 
we can meaningfully write an integral stochastic equation of the form 

t t 

( ,X t ω , ) = ϕ( s X) sd + ∫ψ( s X, ) dB∫ s 

0 0 

It can be demonstrated that this equation admits solutions in the 
sense that, given two functions ϕ and ψ , there is a stochastic process X 
that satisfies the above equation. We stipulate that the above integral 
equation can be written in differential form as follows: 

( , ,dX t ω , ) = ϕ( t X) td + ψ( t X) dBt 

Note that this is a definition; a stochastic differential equation 
acquires meaning only through its integral form. In particular, we can-
not divide both terms by dt and rewrite the equation as follows: 

(dX t ω , ) dBt 
---------------------- = ϕ( t X) + ψ( t X) ---------

dt 
, , 

td 

The above equation would be meaningless because the Brownian 
motion is not differentiable. This is the difficulty that precludes writ-
ing stochastic differential equations adding white noise pathwise. The 
differential notation of a stochastic differential equation is just a 
shorthand for the integral notation. 

However we can consider a discrete approximation: 

, ,∆ X( t ω , ) = ϕ *( t X)∆ t + ψ *( t X)∆ Bt 
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, ,Note that in this approximation the functions ϕ *( t X) , ψ *( t X) will 
, ,not coincide with the functions ϕ( t X) , ψ( t X) . Using the latter would 

(in general) result in a poor approximation. 
The following sections will define Itô processes and stochastic dif-

ferential equations and study their properties. 

ITÔ PROCESSES 

Let’s now formally define Itô processes and establish key properties, in 
particular the Itô formula. In the previous section we stated that an Itô 
process is a stochastic process of the form 

t t 

( ( ( B(Z t ω , ) = a s ω , ) ds + ∫ b s ω , ) d s ω , )∫ 
0 0 

To make this definition rigorous, we have to state the conditions 
under which (1) the integrals exist and (2) there is no anticipation of 
information. Note that the two functions a and b might represent two 
stochastic processes and that the Riemann-Stieltjes integral might not 
exist for the paths of a stochastic process. We have therefore to demon-
strate that both the Itô integral and the ordinary integral exist. To this 
end, we define Itô processes as follows. 

Suppose that a 1-dimensional Brownian motion Bt is defined on a 
probability space (Ω ,ℑ ,P) equipped with a filtration ℑ . The filtrationt
might be given or might be generated by the Brownian motion B . Sup-t
pose that both a and b are adapted to ℑ t and jointly measurable in ℑ × R. 
Suppose, in addition, that the following two integrability conditions hold: 

t 

P b2( s ω , ) ds < ∞ for all t ≥ 0 = 1∫ 
0 

and 

t 

P  a s ω , )( ds < ∞ for all t ≥ 0 = 1∫ 
0 

These conditions ensure that both integrals in the definition of Itô pro-
cesses exist and that there is no anticipation of information. We can 
therefore define the Itô process as the following stochastic process: 
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t t 

( ( (Z t  ω, ) = a s  ω, ) sd + ∫ b s  ω, ) dB ( s ω, )∫ s 

0 0 

Itô processes can be written in the shorter differential form as 

dZt = adt + bdBt 

It should be clear that the latter formula is just a shorthand for the inte-
gral definition. 

THE 1-DIMENSIONAL ITÔ FORMULA 

One of the most important results concerning Itô processes is a formula 
established by Itô that allows one to explicitly write down an Itô process 
which is a function of another Itô process. Itô’s formula is the stochastic 
equivalent of the change-of-variables formula of ordinary integration. 
We will proceed in two steps. First we will introduce Itô’s formula for 
functions of Brownian motion and then for functions of general Itô pro-
cesses. Suppose that the function g(t,x) is twice continuously differentia-
ble in [0,∞ ) × R and that Bt is a one-dimensional Brownian motion. The 
function Yt = g(t,Bt) is a stochastic process. It can be demonstrated that 
the process Yt = g(t,Bt) is an Itô process of the following form 

∂ g 1 ∂ 2 g  ∂ g
dYt =  ------( t Bt) + ------------( t Bt) dt + ------( t Bt) dBt ∂ t 

, 
2∂ x 2 

,
 ∂ x 

, 

The above is Itô’s formula in the case the underlying process is a Brown-
ian motion. For example, let’s suppose that g(t,x) = x2. In this case we 
can write 

∂ g ∂ g ∂ 2 g
------ = 0 , ------ = 2x , --------- = 2 
∂ t ∂ x ∂ x 2 

2Inserting the above in Itô’s formula we see that the process Bt can be 
represented as the following Itô process 

dYt = dt + 2BtdBt 

or, explicitly in integral form 
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t 

Yt = t + 2∫B dBs s 

0 

The nonlinear map g(t,x) = x2 introduces a second term in dt. Note that 
we established the latter formula at the end of Chapter 8 in the form 

t 
1 2 1

B dB = ---Bt – ---ts∫ s 2 2 
0 

Let’s now generalize Itô’s formula. 
Suppose that Xt is an Itô process given by dXt = adt + bdBt. As Xt is 

a stochastic process, that is, a function X(t,ω) of both time and the 
state, it makes sense to consider another stochastic process Yt, which is 
a function of the former, Yt = g(t,Xt). Suppose that g is twice continu-
ously differentiable on [0,∞) × R. 

It can then be demonstrated (we omit the detailed proof) that Yt is 
another Itô process that admits the representation 

∂g 1 ∂2 g
dYt = -----

∂g
-(t Xt)dt + ------(t Xt)dXt + ------------(t Xt)(dXt)

2 ,
2∂t 

,
∂x 

, 
2∂x 

where differentials are computed formally according to the rules2 

dt ⋅ dt = dt ⋅ dBt = dBt ⋅ dt = 0, dBt ⋅ dBt = dt 

Itô’s formula can be written (perhaps more) explicitly as 

∂g ∂g 1 ∂2 g ∂g
dYt = ------ + ------a + ------------b2

 
dt + ------bdBt ∂t ∂x 2  ∂x2∂x 

This formula reduces to the ordinary formula for the differential of a com-
pound function in the case where b = 0 (that is, when there is no noise). 

As a second example of application of Itô’s formula, consider the 
geometric Brownian motion: 

dXt = µXtdt + σXtdBt 

2 These rules are known as the Box algebra. 
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where µ ,σ are real constants, and consider the map g(t,x) = log x. In this 
case, we can write 

∂ g ∂ g 1 ∂ 2 g 1 
------ = 0 , ------ = --- , --------- = ------

2∂ t ∂ x x ∂ x 2 x 

and Itô’s formula yields 

1
dYt = dlog X = 

µ – ---σ 2 dt + σ dBtt 2  

STOCHASTIC DIFFERENTIAL EQUATIONS 

An Itô process defines a process Z(t,ω ) as the sum of the time integral of 
the process a(t,ω ) plus the Itô integral of the process b(t,ω ). Suppose 
that two functions ϕ (t,x), ψ (t,x) that satisfy conditions established 
below are given. Given an Itô process X(t,ω ), the two processes ϕ (t,X), 
ψ (t,X) admit respectively a time integral and an Itô integral. It therefore 
makes sense to consider the following Itô process: 

t t 

( , ( , (Z t ω, ) = ϕ[ s X s ω, )] ds + ∫ψ[ s X s ω, )] dB∫ s 

0 0 

The term on the right side transforms the process X into a new process 
Z. We can now ask if there are stochastic processes X that are mapped 
into themselves such that the following stochastic equation is satisfied: 

t t 

( , ( , (X t ω, ) = ϕ[ s X s ω, )] ds + ∫ψ[ s X s ω, )] dB∫ s 

0 0 

The answer is positive under appropriate conditions. It is possible 
to prove the following theorem of existence and uniqueness. Suppose 
that a 1-dimensional Brownian motion Bt is defined on a probability 

, ,  P) equipped with a filtration ℑ t and that Bt is adapted tospace (Ω ℑ  
the filtration ℑ t. Suppose also that the two measurable functions ϕ (t,x), 
ψ (t,x) map [0,T] × R → R and that they satisfy the following conditions: 

2 2 ) 2ϕ( t x), + ,ψ( t x) ≤ C( 1 + x , t ∈ [ 0, T] , x ∈ R 
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and 

ϕ( t x), – ϕ( t y) +, ψ( t x), – ψ( t y) ≤ D x  – y, ( ) , t ∈ [ 0, T] , x ∈ R 

for appropriate constants C,D. The first condition is known as the lin-
ear growth condition, the last condition is the Lipschitz condition that 
we encountered in ordinary differential equation (see Chapter 9). Sup-
pose that Z is a random variable independent of the σ -algebra ℑ gener-∞2ated by Bt for t ≥ 0 such that E Z( ) < ∞ . Then there is a unique 
stochastic process X, defined for 0 ≤ t ≤ T, with time-continuous paths 
such that X0 = Z and such that the following equation is satisfied: 

t t 

X t ω , ) = X0 + ϕ[ s X  s  ω , )] sd + ψ[ s X  s  ω , )] dB( , ( ∫ , ( s∫ 
0 0 

The process X is called a strong solution of the above equation. 
The above equation can be written in differential form as follows: 

( , ( , (dX t ω , ) = ϕ[ t X  t  ω , )] td + ψ[ t X  t  ω , )] dBt 

The differential form does not have an independent meaning; a differen-
tial stochastic equation is just a short albeit widely used way to write 
the integral equation. 

The key requirement of a strong solution is that the filtration ℑ t is 
given and that the functions ϕ ,ψ are adapted to the filtration ℑ t. From 
the economic (or physics) point of view, this requirement translates the 
notion of causality. In simple terms, a strong solution is a functional of 
the driving Brownian motion and of the “inputs” ϕ ,ψ . A strong solution 
at time t is determined only by the “history” up to time t of the inputs 
and of the random shocks embodied in the Brownian motion. 

These conditions can be weakened. Suppose that we are given only 
the two functions ϕ (t,x), ψ (t,x) and that we must construct a process Xt, 
a Brownian motion Bt, and the relative filtration so that the above equa-
tion is satisfied. The equation still admits a unique solution with respect 
to the filtration generated by the Brownian motion B. It is however only 
a weak solution in the sense that, though there is no anticipation of 
information, it is not a functional of a given Brownian motion.3 Weak 
and strong solutions do not necessarily coincide. However, any strong 
solution is also a weak solution with respect to the same filtration. 

3 See, for instance, Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Sto-
chastic Calculus (New York: Springer, 1991). 
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Note that the solution of a differential equation is a stochastic pro-
cess. Initial conditions must therefore be specified as a random variable 
and not as a single value as for ordinary differential equations. In other 
words, there is an initial value for each state. It is possible to specify a sin-
gle initial value as the initial condition of a stochastic differential equa-
tion. In this case the initial condition is a random variable where the 
probability mass is concentrated in a single point. 

We omit the detailed proof of the theorem of uniqueness and exist-
ence. Uniqueness is proved using the Itô isometry and the Lipschitz con-
dition. One assumes that there are two different solutions and then 
demonstrates that their difference must vanish. The proof of existence 
of a solution is similar to the proof of existence of solutions in the 
domain of ordinary equations. The solution is constructed inductively 
by a recursive relationship of the type 

t t 
(X k + 1)(t ω , ) = ϕ[s Xk(s ω , )] sd + ∫ψ[s Xk(s ω , )]dB∫ , , s 

0 0 

It can be shown that this recursive relationship produces a sequence of 
processes that converge to the unique solution. 

GENERALIZATION TO SEVERAL DIMENSIONS 

The concepts and formulas established so far for Itô (and Stratonovich) 
integrals and processes can be extended in a straightforward but often cum-
bersome way to multiple variables. The first step is to define a d-dimen-
sional Brownian motion. 

Given a probability space (Ω ℑ, , P) equipped with a filtration {ℑt}, a 
d-dimensional standard Brownian motion Bt(ω), is a stochastic process 
with the following properties:

 ■ Bt(ω) is a d-dimensional process defined over the probability space
(Ω ℑ, , P) that takes values in Rd .

 ■ Bt(ω) has continuous paths for 0 ≤ t ≤ ∞.
 ■ B0(ω) = 0.
 ■ Bt(ω) is adapted to the filtration ℑt.
 ■ The increments Bt(ω) – Bs(ω) are independent of the σ-algebra ℑ ands 

have a normal distribution with mean zero and covariance matrix (t – 
s)Id, where Id is the identity matrix. 
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The above conditions state that the standard Brownian motion is a sto-
chastic process that starts at zero, has continuous paths, and has nor-
mally distributed increments whose variances grow linearly with time. 

The next step is to extend the definition of the Itô integral in a 
multi-dimensional environment. This is again a straightforward but 
cumbersome extension of the 1-dimensional case. Suppose that the fol-
lowing r× d-dimensional matrix is given: 

v 
v11 · v1d 

· · · 
vr1 · vrd 

= 

where each entry vij = vij(t,ω ) satisfies the following conditions: 

1. vij are Bd ℑ × measurable. 
2. vij are ℑ t-adapted.


t


3. P ∫( )vij
2 sd < ∞ for all t ≥ 0 = 1 .


0


Then, we define the multidimensional Itô integral 

t t v11 · v1d Bd 1 

v Bd = ∫ · · · ·∫ 
0 0 vr1 · vrd Bd d 

as the r-dimensional column vector whose components are the following 
sums of 1-dimensional Itô integrals: 

d t 

∑ ∫ vij( s ω , ) dBj( s ω , ) 
i = 1 0 

Note that the entries of the matrix are functions of time and state: 
they form a vector of stochastic processes. Given the previous definition 
of Itô integrals, we can now extend the definition of Itô processes to the 
multidimensional case. Suppose that the functions u and v satisfy the 
conditions established for the one-dimensional case. We can then form a 
multidimensional Itô process as the following vector of Itô processes: 
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dX1 = u1dt + v11dB1 + … + v1ddBd 

… 
dX1r = u dt + vr1dB1 + … + vrddBdr

or, in matrix notation 

dX = udt + vdB 

After defining the multidimensional Itô process, multidimensional sto-
chastic equations are defined in differential form in matrix notation as 
follows: 

,dX( t ω, ) = u[ t X1( t ω, ), …, Xd( t ω, )] dt 

,+ v[ t X1( t ω, ), …, Xd( t ω, )] dB 

Consider now the multidimensional map: g(t,x) ≡  [g1(t,x), …, 
gd(t,x)], which maps the process X into another process Y = g(t,X). It 
can be demonstrated that Y is a multidimensional Itô process whose 
components are defined according to the following rules: 

, ,∂ gk( t X) 
∑

∂ gk( t X) 1 ∂ 2 gk( t X)
dYk = -----------------------dt + -----------------------dXi + --- --------------------------dXidXj∂ t ∂ Xi 2∑ ∂ Xi∂

, 

X
i j ji , 

dBidB = 1 if  i = j, 0 if  i j≠ , dBidt = dtdBi = 0j 

SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS 

It is possible to determine an explicit solution of stochastic differential 
equations in the linear case and in a number of other cases that can be 
reduced to linear equations through functional transformations. Let’s 
first consider linear stochastic equations of the form: 

dXt = [ A t ( )] dt + σ( )  t dBt , 0 ≤ t < ∞( )  Xt + a t

X0 = ξ 

where B is an r-dimensional Brownian motion independent of the d-
dimensional initial random vector ξ and the (d× d), (d× d), (d× r) matrices 
A(t), a(t), σ (t) are nonrandom and time dependent. 
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The simplest example of a linear stochastic equation is the equation 
of an arithmetic Brownian motion with drift, written as follows: 

dXt = µdt + σdBt , 0 ≤ t < ∞ 

X0 = ξ, µ, σ constants 

In linear equations of this type, the stochastic part enters only in an 
additive way through the terms σij(t)dBt. The functions σ(t) are some-
times called the instantaneous variances and covariances of the process. 
In the example of the arithmetic Brownian motion, µ is called the drift 
of the process and σ the volatility of the process. 

It is intuitive that the solution of this equation is given by the solu-
tion of the associated deterministic equation, that is, the ordinary differ-
ential equation obtained by removing the stochastic part, plus the 
cumulated random disturbances. Let’s first consider the associated 
deterministic differential equation 

dx 
------- = A t + ( ) , 0 ≤ t < ∞( )x a  t
dt 

where x(t) is a d-dimensional vector with initial conditions x(0) = ξ. 
It can be demonstrated that this equation has an absolutely continu-

ous solution in the domain 0 ≤ t < ∞. To find its solution, let’s first con-
sider the matrix differential equation 

dΦ 
-------- = A t( )Φ , 0 ≤ t < ∞ 
dt 

This matrix differential equation has an absolutely continuous solution 
in the domain 0 ≤ t < ∞. The matrix Φ(t) that solves this equation is 
called the fundamental solution of the equation. It can be demonstrated 
that Φ(t) is a nonsingular matrix for each t. Lastly, it can be demon-
strated that the solution of the equation: 

dx 
------- = A t + ( ) , 0 ≤ t < ∞( )x a  t
dt 

with initial condition x(0) = ξ, can be written in terms of the fundamen-
tal solution as follows: 
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t 

x t ( ) x 0 s ( ) sd , 0 ≤ t < ∞( ) = Φ t ( ) + ∫Φ–1( )a s
0 

Let’s now go back to the stochastic equation 

dXt = [A t ( )]dt + σ t( )Xt + a t ( )dBt , 0 ≤ t < ∞ 

X0 = ξ 

Using Itô’s formula, it can be demonstrated that the above linear sto-
chastic equation admits the following unique solution: 

t t 

X t ( ) ξ  + Φ–1( )a s s ( )dB , 0 ≤ t < ∞( ) = Φ t s ( ) sd + ∫Φ–1( )σ s s∫ 
0 0 

This effectively demonstrates that the solution of the linear stochastic 
equation is the solution of the associated deterministic equation plus the 
cumulated stochastic term 

t 

s ( )dB∫Φ–1( )σ s s 

0 

To illustrate this, below we now specialize the above solutions in the 
case of arithmetic Brownian motion, Ornstein-Uhlenbeck processes, and 
geometric Brownian motion. 

The Arithmetic Brownian Motion 
The arithmetic Brownian motion in one dimension is defined by the fol-
lowing equation: 

dXt = µdt + σdBt 

In this case, A(t) = 0, a(t) = µ, σ(t) = σ and the solution becomes 

X = µt + σB 

The Ornstein-Uhlenbeck Process 
The Ornstein-Uhlenbeck process in one dimension is a mean-reverting 
process defined by the following equation: 
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dXt = –αXtdt + σdBt 

It is a mean-reverting process because the drift is pulled back to zero by 
a term proportional to the process itself. In this case, A(t) = –α, a(t) = 0, 
σ(t) = σ and the solution becomes 

∫ 
t 

– α(t s– )Xt = X0 + e – αt + σ e dBs 

0 

The Geometric Brownian Motion 
The geometric Brownian motion in one dimension is defined by the fol-
lowing equation: 

dX = µXdt + σXdB 

This equation can be easily reduced to the previous linear case by the 
transformation: 

Y = log X 

Let’s apply Itô’s formula 

∂g ∂g 1 ∂2 g ∂g
dYt = ------ + ------a + ------------b2

 
dt + ------bdBt ∂t ∂x 2  ∂x2∂x 

where 

∂g 1 ∂2 g 1
( ,g t  x) = logx, -----

∂g
- = 0, ------ = ---, --------- –= ------

2∂t ∂t x ∂x 2 x 

We can then verify that the logarithm of the geometric Brownian motion 
becomes an arithmetic Brownian motion with drift 

1
µ′ = µ – ---σ2 

2 

The geometric Brownian motion evolves as a lognormal process:
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1  
Xt = x0exp

µ – ---σ2 t + σBt  
 2   

SUMMARY

 ■ Stochastic differential equations give meaning to ordinary differential 
equations where some terms are subject to random perturbation.

 ■ Following Itô and Stratonovich, stochastic differential equations are 
defined through their integral equivalent: the differential notation is 
just a shorthand.

 ■ Itô processes are the sum of a time integral plus an Itô integral.
 ■ Itô processes are closed with respect to smooth maps: a smooth func-

tion of an Itô process is another Itô process defined through the Itô for-
mula.

 ■ Stochastic differential equations are equations established in terms of 
Itô processes.

 ■ Linear equations can be solved explicitly as the sum of the solution of 
the associated deterministic equation plus a stochastic cumulative 
term. 
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CHAPTER 11 
Financial Econometrics:


Time Series Concepts,

Representations, and Models


In this chapter and the next we introduce models of discrete-time sto-
chastic processes (that is, time series) and address the general problem 

of estimating a model from a given set of empirical data. Recall from 
Chapter 6 that a stochastic process is a time-dependent random variable. 
Stochastic processes explored thus far, for instance Brownian motion and 
Itô processes, develop in continuous time. This means that time is a real 
variable that can assume any real value. In many applications, however, it 
is convenient to constrain time to assume only discrete values. A time 
series is a discrete-time stochastic process; that is, it is a collection of ran-
dom variables Xi indexed with the integers ...–n,...,–2,–1,0,1,2,...,n,... 

In finance theory, as in the practice of quantitative finance, both 
continuous-time and discrete-time models are used. In many instances, 
continuous-time models allow simpler and more concise expressions as 
well as more general conclusions, though at the expense of conceptual 
complication. For instance, in the limit of continuous time, apparently 
simple processes such as white noise cannot be meaningfully defined. 
The mathematics of asset management tends to prefer discrete-time pro-
cesses while the mathematics of derivatives tends to prefer continuous-
time processes. 

The first issue to address in financial econometrics is the spacing of 
discrete points of time. An obvious choice is regular, constant spacing. 
In this case, the time points are placed at multiples of a single time inter-
val: t = i∆t. For instance, one might consider the closing prices at the 
end of each day. The use of fixed spacing is appropriate in many appli-

283 
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cations. Spacing of time points might also be irregular but deterministic. 
For instance, week-ends introduce irregular spacing in a sequence of 
daily closing prices. These questions can be easily handled within the 
context of discrete time series. 

The diffusion of electronic transactions has made available high-fre-
quency data related to individual transactions. These data are randomly 
spaced as the intervals between two transactions are random variables. If 
one wants to consider randomly spaced time intervals, discrete-time 
models will not suffice; one must use either marked point processes (dis-
cussed briefly in Chapter 13) or continuous-time processes through the 
use of master equations. In this chapter and the next we discuss only 
time series at discrete and fixed intervals of time. Here we introduce con-
cepts, representations, and models of time series. In the next chapter we 
will discuss model selection and estimation. 

CONCEPTS OF TIME SERIES 

A time series is a collection of random variables Xt indexed with a dis-
crete time index t = ...–2,–1,0,1,2,.... The variables Xt are defined over a 
probability space (Ω,P,ℑ), where Ω is the set of states, P is a probability 
measure, and ℑ is the σ-algebra of events, equipped with a discrete fil-
tration {ℑt} that determines the propagation of information (see Chapter 
6). A realization of a time series is a countable sequence of real num-
bers, one for each time point. 

The variables Xt are characterized by finite-dimensional distributions 
(see the section on stochastic processes in Chapter 6) as well as by condi-
tional distributions, Fs(xs/ℑt), s > t. The latter are the distributions of the 
variable x at time s given the σ-algebra {ℑt} at time t. Note that condition-
ing is always conditioning with respect to a σ-algebra though (see Chap-
ter 6) we will not always strictly use this notation and will condition with 
respect to the value of variables, for instance: 

Fs(xs/xt), s > t 

If the series starts from a given point, initial conditions must be fixed. 
Initial conditions might be a set of fixed values or a set of random vari-
ables. If the initial conditions are not fixed values but random variables, 
one has to consider the correlation between the initial values and the ran-
dom shocks of the series. A usual assumption is that the initial conditions 
and the random shocks of the series are statistically independent. 
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How do we describe a time series? One way to describe a time series 
is to determine the mathematical form of the conditional distribution. 
This description is called an autopredictive model because the model 
predicts future values of the series from past values. However, we can 
also describe a time series as a function of another time series. This is 
called an explanatory model as one variable is explained by another. 
The simplest example is a regression model where a variable is propor-
tional to another exogenously given variable plus a constant term. Time 
series can also be described as random fluctuations or adjustments 
around a deterministic path. These models are called adjustment mod-
els. Explanatory, autopredictive, and adjustment models can be mixed 
in a single model. The data generation process  (DGP) of a series is a 
mathematical process that computes the future values of the variables 
given all information known at time t. 

An important concept is that of a stationary time series. A series is 
stationary in the “strict sense” if all finite dimensional distributions are 
invariant with respect to a time shift. A series is stationary in a “weaker 
sense” if only the moments up to a given order are invariant with 
respect to a time shift. In this chapter, time series will be considered 
(weakly) stationary if the first two moments are time-independent. Note 
that a stationary series cannot have a starting point but must extend 
over the entire infinite time axis. Note also that a series can be strictly 
stationary (that is, have all distributions time-independent, but the 
moments might not exist). Thus a strictly stationary series is not neces-
sarily weakly stationary. 

A time series can be univariate or multivariate. A multivariate time 
series is a time-dependent random vector. The principles of modeling 
remain the same but the problem of estimation might become very diffi-
cult given the large numbers of parameters to be estimated. 

Models of time series are essential building blocks for financial fore-
casting and, therefore, for financial decision-making. In particular asset 
allocation and portfolio optimization, when performed quantitatively, 
are based on some model of financial prices and returns. This chapter 
lays down the basic financial econometric theory for financial forecasting. 
We will introduce a number of specific models of time series and of multi-
variate time series, presenting the basic facts about the theory of these 
processes. The next chapter will tackle the problem of model estimation 
from empirical data. We will consider primarily models of financial 
assets, though most theoretical considerations apply to macroeconomic 
variables as well. These models include:

 ■ Correlated random walks. The simplest model of multiple financial 
assets is that of correlated random walks. This model is only a rough 
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approximation of equity price processes and presents serious problems 
of estimation in the case of a large number of processes.

 ■ Factor models. Factor models address the problem of estimation in the 
case of a large number of processes. In a factor model there are correla-
tions only among factors and between each factor and each time series. 
Factors might be exogenous or endogenously modeled.

 ■ State-space models. State-space models describe factors as autoregres-
sive processes. They work in stationary and nonstationary environ-
ments. In the latter case, state-space models are equivalent to 
cointegrated models.

 ■ Cointegrated models. In a cointegrated model there are portfolios 
which are described by autocorrelated, stationary processes. All pro-
cesses are linear combinations of common trends that are represented 
by the factors. 

The above models are all linear. However, nonlinearities are at work 
in financial time series. One way to model nonlinearities is to break down 
models into two components, the first being a linear autoregressive model 
of the parameters, the second a regressive or autoregressive model of 
empirical quantities whose parameters are driven by the first. This is the 
case with most of today’s nonlinear models (e.g., ARCH/GARCH mod-
els), Hamilton models, and Markov switching models. 

There is a coherent modeling landscape, from correlated random 
walks and factor models to the modeling of factors, and, finally, the 
modeling of nonlinearities by making the model parameters vary. Before 
describing models in detail, however, let’s present some key empirical 
facts about financial time series. 

STYLIZED FACTS OF FINANCIAL TIME SERIES 

Most sciences are stratified in the sense that theories are organized on 
different levels. The empirical evidence that supports a theory is gener-
ally formulated in a lower level theory. In physics, for instance, quan-
tum mechanics cannot be formulated as a standalone theory but needs 
classical physics to give meaning to measurement. Economics is no 
exception. A basic level of knowledge in economics is represented by the 
so-called stylized facts. Stylized facts are statistical findings of a general 
nature on financial and economic time series; they cannot be considered 
raw data insofar as they are formulated as statistical hypotheses. On the 
other hand, they are not full-fledged theories. 
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Amongst the most important stylized facts from the point of view of 
finance theory, we can mention the following:

 ■ Returns of individual stocks exhibit nearly zero autocorrelation at 
every lag.

 ■ Returns of some equity portfolios exhibit significant autocorrelation.
 ■ The volatility of returns exhibits hyperbolic decay with significant 

autocorrelation.
 ■ The distribution of stock returns is not normal for time horizons from 

a few minutes to a few days. The exact shape is difficult to ascertain 
but power law decay cannot be rejected.

 ■ The distribution of stock returns is close to a log-normal after a few 
days.

 ■ There are large stock price drops (that is, market crashes) that seem to 
be outliers with respect to both normal distributions and power law 
distributions.

 ■ Stock return time series exhibit significant cross-correlation. 

These findings are, in a sense, model-dependent. For instance, the 
distribution of returns, a subject that has received a lot of attention, can 
be fitted by different distributions. There is no firm evidence on the 
exact value of the power exponent, with alternative proposals based on 
variable exponents. The autocorrelation is model-dependent while the 
exponential decay of return autocorrelation can be interpreted only as 
absence of linear dependence. 

It is fair to say that these stylized facts set the stage for financial model-
ing but leave ample room for model selection. Financial time series seem to 
be nearly random processes that exhibit significant cross correlations and, 
in some instances, cross autocorrelations. The global structure of auto and 
cross correlations, if it exists at all, must be fairly complex and there is no 
immediate evidence that financial time series admit a simple DGP. 

One more important feature of financial time series is the presence 
of trends. Prima facie trends of economic and financial variables are 
exponential trends. Trends are not quantities that can be independently 
measured. Trends characterize an entire stochastic model. Therefore 
there is no way to arrive at an assessment of trends independent from 
the model. We will see later in this chapter that a number of models 
reject the assumption of exponential trends. Exponential trends are, 
however, a reasonable first approximation. 

Given the finite nature of world resources, exponential trends are 
not sustainable in the long run. However, they might still be a good 
approximation over limited time horizons. An additional insight into 
financial time series comes from the consideration of investors’ behav-
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ior. If investors are risk averse, as required by the theory of investment 
(see Chapter 16) then price processes must exhibit a trade off between 
risk and returns. The combination of this insight with the assumption of 
exponential trends yields market models with possibly diverging expo-
nential trends for prices and market capitalization. 

Again, diverging exponential trends are difficult to justify in the 
long run as they would imply that after a while only one entity would 
dominate the entire market. Some form of reversion to the mean or 
more disruptive phenomena that prevent time series to diverge exponen-
tially must be at work. 

In the following sections we will proceed to describe the theory and 
the estimation procedures of a number of market models that have been 
proposed. After introducing general concepts of the measure of depen-
dence between random variables, we will present the multivariate ran-
dom walk model and will analyze in some detail the correlation 
structure of real markets. We will introduce dimensionality reduction 
techniques and multifactor models. We will then proceed to introduce 
cointegration, autoregressive models, state-space models, ARCH/ 
GARCH models, Markov switching, and other nonlinear models. 

INFINITE MOVING-AVERAGE AND AUTOREGRESSIVE 
REPRESENTATION OF TIME SERIES 

There are several general representations (or models) of time series. This 
section introduces representations based on infinite moving averages or 
infinite autoregressions useful from a theoretical point of view. In the 
practice of econometrics, however, more parsimonious models such as 
the ARMA models (described in the next section) are used. Representa-
tions are different for stationary and nonstationary time series. Let’s 
start with univariate stationary time series. 

Univariate Stationary Series 
The most fundamental model of a univariate stationary time series is the 
infinite moving average of a white noise process. In fact, it can be dem-
onstrated that under mild regularity conditions, any univariate station-
ary causal time series admits the following infinite moving average 
representation: 

∞

∑xt = + mhiεt i– 
i = 0 
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where the hi are coefficients and εt–i is a one-dimensional zero-mean 
white-noise process. This is a causal time series as the present value of 
the series depends only on the present and past values of the noise pro-
cess. A more general infinite moving-average representation would 
involve a summation which extends from –∞ to +∞. Because this repre-
sentation would not make sense from an economic point of view, we 
will restrict ourselves only to causal time series. 

A sufficient condition for the above series to be stationary is that the 
coefficients hi are absolutely summable: 

∞ 

∑ 2 < ∞hi 
i = 0 

Also, in general it can be demonstrated that given any stationary pro-
cess xi, if the sequence of coefficients hi is absolutely summable, then the 
process 

∞ 

yi = ∑ hixi 
i = 1 

is stationary. 

The Lag Operator L 
Let’s now simplify the notation by introducing the lag operator L. The 
lag operator L is an operator that acts on an infinite series and produces 
another infinite series shifted one place to the left. In other words, the 
lag operator replaces every element of a series with the one delayed by 
one time lag: 

L xt( ) = xt – 1 

The n-th power of the lag operator shifts a series by n places: 

Ln( ) =xt xt n– 

Negative powers of the lag operator yield the forward operator  F, 
which shifts places to the right. The lag operator can be multiplied by a 
scalar and different powers can be added. In this way, linear functions 
of different powers of the lag operator can be formed as follows: 
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A L( ) = 
N 

∑ aiL
i 

i = 1 

Note that if the lag operator is applied to a series that starts from a 
given point, initial conditions must be specified. 

Within the domain of stationary series, infinite power series of the 
lag operator can also be formed. In fact, as remarked above, given a sta-
tionary series, if the coefficients hi are absolutely summable, the series 

∞

∑ hiL
ixt 

i = 1 

is well defined in the sense that it converges and defines another station-
ary series. It therefore makes sense to define the operator: 

∞

∑ hiL
iA L( ) = 

i = 1 

λNow consider the operator I –
 λ
L. If <
1 , this operator can be 
inverted and its inverse is given by the infinite power series, 

∞

∑–1 λ
iLi(
I
–
λ
L
)
 = 
i = 1 

λ
∞

∑ iLi :as can be seen by multiplying I – λL by the power series 
i = 1 

(
I
–
λ
L
)

∞

∑ λ
iLi L0 = I= 
i = 1 

On the basis of this relationship, it can be demonstrated that any opera-
tor of the type 

A L( ) = 
N 

∑ aiL
i 

i = 1 

can be inverted provided that the solutions of the equation 
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N 

∑ i aiz = 0 
i = 1 

have absolute values strictly greater than 1. The inverse operator is an 
infinite power series 

A –1 L( ) = ψ
∞

∑ iL
i 

i = 1 

Given two linear functions of the operator L, it is possible to define 
their product 

M 

∑ aiL
iA L( ) = 

i = 1 

N 

∑ biL
iB L( ) = 

j = 1 

+ 

∑ 
M N

i = 1 

piL
i( ) = A L ( ) =P L ( )B L

pi =

i 

∑ a
rbi r– 
r = 1 

The convolution product of two infinite series in the lag operator is 
defined in a similar way 

∞

∑ aiL
iA L( ) = 

i = 0 

∞

∑ biL
iB L( ) = 

j = 0 
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∞

∑ ckLkC L ( )  B L( ) = A L ( )  × = 
k = 0 

ck =

k 

∑ a
sbk s– 
s = 0 

We can define the left-inverse (right-inverse) of an infinite series as the oper-
ator A–1(L), such that A–1(L) × A(L) = I. The inverse can always be com-
puted solving an infinite set of recursive equations provided that a0 ≠ 0. 
However, the inverse series will not necessarily be stationary. A sufficient 
condition for stationarity is that the coefficients of the inverse series are 
absolutely summable. 

In general, it is possible to perform on the symbolic series 

H L( ) = 
∞

∑ hiL
i 

i = 1 

the same operations that can be performed on the series 

H z( ) =

∞

∑ hiz i 

i = 1 

with z complex variable. However operations performed on a series of 
lag operators neither assume nor entail convergence properties. In fact, 
one can think of z simply as a symbol. In particular, the inverse does not 
necessarily exhibit absolutely summable coefficients. 

Stationary Univariate Moving Average 
Using the lag operator L notation, the infinite moving average represen-
tation can be written as follows: 



 

∞

∑

 hiL

i ε
 + m H L( )ε 
+ mxt = =
t t
i = 0 

Consider now the inverse series:
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∞ 

Π L ( )H L( ) =	 ∑ λiL
i , Π L ( ) = I 

i = 1 

If the coefficients λi are absolutely summable, we can write 

∞ 

= Π L –εt ( )xt =	 ∑ λiL
ixt i

i = 1 

and the series is said to be invertible. 

Multivariate Stationary Series 
The concepts of infinite moving-average representation and of invert-
ibility defined above for univariate series carry over immediately to the 
multivariate case. In fact, it can be demonstrated that under mild regu-
larity conditions, any multivariate stationary causal time series admits 
the following infinite moving-average representation: 

∞ 

+ mxt = ∑ Hiεt i– 
i = 0 

where the Hi are n×n matrices, εt is a n-dimensional, zero-mean, white 
noise process with nonsingular variance-covariance matrix Ω, and m is an 
n-vector of constants. The coefficients Hi are called Markov coefficients. 
This moving-average representation is called the Wold representation. 
Wold representation states that any series where only the past influences 
the present can be represented as an infinite moving average of white noise 
terms. Note that, as in the univariate case, the infinite moving-average rep-
resentation can be written in more general terms as a sum which extends 
from –∞ to +∞. However a series of this type is not suitable for financial 
modeling as it is not causal (that is, the future influences the present). 
Therefore we consider only moving averages that extend to past terms. 

Suppose that the Markov coefficients are an absolutely summable 
series: 

∞ 

+∞ < Hi 
i = 0 
∑ 

2where H indicates the largest eigenvalue of the matrix HH′. Under 
this assumption, it can be demonstrated that the series is stationary and 
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that the (time-invariant) first two moments can be computed in the fol-
lowing way: 

∞

∑cov xt
i = 0 

E[ ] = mxt

with the convention Hi = 0 if i < 0. Note that the assumption that the 
Markov coefficients are an absolutely summable series is essential, oth-
erwise the covariance matrix would not exist. For instance, if the Hi 
were identity matrices, the variances of the series would become infinite. 

As the second moments are all constants, the series is weakly sta-
tionary. We can write the time-independent autocovariance function of 

( )
 HiΩ
ΩΩΩHi h– ′ xt h– = 

the series, which is a n×
n matrix whose entries are a function of the lag 
h, as 

Γ
ΓΓΓx h( ) =

∞

∑ HiΩ
ΩΩΩ ′Hi h– 
i = 0 

Under the assumption that the Markov coefficients are an abso-
lutely summable series, we can use the lag-operator L representation 
and write the operator 

H L( ) =

∞

∑ HiL
i 

i = 0 

so that the Wold representation of a series can be written as 

xt = H L( )ε + m 

The concept of invertibility carries over to the multivariate case. A 
multivariate stationary time series is said to be invertible if it can be rep-
resented in autoregressive form. Invertibility means that the white noise 
process can be recovered as a function of the series. In order to explain 
the notion of invertible processes, it is useful to introduce the generating 
function of the operator H, defined as the following matrix power 
series: 
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∞ 

H z( ) = ∑ Hiz
i 

i = 0 

It can be demonstrated that, if H0 = I, then H(0) = H0 and the 
power series H(z) is invertible in the sense that it is possible to formally 
derive the inverse series, 

∞ 

ΠΠΠΠ z( ) = ∑ ΠΠΠΠiz
i 

i = 0 

such that 

( )H z zΠΠΠΠ z ( ) = (ΠΠΠΠ × H)( ) = I 

where the product is intended as a convolution product. If the coeffi-
cients ΠΠΠΠi are absolutely summable, as the process xt is assumed to be 
stationary, it can be represented in infinite autoregressive form: 

( )(xt – m) =ΠΠΠΠ L εt 

In this case the process xt is said to be invertible. 
From the above, it is clear that the infinite moving average represen-

tation is a more general linear representation of a stationary time than 
the infinite autoregressive form. A process that admits both representa-
tions is called invertible. 

Nonstationary Series 
Let’s now look at nonstationary series. As there is no very general model 
of nonstationary time series valid for all nonstationary series, we have 
to restrict somehow the family of admissible models. Let’s consider a 
family of linear, moving-average, nonstationary models of the following 
type: 

t 

+ h t–xt =	 ∑ Hiεt i ( )z–1 
i = 0 

where the Hi are left unrestricted and do not necessarily form an abso-
lutely summable series, h(t) is deterministic, and z–1 is a random vector 
called the initial conditions, which is supposed to be uncorrelated with 
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the white noise process. The essential differences of this linear model 
with respect to the Wold representation of stationary series are:

 ■ The presence of a starting point and of initial conditions.
 ■ The absence of restrictions on the coefficients.
 ■ The index t which restricts the number of summands. 

The first two moments of a linear process are not constant. They can be 
computed in a way similar to the infinite moving average case: 

t 

cov(xtxt h) = ∑ HiΩΩΩΩH' + h t ( )h′ i h ( )var z– – 
i = 0 

xt ( )E[ ]E[ ] = mt = h t z

Let’s now see how a linear process can be expressed in autoregres-
sive form. To simplify notation let’s introduce the processes εεεε̃ t and x̃ 

t 
tand the deterministic series h̃ ( ) defined as follows: 

εεεε̃ t = 
εεεεt if t > 0 

x̃ 
t = 

xt if t > 0 
h̃ ( ) = 

ht if t > 0 
t

0 if  t < 0 0 if  t < 0 0 if  t < 0 

It can be demonstrated that, due to the initial conditions, a linear pro-
cess always satisfies the following autoregressive equation: 

ΠΠΠΠ L εεεεt ( )h × ( )z–1( )xt = + ΠΠΠΠ L t

A random walk model 

t 

xt = xt – 1 + εt = εt + ∑ εt i– 
i = 1 

is an example of a linear nonstationary model. 
The above linear model can also represent processes that are nearly 

stationary in the sense that they start from initial conditions but then 
converge to a stationary process. A process that converges to a station-
ary process is called asymptotically stationary. 

We can summarize the previous discussion as follows. Under mild 
regularity conditions, any causal stationary series can be represented as 
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an infinite moving average of a white noise process. If the series can also 
be represented in an autoregressive form, then the series is said to be 
invertible. Nonstationary series do not have corresponding general rep-
resentations. Linear models are a broad class of nonstationary models 
and of asymptotically stationary models that provide the theoretical 
base for ARMA and state-space processes that will be discussed in the 
following sections. 

ARMA REPRESENTATIONS 

The infinite moving average or autoregressive representations of the pre-
vious section are useful theoretical tools but they cannot be applied to 
estimate processes. One needs a parsimonious representation with a 
finite number of coefficients. Autoregressive moving average (ARMA) 
models and state-space models provide such representation; though 
apparently conceptually different, they are statistically equivalent. 

Stationary Univariate ARMA Models 
Let’s start with univariate stationary processes. An autoregressive pro-
cess of order p – AR(p) is a process of the form: 

+ a1xt – 1 + … + aPx –xt t P = εt 

which can be written using the lag operator as 

p( )x = (1 + a1L + … + aPL )xt = xt + a1Lx + … + aPL xt P = εtA L t 
p

t – 

Not all processes that can be written in autoregressive form are sta-
tionary. In order to study the stationarity of an autoregressive process, 
consider the following polynomial: 

( ) = 1 + a1z + … + aA z Pzp 

where z is a complex variable. 
The equation 

A z p( ) = 1 + a1z + … + aPz = 0 

is called the inverse characteristic equation. It can be demonstrated that

if the roots of this equation, that is, its solutions, are all different from 1
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in modulus (that is, the roots do not lie on the unit circle), then the 
operator A(L) is invertible and admits the inverse representation: 

+∞ +∞ 

xt = A– 1( )ε = ∑ λiε , with ∑ +∞ < L t t i– λi 
i – = ∞ i – = ∞ 

In addition, if the roots are all strictly greater than 1 in modulus, then 
the representation only involves positive powers of L: 

+∞ +∞ 

xt = A– 1( )ε = ∑ λiε , with ∑ +∞ < L t t i– λi 
i – = ∞ i = 0 

We can therefore say that, if the roots of the inverse characteristic equa-
tion of an autoregressive process are all strictly greater than 1 in modu-
lus (that is, they lie outside the unit circle), then the process is invertible 
as it admits a causal infinite moving average representation. 

In order to avoid possible confusion, note that the solutions of the 
inverse characteristic equation are the reciprocal of the solution of the 
characteristic equation defined as 

A z p( ) = z + a1zp – 1 + … + a = 0P 

Therefore an autoregressive process is invertible with an infinite moving 
average representation that only involves positive powers of the opera-
tor L if the solutions of the characteristic equation are all strictly 
smaller than 1 in absolute value. This is the condition of invertibility 
often stated in the literature. 

Let’s now consider finite moving-average representations. A process 
is called a moving average process of order q – MA(q) if it admits the 
following representation: 

xt = (1 + b1L + … + bPLq)ε = εt + b1ε + … + bPεt q–t t – 1 

In a way similar to the autoregressive case, if the roots of the equation 

B z q( ) = 1 + b1z + … + bqz = 0 

are all different from 1 in modulus, then the MA(q) process is invertible 
and, therefore, admits the infinite autoregressive representation: 
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+∞ +∞ 
– εt =	 B 1( )ε = ∑ πiε , with ∑ +∞ < L t t i– πi 

i – = ∞ i = 0 

In addition, if the roots of B(z) are strictly greater than 1 in modulus, 
then the autoregressive representation only involves past values of the 
process: 

+∞ +∞ 
– εt =	 B 1( )ε = ∑ πiε , with ∑ +∞ < L t t i– πi 

i = 0 i = 0 

As in the previous case, if one considers the characteristic equation, 

B z q + b1zq – 1( ) = z + … + bq = 0 

then the MA(q) process admits a causal autoregressive representation if 
the roots of the characteristic equation are strictly smaller than 1 in 
modulus. 

Let’s now consider, more in general, an ARMA process of order p,q. 
We say that a stationary process admits a minimal ARMA(p,q) repre-
sentation if it can be written as 

xt + a1xt – 1 + apxt p– = b1εt + … + bqεt q– 

or equivalently in terms of the lag operator 

( )x = B L( )εA L t t 

where εt is a serially uncorrelated white noise with nonzero variance, a
= b0 = 1, ap ≠ 0, bq ≠ 0, the polynomials A and B have roots strictly 
greater than 1 in modulus and do not have any root in common. 

Generalizing the reasoning in the pure MA or AR case, it can be 
demonstrated that a generic process, which admits the ARMA(p,q) rep-
resentation A(L)x = B(L)εt is stationary if both polynomials A and Bt 
have roots strictly different from 1. In addition, if all the roots of the 
polynomial A(z) are strictly greater than 1 in modulus, then the 
ARMA(p,q) process can be expressed as a moving average process: 

B L( )
xt =	 -------------εt

A L( )  

0 
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Conversely, if all the roots of the polynomial B(z) are strictly greater 
than 1, then the ARMA(p,q) process can be expressed as an autoregres-
sive process: 

A Lεt 
( )

= -------------xt
B L( )  

Note that in the above discussions every process was centered—that 
is, it had zero constant mean. As we were considering stationary pro-
cesses, this condition is not restrictive as the eventual nonzero mean can 
be subtracted. 

Note also that ARMA stationary processes extend through the 
entire time axis. An ARMA process, which begins from some initial con-
ditions at starting time t = 0, is not stationary even if its roots are 
strictly outside the unit circle. It can be demonstrated, however, that 
such a process is asymptotically stationary. 

Nonstationary Univariate ARMA Models 
So far we have considered only stationary processes. However, ARMA 
equations can also represent nonstationary processes if some of the 
roots of the polynomial A(z) are equal to 1 in modulus. A process 
defined by the equation 

( )x = B L( )εA L t t 

is called an Autoregressive Integrated Moving Average (ARIMA) process 
if at least one of the roots of the polynomial A is equal to 1 in modulus. 
Suppose that λ be a root with multiplicity d. In this case the ARMA rep-
resentation can be written as 

L ( )εA′( )(I – λL)dxt = B L t 

A L L( ) = A′( )(I – λL)d 

However this formulation is not satisfactory as the process A is not 
invertible if initial conditions are not provided; it is therefore preferable 
to offer a more rigorous definition, which includes initial conditions. 
Therefore, we give the following definition of nonstationary integrated 
ARMA processes. 
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A process xt defined for t ≥ 0 is called an Autoregressive Integrated 
Moving Average process—ARIMA(p,d,q)—if it satisfies a relationship 
of the type 

( )(I – λL)dxt = B LA L 	 ( )εt 

where:

 ■ The polynomials A(L) and B(L) have roots strictly greater than 1.
 ■ εt is a white noise process defined for t ≥ 0.
 ■ A set of initial conditions (x–1, ..., x–p–d, εt, ..., ε–q) independent from 

the white noise is given. 

Later in this chapter we discuss the interpretation and further properties 
of the ARIMA condition. 

Stationary Multivariate ARMA Models 
Let’s now move on to consider stationary multivariate processes. A sta-
tionary process which admits an infinite moving-average representation 
of the type 

∞ 

xt = ∑ Hiεεεεt i– 
i = 0 

where εt–i is an n-dimensional, zero-mean, white-noise process with 
nonsingular variance-covariance matrix ΩΩΩΩ is called an autoregressive 
moving average—ARMA(p,q)—model, if it satisfies a difference equa-
tion of the type 

( )xt = B LA L ( )εt 

where A and B are matrix polynomials in the lag operator L of order p 
and q respectively: 

p


A L
( ) =	 ∑ AiL
i , A0 = I, Ap ≠ 0 

i = 1 
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p 

B L( ) =	 ∑ BjL
j , B0 = I, Bq ≠ 0 

j = 1 

If q = 0, the process is purely autoregressive of order p; if q = 0, the pro-
cess is purely a moving average of order q. Rearranging the terms of the 
difference equation, it is clear that an ARMA process is a process where 
the i-th component of the process at time t, xi,t, is a linear function of all 
the components at different lags plus a finite moving average of white 
noise terms. 

It can be demonstrated that the ARMA representation is not unique. 
The nonuniqueness of the ARMA representation is due to different rea-
sons, such as the existence of a common polynomial factor in the 
autoregressive and the moving-average part. It entails that the same pro-
cess can be represented by models with different pairs p,q. For this rea-
son, one would need to determine at least a minimal representation— 
that is, an ARMA(p,q) representation such that any other ARMA(p′,q′) 
representation would have p′ > p, q′ > q. With the exception of the 
univariate case, these problems are very difficult from a mathematical 
point of view and we will not examine them in detail. 

Let’s now explore what restrictions on the polynomials A(L) and 
B(L) ensure that the relative ARMA process is stationary. Generalizing 
the univariate case, the mathematical analysis of stationarity is based on 
the analysis of the polynomial det[A(z)] obtained by formally replacing 
the lag operator L with a complex variable z in the matrix A(L) whose 
entries are finite polynomials in L. 

It can be demonstrated that if the complex roots of the polynomial 
det[A(z)], that is, the solutions of the algebraic equation det[A(z)] = 0, 
which are in general complex numbers, all lie outside the unit circle, 
that is, their modulus is strictly greater than one, then the process that 
satisfies the ARMA conditions, 

( )xt = B LA L ( )εεεεt 

is stationary. The demonstration is based on formally solving the ARMA 
equation, writing (see Chapter 5 on matrix algebra) 

( )] ( )εεεεxt = A –1( )B L
adj[A L

L ( )εεεε = --------------------------B Lt	 t
det[A	 L( )] 

If the roots of the polynomial det[A(z)] lie outside the unit circle, 
then it can be shown that 
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∞ ∞

adj[A L
( )] ( )εεεε = ∑ HiL

iε , with ∑ Hi absolutely summable--------------------------B L t t
det[A L( )] i = 1 i = 1 

which demonstrates that the process xt is stationary.1 As in the univari-
ate case, if one would consider the equations in 1/z, the same reasoning 
applies but with roots strictly inside the unit circle. 

A stationary ARMA(p,q) process is an autocorrelated process. Its 
time-independent autocorrelation function satisfies a set of linear differ-
ence equations. Consider an ARMA(p,q) process which satisfies the fol-
lowing equation: 

A0xt + A1xt – 1 + … + APxt P = B0εεεε + B1εεεε + … + Bqεεεεt q– t t – 1 – 

where A0 = I. By expanding the expression for the autocovariance func-
tion, it can be demonstrated that the autocovariance function satisfies 
the following set of linear difference equations: 

0 if  h q> 
q h

A0ΓΓΓΓh + A1ΓΓΓΓh – 1 + … + APΓΓΓΓh p = 

 ∑ Bj hΩΩΩΩH′ j 

– 
– 

+ 
 j = 0 

where ΩΩΩΩ and Hi are, respectively, the covariance matrix and the Markov 
coefficients of the process in its infinite moving-average representation: 

∞ 

xt = ∑ Hiεεεε –t i
i = 0 

From the above representation, it is clear that if the process is purely MA, 
that is, if p = 0, then the autocovariance function vanishes for lag h > q. 

It is also possible to demonstrate the converse of this theorem. If a 
linear stationary process admits an autocovariance function that satis-
fies the following equations,

A0ΓΓΓΓh + A1ΓΓΓΓh – 1 + … + APΓΓΓΓh p = 0 if h > q– 

1 Christian Gourieroux and Alain Monfort, Time Series and Dynamic Models (Cam-
bridge: Cambridge University Press, 1997). 



11-FinEcon-Time Series  Page 304  Wednesday, February 4, 2004  12:58 PM

304 The Mathematics of Financial Modeling and Investment Management 

then the process admits an ARMA(p,q) representation. In particular, a sta-
tionary process is a purely finite moving-average process MA(q), if and 
only if its autocovariance functions vanish for h > q, where q is an integer. 

Nonstationary Multivariate ARMA Models 
Let’s now consider nonstationary series. Consider a series defined for t ≥ 
0 that satisfies the following set of difference equations: 

A0xt + A1xt – 1 + … + APxt P = B0εεεε + B1εεεε + … + Bqεεεεt q– t t – 1 – 

where, as in the stationary case, εεεεt–i is an n-dimensional zero-mean, 
white noise process with nonsingular variance-covariance matrix ΩΩΩΩ, A0 
= I, B0 = I, Ap ≠ 0, Bq ≠ 0. Suppose, in addition, that initial conditions 
(x–1,...,x–p,εεεεt,...,εεεε–q) are given. Under these conditions, we say that the pro-
cess xt, which is well defined, admits an ARMA representation. 

A process xt is said to admit an ARIMA representation if, in addi-
tion to the above, it satisfies the following two conditions: (1) det[B(z)] 
has all its roots strictly outside of the unit circle, and (2) det[A(z)] has 
all its roots outside the unit circle but with at least one root equal to 1. 
In other words, an ARIMA process is an ARMA process that satisfies 
some additional conditions. Later in this chapter we will clarify the 
meaning of integrated processes. 

Markov Coefficients and ARMA Models 
For the theoretical analysis of ARMA processes, it is useful to state 
what conditions on the Markov coefficients ensure that the process 
admits an ARMA representation. Consider a process xt, stationary or 
not, which admits a moving-average representation either as 

∞ 

xt = ∑ Hiεεεεt i– 
i = 0 

or as a linear model: 

t 

xt = ∑ Hiεεεεt i + h t( )z– 
i = 0 

The process xi admits an ARMA representation if and only if there 
is an integer q and a set of p matrices Ai, i = 0, ..., p such that the 
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Markov coefficients Hi satisfy the following linear difference equation 
starting from q: 

p 

∑
AJHl j = 0 , l > q– 
j = 0 

Therefore, any ARMA process admits an infinite moving-average 
representation whose Markov coefficients satisfy a linear difference 
equation starting from a certain point. Conversely, any such linear infi-
nite moving-average representation can be expressed parsimoniously in 
terms of an ARMA process. 

Hankel Matrices and ARMA Models 
For the theoretical analysis of ARMA processes it is also useful to 
restate the above conditions in terms of the Hankel infinite matrices.2 It 
can be demonstrated that a process, stationary or not, which admits 
either the infinite moving average representation 

xt = 
∞

∑ Hiε
εεεt i– 
i = 0 

or a linear moving average model 

t 

xt =
 ∑
Hiε
εεεt i– +
h t( )z 
i = 0 

also admits an ARMA representation if and only if the Hankel matrix 
formed with the sequence of its Markov coefficients has finite rank or, 
equivalently, a finite column rank or row rank. 

STATE-SPACE REPRESENTATION 

There is another representation of time series called state-space models. 
As we will see in this section, state-space models are equivalent to ARMA 
models. While the latter are typical of econometrics, state-space models 
originated in the domain of engineering and system analysis. Consider a 

2 Hankel matrices are explained in Chapter 5. 
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system defined for t ≥ 0 and described by the following set of linear differ-
ence equations: 

= Azt + Butzt + 1 
= Czt + Dut + Estxt 

where 

xt = an  n-dimensional vector 
zt = a  k-dimensional vector 
ut = an  m-dimensional vector 
st = a  k-dimensional vector 
A = a  k×k matrix 
B = a  k×m matrix 
C = an  n×k matrix 
D = an  n×m matrix 
E = an  n×k matrix 

In the language of system theory, the variables ut are called the 
inputs of the system, the variables zt are called the state variables of the 
system, and the variables xt are called the observations or outputs of the 
system, and st are deterministic terms that describe the deterministic 
components if they exist. 

The system is formed by two equations. The first equation is a 
purely autoregressive AR(1) process that describes the dynamics of the 
state variables. The second equation is a static regression of the observa-
tions over the state variables, with inputs as innovations. Note that in 
this state-space representation the inputs ut are the same in both equa-
tions. It is possible to reformulate state space models with different, 
independent inputs for the states, and the observables. The two repre-
sentations are equivalent. 

The fact that the first equation is a first order equation is not restric-
tive as any AR(p) system can be transformed into a first-order AR(1) 
system by adding variables. The new variables are defined as the lagged 
values of the old variables. This can be illustrated in the case of a single 
second-order autoregressive equation: 

= α0Xt +Xt + 1 α1Xt – 1 + εt + 1 

Define Yt = . The previous equation is then equivalent to the first-Xt – 1 
order system: 
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= α0Xt + α1Yt + εXt + 1 t + 1 

= XtYt + 1 

This transformation can be applied to systems of any order and with 
any number of equations. Recall from Chapter 9 that a similar proce-
dures is applied to systems of differential equations. 

Note that this state-space representation is not restricted to white 
noise inputs. A state-space representation is a mapping of inputs into 
outputs. Given a realization of the inputs ut and an initial state z0, the 
realization of the outputs xt is fixed. The state-space representation can 
be seen as a black-box, characterized by A, B, C, D, and z0 that maps 
any m-dimensional input sequence into an n-dimensional output 
sequence. The mapping S = S(A,B,C,D,z0) of u → x is called a black-box 
representation in system theory. 

State-space representations are not unique. Given a state-space rep-
resentation, there are infinite other state-space representations that 
implement the same mapping u → x. In fact, given any nonsingular 
(invertible) matrix Q, it can be easily verified that 

, D Qz0)S(A B C D z, , ,  , 0) = S(QAQ –1 , QB CQ –1 , , 

Any two representations that satisfy the above condition are called 
equivalent. 

The minimal size of a system that admits a state-space representa-
tion is the minimum possible size k of the state vector. A representation 
is called minimal if its state vector has size k. 

We can now establish the connection between state-space and infi-
nite moving-average representations and the equivalence of ARMA and 
state-space representations. Consider a n-dimensional process xt, which 
admits an infinite moving-average representation 

∞ 

xt = ∑ Hiεεεε –t i
i = 0 

where εεεεt is an n-dimensional, zero-mean, white noise process with non-
singular variance-covariance matrix ΩΩΩΩ and H0 = I, or a linear moving 
average model 
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t 

xt = ∑ Hiεεεε – + h t( )zt i
i = 0 

It can be demonstrated that this system admits the state-space repre-
sentation: 

= Azt + Bεεεεzt + 1 t 
xt = Czt + Dεεεεt 

if and only if its Hankel matrix is of finite rank. In other words, a time 
series which admits an infinite moving-average representation and has a 
Hankel matrix of finite rank can be generated by a state-space system 
where the inputs are the noise. Conversely, a state-space system with 
white-noise as inputs generates a series that can be represented as an 
infinite moving-average with a Hankel matrix of finite rank. This con-
clusion is valid for both stationary and nonstationary processes. 

Equivalence of State-Space and ARMA Representations 
We have seen in the previous section that a time series which admits an 
infinite moving-average representation can also be represented as an 
ARMA process if and only if its Hankel matrix is of finite rank. There-
fore we can conclude that a time series admits an ARMA representation 
if and only if it admits a state-space representation. ARMA and state-
space representations are equivalent. 

To see the equivalence between ARMA and state-space models, con-
sider a univariate ARMA(p,q) model 

p q 

xt = ∑ ϕtxt i + ∑ ψjεt j , ψ0 = 1– – 
i = 1 j = 0 

This ARMA model is equivalent to the following state-space model 

xt = Czt 

zt = Azt–1 + εt 

where 

C = [ϕ1 ... ϕp 1 ψ1 ... ψq] 
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–xt – 1 –ϕ1 … ϕp 1 ψ1 … ψq – 1 ψq· · · 1 … 0 0 0  … 0 0 
xt p · · · · · · · · – · · · · · · · · · · · · · · · · 

zt = εt and A = 0 … 1 0 0  … 0 0 
0 … 0 0 0  … 0 0εt – 1


·
 · · · · · · · · · · · · · · · · · · · · · · · · · · 
0 … 0 0 0  … 1 0εt q– 

In general, the number of states will be larger than the number of obser-
vations. However, the number of states can be reduced model reduction 
techniques.3 

The connection between ARMA and state-space models has a deep 
meaning that will be elucidated after introducing the concept of cointe-
gration and after generalizing the concept of state-space modeling. As 
we will see, both cointegration and state-space modeling implement a 
fundamental dimensionality reduction which plays a key role in the 
econometrics of financial time series. 

INTEGRATED SERIES AND TRENDS 

This section introduces the fundamental notions of trend stationary 
series, difference stationary series, and integrated series. Consider a one-
dimensional time series. A trend stationary series is a series formed by a 
deterministic trend plus a stationary process. It can be written as 

Xt = f t + ( )( )  ε t

A trend stationary process can be transformed into a stationary pro-
cess by subtracting the trend. Removing the deterministic trend entails 
that the deterministic trend is known. A trend stationary series is an 
example of an adjustment model. 

Consider now a time series Xt. The operation of differencing a series 
consists of forming a new series Yt = ∆Xt = Xt – Xt–1. The operation of 
differencing can be repeated an arbitrary number of times. For instance, 
differencing twice the series Xt yields the following series: 

3 The idea of applying model reduction techniques to state-space models was advo-
cated by, among others, Masanao Aoki. See M. Aoki and A. Havenner, “State Space 
Modeling of Multiple Time Series,” Econometric Reviews (1991), pp. 10:1–59. 



11-FinEcon-Time Series  Page 310  Wednesday, February 4, 2004  12:58 PM

310 The Mathematics of Financial Modeling and Investment Management 

Zt = ∆Yt = ∆(∆Xt) = (Xt – ) – (Xt )Xt – 1 – 2 – Xt – 3 

= Xt – Xt – 1 – Xt – 2 + Xt – 3 

Differencing can be written in terms of the lag operator as 

∆Xt
d = (1 – L)dXt 

A difference stationary series is a series that is transformed into a 
stationary series by differencing. A difference stationary series can be 
written as 

∆Xt + = ( )µ  ε t

µ ε tXt = + + ( )Xt – 1 

where ε(t) is a zero-mean stationary process and µ is a constant. A trend 
stationary series with a linear trend is also difference stationary, if spac-
ings are regular. The opposite is not generally true. A time series is said 
to be integrated of order n if it can be transformed into a stationary 
series by differencing n times. 

Note that the concept of integrated series as defined above entails 
that a series extends on the entire time axis. If a series starts from a set 
of initial conditions, the difference sequence can only be asymptotically 
stationary. 

There are a number of obvious differences between trend stationary 
and difference stationary series. A trend stationary series experiences 
stationary fluctuation, with constant variance, around an arbitrary 
trend. A difference stationary series meanders arbitrarily far from a lin-
ear trend, producing fluctuations of growing variance. The simplest 
example of difference stationary series is the random walk. 

An integrated series is characterized by a stochastic trend. In fact, a 
difference stationary series can be written as 

t – 1 

Xt = µt + ∑ ε s ( )( )  + ε t
s + 0 

*The difference Xt – Xt between the value of a process at time t and 
the best affine prediction at time t – 1 is called the innovation of the pro-
cess. In the above linear equation, the stationary process ε(t) is the inno-
vation process. A key aspect of integrated processes is that innovations 
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ε(t) never decay but keep on accumulating. In a trend stationary pro-
cess, on the other hand, past innovations disappear at every new step. 

These considerations carry over immediately in a multidimensional 
environment. Multidimensional trend stationary series will exhibit multiple 
trends, in principle one for each component. Multidimensional difference-
stationary series will yield a stationary process after differencing. 

Let’s now see how these concepts fit into the ARMA framework, 
starting with univariate ARMA model. Recall that an ARIMA process is 
defined as an ARMA process in which the polynomial B has all roots 
outside the unit circle while the polynomial A has one or more roots 
equal to 1. In the latter case the process can be written as 

L ( )εA′( )∆dxt = B L t 

A L L( ) = (1 – L)dA′( )  

and we say that the process is integrated of order n. If initial conditions 
are supplied, the process can be inverted and the difference sequence is 
asymptotically stationary. 

The notion of integrated processes carries over naturally in the mul-
tivariate case but with a subtle difference. Recall from earlier discussion 
in this chapter that an ARIMA model is an ARMA model: 

( )xt = B LA L ( )εεεεt 

which satisfies two additional conditions: (1) det[B(z)] has all its roots 
strictly outside of the unit circle, and (2) det[A(z)] has all its roots out-
side the unit circle but with at least one root equal to 1. 

Now suppose that, after differencing d times, the multivariate series
∆d xt can be represented as follows:

A′( )xt = B′( )εεεε , 1 with A′( ) = A LL L t L ( )∆d 

z zIn this case, if (1) B′( ) is of order q and det [B′( )] has all its roots 
zstrictly outside of the unit circle and (2) A′( ) is of order p and 

det [A′( )] has all its roots outside the unit circle, then the process isz
called ARIMA(p,d,q). Not all ARIMA models can be put in this frame-
work as different components might have a different order of integration. 

Note that in an ARIMA(p,d,q) model each component series of the 
multivariate model is individually integrated. A multivariate series is 
integrated of order d if every component series is integrated of order d. 
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Note also that ARIMA processes are not invertible as infinite mov-
ing averages, but as discussed, they can be inverted in terms of a generic 
linear moving average model with stochastic initial conditions. In addi-
tion, the process in the d-differences is asymptotically stationary. 

In both trend stationary and difference stationary processes, innova-
tions can be serially autocorrelated. In the ARMA representations dis-
cussed in the previous section, innovations are serially uncorrelated white 
noise as all the autocorrelations are assumed to be modeled in the ARMA 
model. If there is residual autocorrelation, the ARMA or ARIMA model 
is somehow misspecified. 

The notion of an integrated process is essentially linear. A process is 
integrated if stationary innovations keep on adding indefinitely. Note 
that innovations could, however, cumulate in ways other than addition, 
producing essentially nonlinear processes. In ARCH and GARCH pro-
cesses for instance, innovations do not simply add to past innovations. 

The behavior of integrated and nonintegrated time series is quite dif-
ferent and the estimation procedures are different as well. It is therefore 
important to ascertain if a series is integrated or not. Often a prelimi-
nary analysis to ascertain integratedness suggests what type of model 
should be used. 

A number of statistical tests to ascertain if a univariate series is inte-
grated are available. Perhaps the most widely used and known are the 
Dickey-Fuller (DF) and the Augmented Dickey-Fuller (ADF) tests. The 
DF test assumes as a null hypothesis that the series is integrated of order 
1 with uncorrelated innovations. Under this assumption, the series can 
be written as a random walk in the following form: 

b= ρXt + + εtXt + 1 

ρ = 1 

εt IID 

where IID is an independent and identical sequence (see Chapter 6). 
In a sample generated by a model of this type, the value of ρ esti-

mated on the sample is stochastic. Estimation can be performed with the 
ordinary least square (OLS) method. Dickey and Fuller4 determined the 
theoretical distribution of ρ and computed the critical values of ρ that 

4 See William H. Greene, Econometric Analysis: Fifth Edition (Upper Sadle River, 
NJ: Prentice-Hall, 2003). 
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correspond to different confidence intervals. The theoretical distribution 
of ρ is determined computing a functional of the Brownian motion. 

Given a sample of a series, for instance a series of log prices, appli-
cation of the DF test entails computing the autoregressive parameter ρ 
on the given sample and comparing it with the known critical values for 
different confidence intervals. The strict hypothesis of random walk is 
too strong for most econometric applications. The DF test was extended 
to cover the case of correlated residuals that are modeled as a linear 
model. In the latter case, the DF test is called the Augmented Dickey 
Fuller or ADF test. The Phillips and Perron test is the DF test in the gen-
eral case of autocorrelated residuals. 

SUMMARY

 ■ A time series is a discrete-time stochastic process, that is, a denumera-
ble collection of random variables indexed by integer numbers.

 ■ Any stationary time series admits an infinite moving average represen-
tation, that is to say, it can be represented as an infinite sum of white 
noise terms with appropriate coefficients.

 ■ A time series is said to be invertible if it can also be represented as an 
infinite autoregression, that is, an infinite sum of all past terms with 
appropriate coefficients.

 ■ ARMA models are parsimonious representations that involve only a 
finite number of moving average and autoregressive terms.

 ■ An ARMA model is stationary if all the roots of the inverse characteris-
tic equation of the AR or the MA part have roots with modulus strictly 
greater than one.

 ■ A process is said to be integrated of order p if it becomes stationary 
after differencing p times.

 ■ A state-space model is a regression of observable variables over an 
ARMA model of lower dimensionality.

 ■ Every ARMA process admits a state-space representation. 
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CHAPTER 12 
Financial Econometrics: 

Model Selection, Estimation, 
and Testing 

n economics and finance theory models are rarely determined by 
strong theoretical considerations. Often, one or more families of mod-

els compete as plausible explanations of empirical data. Therefore, a 
specific family of models has to be selected and, within a given family, 
parameters have to be estimated. In this chapter we discuss criteria for 
model selection and parameter estimation. 

MODEL SELECTION 

Science works by making hypotheses and testing them. In the physical 
sciences, in particular, hypotheses are mathematical models typically 
tested with a very high level of precision under a variety of experimental 
settings. In the usual process of scientific inquiry, models can be under-
stood as the product of human creativity. How the general concepts of 
science are formed and modified to account for new empirical evidence 
has been the subject of intense study.1 

With the advent of fast computers, an automatic approach to sci-
ence—and to the creative process in general—has been made possible. 
The Nobel laureate Herbert Simon was a strong advocate of the idea 
that the creative discovery process can be automated as an algorithmic 
(that is, step-by-step) search in a space of different possibilities. 

1 See for instance Thomas Kuhn, The Structure of Scientific Revolutions: Third Edi-
tion (Chicago: University of Chicago Press, 1996). 

315 
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Since the pioneering work of Simon, many different search strate-
gies have been proposed by statisticians and researchers in artificial 
intelligence. Most approaches to searching strategies are based on mini-
mizing a “distance” from an objective. In the case of econometrics, the 
objective of searching is to find the best model that describes data. 
Searches are implemented by optimization of some functional. 

The problem with the search approach is that the search space is infi-
nite. Even if the search space can be made finite by applying some sort of 
discretization, its size for real-life problems is enormous. Any practical 
application of the idea of automatic searches requires that the search 
space is constrained. Econometrics, as well as statistics and data mining, 
constrains the search space by searching within given families of models. 

In econometrics, the selection of the model family is typically per-
formed on the basis of theoretical considerations as in the physical sci-
ences. There is no way that an unconstrained search for models might 
yield positive results. Various tools might help to decide what family of 
models to adopt but, ultimately, model selection is a creative decision 
based on theoretical grounds. Once a family of models is selected, there 
are still choices to be made as regards the constraints to apply. 

A typical top-down approach to constraining searches consists of 
starting with a broad family of unrestricted models, for instance, as 
explained later in this chapter, Vector Autoregressive Models (VAR), 
and then proceeding by constraining them, for instance by applying 
error correction constraints as discussed later. A typical bottom-up 
approach starts with a family of highly constrained models suggested by 
theory and then progressively relaxes constraints. 

As there is a large amount of uncertainty in econometrics, model 
selection is never definitive and many different models may coexist as 
competing or synergic explanations of the same empirical facts, leading 
to model uncertainty. One can deal with this by giving weights to vari-
ous models, e.g., predict with the weighted average of the prediction 
from several models. This process can be performed under a classical 
statistical framework or under a Bayesian statistical framework if prior 
probabilities can be assigned to models.2 In this sense, econometrics is 
quite different from the physical sciences where the coexistence of com-
peting theories is a rare event. 

Econometric models generally entail the selection of parameters or 
even the selection of a specific model within a family. This is the realm of 
algorithmic searches, generally in the form of optimization procedures. 

2 A classical reference to Bayesian statistics with emphasis on statistical inference as 
decision theory is: Josè M. Bernardo and Adrian F.M. Smith, Bayesian Theory 
(Chichester, U.K.: John Wiley & Sons., 2000). 
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For instance, an econometrician might decide, on theoretical grounds, to 
adopt an ARMA family of models. Searches will then help determine 
parameters such as the order of the model and the estimation of the 
model parameter. We will return to the problem of determining the 
model complexity and estimating parameters in the following sections. 

The above considerations apply to parametric models, that is, mod-
els that include parameters to be estimated. There are statistical models 
that appear to be nonparametric. Nonparametric models are typically 
based on the empirical estimation of probability distribution functions. 
Nonparametric models are typically simple models as there is no practi-
cal way to estimate empirically complex models. 

In summary, econometrics follows a general scientific principle of 
formulation and testing of theoretical hypotheses. However, economet-
ric hypotheses are generally formulated as a family of models with 
parameters to be optimized. Econometrics is thus an instance of a gen-
eral process of learning.3 

LEARNING AND MODEL COMPLEXITY 

If one had an infinite amount of empirical data and an infinite amount of 
computational resources, econometric models could in principle be selected 
with arbitrary accuracy. However as empirical data are finite and, gener-
ally, scarce, many different models fit empirical data. The key problem of 
statistical learning is that most families of models can be parameterized so 
that they can fit a finite sample of data with arbitrary accuracy. For 
instance, if an arbitrary number of lags is allowed, an ARMA model can be 
made to fit any sample of data with arbitrary accuracy. A model of this 
type, however, would have very poor forecasting ability. The phenomenon 
of fitting sample data with excessive accuracy is called overfitting. 

In the classical formulation of the physical sciences, overfitting is a 
nonissue as models are determined with theoretical considerations and 
are not adaptively fit to data. The problem of overfitting arises in con-
nection with broad families of models that are able to fit any set of data 
with arbitrary accuracy. Avoiding overfitting is essentially a problem of 

3 Christian Gourieroux and Alain Monfort, Statistics and Econometric Models 
(Cambridge: Cambridge University Press, 1995); D.F. Hendry, “Econometrics: Al-
chemy or Science?” Economica 47 (1980), pp. 387–406, reprinted in D.F. Hendry, 
Econometrics: Alchemy or Science? (Oxford: Blackwell Publishers, 1993, and Ox-
ford University Press, 2000); D.F. Hendry, Dynamic Econometrics (Oxford: Oxford 
University Press, 1995); and Vladimir N. Vapnik, Statistical Learning Theory (New 
York: John Wiley and Sons, 1998). 
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selecting the right model complexity. The complexity of a model is 
sometimes identified with its dimensionality, that is, with the number of 
free parameters of the model. 

The problem of model complexity is intimately connected with the 
concept of algorithmic compressibility introduced in the 1960s indepen-
dently by Andrei Kolmogorov4 and Gregory Chaitin.5 In intuitive terms, 
algorithmic complexity is defined as the minimum length of a program 
able to reproduce a given stream of data. If the minimum length of a 
program able to generate the given sequence is the same as the length of 
the data stream, then there is no algorithmic compressibility and data 
can be considered purely random. If, on the other hand, a short pro-
gram is able to describe a long stream of data, then the level of algorith-
mic compressibility is high and scientific explanation is possible. 

Models can only describe algorithmically compressible data. In a 
nutshell, the problem of learning is to find the right match between the 
algorithmic compressibility of the data and the dimensionality of the 
model. In practice, it is a question of implementing a trade-off between 
the accuracy of the estimate and the size of the sample. 

Various methodologies have been proposed. Some early proposals are 
empirical rules of thumb, based on increasing the model complexity until 
there is no more gain in the forecasting accuracy of the model. These pro-
cedures require partitioning the data in training and test sets, so that 
models can be estimated on the training data and tested on the test data. 

Procedures such as the Box-Jenkins methodology for the determina-
tion of the right ARMA model can be considered ad hoc methods based 
on specific characteristics of the model, for instance, the decay of the 
autocorrelation function in the case of ARMA models. 

More general criteria for model complexity are based on results 
from information theory. The Akaike Information Criteria (AIC) pro-
posed by Akaike6 is a model selection criterion based on the informa-
tion content of the model. The Bayesian Information Criteria (BIC) 
proposed by Schwartz7 is another model selection criterion based on 
information theory in a Bayesian context. 

4 Andrei N. Kolmogorov, “Three Approaches to the Quantitative Definition of In-
formation,” Problems of Information Transmission 1 (1965), pp. 1–7. 
5 Gregory J. Chaitin, “On the Length of Programs for Computing Finite Binary Sequenc-
es,” Journal of Association Computational Mathematics 13 (1965), pp. 547–569. 
6 H. Akaike, “Information Theory and an Extension of the Maximum Likelihood 
Principle,” in B.N. Petrov and F. Csake (eds.), Second International Symposium on 
Information Theory (Budapest: Akademiai Kiado, 1973), pp. 267–281. 
7 Gideon Schwarz, “Estimating the Dimension of a Model,” Annals of Statistics 6 
(1978), pp. 461–464. 
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Recently, the theory of learning has been given a firm theoretical 
basis by Vladimir Vapnik and Alexey Chervonenkis.8 The Vapnik-Cher-
vonenkis (VC) theory of learning is a complex theoretical framework 
for learning that, when applicable, is able to give precise theoretical 
bounds to the learning abilities of models. The VC theory has been 
applied in the context of nonlinear models thus originating the so-called 
Support Vector Machines. Though its theoretical foundation is solid, 
the practical applicability of the VC theory is complex. It has not found 
yet a broad following in the world of econometrics. 

MAXIMUM LIKELIHOOD ESTIMATE 

Once the dimensionality of the model has been chosen, parameters need 
to be estimated. This is the somewhat firmer ground of statistical esti-
mation. An estimator of a parameter is a statistic, that is, a function 
computed on the sample data. For instance, the empirical average 

n 

x = ∑ xi 
i = 1 

of an n-sample is an estimator of the population mean. An estimator is 
called unbiased if its expected value coincides with the theoretical 
parameter. An estimator is called consistent if a sequence of estimators 
computed on a sequence of samples whose size tends to infinity con-
verges to the true theoretical value of the parameter. 

An estimator is a stochastic quantity when computed on a sample. 
Given a model, the distribution of the estimator on samples of a given 
size is determined and can be computed. Different estimators of the 
same parameters will be characterized by different distributions when 
computed on samples of the same size. The variance of the estimator’s 
distribution is an indication of the quality of the approximation offered 
by the estimator. An efficient estimator has the lowest possible variance. 
A lower bound of an estimator variance is given by the Cramer-Rao 
bound. 

The Cramer-Rao bound is a theoretical lower bound to the accuracy 
of estimates. It can be formulated as follows. Suppose that a population 
sample X has a joint density f(x ϑ) that depends on a parameter ϑ and 
that Y = g(X) is an unbiased estimator of ϑ. Y is a random variable that 
depends on the sample. The Cramer-Rao bound prescribes a lower 

8 Vapnik, Statistical Learning Theory. 
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2bound for the variance σY of Y. In fact, under mild regularity condi-
tions, it can be demonstrated that 

2 1σY = var Y ≥ -----
In 

2  ∂
I = nE ------log f(X θ)  


n 

∂θ 

The Cramer-Rao bound can be generalized to the estimates of a k-
vector of parameters θθθθ. In this case, one must consider the Fisher infor-
mation matrix I(θθθθ) (see below) which is defined as the variance-covari-
ance matrix of the vector 

∂ 
------log f(X θ)
∂θ 

It can be demonstrated that the difference between the variance-covari-
ance matrix of the vector θθθθ and the inverse of the Fisher information 
matrix is a nonnegative definite matrix. 

This does not mean that the entries of the variance-covariance 
matrix of the vector θθθθ are systematically bigger than the elements of the 
inverse of the Fisher information matrix. However, we can determine a 
lower bound for the variance of each parameter θi. In fact, as all the 
diagonal elements a nonnegative definite matrix are nonnegative, the 
following relationship holds: 

2σθi 
= var θi ≥ {I –1}i i, 

In other words, the lower bound of the variance of the i-th parameter 
θi is the i-th diagonal entry of the inverse of the Fisher information 
matrix. Estimators that attain the Cramer-Rao bound are called efficient 
estimators. In the following section we will show that the maximum like-
lihood (ML) estimators attain the Cramer-Rao lower bound and are 
therefore efficient estimators. 

There are various methodologies for determining estimators. An 
important methodology is based on the maximum likelihood estimation 
(MLE). MLE is a principle of statistical estimation which, given a para-
metric model, prescribes choosing those parameters that maximize the 
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likelihood of the sample under the model. This idea is highly intuitive: If 
one throws a coin and obtains 75 heads out of 100 trials, one believes 
that the probabilities of head and tail are ³�₄ and ¹⁄₄ respectively and not 
that one is experiencing a very unlikely run of heads. 

Suppose that an n-sample x = (x1,...,xn) with a joint density function 
f(x/ϑ) is given. Suppose also that the density depends on a set of parame-
ters ϑ. The likelihood function is any function L(ϑ) proportional to f(x/ϑ): 

L ϑ( ) ∝ f(x ϑ) 

computed on the given sample. The MLE prescribes to choose those 
parameters ϑ that maximize the likelihood. If the sample is formed by 
independent draws from a density, then the likelihood is the product of 
individual likelihoods: 

n 

f(x ⁄ ϑ) = ∏ f xi( ϑ) 
i = 1 

n 

( ) ∝ ∏ f xiL ϑ ( ϑ) 
i = 1 

In this case, in order to simplify calculations, one normally com-
putes the log-likelihood defined as the logarithm of the likelihood, so 
that the product is transformed into a sum. As the logarithm is an 
increasing function, maximizing the likelihood or the log likelihood 
gives the same results. 

The MLE is an estimation method which conforms to general scientific 
principles. From a statistical point of view, it has interesting properties. In 
fact, it can be demonstrated that a ML estimator is an efficient estimator 
(that is, an estimator which attains the minimum possible variance). 

In the case of independent samples, the classical theory of ML esti-
mators can be resumed as follows. Let Yi, i = 1,2,...,n be n independent 
variables with probability density functions fi(yi|θθθθ), where θθθθ is a k-vector 
of parameters to be estimated. Let the joint density of n independent 
observations y = (yi) of the variables Yi be 

n 

f(y θ) = ∏ fi(yi θ) = L(y θ) 
i = 1 

The log-likelihood function of the sample is 
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n 

log L(y θ) = ∑ log fi(yi θ) 
i = 1 

The Fisher score function u is defined as the k-vector of the first deriva-
tives of the log-likelihood: 

u θθθθ θθθθ( ) = [uj( )] 

∂θθθθuj( ) = -------log L(y θ) , j = 1,2,...,k 
∂θj 

The ML estimator θθθθ̂ of the true parameter θθθθ is obtained equating 
the score to zero: u θθθθ̂( ) = 0 . It can be demonstrated that the mean of the 
score evaluated at the true parameter value vanishes: E[u(θθθθ)] = 0. The 
variance-covariance matrix of the score is called the Fisher information 
matrix: 

( )] = E[u θθθθ ( )] = I θθθθvar/cov[u θθθθ ( )u T θθθθ ( )  

Under mild regularity conditions it can be demonstrated that the follow-
ing relationship holds: 

I θθθθ ( )∂2log L θθθθ( ) = –E --------------------------
∂θi∂θj 

The matrix of the second derivatives on the right side is called the 
observed information matrix. The classical theory of ML estimators 
states that, in large samples, the distribution of the ML estimator θθθθ̂ of θθθθ

, I–1(θθθθis approximately normal with parameters [θθθθ )], that is, the follow-
ing relationship holds: 

θθθθθθθθ̂ ∼ N[θθθθ, I –1( )] 

This relationship tells us that ML estimators are efficient estimators as 
their variance attains the Cramer-Rao bound. The asymptotic joint nor-
mality of the ML estimators can be used to construct a number of tests 
and confidence intervals. 
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Suppose that one wants to estimate a regressive model Y = aX + b + 
ε from a sample of n pairs (yi, xi). The linear regressive model is charac-
terized by the two parameters a and b, which can be estimated with the 
Ordinary Least Square (OLS) method. The OLS computes the straight 
line that minimizes the sum of the squares of the distances of the sam-
ples from that straight line. 

In a probabilistic setting, the estimates â , b̂ of the two parameters a 
and b depend on the sample. They obey a distribution that depends on 
the distribution of the errors ε. It can be demonstrated that, if the errors 
are normally distributed IID sequences than the OLS estimators â , b̂ are 
unbiased ML estimators. They are therefore efficient estimators. If the 
errors are IID variables with finite variance but are not normally distrib-
uted, then the OLS estimators â , b̂ of the two parameters a and b are 
unbiased estimators but not necessarily ML estimators. 

The OLS estimation procedure is very general. It can be demon-
strated that any linear unconstrained autoregressive model with normal 
innovations can be estimated with OLS estimators and that the ensuing 
estimators are unbiased ML estimators and thus efficient estimators. 

One can also estimate directly the moments of a distribution. In par-
ticular, in a multivariate environment we have to estimate the variance-
covariance matrix Ω. It can be demonstrated that the variance-covari-
ance matrix can be estimated through empirical variances and covari-
ances. Consider two random variables X,Y. 

The empirical covariance between the two variables is defined as 
follows: 

n 

σ̂ 
X Y

1 
= --- ∑ (Xi – X)(Yi – Y), 

ni = 1 

where the empirical means of the variables are: 

n 
1

X =	 --- ∑ Xi 
ni = 1 

n 
1

Y =	 --- ∑ Yi 
ni = 1 

The correlation coefficient is the covariance normalized with the 
product of the respective empirical standard deviations: 
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σ̂ 
X Y,ρ̂ = --------------

X Y, 
σ̂ Xσ̂ Y 

Empirical standard deviations are defined as follows: 

n 

σ̂ = ∑ (Xi – X)2 
X 

i = 1 

n 

σ̂ = ∑ (Yi – Y)2 
Y 

i = 1 

It can be demonstrated that the empirical covariance matrix is an 
unbiased estimator of the variance-covariance matrix. If innovations are 
jointly normally distributed, it is also an ML estimator. 

LINEAR MODELS OF FINANCIAL TIME SERIES 

Let’s now apply previous general theoretical considerations and those of 
the previous chapter to modeling financial time series. This section 
describes linear models of financial time series using the concepts intro-
duced in the previous sections. Linear financial models are regressive 
and/or autoregressive models where a series is regressed over exogenous 
variables and/or its own past under a number of constraints. 

In the practice of asset and portfolio management, models of prices, 
returns, and rates are used as inputs to asset selection methodologies 
such as semiautomated investment processes, heuristic computational 
procedures, or full-fledged optimization procedures. The following 
chapters on methods for asset management will explain how the compu-
tational models described in this and the following chapter translate 
into asset and portfolio management strategies. We will start with ran-
dom walk models and progressively introduce more complex factor-
based models. 

RANDOM WALK MODELS 

Consider a time series of prices Pt of a financial asset. Assume there are 
no cash payouts. The simple net return of the asset between periods t – 
1 and t is defined as 



12-FinEcon-Model Sel  Page 325  Wednesday, February 4, 2004  12:59 PM

325 Financial Econometrics: Model Selection, Estimation, and Testing 

Pt – Pt – 1 PtRt = ----------------------- = ------------ – 1 
Pt – 1 Pt – 1 

From this definition it is clear that the compound return Rt(k) over k 
periods is: 

Pt 
k – 1 Pt i

k – 1 
– Rt( ) = ------------ – 1 = ∏ ------------------ – 1 = ∏ (Rt i + 1) – 1k – 

– –Pt k i = 0 Pt i + 1 i = 0 

Consider now the logarithms of prices and returns: 

pt = log Pt 

(rt = log 1 + Rt) 

k [ krt( ) = log 1 + Rt( )] 

Following standard usage, we denote prices and returns with upper case 
letters and their logarithms with lower case letters. As the logarithms of 
a product is the sum of the logarithms, we can write: 

Pt(rt = log 1 + Rt) = log ------------ = pt – pt – 1
Pt – 1 

k [ krt( ) = log 1 + Rt( )] = rt + + –rt – 1 + … rt k + 1 

Note that for real-world price time series, if the time interval is small, 
the numerical value of returns will also be small. Therefore, as a first 
approximation, we can write 

(rt = log 1 + Rt) ≈ Rt 

The simplest model of equity prices consists in assuming that loga-
rithmic returns are an IID sequence. Under this assumption we can 
write: rt = µ + εt, where µ is a constant and εt is a white noise, that is, a 
zero-mean, finite-variance IID sequence. Under this model we can write 
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pt = + +pt – 1 µ εt 

A time series of this form is called an arithmetic random walk. It is a 
generalization of the simple random walk that was introduced in Chap-
ter 6. The arithmetic random walk is the simplest example of an inte-
grated process. 

Let’s go back to simple net returns. From the above definition, it is 
clear that we can write 

µ ε
1 + Rt = e 

+ t 

If the white noise is normally distributed, then the returns Rt are lognor-
mally distributed. Recall that we found a simple correspondence 
between a geometric Brownian motion with drift and an arithmetic 
Brownian motion with drift. In fact, using Itô’s Lemma, we found that, 
if the process St follows a geometric Brownian motion with drift 

dS 
------ = µdt + σdB 
S 

its logarithm st = log St then follows the arithmetic Brownian motion 
with drift: 

1  
ds = 


µ – ---σ2 dt + σdB 

 2  

In discrete time, there is no equivalent simple formula as we have to 
integrate over a finite time step. If the logarithms of prices follow a discrete-
time arithmetic random walk with normal increments, the prices them-
selves follow a time series with lognormal multiplicative increments 
written as 

+ tPt = (1 + Rt)Pt – 1 = e 
µ ε

Pt – 1 

The arithmetic random walk model of log price processes is sug-
gested by theoretical considerations of market efficiency. As we have seen 
in Chapter 3, it was Bachelier who first suggested Brownian motion as a 
model of stock prices. Recall that the Brownian motion is the continu-
ous-time version of the random walk. Fama and Samuelson formally 
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introduced the notion of efficient markets which makes it reasonable to 
assume that log price processes evolve as random walks. 

The question of the empirical adequacy of the random walk model 
is very important from the practical point of view. Whatever notion or 
tools for financial optimization one adopts, a stock price model is a 
basic ingredient. Therefore substantial efforts have been devoted to 
proving or disproving the random walk hypothesis.9 

There are many statistical tests aimed at testing the random walk 
hypothesis. A typical test takes the random walk as a null hypothesis. 
The number of runs (that is, consecutive sequences of positive or nega-
tive returns) and the linear growth of the variance are parameters used 
in classical random walk tests. More recent tests are based on the work 
of Aldous and Diaconis10 on the distribution of sequences of positive 
and negative returns. 

There is no definite response. Typical tests fail to reject the null 
hypothesis of random walk behavior with a high level of confidence on 
a large percentage of equity price processes. This does not mean that the 
random walk hypothesis is confirmed, but only that it is a reasonable 
first approximation. As we will see in the following sections, other mod-
els have been proposed. 

CORRELATION 

Before moving on to more sophisticated models, let’s consider random 
walk models of portfolios of equities as opposed to single price pro-
cesses. Let’s therefore consider a multivariate random walk model of an 
equity portfolio assuming that each log price process evolves as an 
arithmetic random walk. We will consider a set of n time series pi,t, i = 
1, ..., n that represent log price processes. Suppose that each time series 
is a random walk written as 

+ +  εi t, ,pi t = pi t  – 1 µi , 

A multivariate random walk can be represented in vector form as fol-
lows: 

9 See John Y. Campbell, Andrew W. Lo, and A. Craig MacKinley, The Econometrics 
of Financial Markets (Princeton, NJ: Princeton University Press, 1997). 
10 David Aldous and Persi Diaconis, “Shuffling Cards and Stopping Times,” Ameri-
can Mathematical Monthly 8 (1986), pp. 333–348. 
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pt = + +pt – 1 µµµµ εεεεt 

The key difference with respect to univariate random walks is that 
one needs to consider cross correlations as the random disturbances εεεεt 
will be characterized by a covariance matrix ΩΩΩΩ whose entries σi,j are the 
covariances between asset i and asset j. Covariance and correlation are 
one way of expressing the notion of functional dependence between ran-
dom variables. Consider two random variables X,Y. 

The covariance between the two variables is defined as 

, {[ – ( )][Y E Y ( ( )E Y= Cov(X Y) = E X  E X – ( )]} = E XY) – E X ( )σX Y, 

The correlation coefficient is the covariance normalized with the prod-
uct of the respective standard deviations: 

Cov(X Y), ,ρX Y = Corr(X Y) = -------------------------------------------, 
( )Var YVar X ( )  

σX Y,= --------------
σXσY 

The correlation coefficient expresses a measure of linear dependence. 
Suppose that the variables X,Y have finite mean and variance and that 
are linearly dependent so that 

Y = aX + b + ε 

The above relationship is called a linear regression (see Chapter 6). It 
can be demonstrated that the correlation coefficient between X and Y is 
related to the parameter a in the following way: 

σX a = ρX Y-------, σY 

The correlation coefficient can assume values between –1 and +1 
inclusive. It can be demonstrated that the variables X,Y are propor-
tional without any noise term if and only if the correlation coefficient is 
+/–1. If the regression has a noise term, then the correlation coefficient 
assumes a value intermediate between –1 and +1. If variables are inde-
pendent, then the correlation coefficient is zero. The converse is not 
true. In fact, it is possible that two variables exhibit nonlinear depen-



12-FinEcon-Model Sel  Page 329  Wednesday, February 4, 2004  12:59 PM

329 Financial Econometrics: Model Selection, Estimation, and Testing 

dence though the correlation coefficient is zero. Uncorrelated variables 
are not necessarily independent. If the variables X,Y have a nonlinear 
dependence relationship, then the correlation coefficient might become 
meaningless.11 

RANDOM MATRICES 

Modeling log prices of equity portfolios as a set of correlated arithmetic 
random walks is only a rough approximation in the sense that this 
model, when estimated, has poor forecasting ability. A key reason is 
that the full variance-covariance matrix is unstable. This fact can be 
ascertained in different ways. A simple test is the computation of the 
variance-covariance matrix over a moving window. If one performs this 
computation on a broad set of equity price processes such as the S&P 
500, the result is a matrix that fluctuates in a nearly random way 
although the average correlation level is high, in the range of 15 to 
17%. Exhibit 12.1 illustrates the amount of fluctuations in a correlation 
matrix estimated over a moving window. The plot represents the aver-
age when the sampling window moves. 

An evaluation of the random nature of the variance-covariance 
matrix was proposed by Laloux, Cizeau, Bouchaud, and Potters12 

using the Random Matrices Theory (RMT). This theory was developed 
in the 1950s in the domain of quantum physics.13 A random matrix is 
the variance covariance matrix of a set of independent random walks. 
As such, its entries are a set of zero-mean independent and identically 
distributed variables. The mean of the random correlation coefficients 
is zero as these coefficients have a symmetrical distribution in the range 
[–1,+1]. 

Interesting results can be demonstrated in the case that both the 
number of sample points M and the number N of time series tend to 
infinity. Suppose that both T and N tend to infinity with a fixed ratio 

Q = M ⁄ N ≥ 1 

11 See Paul Embrechts, Filip Lindskog, and Alexander McNeil, “Modelling Depen
-
dence with Copulas and Applications to Risk Management,” Chapter 8 in S. Rachev

(ed.), Handbook of Heavy Tailed Distributions in Finance (Amsterdam: Elsevier/

North Holland, 2003).

12 L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, “Noise Dressing of Financial

Correlation Matrices,” Physics Review Letter 83 (1999), pp. 1467–1470.

13 M.L. Mehta, Random Matrix Theory (New York: Academic Press, 1995).
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EXHIBIT 12.1 Fluctuations of the Variance-Covariance Matrix 

It can then be demonstrated that the density of eigenvalues of the ran-
dom matrix tends to the following distribution: 

ρ λ Q (λmax – λ)(λmin – λ)
( )  = --------------------------------------------------------------------

λ2πσ2 

, ⁄M N ∞  → , Q = M  N  ≥ 1 

1 1λmax min = σ2 1 + ----- ± 2 -----, 
Q Q 

where σ2 is the average eigenvalue of the matrix. Exhibit 12.2 illustrates 
the theoretical function and a sample computed on 500 simulated inde-
pendent random walks. The shape of the distribution of the eigenvalues 
is the signature of randomness. 
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EXHIBIT 12.2 Theoretical Distribution of the Eigenvalues in a Random Matrix 
and Distribution of the Eigenvalues in a Sample of 500 Simulated Independent 
Random Walks 

If the variance-covariance matrix entries do not have a zero mean, 
then the spectrum of the eigenvalues is considerably different. Malev-
ergne and Sornette14 demonstrate that if the entries of the variance-
covariance matrix are all equal—with the obvious exception of the ele-
ments on the diagonal—then a very large eigenvalue appears while all 
the others are equal to a single degenerate eigenvalue. The eigenvector 
corresponding to the large eigenvalue has all components proportional 
to 1, that is, its components have equal weights. 

14 Y. Malevergne and D. Sornette, “Collective Origin of the Coexistence of Apparent 
RMT Noise and Factors in Large Sample Correlation Matrices,” Cond-Mat 02/ 
0115, 1, no. 4 (October 2002). 



12-FinEcon-Model Sel  Page 332  Wednesday, February 4, 2004  12:59 PM

332 The Mathematics of Financial Modeling and Investment Management 

If the entries of the variance-covariance matrix are random but with 
nonzero average, it can be demonstrated that a large eigenvalue still 
appears. However, a small number of large eigenvalues also appear 
while the bulk of the distribution resembles that of a random matrix. 
The eigenvector corresponding to the largest eigenvalue includes all 
components with all equal weights proportional to 1. 

If we compute the distribution of the eigenvalues of the variance-
covariance matrix of the S&P 500 over a window of two years, we 
obtain a distribution of eigenvalues which is close to the distribution of 
a random matrix with some exception. In particular, the empirical dis-
tribution of eigenvalues fits well the theoretical distribution with the 
exception of a small number of eigenvalues that have much larger val-
ues. Following the reasoning of Malevergne and Sornette, the existence 
of a large eigenvalue with a corresponding eigenvector of 1s in a large 
variance-covariance matrix arises naturally in cases where correlations 
have a random distribution with a nonzero mean. 

This analysis shows that there is little information in the variance-
covariance matrix of a large portfolio. Only a few eigenvalues carry 
information while the others are simply the result of statistical fluctua-
tions in the sample correlation. Note that it is the entire matrix which is 
responsible for the structure of eigenvalues, not just a few highly corre-
lated assets. This can be clearly seen in the case of a variance-covariance 
matrix whose entries are all equal. Clearly there is no privileged correla-
tion between any couple of assets but a very large eigenvalue nevertheless 
appears. 

MULTIFACTOR MODELS 

The analysis of the previous section demonstrates that modeling an 
equity portfolio as a set of correlated random walks is only a rough 
approximation. Though the random walk test cannot be rejected at the 
level of individual securities and though there are significant empirical 
correlations between securities, the global structure of large portfolios is 
more intricate than a set of correlated random walks. 

Failure in modeling log price processes as correlated random walks 
might happen for several reasons: There might be nonlinearities in the 
DGPs of price processes; dependence between log price processes might 
not be linear. There might be structural changes (which are a discrete 
form of nonlinearity). What is empirically ascertained is that the vari-
ance-covariance matrix of a large set of price processes is not stable and 
that its eigenvalues have a distribution that resembles the distribution of 
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the eigenvalues of a random matrix with the exception of a few large 
eigenvalues. 

These considerations lead to adopting models where the correlation 
structure is concentrated in a number of factors. A model for asset log 
prices which is compatible with the findings on the correlation matrices 
is the generic multifactor model that we can write as follows: 

x = a + Bf + εεεε

where x is the n-vector of the process to be modeled, f is a k-vector of 
common factors with k << n, a is an n-vector of constants, B is an n×k 
matrix and ε is an n-vector of random disturbances such that: 

E[εεεε f] = 0 

E[εεεεεεεε′ f] = Σ 

The key advantage of multifactor models, that we discuss in Chap-
ter 18, is that the number of factors is generally much smaller than the 
number of variables, thus implementing a substantial dimensionality 
reduction. Note that in the above form, a multifactor model is a static 
regression model, not a dynamic econometric model; it describes the 
static regression relationship of the process variables on factors. 

As explained in the previous chapter, state-space models combine a 
multifactor regression model with an autoregressive model for the fac-
tors. This combination of autoregressive models for the factors and of 
multifactor regressive models for the process variables result in impor-
tant families of dynamic models including models of cointegrating rela-
tionships. 

The latter point raises an important issue in modern econometrics. 
In principle, the variables x can be any sort of economic or financial 
quantities. However, multifactor models were developed and are used 
mainly in the context of financial econometrics. In that context, the 
variables x generally represent returns. This is by no means the only 
possible or useful interpretation of factor models. In fact, cointegration 
models are effectively multifactor models whose main variables are log 
prices and whose factors are the common trends. 

There are therefore two different interpretations for and uses of fac-
tor models in financial econometrics. The most widely used factor mod-
els are models of returns such that factorization implements a 
dimensionality reduction. However, more recently factor models—either 
as cointegrated models of returns and prices or, equivalently, as state-
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space models of prices—have been introduced to capture additional eco-
nomic information contained in asset prices, especially equity prices.15 

CAPM 
Let’s begin by discussing multifactor models of returns. There are many 
different ways of writing such models depending on the nature of the 
factors. The first, and most famous, factor model is the Capital Asset 
Pricing Model (CAPM) developed by Sharpe-Lintner-Mossin. In the 
CAPM there is only one factor given by the portfolio of all investable 
assets. Each log price process can be written as follows: 

xi = βi + αif + σ 

In its original formulation, the CAPM was derived as a general equi-
librium theory; the actual asset price process is the fixed point where the 
collective action of all agents trying to maximize their utility does not 
produce any change in the price process, thus the situation of equilibrium. 

CAPM assumes the joint normality of returns and the independence 
of returns from one period to another; the single factor evolves as an 
arithmetic random walk. This version of the CAPM is conceptually 
restrictive and difficult to test given that the market portfolio, which is 
the portfolio of all investable assets, is difficult to define and measure. 

A later version of CAPM called Conditional CAPM or C(CAPM) was 
proposed. Essentially, the Conditional CAPM assumes that there is only 
one factor driving all prices, but does not impose the restriction that such 
a factor is the market portfolio or that it evolves as a random walk. 

15 The literature on dynamic factor models is ample. Here is a selection of widely 
quoted papers: M. Forni, M. Hallin, M. Lippi, and L. Reichlin, “The Generalized 
Dynamic Factor Model: Identification and Estimation,” Review of Economics and 
Statistics 82, no. 4 (2000), pp. 540–554; J.F. Geweke, “The Dynamic Factor Analy-
sis of Economic Time-Series Models” in D.J. Aigner and A.S. Goldberger (eds.) La-
tent Variables in Socioeconomic Models (Amsterdam: North Holland, 1981); J.F. 
Geweke and K.J. Singleton, “Maximum Likelihood ‘Confirmatory’ Factor Analysis 
of Economic Time Series,” International Economic Review 22, no. 1, pp. 37–54; D. 
Quah and T.J. Sargent, “A Dynamic Index Model for Large Cross Sections,” in J.H. 
Stock and M.W. Watson (eds.), Business Cycles, Indicators and Forecasting (Chica-
go, IL: The University of Chicago Press, 1993), pp. 285–309; J.H. Stock and M.W. 
Watson, “Diffusion Indexes,” NBER Working Paper W6702, 1998; J.H. Stock and 
M.W. Watson, “New Indexes of Coincident and Leading Economic Indications,” in
O.J. Blanchard and S. Fischer (eds.), NBER Macroeconomics Annual 1989 (Cam-
bridge, MA: M.I.T. Press, 1989); M.W. Watson and R.F. Engle, “Alternative Algo-
rithms for Estimation of Dynamic MIMIC, Factor, and Time Varying Coefficient 
Regression Models,” Journal of Econometrics 23 (1983), pp. 385–400. 
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Asset Pricing Theory (APT) Models 
Asset pricing models based on a single factor have been criticized as 
unduly restrictive and truly multifactor models have been proposed. In a 
multifactor model of asset prices, the restriction of absence of arbitrage 
must be imposed. The Arbitrage Pricing Theory (APT) of Roll and Ross 
allows multiple factors and fixes all other price processes on the basis of 
absence of arbitrage (see Chapter 14). 

APT models can be divided into two different categories in function 
of how factors are treated. In the one, factors are portfolios or exoge-
nous variables such as macroeconomic factors; in the other, factors are 
either modeled or not. 

First consider the case of given exogenous factors. In this case, the APT 
model must be estimated as a constrained regressive model. Constraints 
typically forbid the possibility of using simple ordinary least square (OLS) 
estimates. Thus the estimation procedures are generally based on the direct 
application of Maximum Likelihood principles. 

PCA and Factor Models 
If factors are not given, they must be determined with statistical learning 
techniques. Given the variance-covariance matrix, if factors are portfo-
lios, one can determine factors using the technique of Principal Compo-
nents Analysis (PCA). 

Principal Components Analysis (PCA) implements a dimensionality 
reduction of a set of observations. The concept of PCA is the following. 
Consider a set of n time series Xi, for example the 500 series of returns 
of the S&P 500. Consider next a linear combination of these series, that 
is, a portfolio of securities. Each portfolio P is identified by an n-vector 

2of weights ωωωωP and is characterized by a variance σP . In general, the
2variance σP will depend on the portfolio’s weights ωωωωP. Lastly consider a 

normalized portfolio which has the largest possible variance. In this 
context, a normalized portfolio is a portfolio such that the squares of 
the weights sum to one. 

If we assume that returns are IID sequences, jointly normally dis-
tributed with variance-covariance matrix ΩΩΩΩ, a lengthy direct calculation 
demonstrates that each portfolio’s return will be normally distributed 
with variance 

2σP = ωωωωP 
TΩΩΩΩωωωωP 

Therefore the normalized portfolio of maximum variance can be deter-
mined in the following way: 
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Maximize ωωωωP 
TΩΩΩΩωωωωP 

subject to the normalization condition 

TωωωωP = 1ωωωωP 

where the product is a scalar product. It can be demonstrated that the 
solution of this problem is the eigenvector ωωωω1 corresponding to the larg-
est eigenvalue λ1 of the variance-covariance matrix ΩΩΩΩ. As ΩΩΩΩ is a vari-
ance-covariance matrix, the eigenvalues are all real. 

Consider next the set of all normalized portfolios orthogonal to ωωωω1, 
that is, portfolios completely uncorrelated with ωωωω1. These portfolios are 
identified by the following relationship: 

TωωωωP = ωωωωPωωωω1 
Tωωωω1 = 0 

We can repeat the previous reasoning. Among this set, the portfolio of 
maximum variance is given by the eigenvector ωωωω2 corresponding to the 
second largest eigenvalue λ2 of the variance-covariance matrix ΩΩΩΩ. If 
there are n distinct eigenvalues, we can repeat this process n times. In 
this way, we determine the n portfolios Pi of maximum variance. The 
weights of these portfolios are the ortho-normal eigenvectors of the 
variance-covariance matrix ΩΩΩΩ. Note that each portfolio is a time series 
which is a linear combination of the original time series Xi. The coeffi-
cients are the portfolios’ weights. 

These portfolios of maximum variance are all mutually uncorre-
lated. It can be demonstrated that we can recover all the original return 
time series as linear combinations of these portfolios: 

n 

Xi = ∑ αiPi 
i = 1 

Thus far we have succeeded in replacing the original n correlated time 
series Xi with n uncorrelated time series Pi with the additional insight 
that each Xi is a linear combination of the Pi. Suppose now that only p 
of the portfolios Pi have a significant variance, while the remaining n-p 
have very small variances. We can then implement a dimensionality 
reduction by choosing only those portfolios whose variance is signifi-
cantly different from zero. Let’s call these portfolios factors F. 
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It is clear that we can approximately represent each series Xi as a 
linear combination of the factors plus a small uncorrelated noise. In fact 
we can write 

p n p 

Xi = ∑ αiFi + ∑ αiPi = ∑ αiFi + ε 
i = 1 i = p + 1 i = 1 

where the last term is a noise term. Therefore to implement PCA one 
computes the eigenvalues and the eigenvectors of the variance-covari-
ance matrix and chooses the eigenvalues significantly different from 
zero. The corresponding eigenvectors are the weights of portfolios that 
form the factors. Criteria of choice are somewhat arbitrary. 

Note that PCA works either on the variance-covariance matrix or on 
the correlation matrix. The technique is the same but results are gener-
ally different. PCA applied to the variance-covariance matrix is sensitive 
to the units of measurement, which determine variances and covariances. 
This observation does not apply to returns, which are dimensionless 
quantities. However, if PCA is applied to prices and not to returns, the 
currency in which prices are expressed matters; one obtains different 
results in different currencies. In these cases, it might be preferable to 
work with the correlation matrix. 

We have described PCA in the case of time series, which is the rele-
vant case in econometrics. However PCA is a generalized dimensionality 
reduction technique applicable to any set of multidimensional observa-
tions. It admits a simple geometrical interpretation which can be easily 
visualized in the three-dimensional case. Suppose a cloud of points in the 
three-dimensional Euclidean space is given. PCA finds the planes that cut 
the cloud of points in such a way as to obtain the maximum variance. 

Suppose that there is a strict factor structure, which means that 
returns exactly follow the model 

r = a + Bf + εεεε

with 

E[εεεε f] = 0 

E[εεεεεεεε' f] = Σ 

The matrix B can be obtained diagonalizing the variance-covariance 
matrix. In general, the structure of factors will not be strict and one will 
try to find an approximation by choosing only the largest eigenvalues. 
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Factors can also be obtained through another statistical procedure 
called factor analysis. Factor analysis estimates factors using a maxi-
mum likelihood procedure. Suppose that factors are not portfolios but 
exogenous variables, such as macroeconomic variables. In this case, the 
factor structure is given and the estimation problem becomes one of esti-
mating a regression relationship. This problem can be solved through 
maximum likelihood estimates. 

Let’s now summarize the previous discussion on multifactor models. 
From the point of view of econometrics, the key justification of factor 
models is dimensionality reduction. It can be empirically ascertained 
that the empirical variance-covariance matrices computed over reason-
able time windows are unstable and noisy. This might be due to various 
reasons, in particular to the fact that functional dependence between 
variables is more complex than a simple structure of linear correlation. 
The key problem is to extract maximum information from noise. Multi-
factor models attempt to provide a solution to this problem within the 
domain of simple regressive models. There are different families of mul-
tifactor models: regression over given exogenous variables, factor analy-
sis under the assumption of multivariate random walks, state-space 
models. In addition, multifactor models might be applied to both 
returns and prices. 

VECTOR AUTOREGRESSIVE MODELS 

The next step is to model factors. This requires introducing a broad 
family of ARMA models called Vector Autoregressive (VAR) Models. A 
VAR model is a multivariate AR(n) model. In a VAR model the current 
value of each variable is a linear function of the past values of all vari-
ables plus random disturbances. In full generality, a VAR model can be 
written as follows: 

xt = A1xt – 1 + A2xt – 2 + … + Apxt p + Dst + εεεε– t 

where xt = (x1, t, …, xn t) is a multivariate stochastic time series in vec-, 
tor notation, Ai, i = 1,2,...,p, and D are deterministic n×n matrices, 
εεεεt = ε1, t, … ε is a multivariate white noise with variance-covariancen t, , 
matrix ΩΩΩΩ = { } and st = s1, t, …, sn t  is a vector of deterministicσij , 
terms. Using the lag-operator L notation, a VAR model can be written 
in the following form: 

xt = (A1L + A2L2 + … + A LN)xt + Dst + εεεεn t 
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VAR models can be written in equivalent forms that will be useful in 
the next section. In particular, a VAR model can be written in terms of 
the differences ∆xt in the following error-correction form: 

Ln – 1∆xt = (ΦΦΦΦ1L + ΦΦΦΦ2L2 + … + ΦΦΦΦ )∆xt + ΠΠΠΠLn – 1 xt + Dst + εεεεtn – 1 

where the first n – 1 terms are in first differences and the last term is in levels. 
The multivariate random walk model of log prices is the simplest 

VAR model: 

xt = xt + m + εεεεt 

∆xt = m + εεεεt 

Note that in this model log prices are autoregressive while returns (that 
is, the first differences) are simply correlated multivariate white noise 
plus a constant term. 

As we know from our discussion on ARMA models (see Chapter 
11), the stationarity and stability properties of a VAR model depend on 
the roots of the polynomial matrix 

NA1z + A2z 2 + … + A zn

In particular, if all the roots of the above polynomial are strictly outside 
the unit circle, then the VAR process is stationary. In this case, the VAR 
process can be inverted and rewritten as an infinite moving average of a 
white-noise process. If all the roots are outside the unit circle with the 
exception of some root which is on the unit circle, then the VAR process 
is integrated. In this case it cannot be inverted as an infinite moving 
average. If some of the roots are inside the unit circle, then the process is 
explosive. If the VAR process starts at some initial point characterized 
by initial values or distributions, then the process cannot be stationary. 
However, if all the roots are outside the unit circle, the process is 
asymptotically stationary. If some root is equal to 1, then the process 
can be differentiated to obtain an asymptotically stationary process. 

COINTEGRATION 

Let’s now look at the problem of representation of multivariate time

series from a different angle. Recall that a variable is integrated of order
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n if it can be transformed into a stationary series differencing n times. In 
particular, a univariate time series X is integrated of order 1 if it can be 
represented as follows: 

b= ρXt + + εtXt + 1 

ρ = 1 
εt stationary possibly autocorrelated 

The key feature of an integrated time series is that random innova-
tions never decay. Most economic variables are integrated variables. In 
particular, testing for integration in log price processes one finds that 
the null of integration cannot be rejected in most cases. For instance, 
testing the log price processes in the S&P 500 using a standard test such 
as the ADF test, the null of integration cannot be rejected in about 90% 
of time series as shown in Exhibit 12.3. Nor can the null hypothesis of 
integration be rejected for economic time series such as the monetary 
mass (M3) or the Gross Disposable Product. 

Suppose that a set of time series integrated of order 1 is given. 
Though each series is integrated of order 1, for instance they are arith-
metic random walks, there might be linear combinations of the series 
which are stationary. If this happens, the series are said to be cointe-
grated. The financial meaning of cointegration is the following. Indi-
vidual log price processes can be arithmetic random walks but there are 
portfolios, in general long-short portfolios, which are stationary, and 
thus mean reverting around a constant mean. In other words, individ-
ual securities might be totally unpredictable random walks but portfo-
lios might be more predictable. We will come back to the question of 
the empirical findings of cointegration in real-world economic time 
series and price processes. First, we need to define cointegration mathe-
matically. 

EXHIBIT 12.3 Integratedness of the S&P 500 

Number Type 
Period of Series of Test Integratedness Percentage 

From Jan. 1, 487 series Augmented Dickey- 422 series I(1) 87% 
2001 to in the Fuller test with two 65 series I(0) integrated 
Dec. 31, 2003 S&P 500 lags, 95% confi-

dence level. 
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The concept of cointegration, introduced by Granger in 1981,16 can 
be expressed in the following way. Suppose that a set of n time series, 
integrated of order 1, is given. If there is a linear combination of the 
series 

n 

δt = ∑ βixi t, 
i = 1 

which is stationary, then the series xi,t are said to be cointegrated. Any 
linear combination as the one above is called a cointegrating relation-
ship. Given n time series, there can be from none to at most n – 1 coin-
tegrating relationships. 

Though a definition of cointegration of this type is often given in the 
literature, it should be clear that it is strictly applicable only to pro-
cesses that extend in time from –∞ to +∞. Series that start from some ini-
tial instant cannot be stationary but can be, at most, asymptotically 
stationary. To make the definition of cointegration more general, one 
should allow asymptotic stationarity instead of strict stationarity. 

Cointegrating relationships express long-run equilibrium between 
time series. As noted above, in financial terms, cointegrating relation-
ships represent stationary portfolios. Suppose there are n time series xi,t, 
i = 1,...,n and k < n cointegrating relationships. It can be demonstrated 
that there are n – k integrated time series uj,t, j = 1,...,n – k, called com-
mon trends, such that every time series xi,t can expressed as a linear 
combination of the common trends plus a stationary disturbance: 

n k– 

xit = ∑ γ juj t + ηi t, , 
j = 1 

This is clearly a multifactor representation of integrated processes. 
Is there a general representation of cointegrated processes? The 

answer is affirmative. Granger was able to demonstrate the fundamental 
theorem according to which a multivariate integrated process is cointe-
grated if and only if it can be represented in the Error Correction Model 
(ECM) form. The ECM representation is a representation of a multi-
variate process in first differences with corrections in levels as follows: 

16 C.W.J. Granger, “Some Properties of Time Series Data and Their Use in Econo-
metric Model Specification,” Journal of Econometrics 16 (1981), pp. 121–130. 



12-FinEcon-Model Sel  Page 342  Wednesday, February 4, 2004  12:59 PM

342 The Mathematics of Financial Modeling and Investment Management 

n – 1 

∆xt =  ∑ ALi


∆xt + ααααββββ′xt + ηηηηt+ 1  i = 1 

where αααα is a p×r matrix, ββββ is a a p×r matrix with ααααββββ′ = ΠΠΠΠ and ηηηηt is a vec-
tor of stationary disturbances. 

Within the basic framework of ECM, different cointegration models 
have been proposed. Two major models need mention:

 ■ The Autoregressive Distributed Lag (ARDL) model which explicitly 
takes into account exogenous variables that are not cointegrated 
among themselves.17

 ■ The Dynamic Cointegration Approach which models the long-run 
cointegration relationships not as a static regression but as a dynamic 
model with a small number of lags. 

Cointegration of log price processes makes sense from an economic 
point of view. Prices must somehow follow a common trend otherwise 
they will, in the long run, diverge indefinitely. This is not a real eco-
nomic justification of cointegration. Even if in the long run all processes 
end up as fluctuations around some common trend, it does not mean 
that they are cointegrated. Many other possible mechanisms might be at 
work, such as discrete adjustment. 

State-Space Modeling and Cointegration 
The notion of state-space modeling is that empirically measurable eco-
nomic variables are a linear regression over a set of hidden variables 
modeled as an autoregressive process. State-space models represent 
dynamical factor models as the states are the hidden factors of the 
model. The state-space representation introduced above can be general-
ized in many different ways, in particular by letting the noise terms be 
different in the state equations and in the regressions. 

As we have seen earlier in this chapter, there is equivalence between 
state-space models and ARMA models. In particular, there is equiva-
lence between cointegrated models represented by ECM models, and 
state-space models. The factors are the common trends. 

17 See M.H. Pesaran and Y. Shin, “An Autoregressive Distributed Lag Modeling Ap-
proach to Cointegration Analysis,” Chapter 11 in S. Strom (ed.), Econometrics and 
Economic Theory in the 20th Century: The Ragnar Fresh Centennial Symposium 
(Cambridge: Cambridge University Press, 1999). 
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Empirical Evidence of Cointegration in Equity Prices 
It is now time to discuss the empirical evidence that support various 
types of models. The usual tests do not reject the random walk hypothe-
sis for more than 90% of stocks investigated. The average correlation of 
the S&P 500 computed in the 2001–2003 period is roughly 17% as 
shown in Exhibit 12.1. The distribution of the eigenvalues of the correla-
tion matrix has the distribution shown in Exhibit 12.4. The distribution 
of the eigenvalues is quite close to the theoretical shape for large portfo-
lios of a random matrix with the exception of a number of eigenvalues. 

Cointegration is more difficult to ascertain. A number of academic 
studies have found contradicting evidence about mean reversion around 
exponential trends. Poterba and Summers18 found positive evidence of 
mean reversion of stock prices around exponential trends. This early 

EXHIBIT 12.4 Distribution of the Eigenvalues of the S&P 500 

18 J. Poterba and L. Summers, “Mean Reversion in Stock Prices: Evidence and Impli-
cations,” Journal of Financial Economics 79 (1988), pp. 22–25. 
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evidence has not been confirmed by later studies.19 Kim, Nelson and 
Startz have argued that mean-reversion is a pre-World War II phenome-
non.20 However, more recent papers give new support to the hypothesis 
of mean reversion.21 

Common trends in exchange rates have documented by Baillie and 
Bollerslev22 and by Kasa23 in equity prices. Cross-correlations at differ-
ent lags between equities have been reported in the literature. For 
instance, Campbell, Lo, and MacKinley24 report significant autocorrela-
tions of portfolio returns for selected portfolios, a fact that is attributed 
to the existence of autocross-correlations. An interpretation of the same 
phenomena on the same data set based on cointegration has been pro-
posed by Kanas and Kouretas.25 

Evidence on asset price cointegration and the use of cointegration in 
asset allocation and portfolio management is discussed in a number of 
papers. See, for instance, Lucas,26 Alexander,27 and Alexander and Dim-
itriu.28 In most cases cointegrating relationships are found in small port-
folios. How to select the cointegrated portfolios in large sets of price 

19 See: Eugene F. Fama and Kenneth.R. French, “Permanent and Temporary Com-
ponents of Stock Prices,” Journal of Political Economy 96, no. 2 (1988), pp. 246– 
273 and Campbell, Lo, and MacKinley, The Econometrics of Financial Markets. 
20 M.J. Kim, C.R. Nelson and R. Startz, “Mean Reversion in Stock Prices? A Reapprais-
al of the Empirical Evidence,” Review of Economic Studies 58 (1991), pp. 515–528. 
21 See: Kent Daniel (2001) “Power and Size of Mean Reversion Tests,” Journal of 
Empirical Finance 8, no. 5 (December 2001), pp. 493–535; Steen Nielsen and Jan 
Overgaard Olesen, “Regime-Switching Stock Returns and Mean Reversion,” Work-
ing paper 11–2000, Department of Economics and EPRU, Copenhagen Business 
School; and Ole Risager, “Random Walk or Mean Reversion: the Danish Stock Mar-
ket since World War I,” Working paper 7–98, Department of Economics and EPRU, 
Copenhagen Business School. 
22 R. Baillie and T. Bollerslev, “Common Stochastic Trends in a System of Exchange 
Rates,” Journal of Finance 44 (1989), pp. 167–182. 
23 K. Kasa, “Common Stochastic Trends in International Stock Markets,” Journal of 
Monetary Economics 29 (1992), pp. 95–124. 
24 See Campbell, Lo, and MacKinley, The Econometrics of Financial Markets. 
25 A. Kanas and G.P. Kouretas, “A Cointegration Approach to the Lead-Lag Effect 
Among Size-Sorted Equity Portfolios,” 2001. 
26 A. Lucas, “Strategic and Tactical Asset Allocation and the Effect of Long-Run 
Equilibrium Relations,” Research Memorandum, Vrije Universiteit Amsterdam, 
1997-42 (1997). 
27 C.O. Alexander, “Optimal Hedging Using Cointegration,” Philosophical Trans-
actions of the Royal Society A 357 (1999), pp. 2039–2058. 
28 C.O. Alexander and A. Dimitriu, “The Cointegration Alpha: Enhanced Index 
Tracking and Long-Short Equity Market Neutral Strategies,” Discussion Paper 
2002-08, ISMA Centre Discussion Papers in Finance Series, 2002. 
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processes is a critical issue. Usual tests for cointegration cannot be 
applied to large portfolios such as the S&P 500 given the computational 
cost: The space of possible cointegrating relationships is simply too 
large to be searched effectively. 

Effective methods to reduce the search space are needed. The dis-
covery of cointegrating relationships is a tremendous advantage from a 
trading point of view. As discussed by Alexander, it allows, for instance, 
to engineer parsimonious portfolios for index tracking and to create 
profitable trading strategies for hedge funds. Possible solutions to this 
problem remain proprietary. The consideration of the equivalence of 
cointegration and state-space modeling might be a step in this direction. 
Effective algorithms for determining state space models are described in 
the engineering and, more recently, in the econometric literature.29 

NONSTATIONARY MODELS OF FINANCIAL TIME SERIES 

Let’s now proceed to explore a number of nonlinear models. The exist-
ence of nonlinearities in financial time series has been documented in 
many works.30 However identifying and estimating a reasonable non-
linear model remains a highly challenging task. The key problem is the 
explosion of the search space, the so called “curse of dimensionality” 
entailed by nonlinear models. 

Models based on neural networks and many other families of uni-
versal function approximators have been explored both in the literature 
and in the practice of financial trading. These models try to estimate a 
nonlinear DGP. We will not deal with these models which are highly 
specialized and often used as proprietary trading models. 

However, a number of relatively simple nonlinear models have dem-
onstrated their ability to capture important nonlinear phenomena. The 
first (and perhaps the best known) of such models, is the ARCH/ 
GARCH family of models. Another class of nonlinear models are the 
Markov switching models, where a Markov chain drives discrete 
changes in the model parameters. Perhaps the best known of these mod-
els is the Hamilton model, though a variety of Markov switching VAR 
models have been proposed. These models are appealing because they 
implement, in a coherent statistical framework, the idea of structural 
change which is reasonable from an economic standpoint. 

29 D. Bauer and M. Wagner, “Estimating Cointegrated Systems Using Subspace Al
-
gorithms,” Journal of Econometrics 111 (2002), pp. 47–84.

30 Campbell, Lo, and MacKinley, The Econometrics of Financial Markets.
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The ARCH/GARCH Family of Models 
The ARCH models were proposed by Engle31 as a model of inflation. 
The empirical fact behind ARCH models is the clustering of volatility 
observed in many economic and financial series. If instantaneous volatil-
ity is defined as a hidden variable in a price model and estimated as the 
variance of returns over relatively long periods, one finds periods of 
high volatility followed by periods of low volatility and vice versa. 

Note that a new strain of econometric literature deals with instanta-
neous volatility as an observed variable. The observability of volatility 
is made possible by the availability of high frequency data. In this case, 
there is a variety of models for the volatility process, in particular long-
memory fractional models.32 We maintain the classical definition of vol-
atility as a hidden variable. 

Engle proposed a model in the spirit of state-space modeling where 
volatility is modeled by an autoregressive process and then injected mul-
tiplicatively in the price process. More precisely, the simplest ARCH 
model is defined as follows: 

xt β λxt 1– 
2+ zt = 

In the above equation, x is the process variable and the terms z form 
an IID sequence. The ARCH model was extended by Bollerslev,33 who 
proposed the GARCH family of models. In the GARCH models, volatil-
ity is modeled as a more general ARMA process and then treated as 
before: 

xt = σtzt 

p q 
2 2σt = β + ∑ λixt i + ∑ δiσt j– – 

i = 1 j = 1 

The key ingredients of ARCH modeling are an ARMA process for vol-
atility and a regressive process where volatility multiplies a white-noise 

31 R.F. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation,” Econometrica 50 (July 1982), pp. 987–

1007.

32 T.G. Andersen, T. Bollerslev, F.X. Diebold, and P. Labys, “Modeling and Fore
-
casting Realized Volatility,” Econometrica 71, 2003, pp. 529–626.

33 T. Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” Jour
-
nal of Econometrics 31 (1986), pp. 307–327.
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process. If the ARMA process for volatility is integrated (that is, it has unit 
roots) then the GARCH process is called Integrated GARCH or IGARCH. 

The ARCH technology is not restricted to univariate processes but 
can be extended to multivariate processes. Multivariate GARCH pro-
cesses model the entire variance-covariance matrix as an autoregressive 
process. 

Multivariate models of the ARCH-GARCH type become rapidly 
unmanageable as the number of parameters to estimate grows with the 
fourth power of the number of assets. Dimensionality reduction is called 
for. Different proposals have been made, in particular factor models for 
the volatility process. 

The random terms z might have arbitrary distributions. In practice, 
normality is often assumed. However, though the conditional distribu-
tion is normal, the unconditional distribution of a GARCH process is 
not normal but exhibits fat tails (see Chapter 13). This feature of 
GARCH processes, in addition to the modeling of volatility clustering, 
has made them attractive as models of returns. Returns at short time 
horizons are, in fact, not normally distributed but exhibit fat tails. 
However, fitting different families of GARCH processes to empirical 
return data has shown that GARCH models cannot fit simultaneously 
the volatility clustering and the fat-tailedness of returns. Distributions 
of the shock z other than normal have been tried, for instance T-Student 
distributions, but no good fit of volatility and returns has been reported 
in the literature. GARCH models can be considered a useful economet-
ric tool, but not a firm theory of price processes. 

Markov Switching Models 
Markov switching models belong to a vast family of models that have 
found applications in many fields other than econometrics, such as 
genomics and speech recognition. The economic idea behind Markov 
switching models is that the economy undergoes discrete switches 
between economic states at random times. To each state corresponds a 
set of model parameters. 

One of the first Markov switching models proposed is the Hamil-
ton34 model. The Hamilton model is based on two states, a state of 
“expansion” and a state of “recession.” Periods of recession are fol-
lowed by periods of expansion and vice versa. The time of transition 
between states is governed by a two-state Markov chain. In each state, 
price processes follow a random walk model. 

34 J.D. Hamilton, “A New Approach to the Economic Analysis of Nonstationary 
Time Series and the Business Cycle,” Econometrica 57 (1989), pp. 357–384. 
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The Hamilton model can be extended to an arbitrary number of 
states and to more general VAR models. In a Markov switching context, 
a VAR model 

( )L + A2 st n st ( )  εεεεxt = [A1 st ( )L2 + … + A ( )LN]xt + m st + t 

has parameters that depend on a set of hidden states that are governed 
by a discrete-state, discrete-time Markov chain with transition probabil-
ity matrix: 

pi j = Pr(st + 1 = i st = i), 

M 

∑ pi j = 1 , 
j = 1 

Estimation of Markov switching VAR models can be done within a 
general maximum likelihood framework. The estimation procedure is 
rather complex as approximate iteration techniques are used. Hamil-
ton35 made use of the Expectation Maximization (EM) algorithm which 
had been proposed earlier in a broader context.36 Other numerical tech-
niques are available and are now implemented in commercial software 
packages. 

Markov switching VAR models have been applied to macroeco-
nomic problems, in particular to the explanation of business cycles. 
Applications to the modeling of large portfolios present significant 
problems of estimation given the large number of data necessary. 

Markov switching models are, in fact, typically estimated over long 
periods of time, say 20 or 30 years. If one wants to construct coherent 
data sets for broad aggregates such as the S&P 500, one rapidly runs 
into problems as many firms, over periods of that length, undergo signif-
icant change such as mergers and acquisitions or stock splits. As one can-
not simply exclude these firms as doing so would introduce biases in the 
estimation process, ad hoc adjustment procedures are needed to handle 
change. Despite these difficulties, however, Markov switching models 
can be considered a promising technique for financial econometrics. 

35 J.D. Hamilton, “Analysis of Time Series Subject to Changes in Regime,” Journal 
of Econometrics 45 (1990), pp. 39–70. 
36 A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Likelihood Estimation 
From Incomplete Data Via the EM Algorithm,” Journal of the Royal Statistical So-
ciety 39 (1977), Series B, 1–38. 
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SUMMARY


 ■ Model selection cannot be completely automated because the search 
space is too large.

 ■ Econometrics constrains the search for an optimal model within model 
classes.

 ■ If a family of models can fit data with arbitrary accuracy, then criteria 
for choosing the optimal model complexity are needed.

 ■ Overfitting occurs when a model is too complex and thus fits unpre-
dictable noise.

 ■ Akaike Information Criteria and Bayesian Information Criteria are 
complexity selection criteria based on information theory.

 ■ The Vapnik-Chervonenkis theory of learning has given a rigorous theo-
retical basis to the principles of statistical learning.

 ■ An estimator is a random variable function of the sample data that 
approximates a given parameter of a distribution.

 ■ The Cramer-Rao bound prescribes lower bounds for the variance of 
estimators.

 ■ Maximum Likelihood Estimate (MLE) chooses those parameters that 
maximize likelihood on samples.

 ■ For unconstrained regressions, MLE coincides with Ordinary Least 
Square estimation.

 ■ MLE estimators are efficient estimators, that is, they attain the Cramer-
Rao variance lower bound.

 ■ The simplest asset price model is the random walk.
 ■ A multivariate correlated random walk is a model for the joint price 

process of a set of asset prices.
 ■ A large set of price processes exhibits nearly random variance-covari-

ance matrix of the return process.
 ■ Factor models reduce the dimensionality of the variance-covariance 

matrix of the return process.
 ■ Principal component analysis identifies a generally small number of sta-

ble factors.
 ■ Vector Autoregressive (VAR) models capture the dynamics of time 

series.
 ■ It is impossible to describe large sets of asset price processes with unre-

stricted VAR models because the number of parameters is too high and 
therefore not stable.

 ■ Cointegration captures common stable trends thus implementing a 
dimensionality reduction.

 ■ Cointegrated time series can be represented with a constrained Error 
Correction VAR model.

 ■ State-space models are equivalent to Error Correction models. 
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 ■ State-of–the-art nonlinear econometric models use an autoregressive 
process to drive the parameters of another model.

 ■ ARCH/GARCH models use an ARMA model to drive the volatility 
parameter.

 ■ Markov switching models use a Markov chain to drive the parameters 
of an autoregressive model. 
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CHAPTER 13 
Fat Tails, Scaling, and 

Stable Laws 

Most models of stochastic processes and time series examined thus far 
assume that distributions have finite mean and finite variance. In 

this chapter we describe fat tailed distributions with infinite variance. 
Fat-tailed distributions have been found in many financial economic 
variables ranging from forecasting returns on financial assets to model-
ing recovery distributions in bankruptcies. They have also been found in 
numerous insurance applications such as catastrophic insurance claims 
and in value-at-risk measures employed by risk managers. 

In this chapter, we review the related concepts of fat-tailed, power-
law and Levy-stable distributions, scaling and self-similarity, as well as 
explore the mechanisms that generate these distributions. We discuss the 
key intuition relative to the applicability of fat-tailed or scaling pro-
cesses to finance: In a fat-tailed or scaling world (as opposed to an 
ergodic world), the past does not offer an exhaustive set of possible con-
figurations. Adopting, as an approximation, a scaling description of 
financial phenomena implies the belief that only a small space of possi-
ble configurations has been explored; vast regions remain unexplored. 

We begin with the mathematics of fat-tailed processes, followed by 
a discussion of classical Extreme Value Theory for independent and 
identically distributed sequences. We then explore the consequences of 
eliminating the assumption of independence and discuss different con-
cepts of scaling and self similarity. Finally, we present evidence of fat 
tails in financial phenomena and discuss applications of Extreme Value 
Theory. 

351 
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SCALING, STABLE LAWS, AND FAT TAILS


Let’s begin with a review of the different but related concepts and prop-
erties of fat tails, power laws, and stable laws. These concepts appear 
frequently in the financial and economic literature, applied to both ran-
dom variables and stochastic processes. 

Fat Tails 
Consider a random variable X. By definition, X is a real-valued function 
from the set Ω of the possible outcomes to the set R of real numbers, 
such that the set (X ≤ x) is an event. Recall from Chapter 6 that if P(X ≤ 
x) is the probability of the event (X ≤ x), the function F(x) = P(X ≤ x) is a 
well-defined function for every real number x. The function F(x) is called 
the cumulative distribution function, or simply the distribution function, 
of the random variable X. Note that X denotes a function Ω → R, x is a 
real variable, and F(x) is an ordinary real-valued function that assumes 
values in the interval [0,1]. If the function F(x) admits a derivative 

dF x( )f x( ) = ---------------
dx 

The function f(x) is called the probability density of the random vari-
able X. The function F x ( ) is the tail of the distribution F(x).( ) = 1 – F x
The function F x( ) is called the survival function. 

Fat tails are somewhat arbitrarily defined. Intuitively, a fat-tailed distri-
bution is a distribution that has more weight in the tails than some refer-
ence distribution. The exponential decay of the tail is generally assumed as 
the borderline separating fat-tailed from light-tailed distributions. In the lit-
erature, distributions with a power-law decay of the tails are referred to as 
heavy-tailed distributions. It is sometimes assumed that the reference distri-
bution is Gaussian (i.e., normal), but this is unsatisfactory; it implies, for 
instance, that exponential distributions are fat-tailed because Gaussian tails 
decay as the square of an exponential and thus faster than an exponential. 

These characterizations of fat-tailedness (or heavy-tailedness) are not 
convenient from a mathematical and statistical point of view. It would be 
preferable to define fat-tailedness in terms of a function of some essential 
property that can be associated to it. Several proposals have been 
advanced. Widely used definitions focus on the moments of the distribu-
tion. Definitions of fat-tailedness based on a single moment focus either on 
the second moment, the variance, or the kurtosis, defined as the fourth 
moment divided by the square of the variance. In fact, a distribution is 
often considered fat-tailed if its variance is infinite or if it is leptokurtic 
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(i.e., its kurtosis is greater than 3). However, as remarked by Bryson1 defi-
nitions of this type are too crude and should be replaced by more complete 
descriptions of tail behavior. 

Others consider a distribution fat-tailed if all its exponential moments 
[are infinite, E esX ] = ∞ for every s ≥ 0. This condition implies that the 

moment-generating function does not exist. Some suggest weakening this 
condition, defining fat-tailed distributions as those distributions that do 
not have a finite exponential moment of first order. Exponential moments 
are particularly important in finance and economics when the logarithm of 
variables, for instance logprices, are the primary quantity to be modeled.2 

Fat-tailedness has a consequence of practical importance: the proba-
bility of extremal events (i.e., the probability that the random variable 
assumes large values) is much higher than in the case of normal distribu-
tions. A fat-tailed distribution assigns higher probabilities to extremal 
events than would a normal distribution. For instance, a six-sigma event 
(i.e., a realized value of a random variable whose difference from the 
mean is six times the size of the standard deviation) has a near zero 
probability in a Gaussian distribution but might have a nonnegligible 
probability in fat-tailed distributions. 

The notion of fat-tailedness can be made quantitative as different 
distributions have different degrees of fat-tailedness. The degree of fat-
tailedness dictates the weight of the tails and thus the probability of 
extremal events. Extreme Value Theory attempts to estimate the entire 
tail region, and therefore the degree of fat-tailedness, from a finite sam-
ple. A number of indicators for evaluating the size of extremal events 
have been proposed; among these are the extremal claim index pro-
posed in Embrechts, Kluppelberg, and Mikosch,3 which plays an impor-
tant role in risk management. 

The Class L of Fat-Tailed Distributions 
Many important classes of fat-tailed distributions have been defined; 
each is characterized by special statistical properties that are important 
in given application domains. We will introduce a number of such 
classes in order of inclusion, starting from the class with the broadest 
membership: the class L, which is defined as follows. Suppose that F is a 

1 M.C. Bryson, “Heavy-Tailed Distributions,” in N.L. Kotz and S. Read (eds.), En
-
cyclopedia of Statistical Sciences, Vol. 3 (New York: John Wiley & Sons, 1982), pp.

598–601.

2 See G. Bamberg and D. Dorfleitner, “Fat Tails and Traditional Capital Market The
-
ory,” Working Paper, University of Augsburg, August 2001.

3 P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events for In
-
surance and Finance (Berlin: Springer, 1999).
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distribution function defined in the domain (0,∞ ) with F < 1 in the entire 
domain (i.e., F is the distribution function of a positive random variable 
with a tail that never decays to zero). It is said that F ∈ L if, for any y > 
0, the following property holds: 

F x  – y)(
lim -------------------- = 1 , ∀ y > 0 

x ∞ → F x( )  

We can rewrite the above property in an equivalent (and perhaps more 
intuitive from the probabilistic point of view) way. Under the same assump-
tions as above, it is said that, given a positive random variable X, its distri-
bution function F ∈ L if the following property holds for any y > 0: 

F x  + y)(
lim P X  > x + y( X > x) = lim --------------------- = 1 , ∀ y > 0 

x ∞ → x ∞ → F x( )  

Intuitively, this second property means that if it is known that a random 
variable exceeds a given value, then it will exceed any bigger value. 
Some authors define a distribution as being heavy-tailed if it satisfies 
this property. 4 

It can be demonstrated that if a distribution F(x) ∈ L, then it has the 
following properties:

 ■ Infinite exponential moments of every order: E[esX] = ∞ for every s ≥ 0

 ■ lim F x( )  e λ x = ∞ , ∀λ > 0 
x ∞ → 

As distributions in class L have infinite exponential moments of every 
order, they satisfy one of the previous definitions of fat-tailedness. How-
ever they might have finite or infinite mean and variance. 

The class L is in fact quite broad. It includes, in particular, the two 
classes of subexponential distributions and distributions with regularly 
varying tails that are discussed in the following sections. 

Subexponential Distributions 
A class of fat-tailed distributions, widely used in insurance and telecom-
munications, is the class S of subexponential distributions. Introduced 

4 See, for example, K. Sigman, “A Primer on Heavy-Tailed Distributions,” Queueing 
Systems, 1999. 
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by Chistyakov in 1964, subexponential distributions can be character-
ized by two equivalent properties: (1) the convolution closure property 
of the tails and (2) the property of the sums.5 

The convolution closure property of the tails prescribes that the 
shape of the tail is preserved after the summation of identical and inde-
pendent copies of a variable. This property asserts that, for x → ∞, the 
tail of a sum of independent and identical variables has the same shape 
as the tail of the variable itself. As the distribution of a sum of n inde-
pendent variables is the n-convolution of their distributions, the convo-
lution closure property can be written as 

F
n* ( )x

lim ----------------- = n 
x ∞ → ( )F x

Note that Gaussian distributions do not have this property although 
the sum of independent Gaussian distributions is again a Gaussian distri-
bution. Subexponential distributions can be characterized by another 
important (and perhaps more intuitive) property, which is equivalent to 
the convolution closure property: In a sum of n variables, the largest value 
will be of the same order of magnitude as the sum itself. For any n, define 

n 

xS ( )  = ∑ Xin 
i = 1 

as a sum of independent and identical copies of a variable X and call Mn 
their maxima. In the limit of large x, the probability that the tail of the 
sum exceeds x equals the probability that the largest summand exceeds x: 

(P S > x)nlim -------------------------- = 1 
x ∞ → P M > x)( n 

The class S of subexponential distributions is a proper subset of the 
class L. Every subexponential distribution belongs to the class L while it 
can be demonstrated (but this is not trivial) that there are distributions 

5 See, for example, C. M. Goldie and C. Kluppelberg, “Subexponential Distribu-
tions,” in R.J. Adler, R.E. Feldman, and M.S. Taqqu (eds.), A Practical Guide to 
Heavy Tails: Statistical Techniques and Applications (Boston: Birkhauser, 1998), pp. 
435–459 and Embrechts, Kluppelberg, and Mikosch, Modelling Extremal Events for 
Insurance and Finance. 
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that belong to the class L but not to the class S. Distributions that have 
both properties are called subexponential as it can be demonstrated 
that, as all distributions in L, they satisfy the property: 

lim F x( )e λx = ∞ , λ∀ > 0 
x ∞ → 

Note, however, that the class of distributions that satisfies the latter 
property is broader than the class of subexponential distributions; this 
is because the former includes, for instance, the class L.6 

Subexponential distributions do not have finite exponential 
moments of any order, that is, E esX] = ∞ for every s ≥ 0. They may or[ 
may not have a finite mean and/or a finite variance. Consider, in fact, 
that the class of subexponential distributions includes both Pareto and 
Weibull distributions. The former have infinite variance but might have 
finite or infinite mean depending on the index; the latter have finite 
moments of every order (see below). 

The key indicators of subexponentiality are (1) the equivalence in 
the distribution of the tail between a variable and a sum of independent 
copies of the same variable and (2) the fact that a sum is dominated by 
its largest term. The importance of the largest terms in a sum can be 
made more quantitative using measures such as the large claims index 
introduced in Embrechts, Kluppelberg, and Mikosch that quantifies the 
ratio between the largest p terms in a sum and the entire sum. 

The class of subexponential distributions is quite large. It includes 
not only Pareto and stable distributions but also log-gamma, lognormal, 
Benkander, Burr, and Weibull distributions. Pareto distributions and sta-
ble distributions are a particularly important subclass of subexponential 
distributions; these will be described in some detail below. 

Power-Law Distributions 
Power-law distributions are a particularly important subset of subexpo-
nential distributions. Their tails follow approximately an inverse power 
law, decaying as x –α. The exponent α is called the tail index of the distri-
bution. To express formally the notion of approximate power-law decay, 
we need to introduce the class ℜ(α), equivalently written as ℜα of regu-
larly varying functions. 

A positive function f is said to be regularly varying with index α or f 
∈ ℜ(α) if the following condition holds: 

6 See Sigman, “A Primer on Heavy-Tailed Distributions.” 
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f tx( )  αlim ------------ = t
x ∞ → f x( )  

A function f ∈ ℜ(0) is called slowly varying. It can be demonstrated that 
a regularly varying function f(x) of index α admits the representation 
f(x) = xαl(x) where l(x) is a slowly varying function. 

A distribution F is said to have a regularly varying tail if the follow-
ing property holds: 

F = x –αl x( )  

where l is a slowly varying function. An example of a distribution with 
a regularly varying tail is Pareto’s law. The latter can be written in vari-
ous ways, including the following:

F x ( c( )  = P X > x) = --------------- for x ≥ 0 
α c x+ 

Power-law distributions are thus distributions with regularly vary-
ing tails. It can be demonstrated that they satisfy the convolution clo-
sure property of the tail. The distribution of the sum of n independent 
variables of tail index α is a power-law distribution of the same index α. 
Note that this property holds in the limit for x → ∞. Distributions with 
regularly varying tails are therefore a proper subset of subexponential 
distributions. 

Being subexponential, power laws have all the general properties of 
fat-tailed distributions and some additional ones. One particularly 
important property of distributions with regularly varying tails, valid 
for every tail index, is the rank-size order property. Suppose that sam-
ples from a power law of tail index α are ordered by size, and call S ther
size of the rth sample. One then finds that the law 

1 
– ---

S = ar α 
r 

is approximately verified. The well-known Zipf’s law is an example of 
this rank-size ordering. Zipf’s law states that the size of an observation 
is inversely proportional to its rank. For example, the frequency of 
words in an English text is inversely proportional to their rank. The 
same is approximately valid for the size of U.S. cities. 
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Many properties of power-law distributions are distinctly different in 
the three following ranges of α: 0 < α ≤ 1, 1 < α ≤ 2, α > 2. The threshold 
α = 2 for the tail index is important as it marks the separation between 
the applicability of the standard Central Limit Theorem; the threshold α 
= 1 is important as it separates variables with a finite mean from those 
with infinite mean. Let’s take a closer look at the Law of Large Numbers 
and the Central Limit Theorem. 

The Law of Large Numbers and the Central Limit Theorem 
There are four basic versions of the Law of the Large Numbers (LLN), 
two Weak Laws of Large Numbers (WLLN), and two Strong Laws of 
Large Numbers (SLLN). 

The two versions of the WLLN are formulated as follows. 

1. Suppose that the variables Xi are IID with finite mean E[Xi] = E[X] = µ. 
Under this condition it can be demonstrated that the empirical average 
tends to the mean in probability: 

n 

∑ Xi 
i = 1 P 

[ ]  = µXn = ---------------- → E X
n n ∞ → 

2. If the variables are only independently distributed (ID) but have finite 
means and variances (µi,σi), then the following relationship holds: 

n n n 

∑ Xi ∑ Xi ∑ µi 
i = 1 P i = 1 i = 1Xn = ---------------- → ---------------- = --------------

n n ∞ → n n 

In other words, the empirical average of a sequence of finite-mean finite-
variance variables tends to the average of the means. 

The two versions of the SLLN are formulated as follows. 

1. The empirical average of a sequence of IID variables Xi tends almost 
surely to a constant a if and only if the expected value of the variables 
is finite. In addition, the constant a is equal to µ. Therefore, if and only 
if E Xi[ ]  = E X[ ]  = µ  ∞  < the following relationship holds: 
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n 

∑ Xi 
i = 1 A.S. 

[ ]  = µXn = ---------------- → E X
n ∞ → n 

where convergence is in the sense of almost sure convergence. 
2. If the variables 	Xi are only independently distributed (ID) but have 

finite means and variances (µ i,σ i) and 

n 
1 2lim ------ ∑ σ i ∞ < 

n ∞ → 2 n i = 1 

then the following relationship holds: 

n n n 

Xi∑ Xi∑ µ i∑ 
Xn 

i = 1 

n 
-= 

n ∞ → 

A.S. 
→ i 1= 

n 
- = i 1= 

n 

Suppose the variables are IID. If the scaling factor n is replaced with 
n , then the limit relation no longer holds as the normalized sum 

n 

∑ Xi 
i = 1 

n 

diverges. However, if the variables have finite second-order moments, 
the classical version of the Central Limit Theorem (CLT) can be demon-
strated. In fact, under the assumption that both first- and second-order 
moments are finite, it can be shown that 

S – nµ D 
n ---------------------- Φ → 
σ n 

n 

S = ∑ Xin 
i = 1 
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where µ, σ are respectively the expected value and standard deviation of X, 
and Φ the standard normal distribution. 

If the tail index α > 1, variables have finite expected value and the 
SLNN holds. If the tail index α > 2, variables have finite variance and 
the CLT in the previous form holds. If the tail index α ≤  2, then vari-
ables have infinite variance: The CLT in the previous form does not 
hold. In fact, variables with α ≤ 2 belong to the domain of attraction of 
a stable law of index α. This means that a sequence of properly normal-
ized and centered sums tends to a stable distribution with infinite vari-
ance. In this case, the CLT takes the form 

S – nµ D 
n ---------------------- → Gα , if 1 < α ≤ 2

1 
α n 

DSn ------ → Gα , if 0 < α ≤ 1
1 
α n 

where G are stable distributions as defined below. Note that the case α = 
2 is somewhat special: variables with this tail index have infinite vari-
ance but fall nevertheless in the domain of attraction of a normal vari-
able, that is, G2. Below the threshold 1, distributions have neither finite 
variance nor finite mean. There is a sharp change in the normalization 
behavior at this tail-index threshold. 

Stable Distributions 
Stable distributions are not, in their generality, a subset of fat-tailed dis-
tributions as they include the normal distribution. There are different, 
equivalent ways to define stable distributions. Let’s begin with a key 
property: the equality in distribution between a random variable and 
the (normalized) independent sum of any number of identical replicas of 
the same variable. This is a different property than the closure property 
of the tail insofar as (1) it involves not only the tail but the entire distri-
bution and (2) equality in distribution means that distributions have the 
same functional form but, possibly, with different parameters. Normal 
distributions have this property: The sum of two or more normally dis-
tributed variables is again a normally distributed variable. But this 
property holds for a more general class of distributions called stable dis-
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tributions or Levy-stable distributions. Normal distributions are thus a 
special type of stable distributions. 

The above can be formalized as follows: Stable distributions can be 
defined as those distributions for which the following identity in distri-
bution holds for any number n ≥ 2: 

n 

= C X D+n n 
i = 1 
∑ Xi 

D 

where Xi are identical independent copies of X and the Cn, Dn are con-
stants. Alternatively, the same property can be expressed stating that 
stable distributions are distributions for which the following identity in 
distribution holds: 

D 
AX1 + BX2 = CX + D 

Stable distributions are also characterized by another property that 
might be used in defining them: a stable distribution has a domain of 
attraction (i.e., it is the limit in distribution of a normalized and cen-
tered sum of identical and independent variables). Stable distributions 
coincide with all variables that have a domain of attraction. 

Except in the special cases of Gaussian (α = 2), symmetric Cauchy 
(α = 1, β = 0) and stable inverse Gaussian (α = ¹⁄₂, β = 0) distributions, 
stable distributions cannot be written as simple formulas; formulas have 
been discovered but are not simple. However, stable distributions can be 
characterized in a simple way through their characteristic function, the 
Fourier transform of the distribution function. In fact, this function can 
be written as 

αΦX t –( )  = exp{iγt c  t  [1 – iβsign t (( )z t α , )]} 

where t ∈ R, γ ∈  R, c > 0, α ∈  (0,2), β ∈  [–1,1], and

( πα
z t α , ) = tan------- if α ≠ 1

2 

(z t α , ) = –2log t if α = 1 

It can be shown that only distributions with this characteristic function 
are stable distributions (i.e., they are the only distributions closed under 
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summation). A stable law is characterized by four parameters: α, β, c, and 
γ. Normal distributions correspond to the parameters: α = 2, β = 0, γ = 0. 

Even if stable distributions cannot be written as simple formulas, 
the asymptotic shape of their tails can be written in a simple way. In 
fact, with the exception of Gaussian distributions, the tails of stable 
laws obey an inverse power law with exponent α (between 0 and 2). 
Normal distributions are stable but are an exception as their tails decay 
exponentially. 

For stable distributions, the CLT holds in the same form as for 
inverse power-law distributions. In addition, the functions in the 
domain of attraction of a stable law of index α < 2 are characterized by 
the same tail index. This means that a distribution G belongs to the 
domain of attraction of a stable law of parameter α < 2 if and only if its 
tail decays as α. In particular, Pareto’s law belongs to the domain of 
attraction of stable laws of the same tail index. 

EXTREME VALUE THEORY FOR IID PROCESSES 

In this section we introduce a number of important probabilistic con-
cepts that form the conceptual basis of Extreme Value Theory (EVT). 
The objective of EVT is to estimate the entire tail of a distribution from 
a finite sample by fitting to an appropriate distribution those values of 
the sample that fall in the tail. Two concepts play a crucial role in EVT: 
(1) the behavior of the upper order statistics (i.e., the largest k values in 
a sample) and, in particular, of the sample maxima; and (2) the behavior 
of the points where samples exceed a given threshold. We will explore 
the limit distributions of maxima and the distribution of the points of 
exceedances of a high threshold. Based on these concepts a number of 
estimators of the tail index in sequences of independent and identically 
distributed (IID) variables are presented. 

Maxima 
In the previous sections we explored the behavior of sums. The key result 
of the theory of sums is that the behavior of sums simplifies in the limit of 
properly scaled and centered infinite sums regardless of the shape of indi-
vidual summands. If sums converge, their limit distributions can only be 
stable distributions. In addition, the normalized sums of finite-mean, 
finite-variance variables always converge to a normal variable. 

A parallel theory can be developed for maxima, informally defined 
as the largest value in a sample. The limit distribution of maxima, if it 
exists, belongs to one of three possible distributions: Frechet, Weibull, 
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or Gumbel. This result forms the basis of classical EVT. Each limit dis-
tribution of maxima has its own Maximum Domain of Attraction. In 
addition, limit laws are max-stable (i.e., they are closed with respect to 
maxima). However, the behavior of maxima is less robust than the 
behavior of sums. Maxima do not converge to limit distributions for 
important classes of distributions, such as Poisson or geometric distri-
butions. 

Consider a sequence of independent variables Xi with common, 
nondegenerate distribution F and the maxima of samples extracted from 
this sequence: 

M1 = X1, Mn = max(X1,...,Xn) 

The maxima Mn form a new sequence of random variables which are 
not, however, independent. 

As the variables of the sequence Xi are assumed to be independent, 
the distribution Fn of the maxima Mn can be immediately written down: 

F x ( x( ) = P X1 ≤ x ∨ … ∨ X ≤ x) = Fn( )n n 

where ∨ is the logical symbol for and. 
If the distribution F, which is a non-decreasing function, reaches 1 

at a finite point xF—that is, if xF = sup{x: F(x) < 1} < ∞, then 

lim P(M < x) = lim F ( ) = 0 , for x < xFx
n → ∞ n n → ∞ n 

If xF is finite, 

P M < x) = F ( ) = 1 , for x > xF( xn n 

The point xF is called the right endpoint of the distribution F. 
Exhibit 13.1 illustrates the behavior of maxima in the case of a nor-

mal distribution. Given a normal distribution with mean zero and vari-
ance one, 100,000 samples of 20 elements each are selected. For each 
sample, the maximum is chosen. The distribution of the maxima and the 
empirical distribution of independent draws from the same normal are 
illustrated in the exhibit. 

A deeper understanding of the behavior of maxima can be obtained 
considering sequences of normalized and centered maxima. Consider 
the following sequence: c–1(M – d ) where cn > 0, dn ∈ R are con-n n n 
stants. 
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EXHIBIT 13.1 The Distribution of the Maxima of a Normal Variable 

A fundamental result on the behavior of maxima is the Fisher-Tip-
pett theorem which can be stated as follows. Consider a sequence of IID 
variables Xi and the relative sequence of maxima Mn. If there exist two 
sequences of constants cn > 0, dn ∈ R and a nondegenerate distribution 
function H such that 

–1 D 
c (M – d ) → Hn n n 

then H is one of the following distributions: 

0 x ≤ 0 
Frechet: Φα x( ) =	  α > 0 

exp(–x –α) x > 0 

–α 
Weibull: Ψα x

exp[–(–x) ] x < 0( ) =	  α > 0 
1 x ≥ 0 
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x xGumbel: Λ( )  = exp{ –e –x } ∈ , R 

The limit distribution H is unique, in the sense that different sequences 
of normalizing constants determine the same distribution. 

The three above distributions—Frechet, Weibull, and Gumbel—are 
called standard extreme value distributions. They are continuous func-
tions for every real x. Random variables distributed according to one of 
the extreme value distributions are called extremal random variables. 

As an example, consider a standard exponential variable X. As F(x) = 
–xP(X ≤ x) = 1 – e , x ≥ 0 the distribution of the maxima is P(Mn ≤ x) = Fn(x) 

–x)n= (1 – e , x ≥ 0. If we choose dn = ln n, we can write: P(Mn – dn ≤ x) = 
–x)n –x)nP(Mn ≤ ln n + x) = (1 – n–1e , x ≥ 0. For any given x, (1 – n–1e → 

exp(–e –x), which shows that the maxima of standard exponential vari-
ables centered with dn = ln n tend to a Gumbel distribution. Exhibit 
13.2 illustrates the three distributions: Frechet, Gumbel, and Weibull. 

We can now ask if there are conditions on the distribution F that 
ensure the existence of centering and scaling constants and the conver-
gence to an extreme value distribution. To this end, let’s first introduce 

EXHIBIT 13.2 The Distribution of Frechet, Gumbel, and Weibull 
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the concept of the Maximum Domain of Attraction (MDA) of an 
extreme value distribution H or MDA(H). 

A random variable X is said to belong to the MDA(H) of the extreme 
value distribution H if there exist constants cn > 0, dn ∈ R such that 

–1 D 
c (M – d ) → Hn n n 

Two distribution functions F,G are said to be tail equivalent if they 
have the same right endpoints and the following condition holds: 

F x( )
lim ------------- = c , 0 < c < ∞ 

x → ∞ ( )G x

Tail equivalence is an important concept for characterizing MDAs. In 
fact, it can be demonstrated that every MDA(H) is closed with respect 
to tail equivalence (i.e., if two distribution functions F and G are tail 
equivalent F ∈ MDA(H) if and only if G ∈ MDA(H)). Tail equivalence 
allows for a powerful characterization of the three MDAs. 

Let’s first define the quantile function. Given a distribution function 
F, the quantile function of F, written F←(x), is defined as follows: 

F←(x) = inf[s ∈ R: F(s) ≥ x], 0 < x < 1 

The MDA of the Frechet Distribution 
The Frechet distribution is written as Φα x( ) = exp(–x –α) . Let’s start by 
observing that the tail of the Frechet distribution decays as an inverse power 

( ) = 1 – exp(–x –α) ≈ x for x → ∞.law. In fact, we can write 1 – Φα x –α 

It can be demonstrated that a distribution function F belongs to the 
MDA of a Frechet distribution Φα x( ) , α > 0 if and only if there is a 

( ) = x –αL xslowly varying function L such that F x ( ) . In this case, the 
constants assume the values 

c = (1 ⁄ F
←)( ) , dn = 0nn 

We can rewrite this condition more compactly as follows: 

FF ∈ MDA(Φα) ∈ ⇔ R–α 

From the above definitions it can be demonstrated that the follow-
ing five distributions belong to the MDA of the Frechet distribution: (1) 
Pareto; (2) Cauchy; (3) Burr; (4) Stable laws with exponent α < 2; or (5) 
log-gamma distribution. 
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The MDA of the Weibull Distribution 
The Weibull distribution is written as follows: 

Ψα = exp[–(–x –α)] 

The Weibull and the Frechet distributions are closely related to each 
other. In fact, it is clear from the definition that the following relation-
ship holds: 

Ψα x( ) = Φα(–x –1) , x > 0 

One can therefore expect that the MDA of the two distributions are 
closely related. In fact, it can be demonstrated that a distribution func-
tion F belongs to the MDA of a Weibull distribution α > 0 if and only if 

xF < ∞ 

and 

( –αF xF – x –1) = x L x( )  

where L is a slowly varying function. 
If 

F ∈ MDA(Ψα) 

then 

–1 D 
c (M – xF) → Ψαn n 

The MDA of the Weibull distribution includes important distribu-
tions such as the distribution uniform in (0,1), power laws truncated to 
the right, and Beta distributions. 

The MDA of the Gumbel Distribution 
The Gumbel distribution is written as Λ(x) = exp[–exp(–x)]. Observe 
that the Gumbel distribution has exponential tails. This fact can be eas-
ily ascertained through Taylor expansion. There is no simple character-
ization of the MDA of the Gumbel Distribution. 
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The MDA of a Gumbel distribution encompasses a large class of dis-
tributions that includes the exponential distribution, the normal distribu-
tion, and the lognormal distribution. Though the Gumbel distribution 
has exponential tails, its MDA includes subexponential distributions 
such as the Berktander distribution, as explained in Goldie and Resnick.7 

Max-Stable Distributions 
Stable distributions remain unchanged after summation; max-stable dis-
tributions remain unchanged after taking maxima. A non-degenerate 
random variable X and the relative distribution is called max-stable if 
there are constants cn > 0, dn ∈ R such that the following conditions are 
satisfied 

D 
max(X1, …, X ) = c X d+n n n 

where X, X1, ..., Xn are IID variables. 
It can be demonstrated that the class of max-stable distributions 

coincides with the class of possible limit laws for normalized and cen-
tered maxima. In view of the previous discussions, the max-stable laws 
are the three possible limit laws: Frechet, Weibull, and Gumbel. 

Generalized Extreme Value Distributions 
The three extreme value distributions, Frechet, Weibull, and Gumbel, 
can be represented as a one-parameter family of distributions through 
the Standard Generalized Extreme Value Distribution (GEV) of Jenkin-
son and Von Mises. Define the distribution function Hξ as follows: 

–1 ⁄ ξ]exp[–(1 + ξx) for ξ ≠ 0Hξ =  
exp(–exp(–x))  for ξ = 0 

where 1 + ξx > 0. One can see from the definition that ξ = α–1 > 0 corre-
sponds to the Frechet distribution, ξ = 0 corresponds to the Gumbel dis-
tribution, and ξ = –α–1 < 0 corresponds to the Weibull distribution. We 
can now introduce the related location-scale dependent family Hξ;µ,ψ by 
replacing the argument x with (x – µ)/ψ. 

7 C.M. Goldie and S. Resnick, “Distributions that are Both Subexponential and in 
the Domain of Attraction of an Extreme-Value Distribution,” Advanced Applied 
Probability, 20 (1988), pp. 706–718. 
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Order Statistics 
The behavior of order statistics is a useful tool for characterizing fat-
tailed distributions. For instance, the famous Zipf’s law is an example of 
the behavior of order statistics. Consider a sample X1, ..., Xn made of n 
independent draws from the same distribution F. Let’s arrange the sam-
ple in decreasing order: 

X ≤ … ≤ X1, nn n, 

The random variable Xk,n is called the kth upper order statistic. It can 
be demonstrated that the distribution of the kth upper order statistic is 

k – 1 
– Fk n = P Xk n < x) = ∑ F

r( )Fn r( )( , x x, 
r = 0 

In addition, if F is continuous, it has a density with respect to F such 
that 

x 

Fk n = ∫ fk n( ) F zz d ( ), , 
–∞ 

where 

n! k – 1 – fk n = ---------------------------------------F ( )Fn k( )x x, 
–(k – 1)!(n k)! 

The differences between two consecutive variables in a sample Xk,n 
– Xk+1,n are random variables called spacings. In the case of variables 
with finite right endpoint xF the zero-th spacing is defined as: X0,n – 
X1,n = xF – X1,n. The distribution of spacings depends on the distribu-
tion F. For instance, it can be demonstrated that the spacings of an 
exponential random variable are independent, exponential random vari-
ables with mean 1/n for a n-sample. Spacings are a key concept for the 
definition of the Hill estimator, as explained later in this section. 

Another key concept, which is related to spacings, is that of quantile 
transformation. Let X1, ..., Xn be IID variables with distribution func-
tion F and let U1, ..., Un be IID variables uniformly distributed on the 
interval (0,1). Recall that, given a distribution function F, the quantile 
function of F, written F←(x), is defined as follows: 
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F←( ) = inf{s ∈ R: F sx	 ( ) ≥ x} , 0 < x < 1 

It can be demonstrated that the following results hold:

D 
■ 	F←(U1) = X1


D

■ (X1, n, …, X )	 = [F←(U1, n), …, F←(U )]n n 	 n n,	 , 

■ The random variable F(X1) has a uniform distribution on (0,1) if and 
only if F is a continuous function. 

To appreciate the importance of the quantile transformation, let’s 
introduce first the notion of empirical distribution function and second 
the Glivenko-Cantelli theorem. The empirical distribution function Fn 
of a sample X1, ..., Xn is defined as follows: 

n 
1 

x (F ( ) = --- ∑ I Xi ≤ x)n 
ni = 1 

where I is the indicator function. In other words, for each x, the empiri-
cal distribution function counts the number of samples that are less than 
or equal to x. 

The Glivenko-Cantelli theorem provides the theoretical underpin-
ning of nonparametric statistics. It states that, if the samples X1, ..., Xn 
are independent draws from the distribution F, the empirical distribu-
tion function Fn tends to F for large n in the sense that 

a.s. 
∆n = sup x ( )F ( ) – F x → 0 , for n → ∞n 

x ∈ R 

The quantile transformation tells us that in cases where F is a Pareto 
distribution, if we approximate n random draws from a uniformly dis-
tributed variable as the sequence 1,2,…,n, then the corresponding val-
ues of the sample X1, ..., Xn will be 

1 1 1 
---, , …, ---
1 2 n 

which is a statement of the Zipf’s law. 
From the quantile transformation, the limit law of the ratio between 

two successive order statistics can also be inferred. Suppose that an (infinite) 
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population is distributed according to a distribution F ∈ ℜ α  ( )  with regu-
larly varying tails. Suppose that n samples are randomly and independently 
drawn from this distribution and ordered in function of size: Xn,n ≥ Xn–1,n ≥ 
... ≥ X1,n. It can be demonstrated that the following property holds: 

Xk n k, ---------------------- = 1 →, 0 
nXk + 1, n 

Point Process of Exceedances or Peaks over Threshold 
We have now reviewed the behavior of sums, maxima, and upper order 
statistics of continuous random variables. Yet another approach to EVT 
is based on point processes; herein we will use point processes only to 
define the point process of exceedances. 

Point processes can be defined in many different ways. To illustrate 
the mathematics of point processes, let’s first introduce the homoge-
neous Poisson process. A homogeneous Poisson process is defined as a 
process N(t) that starts at zero, i.e., N(0) = 0, and has independent sta-
tionary increments. In addition, the random variable N(t) is distributed 
as a Poisson variable with parameter λ t. N(t) is therefore a time-depen-
dent discrete variable that can assume nonnegative integer values. 
Exhibit 13.3 illustrates the distribution of a Poisson variable. 

A homogeneous Poisson process can also be defined as a random 
sequence of points on the real line. Consider all discrete sequences of 
points on the real line separated by random intervals. Intervals are inde-
pendent random variables with exponential distribution. This is the 
usual definition of a Poisson process. Call N(t) the number of points 
that fall in the interval [0,t]. It can be demonstrated that N(t) is a homo-
geneous Poisson process according to the previous definition. 

This latter definition can be generalized to define point processes. Intu-
itively, a generic point process is a random collection of discrete points in 
some space. From a mathematical point of view, it is convenient to 
describe a point process through the distribution of the number of points 
that fall in an arbitrary set.8 In the case of homogeneous Poisson pro-
cesses, we consider the number of points that fall in a given interval; for a 
generic point process, it is convenient to consider a wider class of sets. 

Consider a subspace E of a finite dimensional Euclidean space of 
dimension n. Consider also the σ -algebra B of the Borel sets generated 
by open sets in E. The space E is called the state space. For each point x 
in E and for each set A ∈ B, define the Dirac measure ε x as 

8 D.R. Cox and V. Isham, Point Processes (London: Chapman and Hall, 1980). 
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EXHIBIT 13.3 Distribution of a Poisson Variable 

1 if  x ∈ Aε = x 
0 if  x ∉ A 

For any given sequence xi, i ≥ 1 of points in E, define the following set 
function: 

∞ 

m A A( ) =	 ∑ εxi
( ) = card{i:Xi ∈ A} , A ∈ B 

i = 1 

It can be verified that m(A) is a measure B, called a counting measure. If 
a counting measure is finite on each compact set, then it is called a point 
measure. In other words, any given countable sequence in E generates a 
counting measure on B. 

A point process is obtained associating to each family of sets Ai ∈ B 
the joint probability distributions: 
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Pr{m Ai , ,  ,  k; k = 1 2( ) = ni; i = 1 2  … , , …} 

To make this definition mathematically rigorous, a point process 
can be defined as a measurable map from some probability space to the 
set of all point measures equipped with an appropriate σ-algebra. 
Besides the mathematical details, it should be clear that point processes 
are defined by the probability distribution of the number of points that 
fall in each set A of some σ-algebra. The key ingredients of point pro-
cesses are (1) counting measures that associate to each set A the number 
of points of each discrete sequence that falls in A with the additivity 
restrictions of measures and (2) probability distributions defined over 
the space of counting measures. 

Equipped with the general concept of point processes, we can now 
define the point process of exceedances. Consider a threshold formed by 
any real number u and a sequence of random variables Xi, i = 1, 2, .... The 
point process of exceedances with state space E = (0,1) counts the number 
of instances where the random variables Xi exceed the threshold u: 

∞ 

n A ⁄ A ≤  and Xi > u}N ( ) =	 ∑ εi n( ) = card{i n
i = 1 

Note that in this case the state space specifies the size of the sample. 

Estimation 
In the previous sections we presented some key topics related to the prob-
ability structure of the tails of distributions, be they light- or fat-tailed. 
Let’s now turn to the problem of estimation which is the key practical 
task. The problem of estimation for EVT is essentially the problem of esti-
mating the tail of a distribution from a finite sample. The key statistical 
idea of EVT from the point of view of estimation is to use only those sam-
ple data that belong to the tail and not the entire sample. This notion has 
to be made precise by finding criteria that allow one to separate the tail 
from the bulk of the distribution. Therefore, the estimation problem of 
EVT distribution can be broken down into three separate subproblems:

 ■ Identify the beginning of the tail.
 ■ Identify the shape of the tail, in particular discriminate if it is a power-

law tail.
 ■ Estimate the tail parameters, in particular the tail index in the case of a 

power-law tail. 
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It turns out that these three problems cannot be easily separated. In 
fact, there is no reliable constructive theory for solving all these problems 
automatically. In particular, the choice of the statistical model (i.e., the 
distribution that best describes data) is a classical problem of formulating 
and validating a scientific hypothesis in a probabilistic context. However, 
there are many tools and tests to help the modeler in this endeavor. 

The first fundamental tool is the graphical representation of data, in 
particular the quantile plot or QQ-plot defined as the following set: 

– ←n k + 1  
Xk n, F ---------------------- : k = 1 2, , …, n 


,  n + 1   

The quantile transformation and the Glivenko-Cantelli theorem 
allow concluding that this plot must be approximately linear. Should F 
be a Pareto distribution, the linearity of the QQ-plot is another state-
ment of Zipf’s law. The quantile plot allows a quick verification of a sta-
tistical hypotheses by checking the approximate linearity of the plot. It 
also allows the modeler to form a preliminary opinion on where the tail 
begins and whether the model fails at the far end of the tail. 

Though invaluable as an exploratory tool, graphics rely on human 
judgment and intuition. Rigorous tests are needed. A starting point is 
parameter estimation for the Generalized Extreme Value (GEV) Distri-
bution that we write as 

 –1 ⁄ ξ  x – µ  x – µ
Hξ µ ψ( ) = exp–1 + ξ------------  , 1 + ξ------------ > 0; , x

  ψ   ψ 

with the convention that the case ξ = 0 corresponds to the Gumbel dis-
tribution: 

x – µ  – ------------ ψ  
xH0;µ ψ( ) = exp–e  , x ∈ R , 

  
  

We saw above that these distributions are the limit distributions, if 
they exist, of the normalized maxima of IID sequences. Suppose that the 
data to be estimated are independent draws from some EGV. This is a 
rather strong assumption that we will progressively relax. This assump-
tion might be justified in domains where long series of data are available 
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so that the sample data are the maxima of blocks of consecutive data. 
Though this assumption is probably too strong in the domain of finance, 
it is useful to elaborate its consequences. 

Standard methodologies exist for parameter estimation in this case. 
In particular, the usual maximum likelihood (ML) methodology can be 
used for fitting the best GEV to data. Note that if the above distribu-
tions fit maxima we have to divide data into blocks and consider the 
maxima of each block. To apply ML, we have to compute the likelihood 
function on the data and choose the parameters that maximize it. This 
can be done with numerical integration methods. 

An estimation method alternative to ML is the method of moments 
which consists in equating empirical moments with theoretical moments. 
An ample literature on various versions of the method of moments exists.9 

Let’s now release the assumption that the sequence of empirical data 
are independent draws from an exact GEV and replace this with the 
weaker assumption that empirical data are independent draws from F ∈ 
MDA(Hξ). If we assume that the limit distribution is a Frechet distribu-
tion, then data must be independent draws from some distribution F 
whose tail has the form: 

F = x –αL x( )  

where L is a slowly varying function as described earlier in this chapter. 
For this reason, estimation under this weaker assumption is semipara-
metric in nature. We will now introduce a number of estimators of the 
shape parameter ξ. 

The Pickand Estimator 
P( )

The Pickand estimator ξ̂ 
k n  for an n-sample of independent draws from,

a distribution F ∈ MDA(Hξ) is defined as 

ξ̂ ( )  1 Xk n – X2k nP , ,= -------- ln ------------------------------------k n, 
, , ln 2 X2k n – X4k n

where the Xk,n are upper order statistics. 

9 For a discussion of the different methods, see R. L. Smith, “Extreme Value Theo-
ry,” in W. Ledermann (ed.), Handbook of Applicable Mathematics, Supplement, 
(Chichester, U.K.: John Wiley & Sons, 1990), pp. 437–472. For a discussion of the 
method of probability-weighted moments, see J.R.M. Hosking, J.R. Wallis, and E.F. 
Wood, “Estimation of the Generalized Extreme-Value Distribution by the Method 
of Probability-Weighted Moments,” Technometrics 27 (1985), pp. 251–261. 
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It can be demonstrated that the Pickand estimator has the following 
properties:

 ■ Weak consistency: 

ξ̂ ( )  P kP ξ→ , n → ∞, k → ∞, --- → 0k n, n 

■ Strong consistency: 

a.s. 

ξ̂ ( )  k kP ξ→ , n → ∞, ------------------- ∞→ , --- → 0k n, 
ln ( ln n) n 

■ Asymptotic normality under technical conditions. 

The Pickand estimator is an estimator of the parameter ξ that does not 
require any assumption on the type of limit distribution. Let’s now examine 
the Hill estimator, which requires the prior knowledge that sample data are 
independent draws from a Frechet distribution. Later in this chapter we 
will see that the assumption of independence can be weakened. 

The Hill Estimator 
Suppose that X1, ..., Xn are independent draws from a distribution F ∈ 
MDA(Φα), α > 0 so that F = x –αL x( )  where L is a slowly varying func-
tion. The Hill estimator can be obtained as a MLE based on the k upper 
order statistics. The Hill estimator takes the following form: 

α H ˆ ( )   1 
k 

Hˆ ( )  
= αk n =  --- ∑ ln Xj n ln– Xk n


 

–1 

, , ,  kj = 1 

The Hill estimator has the same weak and strong consistency prop-
erty as well as asymptotic normality as the Pickand estimator. The Hill 
estimator is by far the most popular estimator of the tail index. It has 
the advantage of being robust to some dependency in the data but can 
perform very poorly in case of deviations from strict Pareto behavior. In 
addition, it is subject to a bias-variance trade-off in the following sense: 
The variance of the Hill estimator depends on the ratio k/n: it decreases 
for increasing k. However, using a large fraction of the data will intro-
duce bias in the estimator. 

As stated above, a critical tenet of EVT is the idea of fitting the tail 
rather than the entire distribution. A number of articles on the automatic 
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determination of the optimal subset of samples to be included in the tail 
have appeared. One approach to the automatic determination of the tail 
sample using the variance-bias trade-off was proposed by Drees and Kauf-
mann,10 while Dacorogna, Muller, Pictet, and de Vries11 and Danielsson 
and de Vries12 proposed methods based on a bootstrap approach. 

The moment ratio estimator is a generalization of the Hill estimator. 
Consider the following estimator of the second order moments of the k 
upper order statistic: 

 2 
1 k 

ˆ = --- ∑ ln Xj n ln– Xk Mk n
k j = 1 

, + 1, n,  

The moment ratio estimator is defined as follows: 

 ˆ  
mˆ ( )  ,1Mk n= --- -------------, αk n

2
 

ˆ ( )H
αk n

 
, 

Niklas Wagner and Terry Marsh13 did extensive simulation analysis 
of various estimators. Their finding is that the moment ratio estimator 
outperforms the Hill estimator in sequences with a dependence structure 
(this is discussed further in the next section). 

The Hill estimator was extended by Dekkers, Einmal, and de Haan14 

to cover the entire range of shape parameters ξ. A number of other esti-
mators have been proposed. In particular, under the assumption that 
financial data follow a stable process, estimation procedures based on 
regression analysis has been suggested. In fact, the assumption of stable 

10 H. Drees and E. Kaufmann, “Selecting the Optimal Sample Fraction in Univariate 
Extreme Value Estimation,” Stochastic Processes and their Application 75 (2000), 
pp. 254–274. 
11 M.M. Dacorogna, U.A. Muller, O.V. Pictet, and C.G. de Vries, “The Distribution 
of Extremal Foreign Exchange Rate Returns in Extremely Large Data Sets,” Olsen 
& Associates preprint, Zurich, 1995. 
12 J. Danielsson and C.G. de Vries, “Tail Index and Quantile Estimation with Very 
High Frequency Data,” Journal of Empirical Finance 4 (1977), pp. 241–257. 
13 N. Wagner and T. Marsh, “On Adaptive Tail Index Estimation for Financial Re-
turn Models,” Research Program in Finance, Working Paper RPF-295, Hans School 
of Management, University of California, Berkeley, November 2000. 
14 See A.L.M. Dekkers and L. de Haan, “On the Estimation of the Extreme-Value 
Index and Large Quantile Estimation,” Annals of Statistics 17 (1989), pp. 1795– 
1832. 
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behavior, or at least of exact Pareto tail, naturally leads to fitting a linear 
model in a logarithmic scale. There is an ample literature on this topic 
with a number of useful discussions, though empirical studies based on 
Monte Carlo simulations are still limited.15 

The estimation methods reviewed above are based on the behavior 
of maxima and upper order statistics; another methodology uses the 
points of exceedances of high thresholds. Estimation methodologies 
based on the points of exceedances require an appropriate model for the 
point process of exceedances that was defined in general terms previ-
ously in this chapter. 

ELIMINATING THE ASSUMPTION OF IID SEQUENCES 

In the previous sections we reviewed a number of mathematical tools 
that are used to describe fat-tailed processes under the key assumption 
of IID sequences. In this section we discuss the implications of eliminat-
ing this assumption. However, in finance theory the assumption of sta-
tionary sequences of independent variables is only a first approximation; 
it has been challenged in several instances. Consider individual price 
time series. The autocorrelation function of returns decays exponen-
tially and goes to near zero at very short-time horizons while the auto-
correlation function of volatility decays only hyperbolically and remains 
different from zero for long periods. In addition, if we consider portfo-
lios made of many securities, price processes exhibit patterns of cross 
correlations at different time-lags and, possibly, cointegrating relation-
ships. These findings offer additional reasons to consider the assump-
tion of serial independence as only a first approximation. 

If we now consider the question of stationarity, empirical findings 
are more delicate. The non-stationarity that can be removed by differ-
encing is easy to handle and does not present a problem. The critical 
issue is whether financial time series can be modeled with a single Data 
Generation Process (DGP) that remains the same for the entire period 
under consideration or if the model must be modified. Consider, for 
instance, the question of structural breaks. At a basic level, structural 
breaks entail nonstationarity as the model parameters change with time 
and thus the finite-dimension distributions change with time. However, 
at a higher level one might try to model structural changes, for instance 

15 Francis X. Diebold, Til Schuermann, and John D. Stroughair, “Pitfalls and Oppor-
tunities in the Use of Extreme Value Theory in Risk Management,” The Journal of 
Risk Finance (Winter 2000), pp. 30–36. 
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through state-space models or Markov switching models. In this way, 
stationarity is recovered but at the price of a more complex, serially 
autocorrelated model. 

EVT for multivariate models with complex patterns of serial corre-
lations loses its generality and becomes model-dependent. One has to 
evaluate each model in terms of its behavior as regards extremes. In this 
section we will explore a number of models that have been proposed for 
modeling financial time series: ARCH and GARCH models and, more in 
general, state-space models. First, however, a number of methodological 
considerations are in order. 

In the context of IID sequences, EVT tries to answer the question of 
how to estimate a distribution with heavy tails given only a limited 
amount of data. The model is the simplest (i.e., a sequence of IID vari-
ables) and the question is how to extrapolate from finite samples to the 
entire tail. In the context of IID distributions, conditional and uncondi-
tional distributions coincide. However, if we release the IID assumption, 
we have to specify the model and to estimate the entire model—not just 
the tail of one variable. Conditional and unconditional distributions no 
longer coincide. For instance, there are families of models that are con-
ditionally normal and unconditionally fat-tailed. 

Here difficulties begin as model estimation might be complex. In 
addition, estimation of some specific tail might not be the primary con-
cern in model estimation. In the context of variables with a dependence 
structure, EVT can be thought of as a methodology to estimate the tails 
of the unconditional distribution, leaving aside the question of full 
model estimation. 

An important methodological question is whether fat-tailedness is 
generated by the transformation of a sequence of zero-mean, finite vari-
ance IID variables (i.e., white noise) or whether innovations themselves 
have fat tails (i.e., so-called colored noise). For instance, as we will see, 
GARCH models entail fat-tailed return distributions as the result of the 
transformation of white noise. On the other hand, one might want to 
estimate an Autoregressive Moving Average (ARMA) model under the 
assumption of innovations with infinite variance. 

Understanding how power laws and, more in general, fat tails are 
generated from normal variables has been a primary concern of econo-
metrics and econophysics. Given the universality of power laws in eco-
nomics, it is clearly important to understand how they are generated. 
These questions go well beyond the statistical analysis of heavy-tailed 
processes and involve questions of economic theories. Essentially, one 
wants to understand how the decisions of a large number of economic 
agents do not average out but produce cascading and amplification phe-
nomena. 
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The Law of Large Numbers tells that if individual processes are 
independent and have finite variance, then phenomena average out in 
aggregate and tend to an average limit. However, if individual processes 
have fat tails, phenomena do not average out even in the infinite limit. 
The weight of individual tails prevails and drives the aggregate process. 
Philip W. Anderson, the corecipient of the 1997 Nobel Prize in Physics, 
remarked: 

Much of the real world is controlled as much by the 
“tails” of distributions as by means or averages: by the 
exceptional, not the mean; by the catastrophe, not the 
steady drip; by the very rich, not the “middle class.” We 
need to free ourselves from “average” thinking.16 

When and if fat-tailed drivers exist, they control the ensemble to 
which they belong. But what generates these powerful drivers? Models 
that generate fat tails from standard normal innovations attempt to 
answer this question. Different types of models have been proposed. 
One such category of models is purely geometric and exploits mathe-
matical theories such as percolation and random graph. Others exploit 
phenomena of dynamic nonlinear self-reinforcing cascades of events. 

Percolation models are based on the well known mathematical fact 
that in regular spatial structures of nodes connected by links, a uniform 
density of links produces connected subsets of nodes whose size is dis-
tributed according to power laws. Percolation models are time-transver-
sal models: They model aggregation at any given time. They might be 
used to explain how fat-tailed IID sequences are generated. 

Dynamic financial econometric models exploit cascading phenom-
ena due to nonlinearities, in particular multiplicative noise. In a deter-
ministic setting, it is well known that nonlinear chaotic models generate 
sequences that, when analyzed statistically, exhibit fat-tailed distribu-
tions. The same happens when noise is subject to nonlinear transforma-
tion. In the next sections, we explore simple ARMA models, ARCH-
GARCH models, subordinated models, and state-space models, all 
examples of dynamic financial econometric models. 

Before doing this, however, let’s go back to the question of estima-
tion. As observed above, if variables are not IID but can be considered 
generated by a DGP, the question of estimation is no longer the estima-
tion of a variable but that of estimating a model or a theory. The estima-

16 Philip W. Anderson, “Some Thoughts About Distribution in Economics,” in W. 
B. Arthur, S. N. Durlaf, and D.A. Lane (eds.), The Economy as an Evolving Complex 
System II (Reading, MA: Addison-Wesley, 1997). 
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tion of the eventual tail index is part of a larger effort. However, 
empirical data are a sequence of samples characterized by an uncondi-
tional distribution. One might want to understand if estimation proce-
dures used for IID sequences can be applied in this more general setting. 
For instance, one might want to understand if tail-index estimators such 
as the Hill estimator can be used in the case of serially correlated 
sequences generated by a generic DGP. 

From a practical standpoint, this question is quite important as one 
wants to estimate the tails even if one does not know exactly what 
model generated the sequence. Clearly, there is no general answer to this 
problem. However, the behavior of a number of estimators under differ-
ent DGPs has been explored through simulation as explained in the fol-
lowing section. 

Heavy-Tailed ARMA Processes 
Let’s first consider the infinite moving average representation of a 
univariate stationary series: 

xt = 
∞

∑ hiε t i + m– 
i = 0 

under the assumption that innovations are IID α -stable laws of tail 
index α . By the properties of stable distributions it can be demonstrated 
that the finite-dimensional distributions of the process x are α -stable. 
However, restrictions on the coefficients need to be imposed. It can be 
demonstrated that a sufficient condition to ensure that the process x 
exists and is stationary is the following: 

∞

∑ hi 
α ∞ < 

i = 0 

As we have seen in the previous section, a general univariate 
ARMA(p,q) model is written as follows: 

Xt =

p 

∑ α
iXt i– +

q 

∑ α
jZt j– 
i = 1 j = 1 

where the Z are IID variables. 
Using the Lag Operator—L—notation, Li represents the variable at 

i lags, the ARMA(p,q) model is written as follows: 
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=
 jXt 

p 

∑ LiXt +

q 

∑ L Zt 
i = 1 j = 1 

The theory of ARMA processes developed in Chapters 11 and 12 
can be carried over at least partially to cover the case of fat-tailed inno-
vations. In particular, an ARMA(p,q) process with IID α -stable innova-
tions admits a stationary, infinite moving average representation under 
the same conditions as in the classical finite-variance case. The coeffi-
cients of the moving average satisfy the condition 

∞

∑ hi 
α ∞ < 

i = 0 

In the case of fat-tailed innovations, covariances, and autocovariances 
looses their meaning. It can also be demonstrated, however, that the 
empirical autocorrelation function is meaningful and is asymptotically 
normal. It can be demonstrated that maximum likelihood estimates can be 
extended to the infinite variance case, though through a number of ad hoc 
processes. 

ARCH/GARCH Processes 
As we saw in Chapter 12, The simplest ARCH model can be written as 
follows. Suppose that X is the random variable to be modeled, Z is a 
sequence of independent standard normal variables, and σ is a hidden 
variable. The ARCH(1) model is written as 

Xt =
 σ
tZt 

σ
2 2 = β δ  Xtt + – 1 

This basic model was extended by Bollerslev17 who proposed the 
GARCH(p,q) model written as 

Xt =
 σ
tZt 

17 Tim Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” 
Journal of Econometrics 31 (1989), pp. 307–327. 
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p q 
2 2 2σt = β + ∑ γ iσt i + ∑ δiXt i– – 

i = 1 i = 1 

The IID variables Z can be standard normal variables or other symmet-
rical, eventually fat-tailed, variables. 

Let’s first observe that model parameters must be constrained in 
order to guarantee the stationarity of the model. Stationarity conditions 
depend on each model. No general simple expression for the stationarity 
conditions is available. 

Due to the multiplicative nature of noise, GARCH models are able 
to generate fat-tailed distributions even if innovations have finite vari-
ance. This fact was established by Kesten18 in 1973. The tail index can 
be theoretically computed at least in the case GARCH(1,1). Suppose a 
GARCH(1,1) stationary process with Gaussian innovation is given. It 
can be demonstrated that 

( c
P X  > x) ≈ ---x –2κ 

2 

where κ is the solution of an integral equation. In the generic p, q case, 
the return process is still fat-tailed but no practical way to compute the 
index from model parameter is known. 

Subordinated Processes 
Subordinated processes allow the time scale to vary. Subordinated mod-
els are, in a sense, the counterpart of stochastic volatility models insofar 
as they model the change in volatility by contracting and expanding the 
time scale. The first model was proposed in 1973 by Clark.19 Subordi-
nated models have been extensively studied by Ghysels, Gourieroux, 
and Josiak.20 

Subordinated models can be applied quite naturally in the context 
of trading. Individual trades are randomly spaced. In modern electronic 
exchanges, the time and size of trades are individually recorded thus 
allowing for accurate estimates of the distributional properties of inter-
trades intervals. Consideration of random spacings between trades natu-

18 H. Kesten, “Random Difference Equations and Renewal Theory for Products of 
Random Matrices” Acta Mathematica 131 (1973), pp. 207–248. 
19 P.K. Clark, “A Subordinated Stochastic Process Model with Finite Variance for 
Speculative Prices,” Econometrica 41 (January 1973), pp. 735–755. 
20 E. Ghysels, C. Gourieroux, and J. Josiak, “Market Time and Asset Price Move-
ment Theory and Estimation,” Working Paper 95-32 Cyrano, Montreal, 1995. 
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rally leads to the consideration of subordinated models. Subordinated 
models generate unconditional fat-tailed distributions. 

Markov Switching Models 
The GARCH family of models is not the only family of serially corre-
lated models able to produce fat tails starting from normally distributed 
innovations. State-space models and Markov-switching models present 
the same feature. The basic ideas of state-space models and Markov 
switching models is to split the model into two parts: (1) a regressive 
model that regresses the model variable over a hidden variable and (2) 
an autoregressive model that describes the hidden variables. 

In its simplest linear form, a state-space model is written as follows: 

Xt = αZt + εt 

Zt = + δtβZt – 1 

where εt, δt are normally distributed independent white noises. State-
space models can also be written in a multiplicative form: 

Xt = + εtαZt – 1 

αt = βαt – 1 + δt 

If the second equation is a Markov chain, the model is called a 
Markov-switching model. A well-known example of Markov-switching 
models is the Hamilton model in which a two-state Markov chain drives 
the switch between two different regressions. 

Purely linear state-space models exhibit fat tails only if innovations 
are fat-tailed. However, multiplicative state-space models and Markov-
switching models can exhibit fat tails even if innovations are normally 
distributed. There is a growing literature on Markov-switching and mul-
tiplicative state-space models and a relatively large number of different 
models, univariate as well as multivariate, have been proposed. Stochas-
tic volatility models are the continuous-time version of multiplicative 
state-space models. 

Estimation 
Let’s now go back to the question of model estimation in a non-IID frame-
work. Suppose that we want to estimate the tail index of the unconditional 
distribution of a set of empirical observations in the general setting of non-
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IID variables. Note that if variables are fat-tailed, we cannot say that they 
are serially autocorrelated as moments of second order generally do not 
exist. Therefore we have to make some hypothesis on the DGP. 

There is no general theory of estimation under arbitrary DGP. Both 
theoretical and simulation work are limited to specific DGPs. ARMA 
models have been extensively studied. EVT holds for ARMA models 
under general non-clustering conditions.21 

Often only simulation results are available. A fairly ample set of 
results are available for GARCH(1,1) models. For these models Resnick 
and Starica22 showed that the Hill estimator is a consistent estimator of 
the tail index. Wagner and Marsh compared the performance of the Hill 
estimator and of the moment ratio estimator for three model classes: IID 
α-stable returns, IID symmetric student, and GARCH(1,1) with student-
t innovation. They found that, in an adoptive framework, the moment 
ratio estimator generally yields results superior to the Hill estimator. 

Scaling and Self-Similarity 
The concept of scaling is now quite frequently evoked in economics and 
finance. Let’s begin by making a distinction between scaling and self-
similarity and some of the properties associated with inverse power laws 
within or outside the Levy-stable scaling regime. These concepts have 
different, and not equivalent, definitions. 

The concepts of scaling and self-similarity apply to distributions, 
processes or structures. Self-similarity was introduced as a property that 
applies to geometrical self-similar objects (i.e., fractal structures). In this 
context, self-similarity means that a structure can be put into a one-to-
one correspondence with a part of itself. Note that no finite structure 
can have this property; self-similarity is the mark of infinite structures. 
Self-similarity entails scaling: If a fractal structure is expanded by a 
given factor, its measure expands by a power of the same factor.23 The 
notion of scaling is often expressed as absence of scale, meaning that a 
scaling object looks the same at any scale, large or small: It is impossible 
to ascertain the size of a portion of a scaling object by looking at its 
shape. The classical illustration is a Norwegian coastline with its fjords 
and fjords within fjords that look the same regardless of the scale. 

21 See Embrechts, Kluppelberg, and Mikosch, Modelling Extremal Events for Insur
-
ance and Finance.

22 S. Resnick and C. Starica, “Tail Index Estimation for Dependent Data,” Annals of

Applied Probability 8 (1998), pp. 1156–1183.

23 For an introduction to fractals, see J. Falconer, Fractal Geometry (Chichester,

U.K.: John Wiley & Sons, 1990).
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However, scaling can be defined without making reference to frac-
tals. In its simplest form, the notion of scaling entails a variable x and 
an observable A which is a function of A = A(x). If the observable obeys 
a scaling relationship, there is a constant factor between x and A in the 
sense that A(λx) = λsA(x), where s is the scaling exponent that does not 
depend on x. The only function A(x) that satisfies this relationship is a 
power law. In the three-dimensional Euclidean space, volume scales as 
the third power of linear length and surface as the second power, while 
fractals scale according to their fractal dimension. 

The same ideas can be applied in a random context, but require 
careful reasoning. A power-law distribution has a scaling property as 
multiplying the variable by a factor multiplies probabilities by a con-
stant factor, regardless of the level of the variable. This means that the 
ratio between the probability of the events X > x and X > ax depends 
only on a power of a, not on x. As an inverse power law is not defined 
at zero, scaling in this sense is a property of the tails. The probabilistic 
interpretation of this property is the following: the probability that an 
observation exceeds ax conditional on the knowledge that the observa-
tion exceeds x does not depend on x but only on a. 

There are, however, other meanings attached to scaling and these 
might be a source of confusion. In the context of physical phenomena, 
scaling is often intended as identity of distribution after aggregation. The 
same idea is also behind the theory of groups of renormalization and the 
notion of self-similarity applied to structures such as coastlines. In the lat-
ter case, the intuitive meaning of self-similarity is that if one aggregates 
portions of the coastline, approximating their shape with a straight line, 
and then rescales; the resulting picture is qualitatively similar to the origi-
nal. The same idea applies to percolation structures: By aggregating 
“sites” (i.e., points in a percolation lattice) into supersites and carefully 
redefining links, one obtains the same distribution of connected clusters. 

Applying the idea of aggregation in a random context, self-similar-
ity seems to mean that, after rescaling, the distribution of the sum of 
independent copies of a random variable maintains the same shape of 
the distribution of the variable itself. Note that this property holds only 
for the tails of subexponential distributions—and it holds strictly only 
for stable laws that have tails in the (0,2) range but whose shape is not a 
power law except, approximately, in the tails. It also holds for Gaussian 
distributions that do not have power-law tails. 

Scaling acquires yet another meaning when applied to stochastic pro-
cesses that are functions of time. The most common among the different 
meanings is the following: A stochastic process is said to have a scaling 
property if there is no natural scale for looking at its paths and distribu-
tions. Intuitively, this means that it is not possible to gauge the scale of a 
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sample by looking at its distribution; there is absence of scale. An exam-
ple from finance comes from price patterns. If a price pattern is generated 
by a process with the scaling property, the plots of average daily and 
monthly prices will appear to be perfectly similar in distribution; looking 
at the plot, it’s impossible to tell if it refers to daily or monthly prices. 

Self-similarity is another way of expressing the same concept. A 
process is self-similar if a portion of the process is similar to the entire 
process. As we are considering a random environment, self-similarity 
applies to distributions, not to the actual realization of a process. Let’s 
now make these concepts more precise. 

A stochastic process X(t) is said to be self-similar (ss) of index H (H-
ss) if all its finite-dimensional distributions obey the scaling relationship: 

D 
… … k(Xkt1

, Xkt2
,  ,  Xkt ) = k –H(Xt1

, Xt2
,  ,  Xt ) > ∀ 0 

m m 

H t2 …0 <  <  1 , t1, ,  ,  t > 0m 

The above expression means that the scaling of time by the factor k 
scales the variables X by the factor kH. It gives precise meaning to the 
notion of self-similarity applied to stochastic processes. 

There is a wide variety of self-similar processes that cannot be charac-
terized in a simple way as scaling laws: The scaling property of stochastic 
processes might depend upon the shape of distributions as well as the 
shape of correlations. Let’s restrict our attention to processes that are self-
similar with stationary increments (sssi) and with index H (H-sssi). These 
processes can be either Gaussian or non-Gaussian. Note that a Gaussian 
process is a process whose finite-dimensional distributions are all Gaussian. 

Gaussian H-sssi processes might have independent increments or 
exhibit long-range correlations. The only Gaussian H-sssi process with 
independent increment is the Brownian motion, but there are an infinite 
number of fractional Brownian motions, which are Gaussian H-sssi pro-
cesses with long-range correlations. Thus there are an infinite variety of 
Gaussian self-similar processes. Among the many non-Gaussian H-sssi 
processes with independent increments are the stable Levy processes, 
which are random walks whose increments follow a stable distribution.24 

There is another definition of self-similarity for stochastic processes 
which makes use of the concept of aggregation; it is closer, at least in 
spirit, to the theory of renormalization groups. Consider a stationary 

24 See G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes 
(New York: Chapman & Hall, 1994). 
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infinite sequence of independent and identically distributed variables Xi, 
i ≥ 1. Create consecutive nonoverlapping blocks of m variables and 
define the corresponding aggregated sequence of level m averaging over 
each block as follows: 

km 

Xk
m( )  1 

=	 ----- ∑ Xi 
mi = (k – 1)m +1

A sequence is called exactly self-similar if, for any integer m the fol-
lowing relationship holds: 

D ( )X = m 1 – HX m

A stationary sequence is called asymptotically self-similar if the above 
relationship holds only for m → ∞. 

When we apply the notion of scaling to stochastic processes—the 
natural setting for economics and finance—we have to abandon the sim-
ple characterization of scaling as inverse power laws. Though the scal-
ing property is in itself characterized through simple power laws, the 
scaling processes are complex and rich mathematical structures entail-
ing a variety of distributions and correlation functions. In particular, the 
long-range correlation structure of the process plays a role as important 
as the distribution of its variables. 

EVIDENCE OF FAT TAILS IN FINANCIAL VARIABLES 

To appreciate the applicability of scaling laws, let’s first look at the range of 
variation of the economic and financial variables with which they are gen-
erally associated. Variables such as income, personal wealth, corporate size, 
and market capitalization span many orders of magnitude. Large insurance 
claims cover at least three orders of magnitude, with the largest claims 
reaching billions of dollars.25 Bankruptcies cover a similarly broad range of 
orders of magnitude.26 Daily stock returns span some two orders of magni-
tude. However, economic variables such as interest rates or GNP rates span 
a smaller set of values. Obviously the range of variables is not in itself a 

25 See Embrechts, Kluppelberg, and Mikosch, Modelling Extremal Events for Insur-
ance and Finance. 
26 For empirical evidence on the Japanese experience, see H. Aoyama, Y. Nagahara, 
M. P. Okazaki, W. Souma, H. Takayasu, and M. Takayasu, “Pareto’s Law for In-
come of Individuals and Debt of Bankrupt Companies,” Cond-Mat 0006038, 2000. 
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sign of scaling or inverse power laws, but these variables cover a broad 
enough range of values to make the scaling approximation meaningful. 

The first example of scaling laws in economics is due to the econo-
mist Pareto in the nineteenth century. Pareto observed that, above some 
threshold, the proportion of individuals with an income in excess of x is 
inversely proportional to x. Generalizing, a distribution of the type

F x ( 1( ) = P X  > x) = ------ for x ≥ 1 
α x 

is called a Pareto law. 
The presence of scaling laws has also been researched in price 

behavior. In 1963 Mandelbrot27 observed self-similarity in economic 
time series when he discovered that cotton price time series had approx-
imately the same shape at different time scales. Based on this empirical 
discovery, Mandelbrot later proposed stable laws and fractional Brown-
ian motions as a model for price behavior. 

Since Mandelbrot’s observations, researchers have been trying to 
prove or disprove the existence of inverse power laws in the area of 
asset returns. The jury is still out. A first remark is that scaling laws of 
returns apply only to short-term (from one minute to a few days) 
returns. Beyond this time horizon, returns exhibit complex behavior 
that depends on the length and positioning of the observation periods. 

One of the first systematic studies of the distribution of high-fre-
quency data was conducted by Zurich-based Olsen & Associates on 
exchange rates.28 Olsen researchers found that many exchange rates fol-
low scaling laws with exponents < 2. More recently, several as yet 
unpublished studies have look at fat-tailed returns in less traded curren-
cies: Payaslioglu29 used tail index estimation for the Turkish lira and 
Chobanov, Mateev, Mittnik and Rachev30 looked at the Bulgarian lev. 

27 Benoit Mandelbrot, “The Variation of Certain Speculative Prices,” Journal of 
Business 36 (1963), pp. 394–419. 
28 U.A. Muller, M.M. Dacorogna, and O.V. Pictet, “Heavy Tails in High Frequency 
Financial Data,” in R. Adler, R. Feldman, and M.S. Taqqu (eds.) A Practical Guide 
to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions 
(Boston: Birkhauser, 1997). 
29 Cem Payaslioglu, “Tail Behavior of Return Distributions of Exchange Rates under 
Different Regimes: A Case Study for Turkey.” 
30 G. Chobanov, P. Mateev, S. Mittnik, and S. Rachev, “Modeling the Distribution 
of Highly Volatile Exchange-rate Time Series” in P.M. Robinson and M. Rosenblatt 
(eds.), Athens Conference on Applied Probability and Time Series, Volume II: Time 
Series Analysis (New York: Springer, 1996). 
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In the area of stock price returns at short time horizons, initial find-
ings by Mantegna and Stanley31 seemed to indicate truncated inverse 
power laws with exponents in the range 1.4–1.6, well within the scaling 
regime. More recent findings by Plerou et al32 point to an exponent 3 
without truncation, well outside the Levy stable regime. Johanson and 
Sornette33 suggest that market crashes are not the fat tails of return dis-
tributions, but outliers. Still other studies, for instance Laherre and Sor-
nette,34 found that returns are better described by a function rather than 
by a single exponent, thus creating multifractal distributions. 

Applying the notion of stable laws to stock price returns raises addi-
tional questions. The infinite variance property of stable laws is some-
what in contrast with empirical findings about stock returns, most of 
which seem to indicate finite variance, though higher order moments 
might become infinite. This is in agreement with the use of volatility as a 
key parameter in financial risk management. Stable laws, on the other 
hand, would require abandoning the notion of volatility. It seems fair to 
conclude that stable laws are not a good approximation to stock 
returns, though inverse power laws with exponent >2 might still hold. 

As noted above, the fundamental practical importance of the pres-
ence of stable laws in economic and financial phenomena is that they 
would render risk management and financial decision-making difficult: 
If variables are governed by stable laws, there is no possibility of diver-
sifying risk. Modeling with fat-tailed distributions has the status of a 
theoretical hypothesis as it implies extrapolating that the future will 
bring unbounded innovation. In the insurance industry, for example, the 
assumption of scaling is appropriate in domains such as catastrophe 
insurance, where there is no natural bound to the size of catastrophes 
and where experience has shown that very large catastrophic events do 
indeed occur. 

31 R. N. Mantegna and H.E. Stanley, “Scaling Behavior in the Dynamics of an Eco-
nomic Index,” Nature 46 (1995), p. 376. 
32 V. Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer, and H.E. Stanley, “Scaling 
of the Distribution of Price Fluctuations of Individual Companies,” Physical Review 
E 60, no. 6, Part A (December 1999), pp. 6519–6529 
33 A. Johansen and D. Sornette, “Stock Market Crashes Are Outliers,” European 
Physical Journal B 9, no. 1 (February 1998), pp. 141–143. 
34 J. Laherre and D. Sornette, “Stretched Exponential Distributions in Nature and 
Economy: ‘Fat Tails’ with Characteristic Scales,” European Physical Journal B 2 
(1998), p. 525. 
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ON THE APPLICABILITY OF EXTREME VALUE 
THEORY IN FINANCE 

In financial applications, EVT for fat-tailed processes has been applied to 
questions of risk management and portfolio optimization, especially port-
folios with exposure to credit risk. 

We can illustrate the importance of fat-tailed processes in credit risk 
management using an example prepared by Srichander Ramaswamy35 

Exhibit 13.4 shows the credit risk of a 23-corporate bond portfolio 
under different modeling assumptions. Risk values in the first column 
are computed considering default losses under the assumption that joint 
asset return distribution is normal. Values in the second column are 
computed under the same distributional assumptions but consider not 
only default losses but also the losses incurred due to rating migration. 
The values in the third column are computed under the assumption that 
the joint distribution of asset returns is a multivariate t with 8 degrees 
of freedom. 

The risk measures considered are Unexpected Loss (UL) measured 
by the standard deviation in the second row, credit risk Value-at-Risk 
(CrVaR) in the third row, and Expected Shortfall Risk (ESR) in the 
fourth row. (We will discuss these measures in Chapter 22, where we 
cover risk management.) The Expected Loss tabulated in the first row is 
a measure of credit cost and not of risk. 

As explained in Chapter 22, under the assumption of multivariate 
normality, the three risk measures UL, VaR, and ES are equivalent; how-
ever, if we drop this assumption, the three risk measures are no longer 
equivalent. Observe, in particular, that moving from a multivariate nor-

EXHIBIT 13.4 Portfolio Credit Risk Measures Under Different Modeling 
Assumptions 

Default Mode Migration Mode Migration Mode 
and Multivariate and Multivariate and Multivariate 

Description Normal Normal t-Distributed 

Expected loss  13.9 bp  34.1 bp  34.0 bp 
Unexpected loss  65.9 bp  88.9 bp 105.1 bp 
CrVaR at 90% confidence  0.0 bp 102.9 bp  96.6 bp 
ESR at 90% confidence 139.0 bp 240.3 bp 256.2 bp 

35 This illustration is adapted from his book, Managing Credit Risk in Corporate 
Bond Portfolios: A Practitioner’s Guide (Hoboken, NJ: John Wiley & Sons, 2004). 
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mal to a multivariate t CrVaR drops from 102.9 basis points to 96.6 basis 
points but ES grows from 240.3 basis points to 256.2 basis points. This 
happens because the t-distribution is more fat-tailed than the normal dis-
tribution. As a consequence, VaR underestimates the risk of large losses. 

Though there are still questions as to whether asset prices have a 
finite variance, there is little doubt that financial time series are not 
Gaussian. Large events happen at a rate incompatible with Gaussian 
behavior. This problem must be addressed from the point of view of 
both risk management and financial optimization. 

Many issues regarding risk management have been discussed in the 
literature. A number of key issues are summarized by Mulvey who 
points out the need to correctly address problems stemming from conta-
gion phenomena and from the possibility of joint actions such as those 
occurring in market crashes.36 A better understanding of the dynamics 
of these events could lead to effective measures to protect market partic-
ipants from unnecessary risk. 

SUMMARY

 ■ Fat-tailed laws have been found in many economic variables
 ■ Fully approximating a finite economic system with fat-tailed laws 

depends on an accurate statistical analysis of the phenomena, but also 
on a number of the theoretical implications of subexponentiality and 
scaling.

 ■ Modeling financial variables with stable laws implies the assumption of 
infinite variance, which seems to contradict empirical observations.

 ■ Scaling laws might still be an appropriate modeling paradigm given the 
complex interaction of distributional shape and correlations in price 
processes.

 ■ Scaling laws might help in understanding not only the sheer size of eco-
nomic fluctuations but also the complexity of economic cycles. 

36 John M. Mulvey, “Risk Management Systems for Long-term Investors: Address-
ing/Managing Extreme Events,” Working Paper, May 2001, Operations Research 
and Financial Engineering Department, Bendheim Center for Finance, Princeton 
University. 
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CHAPTER 14 
Arbitrage Pricing:


Finite-State Models


The Principle of Absence of Arbitrage is perhaps the most fundamental 
principle of finance theory. In the presence of arbitrage opportunities, 

there is no trade-off between risk and returns because it is possible to 
make unbounded risk-free gains. The principle of absence of arbitrage is 
fundamental for understanding asset valuation in a competitive market. 
This chapter discusses arbitrage pricing in a finite-state, discrete-time 
setting. In the following chapter we extend the discussion to a continu-
ous-time, continuous-state setting. 

THE ARBITRAGE PRINCIPLE 

Let’s begin by defining what is meant by arbitrage. In its simple form, 
arbitrage is the simultaneous buying and selling of an asset at two differ-
ent prices in two different markets. The arbitrageur profits without risk 
by buying cheap in one market and simultaneously selling at the higher 
price in the other market. Such opportunities for arbitrage are rare. In 
fact, a single arbitrageur with unlimited ability to sell short could correct 
a mispricing condition by financing purchases in the underpriced market 
with proceeds of short sales in the overpriced market. (Short-selling 
means selling an asset that is not owned in anticipation of a price 
decline. The mechanism for doing this is described in Chapter 2.) This 
means that riskless arbitrage opportunities are short-lived. 

Less obvious arbitrage opportunities exist in situations where a 
package of assets can produce a payoff (expected return) identical to an 
asset that is priced differently. This arbitrage relies on a fundamental 

393 
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principle of finance called the law of one price, which states that a given 
asset must have the same price regardless of the location where the asset 
is traded and the means by which one goes about creating that asset. 
The law of one price implies that if the payoff of an asset can be syn-
thetically created by a package of assets, the price of the package and 
the price of the asset whose payoff it replicates must be equal. 

When a situation is discovered whereby the price of the package of 
assets differs from that of an asset with the same payoff, rational inves-
tors will trade these assets in such a way so as to restore price equilib-
rium. This market mechanism is founded on the fact that an arbitrage 
transaction does not expose the investor to any adverse movement in 
the market price of the assets in the transaction. 

For example, consider how we can produce an arbitrage opportu-
nity involving three assets A, B, and C. These assets can be purchased 
today at the prices shown below, and can each produce only one of two 
payoffs (referred to as State 1 and State 2) a year from now: 

Asset Price Payoff in State 1 Payoff in State 2 

A $70 $50 $100 
B 60  30 120 
C 80 38 112 

While it is not obvious from the data presented above, an investor 
can construct a portfolio of assets A and B that will have the identical 
return as asset C in both State 1 and State 2. Let wA and wB be the pro-
portion of assets A and B, respectively, in the portfolio. Then the payoff 
(i.e., the terminal value of the portfolio) under the two states can be 
expressed mathematically as follows: 

■ If State 1 occurs: $50 wA + $30 wB
 ■ If State 2 occurs: $100 wA + $120 wB 

We create a portfolio consisting of A and B that will reproduce the 
payoff of C regardless of the state that occurs one year from now. Here 
is how: for either condition (State 1 and State 2) we set the payoff of the 
portfolio equal to the payoff for C as follows: 

■ State 1: $50 wA + $30 wB = $38
 ■ State 2: $100 wA + $120 wB = $112 
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We also know that wA + wB = 1. If we solved for the weights for wA 
and wB that would simultaneously satisfy the above equations, we 
would find that the portfolio should have 40% in asset A (i.e., wA = 0.4) 
and 60% in asset B (i.e., wB = 0.6). The cost of that portfolio will be 
equal to 

(0.4)($70) + (0.6)($60) = $64 

Our portfolio (i.e., package of assets) comprised of assets A and B 
has the same payoff in State 1 and State 2 as the payoff of asset C. The 
cost of asset C is $80 while the cost of the portfolio is only $64. This is 
an arbitrage opportunity that can be exploited by buying assets A and B 
in the proportions given above and shorting (selling) asset C. 

For example, suppose that $1 million is invested to create the port-
folio with assets A and B. The $1 million is obtained by selling short 
asset C. The proceeds from the short sale of asset C provide the funds to 
purchase assets A and B. Thus, there would be no cash outlay by the 
investor. The payoffs for States 1 and 2 are shown below: 

Asset Investment State 1 State 2 

A $400,000  $285,715  $571,429 
B  600,000  300,000  1,200,000 
C –1,000,000  –475,000 –1,400,000 

Total  0  110,715  371,429 

ARBITRAGE PRICING IN A ONE-PERIOD SETTING


We can describe the concepts of arbitrage pricing in a more formal 
mathematical context. It is useful to start in a simple one-period, finite-
state setting as in the example of the previous section. This means that 
we consider only one period and that there is only a finite number M of 
states of the world. In this setting, asset prices can assume only a finite 
number of values. 

The assumption of finite states is not as restrictive as it might 
appear. In practice, security prices can only assume a finite number of 
values. Stock prices, for example, are not real numbers but integer frac-
tions of a dollar. In addition, stock prices are nonnegative numbers and 
it is conceivable that there is some very high upper level that they can-
not exceed. In addition, whatever simulation we might perform is a 
finite-state simulation given that the precision of computers is finite. 
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The finite number of states represents uncertainty. There is uncer-
tainty because the world can be in any of the M states. At time 0 it is not 
known in what state the world will be at time 1. Uncertainty is quanti-
fied by probabilities but a lot of arbitrage pricing theory can be devel-
oped without any reference to probabilities. Suppose there are N 
securities. Each security i pays dij number of dollars (or of any other 
unit of account) in each state of the world j. The payoff of each security 
need not be a positive number. For instance, a derivative instrument 
might have negative payoffs in some states of the world. Therefore, in a 
one-period setting, the securities are formally represented by an N×M 
matrix D = {dij} where the dij entry is the payoff of security i in state j. 
Recall from Chapter 5 that the matrix D can also be written as a set of 
N row vectors: 

d1 
D = · , di = 

dN 

di1 · diM 

where the M-vector di represents the payoffs of security i in each of the 
M states. 

Each security is characterized by a price S. Therefore, the set of N 
securities is characterized by an N-vector S and an N×M matrix D. Sup-
pose, for instance, there are two states and three securities. Then the 
three securities are represented by 

S1


S = S2 , D =


S3


d11 d12 

d21 d22 

d31 d32 

Every row of the D matrix represents one security, every column one 
state. Note that in a one-period setting, prices are defined at time 0 
while payoffs are defined at time 1. There is no payoff at time 0 and 
there is no price at time 1. A portfolio is represented by a N-vector of 
weights θθθθ. In our example of a market with two states and three securi-
ties, a portfolio is a 3-vector: 

θθθθ =

θ1 

θ2 

θ3 
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The market value Sθθθθ of a portfolio θθθθ at time 0 is a scalar given by 
the scalar product: 

N 

Sθθθθ = Sθθθθ = ∑ Siθi 
i = 1 

Its payoff dθθθθ at time 1 is the M-vector: 

dθθθθ = D′θθθθ

The price of a security and the market value of a portfolio can be negative 
numbers. In the previous example of a two-state, three-security market 
we obtain 

Sθθθθ = Sθθθθ = S1θ1 + S2θ2 + S3θ3 

dθθθθ D′θθθθ
d11 d21 d31 

d12 d22 d32 

θ1 

θ2 

θ3 

d11θ1 d21θ2 d31θ3+ + 

d12θ1 d22θ2 d32θ3+ + 
= = = 

Let’s introduce the concept of arbitrage in this simple setting. As we 
have seen, arbitrage is essentially the possibility of making money by trad-
ing without any risk. Therefore, we define an arbitrage as any portfolio θ 
which has a negative market value Sθ = Sθθθθ < 0 and a nonnegative payoff 
Dθ = D′θθθθ ≥ 0 or, alternatively, a nonpositive market value Sθ = Sθθθθ ≤ 0 and 
a positive payoff Dθ = D′θθθθ > 0 . 

State Prices 
Next we define state prices. A state-price vector is a strictly positive M-
vector ψψψψ such that security prices can be written as S = Dψψψψ. In other 
words, given a state-price vector, if it exists, security prices can be 
recovered as a weighted average of the securities’ payoffs, where the 
state-price vector gives the weights. In the previous two-state, three-security 
example we can write: 

ψ1ψψψψ = 
ψ2 

S = Dψ 
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S1 d11 d12 ψ1 
d11ψ1 + d12ψ2 

S2 = d21 d22 ψ2 
= d21ψ1 + d22ψ2 

S3 d31 d32 d31ψ1 + d32ψ2 

Given security prices and payoffs, state prices can be determined 
solving the system: 

+ d12ψ2 = S1d11ψ1 

+ d22ψ2 = S2d21ψ1 

+ d32ψ2 = S3d31ψ1 

This system admits solutions if and only if there are two linearly inde-
pendent equations and the third equation is a linear combination of the 
other two. Note that this condition is necessary but not sufficient to ensure 
that there are state prices as state prices must be strictly positive numbers. 

A portfolio θθθθ is characterized by payoffs dθθθθ = D′θθθθ . Its price is given, 
in terms of state prices, by: Sθθθθ = Sθθθθ = Dψψψψθθθθ = dθθθθψψψψ. 

It can be demonstrated that there is no arbitrage if and only if there is 
a state-price vector. The formal demonstration is quite complicated given 
the inequalities that define an arbitrage portfolio. It hinges on the Separat-
ing Hyperplane Theorem, which says that, given any two convex disjoint 
sets in RM, it is possible to find a hyperplane separating them. A hyper-
plane is the locus of points xi that satisfy a linear equation of the type: 

M 

a0 + ∑ aixi = 0 
i = 1 

Intuitively, however, it is clear that the existence of state prices ensures 
that the law of one price introduced in the previous section is automatically 
satisfied. In fact, if there are state prices, two identical payoffs have the 
same price, regardless of how they are constructed. This is because the price 
of a security or of any portfolio is univocally determined as a weighted 
average of the payoffs, with the state prices as weights. 

Risk-Neutral Probabilities 
Let’s now introduce the concept of risk-neutral probabilities. Given a 
state-price vector, consider the sum of its components ψ0 = ψ1 + ψ2 + … 
+ ψM. Normalize the state-price vector by dividing each component by 
the sum ψ0. The normalized state-price vector 
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 ψj ψψψψ = { }  = ------  
ψ0  

ψˆ ˆ j

is a set of positive numbers whose sum is one. These numbers can be 
interpreted as probabilities. They are not, in general, the real probabili-
ties associated with states. They are called risk-neutral probabilities. We 
can then write 

1S------ = Dψψψψ̂ 
ψ0 

We can interpret the above relationship as follows: The normalized 
security prices are their expected payoffs under these special probabili-
ties. In fact, we can rewrite the above equation as 

Si [ ]Si = ------ = E di
ψ0 

where expectation is taken with respect to risk-neutral probabilities. In 
this case, security prices are the discounted expected payoffs under these 
special risk-neutral probabilities. 

Suppose that there is a portfolio θθθθ  such that dθ = D′θθθθ  = {1,1,...,1}. 
This portfolio can be one individual risk-free security. As we have seen 
above Sθθθθ = dθθθθψψψψ, which implies that ψ0 = θθθθS is the discount on riskless 
borrowing. 

Complete Markets 
Let’s now define the concept of complete markets, a concept that plays a 
fundamental role in finance theory. In the simple setting of the one-
period finite-state market, a complete market is one in which the set of 
possible portfolios is able to replicate an arbitrary payoff. Call span(D) 
the set of possible portfolio payoffs which is given by the following 
expression: 

span D( ) ≡ {D′θθθθ: θθθθ ∈ RM} 

A market is complete if span(D) = RM .

A one-period finite-state complete market is one where the equation
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D′θθθθ = ξ: ξ ∈ RM 

always admits a solution. Recall from Chapter 5 on matrix algebra that 
this is the case if and only if the rank of D is M. This means that there 
are at least M linearly independent payoffs—that is, there are as many 
linearly independent payoffs as there are states. Let’s write down explic-
itly the system in the two-state three-security market. 

D′θθθθ = ξ 

θ1d11 d21 d31 θ2 = 
ξ1 

d12 d22 d32	 θ3 
ξ2 

= ξ1d11θ1 + d21θ2 + d31θ3 

= ξ2d12θ1 + d22θ2 + d32θ3 

Recall from Chapter 5 that this system of linear equations admits 
solutions if and only if the rank of the coefficient matrix is 2. This con-
dition is not verified, for example, if the securities have the same payoff 
in each state. In this case, the relationship ξ1 = ξ2 must always be veri-
fied. In other words, the three securities can only replicate portfolios 
that have the same payoff in each state. 

In this simple setting it is easy to associate risk-neutral probabilities 
with real probabilities. In fact, suppose that the vector of real probabili-
ties p is associated to states so that pi is the probability of the i-th state. 
For any given M-dimensional vector x, we write its expected value 
under the real probabilities as 

M 

E x[ ]  = px =	 ∑ pixi 
i = 1 

It can be demonstrated that there is no arbitrage if and only if there 
is a strictly positive M-vector ππππ such that: S = E[Dππππ]. Any such vector ππππ
is called a state-price deflator. To see this point, define 

ψiπi =	 -----
pi 
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Prices can then be expressed as


M M M
ψjSi = ∑ dijψj = ∑ pjdij----- = ∑ pjdijπj 

j = 1 j = 1 pj j = 1 

which demonstrates that S = E[Dππππ]. 
We can now specialize the above calculations in the numerical case 

of the previous section. Recall that in the previous section we gave the 
example of three securities with the following prices and payoffs 
expressed in dollars: 

S = 
70 
60 
80 

D = 
50 100 
30 120 
38 112 

We first compute the relative state prices: 

50ψ1 + 100ψ2 = 70 

30ψ1 + 120ψ2 = 60 

38ψ1 + 112ψ2 = 80 

Solving the first two equations, we obtain 

ψ1 

ψ2 

⁴�₅ 

³�₁₀ 
= 

However, the third equation is not satisfied by these values for the state 
prices. As a consequence, there does not exist a state-price vector which 
confirms that there are arbitrage opportunities as observed in the first 
section. 

Now suppose that the price of security C is $64 and not $80. In this 
case, the third equation is satisfied and the state-price vector is the one 
shown above. Risk-neutral probabilities can now be easily computed. 
Here is how. First sum the two state prices: ⁴�₅ + ³⁄₁₀ = ¹¹⁄₁₀ to obtain 
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ψ0 = ψ1 + ψ2 = ¹¹�₁₀ 

and consequently the risk-neutral probabilities:


ψψψψ̂ 
ψ̂ 1 

ψ̂ 2 

ψ1 ψ0⁄ 
ψ2 ψ0⁄ 

⁸�₁₁ 

³�₁₁ 
= = = 

Risk-neutral probabilities sum to one while state prices do not. We can 
now check if our market is complete. Write the following equations: 

50θ1 + 30θ2 + 38θ3 = ξ1 

100θ1 + 120θ2 + 112θ3 = ξ2 

The rank of the coefficient matrix is clearly 2 as the determinant of the 
first minor is different from zero: 

50 30 = 50 × 120 – 100 × 30 = 300 ≠ 0 
100 120 

Our sample market is therefore complete and arbitrage-free. A portfolio 
made with the first two securities can replicate any payoff and the third 
security can be replicated as a portfolio of the first two. 

ARBITRAGE PRICING IN A MULTIPERIOD FINITE-STATE 
SETTING 

The above basic results can be extended to a multiperiod finite-state set-
ting using the probabilistic concepts developed in Chapter 6. The econ-
omy is represented by a probability space (Ω,ℑ,P) where Ω is the set of 
possible states, ℑ is the algebra of events (recall that we are in a finite-
state setting and therefore there are only a finite number of events), and 
P is a probability function. As the number of states is finite, finite prob-
abilities P({ω}) ≡ P(ω) ≡ pω are defined for each state. There is only a 
finite number of dates from 0 to T. 

Propagation of Information 
Recall from Chapter 6 that the propagation of information is repre-
sented by a filtration ℑt that, in the finite case, is equivalent to an infor-
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mation structure It. The latter is a discrete, hierarchical organization of 
partitions It with the following properties:

… … · ·Ik ≡ ( }); k = 0,  ,  T; i = 1,  ,  Mk; 1 = M1 ≤ ≤ Mk ≤ ≤ MT = M{Aik 

Mk

Aik ∩ Ajk = ∅ if i ≠ j and ∪ Aik = Ω 
i = 1 

and, in addition, given any two sets Aik, Ajh, with h > k, either their 
intersection is empty Aik ∩ Ajh = ∅ or Aik ⊇ Ajh. In other words, the par-
titions become more refined with time. 

Each security i is characterized by a payoff process dt
i and by a

i iprice process St
i . In this finite-state setting, dt and St are discrete vari-

ables that, given that there are M states, can be represented by M-vec-
i ω i ω ω ωtors dt

i = [dt( )] and St = [St
i ( )] where dt

i ( )  and St
i ( )  are, 

respectively, the payoff and the price of the i-th asset at time t, 0 ≤ t ≤ T 
and in state ω ∈ Ω. Following Chapter 6, all payoffs and prices are sto-
chastic processes adapted to the filtration ℑt. Recall from Chapter 6

ithat, given that dt
i and St are adapted processes in a finite probability 

space, they have to assume a constant value on each partition of the 
information structure It. It is convenient to introduce the following 
notation: 

= dt
i ( ) , ω ∈ AjtωdA

i 
jt 

i = St
i ( ) , ω ∈ AjtωSAjt 

iwhere 
i 
dA

i 
jt 

and represent the constant values that the processes dt
iSAjt

and St assume on the states that belong to the sets Ajt of each partition 
It. There is M0 = 1 value for dA

i 
j0 i 

and SA
i 

j0
, Mt values for and SA

i 
jt 

dA
i 

jt
and MT = M values for dA

i 
jT 

and . The same notation and the sameSAjT
consideration can be applied to any process adapted to the filtration ℑt. 

Trading Strategies 
We have to define the meaning of trading strategies in this multiperiod 
setting. A trading strategy is a sequence of portfolios θ such that θt is the 
portfolio held at time t after trading. To ensure that there is no anticipa-
tion of information, each trading strategy θ must be an adapted process.

θThe payoff dθ generated by a trading strategy is an adapted process dt 
with the following time dynamics: 
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θdt = (St + dt) – θtStθt – 1 

An arbitrage is a trading strategy whose payoff process is nonnega-
tive and not always zero. In other words, an arbitrage is a trading strat-
egy which is never negative and which is strictly positive for some 
instants and some states. Note that imposing the condition that payoffs 
are always nonnegative forbids any initial positive investment that is a 
negative payoff. 

A consumption process is any nonnegative adapted process. Mar-
kets are said to be complete if any consumption process can be obtained 
as the payoff process of a trading strategy with some initial investment. 
Market completeness means that any nonnegative payoff process can be 
replicated with a trading strategy. 

State-Price Deflator 
We will now extend the concept of state-price deflator to a multiperiod 
setting. A state-price deflator is a strictly positive adapted process πt 
such that the following set of M equations hold: 

T 
1

St
i = -----Et ∑ πjdj

i 

πt j = t + 1 

In other words, a state-price deflator is a strictly positive process such 
that prices St

i are random variables equal to the conditional expectation 
of discounted payoffs with respect to the filtration ℑ. As noted above, in 
this finite-state setting a filtration is equivalent to an information struc-
ture It. Note that in the above stochastic equation—which is a set of M 
equations, one for each state, the term on the left, the prices St

i , is an 
adapted process that, as mentioned, assumes constant values on each set 
of the partition It. The term on the right is a conditional expectation 
multiplied by a factor 1/πt. The process πt is adapted by definition and, 
therefore, assumes constant values πAit 

on each set of the partition It. 
In this finite setting, conditional expectations are expectations com-

puted with conditional probabilities. Recall from Chapter 6 that condi-
tional expectations are adapted processes. Therefore they assume one 
value at t = 0, Mj values for t = j, and M values at the last date. 

To illustrate the above, let’s write down explicitly the above equa-
ition in terms of the notation dA

i 
jt 

and . Note first thatSAjt 
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P({ } ∩ Akt) P({ })ω ωP({ }ω Akt) = ------------------------------------ = ------------------- , if ω ∈ Akt , 0 if ω ∉ Akt
( (P Akt) P Akt) 

Given that the probability space is finite, 

(P Ajt) = ∑ pω 
ω ∈ Ajt 

As we defined P({ω}) ≡ pω the previous equation becomes 

P({ } ∩ Akt) P({ }) pωω ω) = ------------------------------------ = ------------------- = ----------------------------P({ }ω Akt 
( (P Akt) P Akt)  

 ∑ pω
 

ω ∈ Akt 

if ω ∈ Akt , 0 if .ω ∉ Akt 

Pricing Relationships 
We can now write the pricing relationship as follows: 

  T
i ω

i 1 
= ---------- ∑ P({ }ω ωAkt) ∑ πj( )dj( )SAkt π   j = t + 1Akt ω ∈ Akt 

  
  

 T pω1 
= ---------- ∑ ---------------------------- ∑ πj( )di ω

 

π ω ∈ Akt 


 ∑ 

ω j( ) 
  j = t + 1 pω 

Akt 

 ω ∈ Akt 
 

∈ It , 1 ≤ k ≤ MtAkt 

The above formulas generalize to any trading strategy. In particular, 
if there is a state-price deflator, the market value of any trading strategy 
is given by 

1 
= -----Eθθθθt × St 

πt 

πjdj 
θ 

j t 1+= 

T 

∑ 
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 T1(θθθθtSt)Akt 
= ---------- ∑ P({ }ω Akt) ∑ πj( )dθ ω

 

π
ω j ( ) 

  j = t + 1Akt ω ∈ Akt 

  
  

 T pω1 
= ---------- ∑ ---------------------------- ∑ πj( )dθ ω

 

π   j = t + 1Akt ω ∈ Akt 


 ∑ pω

ω j ( )

 ω ∈ Akt 
 

iIt is possible to demonstrate that the payoff-price pair (dt, St
i ) admits 

no arbitrage if and only if there is a state-price deflator. These concepts 
and formulas generalize those of a one-period setting to a multiperiod 
setting. 

iGiven a payoff-price pair (dt
i , St) it is possible to compute the state-

price deflator, if it exists, from the previous equations. In fact, it is possi-
ble to write a set of linear equations in the πt, πt – 1 for each period. One 
can proceed backward from the period T to period 1 writing a homoge-
neous system of linear equations. As the system is homogeneous, one of 
the variables can be arbitrarily fixed; for example, the initial value π0 can 
be assumed equal to 1. If the system admits nontrivial solutions and if all 
solutions are strictly positive, then there are state-price deflators. 

Examples 
To illustrate the above, let’s write down explicitly the previous formulas 
for prices, extending the example of the previous section to a two-
period setting. We assume there are three securities and two periods, 
that is, three dates (0,1,2) and four states, indicated with the integers 
1,2,3,4, so that Ω = {1,2,3,4}. Assume that the information structure is 
given by the following partitions of events: 

Ii ≡ (I0 ≡ { , A1 1 A2 1}, I2 ≡ { , , , , , , })A1 0}, I1 ≡ { , , , A1 2 A2 2 A3 2 A4 2, 

, 1 2 3 4}, A1 1 = { + A2 1 3 4}A1 0 = { + + +  , 1 2}, , = { + 

A1 2 = { }, , = { }, A3 2 = { }, A4 2 = { }, 1 A2 2 2 , 3 , 4

where we use + to indicate logical union, so that, for example, {1 + 2} is 
the event formed by states 1 and 2. The interpretation of the above 
notation is the following. At time zero the world can be in any possible 
state, that is, the securities can take any possible path. Therefore the 
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partition at time zero is formed by the event {1 + 2 + 3 + 4}. At time 1, 
the set of states is partitioned into two mutually exclusive events, {1 + 2} 
or {3 + 4}. At time 2 the partition is formed by all individual states. 
Note that this is a particular example; different partitions would be log-
ically admissible. 

Exhibit 14.1 represents the above structure. Each security is character-
ized by a price process and a payoff process adapted to the information 
structure. Each process is a collection of three discrete random variables 
indexed with the time indexes 0,1,2. Each discrete random variable is a 4-
vector as it assumes as many values as states. However, as processes are 
adapted, they must assume the same value on each partition of the infor-
mation structure. Note also that payoffs are zero at date zero and prices 
are zero at date 2. Therefore, in this example, we can put together these 
vectors in two 3×4 matrices for each security as follows 

iS0( ) S1 
i ( ) 0 0 d1 

i ( ) d2( )1 1 1 i 1
i 2 i 

St
i ω

2 2
dt

i ω
0 d1 

i ( ) d2( )2
( )  {  } ≡

S0( ) S1 
i ( ) 0

; ( )  {  } ≡ 
iS0( ) S1 

i ( ) 0 0 d1 
i ( ) d2( )3 3 3 i 3

iS0( ) S1 
i ( ) 0 0 d1 

i ( ) d2( )4 4 4 i 4

The following relationships hold: 

i i i iS0( ) = S0 
i ( ) = S0( ) = S0( ) = ; S1( ) = S1 

i ( ) = ;1 2 i 3 i 4 SA1 0
1

,, 
2 SA1 1

EXHIBIT 14.1 An Information Structure with Four States and Three Dates 
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i3 i 4 SA2 1
S1 

i ( ) = S1( ) = 
, 

i i id1 
i ( ) = d1( ) = ; d1 

i ( ) = d1( ) =1 i 2 dA1 1
3

,, 
4 dA2 1

where, as above, St
i ( ) is the price of security i in state ω at moment tω

and dt
i ( ) is the payoff of security i in state ω at time t with the restric-ω

tion that processes must assume the same value on partitions. This is 
because processes are adapted to the information structure so that there 
is no anticipation of information. One must not be able to discriminate 
at time 0 events that will be revealed at time 1 and so on. 

Observe that there is no payoff at time 0 and no price at time 2 and 
that the payoffs at time 2 have to be intended as the final liquidation of 
the security as in the one-period case. Payoffs at time 1, on the other 
hand, are intermediate payments. Note that the number of states is cho-
sen arbitrarily for illustration purposes. Each state of the world repre-
sents a path of prices and payoffs for the set of three securities. To keep 
the example simple, we assume that of all the possible paths of prices 
and payoffs only four are possible. 

The state-price deflator can be represented as follows: 

( ) π1 1 ( )π0 1 ( ) π2 1
( ) π2 2( ) π1 2 ( )

ω( )  {  } ≡
π0 2

( ) π1 3 ( )
πt π0 3 ( ) π2 3

( ) π1 4 ( )π0 4 ( ) π2 4

π0 1 ( ) = π0 3 ( )( ) = π0 2 ( ) = π0 4

( ) = π1 2 ( ) = π1 4π1 1 ( )  π1 3 ( )  

A probability pω is assigned to each of the four states of the world. 
The probability of each event is simply the sum of the probabilities of its 
states. We can write down the formula for security prices in this way: 

i i i1 SA2 2
3 SA

i 
4 2

4= S2 
i ( ) = = S2 

i ( ) = = S2 
i ( ) = = S2 

i ( ) = 0SA1 2 , 
2 SA3 2 ,, , 
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1 i 2= S1 
i ( ) = S1( )SA1 1, 
1 

= ------------[P A1 2 A1 1 ( )d2 
i ( ) + P A2 2)π2 1 1 ( , )π2 2A1 1 ( )d2 

i ( )]( , , ,
πA1 1, 

1 
= ------------ ------------------π2 1 1

p2 ( )d2 
i ( )

p1 ( )d2 
i ( ) + ------------------π2 2 2

π p1 + p2 p1 + p2A1 1, 

i 3 i 4= S1 
i ( ) = S1( )SA2 1, 
1 

= ------------[P A3 2 A2 1 ( )d2 
i ( ) + P A4 2)π2 3 3 ( , )π2 4 4A2 1 ( )d2 

i ( )]( , , ,
πA2 1, 

1 
= ------------ ------------------π2 3 3

p4 ( )d2 
i ( )

p3 ( )d2 
i ( ) + ------------------π2 4 4

π p3 + p4 p3 + p4A2 1, 

i i + π2 1 1 i + π2 2 2SA1 0
= 



 

p1[πA1 1
dA1 1

( )d2 
i ( )] + p2[πA1 1

dA1 1
( )d2 

i ( )] 
, , , , , 

i i+ π2 3 3 A1 2
dA1 2

( )d2 
i ( )] + p3[πA1 2

dA1 2
( )d2 

i ( )] + p4[π
, 

+ π2 4 4
, , ,  

These equations illustrate how to compute the state-price deflator 
knowing prices, payoffs, and probabilities. They form a homogeneous sys-
tem of linear equations in π2(1), π2(2), π2(3), π2(4), πA1 1

, π
, 

, π . 
, A2 1 A1 0, 

p1di 
2( )π2 1 2 ( )  SA

i 
1 1

(p1 + p2 )π
, 

= 01 ( ) + p2d2 
i ( )π2 2 – 

, A1 1

p3di 
2( )π2 3 4 ( )  SA

i 
2 1

(p3 + p4 )π
, 

= 03 ( ) + p4d4 
i ( )π2 4 – 

, A2 1

1 ( ) + p2di 
2( )π2 2 3 ( ) + p4d4 

i ( )π2 4p1di 
2( )π2 1 2 ( ) + p3d2 

i ( )π2 3 4 ( )  
i+ (p1 + p2 )

i 
,

πA1 1
+ (p3 + p4 ) π = 0dA1 1 , 

dA2 3
πA2 3

– SA
i 

1 0 A1 0, , , , 

Substituting, we obtain 

p1di 
2( )π2 1 2 ( )  SA

i 
1 1

(p1 + p2 )π
, 

= 01 ( ) + p2d2 
i ( )π2 2 – 

, A1 1
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p3di 
2( )π2 3 4 ( )  SA

i 
2 1

(p3 + p4)π
, 

= 03 ( ) + p4d4 
i ( )π2 4 – 

, A2 1

[(p1 + p2) i + (p1 + p2) i 
, 

]πA1 1, 
SA1 1

dA1 1 , 

+ [(p3 + p4) i + (p3 + p4) i ]πA2 1
– i 

,
π = 0 

, ,	 , 
SA2 1

dA2 1 , 
SA1 0 A1 0

 This homogeneous system must admit a strictly positive solution to 
yield a state-price deflator. There are seven unknowns. However, as the 
system is homogeneous, if nontrivial solutions exist, one of the 
unknowns can be arbitrarily fixed, for example πA1 0

. Therefore, six 
,

independent equations are needed. Each asset provides two conditions, 
so a minimum of three assets are needed. 

To illustrate the point, we assume that all states (which are also 
events in this discrete example) have the same probability 0.25. Thus 
the events of the information structure have the following probabilities: 
the single event at time zero has probability 1, the two events at time 1 
have probability 0.5, and the four events at time 2 coincide with indi-
vidual states and have probability 0.25. Conditional probabilities are 
shown in Exhibit 14.2. 

For illustration purposes, let’s write the following matrices for pay-
offs for each security at each date in each state: 

0 15 50  0 8  30 	 0 5 38  
0 5 112 d1 

i ω d2 
i ω( )  {  } ≡ 0 15 100  ; ( )  {  } ≡ 0 8 120 ; ( )  {  } ≡d3 

i ω
0 20 70  0 15 40  0 8 42  
0 20 110  0 15 140  0 8 130 

We will assume that the state-price deflator is the following given pro-
cess: 

1 0.8 0.7 

( )  {  } ≡ 1 0.8 0.75 ωπt 1 0.9 0.75 
1 0.9 0.8 

Each price is computed according to the previous equations. For exam-
ple, calculations related to asset 1 are as follows: 

1 1 1 2 1 3 1 4S2( ) = S2( ) = S2( ) = S2( ) = 0 
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1 1 
= --------(0.5 × 0.7 × 50 + 0.5 × 075 × 100) = 68.75 

, 
SA1 1 0.8 

1 1 
= --------(0.5 × 0.75 × 70 + 0.5 × 0.8 × 110) = 78.05 

, 
SA2 1 0.9 

1 1 ( (= ---[0.25 0.8 × 15 + 0.7 × 50) + 0.25 0.8 × 15 + 0.75 × 100)SA1 0 1, 

( (+ 0.25 0.9 × 20 + 0.75 × 70) + 0.25 0.9 × 20 + 0.8 × 110) ] 
= 68.75 

2 1 2 2 2 3 2 4S2( ) = S2( ) = S2( ) = S2( ) = 0 

2 1 
= --------(0.5 × 0.7 × 30 + 0.5 × 0.75 × 120) = 69.37 

, 
SA1 1 0.8 

2 1 
= --------(0.5 × 0.75 × 40 + 0.5 × 0.8 × 140) = 78.88 

, 
SA2 1 0.9 

2 1 ( (= ---[0.25 0.8 × 8 + 0.7 × 30) + 0.25 0.8 × 8 + 0.75 × 120)SA1 0 1, 

( (+ 0.25 0.9 × 15 + 0.75 × 40) + 0.25 0.9 × 15 + 0.8 × 140) ] 
= 73.2 

3 1 3 2 3 3 3 4S2( ) = S2( ) = S2( ) = S2( ) = 0 

3 1 
= --------(0.5 × 0.7 × 38 + 0.5 × 0.75 × 112) = 69.12 

, 
SA1 1 0.8 

3 1 
= --------(0.5 × 0.75 × 42 + 0.5 × 0.8 × 130) = 75.27 

, 
SA2 1 0.9


3 1
 ( (= ---[0.25 0.8 × 5 + 0.7 × 38) + 0.25 0.8 × 5 + 0.75 × 112)SA1 0 1, 

( (+ 0.25 0.9 × 8 + 0.75 × 42) + 0.25 0.9 × 8 + 0.8 × 130) ] 
= 67.125 
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With the above equations we computed prices from payoffs and state-
price deflators. If prices and payoffs were given, we could compute state-
price deflators from the homogeneous system for state prices established 
above. Suppose that the following price processes were given: 

1 ω( )  {  } =St 

2 ω( )  {  } =St 

3 ω( )  {  } =St 

68.75 68.75 0 
68.75 68.75 0 
68.75 78.05 0 
68.75 78.05 0 

73.2 69.37 0 
73.2 69.37 0 
73.2 78.88 0 
73.2 78.88 0 

67.125 69.12 0 
67.125 69.12 0 
67.125 75.27 0 
67.125 75.27 0 

We could then write the following system of equations to compute state-
price deflators: 

( ) + 0.25 × 100 × π2 20.25 × 50 × π2 1 ( ) – 68.75 × 0.5 × πA1 1
= 0 

, 

( ) + 0.25 × 110 × π2 20.25 × 70 × π2 1 ( ) – 78.05 × 0.5 × πA1 1
= 0 

, 

(55 × 0.5 + 0.5 × 15) × πA1 1
+ (70.25 × 0.5 + 0.5 × 20) × π

,, A2 1

– 68.75 × πA1 0
= 0 

, 

( ) + 0.25 × 120 × π2 20.25 × 30 × π2 1 ( ) – 69.37 × 0.5 × πA1 1
= 0 

, 

( ) + 0.25 × 140 × π2 20.25 × 40 × π2 1 ( ) – 78.88 × 0.5 × πA1 1
= 0 

, 

(55.5 × 0.5 + 0.5 × 8) × πA1 1
+ (71 × 0.5 + 0.5 × 15) × π

,, A2 1

–73.2 × πA1 0
= 0 

, 
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( ) + 0.25 × 115 × π2 20.25 × 38 × π2 1 ( ) – 69.12 × 0.5 × πA1 1
= 0 

, 

( ) + 0.25 × 130 × π2 20.25 × 42 × π2 1 ( ) – 75.27 × 0.5 × πA1 1
= 0 

, 

(55 × 0.5 + 0.5 × 15) × πA1 1
+ (70.25 × 0.5 + 0.5 × 20) × π

,, A2 1

– 67.125 × πA1 0
= 0 

, 

It can be verified that this system, obviously, is solvable and returns the 
same state-price deflators as in the previous example. 

Equivalent Martingale Measures 
We now introduce the concept and properties of equivalent martingale 
measures. This concept has become fundamental for the technology of 
derivative pricing. The idea of equivalent martingale measures is the fol-
lowing. Recall from Chapter 6 that a martingale is a process Xt such 
that at any time t its conditional expectation at time s, s > t coincides 
with its present value: Xt = Et[Xs]. In discrete time, a martingale is a 
process such that its value at any time is equal to its conditional expec-
tation one step ahead. In our case, this principle can be expressed in a 
different but equivalent way by stating that prices are the discounted 
expected values of future payoffs. The law of iterated expectation then 
implies that price plus payoff processes are martingales. 

In fact, assume that we can write 

T 

St = Et ∑ dj 
j = t + 1 

then the following relationship holds: 

T T 

St = Et ∑ dj = Et dt + 1 + Et + 1 ∑ dj = Et[dt + 1 + St + 1] 
j = t + 1 j = t + +1 1

Given a probability space, price processes are not, in general, martin-
gales. However it can be demonstrated that, in the absence of arbitrage, 
there is an artificial probability measure in which all price processes, 
appropriately discounted, become martingales. More precisely, we will see 
that in the absence of arbitrage there is an artificial probability measure Q 
in which the following discounted present value relationship holds: 
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di 

St
i QEt 

j= 
T 

∑
Rt j,j = t + 1 

We can rewrite this equation explicitly as follows:


QSt
i = Et 

Q= Et 

dj 
i 

Rt j, 

-
j t 1+= 

T 

∑ Et 
Q dt 1+ 

i 

Rt t  1+, 

-
1 

Rt t  1+, 

-
dj 

i 

Rt 1+ j,j t 2+= 

T 

∑+= 

dt 1+ 
i 

Rt t  1+, 

-
Et 1+ 

Q 

Rt t  1+, 

-
dj 

i 

Rt j, 

-
j t 2+= 

T 

∑+ Et 
Q dt 1+ 

i St 1+ 
i+ 

Rt t  1+, 

= 

which shows that the discounted price plus payoff process is a martin-
gale. The terms on the left are the price processes, the terms on the right 
are the conditional expectations under the probability measure Q of the 
payoffs discounted with the risk-free payoff. 

The measure Q is a mathematical construct. The important point is 
that this new probability measure can be computed either from the real 
probabilities if the state-price deflators are known or directly from the 
price and payoff processes. This last observation illustrates that the con-
cept of arbitrage depends only on the structure of the price and payoff 
processes and not on the actual probabilities. As we will see later in this 
chapter, equivalent martingale measures greatly simplify the computa-
tion of the pricing of derivatives. 

Let’s assume that there is short-term risk-free borrowing in the sense 
that there is a trading strategy able to pay for any given interval (t,s) one 
sure dollar at time s given that (dtdt + 1...ds – 1)–1 has been invested at 
time t. Equivalently, we can define for any time interval (t,s) the payoff 
of a dollar invested risk-free at time t as Rt,s = (dtdt + 1...ds – 1). 

We now define the concept of equivalent probability measures. 
Given a probability measure P the probability measure Q is said to be 
equivalent to P if both assign probability zero to the same events. An 
equivalent probability measure Q is an equivalent martingale measure if 
all price processes discounted with Ri,j become martingales. More pre-
cisely, Q is an equivalent martingale measure if and only if the market 
value of any trading strategy is a martingale: 

j 
θ 

Rt j, 

-
T 

∑
d

θt ×
St =
 QEt 
j = t + 1 
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Risk-Neutral Probabilities 
Probabilities computed according to the equivalent martingale measure 
Q are the risk-neutral probabilities. Risk-neutral probabilities can be 
explicitly computed. Here is how. Call qω the risk-neutral probability of 
state ω. Let’s write explicitly the relationship 

i 
Q djSt

i = Et	 ---------
Rt j, 

as follows: 

i ω	 i ωqω 
T dj( )  qω 

T dj( )  
= ∑ ------------------- ∑ -------------- = ∑ ---------------------------- ∑ --------------SAkt (
 ,
ω ∈ Akt

Q Akt) j = t + 1 Rt j ω ∈ Akt  ∑ qω
 j = t + 1 Rt j


, 

ω ∈ Akt 

The above system of equations determines the risk-neutral probabil-
ities. In fact, we can write, for each risky asset, Mt linear equations, 
where Mt is the number of sets in the partition It plus the normalization 
equation for probabilities. From the above equation, one can see that 
the system can be written as 

i ωT dj( ) 

∑ qω ∑ -------------- – SA

i 
kt 

= 0

∈ , ,ω Ak t 	 j = t + 1 Rt j

S 

∑ qω = 1 
ω = 1 

This system might be determined, indetermined, or impossible. The 
system will be impossible if there are arbitrage opportunities. This sys-
tem will be indetermined if there is an insufficient number of securities. 
In this case, there will be an infinite number of equivalent martingale 
measures and the market will not be complete. 

Now consider the relationship between risk-neutral probabilities and 
state-price deflators. Consider a probability measure P and a nonnegative 
random variable Y with expected value on the entire space equal to 1. 
Define a new probability measure as Q(B) = E[1BY] for any event B and 
where 1B is the indicator function of the event B. The random variable Y 
is called the Radon-Nikodym derivative of Q and it is written 
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dQY =	 ---------
dP 

It is clear from the definition that P and Q are equivalent probabil-
ity measures as they assign probability zero to the same events. Note 
that in the case of a finite-state probability space the new probability 
measure is defined on each state and is equal to 

qω = Y ω( )pω 

Suppose πt is a state-price deflator. Let Q be the probability measure 
defined by the Radon-Nikodym derivative: 

πTR0, T = -------------------ξT

π0


The new state probabilities under Q are the following: 


πT ω
( )R0, T qω = ----------------------------pω
π0 ω( )  

Define the density process ξt for Q as ξ = Et[ξT]. As ξ = Et[ξT] is ant t 
adapted process, we can write: 

pω ( )R0, TξT Akt 
ω ∈ Akt

P Akt) 
( ) = ∑ ---------------------------------------------(Et[ ]) = ξAkt 

= ∑ -----------------ξT ω
pω πT ω


( ( ) 
( ω ∈ Akt
P Akt) π0 ω

πAkt
R0, t 1 pω ( )] , = ---------------------= ------------------------------- ∑ -----------------πT[π0 ω Rt T

πAkt
R0, t 

π0 ω (( ) πAkt ω ∈ Akt
P Akt)	 π0 

As Rt,s = (dtdt + 1...ds – 1) is the payoff at time s of one dollar invested in 
a risk-free asset at time t, s > t, we can then write the following equations: 

11 = -----Et[π , ]sRt s
πt 

Therefore,
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pω11 = ---------- ∑ P({ }ω ω Rt s = ---------- ∑ -----------------π ( )Rt sωAkt)πs( ) ,
π π ω ∈ Akt

P Akt)
s

(
, 

Akt Aktω ∈ Akt 

1 ≤ k ≤ Mt 

Substituting in the previous equation, we obtain, for each interval (t,T), 

πAkt
R0, t

ξAkt 
= (Et[ ]) = ---------------------ξT Akt πA10 

which we can rewrite in the usual notation as 

πtR0, tξTξt = Et[ ] = ----------------
π10 

We can now state the following result. Consider any ℑj-measurable 
variable xj. This condition can be expressed equivalently stating that xj 
assumes constant values on each set of the partition Ij. Then the follow-
ing relationship holds: 

P 1Et xj
Q[ ] = Et ----[ξjxj]

ξt 

To see this, consider the following demonstration, which hinges on the 
fact that xj assumes a constant value on each Ahj and, therefore, can be 
taken out of sums. In addition, as demonstrated above, from 

11 = -----Et[π , ]sRt s
πt 

the following relationship holds: 

( ω , P Akt)πAkt 
= ∑ pωπ ( )Rt ss 

ω ∈ Akt 

1 ≤ k ≤ Mt 
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Q	 ( )R0, T(Et [ ])Akt 
= ∑ 

qω ω
pω πT ω

ωxj -------------------xj( ) = ∑ -----------------------------------------------xj( )  
ω ∈ Akt

Q Akt) ω ∈ Akt
Q Akt) π0 ω(	 ( ( )  

1 , pωπT ω ω
= ------------------- ∑ ∑

R0, jRj T ( )xj( )  

( π0 ω( )Q Akt)Ahj ⊂ Akt ω ∈ Ahj 

1 xAhj
R0, j 

, pωπT ω= ------------------- ∑ --------------------- ∑ Rj T ( )
( π0 ω( ) 	ω ∈ Ahj 

Q Akt)Ahj ⊂ Akt 

(1 xAhj
R0, jπAhj

P Ahj) 
= ------------------- ∑ -------------------------------------------------

(	 π0 ω( )Q Akt)Ahj ⊂ Akt 

1 
= ------------------- ∑ [xAhj 

ξAhj
P Ahj)](

(Q Akt)Ahj ⊂ Akt 

(1 xAhj 
ξAhj

P Ahj) 1 P(ξjx )= ---------- ∑ -------------------------------------- = ----------[Et j Akt
]

P Akt) ξAkt
(ξAkt Ahj ⊂ Akt 

Let’s now apply the above result to the relationship: 

T 
,1	 π0 

T πjRt j dj
i 

St
i =	 -----Et ∑ πjdj

i = ------Et ∑ -----------------------
πt j = t + 1 πt j = t + 1 π0 Rt j, 

π0 
T πjR0, j dj

i 
Q dj

i  
= ---------------Et ∑ ------------------------ = Et	 --------- 

Rt jπtR0, j j = t + 1 π0 Rt j ,, 

We have thus demonstrated the following results: There is no arbitrage 
if and only if there is an equivalent martingale measure. In addition, πt 
is a state-price deflator if and only if an equivalent martingale measure 
Q has the density process defined by 

πtR0, t = ----------------ξt 
π0 

In addition, it can be demonstrated that, if there is no arbitrage, 
markets are complete if and only if there is a unique equivalent martin-
gale measure. 
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Examples 
To illustrate the above we now proceed to detail the calculations for the 
previous example of three assets, three dates, and four states. Let’s first 
write the equations for the risk-free asset: 

1 pω1 =	 ---------- ∑ -----------------π ( )Rt sω
πAkt ω ∈ Akt

P Akt)
s

(
, 

1  p11 = ----------------------------π2 1 R1 2
p2 ( )R1 2

 
( ) , + ------------------π2 2 ,

πA11 
p1 + p2 p1 + p2  

1  p31 = ----------------------------π2 3 R1 2
p4 ( )R1 2

 
( ) , + ------------------π2 4 ,

πA21 
p3 + p4 p3 + p4  

1 ( ) , + p2π2 2 R0 2 + p3π2 3 R0 2 + p4π2 4 R0 2]1 =	 ----------[p1π2 1 R0 2 ( ) , ( ) , ( ) ,
πA10 

πA11 
= π1 1 ( )( ) = π1	 2

πA21 
= π1 3 ( )( ) = π1	 4

πA10 
= π0 1 ( ) = π0 3 ( )( ) = π0	 2 ( ) = π0 4

We can now rewrite the pricing relationships for the other risky 
assets as follows: 

At date 2, prices are zero: S2 
i = 0 . 

At date 1, the relationship 

d2 
i 

S1 
i = E1	 -----------

R1 2, 

holds. In fact, we can write the following:




14-Arbitrage  Page 421  Wednesday, February 4, 2004  1:08 PM

421 Arbitrage Pricing: Finite-State Models 

Si 
1( ) = Si 2= Si 1 1( )A1 1, 
1 

= --------------[P A ,( , ( )di 1 ( 2 2A1 1)π2 1 2( ) + P A , A1 1 ( )di 2)π2 2 2( )]1 2 ,
π1 2( )  

1  p1 di 1 2 di 22( )  p 2( ) 
= --------------------------π2 1 1 2-------------- + ------------------π2 2( )R , ( )R , --------------1 2

, p1 + p π11p1 + p2 R1 2 2 R1 2, 

di 1 2( )2( )  di 2
= Q A1 2 A1 1)-------------- + Q A ,( )--------------( , , 2 2 A1 1, 

, R1 2R1 2 , 

q d2 
i ( )  q d2 

i ( )21 1 2 = -------------------------------- + --------------------------------

q1 + q , q1 + q
2 R1 2 2 R1 2, 

Si i 3 4= S1( ) = S1 
i ( )A2 1, 

di 3 2( )2( )  di 4
= Q A3 2 A1 1)-------------- + Q A ,( )--------------( , , 4 2 A1 1, 

, R1 2R1 2 , 

q d2 
i ( )  q d2 

i ( )43 3 4 = -------------------------------- + --------------------------------
q3 + q , q3 + q4 R1 2 4 R1 2, 

At date 0, the relationship 

d1 
i d2 

i 

S0 
i = E0 ----------- + -----------

, , R0 1 R0 2

holds. In fact we can write the following: 

Si i 1 2 i 3 i = S0( ) = S0 
i ( ) = S0( ) = S0( )4A1 0, 

 
p1[π1 1 1 + ( )d2 

i ( )] 


( )di 
1( )  π2 1 1

 
( )di 2 + ( )di 2

 
1  + p2[π1 2 1( )  π2 2 2( )]


= ---------- 

π  + p3[π1 3 1( )  π2 3 ( )]( )di 3 + ( )di 3


A10  2 

( )di 4 + ( )di 4 + p4[π1 4 1( )  π2 4 2( )]


 

 
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π1 1 , 1 ( )R0 2d2 
i ( )( )R0 1d1 

i ( )  π2 1 , 1
= p1 ---------------------------------------- + ----------------------------------------

πA1 0
R0 1 πA1 0

R0 2, ,, , 

π1 2 , 2 ( )R0 2d2 
i ( )( )R0 1d1 

i ( )  π2 2 , 2
+ p2 ---------------------------------------- + ----------------------------------------


πA1 0
R0 1 πA1 0

R0 2 
, ,, , 

π1 3 , 3 ( )R0 2d2 
i ( )( )R0 1d1 

i ( )  π2 3 , 3
+ p3 ---------------------------------------- + ----------------------------------------


πA1 0
R0 1 πA1 0

R0 2 
, ,, , 

π1 4 , 4 ( )R0 2d2 
i ( )( )R0 1d1 

i ( )  π2 4 , 4
+ p4 ---------------------------------------- + ----------------------------------------


πA1 0
R0 1 πA1 0

R0 2 
, ,, , 

  
( )R0 1d1 

i ( ) 1 p1 ( ) , 
π1 1 , 1 p2 ( ) ,

 
= p1------------------------------------------------ ------------------π2 1 R1 2 + ------------------π2 2 R1 2  

 
 , , p1 + p2  
 πA1 0

R0 1 π11 p1 + p2 

  
( )R0 1d1 

i ( ) 1 p1 ( ) , 
π1 2 , 2 p2 ( ) , + p2------------------------------------------------ ------------------π2 1 R1 2 + ------------------π2 2 R1 2  

 
 , , p1 + p2  
 πA1 0

R0 1 π21 p1 + p2 

  
( )R0 1d1 

i ( ) 1 p3 ( ) , 
π1 3 , 3 p4 ( ) ,

 
+ p3------------------------------------------------ ------------------π2 3 R1 2 + ------------------π2 4 R1 2  

 
 , , p3 + p4  
 πA1 0

R0 1 π31 p3 + p4 

  
( )R0 1d1 

i ( ) 1 p3 ( ) , 
π1 4 , 4 p3 ( ) ,

 
+ p4------------------------------------------------ ------------------π2 3 R1 2 + ------------------π2 4 R1 2  

 
 , , p3 + p4  
 πA1 0

R0 1 π41 p3 + p4 

1 2 3 4d2 
i ( )  d2 

i ( )  d2 
i ( )  d2 

i ( )+ q1-------------- + q2-------------- + q3-------------- + q4--------------

R0 2 R0 2 R0 2 R0 2 
, , , , 
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d1 
i 1( )  

R0 1, 

-
p1π2 1( )  

πA1 0, 

-R0 2, 
p2π2 2( )  

πA1 0, 

-R0 2, + d2 
i 3( )  

R0 1, 

-
p3π2 3( )  

πA1 0, 

-R0 2, 
p4π2 4( )  

πA1 0, 

-R0 2, ++= 

1 2 3 4d2 
i ( )  d2 

i ( )  d2 
i ( )  d2 

i ( )+ q1-------------- + q2-------------- + q3-------------- + q4--------------
R0 2 R0 2 R0 2 R0 2, , , , 

1 2 3 4d1 
i ( )  d1 

i ( )  d1 
i ( )  d1 

i ( )= q1-------------- + q2-------------- + q3-------------- + q4--------------
R0 1 R0 1 R0 1 R0 1, , , , 

1 2 3 4d2 
i ( )  d2 

i ( )  d2 
i ( )  d2 

i ( )+ q1-------------- + q2-------------- + q3-------------- + q4--------------
R0 2 R0 2 R0 2 R0 2, , , , 

PATH DEPENDENCE AND MARKOV MODELS 

The value of a derivative instrument might depend on the path of its past 
values. Consider a lookback option on a stock—that is, a derivative 
instrument on a stock whose payoff at time t is the maximum difference 
between the price of the stock and a given value K at any moment prior to 
t. Call Vt the payoff of the lookback option at time t. We can then write: 

Vt = max (Sk – K)+ 

0 < ≤ k t

The notation (Sk – K)+ means Sk – K if the difference is positive, 0 oth-
erwise, that is, (Sk – K)+ = max(Sk – K, 0) . Because its value depends 
on the entire path taken by the underlying stock, a lookback option is a 
path-dependent security. 

An adapted process Xt is said to be a Markov process if its condi-
tional distribution at time t depends only on the value of the process at 
time t – 1 and not on the value of the process at dates t – 2, t – 3, .... The 
Markov property can be formally stated as follows: 

P Xt( ) = P Xt( , , …, X0)Xt – 1 Xt – 1 Xt – 2 

THE BINOMIAL MODEL 

Let’s now introduce the simple but important multiperiod finite-state

model known as the binomial model. The binomial model is important
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because it gives a simple and mathematically tractable model of stock 
price behavior that tends, in the limit of a zero time step, to a Brownian 
motion. We introduce a market populated by one risk-free asset and by 
one or more risky assets whose price(s) follow(s) a binomial or trino-
mial model. In the next section we will see how to compute the price of 
derivative instruments in this market. 

In the binomial model of stock prices, we assume that at each time 
step the stock price will assume one of two possible values. This is a 
restriction of the general multiperiod finite-state model described in the 
previous sections and in Chapter 6 on probability. The latter is, as we 
have seen in the previous section, a hierarchical structure of partitions 
of the set of states. The number of sets in any partition is arbitrary, pro-
vided that partitions grow more refined with time. 

The binomial model assumes that there are two positive numbers, d 
and u, such that 0 < d < u and such that at each time step the price St of 
the risky asset changes to dSt or to uSt. In general one assumes that 0 < d 
< 1 < u so that d represents a price decrease (a movement down) while u 
represents a price increase (a movement up). It is often required that 

1d =	 ---
u 

In this case an equal number of movements up and down leave prices 
unchanged. The binomial model is a Markov model as the distribution 
of St clearly depends only on the value of St – 1. 

A binomial model can be graphically represented by a tree. For 
example, Exhibit 14.3 shows a binomial model for three periods. A 
binomial model over T time steps, from 0 to T, produces a total of 2T 

paths. Therefore, the corresponding space of states has 2T states. How-
ever, the number of different final prices ST = ukdT – kS0, k = 0,1,...,T is 
determined solely by the number of u and d in each path and increases 
by 1 at each time step; there are as many final prices as dates. For exam-
ple, the model in Exhibit 14.3 shows three final prices and four states. 

Note that there is a simple relationship between the numbers d and 
u and returns. In fact, we can write, 

– St uSt – StSt + 1Rt(up) = ---------------------- = ------------------- = u – 1 
St St 

Rt(down) = d – 1 
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EXHIBIT 14.3 Binomial Model: The Figure Illustrates a Binomial Tree with Three 
Dates, Three Final Prices, and Four States: uu,ud,du,dd 

Real probabilities of states are typically constructed from the proba-
bilities of a movement up or down. Call p the probability of a move-
ment up; 1 – p is thus the probability of a movement down. Suppose 
that the state s, which is identified by a price path, has k movements up 
and T – k movements down. The probability of the state s is 

T k– ps = pk(1 – p)

Consider the final date T. Each of the possible final prices ST = ukdT – kS0, 
k = 0,1,...,T can be obtained through 

T T!  = -------------------------
k –    k!(T k)! 

paths with k movements up and T – k movements down. The probabil-
ity distribution of final prices is therefore a binomial distribution: 

( – T T k– P ST = ukdT kS0) =   pk(1 – p) k

Following the same reasoning, one can demonstrate that at any interme-
diate date the probability distribution of prices is a binomial distribu-
tion as follows: 
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( – y t k– P St = ukdt kS0) =   pk(1 – p) k

Next introduce a risk-free security. In the setting of a binomial 
model, a risk-free security is simply a security such that d = u =1 + r 
where r > 0 is the positive risk-free rate. To avoid arbitrage it is clearly 
necessary that d < 1 + r < u. In fact, if the interest rate is inferior to both 
the up and down returns, one can make a sure profit by buying the risky 
asset and shorting the risk-free asset. If the interest rate is superior to 
both the up and down returns, one can make a sure profit by shorting 
the risky asset and buying the risk-free asset. Denote by bt the price of 
the risk-free asset at time t. From the definition of price movement in 
the binomial model we can write: bt = (1 + r)tb0. 

Risk-Neutral Probabilities for the Binomial Model 
Let’s now compute the risk-neutral probabilities. In the setting of bino-
mial models, the computation of risk-neutral probabilities is simple. In 
fact we have to impose the condition: 

Qqt = Et [qt + 1] 

which we can explicitly write as follows: 

quSt + (1 – q)dStSt = --------------------------------------------
1 + r 

1 + r = qu + d – qd 

1 + r d– 
q = ---------------------

u d– 

u – 1 – r
1 – q = ---------------------

u d– 

qAs we have assumed 0 < d < 1 + r < u, the condition 0 < < 1 holds. 
Therefore we can state that the unique risk-neutral probabilities are 

1 + r d– 
q = ---------------------

u d– 
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u – 1 – r
1 – q = ---------------------

u d– 

The binomial model is complete and arbitrage free. 
Suppose that there is more than one risky asset, for example two 

risky assets, in addition to the risk-free asset. At each time step each 
risky asset can go either up or down. Therefore there are four possible 
joint movements at each time step: uu,ud,du,dd that we identify with 
the states 1,2,3,4. Four probabilities must be determined at each time 
step; four equations are therefore needed. Two equations are provided 
by the martingale conditions: 

1 1 1 1 
1 q1uSt + q2uSt + q3uSt + q4uStSt = ----------------------------------------------------------------------------------

1 + r 

2 2 2 2 
2 q1uSt + q3uSt + q2uSt + q4uStSt = ----------------------------------------------------------------------------------

1 + r 

A third equation is provided by the fact that probabilities must sum to 
1. The fourth condition, however, is missing. The model is incomplete. 

The problem of approximating price processes when there are two 
stocks and one bond and where the stock prices follow two correlated 
lognormal processes has long been of interest to financial economists. 
As seen above, with two stocks and one bond available for trading, mar-
kets cannot be completed by dynamic trading. This is not the case in the 
continuous-time model, in which markets can be completed by continu-
ous trading in the two stocks and the bond. Different solutions to this 
problem have been proposed in the literature.1 

VALUATION OF EUROPEAN SIMPLE DERIVATIVES 

Consider a market formed by a risky asset (a stock) that follows the 
binomial model plus a risk-free asset. As we have seen in the previous 
section, this market is complete and its risk-neutral probabilities are 

1 Hua He, “Convergence from Discrete- to Continuous-Time Contingent Claims 
Prices,” Review of Financial Studies 3, no. 4 (1990), pp. 523–546. 
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1 + r d– 
q = ---------------------

u d– 

u – 1 – r1 – q = ---------------------
u d– 

Let’s introduce in this market a derivative instrument. The condition 
of absence of arbitrage univocally determines the price of this third secu-
rity. Consider first a European call option on the stock with expiration 
date τ < T and with exercise price K > 0. Recall from Chapter 2 that a 
European call option is a security that gives its holder the right but not 
the obligation to purchase the stock at time τ at price K. Therefore, the 
payoff process of the option is zero before time τ and, at time τ, is 

Cτ
τ = max(Sτ – K, 0) 

Let’s compute the value of the option Ct 
τ at any time 0 < t < τ. Given 

that the binomial model is complete, the value Ct 
τ can be computed as 

the discounted payoff at time t using the risk-neutral probabilities. 
Using the formulas of the previous sections, we can therefore write 

Cτ
τQCt 

τ = Et	 -------------------------
(1 + r)τ – t 

This formula can be explicitly computed as follows. The distribution 
of the payoff of the option at time τ under the risk-neutral probabilities is 
the following: 

P Cτ
τ = (ukdτ – t – k +

[ S0 – K) ] = 
τ 

k 
– t 


 qk(1 – q)τ – t – k 

Therefore the conditional expectation under the risk-neutral probabili-
ties becomes 

τ – t 
τ 1 τ – t – kCt = ------------------------- ∑ (ukdτ – t – kS0 – K)

+ 


τ 

k 
– t 


 qk(1 – q)

(1 + r)τ – t
k = 0 
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More generally, we give the following definition: A simple European 
derivative instrument with expiration time τ is a financial instrument 
whose payoff is zero for 0 ≤ t < τ and is an ℑτ-measurable random vari-
able Vτ at time τ. Recall from Chapter 6 that in this finite-state context, a 
variable is ℑt-measurable if it assumes a constant value on each of the sets 
of the partition It. 

Given the risk-neutral probability measure Q, the value at time t of 
the simple European derivative instrument can be computed as follows: 

Q VτVt = Et	 -------------------------
( 1 + r)τ – t 

If the underlying stock is represented by a binomial model, the value of 
the European derivative instrument can be explicitly computed as: 

τ – t 
1 τ – t – kVt = ------------------------- ∑ Vτ



τ – t qk( 1 – q)

( 1 + r)τ – t
k = 0 

k  

VALUATION OF AMERICAN OPTIONS 

In order to define American options we have first to define the concept 
of a stopping time. In fact, American options can be exercised at any 
moment prior to expiration date in function of some exercising policy. 
These policies define a stopping time. A stopping time is a random time 
s, i.e., a random variable s such that 

{ω ∈ Ω; s	 ω( )  = k} ∈ ℑk 

Consider now an adapted process Xt and a stopping time s. Define a 
spayoff process ds as dt

s = 0 if t ≠ s and dτ = X . Under the risk-neutrals 
probabilities we can write a valuation formula: 

Q XsVt
s = Et ------------------------

– (1 + r)s t

These formulas allow the valuation of American securities in complete 
markets. 
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ARBITRAGE PRICING IN A DISCRETE-TIME, 
CONTINUOUS-STATE SETTING 

Let’s now discuss the discrete-time, continuous-state setting. This is an 
important setting as it is, for example, the setting of the Arbitrage Pric-
ing Theory (APT) Model that we will discuss later in this chapter. 

As in the previous discrete-time, discrete-state setting, we use the 
probabilistic concepts developed in Chapter 6. The economy is repre-
sented by a probability space (Ω,ℑ,P) where Ω is the set of possible 
states, ℑ is the σ-algebra of events (formed, in this continuous-state set-
ting, by a nondenumerable number of events), and P is a probability 
function. As the number of states is infinite, the probability of each state 
is zero and only events, in general, formed by nondenumerable states, 
have a finite probability. There are only a finite number of dates from 0 
to T. Recall from Chapter 6 that the propagation of information is rep-
resented by a finite filtration ℑt, t = 0,1,...,T. In this case, the filtration ℑt 
is not equivalent to an information structure It. 

Each security i is characterized by a payoff process dt
i and by a

i iprice process St
i . In this continuous-state setting, dt and St are formed 

ω i ωby a finite number of continuous variables. As before, dt
i ( )  and St( )  

are, respectively, the payoff and the price of the i-th asset at time t, 0 ≤ t 
≤ T and in state ω ∈ Ω. Following Chapter 6, all payoffs and prices are 
stochastic processes adapted to the filtration ℑ. 

To develop an intuition for continuous-state arbitrage pricing, con-
sider the previous multiperiod, finite-state case with a very large number 
M of states, M>>N where N is the number of securities. Recall from our 
earlier discussion in this chapter that risk-neutral probabilities can be 
computed solving the following system of linear equations: 

qω 
ω Ak t, ∈ 

∑ 
j 

dj 
i ω( )  

Rt j, 

- SAkt 

i – 
t + 1= 

T 

∑ = 0 

M 

∑ qω = 1 
ω = 1 

Recall also that at each date t the information structure It partitions the 
set of states into Mt subsets. Each partition therefore yields N × Mt 
equations and the system is formed by a total of 
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T – 1 

N × ∑ Mt 
t = 0 

equation plus the probability normalizing equation. Consider that the 
previous system can be broken down, at each date t, into separate 
blocks formed by N equations (one for each asset) of the following type: 

T dj
i 

*∑ qω ∑ --------- = SAkt 
ω ∈ Akt j = t + 1 Rt j, 

* qω qω = ----------------------

∑ qω 
ω ∈ Akt 

Each of these systems can be solved individually for the conditional 
*probabilities qω . Recall that a system of this type admits a solution if 

and only if the coefficient matrix and the augmented coefficient matrix 
have the same rank. If the system is solvable, its solution will be unique 
if and only if the number of unknowns is equal to the rank of the coeffi-
cient matrix. 

If the above system is not solvable then there are arbitrage opportuni-
ties. This occurs if the payoffs of an asset are a linear combination of those 
of other assets, but its price is not the same linear combination of the prices 
of the other assets. This happens, in particular, if two assets have the same 
payoff in each state but different prices. In these cases, in fact, the rank of 
the coefficient matrix is inferior to the rank of the augmented matrix. 

Under the assumption 

T – 1 

M N  × ∑ Mt» 
t = 0 

this system, if it is solvable, will be undetermined. Therefore, there will 
be infinite equivalent risk-neutral probabilities and the market will not 
be complete. Going to the limit of an infinite number of states, the 
above reasoning proves, heuristically, that a discrete-time continuous-
state market with a finite number of securities is inherently incomplete. 
In addition, there will be arbitrage opportunities only if the random 
variable that represents the payoff of an asset is a linear combination of 
the random variables that represent the payoffs of other assets, but the 
random variables that represent prices are not in the same relationship. 
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The above discussion can be illustrated in the case of multiple 
assets, each following a binomial model. If there are N linearly indepen-
dent assets, the price paths in the interval (0,T) will form a total of 2NT 

states. In a binomial model, we can limit our considerations to one time 
step as the other steps are identical. In one step, each price St

i at time t 
i idican go up to Stu

i or down to St at time t + 1. Given the prices 
St

i 1 2 N{ } ≡ {St , St , …, St } at time t, there will be, at the next time step, 2N 
1 2 2 N N i ipossible combinations {St w 1 , St w , …, St w } , w  = u  or di . 

Suppose that there are 2NT states and that each combination of 
prices identifies a state. This means that at each date t the information 
structure It partitions the set of states into 2Nt subsets. Each set of the 
partition is partitioned into 2N subsets at the next time step. This yields 
2N(t+1) subsets at time t + 1. 

Note that this partitioning is compatible with any correlation struc-
ture between the random variables that represent prices. In fact, correla-
tions depend on the value of the probability assigned to each state while 
the partitioning we assume depends on how different prices are assigned 
to different states. 

Risk-neutral probabilities qi, i = 1,2,...,2N can be determined solving 
the following system of martingale conditions: 

2N 

i j i∑ qjStw
i( ) = St 

j = 1 

2N 

∑ qj = 1 
j = 1 

j = 1,2,...,2N , i = 1,2,...,N 

which becomes, after dividing each equation by St
i , the following: 

2N 

∑ qjw
i( ) = 1j

j = 1 

2N 

∑ qj = 1 
j = 1 

iwhere wi(j) = u  or di for asset i in state j. 
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It can be verified that, under the previous assumptions and provided 
prices are positive, the above system admits infinite solutions. In fact, as 
N + 1 < 2N, the number of equations is larger than the number of 
unknowns. Therefore, if the system is solvable it admits infinite solu-
tions. To verify that the system is indeed solvable, let’s choose the first 
asset and partition the set of states into two events corresponding to the 
movement up or down of the same asset. Assign to these events proba-
bilities as in the binomial model

1 
1 1 – r + dt 1 qt = ------------------------ and 1 – qt

1 1 ut – dt 

Choose a second asset and partition each of the previous events into 
two events corresponding to the movements up or down of the second 
asset. We can now assign the following probabilities to each of the fol-
lowing four events: 

1 2 2 1 2 2 1 qt qt , qt 
1(1 – qt ), (1 – qt )qt , (1 – qt )(1 – qt ) 

It can be verified that these numbers sum to one. The same process 
can be repeated for each additional asset. We obtain a set of positive 
numbers that sum to one and that satisfy the system by construction. 
There are infinite other possible constructions. In fact, at each step, we 
could multiply probabilities by “correlation factors” (i.e., numbers that 
form a 2 × 2 correlation matrix) and still obtain solutions to the system. 

We can therefore conclude that a system of positive binomial prices 
such as the one above plus a risk-free asset is arbitrage-free and forms 
an incomplete market. Recall from Chapter 8 that if we let the number 
of states tend to infinity, the binomial distribution converges to a nor-
mal distribution. We have therefore demonstrated heuristically that a 
multivariate normal distribution plus a risk-free asset forms an incom-
plete and arbitrage-free market. Note that the presence of correlations 
does not change this conclusion. 

Let’s now see under what conditions this conclusion can be changed. 
Go back to the multiple binomial model, assuming, as before, that there 
are N assets and T time steps. There is no logical reason to impose that 
the number of states be 2NT. As we can consider each time step sepa-
rately, suppose that there is only one time step and that there are a num-
ber of states less than or equal to the number of assets plus 1: M ≤ N + 1. 
In this case, the martingale condition that determines risk-neutral proba-
bilities becomes: 
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M 

j∑ qjw
i( ) = 1 

j = 1 

N 

∑ qj = 1 
j = 1 

There are M equations and N + 1 unknowns with M ≤ N + 1. This 
system will either determine unique risk-neutral probabilities or will be 
unsolvable. Therefore, the market will be either complete and arbitrage-
free or will exhibit arbitrage opportunities. Note that in this case we 
cannot use the constructive procedure used in the previous case. 

What is the economic meaning of the condition that the number of 
states be less than or equal to the number of assets? To illustrate this 
point, assume that the number of states is M = 2K ≤ N + 1. This means 
that we can choose K assets whose independent price processes identify 
all the states as in the previous case. Now add one more asset. This asset 
will go up or down not in specific states but in events formed by a num-
ber of states. Suppose it goes up in the event A and goes down in the 
event B. These events are determined by the value of the first K assets. In 
other words, the new asset will be a function of the first K assets. An 
interesting case is when the new asset can be expressed as a linear func-
tion of the first K assets. We can then say that the first K assets are fac-
tors and that any other asset is expressed as a linear combination of the 
factors. 

Consider that, given the first K assets, it is possible to determine 
state-price deflators. These state-price deflators will not be uniquely 
determined. Any other price process must be expressed as a linear com-
bination of state-price deflators to avoid arbitrage. If all price processes 
are arbitrage-free, the market will be complete if it is possible to deter-
mine uniquely the risk-neutral probabilities. 

If we let the number of states become very large, the number of 
assets must become large as well. Therefore it is not easy to develop 
simple heuristic arguments in the limit of a large economy. What we can 
say is that in a large discrete economy where the number of states is less 
than or equal to the number of assets, if there are no arbitrage opportu-
nities the market might be complete. If the market is complete and arbi-
trage-free, there will be a number of factors while all other processes 
will be linear combinations of these factors. These considerations will 
be further developed in Chapter 18. 
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APT MODELS


In the previous sections we presented the general theory of arbitrage 
pricing. The most fundamental principle of finance theory, absence of 
arbitrage, applies to all price processes. In this section we present a spe-
cial case of the theory which applies to equity prices. In 1976 Stephen 
Ross published a seminal paper2 where he argued that equity returns 
can be represented as a linear regression over a small set of factors and 
that expected returns are determined by principle of absence of arbi-
trage. This pricing theory is called the Arbitrage Pricing Theory (APT). 

APT is formulated in a one period setting. Suppose that equity 
returns can be written as follows: 

r = a + Bf + εεεε

where r is the n-vector of returns to be modeled, f is a k-vector of com-
mon factors with k << n, a is an n-vector of constants, B is a n×k matrix 
and εεεε is an n-vector of random disturbances such that: 

E[εεεε f] = 0 

E[εεεεεεεε′ f] = ΣΣΣΣ

In the above relationships, the factors are stochastic variables. APT 
states that, if there is no arbitrage, the constants a in the above relation-
ship must all be equal to the risk-free rate. 

In a one period setting, if there are only a finite number of securities 
traded at discrete dates and if the price of each security can take any 
value regardless of the prices of other securities, clearly no arbitrage 
opportunity is possible. In fact, given any portfolio, infinite price paths 
can assume negative values. In a probabilistic context it might happen 
that the probability of making a loss starting from zero investment 
might be small but not zero. 

APT holds in the limit of a large economy. Ross assumed that well-
diversified portfolios exist; this implies that stochastic fluctuations go to 
zero in the limit of very large portfolios. This is not to say that portfolio 
behavior becomes deterministic in the limit of large portfolios as factors are 
assumed to be stochastic; it does however mean that uncertainty is com-
pletely captured by the dynamics of factors. Under this assumption, Ross 
demonstrated that the following relationship holds for large economies: 

2 Stephen Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Eco-
nomic Theory 13, no. 3 (December 1976), pp. 341–360. 
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E r[ ]  = λ 0ιιιι + Bλλλλ

where λλλλ are risk premia. This relationship says that each asset’s return is 
equal to the risk-free rate λ 0 plus a linear combination of factors. 

In the original formulation, the above linear relationship holds only 
approximately in the limit of an infinite economy. Any finite number of 
assets can be mispriced, that is, violate the above relationship. The APT 
relationship can be made rigorous with additional restrictions on agent 
behavior. 

T esting APT 
The original formulation of APT does not identify factors. Subsequently 
a number of researchers tried to tackle the problem. As we will see in 
Chapter 18, factors can be either exogenously given factors or abstract 
factors formed by particular portfolios. A number of studies have tried 
to identify macroeconomic factors responsible for stock returns.3 Statis-
tical techniques such as factor analysis or principal components analysis 
have also been used. 

The approximate nature of APT makes it difficult to test it. In fact, 
the APT holds only in the limit of an infinite economy while any finite 
number of securities can be arbitrarily priced without affecting the arbi-
trage principle. For this reason it has been suggested that APT cannot be 
tested at all.4 Based on a given selection of factors APT has been tested 
with the techniques that we will explain in the following sections. 

Testing APT when Factors are Portfolios 
Suppose that factors are given portfolios and that there is a risk-free 
asset. This means that it is known (or at least assumed) that the model 
in excess returns takes the form 

zt = a Bft + εεεεt+ 

3 See, for example, Chen, Nai-Fu, Richard R. Roll, and Stephen A. Ross, “Economic 
Forces and the Stock Market,” Journal of Business 59, no. 3 (1986), pp. 383–404 
and Michael A. Berry, Edwin Burmeister, and Marjorie B. McElroy, “Sorting out 
Risk Using Known APT Factors,” Financial Analysts Journal 44, no. 2 (1988), pp. 
29–42. 
4 Phoebus J. Dhrymes, Irwin Friend, and N. Bulent Gultekin, “A Critical Re-Exami-
nation of the Empirical Evidence on the Arbitrage Pricing Theory,” Journal of Fi-
nance 39, no. 2 (1988), pp. 323–346. 
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f
 =
 (
f1 ,…, fk)
, K << N 

fi =
 α
si 

∑ sris 
s = 1 

where ri = zi – ai and αs are the weights of those portfolios that iden-
s s s

tify factors. 
APT requires that the constants a, when the model is formulated in 

excess returns, are zero. To test APT the model parameters have first to 
be estimated. Suppose that returns are normal IID variables and that the 
multifactor model is unconstrained. Model estimation can be done by 
Maximum Likelihood methods which are, in this case, identical to Ordi-
nary Least Square (OLS) estimates. The model parameters are then 
obtained as the empirical moments, as follows: 

â B̂µ̂µ̂= –
 K 

T 

∑ µ̂
 –
µ̂
K)(zt () zKt –

t = 1B̂ = --------------------------------------------------------------
T 

∑ µ̂
K –
µ̂
K)( () zKtzKt – 
t = 1 

T 

∑1
µ̂
 zt = ----
Tt = 1 

T 

∑1
µ̂
 zKt = ----K 
Tt = 1 

Now suppose that there is a risk-free asset and that the model is 
constrained by the APT constraints. In this case, we can still use MLE 
estimation which yields a zero intercept and the following sensitivities: 
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T 

∑ ztz' Kt 
t = 1B̂ = ---------------------------
T 

∑ zKtz' Kt 
t = 1 

The APT restriction can be tested with Likelihood Ratio methods which 
compare the likelihood of the constrained and unconstrained model. 

Testing and Estimating APT When Factors are not Portfolios 
If factors are not portfolios and if they are given exogenous processes, 
multifactor models are multivariate regressions on the factors. If the 
regression innovations are assumed to be jointly normally distributed and 
no restriction is imposed, models can be estimated with MLE methods 
that are, in this case, equivalent to OLS estimates. Writing the multifactor 
model in real returns, OLS estimation yields the following results: 

µ̂
µµµ B̂µ̂
â = –

K 

T 

∑ µ̂
 –
µ̂
K)( () fKtrt – 
t = 1B̂ = ------------------------------------------------------------
T 

∑ µ̂
K –
µ̂
K)( () fKtfKt – 
t = 1 

T 

∑1
µ̂
 = ----
T 

rt 
t = 1 

T 

∑1
µ̂
 fKt = ----K 
Tt = 1 

Testing the zero intercept restriction from the above estimates can be 
performed using MLE methods. Note that in this case only one model is 
estimated because factors are given. Should factors be portfolios, the 
constrained and unconstrained models yield different factors. 
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SUMMARY


 ■ The law of one price states that a given asset must have the same price 
regardless of the means by which one goes about creating that asset.

 ■ Arbitrage is the simultaneous buying and selling of an asset at two dif-
ferent prices in two different markets.

 ■ A finite-state one-period market is represented by a vector of prices and 
a matrix of payoffs.

 ■ A state-price vector is a strictly positive vector such that prices are the 
product of the state-price vector and the payoff matrix.

 ■ There is no arbitrage if and only if there is a state-price vector.
 ■ A market is complete if an arbitrary payoff can be replicated by a port-

folio.
 ■ A finite-state one-period market is complete if there are as many lin-

early independent assets as states.
 ■ A multiperiod finite-state economy is represented by a probability 

space plus an information structure.
 ■ In a multiperiod finite-state market each security is represented by a 

payoff process and a price process.
 ■ An arbitrage is a trading strategy whose payoff process is nonnegative 

and not always zero.
 ■ A market is complete if any nonnegative payoff process can be repli-

cated with a trading strategy.
 ■ A state-price deflator is a strictly positive process such that prices are 

random variables equal to the conditional expectation of discounted 
payoffs.

 ■ A martingale is a process such that at any time t its conditional expec-
tation at time s, s > t coincides with its present value.

 ■ In absence of arbitrage there is an artificial probability measure in 
which all price processes, appropriately discounted, become martin-
gales.

 ■ Given a probability measure P, the probability measure Q is said to be 
equivalent to P if both assign probability zero to the same events.

 ■ The binomial model assumes that there are two positive numbers, d, 
and u, such that 0 < d < u and such that at each time step the price S of 
the risky asset changes to dS or to uS.

 ■ The distribution of prices of a binomial model is a binomial distribu-
tion.

 ■ The binomial model is complete.
 ■ The Arbitrage Pricing Theory (APT) asserts that each asset’s return is 

equal to the risk-free rate plus a linear combination of factors.
 ■ The APT can be tested with maximum likelihood methods. 
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I 

CHAPTER 15 
Arbitrage Pricing:

Continuous-State, 

Continuous-Time Models 

n the previous chapter we described arbitrage pricing using finite-state 
models. In this chapter we describe arbitrage pricing in the continuous-

state, continuous-time setting. There are a number of important conceptual 
changes in going from a discrete-state, discrete-time setting to a continuous-
state, continuous-time setting. First, each state of the world has probability 
zero. As described in Chapter 6, this precludes the use of standard con-
ditional probabilities for the definition of conditional expectation and 
requires the use of filtrations (rather than of information structures) to 
describe the propagation of information. Second, the tools of matrix 
algebra are inadequate; the more complex tools of calculus and stochas-
tic calculus described in Chapters 4, 8, 9, and 10, respectively, are 
required. Third, simple generalizations are rarely possible as many patho-
logical cases appear in connection with infinite sets. 

THE ARBITRAGE PRINCIPLE IN CONTINUOUS TIME 

Let’s start with the definition of basic concepts. The economy is repre-
sented by a probability space (Ω, ℑ, P) where Ω is the set of possible 
states, ℑ is the σ-algebra of events, and P is a probability measure. Time 
is a continuous variable in the interval [0,T]. Recall from Chapter 6 that 
the propagation of information is represented by a filtration ℑt. The lat-
ter is a family of σ-algebras such that ℑt ⊆ ℑs, t < s. 

441 
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Each security i is characterized by a payoff-rate process δt
i and by a

iprice process Si
t . In this continuous-state setting, δt

i and St are real vari-
ω i ωables with a continuous range such that δt

i ( )  and St( )   are, respectively, 
the payoff-rate and the price of the i-th asset at time t, 0 ≤ t ≤ T and in state 
ω ∈ Ω. Note that δt

i represents a rate of payoff and not a payoff as was the 
case in the discrete-time setting. The payoff-rate process must be inter-
preted in the sense that the cumulative payoff of each individual asset is 

t 

Dt
i = ∫δi sd s 

0 

We assume that the number of assets is finite. We can therefore use 
the vector notation to indicate a set of processes. For example, we write 
δt and St to indicate the vector process of payoff rates and prices respec-
tively. Following Chapter 6, all payoff-rates and prices are stochastic 
processes adapted to the filtration ℑ. One can make assumptions about 
the price and the payoff-rate processes. For example, it can be assumed 
that price and payoff-rate processes satisfy a set of stochastic differen-
tial equations or that they exhibit finite jumps. Later in this chapter we 
will explore a number of these processes. 

As explained in Chapter 6, conditional expectations are defined as 
partial averaging. In fact, given a variable Xs, s > t, its conditional 
expectation Et[Xs] is defined as a variable that is ℑt-measurable and 
whose average on each set A ∈ ℑt is the same as that of X: 

[ ω [ ωYt = Et[X ] ⇔ E Yt( )] = E X ( )]s s 

for ω ∈ A, ∀A ∈ ℑt and Y is ℑt-measurable. 
The law of iterated expectations applies as in the finite-state case: 

Et[Eu(Xs)] = Et[Xs] 

In a continuous-state setting, conditional expectations are variables 
that assume constant values on the sets of infinite partitions. Imagine 
the evolution of a variable X. At the initial date, X0 identifies the entire 
space Ω. At each subsequent date t, the space Ω is partitioned into an 
infinite number of sets, each determined by one of the infinite values of 
Xt.

1 However, these sets have measure zero. In fact, they are sets of the 

1 One can visualize this process as a tree structure with an infinite number of branch-
es and an infinite number of branching points. However, as the number of branches 
and of branching points is a continuum, intuition might be misleading. 
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type: {A: ω ∈ A ⇔ Xt(ω) = x} determined by specific values of the vari-
able Xt. These sets have probability zero as there is an infinite number 
of values Xt. As a consequence, we cannot define conditional expecta-
tion as expectation under the usual definition of conditional probabili-
ties the same way we did in the case of finite-state setting. 

Trading Strategies and Trading Gains 
We have to define the meaning of trading strategies in the continuous-
state, continuous-time setting; this requires the notion of continuous 
trading. Mathematically, continuous trading means that the composi-
tion of portfolios changes continuously at every instant and that these 
changes are associated with trading gains or losses. A trading strategy is 

θt
ia (vector-valued) process θ = {θi} such that θθθθt = { }  is the portfolio 

held at time t. To ensure that there is no anticipation of information, 
each trading strategy θ must be an adapted process. 

Given a trading strategy, we have to define the gains or losses asso-
ciated with it. In discrete time, the trading gains equal the sum of pay-
offs plus the change of a portfolio’s value 

T 
 i i∑ ∑dt

i θi
t 

 + ∑Si

TθT – ∑S0 
i θ0 

t = 0 i i i 

over a finite interval [0,T]. 
We must define trading gains when time is a continuous variable. 

Recall from Chapter 8 that it is not possible to replace finite sums of 
stochastic increments with pathwise Riemann-Stieltjes integrals after 
letting the time interval go to zero. The reason is that, though we can 
assume that paths are continuous, we cannot assume that they have 
bounded variation. As a consequence, pathwise Riemann-Stieltjes inte-
grals generally do not exist. However, we can assume that paths are of 
bounded quadratic variation. Under this latter assumption, using Itô 
isometry, we can define pathwise Itô integrals and stochastic integrals. 

Let’s first assume that the payoff-rate process is zero, so that there 
are only price processes. Under this assumption, the trading gain Tt of a 
trading strategy can be represented by a stochastic integral: 

t t 
iTt = ∫θθθθsdS = ∑∫θi dSs s s 

0 i 0 

In the rest of this section, we will not strictly adhere to the vector 
notation when there is no risk of confusion. For example, we will write 
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θ ⋅ S to represent the scalar product θ ⋅ S. If a payoff-rate process is asso-
ciated with each asset, we have to add the gains consequent to the pay-
off-rate process. We therefore define the gain process 

i iGt
i = St + Dt 

as the sum of the price processes plus the cumulative payoff-rate pro-
cesses and we define the trading gains as the stochastic integral 

t t 
iTt = ∫θθθθsdG = ∑∫θsdGi 

s s 

0 i 0 

How can we match the abstract notion of a stochastic integral with 
the buying and selling of assets? In discrete time, trading gains have a 
meaning that is in agreement with the practical notion of buying a port-
folio of assets, holding it for a period, and then selling it at market 
prices, thus realizing either a gain or a loss. One might object that in 
continuous time this meaning is lost. How can a process where prices 
change so that their total variation is unbounded be a reasonable repre-
sentation of financial reality? This is a question of methodology that is 
relevant to every field of science. In classical physics, the use of continu-
ous models was assumed to reflect reality; time and space, for example, 
were considered continuous. Quantum physics upset the conceptual cart 
of classical physics and the reality of continuous processes has since been 
questioned at every level. In quantum physics, a theory is considered to 
be nothing but a model useful as a mathematical device to predict mea-
surements. This is, in essence, the theory set forth in the 1930s by Niels 
Bohr and the School of Copenhaghen; it has now become mainstream 
methodology in physics. It is also, ultimately, the point of view of posi-
tive economics. In a famous and widely quoted essay, Milton Friedman, 
recipient of the 1976 Nobel Prize in Economic Science, wrote: 

The relevant question to ask about the “assumptions” of a theory 
is not whether they are descriptively “realistic,” for they never are, 
but whether they are sufficiently good approximations for the pur-
pose in hand. And this question can be answered only by seeing 
whether the theory works, which means if it yields sufficiently 
accurate predictions.2 

2 Milton Friedman, Essays in the Theory of Positive Economics (Chicago: University 
of Chicago Press, 1953). 
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In the spirit of positive economics, continuous-time financial models 
are mathematical devices used to predict, albeit in a probabilistic sense, 
financial observations made at discrete intervals of time. Stochastic 
gains predict trading gains only at discrete intervals of time—the only 
intervals that can be observed. Continuous-time finance should be seen 
as a logical construction that meets observations only at a finite number 
of dates, not as a realistic description of financial trading. 

Let’s consider processes without any intermediate payoff. A self-
financing trading strategy is a trading strategy such that the following 
relationships hold: 

i i i i iθθθθtSt = ∑θtSt = ∑

θi 

0S0 + ∫ 
t 

θtdSt , t ∈ [0, T] 
i i  

0 
 

We first define arbitrage in the absence of a payoff-rate process. An 
arbitrage is a self-financing trading strategy such that: θ0S0 < 0 and θTST 
≥ 0, or θ0S0 ≤ 0 and θTST > 0. If there is a payoff-rate process, a self-
financing trading strategy is a trading strategy such that the following 
relationships hold: 

i i i i iθθθθtSt = ∑θtSt = ∑

θi 

0S0 + ∫ 
t 

θtdGt , t ∈ [0, T] 
i i  

0 
 

i iwhere Gt
i = St + Dt is the gain process as previously defined. An arbi-

trage is a self-financing trading strategy such that: θ0S0 < 0 and θTST ≥ 
0, or θ0S0 ≤ 0 and θTST > 0. 

ARBITRAGE PRICING IN CONTINUOUS-STATE, 
CONTINUOUS-TIME 

The abstract principles of arbitrage pricing are the same in a discrete-
state, discrete-time setting as in a continuous-state, continuous-time set-
ting. Arbitrage pricing is relative pricing. In the absence of arbitrage, the 
price and payoff-rate processes of a set of basic assets fix the prices of 
other assets given the payoff-rate process of the latter. If markets are com-
plete, every price process can be computed in this way. In a discrete-state, 
discrete-time setting, the computation of arbitrage pricing is done with 
matrix algebra. In fact, in the absence of arbitrage, every price process 
can be expressed in two alternative ways: 
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1. Prices St
i are equal to the normalized conditional expectation of pay-

offs deflated with state prices under the real probabilities: 

T 
1St

i = -----Et ∑ πjdj
i 

πt j = t + 1 

2. Prices St
i are equal to the conditional expectation of discounted payoffs 

under the risk-neutral probabilities 

T 
Q 

dj
i 

St
i = Et ∑ Rt jj = t + 1 , 

State-price deflators and risk-neutral probabilities can be computed solv-
ing systems of linear equations for a kernel of basic assets. The above 
relationships are algebraic linear equations that fix all price processes. 

In a continuous-state, continuous-time setting, the principle of arbi-
trage pricing is the same. In the absence of arbitrage, given a number of 
basic price and payoff stochastic processes, other processes are fixed. 
The latter are called redundant securities as they are not necessary to fix 
prices. If markets are complete, every price process can be fixed in this 
way. In order to make computations feasible, some additional assump-
tions are made, in particular all payoff-rate and price processes are 
assumed to be Itô processes. 

The theory of arbitrage pricing in a continuous-state, continuous-
time setting uses the same tools as in a discrete-state, discrete-time set-
ting. Under an equivalent martingale measure, all price processes 
become martingales. Therefore prices can be determined as discounted 
present value relationships. Equivalent martingale measures are the 
same concept as state-price deflators: After appropriate deflation, all 
processes become martingales. The key point of arbitrage pricing theory 
is that both equivalent martingale measures and state-price deflators can 
be determined from a subset of the market. All other processes are 
redundant. 

In the following sections we will develop the theory of arbitrage 
pricing in steps. First, we will illustrate the principles of arbitrage pric-
ing in the case of options, arriving at the Black-Scholes option pricing 
formula. We will then extend this theory to more general derivative 
securities. Subsequently, we will state arbitrage pricing theory in the 
context of equivalent martingale measures and of state-price deflators. 
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OPTION PRICING


We will now apply the concepts of arbitrage pricing to option pricing in a 
continuous-state, continuous-time setting. Suppose that a market consists 
of three assets: a risk-free asset (which allows risk-free borrowing and lend-
ing at the risk-free rate of interest), a stock, and a European option. We will 
show that the price processes of a stock and of a risk-free asset fix the price 
process of an option on that stock. 

Suppose the risk-free rate is a constant r. Recall from Chapter 4 that 
the value Vt of a risk-free asset with constant rate r evolves according to 
the deterministic differential equation of continually compounding 
interest rates: 

dVt = rVtdt 

The above is a differential equation with separable variables. After sep-
arating the variables, the equation can be written as 

dVt --------- = rdt 
Vt 

which admits the solution Vt = V0ert where V0 is the initial value of 
the bank account. This formula can also be interpreted as the price pro-
cess of a risk-free bond with deterministic rate r. 

Stock Price Processes 
Let’s now examine the price process of the stock. Consider the process y 
= αt + σBt where Bt is a standard Brownian motion. From the definition 
of Itô integrals, it can be seen that this process, which is called an arith-
metic Brownian motion, is the solution of the following diffusion equa-
tion: 

dyt = αdt + σdBt 

where α is a constant called the drift of the diffusion and σ is a constant 
called the volatility of the diffusion. (αt + σBt)Consider now the process St = S0e , t ≥ 0. Applying Itô’s 
lemma it is easy to see that this process, which is called a geometric 
Brownian motion, is an Itô process that satisfies the following stochastic 
differential equation: 

dSt = µStdt + σStdBt ; S0 = x 
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where x is an initial value, µ = α + ¹�₂σ2 and Bt is a standard Brownian 
motion. We assume that the stock price process follows a geometric 
Brownian motion and that there is no payoff-rate process. 

Now consider a European call option which gives the owner the right 
but not the obligation to buy the underlying stock at the exercise price K 
at the expiry date T. Call Yt the price of the option at time t. The price of 
the option as a function of the stock price is known at the final expiry 
date. If the option is rationally exercised, the final value of the option is 

YT = max(ST – K, 0) 

In fact, the option can be rationally exercised only if the price of the 
stock exceeds K. In that case, the owner of the option can buy the 
underlying stock at the price K, sell it immediately at the current price St 
and make a profit equal to (ST – K). If the stock price is below K, the 
option is clearly worthless. After T, the option ceases to exist. 

How can we compute the option price at every other date? We can 
arrive at the solution in two different but equivalent ways: (1) through 
hedging arguments and (2) the equivalent martingale measures. In the 
following sections we will introduce hedging arguments and equivalent 
martingale measures. 

Hedging 
To hedge means to protect against an adverse movement. The seller of an 
option is subject to a liability as, from his point of view, the option has a 
negative payoff in some states. In our context, hedging this option means 
to form a self-financing trading strategy formed with the stock plus the 
risk-free asset in appropriate proportions such that the option plus this 
hedging portfolio is risk free. Hedging the option implies that the hedging 
portfolio perfectly replicates the option payoff in every possible state. 

A European call option has only one payoff at the expiry date. It 
therefore suffices that the hedging portfolio replicates the option payoff 
at that date. Suppose that there is a self-financing trading strategy
(θt 

21 , θt ) in the bond and the stock such that 

1 2θt VT + θt ST = YT 

To avoid arbitrage, the price of the option at any moment must be equal 
to the value of the hedging self-financing trading strategy. In fact, sup-
pose that at any time t < T the self-financing strategy (θt 

21 , θt ) has a 
value lower than the option: 
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1 2θt Vt + θt St < Yt 

An investor could then sell the option for Yt, make an investment
1 2θt Vt + θt St in the trading strategy, and at time T liquidate both the

1 2option and the trading strategy. As θTVT + θt ST = YT the final liquida-
tion has value zero in every state of the world, so that the initial profit

1 2Yt – θt VT + θt ST is a risk-free profit. A similar reasoning could be 
applied if, at any time t < T, the strategy (θt 

21 , θt ) had a value higher 
than the option. Therefore, we can conclude that if there is a self-financ-
ing trading strategy that replicates the option’s payoff, the value of the 
strategy must coincide with the option’s price at every instant prior to 
the expiry date. 

Observe that the above reasoning is an instance of the law of one 
price that we discussed in the previous chapter. If two portfolios have 
the same payoffs at every moment and in every state of the world, their 
price must be the same. In particular, if a trading strategy has the same 
payoffs of an asset, its value must coincide with the price of that asset. 

The Black-Scholes Option Pricing Formula 
Let’s now see how the price of the option can be computed. Assume that 
the price of the option is a function of time and of the price of the 
underlying stock: Yt = C(St,t). This assumption is reasonable but needs 
to be justified; for the moment it is only a hint as to how to proceed 
with the calculations. It will be justified later by verifying that the pric-
ing formula produces the correct final payoff. 

As St is assumed to be an Itô process, in particular a geometric 
Brownian motion, Yt = C(St,t)—which is a function of St—is an Itô pro-
cess as well. Therefore, using Itô’s formula, we can write down the sto-
chastic equation that Yt must satisfy. Recall from Chapter 8 that Itô’s 
formula prescribes that: 

( ( ( ∂C St, t)(∂C St, t) ∂C St, t) 1∂2C St, t) 2σ2 dt + ----------------------σStdBdYt = ---------------------- + ----------------------Stµ + ----------------------------St
∂t ∂St 2 ∂St 
∂St


2 

1Suppose now that there is a self-financing trading strategy Yt = θt Vt2+ θt St . We can write this equation as 

t t t 

dYt = 1 dVt + θt dSt∫ θt ∫ 2∫ 
0 0 0 
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or, in differential form, as 

1 2 1 2dYt = θt dVt + θt dSt = (θt rVt + θt µSt)dt + θt 
2σStdBt 

If the trading strategy replicates the option price process, the two 
expressions for dYt—the one obtained through Itô’s lemma and the 
other obtained through the assumption that there is a replicating self-
financing trading strategy—must be equal: 

1 2(θt rVt + θt µSt)dt + θt 
2σStdBt 

( ( ( ∂C St, t)(∂C St, t) ∂C St, t) 1∂2C St, t) 2σ2 dt + ----------------------σStdBt = ---------------------- + ----------------------Stµ + ----------------------------St
∂t ∂St 2 ∂St 
∂St


2 

The equality of these two expressions implies the equality of the 
coefficients in dt and dB respectively. Equating the coefficients in dB 
yields, 

θt 
2 = 

∂C St, t( ) 
∂St 

-

As Yt = C St, t( ) = θt 
1Vt , substituting, we obtainθt 

2St+ 

θt 
1 = 1 

Vt 

- C St, t( ) – 
∂C St, t( ) 

∂St 

-St 

We have now obtained the self-financing trading strategy in function of 
the stock and option prices. Substituting and equating the coefficients of 
dt yields, 

( (1 (
∂C St, t) ∂C St, t) 

------ C St, t) – ----------------------St rVt + ----------------------µStVt ∂St ∂St 

∂C St, t) ∂C St, t) 1∂2C St, t) 2σ2( ( ( 
= ---------------------- + ----------------------Stµ + ----------------------------St∂t ∂St 2 ∂St 

2 

Simplifying and eliminating common terms, we obtain
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( ( (∂C St, t) ∂C St, t) 1∂2C St, t) 2σ2(– rC St, t) + r----------------------St + ---------------------- + ----------------------------St = 0 
∂St ∂t 2 ∂St 

2 

If the function C(St,t) satisfies this relationship, then the coefficients 
in dt match. The above relationship is a partial differential equation 
(PDE). In Chapter 9 we discussed how to solve this equation with suit-
able boundary conditions. Boundary conditions are provided by the 
payoff of the option at the expiry date: 

(YT = C ST, T) = max(ST – K, 0) 

The closed-form solution of the above PDE with the above boundary 
conditions was derived by Fischer Black and Myron Scholes3 and 
referred to as the Black-Scholes option pricing formula: 

( ( ) – e –r T  – t)C St, t) = xΦ z ( KΦ(z – σ T t)– 

with 

 1 2 –log (St ⁄ K) + r + ---σ  (T t)
2  

z = --------------------------------------------------------------------------
σ T t– 

and where Φ is the cumulative normal distribution. 
Let’s stop for a moment and review the logical steps we have fol-

lowed thus far. First, we defined a market made by a stock whose price 
process follows a geometric Brownian motion and a bond whose price 
process is a deterministic exponential. We introduced into this market a 
European call option. We then made two assumptions: (1) The option’s 
price process is a deterministic function of the stock price process; and 
(2) the option’s price process can be replicated by a self-financing trad-
ing strategy. 

If the above assumptions are true, we can write a stochastic differ-
ential equation for the option’s price process in two different ways: (1) 
Using Itô’s lemma, we can write the option price stochastic process as a 
function of the stock stochastic process; and (2) using the assumption 
that there is a replicating trading strategy, we can write the option price 

3 Fischer Black and Myron Scholes, “The Pricing of Options and Corporate Liabili-
ties,” Journal of Political Economy 81 (1973), pp. 637–654. 
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stochastic process as the stochastic process of the trading strategy. As 
the two equations describe the same process, they must coincide. Equat-
ing the coefficients in the deterministic and stochastic terms, we can 
determine the trading strategy and write a deterministic partial differen-
tial equation (PDE) that the pricing function of the option must satisfy. 
The latter PDE together with the boundary conditions provided by the 
known value of the option at the expiry date uniquely determine the 
option pricing function. 

Note that the above is neither a demonstration that there is an 
option pricing function, nor a demonstration that there is a replicating 
trading strategy. However, if both a pricing function and a replicating 
trading strategy exist, the above process allows one to determine both 
by solving a partial differential equation. After determining a solution 
to the PDE, one can verify if it provides a pricing function and if it 
allows the creation of a self-financing trading strategy. Ultimately, the 
justification of the existence of an option’s pricing function and of a rep-
licating self-financing trading strategy resides in the possibility of actu-
ally determining both. Absence of arbitrage assures that this solution is 
unique. 

Generalizing the Pricing of European Options 
We can now generalize the above pricing methodology to a generic 
European option and to more general price processes for the bond and 
for the underlying stock. In the most general case, the process underly-
ing a derivative need not be a stock price process. However, we suppose 
that the underlying is a stock price process so that replicating portfolios 
can be formed. We generalize in three ways:

 ■ The option’s payoff is an arbitrary finite-variance random variable.
 ■ The stock price process is an Itô process.
 ■ The short-rate process is stochastic. 

Following the definition given in the finite-state setting, we define a 
European option on some underlying process St as an asset whose pay-
off at time T is given by the random variable YT = g(ST) where g(x), x ∈ 
R is a continuous real-valued function. In other words, a European 
option is defined as a security whose payoff is determined at a given 
expiry date T as a function of some underlying random variable. The 
option has a zero payoff at every other date t ∈ [0,T]. This definition 
clearly distinguishes European options from American options which 
yield payoffs at random stopping times. 
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Let’s now generalize the price process of the underlying stock. We 
represent the underlying stock price process as a generic Itô process. 
Recall from Chapter 8 that a generic univariate Itô process can be repre-
sented through the differential stochastic equation: 

dSt = µ(St, t)dt + σ(St, t)dBt ; S0 = x 

where x is the initial condition, B is a standard Brownian motion, and 
µ(St,t) and (St,t) are given functions R × [0,∞) → R. The geometric 
Brownian motion is a particular example of an Itô process. 

Let’s now define the bond price process. We retain the risk-free 
nature of the bond but let the interest rate be stochastic. Recall that in a 
discrete-state, discrete-time setting, a bond was defined as a process 
that, at each time step, exhibits the same return for each state though 
the return can be different in different time steps. Consequently, in con-
tinuous-time we define a bond price process as the following integral: 

t 
(r S , u) ud u∫0Vt = V0e 

where r is a given function that represents the stochastic rate. In fact, 
the rate r depends on the time t and on the stock price process St. Appli-
cation of Itô’s lemma shows that the bond price process satisfies the fol-
lowing equation: 

(dVt = Vtr St, t)dt 

We can now use the same reasoning that led to the Black-Scholes 
formula. Suppose that there are both an option pricing function Yt  = 
C(St,t) and a replicating self-financing trading strategy 

1 2Yt = θt Vt + θt St 

We can now write a stochastic differential equation for the process Yt in 
two ways: 

1. Applying Itô’s lemma to Yt = C(St,t)1 22. Directly to Yt = θt Vt + θt St 

The first approach yields 
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( ( (∂C St, t) ∂C St, t) 1∂2C St, t)
dYt = ---------------------- + ----------------------µ(St, t) + ----------------------------σ2(St, t) dt 

∂t ∂St 2 ∂St 
2 

∂C St, t)(
+ ----------------------σ(St, t)dBt
∂St


The second approach yields 

1 ( 2dYt = [θt r St, t)Vt + θt µ(St, t)]dt + θt 
2σ(St, t)dBt 

Equating coefficients in dt, Db we obtain the trading strategy 

1 1 (
∂C St, t)(

θt = ------ C St, t) – ----------------------StVt ∂St 

2 ∂C St, t)(
θt = ----------------------

∂St 

and the PDE 

( , ( , ( ,( , ( , ( , ∂C x  t) ∂C x  t) 1∂2C x  t) ,–r x  t)C x  t) + r x  t)---------------------x + --------------------- + --------------------------σ2(x t) = 0 
∂x ∂t 2 ∂x 2 

with the boundary conditions C(ST,T) = g(ST). Solving this equation we 
obtain a candidate option pricing function. In each specific case, one 
can then verify that the option pricing function effectively solves the 
option pricing problem. 

STATE-PRICE DEFLATORS 

We now extend the concepts of state prices and equivalent martingale 
measures to a continuous-state, continuous-time setting. As in the previ-
ous sections, the economy is represented by a probability space (Ω, ℑ, P) 
where Ω is the set of possible states, ℑ is the σ-algebra of events, and P 
is a probability measure. Time is a continuous variable in the interval 
[0,T]. The propagation of information is represented by a filtration ℑt. 
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A multivariate standard Brownian motion B = (B1,...,BD) in RD adapted 
to the filtration ℑt is defined over this probability space. From Chapter 
10 we know that there are mathematical subtleties that we will not take 
into consideration, as regards whether (1) the filtration is given and the 
Brownian motion is adapted to the filtration or (2) the filtration is gen-
erated by the Brownian motion. 

Suppose that there are N price processes X = (X1,...,XN) that form a 
multivariate Itô process in RN. Trading strategies are adapted processes θ 
= (θ1,...,θΝ) that represent the quantity of each asset held at each instant. 
In order to ensure the existence of stochastic integrals, we require the 
processes (X1,...,XN) and any trading strategy to be of bounded varia-
tion. Let’s first suppose that there is no payoff-rate process. This assump-
tion will be relaxed in a later section. Suppose also that one of these

1 processes, say Xt , is defined by a short-rate process r, so that 

t 
r ud u∫01Xt = e 

or 

1 1dXt = rtXt dt 

where rt is a deterministic function of t called the short-rate process. 
1Note that Xt  could be replaced by a trading strategy. We can think of rt 

as the risk-free short-term continuously compounding interest rate and
1of Xt as a risk-free continuously compounding bank account. 

The concept of arbitrage and of trading strategy was defined in the 
previous section. We now introduce the concept of deflators in a contin-
uous-time continuous-state setting. Any strictly positive Itô process is 
called a deflator. Given a deflator Y we can deflate any process X, 
obtaining a new deflated process 

YXt = XtYt 

For example, any stock price process of a nondefaulting firm or the risk-
free bank account is a deflator. For technical reasons it is necessary to intro-
duce the concept of regular deflators. A regular deflator is a deflator that, 
after deflation, leaves unchanged the set of admissible bounded-variation 
trading strategies. 

We can make the first step towards defining a theory of pricing 
based on equivalent martingale measures. It can be demonstrated that if 
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Y is a regular deflator, a trading strategy θ is self-financing with respect 
to the price process X = (X1,...,XN) if and only if it is self-financing with 
respect to the deflated price process 

1 NXY = (YtXt , …, YtXt ) 

In addition, it can be demonstrated that the price process X  = 
(X1,...,XN) admits no arbitrage if and only if the deflated price process 

1 NXY = (YtXt , …, YtXt ) 

admits no arbitrage. 
A state-price deflator is a deflator π with the property that the 

deflated price process Xπ is a martingale. As explained in Chapter 6, a 
martingale is a stochastic process Mt such that its current value equals 
the conditional expectation of the process at any future time: Mt  = 
Et[Ms], s > t. For each price process Xt

i , the following relationship 
therefore holds: 

iπtXt = Et[π Xi ] , s > ts s 

This definition is the equivalent in continuous time of the definition of a 
state-price deflator that was given in discrete time in the previous chap-
ter. In fact, recall that we defined a state-price deflator as a process π 
such that 

T 
1St

i = -----Et ∑ πjdj
i 

πt j = t + 1 

If there is no intermediate payoff, as in our present case, the previous 
relationship can be written as 

i i iπtSt = Et[πTST
i ] = Et[Et + 1[πTST]] = Et[πt + 1St + 1] 

The next proposition states that if there is a regular state-price 
deflator then there is no arbitrage. The demonstration of this proposi-
tion hinges on the fact that, as the deflated price process is a martingale, 
the following relationship holds: 
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T 

E ∫θθθθudSπ = 0u 

0 

and therefore any self-financing trading strategy is a martingale. We can 
thus write 

π πθθθθ0S0 = E[θθθθTST ] 

If

π π π πθθθθTST ≥ 0 then θθθθ0S0 ≥ 0 and if θθθθTST > 0 then θθθθ0S0 > 0 

which shows that there cannot be any arbitrage. 
We have now stated that the existence of state-price deflators ensures 

the absence of arbitrage. The converse of this statement in a continuous-
state, continuous-time setting is more delicate and will be dealt with later. 
We will now move on to equivalent martingale measures. 

EQUIVALENT MARTINGALE MEASURES 

In the previous section we saw that if there is a regular state-price deflator 
then there is no arbitrage. A state-price deflator transforms every price pro-
cess and every self-financing trading strategy into a martingale. We will 
now see that, after discounting by an appropriate process, price pro-
cesses become martingales through a transformation of the real probability 
measure into an equivalent martingale measure.4 This theory parallels the 
theory of equivalent martingale measures developed in the discrete-state, 
discrete-time setting. First some definitions must be discussed. 

Given a probability measure P, the probability measure Q is said to 
be equivalent to P if both assign probability zero to the same events, 
that is, if P(A) = 0 if and only if Q(A) = 0 for every event A. The equiva-
lent probability measure Q is said to be an equivalent martingale mea-

4 The theory of equivalent martingale measures was developed in the following arti-
cles: J.M. Harrison and S.R. Pliska, “A Stochastic Calculus Model of Continuous 
Trading: Complete Markets,” Stochastic Process Application 15 (1985), pp. 313– 
316; J.M. Harrison and S.R. Pliska, “Martingales and Stochastic Integrals in the 
Theory of Continuous Trading,” Stochastic Process Application 11 (1981), pp. 215– 
260 and, J.M. Harrison and D.M. Kreps, “Martingales and Arbitrage in Multiperiod 
Securities Markets,” Journal of Economic Theory 20 (June 1979), pp. 381–408. 
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sure for the process X if X is a martingale with respect to Q and if the 
Radon-Nikodym derivative 

dQξ = ---------
dP 

has finite variance. The definition of the Radon-Nikodym derivative is 
the same here as it is in the finite-state context. The Radon-Nikodym 
derivative is a random variable ξ such that Q(A) = EP[ξIA] for every 
event A where IA is the indicator function of the event A. 

To develop an intuition for this definition, consider that any sto-
chastic process X is a time-dependent random variable Xt. The latter is 
a family of functions Ω → R from the set of states to the real numbers 
indexed with time such that the sets {Xt(ω) ≤ x} are events for any real 
x. Given the probability measure P, the finite-dimension distributions of 
the process X are determined. The equivalent measure Q determines 
another set of finite-dimension distributions. However, the correspon-
dence between the process paths and the states remains unchanged. 

The requirement that P and Q are equivalent is necessary to ensure 
that the process is effectively the same under the two measures. There is 
no assurance that given an arbitrary process an equivalent martingale 
measure exists. Let’s assume that an equivalent martingale measure does 
exist for the N-dimensional price process X = (X1,...,XN). It can be dem-
onstrated that if the price process X = (X1,...,XN) admits an equivalent 
martingale measure then there is no arbitrage. 

The proof is similar to that for state-price deflators as discussed 
above. Under the equivalent martingale measure Q, which we assume 
exists, every price process and every self-financing trading strategy 
becomes a martingale. Using the same reasoning as above it is easy to 
see that there is no arbitrage. 

This result can be generalized; here is how. If there is a regular defla-
1 Ntor Y such that the deflated price process XY = (YtXt , …, YtXt ) admits 

an equivalent martingale measure, then there is no arbitrage. The proof 
hinges on the result established in the previous section that, if there is a 
regular deflator Y, the price process X admits no arbitrage if and only if 
the deflated price process XY admits no arbitrage. 

Note that none of these results is constructive. They only state that 
the existence of an equivalent martingale measure with respect to a price 
process ensures the absence of arbitrage. Conditions to ensure the exist-
ence of an equivalent martingale measure with respect to a price process 
are given in the next section. 
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EQUIVALENT MARTINGALE MEASURES AND 
GIRSANOV’S THEOREM 

We first need to establish an important mathematical result known as 
Girsanov’s Theorem. This theorem applies to Itô processes. Let’s first 
state Girsanov’s theorem in simple cases. Let X be a single-valued Itô 
process where B is a single-valued standard Brownian motion: 

t t 

Xt = x + ∫µs sd + ∫σsdBs 

0 0 

Suppose that a process ν and a process θ such that σtθt = µt – νt are 
given. Suppose, in addition, that the process θ satisfies the Novikov con-
dition which requires 

1 t 2 
--- θ sd 2∫0 s 

E e ∞< 

Then, there is a probability measure Q equivalent to P such that the fol-
lowing integral 

t 

B̂t = Bt + ∫θ sds 

0 

ˆdefines a standard Brownian motion Bt in R on (Ω,ℑ,Q) with the same 
standard filtration of the original Brownian motion Bt. In addition, 
under Q the process X becomes 

t t 

ˆXt = x + ∫νs sd + ∫σ dBss 

0 0 

Girsanov’s Theorem states that we can add drift to a standard 
Brownian motion and still obtain a standard Brownian motion under 
another probability measure. In addition, by changing the probability 
measure we can arbitrarily change the drift of an Itô process. 

The same theorem can be stated in multiple dimensions. Let X be an 
N-valued Itô process: 
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t t 

Xt = x + ∫µs sd + ∫σsdBs 

0 0 

In this process, µs is an N-vector process and σs is an N × D matrix. 
Suppose that there are both a vector process ν = (ν1,...,νN) and a vector 
process θ = (θ1,...,θN) such that σtθt = µt – νt where the product σtθt is 
not a scalar product but is performed component by component. Sup-
pose, in addition, that the process θ satisfies the Novikov condition: 

1∫0 

t
⋅ --- θ θ sd 2

E e ∞< 

Then there is a probability measure Q equivalent to P such that the fol-
lowing integral 

t 

B̂t = Bt + ∫θ sds 

0 

ˆdefines a standard Brownian motion Bt in RD on (Ω,ℑ,Q) with the same 
standard filtration of the original Brownian motion Bt. In addition, 
under Q the process X becomes 

t t 

ˆXt = x + ∫νs sd + ∫σ dBss 

0 0 

Girsanov’s Theorem essentially states that under technical condi-
tions (the Novikov condition) by changing the probability measure, it is 
possible to transform an Itô process into another Itô process with arbi-
trary drift. Prima facie, this result might seem unreasonable. In the end 
the drift of a process seems to be a fundamental feature of the process as 
it defines, for example, the average of the process. Consider, however, 
that a stochastic process can be thought as the set of all its possible 
paths. In the case of an Itô process, we can identify the process with the 
set of all continuous and square integrable functions. As observed 
above, the drift is an average and it is determined by the probability 
measure on which the process is defined. Therefore, it should not be sur-
prising that by changing the probability measure it is possible to change 
the drift. 
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The Diffusion Invariance Principle 
Note that Girsanov’s Theorem requires neither that the process X be a 
martingale nor that Q be an equivalent martingale measure. If X is 
indeed a martingale under Q, an implication of Girsanov’s Theorem is 
the diffusion invariance principle which can be stated as follows. Let X 
be an Itô process: 

dXt = µtdt + σtdBt 

If X is a martingale with respect to an equivalent probability measure Q, 
ˆthen there is a standard Brownian motion BT in RD under Q such that 

ˆdXt = σtdBt 

Let’s now apply the previous results to a price process X = (V,S1,...,SN–1) 
where 

dSt = µtdt + σtdBt 

and 

dVt = rtVtdt 

–1If the short-term rate r is bounded, Vt  is a regular deflator. Con-
sider the deflated processes: 

Zt = StVt 
–1 

By Itô’s lemma, this process satisfies the following stochastic equation: 

 µt  σtdZt = –rtZt + ------ dt + ------dBt Vt Vt 

Suppose there is an equivalent martingale measure Q. Under the 
equivalent martingale measure Q, the discounted price process 

Zt = StVt 
–1 

is a martingale. In addition, by the diffusion invariance principle there is 
ˆa standard Brownian motion Bt in RD under Q such that: 
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σtdZt =	 ------dB̂ 
t

Vt 

Applying Itô’s lemma, given that ZtVt = St, we obtain the fundamen-
tal result: 

ˆdSt = rtdt + σtdBt 

This result states that, under the equivalent martingale measure, all 
price processes become Itô processes with the same drift. 

Application of Girsanov’s Theorem to Black-Scholes 
Option Pricing Formula 
To illustrate Girsanov’s Theorem, let’s see how the Black-Scholes option 
pricing formula can be obtained from an equivalent martingale mea-
sure. In the previous setting, let’s assume that N = 3, d = 1, rt is a con-
stant and 

σt = σSt 

with σ constant. Let S be the stock price process and C be the option 
price process. The option’s price at time T is 

1C = max(ST – K) 

In this setting, therefore, the following three equations hold: 

SdSt = µt
Sdt + σSt dBt 

2 cdCt = µt
cdt + σt dBt 

dVt = rVtdt 

Given that CtVt 
–1 is a martingale, we can write 

2 

Ct = VtEt ------- = Et 
(Q CT Q[e –r T  – t)max(ST – K)]

Vt 
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It can be demonstrated by direct computation that the above for-
mula is equal to the Black-Scholes option pricing formula presented ear-
lier in this chapter. 

EQUIVALENT MARTINGALE MEASURES AND 
COMPLETE MARKETS 

In the continuous-state, continuous-time setting, a market is said to be 
complete if any finite-variance random variable Y can be obtained as the 
terminal value at time T of a self-financing trading strategy θ: Y = θTXT. 
A fundamental theorem of arbitrage pricing states that, in the absence 
of arbitrage, a market is complete if and only if there is a unique equiv-
alent martingale measure. This is condition can be made more specific 
given that the market is populated with assets that follow Itô processes. 
Suppose that the price process is X = (V,S1,...,SN–1) where, as in the pre-
vious section: 

dSt = µtdt + σtdBt 

dVt = rVtdt 

and B is a standard Brownian motion B = (B1,...,BD) in RD . 
It can be demonstrated that markets are complete if and only if 

rank(σ) = d almost everywhere. This condition should be compared with 
the conditions for completeness we established in the discrete-state set-
ting in the previous chapter. In that setting, we demonstrated that mar-
kets are complete if and only if the number of linearly independent price 
processes is equal to the maximum number of branches leaving a node. 
In fact, market completeness is equivalent to the possibility of solving a 
linear system with as many equations as branches leaving each node. 

In the present continuous-state setting, there are infinite states and 
so we need different types of considerations. Roughly speaking, each 
price process (which is an Itô process) depends on D independent 
sources of uncertainty as we assume that the standard Brownian motion 
is D-dimensional. In a finite-state setting this means that, if processes 
are Markovian, at each time step any process can jump to D different 
values. The market is complete if there are D independent price pro-
cesses. Note that the number D is arbitrary. 
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EQUIVALENT MARTINGALE MEASURES AND STATE PRICES


We will now show that equivalent martingale measures and state prices 
are the same concept. We use the same setting as in the previous sec-
tions. Suppose that Q is an equivalent martingale measure after defla-
tion by the process 

t 
–r ud 

1 ∫0 
u 

------- = e 
1Vt 

where r is a bounded short-rate process. The density process ξt for Q is 
defined as 

= E --------- , t ∈ [0,T]ξt r
dQ 
dP 

where 

dQ 
dP 

is the Radon-Nikodym derivative of Q with respect to P. As in the dis-
crete-state setting, the Radon-Nikodym derivative of Q with respect to 
P is a random variable 

dQξ = ---------
dP 

with average value on the entire space equal to 1 and such that, for 
every event A, the probability of A under Q is the average of ξ: 

( ) = EA ξPQ A [ ]  

It can be demonstrated that, given any ℑt-measurable random vari-
able W, the density process ξt for Q has the following property: 

Q W
Et[Wξt]Et [ ] = ---------------------

ξt 
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To gain an intuition for the Radon-Nikodym derivative in a contin-
uous-state setting, let’s assume that the probability space is the real line 
equipped with the Borel σ-algebra and with a probability measure P. In 
this case, ξ = ξ(x), R → R and we can write 

Q A( ) = ξ Pd ∫ 
A 

or, dQ = ξdP. Given any random variable X with density f under P and 
density q under Q, we can then write 

[ ] = xq x ( )f x( ) xd = xξ x ( ) xd EQ X ∫ ∫ 
R R 

In other words, the random variable ξ is a function that multiplies the 
density f to yield the density q. 

We can now show the following key result. Given an equivalent 
martingale measure with density process ξt a state-price deflator is given 
by the process 

t 
–r ud u∫0 = ξteπt 

Conversely, given a state-price deflator πt, the density process 

t 
r ud u∫0 πt= e ------ξt π0 

defines an equivalent martingale measure. In fact, suppose that Q is an 
equivalent martingale measure for XY with πt = ξtYt where 

t 
–r ud u∫0Yt = e 

Then, using the above relationship we can write: 

Y Y YEt[πtXt] = Et[ξtXt ] = ξtE
Q[ξtXt ] = ξtXt = πtXtt 
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which shows that πt is a state-price deflator. The same reasoning in 
reverse order demonstrates that if πt is a state-price deflator then: 

t 
r udu∫0 πtξt = e ------

π0 

is a density process for Q. 

ARBITRAGE PRICING WITH A PAYOFF RATE 

In the analysis thus far, we assumed that there is no intermediate payoff. 
The owner of an asset makes a profit or a loss due only to the changes in 
value of the asset. Let’s now introduce a payoff-rate process δt

i for each 
asset i. The payoff-rate process must be interpreted in the sense that the 
cumulative payoff of each individual asset is 

t 

Dt
i = ∫δs

i sd 
0 

We define a gain process 

i iGt
i = St + Dt 

By the linearity of the Itô integrals, we can write any trading strategy as 

t t t 

θtdGt = θtdXt + ∫θtdDt∫ ∫ 
0 0 0 

If there is a payoff-rate process, a self-financing trading strategy is a 
trading strategy such that the following relationships hold: 

i i iθθθθtSt = ∑θtSt = ∑

θt

iSt
i + ∫ 

t 

θi
tdGt , t ∈ [0,T] 

i i  
0 

 

An arbitrage is, as before, a self-financing trading strategy such that
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θ0S0 < 0 and θTST ≥ 0, or θ0S0 ≤ 0 and θTST > 0 

The previous arguments extend to this case. An equivalent martingale 
measure for the pair (D,S) is defined as an equivalent probability mea-
sure Q such that the Radon-Nikodym derivative 

dQξ = ---------
dP 

has finite variance and the process G = S + D is a martingale. Under these 
conditions, the following relationship holds: 

T s 
–r ud T ∫ –r ud u u

Q ∫ 
+ ∫ t

sSt = Et e t e dD
t 

IMPLICATIONS OF THE ABSENCE OF ARBITRAGE 

We saw that the existence of an equivalent martingale measure or of 
state-price deflators implies absence of arbitrage. We have also seen 
that, in the absence of arbitrage, markets are complete if and only if 
there is a unique equivalent martingale measure. 

In a discrete-state, discrete-time context we could establish the com-
plete equivalence between the existence of state-price deflators, equiva-
lent martingale measures and absence of arbitrage, in the sense that any 
of these conditions implies the other two. In addition, the existence of a 
unique equivalent martingale measure implies absence of arbitrage and 
market completeness. 

In the present continuous-state context, however, absence of arbi-
trage implies the existence of an equivalent martingale measure and of 
state price deflators only under rather restrictive and complex technical 
conditions. If we want to relax these conditions, the condition of 
absence of arbitrage has to be slightly modified. These discussions are 
quite technical and will not be presented in this chapter.5 

5 See F. Delbaen and W. Schachermayer, “The Fundamental Theorem of Asset Pric-
ing for Unbounded Stochastic Processes,” Mathematische Annalen 312, no. 2 (Oc-
tober 1999), pp. 215–250 and F. Delbaen and W. Schachermayer, “A General 
Version of the Fundamental Theorem of Asset Pricing,” Mathematische Annalen 
300, no. 3 (November 1994), pp. 463–520. 
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WORKING WITH EQUIVALENT MARTINGALE MEASURES


The concepts established in the preceding sections of this chapter might 
seem very complex, abstract, and scarcely useful. On the contrary, they 
entail important simplifications in the computation of derivative prices. 
We will see examples of these computations when we cover bond pric-
ing and credit derivatives in later chapters. Here we want to make a few 
general comments on how these tools are used. 

The key result of the arbitrage pricing theory is that, under the 
equivalent martingale measure, all discounted price processes become 
martingales and all price processes have the same drift. Therefore, all 
calculations can be performed under the assumption that the change to 
an equivalent martingale measure has been made. This environment 
allows important simplifications. For example, as we have seen, the 
option pricing problem becomes a problem of computing the present 
value of simpler processes. 

Obviously one has to go back to a real environment at the end of 
the pricing exercise. This is essentially a calibration problem, as risk-
neutral probabilities have to be estimated from real probabilities. 
Despite this complication, the equivalent martingale methodology has 
proved to be an important tool in derivative pricing. 

SUMMARY

 ■ A trading strategy is a vector-valued process that represents portfolio 
weights at each moment.

 ■ Trading gains are defined as stochastic integrals.
 ■ A self-financing trading strategy is one whose value at every moment is 

the initial value plus the trading gains at that moment.
 ■ An arbitrage is a self-financing trading strategy whose initial value is 

either negative and the final value nonnegative or the initial value non-
negative and the final value positive.

 ■ The Black-Scholes option pricing formula can be established by repli-
cating self-financing trading strategies.

 ■ The Black-Scholes pricing argument is based on constructing a self-
financing trading strategy that replicates the option price in each state 
and for each time.

 ■ Absence of arbitrage implies that a replicating self-financing trading 
strategy must have the same price as the option. 
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■ The Black-Scholes option pricing formula is obtained solving the par-
tial differential equation implied by the equality of the replicating self-
financing trading strategy and the option price process. 

■ A deflator is any strictly positive Itô process; a state-price deflator is a 
deflator with the property that the deflated price process is a martin-
gale.

 ■ If there is a (regular) state-price deflator then there is no arbitrage; the 
converse is true only under a number of technical conditions.

 ■ Two probability measures are said to be equivalent if they assign prob-
ability zero to the same event.

 ■ Given a process X on a probability space with probability measure P, 
the probability measure Q is said to be an equivalent martingale mea-
sure if it is equivalent to P and X is a martingale with respect to Q 
(plus other conditions).

 ■ If there is a regular deflator such that the deflated price process admits 
an equivalent martingale measure, then there is no arbitrage.

 ■ Under the equivalent martingale measure, all Itô price processes have 
the same drift.

 ■ In the absence of arbitrage, a market is complete if and only if there is a 
unique equivalent martingale measure. 
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CHAPTER 16 
Portfolio Selection Using

Mean-Variance Analysis


A s explained in Chapter 3, a major step in the direction of the quanti-
tative management of portfolios was made in the 1950s by Harry 

Markowitz in his paper “Portfolio Selection” published in 1952 in the 
Journal of Finance.1 The ideas introduced in this article have come to 
form the foundations of what is now popularly referred to as mean-vari-
ance analysis (M-V analysis) for reasons explained in this chapter, and 
Modern Portfolio Theory (MPT). Initially, M-V analysis generated rela-
tively little interest, but with time, the financial community adopted the 
thesis, and now 50 years later, financial models based on those very 
same principles are constantly being reinvented to incorporate new find-
ings that result from that seminal work. 

Though widely applicable, M-V analysis has had the most influence 
in the practice of portfolio management. In its simplest form, M-V anal-
ysis provides a framework to construct and select portfolios based on 
the expected performance of the investments and the risk appetite of the 
investor. M-V analysis also introduced a whole new terminology, which 
now has become the norm in the area of investment management. 

It may be useful to mention here that the theory of portfolio selec-
tion is a normative theory. A normative theory is one that describes a 
standard or norm of behavior that investors should pursue in construct-
ing a portfolio, in contrast to a theory that is actually followed. Asset 

1 Harry M. Markowitz, “Portfolio Selection,” Journal of Finance (March 1952), pp. 
77–91. In 1959 Markowitz expanded his ideas in book form: Harry M. Markowitz, 
Portfolio Selection: Efficient Diversification of Investments (New York: John Wiley, 
1959). 

471 
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pricing theory such as the capital asset pricing model, which we discuss 
in the next chapter, goes on to formalize the relationship that should 
exist between asset returns and risk if investors constructed and selected 
portfolios according to mean-variance analysis. In contrast to a norma-
tive theory, asset pricing theory is a positive theory—a theory that 
hypothesizes how investors behave rather than how investors should 
behave. Based on that hypothesized behavior of investors, we derive an 
asset pricing model that provides the expected return is derived. 

Our objective in this chapter is to explain the principles of mean-vari-
ance analysis and present a formal mathematical treatment for determin-
ing “efficient portfolios.” The extensions of Markowitz’s formulation 
includes the case where a risk-free asset is available in the capital mar-
ket. This leads to efficient portfolio’s that dominate efficient portfolios 
that can be constructed in a capital market in which there is no risk-free 
asset. We then provide an application of how M-V analysis is used in 
portfolio selection. While there have been many applications of M-V 
analysis in the areas of finance and insurance, we present an application 
to the asset allocation problem. This decision involves deciding how to 
allocate funds across major asset classes. 

DIVERSIFICATION AS A CENTRAL THEME IN FINANCE 

Conventional wisdom has always dictated “not putting all your eggs in 
one basket.” In more technical terms, this old adage is addressing the 
benefits of diversification. Markowitz quantified the concept of diversifi-
cation, or “undiversification” through the statistical notion of covari-
ance, or correlation. In essence, the old adage is saying that putting all 
your money in investments that may all perform poorly at the same 
time—that is, whose returns are highly correlated—is not a very prudent 
investment strategy—no matter how small the chance is that any one 
single investment will perform poorly. This is because if any one single 
investment performs poorly, it is very likely, due to its high correlation 
with the other investments, that the other investments are also going to 
perform poorly, leading to the poor performance of the portfolio. 

The concept of diversification is so intuitive and so strong that it has 
been continuously applied to different areas within finance. Indeed, a 
vast number of the innovations surrounding finance have either been an 
application of the concept of diversification, or the introduction of new 
methods of obtaining improved estimates of the variances and covari-
ances, thereby, allowing for a more precise measure of diversification, 
and consequently, for a more precise measure of risk. 
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Markowitz considered an investor who, at time t, decides what 
portfolio of investments to choose; the time horizon of the investor is 
∆t. The investor makes decisions on the gains and losses he or she will 
make at time t + ∆t, without considering eventual gains and losses either 
during or after the period ∆t. At time t + ∆t, the investor will reconsider 
the situation and decide anew; this last condition is called myopic. 

Nonmyopic investment strategies must be adopted when it is necessary 
to make trade-offs at future dates between consumption and investment or 
when significant trading costs related to specific subsets of investments are 
incurred. We will handle these issues later in this chapter and when we dis-
cuss bond portfolio management in Chapter 21 where we apply the multi-
stage optimization technology discussed in Chapter 7.2 

Markowitz reasoned that investors should decide on the basis of a 
trade-off between risk and return. He made the assumption that returns 
are normally distributed and that risk is measured by the variance of the 
return distribution. In the 1950s when asset pricing theories were not 
yet developed, the assumption of joint normality of returns was a rea-
sonable statistical assumption. It was based on the fact that asset 
returns are influenced by many different independent facts. Recall from 
Chapter 6 on probability theory that the sum of many small random 
disturbances tends to a normal distribution. 

Markowitz argued that for any given level of expected returns 
investors should choose the portfolios with minimum variance from 
amongst the set of all possible portfolios that can be constructed. The 
set of all possible portfolios that can be constructed is called the feasible 
set. In this simple one-period model, variance of returns is a measure of 
uncertainty and thus of risk. Minimum variance portfolios are called 
mean-variance-efficient portfolios. The set of all mean-variance efficient 
portfolios is called the efficient frontier. 

Exhibit 16.1 presents the MPT investment process (mean-variance 
optimization or the theory of portfolio selection). Notice in the exhibit 
that the result of the analysis is the selection of the optimal portfolio. 
We describe what is meant by an optimal portfolio later in this chapter. 

Though its implementation can get quite complicated, the theory is 
relatively straightforward. Here we want to give an intuitive and practi-
cal view of MPT. The theory dictates that given estimates of the returns, 
volatilities, and correlations of a set of investments, and constraints on 
investment choices (for example, maximum exposures and turnover 

2 There are applications of multistage optimization in equity portfolio management 
though these are not as common in the bond portfolio management area. See, for ex-
ample, John M. Mulvey and Hercules Vladimirou, “Stochastic Network Optimization 
Models for Investment Planning,” Management Science 38, no. 11, pp. 1642–1664. 
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EXHIBIT 16.1 The MPT Investment Process 

Source: Exhibit 2 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markowitz, 
“The Legacy of Modern Portfolio Theory,” Journal of Investing (Fall 2002), p. 8. 

constraints) it is possible to perform an optimization that results in the 
risk-return or mean-variance efficient frontier.3 This frontier is efficient 
because underlying every point on this frontier is a portfolio that results 
in the greatest possible return for that level of risk, or results in the 
smallest possible risk for that level of return. The portfolios that lie on 
the frontier make up the set of efficient portfolios. 

When the efficient frontier is constructed using the M-V formula-
tion developed by Markowitz, they are referred to as Markowitz effi-
cient portfolios and the set or frontier of these portfolios is called the 
Markowitz efficient frontier. Exhibit 16.2 provides a graphical depiction 
of the Markowitz efficient frontier based on the feasible portfolios that 
can be constructed. The Markowitz efficient frontier is the upper por-
tion of the curve from II to III. 

MARKOWITZ’S MEAN-VARIANCE ANALYSIS 

Let’s now place the above in a formal mathematical context developing 
the analysis of mean-variance optimization. Suppose first that an inves-
tor has to choose a portfolio formed of N risky assets. The investor’s 
choice is embodied in an N-vector w = {wi} of weights where each 
weight i represents the percentage of the i-th asset held in the portfolio. 
Suppose assets’ returns are jointly normally distributed with an N-vec-

3 In practice this optimization is performed using an off-the-shelf asset allocation 
package. 
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EXHIBIT 16.2 Feasible and Markowitz Efficient Portfoliosa 

a The picture is for illustrative purposes only. The actual shape of the feasible region 
depends on the returns and risks of the assets chosen and the correlation among 
them. 

tor of expected returns µµµµ = {µi} and an N×N variance-covariance matrix 
Σ = {σij}. Under these assumptions, the return of a portfolio a with 
weights wa = {wi}a is a random variable, which is the sum of normally 
distributed random variables. Therefore, it is a normally distributed 
random variable with the following mean and variance: 

µa = wa ′µµµµ

σ2 = w ′ΣΣΣΣwa a a 

For instance, if there are only two assets with weights wa ′ = {wa1wa2}, 
then the portfolios expected return is 

µa = wa1µ1 + wa2µ2 



16-Port Selection Mean Var  Page 476  Wednesday, February 4, 2004  1:09 PM

476 The Mathematics of Financial Modeling and Investment Management 

and its variance is 

σ2 wa1 wa2 
σ11 σ12 w1= a σ21 σ22 w2 

= {wa1σ11 + wa1σ21 wa2σ12 + wa2σ22} 
w1 

w2 

= 2 σ11 + wa2wa1
2 σ22 + 2wa1wa2σ12 

2 2 = w2 σ1 + w2 σ2 + 2wa1wa2σ12a1 a2 

By choosing the portfolio’s weights, an investor chooses among the 
available mean-variance pairs. Following Markowitz, the investor’s 
problem is a constrained minimization problem in the sense that the 
investor must seek 

min σ2( )  = min(w ′ΣΣΣΣw )a a a 

subject to the constraints 

µa = wa ′µµµµ

w ′ιιιι = 1, ιιιι′ = [1 1, , …, 1]a 

This is a constrained optimization problem which can be solved 
with the method of Lagrange multipliers. Recall from Chapter 7 that 
this method transforms a constrained optimization problem into an 
unconstrained optimization problem by forming the Lagrangian, that is, 
the sum of the function to be optimized and a linear combination of the 
constraints. In this case, the Lagrangian is 

L = w ′ΣΣΣΣw + δ1(µa – wa ′µµµ) + δ2(1 – w ′ ιιι)a a a 

The original optimization problem becomes the problem of uncon-
strained maximization of the Lagrangian. To solve this problem, it is 
sufficient to set to zero the partial derivatives of the Lagrangian. Solving 
yields 

w = g hµa+a 

where g and h are two vectors which are functions of µµµµ and ΣΣΣΣ.
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Consider the mean-variance plane, that is, a two-dimensional Carte-
sian plane whose coordinates are mean and variance. In this plane, each 
portfolio is represented by a point. Consider now the set of all efficient 
portfolios with all possible efficient mean-variance pairs. This set is 
what we referred to earlier as the efficient frontier. Later in this chapter 
we show actual efficient frontiers. 

CAPITAL MARKET LINE 

As demonstrated by William Sharpe,4 James Tobin,5 and John Lintner 6 

the efficient set of portfolios available to investors who employ M-V anal-
ysis in the absence of a risk-free asset is inferior to that available when 
there is a risk-free asset.7 We present this formulation in this section.8 

Assume a risk-free asset with a risk-free return denoted by Rf. The 
investor has to choose a combination of the N risky assets plus the risk-
free asset. The weights wR = {wi}R do not have to sum to 1 as the remain-
ing part (1 – wR′ι ) can be invested in the risk-free asset. Note that this 
portion of investment can be positive or negative if we allow risk-free 
borrowing and lending. The portfolio’s expected return and variance are: 

µa = wR ′µµµµ + (1 – wR ′ ιιι)Rf 

σ2 = wR ′ΣΣΣΣwRa 

The portfolio variance is the same expression as before because the 
risk-free asset has zero variance and zero covariances with the risky assets. 

4 William F. Sharpe, “Capital Asset Prices: A Theory of Market Equilibrium Under 
Conditions of Risk,” Journal of Finance (September 1964), pp. 425–442. 
5 James Tobin, “Liquidity Preference as a Behavior Towards Risk,” Review of Eco-
nomic Studies (February 1958), pp. 65–86. 
6 John Lintner, “The Valuation of Risk Assets and the Selection of Risky Investments 
in Stock Portfolios and Capital Budgets,” Review of Economics and Statistics (Feb-
ruary 1965), pp. 13–37. 
7 The portfolio selection model was further extended by Fischer Black in the case of 
a restriction on short selling. See “Capital Market Equilibrium with Restricted Bor-
rowings,” Journal of Business (July 1972), pp. 444–455. 
8 For a comprehensive discussion of these models and computational issues, see Har-
ry M. Markowitz (with a chapter and program by Peter Todd), Mean-Variance Anal-
ysis in Portfolio Choice and Capital Markets (New Hope, PA: Frank J. Fabozzi 
Associates, 2000, originally published in 1987). 
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The investor’s problem is again a constrained optimization problem 
that can be stated as 

min σ 2( )  = min( wR ′ ΣΣΣΣwR)a 

subject to the constraints 

µ a = wR ′ µµµµ + ( 1 – wR ′ ιιι) Rf 

This problem can be solved again with the method of Lagrange multipli-
ers. The Lagrangian is 

L = wR ′ ΣΣΣΣwR + d[µ a – wR ′ µµµµ – ( 1 – wR ′ ιιι) Rf] 

Equating to zero the derivatives of the Lagrangian with respect to 
the weights and to the Lagrange multiplier d, we obtained the solution 
of the constrained minimization problem. The solution of this problem 
has an interesting feature that leads to the CAPM as we will see in the 
next chapter. In fact, developing the lengthy computations, the optimal 
portfolio weights can be written as 

wR = CΣΣΣΣ–1(µµµµ – Rfιιιι) 

µ a – RfC = --------------------------------------------------------
(µµµµ – Rfιιιι)′ ΣΣΣΣ–1(µµµµ – Rfιιιι) 

The above formula shows that the weights of the risky assets of any 
minimum-variance portfolio are proportional to the same vector. The 
proportionality constant is C. Therefore, with a risk-free asset, all mini-
mum variance portfolios are a combination of the risk-free asset and of a 
given risky portfolio. This risky portfolio is called the tangency portfolio. 

With the exception of the tangency portfolio, the minimum variance 
portfolios that are a combination of the tangency portfolio and the risk-
free asset are superior to the portfolio on the Markowitz efficient frontier 
that has the same level of risk. 

Deriving the Capital Market Line 
To derive the Capital Market Line (CML), we begin with the efficient fron-
tier. In the absence of a risk-free asset, Markowitz efficient portfolios can 
be constructed as a constrained minimum problem based on expected 
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return and variance, with the optimal portfolio being the one portfolio 
selected based on the investor’s preference (which later we will see is quan-
tified by the investor’s utility function). The efficient frontier changes, how-
ever, once a risk-free asset is introduced and assuming that investors can 
borrow and lend at the risk-free rate. This is illustrated in Exhibit 16.3. 

Every combination of the risk-free asset and the efficient portfolio 
M, which we referred to as the tangency portfolio in the previous sec-
tion, is shown on the line drawn from the vertical axis at the risk-free 
rate tangent to the Markowitz efficient frontier. All the portfolios on the 
line are feasible for the investor to construct. Portfolios to the left of 
portfolio M represent combinations of risky assets and the risk-free 
asset. Portfolios to the right of portfolio M include purchases of risky 
assets made with funds borrowed at the risk-free rate. Such a portfolio 
is called a leveraged portfolio because it involves the use of borrowed 
funds. The line from the risk-free rate that is tangent to the efficient 
frontier of risky assets is called the capital market line (CML). 

Let’s compare a portfolio on the CML to a portfolio on the 
Markowitz efficient frontier with the same risk in Exhibit 16.3. For 

EXHIBIT 16.3 Capital Market Line and the Markowitz Efficient Frontier 
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example, compare portfolio PA, which is on the Markowitz efficient 
frontier, with portfolio PB, which is on the CML and therefore some 
combination of the risk-free asset and the efficient portfolio M. Notice 
that for the same risk the expected return is greater for PB than for PA. 
By Assumption 2, a risk-averse investor will prefer PB to PA. That is, PB 
will dominate PA. In fact, this is true for all but one portfolio on the 
CML, portfolio M, which is on the Markowitz efficient frontier. With 
the introduction of the risk-free asset, we can now say that an investor 
will select a portfolio on the CML that represents a combination of bor-
rowing or lending at the risk-free rate and the efficient portfolio M. 

We can derive a formula for the CML algebraically. Based on the 
assumption of homogeneous expectations regarding the inputs in the 
portfolio construction process, all investors can create an efficient port-
folio consisting of wf placed in the risk-free asset and wM in the tan-
gency portfolio, portfolio M, where w represents the corresponding 
percentage (weight) of the portfolio allocated to each asset. 

Thus, wf + wM = 1 or wf = 1 – wm. The expected return is equal to 
the weighted average of the expected returns of the two assets. There-
fore, the expected portfolio return, E(Rp), is equal to 

E(Rp) = wf Rf + wM E(RM) 

Since we know that wf = 1 – wM, we can rewrite E(Rp) as follows: 

E(Rp) = (1 − wM) Rf + wM E(RM) 

This can be simplified as follows: 

E(Rp) = Rf + wM [E(RM) − Rf] 

Earlier in this chapter we derived the variance of a portfolio con-
taining only two assets. The variance of the portfolio consisting of the 
risk-free asset and portfolio M is 

2 2var(Rp) = wf var(Rf) + wM var(RM) + 2wf wM cov(Rf , RM) 

We know that the variance of the risk-free asset, var(Rf), is equal to 
zero. This is because there is no possible variation in the return since the 
future return is known. The covariance between the risk-free asset and 
portfolio M, cov(Rf,RM), is zero. This is because the risk-free asset has 
no variability and therefore does not move at all with the return on 
portfolio M which is a risky portfolio. Substituting these two values into 
the formula for the portfolio’s variance, we get 
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2var(Rp) = wM var(RM) 

In other words, the variance of the portfolio is represented by the 
weighted variance of portfolio M. We can solve for the weight of portfo-
lio M by substituting standard deviations for variances. Since the stan-
dard deviation is the square root of the variance, we can write 

SD(Rp) = wMSD(RM) 

and therefore 

SD(Rp ) wM =	 ---------------------
SD(RM ) 

If we substitute the above result and rearrange terms we get the CML: 

E RM ) – Rf(
(E Rp ) = Rf + ------------------------------ SD(Rp )

SD(RM ) 

What is Portfolio M? 
Now we know that portfolio M is pivotal to the CML; we now need to 
know what portfolio M is. That is, how does an investor construct port-
folio M? Eugene Fama demonstrated that portfolio M must consist of 
all assets available to investors, and each asset must be held in propor-
tion to its market value relative to the total market value of all assets.9 

That is, tangency portfolio M is the “market portfolio.” So, rather than 
referring to the market portfolio, we can simply refer to the “market.” 

Recall that using Lagrange multipliers we formally demonstrated in 
a previous section that in the presence of risk-free lending and borrow-
ing the optimal portfolio held by investors is made up of the risk-free 
asset and of one special portfolio called the tangency portfolio. This 
important property is called separation. We can now complete the previ-
ous demonstration: if risk-free lending and borrowing is allowed the 
market is M-V efficient and each investor holds the risk-free asset plus a 
portfolio proportional to the market. 

9 Eugene F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical 
Work,” Journal of Finance (May 1970), pp. 383–417. 
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Risk Premium in the CML 
With homogeneous expectations, SD(RM) and SD(Rp) are the market’s 
consensus for the expected return distributions for portfolio M and 
portfolio p. The risk premium for the CML is 

E RM) – Rf( 
------------------------------ SD(Rp)

SD(RM) 

Let’s examine the economic meaning of the risk premium. 
The numerator of the first term is the expected return from investing 

in the market beyond the risk-free return. It is a measure of the reward 
for holding the risky market portfolio rather than the risk-free asset. The 
denominator is the market risk of the market portfolio. Thus, the first 
term measures the reward per unit of market risk. Since the CML repre-
sents the return offered to compensate for a perceived level of risk, each 
point on the CML is a balanced market condition, or equilibrium. The 
slope of the CML (i.e., the first term) determines the additional return 
needed to compensate for a unit change in risk. That is why the slope of 
the CML is also referred to as the equilibrium market price of risk. 

The CML says that the expected return on a portfolio is equal to the 
risk-free rate plus a risk premium equal to the market price of risk (as mea-
sured by the reward per unit of market risk) times the quantity of risk for the 
portfolio (as measured by the standard deviation of the portfolio). That is, 

ERp = Rf + market price of risk × quantity of risk 

THE CML AND THE OPTIMAL PORTFOLIO 

Given that the new efficient frontier is the CML, how does one select the 
optimal portfolio? That is, how does one determine the optimal combi-
nation of the market portfolio and the risk-free asset in which to invest? 
This depends on the preferences of the investors. To understand this, we 
must introduce the notion of utility functions and indifference curves. 

Utility Functions and Indifference Curves 
In life there are many situations where entities (i.e., individuals and 
firms) face two or more choices. The economic “theory of choice” uses 
the concept of a utility function to describe the way entities make deci-
sions when faced with a set of choices. A utility function assigns a 
(numeric) value to all possible choices faced by the entity. The utility 
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index has the property that pair a is preferred to pair b if and only if the 
utility of a is higher than that of b. The higher the value of a particular 
choice, the greater the utility derived from that choice. The choice that 
is selected is the one that results in the maximum utility given a set of 
constraints faced by the entity. 

The assumption that an investor’s decision-making process can be 
represented as optimization of a utility function goes back to Pareto (see 
Chapter 3). Utility functions can represent a broad set of preference 
ordering. The precise conditions under which a preference ordering can 
be expressed through a utility function have been widely explored in the 
literature.10 

In portfolio theory too, entities are faced with a set of choices. Dif-
ferent portfolios have different levels of expected return and risk. Also, 
the higher the level of expected return, the larger the risk. Entities are 
faced with the decision of choosing a portfolio from the set of all possi-
ble risk/return combinations. Whereas they like return, they dislike risk. 
Therefore, entities obtain different levels of utility from different risk/ 
return combinations. The utility obtained from any possible risk/return 
combination is expressed by the utility function. Put simply, the utility 
function expresses the preferences of entities over perceived risk and 
expected return combinations. 

A utility function can be expressed in graphical form by a set of 
indifference curves. Exhibit 16.4 shows indifference curves labeled u1, 
u2, and u3. By convention, the horizontal axis measures risk and the 
vertical axis measures expected return. Each curve represents a set of 
portfolios with different combinations of risk and return. All the points 
on a given indifference curve indicate combinations of risk and expected 
return that will give the same level of utility to a given investor. For 
example, on utility curve u1 there are two points u and u′, with u having 
a higher expected return than u′, but also having a higher risk. 

Because the two points lie on the same indifference curve, the inves-
tor has an equal preference for (or is indifferent between) the two 
points, or, for that matter, any point on the curve. The (positive) slope 
of an indifference curve reflects the fact that, to obtain the same level of 
utility, the investor requires a higher expected return in order to accept 
higher risk. For the three indifference curves shown in Exhibit 16.4, the 
utility the investor receives is greater the further the indifference curve is 
from the horizontal axis because that curve represents a higher level of 
return at every level of risk. Thus, for the three indifference curves 
shown in the exhibit, u3 has the highest utility and u1 the lowest. 

10 See, for example, Akira Takayama, Mathematical Economics (Cambridge, U.K.: 
Cambridge University Press, 1985). 
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EXHIBIT 16.4 Indifference Curves 

Selection of the Optimal Portfolio 
A reasonable assumption is that investors are risk averse. A risk-averse 
investor is an investor who, when faced with choosing between two 
investments with the same expected return but two different risks, pre-
fers the one with the lower risk. 

In selecting portfolios, an investor seeks to maximize the expected 
portfolio return given his tolerance for risk. Given a choice from the set 
of efficient portfolios, the optimal portfolio is the one that is preferred 
by the investor. In terms of utility functions, the optimal portfolio is the 
efficient portfolio which has the maximum utility. 

The particular efficient portfolio on the CML that the investor will 
select will depend on the investor’s risk preference. This can be seen in 
Exhibit 16.5, which is the same as Exhibit 16.2 but has the investor’s 
indifference curves included. The investor will select the portfolio on the 
CML that is tangent to the highest indifference curve, u3 in the exhibit. 

Notice that without the risk-free asset, an investor could only get to 
u2, which is the indifference curve that is tangent to the Markowitz effi-
cient frontier. Thus, the opportunity to borrow or lend at the risk-free 
rate results in a capital market where risk-averse investors will prefer to 
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EXHIBIT 16.5 Optimal Portfolio and the Capital Market Line 

hold portfolios consisting of combinations of the risk-free asset and the 
tangency portfolio M on the Markowitz efficient frontier. 

EXTENSION OF THE MARKOWITZ MEAN-VARIANCE MODEL TO 
INEQUALITY CONSTRAINTS 

The earlier optimization model introduced by Markowitz is useful from 
a theoretical point of view, but it is insufficient from the point of view of 
a portfolio manager who wants to optimize a real portfolio. In fact, the 
above model has a number of serious shortcomings. In the next chapter 
we will introduce the notion of systematic risk and nonsystematic risk. 
A limitation of the Markowitz model presented above is that it only 
minimizes systematic risk given a target expected return, but it does not 
set any objectives for systematic risk. The latter can be set by constrain-
ing the portfolio exposure to selected risk factors. We will discuss these 
risk factors in the next chapter. 
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Suppose asset returns are determined by a multifactor model (as 
described in Chapter 18) so that the expected return of the i-th security 
is a linear combination of p factors. We can then write 

p 

µi = αi + ∑ βijfj , j = 1,2,..., p 
j = 1 

where µi are expected returns and fj are the expectations of factors. 
Exposure to the j-th factor can be controlled by constraining the 

beta βaj of portfolio a relative to that factor: 

N 

∑ waiβij = βaj 
i = 1 

where wai are the weights of portfolio a. 
A portfolio manager might want to maximize a portfolio’s return 

given a target level of risk. This problem would lead to maximizing a 
linear function subject to quadratic constraints of the form 

w ′ΣΣΣΣw = wa a a 

In practice, however, a portfolio manager prefers to minimize a 
function of the type: 

w ′ΣΣΣΣw – λwa ′µµµµa a 

where µµµµ is the vector of securities’ expected returns and λ is a risk-aver-
sion parameter. A function of this type implements a compromise 
between risk and returns. 

Finally, a portfolio manager needs to impose lower thresholds on 
portfolio weights to avoid portfolios being made up of a large number 
of small holdings. This implies the constraints wai ≥ bi. In practice, 
therefore, mean-variance portfolio selection leads to a quadratic optimi-
zation problem of the following type: 

Minimize 

w ′ΣΣΣΣw – λwa ′µµµµa a 

subject to 
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Aw = ca 

and 

wai ≥ bi 

where the equation Aw = c constrains sector exposure. This is a qua-a 
dratic programming problem of the type described in Chapter 7. 

In addition to the above, managers might want to impose turnover 
or tradability constraints in the sense that assets can only be traded in 
given lots. As observed in Chapter 7, these constraints result in a mixed-
integer programming problem, which is generally more difficult to solve 
than quadratic programming problems. 

The technology of optimization is presently available on desktop 
computers. Mathematical software such as Matlab routinely solves qua-
dratic portfolio optimization problems of the type described above. 
However special care is still needed in applying optimization technol-
ogy. In fact, optimization is sensitive to expected return forecasts that 
are themselves typically unreliable.11 

A SECOND LOOK AT PORTFOLIO CHOICE 

The mean-variance framework suggested by Markowitz is based on util-
ity functions defined on expected returns and variance. We now have to 
generalize the optimization framework proposed by Markowitz in a 
fully probabilistic setting. This generalization allows the consideration 
of nonnormal distributions and paves the way for multiperiod portfolio 
choice. The three key ingredients in a portfolio optimization methodol-
ogy are (1) a return forecast, (2) a utility function, and (3) an optimizer. 

The Return Forecast 
The return forecast has to be intended as a probabilistic forecast. This 
means that models supply a joint pdf of all the assets that might contrib-
ute to forming the optimal portfolio. A return forecast implies a process 
dynamics. 

The first, and simplest, dynamics is the assumption that returns are 
independent and identical normal (IIN) variables and, therefore, price 

11 See, for example, Peter Muller, “Empirical Tests of Biases in Equity Portfolio Op-
timization,” in Stavros Zenios (ed.), Financial Optimization (Cambridge, MA, Cam-
bridge University Press, 1993). 
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processes are random walks. This assumption entails that the expected 
returns of each asset are known constants. Later in this chapter we will 
consider autoregressive linear models and nonlinear models that follow 
a more complex dynamics than the assumption of IID variables. 

The Utility Function 
In the mean-variance framework, utility functions are defined on 
expected returns and variances. The probability structure of returns is 
summarized by returns and variances. Utility functions express the 
trade-off between risk and return preferred by the investor or by the 
asset manager. By choosing a utility function, an investor decides how 
much return he or she wants to be compensated for taking more risk. 
The choice of utility functions is dictated by (1) a question of mathemat-
ical and computational tractability and (2) the risk-return preferences of 
the investor. 

In the one-period framework of Markowitz, utility is a function of 
two variables: mean and variance. In this way, the problem of portfolio 
choice becomes a problem of finding the return-variance pair with the 
maximum utility: 

arg maxU( w ⁄ µµµµ, ΣΣΣΣ) 

where “arg” is shorthand to denote “argument” and with the con-
straints 

µ a = wa ′ µµµµ

w′ι = 1 , ιιιι′ = [ 1 1, , …, 1] 

This is a problem of constrained maximum. Additional constraints 
might be imposed, for instance, that weights are all positive and/or that 
weights are within given intervals. The first condition precludes short 
selling; the second condition ensures that no asset has a weight either 
too big or too small. 

In a more general probabilistic setting, utility functions are defined on 
the variables of interest, be they returns or consumption. The investor’s risk 
preference is represented by the shape of the utility function. A linear func-
tion corresponds to risk neutrality. A concave function, that is, a function 
with negative second derivative, expresses risk aversion in so far as utility 
grows less rapidly than the variable. 

A formal measure of absolute risk aversion is defined as
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x x xrA( ) = –U″( ) ⁄ U′( )  

This measure expresses the intuitive fact that the more the utility func-
tion is curved, the more the investor is risk-averse. Listed below are 
some examples of utility functions:

 ■ Linear utility function: 

U x + x x( ) = a bx  , U′( ) = b , U″( ) = 0 

The linear function is not concave; it represents a risk-neutral investor.

 ■ Power utility function: 

1 – a x – 1U x x x( ) = ---------------------- , U′( ) = x –a , U″( ) = –ax – a – 1 < 0 
1 – a 

The power utility function is concave; it represents a risk-averse investor.

 ■ Logarithmic utility function: 

( ) = ln ( ) , U′( ) = 1 ⁄ x , U″( ) = –1 ⁄ x 2 < 0U x x x x

The logarithmic utility function is concave; it represents a risk-averse 
investor.

 ■ Quadratic utility function: 

( ) = a bx  – ---x 2 , U′( ) = b cx  , U″( ) = –c < 0U x + 
c

x – x
2 

The quadratic utility function is concave; it represents a risk-averse 
investor. 

In a probabilistic setting, the utility function is a monotone function 
of a random variable and is, therefore, a random variable itself. To opti-
mize, one single utility number must be defined for each portfolio 
choice. Utility is therefore defined as the expected value of stochastic 
utility: 
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+∞ 

[ ( )] = ( )U xU = E U x ∫ p x ( )dx
–∞ 

From this definition, it is clear why concavity represents risk aver-
sion. To see this point, it is useful to imagine a discrete world where 
only a discrete set of states is possible. In a discrete setting, utility is 
defined as a discrete, finite or infinite sum: 

U = E U x ( )U x[ ( )] = ∑p x ( )i i

To each state corresponds a discrete finite probability. A risk-neutral 
investor does not require any compensation for risk-taking: the investor is 
indifferent to choices where the increment in the variable is inversely pro-
portional to the decrease in probability. For instance, a risk-neutral investor 
will be indifferent to choices where the halving of probability is compen-
sated with the doubling of consumption. However, a risk-averse investor 
will require more than a simple proportionality: a halving of probability 
must be compensated with more than a doubling of consumption. 

Optimizers 
An optimizer is a software program that searches the maximum of a 
(multivariate) function. If we know both the analytical expression of the 
function to be optimized and the constraints to be applied, the method 
of Lagrange multiplier yields closed-form solutions. However, if no ana-
lytical expression is available or if the function is too complex, numeri-
cal optimization techniques must be used. Numerical optimizers work 
by searching a space of likely maxima or minima. 

Mathematical optimization is a well-established technology and, 
outside of finance, is also used in many areas of science and technology. 
Different optimization technologies are employed, depending on the 
functions to be optimized and the constraints to be imposed. Statistical 
optimization technologies such as simulated annealing and genetic algo-
rithms have been employed to allow the optimization of generic func-
tions with multiple local minima and/or maxima. Chapter 7 provides a 
brief introduction to optimization technology. 

A Global Probabilistic Framework for Portfolio Selection 
We are now ready to state the global principles of portfolio selection. 
Portfolio selection works by finding those portfolio weights that maxi-
mize expected portfolio utility. Formally, we will have a joint probabil-
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ity distribution of returns p(x) defined over the vector of returns r. For 
each vector of portfolio weights wa the portfolio return will be w ′r. Thea 
portfolio’s utility will be a stochastic variable U with a pdf that can be 
computed from the joint pdf of returns. For instance, if returns are 
jointly normal, the portfolio pdf will be normal. The portfolio selection 
problem is to maximize the expected value of this stochastic utility in 
function of portfolio weights: 

[arg maxE U(r w )], a 

Portfolio optimization is a relatively mature technology, though its 
formal implementation is not yet widespread in the industry. The prob-
lem is one of sensitivity to forecasts. Practitioners who have imple-
mented the optimization technology typically report a great sensitivity 
of the optimization to forecast errors. Because the optimizer looks for 
the best opportunities within the pdf that has been fed to it, any mistake 
in the estimation of the pdf is magnified by the optimizer. This has led 
some in the industry to refer to optimization as “error maximization.”12 

RELAXING THE ASSUMPTION OF NORMALITY 

We can relax the assumption that returns are jointly normally distrib-
uted. It is a well known fact that returns are not normally distributed at 
short-time horizons of the order of days. As we saw in Chapter 13, fat-
tailed distributions were proposed to represent returns at such short 
time horizons. At the longer time horizons typical of portfolio manage-
ment, the assumption of normality is more plausible empirically speak-
ing. However, deviations from normality exist, either because of rare 
large price movements or because of the importance of moments of 
order higher than variance. 

The general utility maximization framework discussed above is very 
general and can be applied, in principle, to arbitrary distribution func-
tions provided that the maxima exist. Henrik Dahl, Alexander Meeraus, 
and Stavros Zenios13 argue that most financial engineering problems 
can be cast into an optimization framework. However practical statisti-
cal and computational problems arise when there is the need to estimate 
moments of high order in a multivariate environment. Extreme Value 

12 Muller, “Empirical Tests of Biases in Equity Portfolio Optimization.”

13 Henrik Dahl, Alexander Meeraus, and Stavros Zenios, “Some Financial Optimi
-
zation Models: I and II,” in Financial Optimization.
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Theory (EVT) might help to determine the tails of some distributions. In 
this way, as we have seen in Chapter 13, it becomes possible to manage 
the risk associated with large movements. As observed by Jobst and 
Zenios14 the tails of the return distribution significantly affect portfolio 
performance. 

A new framework for portfolio selection with arbitrary distribu-
tions was proposed by Malevergne and Sornette.15 Their framework is 
based on transforming arbitrary variables into normal variables. The 
distribution of the transformed variables is then determined via the 
principle of entropy maximization.16 They showed that the new trans-
formed variables conserve the structure of correlation of the original 
variables as measured by copula functions. In this way they recovered 
the multivariate distribution of the original variables. 

MULTIPERIOD STOCHASTIC OPTIMIZATION 

The factor market models explored thus far are static linear regressions 
with an underlying dynamic that is either exogenously given or consists 
of the assumption of IID returns; these optimization models are myopic 
one-period optimization models. From the point of view of investor 
behavior, one-period models are based on the assumption that wealth is 
consumed at the end of the period. 

An investor must solve the problem of optimal portfolio selection. 
This means that at every trading moment the investor has to revise the 
selected portfolio and to decide what fraction of wealth is consumed 
and what fraction is reinvested. Suppose that an investor is character-
ized by a time-separable utility function defined over the consumption 
process. A time-separable utility function is such that the total utility is 
the sum of utility in different periods, each discounted by an appropri-
ate time-discount factor. It is implicitly assumed that the utility derived 
by the consumption of one unit at some future date is less than the util-
ity derived from the same consumption at the present date. 

Call Ct consumption at time t. The investor’s consumption of period t 
is a fraction of his or her wealth at the beginning of period t. The remaining 

14 Norbert J. Jobst and Stavros A. Zenios, “The Tail That Wags the Dog: Integrating 
Credit Risk in Asset Portfolios,” The Journal of Risk Finance (Fall 2001), pp. 31–44. 
15 Y. Malevergne and D. Sornette, “Higher-Moment Portfolio Theory with Multi-
variate Weibull Distributions,” unpublished paper. 
16 The Principle of Entropy Maximization chooses the distribution that has the max-
imum entropy among those compatible with a set of constraints. In general, con-
straints are given by the values of empirically determined moments. 
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wealth is invested at a rate Rt. An infinite stream of consumption is possible 
if the return rate is positive. We will write utility in the following form: 

∞ 

C (Ut( ) = ∑ diU Ct i)+ 
i = 0 

where C is a shorthand for a realization of the consumption process and 
d < 1 is the time discount factor of utility. In the following formulation 
we will consider an infinite horizon, i.e., consumption extends over an 
infinite stream at all future dates. It is also possible to consider only a 
finite number of steps ahead; in this case, one needs to write a utility 
function for final wealth in order to establish a trade-off between con-
sumption and final wealth. As in the previous single-period case, utility is 
a random variable as consumption is a stochastic process. We will there-
fore define utility as the expected value of stochastic utility as follows: 

∞ 

Ut = Et ∑ diU Ct i)( + 
i = 0 

The process dynamics are given by the following equation: 

= (1 + Rt)[Wt – Ct]Wt + 1 

where Rt is the portfolio stochastic return. The investor’s portfolio 
selection consists of maximizing his expected utility given a return rate 
process for the portfolio and an initial endowment. The solution of this 
problem can be obtained through the methods of stochastic multistage 
optimization. The solution of the infinite horizon problem implies that 
first-order conditions, called Euler conditions, are satisfied for each 
asset. Euler conditions are the following: 

U′( ) = dEt[(1 + , )U′(Ct + 1)]Ct Ri t  + 1 

where Ri,t is the period t return of the i-th asset. The left hand side of 
the equation is the utility the investor derives from consuming one unit 
less at time t while the right hand side is the additional expected utility 
that derives from consuming at time t + 1 the unit saved at time t and 
invested at rate Rt. Optimality implies that the two coincide. 

CtIf we take the unconditional expectation and divide by U′( ) we 
can write the above equations in the following form: 
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1 = E[(1 + , )Mt ]Ri t

where 

U′(Ct + 1) 
= d-------------------------Mt + 1 

U′( )Ct

is a random variable known as the stochastic discount factor. 

APPLICATION TO THE ASSET ALLOCATION DECISION17 

One of the most direct and widely used applications of MPT is asset 
allocation. Because the asset allocation decision is so important, almost 
all financial advisors determine an optimal portfolio for their clients— 
be they institutional or individual—by performing an asset allocation 
analysis using a set of asset classes.18 They begin by selecting a set of 
asset classes (e.g., domestic large cap and small cap stocks, long-term 
bonds, international stocks, etc.). To obtain estimates of the returns and 
volatilities and correlations they generally start with the historical per-
formance of the indexes representing these asset classes.19 Exhibit 16.6 
shows the major asset classes and an index commonly used to represent 
the performance characteristics of that asset class (i.e., mean and stan-
dard deviation of return). These estimates are used as inputs in the 
mean-variance optimization which results in an efficient frontier. Then 
using some criteria (for instance, using Monte Carlo simulations to 
compute the wealth distributions of the candidate portfolios), they pick 
an optimal portfolio allocation. Finally, this portfolio is implemented 
using either index or actively managed funds. 

17 This illustration draws from Frank J. Fabozzi, Francis Gupta, and Harry M. 
Markowitz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry 
M. Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002). 
18 The following two studies conclude that asset allocation is a major determinant of 
portfolio performance: Gary L. Brinson, Randolph Hood, and Gilbert Beebower, 
“Determinants of Portfolio Performance,” Financial Analysts Journal (July/August 
1986), pp. 39–44 and Gary L. Brinson, Randolph Hood, and Gilbert Beebower, 
“Determinants of Portfolio Performance II: An Update,” Financial Analysts Journal 
(May/June 1991), pp. 40–48. 
19 Not all institutional asset managers use this method to obtain estimates of expect-
ed returns. 
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EXHIBIT 16.6 Asset Classes and Commonly Used Indexes 

Index Asset Class Inception Date 

U.S. 30 day T-bill U.S. Cash 1/26 
Lehman Brothers aggregate bond U.S. Bonds 1/76 
S&P 500 U.S. Large Cap Equity 1/26 
Russell 2000 U.S. Small Cap Equity 1/79 
MSCI EAFE Europe/Japan Equity 1/70 
MSCI EM Free Emerging Markets Equity 1/88 

Source: Exhibit 3.6 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 49. 

Once the funds are allocated to portfolio managers who specialize 
in the asset class, each portfolio manager selects the specific securities to 
be included in the portfolio. The portfolio can be actively managed or 
indexed. In fact, M-V analysis can be employed to construct the specific 
securities from within an asset class. 

The Inputs 
There are a number of approaches that can be used to obtain estimates 
of the inputs that are used in a mean-variance optimization, and all 
approaches have their pros and cons. Since the use of historical returns 
is the approach that is most commonly used, it may be useful to present 
a discussion on this method. 

As explained in Chapters 11 and 12, in the language of economet-
rics the above means that historical returns (i.e., the empirical average 
of past returns), are an estimate of the expected values of returns. This 
entails a model of returns, in particular a stationary model of returns. 
The assumption that returns are independent and identically distributed 
(IID) sequences20 is the simplest model where historical returns are an 
estimate of expected returns. 

Exhibit 16.7 uses monthly returns over different and varying time peri-
ods to present the annualized historical returns for four market indexes. 

One drawback of using the historical performance to obtain esti-
mates is clearly evident from this exhibit. Historical returns are not sta-
ble, the future does not repeat the past. This is one of the reasons 

20 See Chapter 6 for the definition of an IID sequence. 
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EXHIBIT 16.7 Annualized Returns Using Historical Performance Depend on the 
Time Period 

Period Lehman Aggregate S&P 500 MSCI EAFE MSCI EM Free 

Five year
 1990–1995 9.2% 15.9% 10.5% 16.3%
 1996–2000 6.3 18.3 8.2 0.1 

Ten year
 1990–2000 7.7 17.1 9.3 8.2 

Note: Based on monthly returns of Ibbotson Associates.

Source: Exhibit 3.3 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow
-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M.

Markowitz (eds.), The Theory and Practice of Investment Management (Hobo
-
ken, NJ: John Wiley & Sons, 2002), p. 46.


econometricians have pushed to study dynamic return models, for 
instance Markov switching Hamilton models, that might capture fluctu-
ations such as those that appear in the exhibit.21 Note that, even using 
more complex models, fluctuations of the estimates will still exist. They 
are an ineliminable consequence of the global uncertainty in financial 
markets. The point is that the fluctuation of the estimates should not be 
too large to invalidate the model that is assumed. 

Based on historical performance, a portfolio manager looking for 
estimates of the expected returns for these four asset classes to use as 
inputs for obtaining the set of efficient portfolios at the end of 1995 might 
have used the estimates from the five-year period, 1990–1995. Then 
according to the portfolio manager’s expectations, over the next five 
years, only the U.S. equity market (as represented by the S&P 500) out-
performed, while U.S. bonds, Europe and Japan and Emerging Markets 
all underperformed. In particular, the performance of Emerging Markets 
was dramatically different from its expected performance (actual perfor-
mance of 0.1% versus an expected performance of 16.3%). This finding 
is disturbing, because if portfolio managers cannot have faith in the 
inputs that are used to solve for the efficient portfolios, then it is not pos-
sible for them to have much faith in the outputs (i.e., the makeup and 
expected performance of the efficient and optimal portfolios). 

Portfolio managers who were performing the exercise at the begin-
ning of 2001 faced a similar dilemma. Should they use the historical 
returns for the 1996–2000 period? That would generally imply that the 

21 For a discussion of these techniques, see Chapter 18. 
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optimal allocation has a large holding of U.S. equity (since that was the 
asset class that performed well), and an underweighting to U.S. bonds 
and emerging markets equity. But then what if the actual performance 
over the next five years is more like the 1990–1995 period? In that case 
the optimal portfolio is not going to perform as well as a portfolio that 
had a good exposure to bonds and emerging markets equity. (Note that 
emerging markets equity outperformed U.S. equity under that scenario.) 
Or, should the portfolio managers use the estimates computed by using 
10 years of monthly performance? 

This is also true when trying to obtain estimates for the variances 
and correlations. Exhibit 16.8 presents the standard deviations for the 
same indexes over the same time periods. Though the risk estimates for 
the Lehman Aggregate and EAFE indexes are quite stable, the estimates 
for the S&P 500 and EM Free are significantly different over different 
time periods. However, the volatility of the indexes does shed some light 
on the problem of estimating expected returns as presented in Exhibit 
16.8. MSCI EM Free, the index with the largest volatility, also has the 
largest difference in the estimate of the expected return. Intuitively, this 
makes sense—the greater the volatility of an asset, the harder it is to 
predict its future performance. 

Exhibit 16.9 shows the five-year rolling correlation between the 
S&P 500 and MSCI EAFE. In January 1996, the correlation between the 
returns of the S&P 500 and EAFE was about 0.45 over the prior five 
years (1991–1995). Consequently, a portfolio manager would have 
expected the correlation over the next five years to be around that esti-
mate. However, for the five-year period ending December 2000, the cor-

EXHIBIT 16.8 Annualized Standard Deviations Using Historical Performance 
Depend on the Time Period 

Period Lehman Aggregate S&P 500 MSCI EAFE MSCI EME Free 

Five year
 1990–1995 4.0% 10.1% 15.5% 18.0%
 1996–2000 4.8 17.7 15.6 27.4 

Ten year
 1990–2000 3.7 13.4 15.0 22.3 

Note: Source of monthly returns is Ibbotson Associates.

Source: Exhibit 3.4 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow
-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M.

Markowitz (eds.), The Theory and Practice of Investment Management (Hobo
-
ken, NJ: John Wiley & Sons, 2002), p. 47.
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EXHIBIT 16.9 Correlation Between Returns of the S&P 500 and MSCI EAFE 
Indexes 

Source: Exhibit 3.5 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 48. 

relation between the assets slowly increased to 0.73. Historically, this 
was an all-time high. In January 2001, should the portfolio manager 
assume a correlation 0.45 or 0.73 between the S&P 500 and EAFE over 
the next five years? Or does 0.59, the correlation over the entire ten-
year period (1991–2000) sound more reasonable? 

In reality, if portfolio managers believe that the inputs based on the 
historical performance of an asset class are not a good reflection of the 
future expected performance of that asset class, they may objectively or 
subjectively alter the inputs. Different portfolio managers may have dif-
ferent beliefs, in which case the alterations will be different.22 The 
important thing here is that all alterations have theoretical justifica-
tions, which, in turn, ultimately leads to an optimal portfolio that 
closely aligns to the future expectations of the portfolio manager. 

22 It is quite common that the optimal strategic bond/equity mix within a portfolio 
differs significantly across portfolio managers. 
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There are some purely objective arguments as to why we can place 
more faith in the estimates obtained from historical data for some assets 
over others. Exhibit 16.6 shows the inception dates for commonly used 
asset class indexes. Since there are varying lengths of histories available 
for different asset classes (for instance, U.S. and European markets not 
only have longer histories, but their data are also more accurate), inputs 
of some asset classes can generally be estimated more precisely than the 
estimates of others.23 

When solving for the efficient portfolios, the differences in precision 
of the estimates should be explicitly incorporated into the analysis. But 
MPT assumes that all estimates are as precise or imprecise, and there-
fore, treats all asset classes equally. Most commonly, practitioners of 
mean-variance optimization incorporate their beliefs on the precision of 
the estimates by imposing constraints on the maximum exposure of 
some asset classes in a portfolio. The asset classes on whom these con-
straints are imposed are generally those whose expected performances 
are either harder to estimate, or those whose performances are esti-
mated less precisely.24 

The extent to which we can use personal judgment to subjectively 
alter estimates obtained from historical data depends on our under-
standing what factors influence the returns on assets, and what is their 
impact. The political environment within and across countries, mone-
tary and fiscal policies, consumer confidence, and the business cycles of 
sectors and regions are some of the key factors that can assist in forming 
future expectations of the performance of asset classes. 

To summarize, it would be fair to say that using historical returns to 
estimate parameters that can be used as inputs to obtain the set of effi-
cient portfolios depends on whether the underlying economies giving 
rise to the observed outcomes of returns are strong and stable. Strength 
and stability of economies comes from political stability and consistency 
in economic policies. It is only after an economy has a lengthy and 
proven record of a healthy and consistent performance under varying 
(political and economic) forces that impact free markets, can historical 
performance of its markets be seen as a fair indicator of their future per-
formance. 

23 Statistically, the precision of an estimate is proportional to the amount of informa-
tion that is used to estimate it. That is, the more the data used to obtain an estimate, 
the greater the precision of the estimate. 
24 An alternate method for incorporating beliefs into M-V analysis is presented in 
Fisher Black and Robert Litterman, “Asset Allocation: Combining Investor Views 
With Market Equilibrium,” Journal of Fixed Income 1(1991), pp. 7–18. 
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Portfolio Selection: An Example 
Using an explicit example we now illustrate how asset managers and 
financial advisors use M-V analysis to build optimal portfolios for their 
clients and shed some light into the selection of an optimal portfolio. In 
this example we will construct an efficient frontier made up of U.S. 
bonds and U.S. and international equity. Exhibit 16.10 presents the for-
ward-looking assumptions for the four asset classes. 

These inputs are an example of estimates that are not totally based 
on historical performance of these asset classes. The expected return 
estimates are created using a risk premium approach (i.e., obtaining the 
historical risk premiums attached to bonds, large-cap, mid-cap, small-
cap, and international equity) and then have been subjectively altered to 
include the asset manager’s expectations regarding the future long-run 
(5 to 10 years) performance of these asset classes. The risk and correla-
tion figures are mainly historical. 

The next step is to use a software package to perform the optimization 
that results in the efficient frontier. For purposes of exposition, Exhibit 
16.11 presents the efficient frontier using only two of the four asset classes
from Exhibit 16.10—U.S. bonds and large cap equity. We highlight two 
efficient portfolios on the frontier: A and B corresponding to standard 
deviations of 9% and 12%, respectively. Portfolio B has the higher risk, 
but it also has the higher expected return. We suppose that one of these 
two portfolios is the optimal portfolio for a hypothetical client. 

Exhibit 16.12 presents the compositions of portfolios A and B, and 
some important characteristics that may assist in the selection of the 
optimal portfolio for the client. As one would expect, the more conser-

EXHIBIT 16.10 Forward Looking Inputs (Expected Returns, Standard Deviations, 
and Correlations) 

Expected Std. Dev. Asset Class Return 1 2 3 4
Return of Return Correlations 

6.4%  4.7% U.S. bonds 1 1.00 
10.8 14.9 U.S. large cap equity 2 0.32 1.00 
11.9 19.6 U.S. small cap equity 3 0.06 0.76 1.00 
11.5 17.2 EAFE international equity 4 0.17 0.44 0.38 1.00 

Source: Exhibit 3.7 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 51. 
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EXHIBIT 16.11 The Efficient Frontier Using Only U.S. Bonds and U.S. Large Cap 
Equity from Exhibit A 

Source: Exhibit 3.8 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 51. 

vative portfolio (A), allocates more to the conservative asset class, 
bonds. Portfolio A allocated a little more than 45% of the portfolio to 
bonds, while portfolio B only allocates 22% to that asset class. This 
results in significantly higher standard deviation for Portfolio B (12% 
versus 9%). In exchange for the 3% (or 300 basis points) of higher risk, 
portfolio B results in 104 basis points of higher expected return (9.83% 
versus 8.79%). This is the risk/return trade-off that the client faces. 
Does the increase in the expected return compensate the client for the 
increased risk? 

As mentioned earlier, another approach to selecting between the two 
efficient portfolios is to translate the differences in risk in terms of differ-
ences in the wealth distribution over time. The higher the risk, the wider 
the spread of the distribution. A wider spread implies a greater upside 
and a greater downside. Exhibit 16.12 also presents the 95th percentile, 
expected, and 5th percentiles for $100 invested in portfolios A and B over 
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EXHIBIT 16.12 Monte Carlo Wealth Distributions to the Risk/Return Trade-Off of 
Portfolios A and B: Growth of $100 

Characteristic Portfolio A Portfolio B 

U.S. bonds 45.8% 22.0% 
U.S. large cap equity 54.2 78.0 
Expected return  8.79%  9.83% 
Standard deviation  9.00%  12.00% 
Return per unit of risk 98 bps 82 bps 

1 5 10 1 5 10 
Growth of $100 Year Years Years Year Years Years 

95th percentile (upside) $124 $203 $345 $131 $232 $424 
Average (expected)  109  152  232  110  160  255 
5th percentile (downside)  95  111  146  91  104  137 

Note: Assumes annual rebalancing.

Source: Exhibit 3.9 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow
-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M.

Markowitz (eds.), The Theory and Practice of Investment Management (Hobo
-
ken, NJ: John Wiley & Sons, 2002), p. 52.


1, 5, and 10 years, respectively.25 Over a one-year period, there is a 1 in 
20 chance that the $100 invested in portfolio A will grow to $124, but 
there is also a 1 in 20 chance that the portfolio will lose $5 (i.e., it will it 
shrink to $95). In comparison, for portfolio B there is a 1 in 20 chance 
that $100 will grow to $130 (the upside is $6 more than if invested in 
portfolio A). But there is also a 1 in 20 chance that the portfolio will 
shrink to $91 (the downside is $4 more than if invested in portfolio A). If 
the investment horizon is one year, is this investor willing to accept a 1 in 
20 chance of losing $9 instead of $4 for a 1 in 20 chance of gaining $31 
instead of $24?26 The answer depends on the investor’s risk aversion. 

As the investment horizon becomes longer, the chances that a port-
folio will lose its principal keep declining. Over 10 years, there is a 1 in 

25 The 95th percentile captures the upside associated with a 1 in 20 chance, while the 
5th percentile represents the downside associated with a 1 in 20 chance. 
26 It may be useful to mention here that more recently researchers in behavioral fi-
nance have found some evidence to suggest that investors view the upside and down-
side differently. In particular, they equate each downside dollar to more than one 
upside dollar. For a good review of the behavioral finance literature, see Hersh Shefrin 
(ed.), Behavioral Finance (Northampton, MA: Edward Elgar Publishing, Ltd., 2001). 
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20 chance that portfolio A will grow to $345, but there is also a 1 in 20 
chance that the portfolio will only grow to $146 (the chances that the 
portfolio results in a balance less than $100 are much smaller). In com-
parison, over 10 years, there is a 1 in 20 chance that portfolio B will 
grow to $424 (the upside is $79 more than if invested in portfolio A)! 
And there is a 1 in 20 chance that the portfolio will only grow to 
$137—that is only $7 less than if invested in portfolio A! Also portfolio 
B’s average (expected) balance over 10 years is $23 more than portfolio 
A’s ($255 versus $232). Somehow, compounding makes the more risky 
portfolio seem more attractive over the longer run. In other words, a 
portfolio that may not be acceptable to the investor over a short run 
may be acceptable over a longer investment horizon. In summary, it is 
sufficient to say that the optimal portfolio depends not only on risk 
aversion, but also on the investment horizon. 

Inclusion of More Asset Classes 
Exhibit 16.13 compares the efficient frontier using two asset classes, 
namely, U.S. bonds and large cap equity with one obtained from using 

EXHIBIT 16.13 Expanding the Efficient Frontier Using All Asset Classes 

Source: Exhibit 3.10 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markowitz, 
“Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M. Markow-
itz (eds.), The Theory and Practice of Investment Management (Hoboken, NJ: John 
Wiley & Sons, 2002), p. 54. 
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all four asset classes in the optimization. The inclusion of U.S. small cap 
and EAFE international equity into the mix makes the opportunity set 
bigger (i.e., the frontier covers a larger risk/return spectrum). It also 
moves the efficient frontier outwards (i.e., the frontier results in a larger 
expected return at any given level of risk, or conversely, results in a 
lower risk for any given level of expected return). The frontier also 
highlights portfolios A′ and B′—the portfolios with the same standard 
deviation as portfolios A and B, respectively. 

Exhibit 16.14 shows the composition of the underlying portfolios 
that make up the frontier. Interestingly, U.S. small cap and EAFE inter-
national equity—the more aggressive asset classes—are included in all 
the portfolios. Even, the least risky portfolio has a small allocation to 
these two asset classes. On the other hand, U.S. large cap equity—an 
asset class that is thought of as the backbone of a domestic portfolio— 
gets excluded from the more aggressive portfolios. 

Exhibit 16.15 compares the composition of portfolios A and B to A′ 
and B′, respectively. Both the new portfolios, A′ and B′, find U.S. small 

EXHIBIT 16.14 Composition of the Efficient Frontier 

Source: Exhibit 3.11 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 55. 
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EXHIBIT 16.15 Composition of Equally Risky Efficient Portfolios in the Expanded 
Frontier 

Standard Deviation Standard Deviation 
= 9.0% = 12.0% 

Asset Class A A′ B B′ 

U.S. bonds 34.3% 40.4% 22.0% 15.1% 
U.S. large cap equity 18.7 15.8 78.0 27.8 
U.S. small cap equity — 16.1 — 18.6 
EAFE international equity — 27.7 — 38.5 
Expected return 8.79% 9.39% 9.83% 10.61% 
Standard deviation 9.00% 9.00% 12.00% 12.00% 
Return per unit of risk 98 bps 104 bps 82 bps 88 bps 

Source: Exhibit 3.12 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 55. 

cap and EAFE international equity very attractive and replace a signifi-
cant proportion of U.S. large cap equity with those asset classes. In 
portfolio B′ the more aggressive mix, the allocation to U.S. bonds also 
declines (15.1% versus 22%). 

Inclusion of U.S. small cap and EAFE international equity results in 
the sizable increases in the expected return and return per unit of risk. 
In particular, the conservative portfolio A′ has an expected return of 
9.39% (60 basis points over portfolio A) and the aggressive portfolio B′ 
has an expected return of 10.61% (78 basis points over portfolio B). 
Note also that there is an increase in the returns per unit of risk. 

The huge allocations to U.S. small cap and EAFE international 
equity in portfolios A′ and B′ may be uncomfortable for some investors. 
U.S. small cap equity is the most risky asset class and EAFE interna-
tional equity is the second most aggressive asset class. The conservative 
portfolio allocates more than 40% of the portfolio to these two asset 
classes, while the aggressive allocates more than 50%. As discussed in 
the section on using inputs based on historical returns, these two would 
also be the asset classes whose expected returns would be harder to esti-
mate. Consequently, investors may not want to allocate more than a cer-
tain amount to these two asset classes. 

On a separate note, investors in the U.S. may also want to limit 
their exposure to EAFE international equity. This may be simply 
because of psychological reasons. Familiarity leads them to believe that 
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domestic asset classes are “less” risky.27 Exhibit 16.16 presents the com-
position of the efficient frontier when the maximum allocation to EAFE 
is constrained at 10% of the portfolio. As a result of this constraint, all 
the portfolios now receive an allocation of U.S. large cap equity. 

Exhibit 16.17 compares the composition portfolios A′ and B′ to port-
folios A″ and B″ the respective equally risky portfolios that lie on the con-
strained efficient frontier. In the conservative portfolio A″, the combined 
allocation to U.S. small cap and EAFE international equity has declined to 
30% (from 43.8%) and in B″ it has fallen to 34.8% (from 57.1%). Also 
now the bond allocation increases for both the portfolios. 

The decline in the expected return can be used to quantify the cost 
of this constraint. The conservative portfolio’s expected return fell from 
9.39% to 9.20%—a decline of 19 basis points. This cost may be well 

EXHIBIT 16.16 Composition of the Constrained Efficient Frontier 
Maximum Allocation to EAFE International Equity = 10% 

Source: Exhibit 3.13 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002), p. 57. 

27 Similarly, investors in Europe may believe that EAFE equity is “less” risky than 
U.S. equity and may want to limit their exposure to U.S. asset classes.
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EXHIBIT 16.17 The Benefits and Costs of Constraining an Efficient Frontier 

Maximum Allocation to 
EAFE International 

Unconstrained Equity = 10.0% 

Asset Class A′ B′ A′′ B′′ 

U.S. bonds 40.4% 15.1% 43.1% 20.1% 
U.S. large cap equity 15.8 27.8 26.9 45.1 
U.S. small cap equity 16.1 18.6 20.0 24.8 
EAFE international equity 27.7 38.5 10.0 10.0 
Expected return  9.39%  10.61%  9.20%  10.26% 
Standard deviation  9.00%  12.00%  9.00%  12.00% 
Cost of constraint — — 19 bps 35 bps 

Note: Assumes annual rebalancing.

Source: Exhibit 3.14 in Frank J. Fabozzi, Francis Gupta, and Harry M. Markow
-
itz, “Applying Mean-Variance,” Chapter 3 in Frank J. Fabozzi and Harry M.

Markowitz (eds.), The Theory and Practice of Investment Management (Hobo
-
ken, NJ: John Wiley & Sons, 2002), p. 57.


worth it for an investor whose optimal appetite for risk is 9%. The 
more aggressive portfolio pays more for the constraint (10.61% – 
10.26% = 35 basis points).28 

EXTENSIONS OF THE BASIC ASSET ALLOCATION MODEL 

In mean-variance analysis, the variance (standard deviation) of returns 
is the proxy measure for portfolio risk. As a supplement, the probability 
of not achieving a portfolio expected return can be calculated. This type 
of analysis, referred to as risk-of-loss analysis, would be useful in deter-
mining the most appropriate mix from the set of optimal portfolio allo-
cations.29 In the context of setting investment strategy for a pension 
fund that has a long-term normal asset allocation policy established, the 

28 For a discussion on the benefits and costs of constraints, see Francis Gupta and 
David Eichhorn, “Mean-Variance Optimization for Practitioners of Asset Alloca-
tion,” in Frank J. Fabozzi (ed.), Handbook of Portfolio Management (New York: 
John Wiley & Sons, 1998), pp. 57–74. 
29 Risk of loss analysis as well as the multiple scenario analysis and short-term/long-
term analysis described next, were developed by Gifford Fong Associates in the early 
1980s. See Chapter 4 and Appendix B in H. Gifford Fong and Frank J. Fabozzi, 
Fixed Income Portfolio Management (Homewood, IL: Dow-Jones-Irwin, 1985). 
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value of the probability of loss for the desired return benchmark over 
the long-term horizon can be used as the maximum value for the short 
term. For example, if the long-term policy has a 15% probability of loss 
for 0% return, the mix may be changed over the short run, as long as 
the probability of loss of the new mix has a maximum of 15%. There-
fore, by taking advantage of short-term expectations to maximize 
return, the integrity of the long-term policy is retained. A floor or base 
probability of loss is therefore established that can provide boundaries 
within which strategic return/risk decisions may be made. As long as the 
alteration of the asset allocation mix does not violate the probability of 
loss, increased return through strategies such as tactical asset allocation 
can be pursued. 

Mean-variance analysis has been extended to multiple possible sce-
narios. Each assumed scenario is believed to be an assessment of the 
asset performance in the long run, over the investment horizon. A prob-
ability can be assigned to each scenario so that an efficient set can be 
constructed for the composite scenario. It is often the case, however, 
that an investor expects a very different set of input values in mean-vari-
ance analysis that are applicable in the short run, say, the next 12 
months. For example, the long-term expected return on equities may be 
estimated at 15% but over the next year the expected return on equities 
may be only 5%. The investment objectives are still stated in terms of 
the portfolio performance over the entire investment horizon. However, 
the return characteristics of each asset class are described by one set of 
values over a short period and another set of values over the balance of 
the investment horizon. A mean-variance analysis can be formulated 
that simultaneously optimizes over the two periods.30 

Finally, mean-variance analysis has been extended to explicitly 
incorporate the liabilities of pension funds.31 This extension requires 
not only the return distribution of asset classes that must be considered 
in an optimization model, but also the liabilities. 

30 See Harry M. Markowitz and André F. Perold, “Portfolio Analysis with Factors 
and Scenarios,” Journal of Finance (September 1981), pp. 871–877. 
31 See Martin L. Leibowitz, Stanley Kogelman, and Lawrence N. Bader, “Asset Per-
formance and Surplus Control—A Dual-Shortfall Approach,” in Robert D. Arnott 
and Frank J. Fabozzi (eds.), Active Asset Allocation (Chicago: Probus Publishing, 
1992). The mean-variance model they present strikes a balance between asset perfor-
mance and the maintenance of acceptable levels of its downside risk, and surplus per-
formance and the maintenance of acceptable levels of its downside risk. 
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SUMMARY


 ■ The principles of financial optimization were established by Markowitz 
in 1952.

 ■ The key idea of Markowitz is that financial decision-making should be 
based on an optimal trade-off between risk and returns. 

■ Markowitz’s seminal work proposed optimizing a trade-off between 
variance and the expected returns of a portfolio under the assumption 
of joint normality of returns.

 ■ The key principle behind mean-variance optimization is diversification.
 ■ Markowitz’s work had a lasting influence on the investment manage-

ment community; investment management principles are still deeply 
influenced by these ideas.

 ■ Portfolios that achieve the minimum variance for a given expected 
return are called minimum-variance portfolios.

 ■ Minimum-variance portfolios are called mean-variance efficient portfo-
lios; the set of mean-variance efficient portfolios form the efficient fron-
tier.

 ■ The theoretical problem of finding mean-variance efficient portfolios 
leads to an optimization problem solvable in closed form with the tech-
nique of Lagrange multipliers.

 ■ Sharpe, Tobin, and Lintner extended the portfolio selection model in 
the presence of a risk-free asset; the mean-variance portfolios are those 
that are a combination of the tangency portfolio and the risk-free asset.

 ■ In the presence of a risk-free asset the efficient frontier becomes the 
Capital Market Line which is the straight line tangent to the Market 
Portfolio.

 ■ If realistic constraints are added, namely sector exposure and tradabil-
ity constraints, the problem becomes one of quadratic programming or 
a mixed-integer programming to be solved with numerical techniques.

 ■ Markowitz’s mean-variance formulation can be used for portfolio 
selection as well as asset allocation.

 ■ Risk-of-loss-analysis is an extension of the basic model. It considers the 
risk of not achieving a portfolio’s expected return.

 ■ The basic mean-variance analysis can also be extended to cover the lia-
bilities of pension funds.

 ■ The theory of Markowitz can be extended in a one-period setting as 
maximization of expected utility.

 ■ In a multiperiod setting agents maximize utility defined on consump-
tion.

 ■ In a multiperiod setting agents determine at each step the optimal 
trade-off between investment and consumption. 
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CHAPTER 17 
Capital Asset


Pricing Model


The mean-variance approach to portfolio selection and its generaliza-
tions require a model for variance and expected returns to feed to the 

optimizer. Asset price and/or return models belong to three different 
families:

 ■ General Equilibrium Theories. These determine price processes as the 
equilibrium between demand and supply of markets populated by eco-
nomic agents whose behavior is known. General equilibrium theories 
are therefore truly economic theories based on specific assumptions on 
the behavior of agents. The following models are general equilibrium 
models: CAPM, Conditional CAPM, multifactor CAPM, and Con-
sumption CAPM.

 ■ Arbitrage Pricing Models. Arbitrage pricing is relative pricing inso-
far as the prices and therefore the returns of a set of assets depend 
on another set of processes. Arbitrage pricing was discussed in 
Chapters 14 and 15.

 ■ Econometric Models. These are statistical models of prices or returns. 
They model prices or returns as endogenous phenomena and/or 
establish links between prices and returns and exogenous variables. 
The justification of econometric models is empirical, that is, they are 
valid insofar as they fit empirical data. They are not derived from eco-
nomic theory although economic theory might suggest econometric 
models. For example, Markov switching models are rooted in the the-
ory of economic cycles. 

511 
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The subject of this chapter is the Capital Asset Pricing Model 
(CAPM) formulated by William Sharpe, John Lintner, and Jan Mossin.1 

As explained in the previous chapter, portfolio selection based on mean-
variance analysis is a normative theory that describes the investment 
behavior of market agents in constructing a portfolio. Given this invest-
ment behavior, the capital asset pricing model formalizes the relation-
ship that should exist between asset returns and risk. 

CAPM ASSUMPTIONS 

The CAPM is an equilibrium asset pricing model derived from a set of 
assumptions. Here we demonstrate how the CAPM is derived. 

The CAPM is an abstraction of the real world capital markets and, 
as such, is based upon some assumptions. These assumptions simplify 
matters a great deal, and some of them may even seem unrealistic. How-
ever, these assumptions make the CAPM more tractable from a mathe-
matical standpoint. The CAPM assumptions are as follows:

 ■ Assumption 1. Investors make investment decisions based on the 
expected return and variance of returns.

 ■ Assumption 2. Investors are rational and risk averse.
 ■ Assumption 3. Investors subscribe to the Markowitz method of 

portfolio diversification.
 ■ Assumption 4. Investors all invest for the same period of time.
 ■ Assumption 5. Investors have the same expectations about the 

expected return and variance of all assets.
 ■ Assumption 6. There is a risk-free asset and investors can borrow 

and lend any amount at the risk-free rate.
 ■ Assumption 7. Capital markets are completely competitive and fric-

tionless. 

The first five assumptions deal with the way investors make deci-
sions. The last two assumptions relate to characteristics of the capital 
market. Some of these assumptions require further explanation. As 
explained in Chapter 16, in mean-variance analysis, it is assumed that 

1 William F. Sharpe, “Capital Asset Prices,” Journal of Finance (September 1964), 
pp. 425–442. Others who reached a similar conclusion regarding the pricing of risk 
assets include: John Lintner, “The Valuation of Risk Assets and the Selection of 
Risky Investments in Stock Portfolio and Capital Budgets,” Review of Economics 
and Statistics (February 1965), pp. 13–37 and Jan Mossin, “Equilibrium in a Capital 
Asset Market,” Econometrica (October 1966), pp. 768–783. 
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investors make investment decisions based on two parameters, the 
expected return and the variance of returns. Assumption 1 indicates that 
in the CAPM the same two parameters are used by investors. Assump-
tion 2 indicates that in order to accept greater risk, investors must be 
compensated by the opportunity of realizing a higher return. 

The CAPM assumes (Assumption 3) that the risk-averse investor 
will ascribe to Markowitz’s methodology of reducing portfolio risk by 
combining assets with counterbalancing covariances or correlations. By 
Assumption 4, all investors are assumed to make investment decisions 
over some single-period investment horizon. How long that period is 
(i.e., six months, one year, two years, etc.) is not specified. In reality, the 
investment decision process is more complex than that, with many 
investors having more than one investment horizon. Nonetheless, the 
assumption of a one-period investment horizon is necessary to simplify 
the mathematics of the theory. 

To obtain the Markowitz efficient frontier which we will be used in 
developing the CAPM, it will be assumed that investors have the same 
expectations with respect to the inputs that are used to derive the efficient 
portfolios: asset returns, variances, and covariances. This is Assumption 5 
and is referred to as the “homogeneous expectations assumption.” 

It is assumed that there is a risk-free asset. An investor in this asset 
earns a risk-free rate. Moreover,  it is assumed that investors cannot 
only earn a risk-free rate, but if they want to borrow, they can do so at 
the risk-free rate (Assumption 6). 

Finally, it is assumed that the capital market is perfectly competitive 
(Assumption 7). In general, this means the number of buyers and sellers 
is sufficiently large, and all investors are small enough relative to the 
market so that no individual investor can influence an asset’s price. Con-
sequently, all investors are price takers, and the market price is deter-
mined where there is equality of supply and demand. In addition, 
according to Assumption 7, there are no transaction costs or impedi-
ments that interfere with the supply of and demand for an asset. 

SYSTEMATIC AND NONSYSTEMATIC RISK 

A risk-averse investor who makes decisions based on expected return and 
variance should construct an efficient portfolio using a combination of the 
market portfolio and the risk-free rate. The combinations are identified by 
the CML. Based on this result, Sharpe derived an asset pricing model that 
shows how a risky asset should be priced. In the process of doing so, we 
can fine-tune our thinking about the risk associated with an asset. Specifi-
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cally, we can show that the appropriate risk that investors should be com-
pensated for accepting is not the variance of an asset’s return but some 
other quantity. In order to do this, let’s take a closer look at risk. 

We can do this by looking at the variance of the portfolio. 
The proof is as follows. The variance of a portfolio consisting of N 

assets is equal to 

N N 

var(Rp) = ∑ ∑ wiwjcov(Ri, Rj) 
i = 1 j = 1 

If we substitute M (market portfolio) for p and denote by wiM and wjM, 
the proportion invested in asset i and j in the market portfolio, then the 
above equation can be rewritten as 

N N 

var(RM) = ∑ ∑ wiMwjMcov(Ri, Rj) 
i = 1 j = 1 

It can be demonstrated that the above equation can be expressed as follows: 

var(RM) 
N N 

= w1M ∑ wjMcov(R1, Rj) + w2M ∑ wjMcov(R2, R )j 
j = 1 j = 1 

N 

+ … + wNM ∑ wNMcov(RN, Rj)

j = 1


The covariance of asset i with the market portfolio, cov(Ri, RM), is 
expressed as follows: 

N


cov(Ri, RM) = ∑ wjMcov(Rj, Rj)

j = 1


Substituting the right-hand side of the left-hand side of the equation 
into the prior equation, gives 

var(RM)

= w1M cov(R1, RM) + w2M cov(R2, RM) + . . . + wNM cov(RN, RM)
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Notice that the portfolio variance does not depend on the variance of 
the assets comprising the market portfolio but on their covariance with 
the market portfolio. Sharpe defines the degree to which an asset cova-
ries with the market portfolio as the asset’s systematic risk. More specif-
ically, he defined systematic risk as the portion of an asset’s variability 
that can be attributed to a common factor. Systematic risk is the mini-
mum level of risk that can be obtained for a portfolio by means of diver-
sification across a large number of randomly chosen assets. 

As such, systematic risk is that which results from general market 
and economic conditions that cannot be diversified away. Sharpe 
defined the portion of an asset’s variability that can be diversified away 
as nonsystematic risk. It is also sometimes called unsystematic risk, 
diversifiable risk, unique risk, residual risk, and company-specific risk. 
This is the risk that is unique to an asset. 

Consequently, total risk (as measured by the variance) can be parti-
tioned into systematic risk as measured by the covariance of asset i’s 
return with the market portfolio’s return and nonsystematic risk. The 
relevant risk is the systematic risk. We will see how to measure the sys-
tematic risk later. How diversification reduces nonsystematic risk for 
portfolios is illustrated in Exhibit 17.1. The vertical axis shows the vari-
ance of the portfolio return. The variance of the portfolio return repre-
sents the total risk for the portfolio (systematic plus nonsystematic). 

EXHIBIT 17.1 Systematic and Unsystematic Portfolio Risk 
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The horizontal axis shows the number of holdings of different assets 
(e.g., the number of common stock held of different issuers). 

As can be seen, as the number of asset holdings increases, the level 
of nonsystematic risk is almost completely eliminated (i.e., diversified 
away). Studies of different asset classes support this. For example, for 
common stock, several studies suggest that a portfolio size of about 20 
randomly selected companies will completely eliminate nonsystematic 
risk leaving only systematic risk.2 

SECURITY MARKET LINE 

The CML represents an equilibrium condition in which the expected 
return on a portfolio of assets is a linear function of the expected return 
on the market portfolio. Individual assets do not fall on the CML. 
Instead, it can be demonstrated that the following relationship holds for 
individual assets:3 

E Ri( ) – RfE Ri( ) = Rf + --------------------------- cov(Ri, RM ) 
var(RM ) 

The above equation is called the security market line (SML). 
In equilibrium, the expected return of individual securities will lie 

on the SML and not on the CML. This is true because of the high degree 
of nonsystematic risk that remains in individual assets that can be diver-
sified out of portfolios. In equilibrium, only efficient portfolios will lie 
on both the CML and the SML. 

The SML also can be expressed as 

cov(Ri, RM )( ) = Rf + [E RiE Ri ( ) – Rf]-------------------------------
var(RM ) 

The ratio cov(Ri, RM ) ⁄ var(RM) can be estimated empirically using 
return data for the market portfolio and the return on the asset. The 

2 The first empirical study of this type was by Wayne H. Wagner and Sheila Lau,

“The Effect of Diversification on Risks,” Financial Analysts Journal (November–De-

cember 1971), p. 50.

3 For the proof, see William F. Sharpe, Portfolio Theory and Capital Markets (New

York, NY: McGraw Hill, 1970), pp. 86–91.
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empirical analogue for the above equation is the following linear regres-
sion, called the characteristic line: 

rit − rft = αi + βi [rMt − rft] + eit 

where eit is the error term. 
The beta term βi in the above regression is the estimate of the ratio 

in the SML equation that is 

cov(Ri, RM)
βi = -------------------------------

var(RM) 

Substituting βi into the SML equation gives the beta-version of the 
SML: 

E(Ri) = Rf + βi [E(RM) − Rf] 

This is the CAPM. It states that, given the assumptions of the 
CAPM, the expected return on an individual asset is a positive linear 
function of its index of systematic risk as measured by beta. The higher 
the beta is, the higher the expected return. 

An investor pursuing an active strategy will search for underpriced 
securities to purchase and overpriced securities to avoid (sell if held in 
the current portfolio, or sold short if permitted). If an investor believes 
that the CAPM is the correct asset pricing model, then the SML can be 
used to identify mispriced securities. A security where the market prices 
it such that the expected return is less than the expected return as pre-
dicted by the SML is an undervalued security. In contrast, an overvalued 
security is one where the market prices the security such that its 
expected return is greater than that predicted by the SML. 

In equilibrium, the expected return of individual securities will lie 
on the SML and not on the CML. This is true because of the high degree 
of unsystematic risk that remains in individual securities that can be 
diversified out of portfolios of securities. It follows that the only risk 
investors will pay a premium to avoid is market risk. Hence, two assets 
with the same amount of systematic risk will have the same expected 
return. In equilibrium, only efficient portfolios will lie on both the CML 
and the SML. This underscores the fact that the systematic risk measure, 
beta, is most correctly considered as an index of the contribution of an 
individual security to the systematic risk of a well-diversified portfolio 
of securities. 
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Estimating the Characteristic Line 
The characteristic line is estimated using regression analysis. In fact, all 
the data required are the same except for the risk-free rate each period. 
The coefficient of determination, denoted by R-squared, indicates the 
strength of the relationship. Specifically, it measures the percentage of 
the variation in the return on a stock explained by the return by the 
market portfolio (proxied by the S&P 500 in our illustration). The value 
ranges from 0 to 1. The higher the R-squared, the greater the propor-
tion of systematic risk relative to total risk. For individual stocks, the R-
squared is typically in the 0.3 area. That is, for individual stocks system-
atic risk is small relative to nonsystematic risk. For well-diversified port-
folio, the R-squared is typically greater than 0.9. 

TESTING THE CAPM 

Testing the CAPM has been a major endeavor of financial econometrics. 
The number of articles found under the general heading “tests of the 
CAPM” is impressive. One bibliographic compilation lists almost 1,000 
papers on the topic. Consequently, only the basic results are given here. 

In general, a methodology referred to as “two-pass regression” is 
used to test the CAPM. The first pass involves the estimation of beta for 
each security by means of a time series regression described by charac-
teristic line. The betas from the first-pass regression are then used to 
form portfolios of securities ranked by portfolio beta. The portfolio 
returns, the return on the risk-free asset, and the portfolio betas are then 
used to estimate the second-pass, cross-sectional regression: 

R  – RF = bo + b1βp + ep p 

where the parameters to be estimated are bo and b1, and ep is the error 
term for the regression. The return data are frequently aggregated into 
five-year periods for this regression. 

Deriving the Empirical Analogue of the CML 
The above equation is the empirical analogue of a beta version of the 
CML. To see this, subtract RF from both sides of the CML equation 

([E RM) – Rf]E Ri[ ] = Rf + ----------------------------------cov(RiR ) 
var(RM) 

m 

which can then can be rewritten as
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([E RM ) – Rf ]E Ri[ ] – Rf = ----------------------------------cov(RiR ) 
var(RM ) 

m 

The above is the CML in “risk-premium form” because the value on 
the left-hand side of the equation is the portfolio’s expected return over 
the risk-free rate. By adding an error term and a constant term, bo, the 
above equation becomes 

E(Rp) – RF = bo + βp [E(RM) – RF] + ep 

The actual process of testing the CAPM using the two-pass regression 
methodology involves the consideration of some econometric problems 
(e.g., measurement error, correlated error terms, and beta instability).4 

Empricial Implications 
Assuming that the capital market can be described as one in which there 
is no opportunity for investors to use information from previous periods 
to earn abnormal returns, several testable hypotheses for the empirical 
analogue of the CML implied by the CAPM can be listed: 

1. The relationship between beta and return should be linear. 
2. The intercept term, bo, should not differ significantly from zero. 
3. The coefficient for beta, b1, should equal the risk premium (RM – RF). 
4. Beta should be the only factor that is priced by the market. That is, 

other factors such as the variance or standard deviation of the returns, 
and variables that we will discuss in later chapters such as the price/ 
earnings ratio, ratio, dividend yield, and firm size should not add any 
significant explanatory power to the equation. 

5. Over long periods of time, the rate of return on the market portfolio 
should be greater than the return on the risk-free asset. This is because 
the market portfolio has more risk than the risk-free asset. Hence, risk-
averse investors would price it so as to generate a greater return. 

4 The interested reader should consult Merton H. Miller and Myron S. Scholes, 
“Rates of Return in Relation to Risk,” Chapter 2 in Michael C. Jensen (ed.), Studies 
in the Theory of Capital Markets (New York: Praeger, 1972), pp. 79–121; Eugene 
F. Fama, Foundations of Finance (New York: Basic Books, 1976); Richard Roll, 
“Performance Evaluation and Benchmark Errors II,” Journal of Portfolio Manage-
ment (Winter 1981), pp. 17–22; and Richard Roll, “A Critique of the Asset Pricing 
Theory’s Tests,” Journal of Financial Economics (March 1977), pp. 129–176 for a 
discussion of these issues. 
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General Findings of Empirical Tests of the CAPM 
The general results of the empirical tests of the CAPM are as follows: 

1. The relationship between beta and return appears to be linear, hence 
the functional form of the CAPM seems to be correct. 

2. The estimated intercept term, 	bo, is significantly different from zero 
and consequently different from what is hypothesized for this value. 

3. The estimated coefficient for beta, b1, is less than RM – RF. The combi-
nation of results 2 and 3 suggests that low beta stocks have higher 
returns than the CAPM predicts and high beta stocks have lower 
returns than CAPM predicts. 

4. Beta is not the only factor priced by the market. Several studies have 
discovered other factors that explain stock returns. These include a 
price/earnings factor,5 a dividend factor,6 a firm size factor,7 and both a 
firm size factor and a book/market factor.8 

5. Over long periods of time (usually 20–30 years), the return on the mar-
ket portfolio is greater than the risk-free rate. 

A Critique of Tests of the CAPM 
One of the most controversial papers written on the CAPM is Richard 
Roll’s “A Critique of the Asset Pricing Theory’s Tests.”9 We will discuss 
the major points of Roll’s argument here. Following Roll’s argument, 
the CAPM is a general equilibrium model based upon the existence of a 
market portfolio that is defined as the value-weighted portfolio of all 
investment assets. Furthermore, the market portfolio is defined to be ex 
ante mean-variance efficient. This means that the market portfolio lies 
on the ex ante Markowitz efficient frontier for all investors. 

Roll demonstrates that the only true test of the CAPM is whether the 
market portfolio is in fact ex ante mean-variance efficient. However, the 

5 See Sanjoy Basu, “Investment Performance of Common Stocks in Relation to Their 
Price-Earnings Ratios,” Journal of Finance (June 1977), pp. 663–682 and “The Re-
lationship Between Earnings’ Yield, Market Value and Return for NYSE Common 
Stocks,” Journal of Financial Economics (June 1983), pp. 129–156. 
6 Robert Litzenberger and Krishna Ramaswamy, “The Effect of Personal Taxes and 
Dividends on Capital Asset Prices,” Journal of Financial Economics (June 1979), pp. 
163–195. 
7 Rolf Banz, “The Relationship Between Return and Market Value of Common 
Stocks,” Journal of Financial Economics (March 1981). pp. 3–18. 
8 Eugene Fama and Kenneth French, “The Cross-Section of Expected Returns,” Jour-
nal of Finance (June 1992), pp. 427–465. 
9 Richard Roll, “A Critique of the Asset Pricing Theory’s Tests.” 
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true market portfolio is, in fact, ex ante since it includes all investment 
assets (e.g., stocks, bonds, real estate, art objects, and human capital). 

The consequences of this “nonobservability” of the true market 
portfolio are: 

1. Tests of the CAPM are extremely sensitive to which market proxy is 
used, even though returns on most market proxies (e.g., the S&P 500 
and the NYSE index) are highly correlated. 

2. A researcher cannot unambiguously discern whether the CAPM failed 
a test because the true market portfolio was ex ante mean-variance 
inefficient, or because the market proxy was inefficient. Alternatively, 
the researcher cannot unambiguously discern whether a test supported 
the CAPM because the true market portfolio was ex ante mean-vari-
ance efficient or because the market proxy was efficient. 

3. The effectiveness of variables such as dividend yield in explaining risk-
adjusted asset returns is evidence that the market proxies used to test 
the CAPM are not ex ante mean-variance efficient. 

Hence, Roll submits that the CAPM is not testable until the exact 
composition of the true market portfolio is known, and the only valid 
test of the CAPM is to observe whether the ex ante true market portfo-
lio is mean-variance efficient. As a result of his findings, Roll states that 
he does not believe there ever will be an unambiguous test of the 
CAPM. He does not say that the CAPM is invalid. Rather, Roll says that 
there is likely to be no unambiguous way to test the CAPM and its 
implications due to the nonobservability of the true market portfolio 
and its characteristics. 

Does this mean that the CAPM is useless to the financial practitio-
ner? The answer is no, it does not. What it means is that the implica-
tions of the CAPM should be viewed with caution. 

Merton and Black Modifications of the CAPM 
Several researchers have modified the CAPM. Here we will briefly 
describe two modifications. 

Suppose that there is no risk-free rate and that investors cannot bor-
row and lend at the risk-free rate (Assumption 6). How does that affect 
the CAPM? Fischer Black examined how the original CAPM would 
change if there is no risk-free asset in which the investor can borrow 
and lend.10 He demonstrated that neither the existence of a risk-free 
asset nor the requirement that investors can borrow and lend at the risk-

10 Fischer Black, “Capital Market Equilibrium with Restricted Borrowing,” Journal 
of Business (July 1972), pp. 444–455. 



17-Capital Asset Pricing Model  Page 522  Wednesday, February 4, 2004  1:10 PM

522 The Mathematics of Financial Modeling and Investment Management 

free rate is necessary for the theory to hold. Black’s argument was as fol-
lows. The beta of a risk-free asset is zero. Suppose that a portfolio can 
be created such that it is uncorrelated with the market. That portfolio 
would then have a beta of zero, and Black labeled that portfolio a 
“zero-beta portfolio.” He set forth the conditions for constructing a 
zero-beta portfolio and then showed how the CAPM can be modified 
accordingly. Specifically, the return on the zero-beta portfolio is substi-
tuted for the risk-free rate. 

Now let’s look at the assumption that the only relevant risk is the 
variance of asset returns (Assumption 1). That is, it is assumed that the 
only risk factor that an investor is concerned with is the uncertainty 
about the future price of a security. Investors, however, usually are con-
cerned with other risks that will affect their ability to consume goods 
and services in the future. Three examples would be the risks associated 
with future labor income, the future relative prices of consumer goods, 
and future investment opportunities. Consequently, using the variance 
of expected returns as the sole measure of risk would be inappropriate 
in the presence of these other risk factors. Recognizing these other risks 
that investors face, Robert Merton modified the CAPM based on con-
sumers deriving their optimal lifetime consumption when they face such 
non-market risk factors.11 

CAPM and Random Matrices 
Let’s take a look at CAPM from a different angle. Under the assumption 
of IID returns, the CAPM is the statement that the entire market is 
driven by only one factor represented by the market portfolio. Plerou et 
al12 analyzed the distribution and stability of the eigenvalues of the vari-
ance-covariance matrix of large portfolios. Their conclusion can be 
summarized as follows:

 ■ The majority of the eigenvalues fall within the bounds of Random 
Matrix Theory (RMT). This means that the majority of eigenvalues do 
not carry genuine correlation information. This confirms results 
already described in the literature.13

 ■ A number of eigenvalues are definitely outside the RMT bounds. The 
eigenvector corresponding to the largest eigenvalue includes all assets, 

11 Robert C. Merton, “An Intertemporal Capital Asset Pricing Model,” Econometri-
ca (September 1973), pp. 867–888. 
12 Vasiliki Plerou, Parameswaran Gopikrishnan, Bernd Rosenow, Luis A. Nunes 
Amaral, Thomas Guhr, and H. Eugene Stanley, “Random matrix approach to cross 
correlations in financial data,” Physical Review 65 (June 2002). 
13 Random matrices are covered in Chapter 12. 
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though not necessarily in equal proportion. This eigenvector approxi-
mately corresponds to the entire market. The other largest eigenval-
ues correspond to eigenvectors that identify market sectors. The 
eigenvectors corresponding to the largest eigenvalues exhibit some 
degree of stability in time, the most stable being those corresponding 
to the largest eigenvalues. Stability is measured by computing eigen-
values and eigenvectors on a moving window and counting the per-
centage of assets forming each eigenvector that remain unchanged. 

Based on a remarkably large data set, work by Plerou et al. identi-
fies a number of different meaningful eigenvectors. The multiplicity of 
eigenvectors corresponding to large eigenvalues suggests a structure of 
multiple factors as portfolios. Note that the largest eigenvector is not 
the market portfolio. In fact, the market portfolio includes all investable 
assets. Therefore, it includes assets that are not in the largest eigenvec-
tor. This fact leaves open the door to a possible coexistence of CAPM 
and multifactor models. In order to explore this point, we need first to 
discuss the Conditional CAPM, Asset Pricing Theory, and multifactor 
models. We discuss the Conditional CAPM in this chapter and the last 
two models in the next chapter. 

THE CONDITIONAL CAPM 

As we have seen, the CAPM is embodied in a static linear regression of 
asset returns over the market portfolio whose explanatory power has 
been questioned by, among others, Fama and French.14 Ravi Jagan-
nathan and Zheniu Wang15 suggested a solution: They made the CAPM 
regression coefficients conditional on some global information set, 
thereby generalizing the model. Called the Conditional CAPM or 
C(CAPM), this model represents each expected return rit given the 
information set at time t by the conditional linear regression: 

E[rt ⁄ ] = αααα + ββββE[ft ⁄ ]It – 1 It – 1 

cov(ritfst ⁄ )It – 1 = -----------------------------------------βis 
var(fst ⁄ )It – 1 

14  Fama and French, “The Cross-Section of Expected Stock Returns.” 
15 Ravi Jagannathan and Zhenyu Wang, “The Conditional CAPM and the Cross-
Section of Expected Returns,” Journal of Finance 51, no. 1, pp. 3–53. 
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A difficulty with C(CAPM) is to identify the conditioning relation-
ships as well as the market portfolio. Jagannathan and Wang show that 
the unconditional returns generated by a C(CAPM) can be thought of as 
being generated by a two-factor model where one factor is the uncondi-
tional beta and the other represents the fluctuations of beta. This con-
clusion can be generalized. A C(CAPM) model is equivalent to a 
nonlinear factor model.16 

Jagannathan and Wang show that the C(CAPM) is able to represent 
the cross section of stock returns with a greater accuracy than the con-
ventional unconditional CAPM. They also show that the empirical accu-
racy of the unconditional CAPM is greatly improved by adding human 
capital to the market portfolio. Human capital is not a tradable asset, at 
least not in the same sense as financial assets. 

BETA, BETA EVERYWHERE 

In the development of both modern portfolio theory and CAPM, the 
Greek letter beta appears. Certainly to the mathematically trained, this 
presents no problem. However, it caused confusion in the investment 
management community. The use of the term “beta” in the two theories 
was as follows. First, because of the difficulty of working with the cova-
riance matrix at the time, Markowitz suggested using as a proxy mea-
sure of the full covariance matrix a covariance of a security’s return 
with some index.17 Sharpe picked up on this suggestion and proposed 
the following model for doing so which he referred to as the market 
model:18 

rit = αi + βi rmt + uit 

Note that the index need not be a market portfolio—hence the use of m 
rather than M in the above equation. When Sharpe estimated the market 
model, he used a stock market index. 

Then beta appeared in the CAPM where it is estimated from the 
characteristic line which we discussed earlier. The market model and the 
characteristic line look almost identical. The difference is simply that 

16 For more on this subject see, for instance, Adrian Pagan, “The Econometrics of 
Financial Markets,” Journal of Empirical Finance 3 (1996), pp. 15–102. 
17 Harry M. Markowitz, Portfolio Selection: Second Edition (Cambridge, MA: Basil 
Blackwell Ltd., 1991), p. 100. 
18 William F. Sharpe, “A Simplified Model for Portfolio Analysis,” Management Sci-
ence (January 1963), pp. 277–293. 
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the characteristic line measures the return relative to the risk-free rate in 
each period. In the case of the characteristic line, a proxy for the market 
portfolio is used. This is in contrast to the market model where the 
index need not be the market portfolio. 

This distinction between the beta in the market model and the beta 
in the characteristic line is important. As we will see in the next section, 
critics of portfolio selection and the CAPM have incorrectly made state-
ments about the drawbacks of these theories because they fail to under-
stand the distinction between these two betas. Adding to the confusion 
was that Sharpe introduced both of these beta concepts around the same 
time (1963 and 1964). 

THE ROLE OF THE CAPM IN INVESTMENT MANAGEMENT 
APPLICATIONS 

In 1980, a highly regarded magazine published an article with the title 
“Is Beta Dead?”19 In response to this article, in its Winter 1981 issue 
The Journal of Portfolio Management published a series of articles. The 
article by Barr Rosenberg in particular provides an excellent discussion 
of the CAPM and its role.20 

The key to the CAPM’s contribution to investment management the-
ory is clearly stated by Rosenberg: 

The CAPM is theory, but, paradoxically, the role of the 
CAPM as “theory” leading to application has been less 
important than its role in mobilizing attention and defin-
ing constructs. We should keep in mind that the CAPM is 
not “true,” since many of its assumptions are not exactly 
satisfied in the real world. Indeed, the CAPM rules out 
active management and investment research, and thus 
abolishes most applications at the stroke of a pen, by vir-
tue of the unrealistic assumptions that it makes. (p. 5) 

That is, even though the CAPM is not true it does not mean that the 
constructs introduced by the theory are not important. Constructs intro-
duced in the development of the theory include the notion of a market 
portfolio, systematic risk, diversifiable risk, and beta. As Rosenberg 

19 Anise Wallace, “Is Beta Dead?” Institutional Investor (July 1980), pp. 23–30. 
20 Barr Rosenberg, “The Capital Asset Pricing Model and the Market Model,” The 
Journal of Portfolio Management (Winter 1981), pp. 5–16. 
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notes: “These ideas play an important role in the methods of ‘modern 
portfolio theory.’” 

In the next chapter we will discuss another asset pricing model that 
introduces risk factors other than market risk. Earlier in this chapter we 
also discussed other models that consider nonmarket risk factors. How-
ever, these do not invalidate the important constructs developed by the 
CAPM. Rosenberg concludes his article with the following statement: 

The question of rewards for factors other than equity mar-
ket risk has been the subject of active study and contro-
versy for a decade—and no doubt will continue to be so in 
the decades to come. Nevertheless, no one has refuted the 
existence of equilibrium reward for equity market risk; 
indeed, it has rarely been questioned, although the magni-
tude has been in doubt. The concept of reward to equity 
market risk (or beta) is a theoretical insight, that, in my 
view, is likely to endure. (p. 16). 

Fast forward a little more than two decades since the publication of the 
Rosenberg article and his conclusions still hold.21 

Moreover, Markowitz has explained that the major reason for the 
debate is the confusion between the beta that is associated with the mar-
ket model (estimated to avoid having to compute all covariances for 
assets in a portfolio) and the beta in the CAPM, a point we emphasized 
in the previous section.22 

SUMMARY

 ■ The Capital Asset Pricing Model (CAPM) is a general equilibrium the-
ory based on the assumption that investors are rational and subscribe 
to the Markowitz mean-variance framework.

 ■ A key finding of the CAPM is that, in a situation of equilibrium 
between demand and supply, if agents optimize in the sense of mean-

21 These sentiments were echoed in a presentation by Peter Bernstein in a keynote ad-
dress on the occasion of the fifth anniversary of the establishment of the Internation-
al Center for Financial Management & Engineering (FAME) in Geneva on February 
7, 2002. (See “How Modern is Modern Portfolio Theory?” Economics and Portfolio 
Strategy, Peter L. Bernstein, Inc., March 15, 2002.) 
22 Harry M. Markowitz, “The ‘Two Beta’ Trap,” The Journal of Portfolio Manage-
ment (Fall 1984), pp. 12–20. 
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variance optimization, then the total investable portfolio, called the 
market portfolio, is mean-variance efficient.

 ■ From the mean-variance efficiency of the market portfolio, Sharpe, 
Lintner, Treynor, and Mossin were able to derive the fundamental lin-
ear relationship between the expected value of each security and that of 
the market portfolio.

 ■ In the CAPM, risk is decomposed into diversifiable risk and systematic 
or market risk; it is only systematic risk for which an investor should 
be compensated.

 ■ CAPM has been extensively tested using regression-based procedures.
 ■ The fundamental linearity of risk-return relationship seems to be con-

firmed; however, it seems likely that more than one factor is needed to 
explain returns.

 ■ The empirical testability of CAPM has been questioned given that the 
market portfolio cannot be empirically identified.

 ■ CAPM has had a lasting influence on finance theory and on the prac-
tice of asset management. 
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CHAPTER 18 
Multifactor Models and 

Common Trends for 
Common Stocks 

n this chapter we discuss how multifactor models are used in the man-
agement of equity portfolios; in Chapter 20 we will discuss how they 

are applied to bond portfolio management. Multifactor models are a 
broad family of econometric models. Essentially, a multivariate process 
admits a multifactor representation if it can be approximately (or 
exactly) expressed as a function of another multivariate process of a 
smaller dimensionality. The general multifactor formulation of a model 
has to be clearly distinguished from the economic theory that might be 
behind it. In fact, multifactor models might be the expression of an eco-
nomic theory as well as the result of an explicit econometric dimension-
ality reduction process. 

For example, the Capital Asset Pricing Model (CAPM) is a general 
equilibrium theory which is embodied in a single-factor linear model. In 
this case, the factorization is the expression of a theoretical formulation. 
The same considerations apply to the Arbitrage Pricing Theory (APT): a 
multifactor model embodies a pricing theory based on the absence of 
arbitrage. However, given a multivariate process, econometric factor 
analysis techniques yield a dimensionality reduction which is also 
embodied in a multifactor model. In the latter case the process is purely 
statistic, not supported by theory. In this sense, the statement, often 
found in the literature, that CAPM and APT are factor models might be 
slightly misleading. It should be clear that both are economic theories, 
general equilibrium and arbitrage pricing respectively, which happen to 
be expressed as multifactor models. 

529 
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It is likely that in the long run all price processes follow one single 
common trend with the exception of disruptive events such as bankrupt-
cies or mergers and acquisitions. This trend-following behavior, how-
ever, might exhibit a complex dynamical structure. Within the time 
horizons that are empirically available, multiple trends, mean reversion, 
and structural breaks are at work. We will first analyze classical multi-
factor models of returns and how they are constructed and used in 
investment management. Subsequently, we will discuss dynamic factor 
models. 

MULTIFACTOR MODELS 

Let’s introduce multifactor models of returns. The general form of a lin-
ear multifactor market model of returns can be written in one of the fol-
lowing ways: 

[ ] = αααα ββββ' E fE r + [ ]  

[ ft] = + ββββiftE rit αi 

p 

rit = αi + ∑ βisfst + εt 
s = 1 

where: 

rit = the return of the i-th security at time t 
ai = constants specific for the i-th security 
βis = the sensitivity of the i-th security to the s-th factor 
ft = the s-th factor at time t and εt is a noise process 

In this linear regression model, assuming that factors are orthogonal 
(that is, uncorrelated), the sensitivities βis, referred to as betas, can be 
written as: 

cov(ritfst) = --------------------------βis 
var fst( )  

As both returns and factors are assumed to be stationary stochastic 
processes, unconditional means and covariances are time-independent 
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constants. The first formulation expresses a linear relationship between 
the unconditional means of the returns and of the factors. The second 
formulation is the linear regression function which expresses a linear 
relationship between the mean of returns at time t conditional on the 
realization of the factors at the same time; the third is the standard for-
mulation of the linear regression of returns on factors. 

Obviously returns and factors are all defined on the same probabil-
ity space and have a joint pdf.1 Recall from Chapter 6 on probability 
theory that joint multivariate normal distributions factorize in a linear 
regression. In the case of joint normality, returns, factors and noise all 
have normal joint distributions. However other distributions, for 
instance the Student-t, factorize in a linear regression while distribu-
tions such as lognormal and Pareto distributions do not factorize in a 
linear regression. 

Factors range from innovations to exogenous variables, such as 
macroeconomic variables, to abstract factors formed as linear combina-
tions of the processes. The multifactor model is a regression between 
variables at the same time and does not specify a dynamics for these 
variables. In other words, a multifactor model is not, per se, a predictive 
model. To perform forecasts and parameter estimates, a process dynam-
ics of factors must be specified. The simplest dynamic assumption is that 
factors are independent and identically distributed (IID) variables. In 
this case, the noise is a white noise. Other specifications of factors 
dynamics have been proposed; these will be discussed later. 

Factor market models can be generalized to include linear condi-
tional factor models where factors and returns are conditional on some 
information set I known at time t – 1. The information set will contain 
the history of returns and factors up to time t – 1 and, possibly, other 
variables. Linear conditional factor models are written as follows: 

E[rt ] = αααα ββββE[ft+ ]It – 1 It – 1 

where the constants are now time-dependent and conditional on the 
information set: 

cov(ritfst )It – 1 = ---------------------------------------βis 
var(fst )It – 1 

1 For a discussion of what families of joint pdfs admit a linear regression function, 
see, amongst other, A. Spanos, Statistical Foundations of Econometric Modeling 
(Cambridge, U.K.: Cambridge University Press, 1986). 
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Determination of Factors 
Let’s now see how factors can be determined. Exogenous factors are 
determined through considerations of macroeconomic theory and fun-
damentals of each firm. Abstract factors are determined through a pro-
cess of statistical analysis. We begin by describing the determination of 
exogenous factors and then of abstract factors. 

Exogenous Factors2 

There are several commercially available fundamental multifactor risk 
models. Investment management companies often develop their own 
proprietary models. Brokerage firms have developed models that they 
make available to institutional clients. In this section, we will focus on a 
commercially available model from Barra. The basic relationship to be 
estimated in a multifactor risk model is 

Ri − Rf = βi,F1 RF1 + βi,F2 RF2 + … + βi,FH RFH + ei 

where: 

Ri = rate of return on stock i 
Rf = risk-free rate of return 
βi,Fj = sensitivity of stock i to risk factor j 
RFj = rate of return on risk factor j 
ei = nonfactor (specific) return on security i 

The above function is referred to as a return generating function. 
Fundamental factor models use company and industry attributes 

and market data as “descriptors.” Examples are price/earnings ratios, 
book/price ratios, estimated earnings growth, and trading activity. The 
estimation of a fundamental factor model begins with an analysis of his-
torical stock returns and descriptors about a company. In the Barra 
model, for example, the process of identifying the risk factors begins 
with monthly returns for 1,900 companies that the descriptors must 
explain. Descriptors are not the “risk factors” but instead they are the 
candidates for risk factors. The descriptors are selected in terms of their 
ability to explain stock returns. That is, all of the descriptors are poten-
tial risk factors but only those that appear to be important in explaining 
stock returns are used in constructing risk factors. 

2 The discussion in this section draws from Frank J. Fabozzi, Frank J. Jones, and Ra-
man Vardharaj, “Multi-Factor Equity Risk Models,” Chapter 13 in Frank J. Fabozzi 
and Harry M. Markowitz (eds.), The Theory and Practice of Investment Manage-
ment (Hoboken, NJ: John Wiley & Sons, 2002). 
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Once the descriptors that are statistically significant in explaining 
stock returns are identified, they are grouped into “risk indices” to cap-
ture related company attributes. For example, descriptors such as market 
leverage, book leverage, debt-to-equity ratio, and company’s debt rating 
are combined to obtain a risk index referred to as “leverage.” Thus, a risk 
index is a combination of descriptors that captures a particular attribute 
of a company. The Barra fundamental multifactor risk model, the “E3 
model” being the latest version, has 13 risk indices and 55 industry 
groups. Exhibit 18.1 lists the 13 risk indices in the Barra model.3 

Also shown in the exhibit are the descriptors used to construct each 
risk index. The 55 industry classifications are further classified into sec-
tors. For example, the following three industries comprise the energy 
sector: energy reserves and production, oil refining, and oil services. The 
consumer noncyclicals sector consists of the following five industries: 
food and beverages, alcohol, tobacco, home products, and grocery 
stores. The 13 sectors in the Barra model are basic materials, energy, 
consumer noncyclicals, consumer cyclicals, consumer services, industri-
als, utility, transport, health care, technology, telecommunications, com-
mercial services, and financial. 

Given the risk factors, information about the exposure of every 
stock to each risk factor (βi,Fj) is estimated using statistical analysis. For 
a given time period, the rate of return for each risk factor (RFj) also can 
be estimated using statistical analysis. The prediction for the expected 
return can be obtained from the above equation for any stock. The non-
factor return (ei) is found by subtracting the actual return for the period 
for a stock from the return as predicted by the risk factors. 

Moving from individual stocks to portfolios, the predicted return for 
a portfolio can be computed. The exposure to a given risk factor of a 
portfolio is simply the weighted average of the exposure of each stock in 
the portfolio to that risk factor. For example, suppose a portfolio has 42 
stocks. Suppose further that stocks 1 through 40 are equally weighted in 
the portfolio at 2.2%, stock 41 is 5% of the portfolio, and stock 42 is 
7% of the portfolio. Then the exposure of the portfolio to risk factor j is 

0.022 β1,Fj + 0.022 β2,Fj + … + 0.022 β40,Fj + 0.050 β41,Fj + 0.007 β42,Fj 

The nonfactor error term is measured in the same way as in the case of 
an individual stock. However, in a well diversified portfolio, the nonfactor 
error term will be considerably less for the portfolio than for the individ-

3 For a more detailed description of each descriptor, see Appendix A in Barra, Risk 
Model Handbook United States Equity: Version 3 (Berkeley, CA: Barra, 1998). A 
listing of the 55 industry groups is provided in Exhibit 13.9. 
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ual stocks in the portfolio. The same analysis can be applied to a stock 
market index because an index is nothing more than a portfolio of stocks. 

Abstract Factors 
Suppose now that factors are abstract static factors under the assump-
tion that returns are normally distributed IID variables. Under this 
assumption, two basic techniques can be used: factor analysis and prin-
cipal components analysis. We’ll begin with factor analysis. 

Suppose that there is a strict factor structure with a known number 
of undetermined factors of the form: 

r = αααα + Bf + εεεε

N 

fi = ∑ α rs s 
s = 1 

where factors are linear combinations of returns. A strict factor struc-
ture means that factors explain all the covariance between the process 
components. Under this assumption, factors are processes with a vari-
ance-covariance matrix ΩΩΩΩF while the innovations εεεε are assumed to be 
uncorrelated and have a diagonal variance-covariance matrix D. Under 
these assumptions, the variance-covariance matrix ΩΩΩΩ of the multivariate 
process r of returns can be written as the sum of two contributions: 

ΩΩΩΩ = BΩΩΩΩFB′ + D 

This representation is not unique as factors are not uniquely deter-
mined. In fact, given any set of factors, one obtains another set of fac-
tors by multiplying the former by an orthonormal matrix G GG′ = I ., 
This indeterminacy allows one to choose orthogonal factors with unit 
variance so that their variance-covariance matrix is a unitary matrix 
and the return process variance-covariance matrix can be written as: 

ΩΩΩΩ = BB′ + D 

This relationship is a constraint on the return variance-covariance 
matrix. The latter can be estimated with MLE techniques. The resulting 
computations are numerically complex. However, many software pack-
ages efficiently perform factor analysis. After estimating the matrix of 
factor sensitivities, the factors themselves can be estimated with MLE 
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EXHIBIT 18.1 Barra E3 Model Risk Definitions 

Descriptors in Risk Index Risk Index 

Beta times sigma Volatility 
Daily standard deviation 
High-low price 
Log of stock price 
Cumulative range 
Volume beta 
Serial dependence 
Option-implied standard deviation 
Relative strength Momentum 
Historical alpha 
Log of market capitalization Size 
Cube of log of market capitalization Size nonlinearity 
Share turnover rate (annual) Trading activity 
Share turnover rate (quarterly) 
Share turnover rate (monthly) 
Share turnover rate (five years) 
Indicator for forward split 
Volume to variance 
Payout ratio over five years Growth 
Variability in capital structure 
Growth rate in total assets 
Earnings growth rate over the last five years 
Analyst-predicted earnings growth 
Recent earnings change 
Analyst-predicted earnings-to-price Earnings yield 
Trailing annual earnings-to-price 
Historical earnings-to-price 
Book-to-price ratio Value 
Variability in earnings Earnings variability 
Variability in cash flows 
Extraordinary items in earnings 
Standard deviation of analyst-predicted earnings-to-price 
Market leverage Leverage 
Book leverage 
Debt to total assets 
Senior debt rating 
Exposure to foreign currencies Currency sensitivity 
Predicted dividend yield Dividend yield 
Indicator for firms outside US-E3 estimation universe Nonestimation 

Universe indicator 

Source: Adapted from Table 8-1 in Barra, Risk Model Handbook United States 
Equity: Version 3 (Berkeley, CA: Barra, 1998), pp. 71–73. Adapted with permis-
sion. 
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techniques. In general one finds the entire set of N returns as one factor 
plus a number of additional factors as we have seen in Chapter 12. 

Another statistical technique for determining factors is principal 
components analysis (PCA). As explained in Chapter 12, PCA is imple-
mented by computing the eigenvalues of the estimated variance-covari-
ance matrix. As shown in the study by Plerou et al., the distribution of 
eigenvalues typically follows that of a random matrix with the excep-
tion of a number of outliers. These outliers are the eigenvalues and the 
corresponding eigenvectors that form the factors. 

PCA (as well as factor analysis) is a powerful statistical technique with 
a deep economic interpretation. To see this point, let’s analyze the largest 
eigenvalues and the corresponding eigenvectors. The largest eigenvalue cor-
responds to an eigenvector whose components are all approximately equal 
to 1/N. Therefore, the largest eigenvalue corresponds to the entire market. 

The other large eigenvalues correspond to eigenvectors that have only a 
subset of components different from zero. The important finding is that 
these eigenvectors correspond to specific market sectors. In fact, the assets 
corresponding to the nonzero components of the largest eigenvectors corre-
spond with good approximation to the Standard & Poor’s market sector 
classification. Exhibit 18.2 shows the results obtained by performing PCA 
on the correlation matrix of the S&P 500 stocks in the period January 2, 
2001–September 19, 2003. The ten largest eigenvalues correspond with 
good approximation to ten sectors of the Standard & Poor’s classification.4 

That the ten largest eigenvalues correspond to ten sectors of the 
Standard and Poor’s classification is a powerful and somewhat surpris-
ing result in empirical financial econometrics. Performing PCA on a 
large aggregate of stock prices, we find that the information-carrying 
eigenvalues identify stable subsets of the market that correspond to 
meaningful sectors. It is an important theoretical-empirical finding that 
lends support to the use of factor analysis in financial econometrics. 

The eigenvector corresponding to the largest eigenvalue identifies 
the entire market. Note that this eigenvector is a totally different con-
cept than the “market portfolio” of the CAPM. In fact, the market port-
folio of the CAPM, which is obtained as a General Equilibrium Theory 
and not as a factor model, includes all investable assets and not only 
stocks. Performing PCA on a large aggregate of stock prices one obtains 
a multiplicity of factors. In principle, on a very large sample, the two 
methods—factor analysis and PCA—yield the same result. On a finite 
sample, however, results might differ significantly. Note that both factor 
analysis and PCA tend to solve the problems of the sample limitations. 

4 The details of the methodology to arrive at these results can be found in Plerou, et 
al., “Random Matrix Approach to Cross Correlations in Financial Data.” 
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EXHIBIT 18.2 PCA Performed on Correlations Matrix of S&P 500 Stocks, 
January 2, 2001–September 19, 2003 

DYNAMIC MARKET MODELS OF RETURNS


Now let’s consider stationary return processes with a dynamics more 
complex than that of an IID sequence of variables. A reasonable gener-
alization of factor market models are state-space models of the form 
that was described in Chapter 12: 

rt = αααα + Azt + Bεεεεt 

zt + 1 = Czt + Dεεεεt 

Note that z is non-observable. Therefore, the noise term can be 
placed either at t or t – 1. The first equation is the usual regression of a 
factor market model while the second equation is a one-lag stationary 
Vector Auto Regressive—denoted by VAR(1)—model that describes the 
autoregressive dynamics of the factors. Note that we assume that the 
above equations describe the dynamics of returns; the following section 
discusses how similar equations might describe prices. 
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Dynamic market models of this type can be used to create meaning-
ful scenarios for multistage stochastic optimization. The VAR part of 
the model might describe the evolution of macroeconomic variables. If 
the objective is to apply multistage optimization and stay within the 
domain of linear models of returns, state-space models are the models of 
choice. As we have seen in Chapter 11, any stationary or asymptotically 
stationary linear model can be represented in this form. 

Estimation of State-Space Models 
Methods for the estimation of state-space models were originally devel-
oped for engineering applications. State-space systems can be estimated 
using MLE methods.5 In 1990 Masanao Aoki6 introduced a methodol-
ogy called the subspace algorithm to estimate state-space models; Diet-
mar Bauer and Martin Wagner7 subsequently showed how to apply 
subspace algorithms to cointegrated systems. 

It was R. E. Kalman8 who, in 1960, introduced a recursive methodol-
ogy for making forecasts based on state-space models. Known as the Kal-
man filter, the methodology proved very successful in engineering before 
being applied more recently in economics and finance. Given a state-space 
model, a Kalman filter computes recursively the best estimate of state: 

ẑ = E zt[ r0, …, rt]t t  

Kalman filters are now implemented in many software packages. 

DYNAMIC MODELS FOR PRICES 

The models discussed above are single factor or multifactor linear mod-
els of returns; the risk-return trade-off entailed by these models leads to 
price processes that diverge exponentially. To see this point, consider 
that, given log prices, returns are approximately differences of log-
prices. Therefore, log-prices are obtained by adding returns (i.e., they 
are a random-walk) and the real prices are then obtained taking the 

5 See, for instance, Helmut Luetkepohl, Introduction to Multiple Time Series Analy
-
sis (New York: Springer, 1991).

6 Masanao Aoki, State Space Modelling of Time Series (New York: Springer, 1990).

7 D. Bauer and M. Wagner, “Estimating Cointegrated Systems Using Subspace Algo
-
rithms,” Journal of Econometrics 11 (2002), pp. 47–84.

8 R.E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”

Transactions of the ASME-Journal of Basic Engineering (March 1960), pp. 35–45.
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exponentials. If returns are jointly normally distributed, then log prices 
are jointly normally distributed while the real prices are lognormally 
distributed. Suppose that a variable X is normally distributed with 
expected value and variance µ, σ2. The variable ex is lognornomally dis-
tributed with the following expected value and variance: 

1 µ + ---σ2 

2 
e , σ2(e σ

2 

– 1) 

If returns are Independent and Identical Normal (IIN) variables, lin-
ear factor models imply that prices with different factor sensitivities will 
have different average returns, an expression of the risk-return trade-off 
required by investors. In addition, the variance of log prices will grow 
linearly with time at different rates for each process. The means that dif-
ferent price processes will therefore evolve exponentially at different 
rates and diverge exponentially. Under the assumption that factors 
behave as a stationary Vector Auto Regressive (VAR) Model as in the 
state space-models, the dependence is more complex but there is still an 
exponential divergence of prices. 

An exponential divergence of prices is not sustainable in the long 
run. Clearly corrective phenomena are at work in financial markets, 
though exactly how corrections are made is the subject of different 
hypotheses. It has been hypothesized that stock price processes are sub-
ject to discrete regime-changes; this assumption, widely studied in the 
literature, leads to nonlinear models. It has also been hypothesized that 
disruptive phenomena are at work, so that the price of a firm’s stock 
might grow rapidly but then the firm is subject to phenomena such as 
bankruptcy, merger, acquisition or corporate restructuring; this links 
financial theory to macroeconomics and is beyond the scope of this 
book. A third hypothesis is that correction phenomena—and perhaps 
discrete changes—are always at work in markets; these phenomena can 
be modeled within the domain of linear models with the techniques of 
cointegration. The fact that portfolio separation in a fixed and closed 
economy implies collinearity lends additional theoretical support to the 
cointegration of asset prices. Bossaert showed how cointegration natu-
rally arises if one slightly relaxes the assumption of separation.9 

Cointegration (see Chapter 12 can be modeled in two different but 
equivalent ways, using either state-space models or Error Correction 
Models (ECMs). ECMs are VAR models with restrictions. Consider that 
it is always possible to write a VAR model in ECM form: 

9 Peter Bossaerts, “Common Nonstationary Components of Asset Prices,” Journal of 
Economic Dynamics and Control 12 (1988), pp. 347–364. 
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∆xt = (ΦΦΦΦ1L + ΦΦΦΦ2L2 + … + ΦΦΦΦ Ln – 1)∆xt + ΠΠΠΠxt + m + εεεεtn – 1 

The error correction restrictions apply to the matrix ΠΠΠΠ. An ECM is a 
VAR model with ΠΠΠΠ = αβ′ where α, β are n×r matrices. The term in level 
provides the error correction. The Granger Representation Theorem 
demonstrated by Granger in 198710 states that if a process is cointe-
grated with r cointegrating relationships then the above ECM holds. 

James Stock and Mark Watson11 first observed in 1988 that a coin-
tegrated model with r cointegrating relationships admits n–r common 
trends. The implication is that all time series can be written in the form 

xt = a Azt + ηηηηt+ 

where the zt are the common stochastic trends, which are I(1) integrated 
processes, and the ηt are stationary processes. 

Models for cointegration can be extended in various ways. In the 
context of cointegration, Hashem Pesaran and Yongcheol Shin12 intro-
duced the Autoregressive Distributed Lag (ARDL) models. An ARDL 
model contains exogenous variables that are not cointegrated among 
themselves. It has the following form: 

xt = α0 + α1t + (ΦΦΦΦ1L + ΦΦΦΦ2L2 + … + ΦΦΦΦpLp )xt + βzt 

++ (β1L + β2L2 + … βqLq )∆zt + ut 

+0 = (P1L P2L2 + … + P Ls)∆zt + εεεεts

where the z are I(1) noncointegrated variables and the y exhibit r cointe-
grating relationships. Pesaran and Shin demonstrated that the classical 
approach to ARDL systems that are valid for stationary processes can 
be extended to integrated processes. 

Cointegration models can also be extended in the sense of dynamic 
cointegration (or polynomial cointegration). Cointegrating relationships 
are static relationships between variables taken at the same time; 

10 R.F. Engle and C.W.J. Granger, “Cointegration and Error Correction: Represen-
tations, Estimation and Testing,” Econometrica 55 (1987), pp. 252–276. 
11 James Stock and Mark Watson, “Testing for Common Trends,” Journal of the 
American Statistical Association 83 (December 1988), pp. 1097–1107. 
12 Hashem M. Pesaran and Yongcheol Shin, “An Autoregressive Distributed Lag 
Modelling Approach to Cointegration Analysis,” Chapter 11 in S. Strom (ed.), 
Econometrics and Economic Theory in the 20th Century (Cambridge, U.K.: Cam-
bridge University Press, 1999). 
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dynamic cointegration introduces a small number of lags in the cointe-
grating relationship. In other words, cointegration reduces the order of 
integration by applying linear regressions between variables; dynamic 
cointegration reduces the order of integration by applying autoregres-
sive modeling. A VAR model with n lags 

xt = + … + Anxt n + εεεεtA1xt – 1 + A2xt – 2 – 

exhibits dynamic cointegration if there exists a stationary autoregressive 
combination of the variables of the type 

α′xt + β′∆xt 

Cointegration and dynamic cointegration can coexist in the same 
model in the sense that variables can be cointegrated and dynamically 
cointegrated. Note that, if the log price process is integrated of order 1, 
then the return process is stationary so that factor models for returns and 
cointegrated models for prices can coexist. In addition, linear combina-
tions of prices and returns can also be stationary. 

Cointegration is equivalent to the existence of common stochastic 
trends. This property is also expressed by the equivalence between an 
ECM and a state-space model. Recall that a state-space model is written 
as 

xt = a Azt + Bµµµµt+ 

zt + 1 = Czt + Dεεεεt 

where state-space variables are either stationary or integrated variables. 
Although a cointegrated price system of price processes can always be 
expressed as a state-space model, the variables in the state-space repre-
sentation might include lagged prices. This fact was shown in Chapter 
12 when addressing the question of the equivalence between ARMA 
models and state-space models. In general, prices might be expressed in 
the following factor form: 

p q 

pt = st + ∑ Aipt i + ∑ Bjft j + ut– – 
i = 1 j = 0 
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s 

ft = ∑ Ckft k + ηηηηt– 
k = 1 

where the price processes pt have an autoregressive distributed-lag 
dynamics, the factors ft follow a VAR or VARMA model, the terms ut 
are idiosyncratic (i.e., they are mutually uncorrelated), and st are deter-
ministic terms. The terms ut and ηηηηt might be white noise or might be 
autocorrelated (i.e., they are a stationary process that obeys ARMA 
equations). 

Factor models can be cast in the state-space representation. Con-
sider, for example, the following model: 

pt = Bft + ut 

s 

ft = ∑ Ckft k + ηηηηt– 
k = 1 

and 

q 

ut = ∑ Hkut k + εεεεt– 
k = 1 

An equivalent state-space model can be obtained by defining the follow-
ing state vector: 

zt ′ = [ft…ft put…ut q]– – 

and the following transition matrix: 

C . 0  0C1 … Cs – 1 s ηηηηtI 0 0 . 
. . .	 0. . .. . . . 	 ..

0
.

0 … I 0 . 0  
0zt =	 . . . . . . . . . zt – 1 + 

0 0 . H1 … Hq – 1 Hq 
εεεεt 

0 
. I 0 0 ... . . .. . ..	 . . . 

0
0 0 . 0 … I 0 
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The static-factor model and the common-trend cointegrated model are 
special cases of the above general dynamic factor model. The ARDL 
model is a dynamic factor model with additional restrictions. 

A conceptual parallel can be made between state-space models and fac-
tor models. Recall that factor models essentially address the problem of a 
nearly random cross-correlation matrix. The correlation coefficients of a 
large correlation matrix are essentially random. To recover a meaningful 
correlation structure, every process is represented as a linear regression on 
a set of factors and only correlations between factors are considered. 

Were we to attempt an estimate of a global VAR model of a large 
portfolio of equity prices or return processes, we would run into the same 
problem of finding meaningless random autocross correlation coefficients. 
This is because the matrices that represent all the correlations at different 
time lags are nearly random. State-space models extract the useful auto-
correlation information from a large set of auto-cross-correlation data. 

Estimation and Testing of Cointegrated Systems 
The estimation and testing of cointegrated systems is a complex issue on 
which there is vast literature. The two major methods for estimation of 
cointegrated systems are due to Engle and Granger13 and Johansen.14 The 
Engle-Granger method is based on writing down explicitly the long-run 
regression equation and subsequently estimating the short term correc-
tions. The Johansen methodology applies directly MLE methods. Stock 
and Watson15 proposed PCA to determine the common trends.16 

When dealing with large sets of asset prices, in particular equity 
prices, the techniques of Engle-Granger and Johansen are not applica-
ble. The PCA-based approach of Stock and Watson, on the other hand, 
can be applied to hundreds of price processes. The Stock and Watson 
methodology is based on the observation that if there are r cointegra-
tion relationships the resulting n-r common trends are integrated I(1) 
while the r cointegrating portfolios are stationary I(0). Consequently, it 
is reasonable to assume that the integrated portfolios have maximum 
variance. Therefore, performing PCA on the variance-covariance matrix 
of the price process should lead to identification of the number and the 

13 Engle and Granger, “Cointegration and Error Correction: Representations, Esti
-
mation and Testing.”

14 S. Johansen, Likelihood-based Inference in Cointegrated Vector Autoregressive

Models (Oxford: Oxford University Press, 1995).

15 Stock and Watson, “Testing for Common Trends.”

16 The interested reader should consult the original works quoted or, G.S. Maddala

and In-Moo Kim, Unit Roots, Cointegration, and Structural Changes (Cambridge,

U.K.: Cambridge University Press, 1988).
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weights of cointegrating vectors. The PCA-based approach can also be 
applied in the frequency domain. The analysis in the frequency domain 
is an alternative way of analyzing time series. It is based on constructing 
a transform of the time series which is the discrete equivalent of a Fou-
rier transform discussed in Chapter 4.17 

An alternative estimation methodology which is suitable for large 
sets is the subspace-space algorithm introduced by Aoki (ref. cited) in 
the context of stationary systems and extended by Bauer and Wagner 
(ref. cited) to integrated systems and to polynomial cointegration.18 

Cointegration and Financial Time Series 
Cointegration is an important technique for portfolio management: It 
allows an investor to detect mispricings and thus sources of profit. In 
fact, if a set of price processes exhibit cointegration, relative returns are 
autocorrelated and therefore predictable. In other words, as we will see 
in Chapter 19, although individual price processes might be unpredict-
able random walks, there are portfolios which exhibit a stationary, 
mean-reverting behavior. For this reason cointegration has attracted the 
attention of both academics and practitioners, especially in the areas of 
index tracking and hedge fund management. 

However, cointegration technology was initially developed in the 
area of macroeconomics where only a small number of variables, gener-
ally less than 10, are used. Extending the concepts of cointegration to a 
large number of equity prices or return processes is difficult both from 
the numerical and theoretical standpoints. Assume, for example, that 
one is working on a large set of equity log-price processes such as those 
in the S&P 500. Standard cointegration estimation and testing methods 
such as the Johansen procedures do not work for sets of processes of 
this size. 

Consider also that in finite samples of sets of processes such as those 
found in the S&P 500, spurious cointegrating relationships will be 
detected. This happens because in a large set of independent processes a 
cointegration test run on a relatively small sample of points will ran-
domly test positive for many cointegrating relationship. For example, 
one finds a significant number, in the range of a few percentage points, 
of cointegrated pairs of processes in computer-generated independent 
arithmetic random walks. 

17 P.C.B. Phillips and S. Ouliaris, “Testing for Cointegration Using Principal Com
-
ponents Methods,” Journal of Economic Dynamics and Control 12 (1988), pp. 205–

230.

18 The subspace algorithm is quite complex and technical. The interested reader

should consult the papers by Bauer and Wagner.
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When testing for cointegration on a large set, one has therefore to take 
an ensemble view. In analyzing macroeconomic series, the question is 
whether they are cointegrated or not; in analyzing a large number of finan-
cial time series, the problem is not if there are cointegrating relationships 
but if the number of cointegrating relationships found in the sample is high 
enough to warrant the belief that the system has a cointegration structure. 

Another important issue—strictly related to the above—is the struc-
ture of cointegration. Cointegration can be found within highly cointe-
grated market segments (i.e., subsets of processes) that exhibit a high 
number of cointegrating relationships. Alternatively, cointegration can be 
found between market segments—perhaps on a different time scale. This 
cointegration structure will be reflected in the structure of common trends. 

These issues are presently inadequately addressed in the literature, 
although much proprietary empirical and analytical work has been done 
by some asset management firms. Studies of cointegration in financial 
processes has been performed at the level of indexes or broad aggre-
gates. Evidence of cointegration have been found between stock indexes 
in different countries and between different indexes in the same country. 
One of the most quoted studies on cointegration in equity prices is the 
1992 study by Kenneth Kasa.19 who found evidence of cointegration 
between stock indexes in five different countries. Using models with 
from 1 to 14 lags, Kasa found that the number of lags plays an impor-
tant role: Cointegration is revealed more clearly with many lags. In a 
critical review of this and other studies on cointegration on various 
assets, Godbout and van Norden20 concluded that the size of the sample 
might be responsible for significant distortions. 

Carol Alexander21 and coworkers at the ISMA Center in Reading, 
United Kingdom, found cointegration within small-size high-capitaliza-
tion liquid indexes such as the Dow Jones Industrial Average (DJIA). 
Their empirical findings corroborate the intuition that equity prices are 
in some way mean-reverting around one or more common stochastic 
trends. Alexander has developed trading strategies used for both index 
tracking and long-short equity portfolios based on replicating the first 
common factor of the market. 

19 Kenneth Kasa, “Common Stochastic Trends in International Stock Markets,”

Journal of Monetary Economics 29 (1992), pp. 95–124.

20 Marie-Josee Gobbout and Simon van Norden, “Reconsidering Cointegration in

International Finance: Three Case Studies of Size Distortion in Finite Samples,”

Working Paper 97-1, Bank of Canada, 1997.

21 Carol Alexander and Anca Dimitriu, “The Cointegration Alpha: Enhanced Index

Tracking and Long - Short Equity Market Neutral Strategies,” Working Paper, April

2002.
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Special cointegration models have been described in the literature. 
In particular, the well-documented lead-lag effect described by Andrew 
Lo and Craig MacKinlay22 leads to a cointegration model. The lead-lag 
effect is the strong correlation which exists between the returns at time t 
of portfolios of small firms, the laggards, and the return at time t – 1 of 
portfolios of large firms, the leaders. This effect can be tested either as 
direct correlation between returns or as autocorrelation of portfolios 
that include firms of different sizes. 

In the original formulation of Lo and MacKinlay, the model is sim-
ple as there is only one exogenous factor. Consider the returns of the 
two portfolios of large firms and small firms; the Lo and MacKinlay 
model is written as follows, with the return of small firms a regression 
on the lagged factor: 

rLt = µL + β1Lft + εLt 

rSt = µS + β1Sft + + εStβ2Sft – 1 

Angelos Kanas and Georgios Kouretas23 have cast the lead-lag effect 
of size-sorted portfolios into a cointegration framework using state-space 
modeling in the form of ARDL models for prices. Summing up returns to 
get prices and solving, they arrive at the following ARDL equation: 

pSt = a bt  + βpLt – 1 + et+ 

where e is an autocorrelated process that includes the single common 
factor. 

In summary, cointegration and/or state-space modeling are powerful 
modeling techniques whose applicability to real price processes has been 
empirically tested. However, the practical implementation of state-space 
models of large portfolios presents significant challenges given that 
cointegration is largely unstable. 

NONLINEAR DYNAMIC MODELS FOR PRICES AND RETURNS 

While the models for portfolio management discussed above are linear 
models, the linearity of equity price processes has been challenged by 

22 Andrew Lo and Craig MacKinlay, “When Are Contrarian Profits Due to Stock 
Market Overreaction?” Review of Financial Studies 3 (1990), pp. 175–206. 
23 Angelos Kanas and Georgios Kouretas, “A Cointegration Approach to the Lead-
Lag Effect Among Size-Sorted Equity Portfolios,” Working Paper, 2001 
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studies that appear to demonstrate that equity price processes are not 
linear in the sense that their DGP is a nonlinear function. Volatility clus-
tering and structural breaks are the most widely cited nonlinear effects. 
This lead to the development of nonlinear models for portfolio manage-
ment; nonlinear dynamics and universal approximation schemes for 
DGPs such as neural networks have been widely described. However, 
tests for low-dimensional nonlinear dynamics have not given consis-
tently positive results. Despite a period of intense experimentation dur-
ing the 1990s, the techniques of nonlinear dynamics have not been 
successful in describing price processes. 

Nevertheless, approximation schemes remain a subject of study and 
experimentation. Vector support machines based on the Vapnik-Cher-
vonenkis theory of learning (see Chapter 12) are one of the latest addi-
tions to a long series of adaptive methods. By their nature, adaptive 
methods produce nonlinear DGPs that change continuously. While gen-
eral conclusions are difficult, many experiments have confirmed that 
nonlinear approximation schemes have some predictive power—some 
trading strategies based on them have been profitable. However, most 
efforts are now confined to proprietary trading systems. 

Two classes of nonlinear methods that have received a lot of atten-
tion, at both the theoretical and practical levels, are (1) ARCH-GARCH 
methods and (2) Markov switching and multiplicative state-space meth-
ods. Both are based on splitting the model into two parts: one part is a 
linear regressive or autoregressive model, the other an autoregressive 
model that drives the first. 

The ARCH model (described in Chapter 12) was initially proposed 
to model the clustering of volatility. Its generalization, the GARCH fam-
ily of models, applies to processes such as financial time series that 
exhibit volatility clustering. The GARCH(m,q) model represents the 
observed process, for example equity returns, as a sequence of IID vari-
ables multiplied by a coefficient which obeys an ARMA(m,q) model as 
follows: 

rt = σtεt 

m q 
2 2σt = ∑ αiσt i + ∑ βirt j– – 

i = 1 j = 1 

The GARCH(m,q) model can be further generalized to multivariate 
processes by modeling not only the process’s volatility but the entire 
variance-covariance matrix. In this form the model is known as multi-
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variate GARCH. Because multivariate GARCH becomes rapidly 
unmanageable with the number of assets, simplified forms have been 
proposed. 

GARCH models are not necessarily stationary insofar as their sta-
tionarity depends on the coefficients of the ARMA process. If the 
ARMA process is not stationary, then the process is called IGARCH. 

While ARCH and GARCH models model volatility, asset pricing 
models require that returns depend on volatility as higher volatility 
commands a higher return. To capture the dependence of returns on vol-
atility, Engle, Lilien, and Robins24 suggested adding an expected return 
term to the GARCH equations. Equations then become 

rt = µt + σtεt 

2 µt = γ 0 + γ 1σt 

m q 
2 2σt = ∑ αiσt i + ∑ βirt j– – 

i = 1 j = 1 

This model is called M-ARCH or ARCH in mean. Recall that M-ARCH 
is also a way to represent the conditional CAPM. 

While ARCH and GARCH models are based on empirical findings 
of volatility clustering, Markov-switching models are based on a gener-
alization of the idea that a model’s parameters cannot be considered sta-
ble for long periods of time. If our objective is to retain linear models as 
the basic DGP, then we have to accept that parameters will change in 
time. Markov switching models use a Markov chain to drive the param-
eters of a basic linear model. The Hamilton model, for example, uses a 
Markov chain to drive the parameters of a random walk. In a more gen-
eral Markov-switching VAR, a Markov chain drives the parameters of a 
VAR model. Continuous-state autoregressive models might replace 
Markov chains, thus originating multiplicative state-space models. 
ARCH and GARCH models follow this modeling strategy. 

If the objective is to model a large collection of price processes, for 
example the price processes in some broad index, then dimensionality 
reduction techniques must be applied. Envisage an outer driver, be it a 
Markov chain or an autoregressive model, that drives the parameters of 

24 R. Engle, D. Lilien, and R. Robins, “Estimating Time-Varying Risk Premia in the 
Term Structure: the ARCH-M Model,” Econometrica 55 (1987), pp. 391–407. 
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a state-space model. One thereby creates a dynamic model of the factors 
that drive a regressive model. As of this writing, however, the statistical 
properties of these models have not been thoroughly investigated. 

SUMMARY

 ■ Multifactor models are linear regressions over a number of variables 
called factors.

 ■ Factors can be exogenous variables or abstract variables formed by 
portfolios.

 ■ The Arbitrage Pricing Theory (APT) asserts that each asset’s return is 
equal to the risk-free rate plus a linear combination of factors.

 ■ The APT can be tested with maximum likelihood methods.
 ■ Exogenous factors can be determined with fundamental analysis.
 ■ Abstract factors can be determined with factor analysis or principal 

component analysis.
 ■ Principal component analysis identifies the largest eigenvalues of the 

variance-covariance matrix or the correlation matrix.
 ■ The largest eigenvalues correspond to eigenvectors that identify the 

entire market and sectors that correspond to industry classification.
 ■ Multifactor models allow the decomposition of risk into systematic 

risk and residual risk.
 ■ The most general formulation of the portfolio selection problem is util-

ity maximization in a multiperiod setting.
 ■ In a multiperiod setting, agents make a decision between consumption 

and investment at each date; the Consumption CAPM is obtained by 
aggregating all agents in a single representative agent and imposing 
consumption optimality conditions.

 ■ Factor models can be extended in a dynamic environment as state-
space models.

 ■ Error correction models and state-space models are equivalent.
 ■ Through cointegration and state space-models it is possible to repre-

sent large portfolios through dynamic factor models. 
■ There is empirical evidence of cointegration in stock prices.

 ■ Nonlinear models of stock prices have been proposed, ARCH/GARCH 
and Markov switching models being two examples. 
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CHAPTER 19 
Equity Portfolio Management


n this chapter we review strategies for equity portfolios, taking a close 
look at active and passive management, the decision as to whether or not 

to pursue an active or passive management, style investing, and the differ-
ent types of active strategies that can be employed. We stress the role of 
multifactor risk models in the portfolio construction process. We begin the 
chapter with a discussion of the equity portfolio management process. 

INTEGRATING THE EQUITY PORTFOLIO MANAGEMENT PROCESS 

In Chapter 1, the investment management process was described as a 
series of five distinct steps. In practice, portfolio management requires 
an integrated approach. There must be recognition that superior invest-
ment performance results when valuable ideas are implemented in a 
cost-efficient manner. The process of investing—as opposed to the pro-
cess of investment—includes innovative stock selection and portfolio 
strategies as well as efficient cost structures for the implementation of 
any portfolio strategy.1 The integrated approach to managing equity 
portfolios recognizes that the value added by the manager is the result 
of information value less the implementation cost of trading. This dif-
ference in value is referred to as “captured value,” a term coined by 
Wayne Wagner and Mark Edwards.2 

1 Wayne H. Wagner and Mark Edwards, “Implementing Investment Strategies: The 
Art and Science of Investing,” Chapter 11 in Frank J. Fabozzi (ed.), Active Equity 
Portfolio Management (New Hope, PA: Frank J. Fabozzi Associates, 1998). 
2 Wagner and Edwards, “Implementing Investment Strategies: The Art and Science 
of Investing.” 

551 
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This view that an investing process requires an integrated approach 
to portfolio management is reinforced by Barra, a vendor of analytical 
systems used by portfolio managers. Barra emphasizes that superior 
investment performance is the product of careful attention paid by 
equity managers to the following four elements:

 ■ Forming reasonable return expectations
 ■ Controlling portfolio risk to demonstrate investment prudence
 ■ Controlling trading costs
 ■ Monitoring total investment performance 

Accordingly, the investing process that includes these four elements 
are all equally important in realizing superior investment performance. 
In Chapter 4, several quantitative models for general expected returns 
were described. As for the second element, we will discuss the process of 
controlling risk in this chapter and in more detail in Chapter 23. Trad-
ing costs were explained in Chapter 2. 

ACTIVE VERSUS PASSIVE PORTFOLIO MANAGEMENT 

In practice there are investors who pursue different degrees of active 
management and different degrees of passive management. It would be 
helpful to have some way of quantifying the degree of active or passive 
management. John Loftus of Pacific Investment Management Company 
(PIMCO) has suggested that one way of classifying the various types of 
equity strategies is in terms of two measures—alpha and tracking error.3 

These measures begin with the calculation of the active return for a 
period. The active return is the difference between the actual portfolio 
return for a given period (say, a month) and the benchmark index return 
for the same period. Alpha is defined as the average active return over 
some time period. So, if there are 12 monthly active returns observed, 
then the average of the 12 monthly active returns is the alpha. Tracking 
error is the standard deviation of the active return. In the next section, 
we discuss tracking error in more detail. Tracking error occurs because 
the risk profile of a portfolio differs from that of the risk profile of the 
benchmark index. 

Based on these measures, Loftus proposes the classification scheme 
shown in Exhibit 19.1. While there may be disagreements as to the values 

3 John S. Loftus, “Enhanced Equity Indexing,” Chapter 4 in Frank J. Fabozzi (ed.), 
Perspectives on Equity Indexing (New Hope, PA: Frank J. Fabozzi Associates, 
2000). 
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EXHIBIT 19.1 Measures of Management Categories 

Indexing Active Management Enhanced Indexing 

Expected alpha 0% 2.0% or higher 0.5% to 2.0% 
Tracking error 0% to 0.2% 4.0% or higher 0.5% to 2.0% 

Source: Exhibit 2 in John S. Loftus, “Enhanced Equity Indexing,” Chapter 4 in 
Frank J. Fabozzi (ed.), Perspectives on Equity Indexing (New Hope, PA: Frank J. 
Fabozzi Associates, 2000), p. 84. 

proposed by Loftus, the exhibit does provide some guidance. In an 
indexing strategy, the portfolio manager seeks to construct a portfolio 
that matches the risk profile of the benchmark index, the expected alpha 
is zero and, except for transaction costs and other technical issues dis-
cussed later when we cover the topic of indexing, the tracking error 
should be, in theory, zero. Due to these other issues, tracking error will 
be a small positive value. At the other extreme, a manager who pursues 
an active strategy by constructing a portfolio that significantly differs 
from the risk profile of the benchmark portfolio has an expected alpha 
of more than 2% and a large tracking error—a tracking error of 4% or 
higher. 

Using tracking error as our guide and the fact that a manager can 
construct a portfolio whose risk profile can differ to any degree from the 
risk profile of the benchmark index, we have a conceptual framework 
for understanding common stock portfolio management strategies. For 
example, there are managers that will construct a portfolio with a risk 
profile close to that of the benchmark index but intentionally not identi-
cal to it. Such a strategy is called enhanced indexing. This strategy will 
result in the construction of a portfolio that has greater tracking error 
relative to an indexing strategy. In the classification scheme proposed by 
Loftus, for an enhanced indexer the expected alpha does not exceed 2% 
and the tracking error is 0.5% to 2%. 

TRACKING ERROR 

When a portfolio manager’s benchmark is a market index, risk is mea-
sured by the standard deviation of the return of the portfolio relative to 
the return of the benchmark. This risk measure is called tracking error 
and is computed as follows:

 ■ Step 1. Compute the total return for a portfolio for each period.
 ■ Step 2. Obtain the total return for the benchmark for each period. 
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 ■ Step 3. Obtain the difference between the values found in Step 1 and 
Step 2. The difference is referred to as the active return.

 ■ Step 4. Compute the standard deviation of the active returns. The 
resulting value is the tracking error. 

The tracking error measurement is in terms of the observation 
period. So, if monthly returns are used, the tracking error is a monthly 
tracking error. Typically, tracking error is computed using either weekly 
or monthly data. Tracking error is annualized as follows: 

Annual tracking error = Monthly tracking error × f 

where f is 12 for monthly observations or 52 for weekly observations. 
A portfolio created to match the benchmark index (i.e., an index 

fund) that regularly has zero active returns (that is, always matches its 
benchmark’s actual return) would have a tracking error of zero. But a 
portfolio that is actively managed that takes positions substantially dif-
ferent from the benchmark would likely have large active returns, both 
positive and negative, and thus would have an annual tracking error of, 
say, 5% to 10%. A hybrid portfolio (e.g., enhanced index fund) that 
combines an index portfolio with an active portfolio would typically 
have a tracking error below 2%. 

An enhanced index portfolio’s is simply a combination of an 
indexed portfolio and an active portfolio. That is, the tracking error of 
the enhanced index portfolio is simply the tracking error of the active 
portion times its weight in the overall portfolio. For example, if the 
active portion constitutes 10% of the enhanced index fund (the other 
90% being indexed), and the tracking error of the active portion is 5%, 
then the tracking error of the enhanced index fund is 0.5% (= 10% × 
5%). To see this, let r = return, w = weight, σ2 (.) = variance, and ρ(.,.) = 
correlation. Using the following notation for subscripts, b = benchmark, 
I = indexed portfolio, a = active portfolio, p = enhanced index portfolio 
(a combination of the indexed portfolio and the active portfolio), then 

r = wi ri + warap 

since wi + wa = 1, 

rp – rb = wi (ri – rb) + wa (ra – rb) 

So, the tracking error variance of the enhanced index portfolio equals 
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σ2(rp – rb) = σ2{wi(ri – rb)} + σ2{w (r – rb)}a a 

+ 2wiw ρ(ri – rb, r – rb)σ(ri – rb)σ(r – rb)a a a 

But, the variance and the standard deviation of the indexed portfo-
lio relative to the benchmark would be zero. So, the first and the last 
terms in the above equation vanish, leaving. 

σ2(rp – rb) = σ2{wa (ra – rb)} 

Taking the square root on both sides, we have 

σ(rp – rb) = σ(wa(ra – rb)) 

Since, σ(wa(ra – rb)) is the tracking error of the active portion, the track-
ing error of the enhanced index portfolio is the product of weight of the 
active portfolio and the tracking error of the active portfolio. 

Backward-Looking versus Forward-Looking Tracking Error 
We have just described how to calculate tracking error based on the 
actual active returns observed for a portfolio. Calculations computed 
for a portfolio based on a portfolio’s actual active returns reflect the 
portfolio manager’s decisions during the observation period with 
respect to the factors that affect tracking error. We call tracking error 
calculated from observed active returns for a portfolio backward-looking 
tracking error, ex post tracking error, or actual tracking error. 

A problem with using backward-looking tracking error in portfolio 
management is that it does not reflect the effect of current decisions by 
the portfolio manager on the future active returns and hence the future 
tracking error that may be realized. If, for example, the manager signifi-
cantly changes the portfolio’s exposure to risk factors during the obser-
vation period, then the backward-looking tracking error, which is 
calculated using data from prior periods would not accurately reflect the 
current portfolio risks going forward. That is, the backward-looking 
tracking error will have little predictive value and can be misleading 
regarding portfolio risks going forward. 

The portfolio manager needs a forward-looking estimate of tracking 
error to reflect the portfolio risk going forward. The way this is done in 
practice is by constructing a multifactor risk model using as the market 
index the portfolio manager’s benchmark. Given a manager’s current 
portfolio holdings, the portfolio’s current exposure to the various risk 
factors can be calculated and compared to the benchmark’s exposures to 
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the factors. Using the differential factor exposures and the risks of the 
factors, a forward-looking tracking error for the portfolio can be com-
puted. This tracking error is also referred to as predicted tracking error 
and ex ante tracking error. Given a forward-looking tracking error, a 
range for the future possible portfolio active return can be calculated 
assuming that the active returns are normally distributed. 

It should be noted that there is no guarantee that the forward-look-
ing tracking error at the start of, say, a year would exactly match the 
backward-looking tracking error calculated at the end of the year. There 
are two reasons for this. The first is that as the year progresses and 
changes are made to the composition of the portfolio, the forward-look-
ing tracking error estimate would change to reflect the new exposure to 
risk factors. The second is that the accuracy of the forward-looking 
tracking error at the beginning of the year depends on the extent of the 
stability in the variances and correlations used in the statistical model to 
estimate forward-looking tracking error. These problems notwithstand-
ing, the average of forward looking tracking error estimates obtained at 
different times during the year will be reasonably close to the backward-
looking tracking error estimate obtained at the end of the year. 

The forward-looking tracking error is a useful in risk control and 
portfolio construction. The manager can immediately see the likely 
effect on tracking error of any intended change in the portfolio. Thus, 
scenario analysis can be performed by a portfolio manager to assess 
proposed portfolio strategies and eliminate those that would result in 
tracking error beyond a specified tolerance for risk. We will illustrate 
the use of multifactor risk models and tracking error later in this chap-
ter and in bond portfolio management in Chapter 21. 

The Impact of Portfolio Size, Benchmark Volatility, and Portfolio 
Beta on Tracking Error4 

There are have been several empirical studies that have investigated the 
relationship between a portfolio’s variance and number of stocks. These 
studies have found that between 15–20 names are needed to eliminate 
most of the unsystematic risk in a portfolio. These studies focus on the 
standard deviation of returns of a portfolio relative to a benchmark, not 
on tracking error. 

Tracking error decreases as the portfolio progressively includes 
more of the stocks that are in the benchmark index. This effect is illus-
trated in Exhibit 19.2 which shows the effect of portfolio size for a large 

4 This discussion draws from Raman Vardharaj, Frank J. Fabozzi, and Frank J. 
Jones, “Determinants of Tracking Errors for Equity Portfolios,” unpublished manu-
script, October 2003. 
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EXHIBIT 19.2 Tracking Error versus the Number of Benchmark Stocks in the 
Portfolio 

Source: Exhibit 7.2 in Raman Vardharaj, Frank J. Jones, and Frank J. Fabozzi, 
“Tracking Error and Common Stock Portfolio Management,” Chapter 7 in Frank 
J. Fabozzi and Harry M. Markowitz (eds.), The Theory and Practice of Invest-
ment Management (New York: John Wiley & Sons, Inc., 2002), p. 171. 
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capitalization portfolio benchmarked to the S&P 500, a mid-cap portfo-
lio benchmarked to the S&P 400, and a small cap portfolio bench-
marked to the S&P 600.5 Notice that an optimally chosen portfolio of 
just 50 stocks can track the S&P 500 within 2.3%. For mid cap and 
small cap stocks, the corresponding tracking errors are 3.5% and 4.3%, 
respectively. In contrast, tracking error increases as the portfolio pro-
gressively includes more stocks that are not in the benchmark. This 
effect is illustrated in Exhibit 19.3. In this case, the benchmark index is 
the S&P 100 and the portfolio progressively includes more and more 
stocks from the S&P 500 that are not in S&P 100. The result is that the 
tracking error with respect to the S&P 100 rises. 

The impact of benchmark volatility is as follows. Managed portfo-
lios generally hold only a fraction of the assets in their benchmark. 
Given this, a highly volatile benchmark index (as measured in terms of 
standard deviation) would be harder to track closely than a generally 
less volatile benchmark index. 

This can be seen by using the market model: 

rp = βrm + e 

EXHIBIT 19.3 Tracking Error versus the Number of Nonbenchmark Stocks in the 
Portfolio 

Source: Exhibit 7.3 in Raman Vardharaj, Frank J. Jones, and Frank J. Fabozzi, 
“Tracking Error and Common Stock Portfolio Management,” Chapter 7 in Frank 
J. Fabozzi and Harry M. Markowitz (eds.), The Theory and Practice of Invest-
ment Management (New York: John Wiley & Sons, Inc., 2002), p. 171. 

5 The tracking errors for the various portfolios were obtained from Barra Aegis soft-
ware. These are forward-looking tracking errors rather than backward-looking track-
ing errors. Also, the portfolios were optimally constructed to minimize tracking error. 
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where 

r = return of the portfolio in excess of the constant risk-free ratep 
rm = return of the market index in excess of the constant risk-free rate 
e = residual error term 
β = beta of the portfolio 

Subtracting market excess return (i.e., rm) from both sides, we get 

ra = rp – rm = (β – 1)rm + e 

where ra is the active return. Therefore, 

σ2(rp – rm) = (β – 1)2σ2(rm) + σ2(e) 

There would be no correlation between rm and the error term due to 
the regression. The left hand side of the above equation is the portfolio 
tracking error variance. So, we have 

σ(rp – rm) = (β – 1)σ(rm) 

As can be seen from the above equation, holding other things equal, 
tracking error increases with market volatility. 

To quantify the relationship between portfolio beta and tracking 
error, look again at the formula for the tracking error from the market 
model given above. Let w = weight of the portfolio invested in the 
benchmark index; (1 – w) = weight of the portfolio invested in cash; rp = 
portfolio return in excess of the risk-free return on cash, and; rb  = 
benchmark index return in excess of the risk-free return on cash. 
Because the excess return on cash is zero, we know that 

r  = wrb + (1 – w) 0 = wrbp

If β is the portfolio beta versus the benchmark index, then letting 
σ(.,.) denote the covariance, 

β = σ(rp,rb)/σ2(rb) = wσ2(rb)/σ2(rb) = w 

Next we know that, rp – rb = (w – 1)rb = (β – 1)rb 

σ2(rp – rb) = (w – 1)2σ2(rb) = (β – 1)2σ2(rb) 
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Taking square root on both sides and denoting |.| as absolute value, we 
see the following relationship between tracking error and portfolio beta: 

σ(rp – rb) = w – 1 σ( ) = β – 1 σ( )rb rb

Portfolio tracking error with respect to the benchmark index 
increases when both the beta falls below 1 and when the beta rises 
above 1. The same is true of the weight of the portfolio in the bench-
mark index. So, as portfolio increases the proportion of cash held, even 
though its absolute risk falls, its tracking error (i.e., relative risk) rises. 

In the above example, we make the simplistic assumption that the 
manager only chooses between holding the market portfolio and cash 
when making changes to its beta. In the more general case, where the man-
ager can hold any number of stocks in any proportion, its beta can differ 
from 1 due to other reasons. But, even in this general case, the tracking 
error increases when the portfolio beta deviates from the market beta. 

EQUITY STYLE MANAGEMENT 

Before we discuss the various types of active and passive strategies, let’s 
discuss an important topic regarding what has come to be known as 
equity investment styles. Several academic studies found that there were 
categories of stocks that had similar characteristics and performance 
patterns. Moreover, the returns of these stock categories performed dif-
ferently than other categories of stocks. That is, the returns of stocks 
within a category were highly correlated and the returns between cate-
gories of stocks were relatively uncorrelated. As a result of these studies, 
practitioners began to view these categories of stocks with similar per-
formance as a “style” of investing. Using size as a basis for categorizing 
style, some managers became “large cap” investors while others “small 
cap” investors. (“Cap” means market capitalization.) Moreover, there 
was a commonly held belief that a manager could shift “styles” to 
enhance performance return. 

Today, the notion of an equity investment style is widely accepted in 
the investment community. Next we look at the popular equity style 
types and the difficulties of classifying stocks according to style. 

Types of Equity Styles 
Stocks can be classified by style in many ways. The most common is in 
terms of one or more measures of “growth” and “value.” Within a 
growth and value style there is often a substyle based on some measure 
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of size. The motivation for the value/growth style categories can be 
explained in terms of the most common measure for classifying stocks 
as growth or value—the price-to-book value per share (P/B) ratio. Earn-
ings growth will increase the book value per share. Assuming no change 
in the P/B ratio, a stock’s price will increase if earnings grow—as higher 
book value times a constant P/B ratio leads to higher stock price. A 
manager who is growth oriented is concerned with earnings growth and 
seeks those stocks from a universe of stocks that have higher relative 
earnings growth. The growth manager’s risks are that growth in earn-
ings will not materialize and/or that the P/B ratio will decline. 

For a value manager, concern is with the price component rather 
than with the future earnings growth. Stocks would be classified as 
value stocks within a universe of stocks if they are viewed as cheap in 
terms of their P/B ratio. By cheap it is meant that the P/B ratio is low rel-
ative to the universe of stocks. The expectation of the manager who fol-
lows a value style is that the P/B ratio will return to some normal level 
and thus even with book value per share constant, the price will rise. 
The risk is that the P/B ratio will not increase. 

Within the value and growth categories there are substyles. With the 
notion of style investing came stock market indexes that could be used 
to represent different styles. There are three major services that provide 
popular style indexes based on capitalization. Standard & Poor’s 
together with Barra publishes cap-based growth and value indexes 
based on three S&P indexes: the S&P 500 Index (also called the S&P 
Composite Index), the Mid Cap 400 Index, and the Small Cap 600 
indexes. Based on its Russell 1000, Russell 3000, and Russell Top 200, 
Frank Russell publishes three large cap style indexes. It also produces a 
mid-cap index and a small cap based on both the Russell 2000 and Rus-
sell 2500 indexes. A large, mid-, and small cap set of indexes is also pro-
duced by Wilshire Associates. 

From the statistical point of view identifying styles means classify-
ing stocks. Classification is a broad topic in statistics. Classification 
used for style analysis is typically unsupervised insofar as no given 
example is needed. The simplest unsupervised technique is linear dis-
criminant analysis. If stocks are characterized by a number of attributes, 
linear discriminant analysis tries to find a hyperplane that discriminates 
between two groups. Consider, for instance “value” and “growth.” 
Each stock is characterized by a pair of value and growth numbers. 
Therefore, all stocks can be visualized as a set of points in the value-
growth plane. Discriminant analysis tries to find the straight line that 
cuts that set in two subsets in some optimal way. Criteria for optimal 
cutting are needed. Nonlinear discriminant analysis might use nonlinear 
functions as discriminant. 
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Discriminant analysis divides a set into two parts. However, one might 
want to classify stocks in several groups. In this case, the problem is one of 
clustering. Clustering means forming groups so that objects in each group 
are similar while objects in different groups are dissimilar. For instance, 
classification in several different styles is an example of clustering. To per-
form clustering one needs a distance function that gives the distance 
between any two objects. Clustering will find groups, i.e., clusters, that 
have the minimum possible distance. A popular way of classifying stocks is 
through hierarchical clustering based on correlation distance.6 

Style Classification Systems 
Now that we have a general idea of the two main style categories, growth 
and value, and the further refinement by size, let’s see how a portfolio man-
ager goes about classifying stocks that fall into the categories. We call the 
methodology for classifying stocks into style categories as a style classifica-
tion system. Vendors of style indices have provided direction for developing a 
style classification system. However, managers will develop their own system. 

Developing such a system is not a simple task. To see why, let’s take 
a simple style classification system where we just categorize stocks into 
value and growth using one measure, the price-to-book value ratio. The 
lower the P/B ratio the more the stock looks like a value stock. The style 
classification system would then be as follows:

 ■ Step 1. Select a universe of stocks.
 ■ Step 2. Calculate the total market capitalization of all the stocks in the 

universe.
 ■ Step 3. Calculate the P/B ratio for each stock in the universe.
 ■ Step 4. Sort the stocks from the lowest P/B ratio to the highest P/B 

ratio.
 ■ Step 5. Calculate the accumulated market capitalization starting from 

the lowest P/B ratio stock to the highest P/B ratio stock.
 ■ Step 6. Select the lowest P/B stocks up to the point where one-half the 

total market capitalization computed in Step 2 is found.
 ■ Step 7. Classify the stocks found in Step 6 as value stocks.
 ■ Step 8. Classify the remaining stocks from the universe as growth 

stocks. 

While this style classification system is simple, it has both theoreti-
cal and practical problems. First, from a theoretical point of view, in 

6 Clustering is broad topic. An excellent reference is Richard O. Duda, Peter E. 
Heart, and David G. Stork, Pattern Classification (New York: John Wiley & Sons, 
2001). 
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terms of the P/B ratio there is very little distinguishing the last stock on 
the list that is classified as value and the first stock on the list classified 
as growth. From a practical point of view, the transaction costs are 
higher for implementing a style using this classification system. The rea-
son is that the classification is at a given point in time based on the pre-
vailing P/B ratio and market capitalizations. At a future date, P/B ratios 
and market capitalizations will change, resulting in a different classifica-
tion of some of the stocks. This is often the case for those stocks on the 
border between value and growth that could jump over to the other cat-
egory. This is sometimes called “style jitter.” As a result, the manager 
will have to rebalance the portfolio to sell off stocks that are not within 
the style classification sought. 

There are two refinements that have been made to style classifica-
tion systems in an attempt to overcome these two problems. First, more 
than one categorization variable has been used in a style classification 
system. Categorization variables that have been used based on historical 
and/or expectational data include dividend/price ratio (i.e., dividend 
yield), cash flow/price ratio (i.e., cash flow yield), return on equity, and 
earnings variability, and earnings growth. As an example of this refine-
ment, consider the style classification system developed by one firm, 
Frank Russell, for the Frank Russell style indices. The universe of stocks 
included (either 1,000 for the Russell 1000 index or 2,000 for the Rus-
sell 2000 index) were classified as part of their value index or growth 
index using two categorization variables. The two variables are the B/P 
ratio and a long-term growth forecast of earnings.7 

The second refinement has been to develop better procedures for mak-
ing the cut between growth and value. This involves not classifying every 
stock into one category or the other. Instead, stocks may be classified into 
three groups: “pure value,” “pure growth,” and “middle-of-the-road” 
stocks. The three groups would be such that they each had one third of the 
total market capitalization. The two extreme groups, pure value and pure 
growth, are not likely to face any significant style jitter. The middle-of-the 
road stocks are assigned a probability of being value or growth. 

Thus far our focus has been on style classification in terms of value 
and growth. As we noted earlier, substyle classifications are possible in 
terms of size. Within a value and growth classification, there can be a 
model determining large value and small value stocks, and large growth 
and small growth stocks. The variable most used for classification of 
size is a company’s market capitalization. To determine large and small, 
the total market capitalization of all the stocks in the universe consid-

7 “Russell Equity Indices: Index Construction and Methodology,” Frank Russell 
Company, July 8, 1994 and September 6, 1995. 
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ered is first calculated. The cutoff between large and small is the stock 
that will give an equal market capitalization. Even here though, one 
might worry about “size jitter.” 

PASSIVE STRATEGIES 

There are two types of passive strategies: a buy-and-hold strategy and 
an indexing strategy. In a buy-and-hold strategy, a portfolio of stocks 
based on some criterion is purchased and held to the end of some invest-
ment horizon. There is no active buying and selling of stocks once the 
portfolio is created. While referred to as a passive strategy, there are ele-
ments of active management. Specifically, the investor who pursues this 
strategy must determine which stock issues to buy. 

An indexing strategy is the more commonly followed passive strat-
egy. With this strategy, the manager does not attempt to identify under-
valued or overvalued stock issues based on fundamental security 
analysis. Nor does the manager attempt to forecast general movements 
in the stock market and then structure the portfolio so as to take advan-
tage of those movements. Instead, an indexing strategy involves design-
ing a portfolio to track the total return performance of a benchmark 
index. Next we explain how that is done. 

Constructing an Indexed Portfolio 
In constructing a portfolio to replicate the performance of the bench-
mark index, sometimes referred to as the indexed portfolio or the track-
ing portfolio, there are several approaches that can be used. One 
approach is to purchase all stock issues included in the benchmark 
index in proportion to their weightings. A second approach, referred to 
as the capitalization approach, is one in which the manager purchases a 
number of the largest capitalized names in the benchmark index and 
equally distributes the residual stock weighting across the other issues in 
the benchmark index. For example, if the top 150 highest-capitalization 
stock issues are selected for the replicating portfolio and these issues 
account for 70% of the total capitalization of the benchmark index, the 
remaining 30% is evenly proportioned among the other stock issues. 

Another approach is to construct an indexed portfolio with fewer 
stock issues than the benchmark index. Two methods used to implement 
this approach are the cellular (or stratified sampling) method and the 
multifactor risk model method. 

In the cellular method, the manager begins by defining risk factors 
by which the stocks that make up a benchmark index can be catego-
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rized. A typical risk factor is the industry in which a company operates. 
Other factors might include risk characteristics such as beta or capitali-
zation. The use of two characteristics would add a second dimension to 
the stratification. In the case of the industry categorization, each com-
pany in the benchmark index is assigned to an industry. This means that 
the companies in the benchmark have been stratified by industry. The 
objective of this method is then to reduce residual risk by diversifying 
across all industries in the same proportion as the benchmark index. 
Stock issues within each cell or stratum, or in this case industry, can 
then be selected randomly or by some other criterion such as capitaliza-
tion ranking. 

The second method is using a multifactor risk model to construct a 
portfolio that matches the risk profile of the benchmark index. By doing 
so, a predicted tracking error close to zero can be obtained. In the case 
of smaller portfolios, this approach is ideal since the manager can assess 
the tradeoff of including more stock issues versus the higher transaction 
costs for constructing the indexed portfolio. This can be measured in 
terms of the effect on predicted tracking error. 

Index Tracking and Cointegration 
As seen earlier in this chapter, using tools such as multifactor models, 
index trackers try to replicate the returns of the index. This methodology 
has the advantage of being in line with classical methods of portfolio 
management. In fact, it can be easily cast in the mean-variance frame-
work. However, it has the disadvantage that errors grow in time. In fact, 
tracking error is assumed to grow with the square root of time. However, 
if the tracking portfolio is cointegrated with the index, errors are station-
ary. In this case, a time dependent tracking error is suboptimal. 

The techniques of cointegration are clearly important for index 
tracking. Its use in index tracking was pioneered by Carol Alexander at 
the ISMA Centre in Reading, United Kingdom. In fact, because cointe-
gration allows a manager to specify a stationary tracking error and, 
therefore, an optimal global index tracking methodology, the techniques 
of cointegration can be applied to any portfolio that is strongly cointe-
grated with an index. 

The key challenge of cointegration methods is to find the right coin-
tegrating portfolio. This is a difficult task when working with large port-
folios. As mentioned above, standard cointegration tests do not work for 
large portfolios. One possible solution is the use economic consider-
ations that might suggest the choice of particular market segments which 
can be tested for cointegration in aggregate. A more abstract approach is 
to use state-space models to find meaningful common factors. 
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ACTIVE INVESTING


In contrast with passive investing, active investing makes sense when a 
moderate to low degree of capital market efficiency is present in the 
financial markets (or areas thereof). This happens when the active inves-
tor has (1) better information than most other investors (namely, the 
“consensus” investors); and/or (2) the investor has a more productive 
way of looking at a given information set to generate active rewards. 

In general, active strategies can be classified as either a top-down 
approach or a bottom-up approach. We discuss each approach below. 

Top-Down Approaches to Active Investing 
Before delving into the “top-down” active approach to investing, we must 
first reflect on the different connotations of top-down investing. In princi-
ple, one can distinguish between three types of top-down investing—one of 
which is passive, while two are active. We’ll first explain the top-down pas-
sive connotation. Specifically, we know that modern portfolio theory 
emphasizes that investors should hold efficient portfolios. As we explained 
in Chapter 16, an efficient portfolio is one that maximizes expected return 
for any given level of expected risk. The MPT framework can in turn be 
viewed as a top-down passive approach to investing because an investor is 
only concerned with portfolio choices—albeit efficient ones at that—rather 
than stock selection choices by company, industry, and even market sector. 

Indeed, the top-down maximization of expected portfolio return for a 
given risk level occurs without any direct interest by the investor in the 
specific names of companies that comprise the efficient portfolio—other 
than to say that an individual company, industry, or sector has the poten-
tial to enhance portfolio return and reduce risk through efficient diversifi-
cation. Since an efficient portfolio—such as the market portfolio—is a 
passively constructed portfolio, one must therefore be careful to distin-
guish between top-down passive investing and top-down active investing. 

Given the amount of the portfolio’s funds to be allocated to the 
equity market, the manager must then decide how much to allocate 
among the sectors and industries of the equity market. In making the 
active asset allocation decision, a manager who follows a macroeco-
nomic approach to top-down investing often relies on an analysis of the 
equity market to identify those sectors and industries that will benefit the 
most on a relative basis from the anticipated economic forecast. Once 
the amount to be allocated to each sector and industry is made, the man-
ager then looks for the individual stocks to include in the portfolio. The 
top-down approach looks at changes in several macroeconomic factors 
to assess the expected active return on securities and portfolios. As noted 
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before, prominent economic variables include changes in commodity 
prices, interest rates, inflation, and economic productivity. 

Additionally, the macroeconomic outlook approach to top-down 
investing can be both quantitative and qualitative in nature. From the 
former perspective, equity managers employ factor models in their top-
down attempt at generating abnormal returns (i.e., positive alpha). The 
power of top-down factor models is that given the macroeconomic risk 
measures and factor sensitivities, a portfolio’s risk exposure profile can be 
quantified and controlled. In this way, it is possible to see why a portfolio 
is likely to generate abnormally high or low returns in the marketplace. 

Bottom-Up Approaches to Active Investing 
The “bottom-up” approach to active investing makes sense when 
numerous pricing inefficiencies exist in the capital markets (or compo-
nents thereof). An investor who follows a bottom-up approach to 
investing focuses either on (1) technical aspects of the market or (2) the 
economic and financial analysis of individual companies, giving rela-
tively less weight to the significance of economic and market cycles. 

The investor who pursues a bottom-up strategy based on certain 
technical aspects of the market is said to be basing stock selection on 
technical analysis. The primary research tool used for investing based 
on economic and financial analysis of companies is called security anal-
ysis and falls into two categories, traditional fundamental analysis and 
quantitative fundamental analysis. 

Traditional fundamental analysis often begins with the financial state-
ments of a company in order to investigate its revenue, earnings, and cash 
flow prospects, as well as its overall corporate debt burden.8 Growth in 
revenue, earnings, and cash flow on the income statement side and the rel-
ative magnitude of corporate leverage from current and anticipated bal-
ance sheets are frequently used by fundamental equity analysts in forming 
an opinion of the investment merits of a particular company’s stock. 

Specifically, the fundamental analyst attempts to determine the fair 
market value (or the “intrinsic value”) of the stock, using, for example, 
a price-to-earnings or price-to-book value multiplier. The estimated 
“fair value” of the firm is then compared to the actual market price to 
see if the stock is correctly priced in the capital market. “Cheap stocks,” 
or potential buy opportunities, have a current market price below the 

8 Benjamin Graham and David Dodd developed the classical approach to equity se-
curities analysis. Their approach is explained in Security Analysis (New York: 
McGraw-Hill, 1934). Notable investors who have successfully employed the tradi-
tional approach to equity security analysis include Warren Buffet of Berkshire Hath-
away, Inc. and Peter Lynch of Fidelity Management & Research Co. 
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estimated intrinsic value, while “expensive” or overvalued stocks have a 
market price that exceeds the calculated present worth of the stock. 

Quantitative fundamental analysis seeks to assess the value of secu-
rities using a statistical model derived from historical information about 
security returns. The most commonly used model is the fundamental 
multifactor risk model that we will explain later in this chapter. In addi-
tion to identifying the expected return for a security, a fundamental fac-
tor model can be used to construct a portfolio or rebalance a portfolio 
as demonstrated later in this chapter. 

Bruce Jacobs and Kenneth Levy refer to strategies that employ quan-
titative methods to select stocks and to construct portfolios that have the 
same risk profile as a benchmark index but provide the opportunity to 
enhance returns relative to that benchmark index at appropriate incre-
mental level as an “engineered approach” to portfolio management. 

Fundamental Law of Active Management 
The information ratio is the ratio of alpha to the tracking error. It is a 
reward (as measured by alpha) to risk (as measured by tracking error) 
ratio. The higher the information ratio, the better the performance of 
the manager. Two portfolio managers, Richard Grinold and Ronald 
Kahn, have developed a framework—which they refer to as the “funda-
mental law of active management”—for explaining how the informa-
tion ratio changes as a function of:9 

1. The depth of an active manager’s skill 
2. The breadth or number of independent insights or investment opportu-

nities. 

In formal terms, the information ratio can be expressed as


IR = IC × BR 0.5


where: 

IR = the information ratio 
IC = the information coefficient 
BR = the number of independent insights or opportunities available 

to the active manager 

In the above expression, the information ratio (IR) is the reward-to-
risk ratio for an active portfolio manager. In turn, the information coef-

9 For a practical discussion of this active management “law,” see Ronald N. Kahn, 
“The Fundamental Law of Active Management,” BARRA Newsletter (Winter 1997). 
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ficient (IC) is a measure of the depth of an active manager’s skill. On a 
more formal basis, IC measures the “correlation” between actual 
returns and those predicted by the portfolio manager. According to the 
fundamental law of active management, the information ratio also 
depends on breadth (BR), which reflects the number of creative insights 
or active investment opportunities available to the investment manager. 

There are several interesting implications of the fundamental law of 
active management. First, we see that the information ratio goes up when 
manager skill level rises for a given number of independent insights or 
active opportunities. This fact should be obvious, as a more skillful man-
ager should produce higher risk-adjusted returns, compared with a less 
skilled manager whose performance is evaluated over the same set of 
investment opportunities (possibly securities). Second, a prolific manager 
with a large number of independent insights for a given skill level can, in 
principle, produce a higher information ratio than a manager with the 
same skill but a limited number of investment opportunities. 

Equally important, the fundamental law of active management sug-
gests that a manager with a high skill level, but a limited set of opportu-
nities, may end up producing the same information ratio as a manager 
having a relatively lower level of skill but more active opportunities. 
According to Ronald Kahn,10 a market timer with an uncanny ability to 
predict the market may end up earning the same information ratio on 
the average as a somewhat less skillful stock picker. This might happen 
because the stock picker has numerous potentially mispriced securities 
to evaluate, while the otherwise successful market timer may be con-
strained by the number of realistic market forecasts per year (due, per-
haps, to quarterly forecasting or macroeconomic data limitations). 
Thus, the ability to profitably evaluate an investment opportunity (skill) 
and the number of independent insights (breadth) is key to successful 
active management. 

With an understanding of the fundamental law of active manage-
ment, we can now look at the risk of failing to produce a given level of 
active portfolio return. In this context, Bruce Jacobs and Kenneth Levy 
suggest that even traditional equity managers face a portfolio manage-
ment dilemma involving a trade-off between the depth, or “goodness,” 
of their equity management insights and the breadth or scope of their 
equity management ideas.11 According to Jacobs and Levy, the breadth 
of active research conducted by equity managers is constrained in prac-
tical terms by the number of investment ideas (or securities) that can be 

10 See Kahn, “The Fundamental Law of Active Management.”

11 Jacobs and Levy, “Investment Management: An Architecture for the Equity Mar
-
ket.”
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implemented (researched) in a timely and cost-efficient manner. This 
trade-off is shown in Exhibit 19.4. 

The exhibit displays the relationship between the depth of equity man-
ager insights (vertical axis) and the breadth of those insights (horizontal 
axis). The depth of equity manager insights is measured in formal terms by 
the information coefficient (IC, on the vertical axis), while the breadth 
(BR) of manager insights can be measured by the potential number of 
investment ideas or the number of securities in the manager’s acceptable 
universe. When the breadth of equity manager insights is low—as in the 
case of traditional equity management, according to Jacobs and Levy— 
then the depth, or “goodness” of each insight needs to be high in order to 
produce a constant level of active reward-to-active risk (information ratio, 
IR). Exhibit 19.4 shows that this low breadth/high depth combination 
produces the same level of active reward that would be associated with a 
pair-wise high number of investable ideas (or securities) and a relatively 
low level of equity manager “goodness” or depth per insight. 

In a risk management context, one can say that the probability of fail-
ure to achieve a given level of active reward is quite high when the breadth 
of investment ideas or securities to be analyzed is very low. If the market is 
price efficient, that scenario is likely in the traditional fundamental analysis 
approach to active equity management discussed earlier. On the other 
hand, the risk of not achieving a given level of active reward is low when 

EXHIBIT 19.4 Combination of Breadth (Number) of Insights and Depth, or 
“Goodness,” of Insights Needed to Produce a Given Investment Return/Risk Ratio 

Source: See Bruce I. Jacobs and Kenneth N. Levy, “Investment Management: An 
Architecture for the Equity Market,” Chapter 1 in Frank J. Fabozzi (ed.), Active 
Equity Portfolio Management (New Hope, PA: Frank J. Fabozzi Associates, 
1998), p. 6. 
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the breadth of implementable manager ideas is high. This can happen in a 
world where active managers employ an engineered approach to active 
portfolio management. However, if the capital market is largely price effi-
cient, then the probability of failing to produce any level of active reward is 
high (near one). With market efficiency, investable ideas are transparent, 
and their active implications are already fully impounded in security prices. 

Strategies Based on Technical Analysis 
Given the preceding developments, we would be remiss for not shedding 
some insight on active strategies based on technical analysis. In this con-
text, various common stock strategies that involve only historical price 
movement, trading volume, and other technical indicators have been sug-
gested since the beginning of stock trading. Many of these strategies 
involve investigating patterns based on historical trading data (past price 
data and trading volume) to forecast the future movement of individual 
stocks or the market as a whole. Based on observed patterns, mechanical 
trading rules indicating when a stock should be bought, sold, or sold 
short are developed. Thus, no consideration is given to any factor other 
than the specified technical indicators. This approach to active manage-
ment is called technical analysis. Because some of these strategies involve 
the analysis of charts that plot price and/or volume movements, investors 
who follow a technical analysis approach are sometimes called chartists. 
The overlying principle of these strategies is to detect changes in the sup-
ply of and demand for a stock and capitalize on the expected changes. 

Simple Filter Rules 
The simplest type of technical strategy is to buy and sell on the basis of a 
predetermined movement in the price of a stock; the rule is basically if the 
stock increases by a certain percentage, the stock is purchased and held 
until the price declines by a certain percentage, at which time the stock is 
sold. The percentage by which the price must change is called the “filter.” 
Each investor pursuing this technical strategy decides his or her own filter. 

Moving Averages 
Some technical analysts make decisions to buy or sell a stock based on the 
movement of a stock over an extended period of time (for example, 200 
days). An average of the price over the time period is computed, and a 
rule is specified that if the price is greater than some percentage of the 
average, the stock should be purchased; if the price is less than some per-
centage of the average, the stock should be sold. The simplest way to cal-
culate the average is to calculate a simple moving average. Assuming that 
the time period selected by the technical analyst is 200 days, then the 
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average price over the 200 days is determined. A more complex moving 
average can be calculated by giving greater weight to more recent prices. 

Advance/Decline Line 
On each trading day, some stocks will increase in price or “advance” 
from the closing price on the previous trading day, while other stocks 
will decrease in price or decline from the closing price on the previous 
trading day. It has been suggested by some market observers that the 
cumulative number of advances over a certain number of days minus the 
cumulative number of declines over the same number of days can be 
used as an indicator of short-term movements in the stock market. 

Relative Strength 
The relative strength of a stock is measured by the ratio of the stock 
price to some price index. The ratio indicates the relative movement of 
the stock to the index. The price index can be the index of the price of 
stocks in a given industry or a broad-based index of all stocks. If the 
ratio rises, it is presumed that the stock is in an uptrend relative to the 
index; if the ratio falls, it is presumed that the stock is in a downtrend 
relative to the index. Similarly, a relative strength measure can be calcu-
lated for an industry group relative to a broad-based index. Relative 
strength is also referred to as price momentum or price persistence. 

Short Interest Ratio 
Some technical analysts believe that the ratio of the number of shares sold 
short relative to the average daily trading volume is a technical signal that 
is valuable in forecasting the market. This ratio is called the short interest 
ratio. However, the economic link between this ratio and stock price move-
ments can be interpreted in two ways. On one hand, some market observ-
ers believe that if this ratio is high, this is a signal that the market will 
advance. The argument is that short sellers will have to eventually cover 
their short position by buying the stocks they have shorted and, as a result, 
market prices will increase. On the other hand, there are some market 
observers who believe this a bearish signal being sent by market partici-
pants who have shorted stocks in anticipation of a declining market. 

Market Overreaction 
To benefit from favorable news or to reduce the adverse effect of unfa-
vorable news, investors must react quickly to new information.12 

12 Werner DeBondt and Richard Thaler, “Does the Market Overreact?” Journal of Finance 
(July 1985), pp. 793–805. 
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According to cognitive psychologists, people tend to overreact to 
extreme events. People tend to react more strongly to recent informa-
tion and they tend to heavily discount older information. 

The question is, do investors follow the same pattern? That is, do 
investors overreact to extreme events? The overreaction hypothesis sug-
gests that when investors react to unanticipated news that will benefit a 
company’s stock, the price rise will be greater than it should be given 
that information, resulting in a subsequent decline in the price of the 
stock. In contrast, the overreaction to unanticipated news that is 
expected to adversely affect the economic well-being of a company will 
force the price down too much, followed by a subsequent correction 
that will increase the price. 

If, in fact, the market does overreact, investors may be able to 
exploit this to realize positive abnormal returns if they can (1) identify 
an extreme event, and (2) determine when the effect of the overreaction 
has been impounded in the market price and is ready to reverse. Inves-
tors who are capable of doing this will pursue the following strategies. 
When positive news is identified, investors will buy the stock and sell it 
before the correction to the overreaction. In the case of negative news, 
investors will short the stock and then buy it back to cover the short 
position before the correction to the overreaction. 

Nonlinear Dynamic Models and Chaos 
Technical analysis has taken a more scientific twist with the development 
of nonlinear dynamics and chaos theory. Patterns generated by nonlinear 
dynamic models can be very complex and appear nearly random. A num-
ber of studies have tried to ascertain whether the apparent randomness 
of price processes could be generated by deterministic nonlinear pro-
cesses. A chaotic process rapidly becomes unpredictable. There are, how-
ever, chaotic processes that are relatively simple and that maintain a 
certain level of predictability. Models of weather, for instance, are cha-
otic but still allow to make reasonable weather forecast. 

A number of chaos scientists hoped to discover that economic laws 
could be expressed as simple chaotic processes. In particular, it was 
hoped to discover that price processes could be described as simple cha-
otic laws with some level of predictability. Should this be the case, chaos 
theory offers a reasonable toolbox to recover the chaotic model from 
past data. In fact, if the chaotic dynamic is simple, a fundamental theo-
rem of chaos theory, the theorem of Takens, offers a way to fully recon-
struct chaotic dynamics from a sufficient number of past data. In 
addition, functional approximation schemes such as neural networks 
could be used to approximate the chaotic dynamics. 
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The key point is that Takens theorem and all approximation 
schemes work only if the dynamic is simple.13 A number of tests have 
been devised to check if economic and financial quantities can be effec-
tively be represented as a simple chaotic laws. Among the tests, in par-
ticular the BDS test (see Chapter 9) is popular amongst economists. The 
results of tests are generally negative. There is no compelling evidence 
that reasonably simple chaotic dynamics can explain financial processes. 

Despite these negative theoretical results, technical rules based on 
neural networks or directly on the Takens theorem have been proposed 
and continue to be proposed. 

These rules have shown some result. This is not necessarily in con-
trast with the negative theoretical finding. One might find some profit-
ability in trading rules even if the dynamics is theoretically not simple. 

Technical Analysis and Statistical Nonlinear Pattern Recognition 
Technical analysis can also be cast in terms of statistical pattern recogni-
tion. A number of models that fundamentally differ from a random 
walk or a martingale model have been proposed. Pair trading and coin-
tegration-based strategies are perhaps the best known examples of sta-
tistical models that exploit statistical patterns. 

The empirical literature offers contradicting evidence. There is 
agreement that asset price processes offer some level of forecastability.14 

There are also theoretical reasons to believe that price processes in a 
finite economy must exhibit cointegration15 and therefore recognizable 
patterns. ARCH and GARCH behavior is another source of nonlinear 
statistical patterns. What is not clear, however, is the profitability that 
can be associated to these statistical findings once the trading costs are 
taken into account. 

13 Simple dynamics means that there is a low-dimensionality attractor. Chaos theory 
is a complex subject. The interested reader should consult Robert C. Hilborn, Chaos 
and Nonlinear Dynamics (New York: Oxford University Press, 2000). 
14 See W. Brock, J. Lakonishok, and B. LeBaron, “Simple Technical Trading Rules 
and the Stochastic Properties of Stock Returns,” Working paper 90–22, Wisconsin 
Madison Social Systems; and John Campbell, Andrew Lo, and Craig MacKinlay, 
The Econometrics of Financial Markets (Princeton, NJ: Princeton University Press, 
1997). 
15 See Marlene Cerchi and Arthur Havenner, “Cointegration and Stock Prices: The 
Random Walk on Wall Street Revisited,” Journal of Economic Dynamics and Con-
trol 12 (1988), pp. 333–346; Peter Bossaerts, “Common Nonstationary Compo-
nents of Asset Prices,” Journal of Economic Dynamics and Control 12 (1988), pp. 
347–364; and, Barr Rosenberg and J.A. Ohlson, “The Stationary Distribution of Re-
turns and Portfolio Separation in Capital Markets: A Fundamental Contradiction,” 
Journal of Financial and Quantitative Analysis 11 (1976), pp. 393–401. 
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Market-Neutral Strategies and Statistical Arbitrage 
Market-neutral strategies are portfolio management strategies aimed at 
obtaining a positive return regardless of market conditions; a typical 
way to achieve this result is long-short equity portfolio management. In 
general, a market-neutral strategy will specify four elements:

 ■ Market neutrality is normally defined as lack of correlation with some 
broad index such as the S&P 500.

 ■ The return objective varies in function of market conditions. In a bear 
market, a market-neutral strategy might be happy with a modest 5% 
return while double-digit return rates might be required in normal con-
ditions.

 ■ In general, return volatility bounds are set low, significantly lower than 
the market volatility. Often this requirement is imposed by central 
banks.

 ■ A maximum draw-down. 

The above requirements might seem contrary to finance theory as 
they appear to violate the risk-return trade-offs of efficient markets. 
They might also seem contrary to common sense as conservative pre-
scriptions for volatility and draw-dawns are coupled with aggressive 
return objectives. The only possible response to these criticisms is that 
market neutral-strategies represent only a small fraction of the market— 
those pockets of inefficiency inevitable in (and perhaps instrumental to) 
a large efficient market. 

Let’s now describe statistical arbitrage, a method used to obtain 
market neutral strategies. Statistical arbitrage exploits the existence of 
small probabilistic profit opportunities that become nearly deterministic 
on a large scale. It was made possible by the diffusion of electronic 
transactions that have greatly reduced transaction costs. Obviously 
transaction costs and bid-ask spreads might reduce profit opportunities 
to nearly zero or even cause losses. 

To understand the working of statistical arbitrage, recall that in the 
limit of a large economy and under the assumption that it is possible to 
completely diversify portfolios, the APT conditions are valid. Recall 
also that the APT conditions are represented by zero intercept. The 
same condition is valid in the case of single-factor CAPM. As a conse-
quence, if a large number of non-zero intercepts exist, then large profits 
can be made with zero initial investment and little risk. 

To demonstrate the above, we start with a single-factor market 
model with nonzero intercepts: 
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ri = αi + βirM + ε 

where the noise term exhibits only local correlation and tends to zero 
over large portfolios. Market return is stochastic and therefore uncer-
tain. Suppose, however, that there are many returns with similar betas 
but with different alphas. The no-arbitrage condition forbids this situa-
tion for an infinite economy but leaves open the possibility that a finite 
number of such situations exist. 

For each beta, or more likely for each beta band as betas will not be 
strictly equal, invest in a long portfolio with the positive alphas and a 
short portfolio with the negative alphas. Repeat the operation for each 
band of beta. The resulting portfolio will implement a simple statistical 
arbitrage strategy. It will be nearly market-neutral, with profit depending 
only on the spreads between alphas and not on the direction of the market. 

There are several caveats. First, the appropriate distribution of betas 
and alphas must exist. This is an empirical question that cannot be solved 
a priori. Second, there are residual risks, as the noise term will be reduced 
but not completely eliminated and betas will not be strictly equal. Third, 
the factor model might be misspecified and therefore unstable. 

Contrarian strategies where managers go short on overpriced stocks 
and long on underpriced stocks are also possible. Long-short strategies 
of this type started in the 1980s with so-called pair trading reportedly 
initiated by a trading group working at Morgan Stanley. Under the 
direction of Nunzio Tartaglia, this group’s strategy consisted in forming 
pairs of stocks that had a small distance measured by the relative vari-
ance. Setting appropriate thresholds, underpriced stocks are bought and 
overpriced stocks sold. 

The ideas underlying contrarian strategies are ultimately formalized 
by the concepts of cointegration and error correction. When applied to 
price, processes error correction represents changes in returns when prices 
diverge from some common trend. Many efforts at building true statisti-
cal arbitrage techniques therefore make use of cointegration techniques. 
In terms of cointegration, one implements statistical arbitrage by search-
ing for cointegrating relationships. Each cointegrating relationship repre-
sents a stationary, mean-reverting portfolio. Being autocorrelated, these 
portfolios are more predictable than other portfolios or individual stocks. 

As most implementations are proprietary, the different approaches 
are only partially described. The key problem is to find true cointegrated 
portfolios. In practice, there are several approaches; these include:

 ■ Searching for cointegrated pairs of stocks. This can be performed with 
standard cointegration tests and techniques. However results are very 
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noisy as a large fraction of the cointegrated pairs will be spurious. In 
practice, the number of cointegrated pairs has to be reduced.

 ■ Searching for cointegrated indexes. This is performed testing cointegra-
tion on existing, commercially available indexes. These indices typi-
cally reflect economic sectors or geographies. After determining that 
cointegration among the indexes exists, one has to select stocks within 
the index to reduce transaction costs.

 ■ Searching for common trends. This is a recent development in statisti-
cal arbitrage. It is based on approximate robust techniques for finding 
factors using state space models. Factors, in this sense, are linear com-
binations of price processes not of returns. 

In summary, statistical arbitrage is a new methodology for managing 
long-short equity portfolios based on finding stable trends that signal 
profit opportunities. Trends might be determined with classical factor 
models of returns. More recently, cointegration techniques are being used. 

APPLICATION OF MULTIFACTOR RISK MODELS 

In the previous chapter, we explained how factors are determined. In 
this section we will see how multifactor risk models are used. In our 
illustration with use the Barra model described in the previous chapter. 

Risk Decomposition 
The real usefulness of a linear multifactor model lies in the ease with 
which the risk of a portfolio with several assets can be estimated. Con-
sider a portfolio with 100 assets. Risk is commonly defined as the vari-
ance of the portfolio’s returns. So, in this case, we need to find the 
variance-covariance matrix of the 100 assets. That would require us to 
estimate 100 variances (one for each of the 100 assets) and 4,950 covari-
ances among the 100 assets. That is, in all we need to estimate 5,050 val-
ues, a very difficult undertaking. Suppose, instead, that we use a 3 factor 
model to estimate risk. Then, we need to estimate (1) the three factor 
loadings for each of the 100 assets (i.e., 300 values); (2) the six values of 
the factor variance-covariance matrix; and (3) the 100 residual variances 
(one for each asset). That is, in all, we need to estimate only 406 values. 
This represents a nearly 90% reduction from having to estimate 5,050 
values, a huge improvement. Thus, with well-chosen factors, we can sub-
stantially reduce the work involved in estimating a portfolio’s risk. Note 
that the ease of estimation of correlation parameters is another facet of 
the fact that factor models capture the stable correlation information. 
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Multifactor risk models allow a manager and a client to decompose 
risk in order to assess the potential performance of a portfolio to the 
risk factors and to assess the potential performance of a portfolio rela-
tive to a benchmark. This is the portfolio construction and risk control 
application of the model. Also, the actual performance of a portfolio 
relative to a benchmark can be assessed. This is the performance attri-
bution analysis application of the model. 

Barra suggests that there are various ways that a portfolio’s total risk 
can be decomposed when employing a multifactor risk model.16 Each 
decomposition approach can be useful to managers depending on the 
equity portfolio management that they pursue. The four approaches are 
(1) total risk decomposition; (2) systematic-residual risk decomposition;
(3) active risk decomposition; and (4) active systematic-active residual
risk decomposition. We describe each below and explain how managers 
pursuing different management strategies (i.e., active versus passive) will 
find the decomposition helpful in portfolio construction and evaluation. 

In all of these approaches to risk decomposition, the total return is first 
divided into the risk-free return and the total excess return. The total excess 
return is the difference between the actual return realized by the portfolio 
and the risk-free return. The risk associated with the total excess return, 
called total excess risk, is what is further partitioned in the four approaches. 

Total Risk Decomposition 
There are managers who seek to minimize total risk. For example, a 
manager pursuing a long-short or market neutral strategy, as discussed 
later in this chapter, seek to construct a portfolio that minimizes total 
risk. For such managers, total risk decomposition which breaks down 
the total excess risk into two components—common factor risks (e.g., 
capitalization and industry exposures) and specific risk—is useful. This 
decomposition is shown in Exhibit 19.5. There is no provision for mar-
ket risk, only risk attributed to the common factor risks and company-
specific influences (i.e., risk unique to a particular company and there-
fore uncorrelated with the specific risk of other companies). Thus, the 
market portfolio is not a risk factor considered in this decomposition. 

Systematic-Residual Risk Decomposition 
There are managers who seek to time the market or who intentionally 
make bets to create a different exposure than that of a market portfolio. 
Such managers would find it useful to decompose total excess risk into 
systematic risk and residual risk as shown in Exhibit 19.6. Unlike in the 

16 See Chapter 4 in Barra, Risk Model Handbook United States Equity: Version 3. 
The discussion to follow in this section follows that in the Barra publication. 
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EXHIBIT 19.5 Total Risk Decomposition 

Source: Figure 4.2 in Barra, Risk Model Handbook United States Equity: Version 
3 (Berkeley, CA: Barra, 1998), p. 34. Reprinted with permission. 

total risk decomposition approach just described, this view brings mar-
ket risk into the analysis. 

Residual risk in the systematic-residual risk decomposition is 
defined in a different way than residual risk is in the total risk decompo-
sition. In the systematic-residual risk decomposition, residual risk is risk 
that is uncorrelated with the market portfolio. In turn, residual risk is 
partitioned into specific risk and common factor risk. Notice that the 
partitioning of risk described here is different from that in the APT 
model described earlier in this chapter. In that section, all risk factors 
that could not be diversified away were referred to as “systematic 
risks.” In our discussion here, risk factors that cannot be diversified 
away are classified as market risk and common factor risk. Residual risk 
can be diversified to a negligible level. 

Active Risk Decomposition 
The active risk decomposition approach is useful for assessing a portfolio’s 
risk exposure and actual performance relative to a benchmark index is 
explained. that purpose. In this type of decomposition, shown in Exhibit 
19.7, the total excess return is divided into benchmark risk and active risk. 
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EXHIBIT 19.6 Systematic-Residual Risk Decomposition 

Source: Figure 4.3 in Barra, Risk Model Handbook United States Equity: Version 
3 (Berkeley, CA: Barra, 1998), p. 34. Reprinted with permission. 

Benchmark risk is defined as the risk associated with the benchmark 
portfolio. Active risk or tracking error is the risk that results from the man-
ager’s attempt to generate a return that will outperform the benchmark. The 
active risk is further partitioned into common factor risk and specific risk. 

Active Systematic-Active Residual Risk Decomposition 
There are managers who overlay a market-timing strategy on their stock 
selection. That is, they not only try to select stocks they believe will out-
perform but also try to time the purchase of the acquisition. For a man-
ager who pursues such a strategy, it will be important in evaluating 
performance to separate market risk from common factor risks. In the 
active risk decomposition approach just discussed, there is no market 
risk identified as one of the risk factors. Since market risk (i.e., system-
atic risk) is an element of active risk, its inclusion as a source of risk is 
preferred by managers. When market risk is included, we have the 
active systematic-active residual risk decomposition approach shown in 
Exhibit 19.8. Total excess risk is again divided into benchmark risk and 
active risk. However, active risk is further divided into active systematic 
risk (i.e., active market risk) and active residual risk. Then active resid-
ual risk is divided into common factor risks and specific risk. 
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EXHIBIT 19.7 Active Risk Decomposition 

Source: Figure 4.4 in Barra, Risk Model Handbook United States Equity: Version 3 
(Berkeley, CA: Barra, 1998), p. 34. Reprinted with permission. 

EXHIBIT 19.8 Active Systematic-Active Residual Risk Decomposition 

Source: Figure 4.5 in Barra, Risk Model Handbook United States Equity: Version 3 
(Berkeley, CA: Barra, 1998), p. 37. Reprinted with permission. 
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Summary of Risk Decomposition 
The four approaches to risk decomposition are just different ways of 
slicing up risk to help a manager in constructing and controlling the risk 
of a portfolio and for a client to understand how the manager per-
formed. Exhibit 19.9 provides an overview of the four approaches to 
carving up risk into specific/common risks, systematic/residual risks, 
and benchmark/active risks. 

Portfolio Construction and Risk Control 
The power of a multifactor risk model is that given the risk factors and 
the risk factor sensitivities, a portfolio’s risk exposure profile can be 
quantified and controlled. The three examples below show how this can 
be done so that the a manager can avoid making unintended bets. In the 
examples, we use the Barra E3 factor model.17 

EXHIBIT 19.9 Risk Decomposition Overview 

Source: Figure 4.6 in Barra, Risk Model Handbook United States Equity: Version 
3 (Berkeley, CA: Barra, 1998), p. 38. Reprinted with permission. 

17 The illustrations are taken from Frank J. Fabozzi, Frank J. Jones, and Raman 
Vardharaj, “Multi-Factor Risk Models,” Chapter 13 in Frank J. Fabozzi and Harry 
M. Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002). 
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Assessing the Exposure of a Portfolio 
A fundamental multifactor risk model can be used to assess whether the 
current portfolio is consistent with a manager’s strengths. Exhibit 19.10 
is a list of the top 15 holdings of Portfolio ABC as of September 30, 
2000. Exhibit 19.11 is a risk-return report for the same portfolio. The 
portfolio had a total market value of over $3.7 billion, 202 holdings, 
and a predicted beta of 1.20. The risk report also shows that the portfo-
lio had an active risk of 9.83%. This is its tracking error with respect to 
the benchmark, the S&P 500. Notice that over 80% of the active risk 
variance (which is 96.67) comes from the common factor risk variance 
(which is 81.34), and only a small proportion comes from the stock-spe-
cific risk variance (which is 15.33). Clearly, the manager of this portfo-
lio has placed fairly large factor bets. 

Exhibit 19.12a assesses the factor risk exposures of Portfolio ABC rel-
ative to those of the S&P 500, its benchmark. The first column shows the 
exposures of the portfolio, and the second column shows the exposures 
for the benchmark. The last column shows the active exposure, which is 

EXHIBIT 19.10 Portfolio ABC’s Holdings (Only the Top 15 Holdings Shown) 

Portfolio: ABC Fund Benchmark: S&P 500 Model Date: 2000-10-02 

Report Date: 2000-10-15 Price Date: 2000-09-29 Model: U.S. Equity 3 

Price Weight Main Industry
Name Shares ($) (%) Beta Name Sector 

General Elec. Co. 2,751,200  57.81 4.28 0.89 Financial Services Financial 

Citigroup, Inc. 2,554,666  54.06 3.72 0.98 Banks Financial 

Cisco Sys., Inc. 2,164,000  55.25 3.22 1.45 Computer Hardware Technology 

EMC Corp., Mass. 1,053,600  99.50 2.82 1.19 Computer Hardware Technology 

Intel Corp. 2,285,600  41.56 2.56 1.65 Semiconductors Technology 

Nortel Networks Corp. N 1,548,600  60.38 2.52 1.40 Electronic Equipment Technology 

Corning, Inc.    293,200 297.50 2.35 1.31 Electronic Equipment Technology 

International Business    739,000 112.50 2.24 1.05 Computer Software Technology 

Oracle Corp.  955,600  78.75 2.03 1.40 Computer Software Technology 

Sun Microsystems, Inc.    624,700 116.75 1.96 1.30 Computer Hardware Technology 

Lehman Bros. Hldgs. Inc.    394,700 148.63 1.58 1.51 Sec. & Asset Management Financial 

Morgan Stanley Dean Wi.  615,400  91.44 1.52 1.29 Sec. & Asset Management Financial 

Walt Disney Co. 1,276,700  38.25 1.32 0.85 Entertainment Cnsmr. Services 

Coca-Cola Co.  873,900  55.13 1.30 0.68 Food & Beverage Cnsmr. (non-cyc.) 

Microsoft Corp.  762,245  60.31 1.24 1.35 Computer Software Technology 

Source: Exhibit 13.7 in Frank J. Fabozzi, Frank J. Jones, and Raman Vardharaj, 
“Multi-Factor Risk Models,” Chapter 13 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002). 
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EXHIBIT 19.11 Portfolio ABC’s Risk-Return Decomposition 

Number of Assets 202	 Total Shares 62,648,570 
Average Share Price $59.27 

Portfolio Beta 1.20	 Portfolio Value $3,713,372,229.96 

Risk Decomposition Variance Standard Deviation (%) 

Active Specific Risk  15.33  3.92 
Active Common Factor

 Risk Indices  44.25  6.65
 Industries  17.82  4.22
 Covariance 19.27

     Total Active Common Factor Riska  81.34  9.02 
Total Activeb  96.67  9.83 
Benchmark 247.65 15.74 
Total Risk 441.63 21.02 

a Equal to Risk Indices + Industries + Covariances 
b Equal to Active Specific Risk + Total Active Common Factor Risk 
Source: Exhibit 13.8 in Frank J. Fabozzi, Frank J. Jones, and Raman Vardharaj, 
“Multi-Factor Risk Models,” Chapter 13 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002). 

the difference between the portfolio exposure and the benchmark expo-
sure. The exposures to the risk index factors are measured in units of stan-
dard deviation, while the exposures to the industry factors are measured 
in percentages. The portfolio has a high active exposure to the momentum 
risk index factor. That is, the stocks held in the portfolio have significant 
momentum. The portfolio’s stocks were smaller than the benchmark aver-
age in terms of market cap. The industry factor exposures reveal that the 
portfolio had an exceptionally high active exposure to the semiconductor 
industry and electronic equipment industry. Exhibit 19.12b combines the 
industry exposures to obtain sector exposures. It shows that Portfolio 
ABC had a very high active exposure to the Technology sector. Such large 
bets can expose the portfolio to large swings in returns. 

An important use of such risk reports is the identification of portfo-
lio bets, both explicit and implicit. If, for example, the manager of Port-
folio ABC did not want to place such a large Technology sector bet or 
momentum risk index bet, then she (or he) can rebalance the portfolio 
to minimize any such bets. 
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EXHIBIT 19.12 Analysis of Portfolio ABC’s Exposures 
a. Analysis of Risk Exposures to S&P 500

Factor Exposures 

Risk Index Exposures (Std. Dev.) 

Mgd. Bmk. Act. Mgd. Bmk. Act. 

Volatility  0.220 −0.171  0.391 Value −0.169 −0.034 −0.136 

Momentum  0.665 −0.163  0.828 Earnings variation  0.058 −0.146  0.204 

Size −0.086  0.399 −0.485 Leverage  0.178 −0.149  0.327 

Size nonlinearity  0.031  0.097 −0.067 Currency sensitivity  0.028 −0.049  0.077 

Trading Activity  0.552 −0.083  0.635 Yield −0.279  0.059 −0.338 

Growth  0.227 −0.167  0.395 Non-EST universe  0.032  0.000  0.032 

Earnings yield −0.051  0.081 −0.132 

Industry Weights (Percent) 

Mining and Metals 

Gold 

Forestry and Paper 

Chemicals 

Energy Reserves 

Oil Refining 

Oil Services 

Food & Beverages 

Alcohol 

Tobacco 

Home Products 

Grocery Stores 

Consumer Durables 

Motor Vehicles and Parts 

Apparel and Textiles 

Clothing Stores 

Specialty Retail 

Department Stores 

Constructn. and Real Prop. 

Publishing 

Media 

Hotels 

Restaurants 

Entertainment 

Leisure 

Environmental Services 

Heavy Electrical Eqp. 

Mgd. Bmk. Act. Mgd. Bmk. Act. 

0.013 

0.000 

0.198 

0.439 

2.212 

0.582 

2.996 

2.475 

0.000 

0.000 

0.000 

0.000 

0.165 

0.000 

0.000 

0.177 

0.445 

0.000 

0.569 

0.014 

1.460 

0.090 

0.146 

1.179 

0.000 

0.000 

1.438 

0.375 

0.119 

0.647 

2.386 

4.589 

0.808 

0.592

3.073 

0.467 

0.403 

1.821 

0.407 

0.125

0.714 

0.191 

0.308 

2.127 

2.346 

0.204

0.508 

2.077 

0.112 

0.465 

1.277 

0.247 

0.117 

1.922 

−0.362 

−0.119 

−0.449 

−1.947 

−2.377 

−0.226 

2.404 

−0.597 

−0.467 

−0.403 

−1.821 

−0.407 

0.039 

−0.714 

−0.191 

−0.131 

−1.681 

−2.346 

0.364 

−0.494 

−0.617 

−0.022 

−0.319 

−0.098 

−0.247 

−0.117 

−0.483 

Heavy Machinery 

Industrial Parts 

Electric Utility 

Gas Utilities 

Railroads 

Airlines 

Truck/Sea/Air Freight 

Medical Services 

Medical Products 

Drugs 

Electronic Equipment 

Semiconductors 

Computer Hardware 

Computer Software 

Defense and Aerospace 

Telephone 

Wireless Telecom. 

Information Services 

Industrial Services 

Life/Health Insurance 

Property/Casualty Ins. 

Banks 

Thrifts 

Securities and Asst. Mgmt. 

Financial Services 

Internet 

Equity REIT 

0.000 0.062 −0.062 

0.234 1.086 −0.852 

1.852 1.967 −0.115 

0.370 0.272  0.098 

0.000 0.211 −0.211 

0.143 0.194 −0.051 

0.000 0.130 −0.130 

1.294 0.354  0.940 

0.469 2.840 −2.370 

6.547 8.039 −1.492 

11.052 5.192  5.860 

17.622 6.058 11.564 

12.057 9.417  2.640 

9.374 6.766  2.608 

0.014 0.923 −0.909 

0.907 4.635 −3.728 

0.000 1.277 −1.277 

0.372 1.970 −1.598 

0.000 0.511 −0.511 

0.062 1.105 −1.044 

1.069 2.187 −1.118 

5.633 6.262 −0.630 

1.804 0.237  1.567 

6.132 2.243  3.888 

5.050 5.907 −0.857 

3.348 1.729  1.618 

0.000 0.000  0.000 

Note: Mgd. = Managed; Bmk. = S&P 500 (the benchmark); Act. = Active = Managed 
− Benchmark 
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EXHIBIT 19.12 (Continued) 
b. Analysis of Sector Exposures Relative to S&P 500

Sector Weights (Percent) 

Mgd. Bmk. Act. Mgd. Bmk. Act. 

Basic Materials 0.65 3.53 −2.88 Utility  2.22  2.24 −0.02

 Mining 0.01 0.38 −0.36  Electric Utility  1.85  1.97 −0.12

 Gold 0.00 0.12 −0.12  Gas Utility  0.37  0.27  0.10

 Forest 0.20 0.65 −0.45 Transport  0.14  0.54 −0.39

 Chemical 0.44 2.39 −1.95  Railroad  0.00  0.21 −0.21 

Energy 5.79 5.99 −0.20  Airlines  0.14  0.19 −0.05

 Energy Reserves 2.21 4.59 −2.38      Truck Freight  0.00  0.13 −0.13

 Oil Refining 0.58 0.81 −0.23  Health Care  8.31 11.23 −2.92

 Oil Services 3.00 0.59  2.40  Medical Provider  1.29  0.35  0.94 

Cnsmr (non-cyc.) 2.48 6.17 −3.70  Medical Products  0.47  2.84 −2.37

 Food/Beverage 2.48 3.07 −0.60  Drugs  6.55  8.04 −1.49

 Alcohol 0.00 0.47 −0.47 Technology 53.47 30.09 23.38

     Tobacco 0.00 0.40 −0.40  Electronic Equipment 11.05  5.19  5.86

 Home Prod. 0.00 1.82 −1.82  Semiconductors 17.62  6.06 11.56

 Grocery 0.00 0.41 −0.41  Computer Hardware 12.06  9.42  2.64 

Cnsmr. (cyclical) 1.36 6.01 −4.66  Computer Software  9.37  6.77  2.61

 Cons. Durables 0.17 0.13  0.04  Defense and Aerospace  0.01  0.92 −0.91

     Motor Vehicles 0.00 0.71 −0.71  Internet  3.35  1.73  1.62

 Apparel 0.00 0.19 −0.19 Telecommunications  0.91  5.91 −5.00

 Clothing 0.18 0.31 −0.13      Telephone  0.91  4.63 −3.73

 Specialty Retail 0.45 2.13 −1.68      Wireless  0.00  1.28 −1.28

 Dept. Store 0.00 2.35 −2.35 Commercial Services  0.37  2.48 −2.11

 Construction 0.57 0.20  0.36  Information Services  0.37  1.97 −1.60 

Cnsmr Services 2.89 4.69 −1.80  Industrial Services  0.00  0.51 −0.51

 Publishing 0.01 0.51 −0.49 Financial 19.75 17.94  1.81

 Media 1.46 2.08 −0.62  Life Insurance  0.06  1.11 −1.04

 Hotels 0.09 0.11 −0.02  Property Insurance  1.07  2.19 −1.12

 Restaurants 0.15 0.47 −0.32  Banks  5.63  6.26 −0.63

 Entertainment 1.18 1.28 −0.10  Thrifts  1.80  0.24  1.57

 Leisure 0.00 0.25 −0.25  Securities/Asst. Mgmt.  6.13  2.24  3.89 

Industrials 1.67 3.19 −1.51  Financial Services  5.05  5.91 −0.86

     Env. Services 0.00 0.12 −0.12  Equity REIT  0.00  0.00  0.00

 Heavy Electrical 1.44 1.92 −0.48

 Heavy Mach. 0.00 0.06 −0.06

 Industrial Parts 0.23 1.09 −0.85 

Note: Mgd = Managed; Bmk = Benchmark; Act = Active = Managed − Benchmark 
Source: Exhibit 13.9 in Frank J. Fabozzi, Frank J. Jones, and Raman Vardharaj, 
“Multi-Factor Risk Models,” Chapter 13 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002). 
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Risk Control Against a Stock Market Index 
The objective in equity indexing is to match the performance of some 
specified stock market index with little tracking error. To do this, the 
risk profile of the indexed portfolio must match the risk profile of the 
designated stock market index. Put in other terms, the factor risk expo-
sure of the indexed portfolio must match as closely as possible the expo-
sure of the designated stock market index to the same factors. Any 
differences in the factor risk exposures result in tracking error. Identifi-
cation of any differences allows the indexer to rebalance the portfolio to 
reduce tracking error. 

To illustrate this, suppose that an index manager has constructed a 
portfolio of 50 stocks to match the S&P 500. Exhibit 19.13 shows out-
put of the exposure to the Barra risk indices and industry groups of the 
50-stock portfolio and the S&P 500. The last column in the exhibit 
shows the difference in the exposure. The differences are very small 
except for the exposures to the size factor and one industry (equity 
REIT). That is, the 50-stock portfolio has more exposure to the size risk 
index and equity REIT industry. 

The illustration in Exhibit 19.13 uses price data as of December 31, 
2001. It demonstrates how a multifactor risk model can be combined 
with an optimization model to construct an indexed portfolio when a 
given number of holdings is sought. Specifically, the portfolio analyzed 
in Exhibit 19.13 is the result of an application in which the manager 
wants a portfolio constructed that matches the S&P 500 with only 50 
stocks and that minimizes tracking error. Not only is the 50-stock port-
folio constructed, but the optimization model combined with the factor 
model indicates that the tracking error is only 2.19%. Since this is the 
optimal 50-stock portfolio to replicate the S&P 500 that minimizes 
tracking error risk, this tells the index manager that if he or she seeks a 
lower tracking error, more stocks must be held. Note, however, that the 
optimal portfolio changes as time passes and prices move. 

Tilting a Portfolio 
Now let’s look at how an active manager can construct a portfolio to 
make intentional bets. Suppose that a portfolio manager seeks to con-
struct a portfolio that generates superior returns relative to the S&P 500 
by tilting it toward low P/E stocks. At the same time, the manager does 
not want to increase tracking error significantly. An obvious approach 
may seem to be to identify all the stocks in the universe that have a 
lower than average P/E. The problem with this approach is that it intro-
duces unintentional bets with respect to the other risk indices. 
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EXHIBIT 19.13 Factor Exposures of a 50-Stock Portfolio that 
Optimally Matches the S&P 500 

Risk Index Exposures (Std. Dev.) 

Mgd. Bmk. Act. Mgd. Bmk. Act. 

Volatility −0.141 −0.084 −0.057 Value −0.072 −0.070 −0.003 

Momentum −0.057 −0.064  0.007 Earnings variation −0.058 −0.088  0.029 

Size  0.588  0.370  0.217 Leverage −0.206 −0.106 −0.100 

Size nonlinearity  0.118  0.106  0.013 Currency sensitivity −0.001 −0.012  0.012 

Trading activity −0.101 −0.005 −0.097 Yield  0.114  0.034  0.080 

Growth −0.008 −0.045  0.037 Non-EST universe  0.000  0.000  0.000 

Earnings yield  0.103  0.034  0.069 

Industry Weights (Percent) 

Mining and Metals 

Gold 

Forestry and Paper 

Chemicals 

Energy Reserves 

Oil Refining 

Oil Services 

Food and Beverages 

Alcohol 

Tobacco 

Home Products 

Grocery Stores 

Consumer Durables 

Motor Vehicles & Parts 

Apparel and Textiles 

Clothing Stores 

Specialty Retail 

Department Stores 

Constructn. and Real Prop. 

Publishing 

Media 

Hotels 

Restaurants 

Entertainment 

Leisure 

Environmental Services 

Heavy Electrical Eqp. 

Mgd. Bmk. Act. Mgd. Bmk. Act. 

0.000 

0.000 

1.818 

2.360 

5.068 

1.985 

1.164 

2.518 

0.193 

1.372 

0.899 

0.000 

0.000 

0.000 

0.000 

0.149 

1.965 

4.684 

0.542 

2.492 

1.822 

1.244 

0.371 

2.540 

0.000 

0.000 

1.966 

0.606 

0.161 

0.871

2.046

4.297

1.417

0.620

3.780 

0.515 

0.732

2.435 

0.511 

0.166 

0.621 

0.373 

0.341 

2.721 

3.606

0.288

0.778

1.498

0.209

0.542 

1.630

0.409 

0.220 

1.949

−0.606 

−0.161 

0.947 

0.314 

0.771 

0.568 

0.544 

−1.261 

−0.322 

0.641 

−1.536 

−0.511 

−0.166 

−0.621 

−0.373 

−0.191 

−0.756 

1.078 

0.254 

1.713 

0.323 

1.035 

−0.171 

0.910 

−0.409 

−0.220 

0.017 

Heavy Machinery 

Industrial Parts 

Electric Utility 

Gas Utilities 

Railroads 

Airlines 

Truck/Sea/Air Freight 

Medical Services 

Medical Products 

Drugs 

Electronic Equipment 

Semiconductors 

Computer Hardware 

Computer Software 

Defense and Aerospace 

Telephone 

Wireless Telecom. 

Information Services 

Industrial Services 

Life/Health Insurance 

Property/Casualty Ins. 

Banks 

Thrifts 

Securities and Asst. Mgmt. 

Financial Services 

Internet 

Equity REIT 

0.000  0.141 −0.141 

1.124  1.469 −0.345 

0.000  1.956 −1.956 

0.000  0.456 −0.456 

0.000  0.373 −0.373 

0.000  0.206 −0.206 

0.061  0.162 −0.102 

1.280  0.789  0.491 

3.540  3.599 −0.059 

9.861 10.000 −0.140 

0.581  1.985 −1.404 

4.981  4.509  0.472 

4.635  4.129  0.506 

6.893  6.256  0.637 

1.634  1.336  0.297 

3.859  3.680  0.180 

1.976  1.565  0.411 

0.802  2.698 −1.896 

0.806  0.670  0.136 

0.403  0.938 −0.535 

2.134  2.541 −0.407 

8.369  7.580  0.788 

0.000  0.362 −0.362 

2.595  2.017  0.577 

6.380  6.321  0.059 

0.736  0.725  0.011 

2.199  0.193  2.006 

Note: Mgd = Managed; Bmk = S&P 500 (the benchmark); Act = Active = Managed

− Benchmark

Source: Exhibit 13.10 in Frank J. Fabozzi, Frank J. Jones, and Raman Vardharaj,

“Multi-Factor Risk Models,” Chapter 13 in Frank J. Fabozzi and Harry M.

Markowitz (eds.), The Theory and Practice of Investment Management (Hoboken,

NJ: John Wiley & Sons, 2002).
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Instead, an optimization method combined with a multifactor risk 
model can be used to construct the desired portfolio. The necessary 
inputs to this process are the tilt exposure sought and the benchmark 
stock market index. Additional constraints can be placed, for example, 
on the number of stocks to be included in the portfolio. The Barra opti-
mization model can also handle additional specifications such as fore-
casts of expected returns or alphas on the individual stocks. 

In our illustration, the tilt exposure sought is towards low P/E 
stocks, that is, towards high earnings yield stocks (since earnings yield is 
the inverse of P/E). The benchmark is the S&P 500. We seek a portfolio 
that has an average earnings yield that is at least 0.5 standard deviations 
more than that of the earnings yield of the benchmark. We do not place 
any limit on the number of stocks to be included in the portfolio. We 
also do not want the active exposure to any other risk index factor 
(other than earnings yield) to be more than 0.1 standard deviations in 
magnitude. This way we avoid placing unintended bets. While we do 
not report the holdings of the optimal portfolio here, Exhibit 19.14 pro-
vides an analysis of that portfolio by comparing the risk exposure of the 
50-stock optimal portfolio to that of the S&P 500. 

SUMMARY

 ■ The investing process involves forming reasonable return expecta-
tions, controlling portfolio risk to demonstrate investment prudence, 
controlling trading costs, and monitoring total investment perfor-
mance.

 ■ The different degrees of active management and different degrees of 
passive management can be measured in terms of tracking error. 

■ The active return is the difference between the actual portfolio return 
for a given period and the benchmark index return for the same 
period.

 ■ Alpha is defined as the average active return over some time period. 
■ The information ratio is the ratio of alpha to the tracking error. 
■ Tracking error is the standard deviation of the active return and 

occurs because the risk profile of a portfolio differs from that of the 
risk profile of the benchmark index.

 ■ Backward-looking tracking error measures the tracking error based 
on active returns; forward-looking tracking error measures the poten-
tial tracking error of a portfolio.

 ■ Portfolio size, benchmark volatility, and portfolio beta have an 
impact on tracking error. 
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EXHIBIT 19.14 Factor Exposures of a Portfolio Tilted Towards Earnings Yield 

Risk Index Exposures (Std. Dev.) 

Mgd. Bmk. Act. Mgd. Bmk. Act. 

Volatility −0.126 −0.084 −0.042 Value  0.030 −0.070  0.100 

Momentum  0.013 −0.064  0.077 Earnings variation −0.028 −0.088  0.060 

Size  0.270  0.370 −0.100 Leverage −0.006 −0.106  0.100 

Size nonlinearity  0.067  0.106 −0.038 Currency sensitivity −0.105 −0.012 −0.093 

Trading activity  0.095 −0.005  0.100 Yield  0.134  0.034  0.100 

Growth −0.023 −0.045  0.022 Non-EST universe  0.000  0.000  0.000 

Earnings Yield  0.534  0.034  0.500 

Industry Weights (Percent) 

Mining and Metals 

Gold 

Forestry and Paper 

Chemicals 

Energy Reserves 

Oil Refining 

Oil Services 

Food and Beverages 

Alcohol 

Tobacco 

Home Products 

Grocery Stores 

Consumer Durables 

Motor Vehicles and Parts 

Apparel and Textiles 

Clothing Stores 

Specialty Retail 

Department Stores 

Constructn. and Real Prop. 

Publishing 

Media 

Hotels 

Restaurants 

Entertainment 

Leisure 

Environmental Services 

Heavy Electrical Eqp. 

Mgd. Bmk. Act. Mgd. Bmk. Act. 

0.022 

0.000 

0.000 

1.717 

4.490 

3.770 

0.977 

0.823 

0.365 

3.197 

0.648 

0.636 

0.000 

0.454 

0.141 

0.374 

0.025 

3.375 

9.813 

0.326 

0.358 

0.067 

0.000 

0.675 

0.000 

0.000 

1.303 

0.606 

0.161 

0.871 

2.046 

4.297

1.417

0.620

3.780 

0.515 

0.732

2.435 

0.511

0.166 

0.621 

0.373 

0.341

2.721 

3.606 

0.288

0.778 

1.498 

0.209 

0.542 

1.630 

0.409 

0.220 

1.949 

−0.585 

−0.161 

−0.871 

−0.329 

0.193 

2.353 

0.357 

−2.956 

−0.151 

2.465 

−1.787 

0.125 

−0.166 

−0.167 

−0.232 

0.033 

−2.696 

−0.231 

9.526 

−0.452 

−1.140 

−0.141 

−0.542 

−0.955 

−0.409 

−0.220 

−0.647 

Heavy Machinery 

Industrial Parts 

Electric Utility 

Gas Utilities 

Railroads 

Airlines 

Truck/Sea/Air Freight 

Medical Services 

Medical Products 

Drugs 

Electronic Equipment 

Semiconductors 

Computer Hardware 

Computer Software 

Defense and Aerospace 

Telephone 

Wireless Telecom. 

Information Services 

Industrial Services 

Life/health Insurance 

Property/Casualty Ins. 

Banks 

Thrifts 

Securities and Asst. Mgmt. 

Financial Services 

Internet 

Equity REIT 

0.000  0.141 −0.141 

1.366  1.469 −0.103 

4.221  1.956  2.265 

0.204  0.456 −0.252 

0.185  0.373 −0.189 

0.000  0.206 −0.206 

0.000  0.162 −0.162 

0.000  0.789 −0.789 

1.522  3.599 −2.077 

7.301 10.000 −2.699 

0.525  1.985 −1.460 

3.227  4.509 −1.282 

2.904  4.129 −1.224 

7.304  6.256  1.048 

1.836  1.336  0.499 

6.290  3.680  2.610 

2.144  1.565  0.580 

0.921  2.698 −1.777 

0.230  0.670 −0.440 

1.987  0.938  1.048 

4.844  2.541  2.304 

8.724  7.580  1.144 

0.775  0.362  0.413 

3.988  2.017  1.971 

5.510  6.321 −0.811 

0.434  0.725 −0.291 

0.000  0.193 −0.193 

Note: Mgd = Managed; Bmk = S&P 500 (the benchmark); Act = Active = Managed 
− Benchmark 
Source: Exhibit 13.11 in Frank J. Fabozzi, Frank J. Jones, and Raman Vardharaj, 
“Multi-Factor Risk Models,” Chapter 13 in Frank J. Fabozzi and Harry M. 
Markowitz (eds.), The Theory and Practice of Investment Management (Hobo-
ken, NJ: John Wiley & Sons, 2002). 
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■ Practitioners view categories of stocks with similar historical perfor-
mance as a “style” of investing with the two main style categories 
being growth and value. 

■ There are methodologies for classifying stocks into style categories. 
■ There are two types of passive strategies: a buy-and-hold strategy and 

an indexing strategy with the latter being the more common strategy 
pursued by institutional investors.

 ■ In constructing the tracking or indexed portfolio a manager can use the 
capitalization approach which involves either purchasing all stock 
issues included in the benchmark index in proportion to their weight-
ings or purchasing a number of the largest capitalized names in the 
benchmark index and equally distributes the residual stock weighting 
across the other issues in the benchmark index.

 ■ Two approaches to construct an indexed portfolio with fewer stock 
issues than the benchmark index are the cellular (or stratified sampling) 
method and the multifactor risk model method.

 ■ The “fundamental law of active management” explains how the infor-
mation ratio changes as a function of the depth of an active manager’s 
skill and the breadth or number of independent insights or investment 
opportunities.

 ■ Technical analysis strategies are active management strategies whose 
overlying principle is to detect changes in the supply of and demand for 
a stock and capitalize on the expected changes.

 ■ Technical analysis has taken a more scientific twist with the develop-
ment of nonlinear dynamics and chaos theory.

 ■ Market-neutral strategies seek a positive return regardless of market 
conditions. A typical way to achieve this result is by constructing an 
appropriate portfolio consisting of long and short equity positions.

 ■ Statistical arbitrage is a new methodology for managing long-short 
equity portfolios based on finding stable trends that signal profit 
opportunities.

 ■ Multifactor risk models permit the decomposition of risk in order to 
assess the potential performance of a portfolio to the risk factors, the 
potential performance of a portfolio relative to a benchmark, and the 
actual performance of a portfolio relative to a benchmark

 ■ In risk decomposition, the total return is first divided into the risk-free 
return and the total excess return (the difference between the actual 
return realized by the portfolio and the risk-free return); the total 
excess risk is further partitioned into specific/common risks, system-
atic/residual risks, and benchmark/active risks. 
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CHAPTER 20 
Term Structure Modeling and 

Valuation of Bonds and 
Bond Options 

In this chapter we introduce the concepts and mathematical technology 
of bond and bond option valuation. We will begin by analyzing the 

behavior of bond prices in a deterministic interest rate environment 
(i.e., assuming that interest rates are known at every future date). We 
will then move on to a full stochastic description of interest rates and of 
the term structure of interest rates and will tackle bond and bond option 
valuation problems in this environment. 

The term structure of interest rates plays a key role in financial decision-
making and investment management. Richard McEnally and James Jordan1 

provide the following list of uses for the term structure of interest rates:

 ■ Analyzing the potential returns for investments with different maturi-
ties.

 ■ Assessing market consensus expectations of future interest rates.
 ■ Pricing bonds and other fixed-income contractual obligations.
 ■ Pricing contingent claims in which the underlying is a fixed-income 

security.
 ■ Arbitraging between bonds with different maturities.
 ■ Forming expectations about the economy (e.g., economic activity and 

inflation). 

1 Richard W. McEnally and James V. Jordan, “The Term Structure of Interest 
Rates,” Chapter 43 in Frank J. Fabozzi (ed.), The Handbook of Fixed Income Secu-
rities: Fifth Edition (Chicago: Irwin Professional Publishing, 1997), pp. 818–822. 

593 
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The estimation of the term structure of interest rates is referred to as 
term structure modeling. We will explain how this is done in this chapter. 

BASIC PRINCIPLES OF VALUATION OF DEBT INSTRUMENTS 

A useful way of understanding the valuation of debt instruments and 
how this relates to interest rates is to use the principle that, in perfect 
markets, all riskless instruments have the same short-term return which 
must coincide with the riskless short-term rate for that period. This con-
dition may be expected to be enforced through arbitrage. The 1-period 
rate of return from, say, an instrument with maturity n and a cash flow 
denoted by (a1, ..., an), consists of the cash payment, a1, plus the capital 
gain, or the difference between the next-period price and the current 
price of the security, expressed as a percentage of initial value. 

Let us denote by nPj the price j periods (j < n) from the present of an 
instrument maturing n periods later; the capital gain for the current 
period is: n–1P1 – P0. Hence the condition that the 1-period returnn
from holding the instrument must be equal to the short-term rate for the 
forthcoming period, denoted by r1, can be written as 

a1 + ( )n – 1P1 – nP0 ----------------------------------------------- = r1 (20.1) 
nP0 

Solving for nP0, 

a1 + n – 1P1 = --------------------------- (20.2)nP0 
1 + r1 

The reason why the right-hand side of equation (20.2) must be the 
equilibrium price of the n-period asset is that, as can be verified, if the 
current price, P0, were larger than the right-hand side of equationn
(20.2), then the 1-period return of the debt instrument, given by equa-
tion (20.1), would be smaller than the return r1 obtainable by investing 
in the 1-period debt instrument. As a result, no one would want to hold 
it, causing its price to drop. Similarly, if nP0 is smaller than the right-
hand side of equation (20.2), this yield for the debt instrument would be 
larger than r1, and everyone would want to hold it. 

Next we observe that n–1P1 must satisfy an equation like equation 
(20.2), or 
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a2 + n – 2P2 = ---------------------------n – 1P1 
1 + r2 

Substituting this equation into equation (20.2), we get 

a1 a2 + n – 2P2 = ------------------- + ---------------------------------------nP0 
(1 + r1) (1 + r1)(1 + r2) 

Repeating the same substitution recursively, up to the maturity of the 
debt instrument, we find 

= ------------------- + --------------------------------------- + … + ------------------------------------------------------------------ (20.3)nP0 
a1 a2 an 

(1 + r1) (1 + r1)(1 + r2) (1 + r1)(1 + r2)…(1 + r )n 

In other words, the debt instrument must equal the sum of the present 
value of the payments that the debtor is required to make until maturity. 

Let’s illustrate the principles to this point. Assume that the length of 
a period is one year. Suppose that an investor purchases a 4-year debt 
instrument with the following payments promised by the borrower: 

Year Interest Payment Principal Repayment Cash Flow 

1 $100  $0  $100 
2  120  0  120 
3  140  0  140 
4  150 1,000 1,150 

In terms of our notation: a1 = $100; a2 = $120; a3 = $140; a4  = 
$1,150. Assume that the 1-year rates for the next four years are: r1  = 
0.07; r2 = 0.08; r3 = 0.09; r4 = 0.10. The current value or price of this 
debt instrument today, denoted 4P0, using equation (20.3) is then 

100 120 140P4 0  = ---------------- + --------------------------------- + --------------------------------------------------
(1.07) (1.07)(1.08) (1.07)(1.08)(1.09) 

1,150
+ ------------------------------------------------------------------- = $1,138.43 

(1.07)(1.08)(1.09)(1.10) 
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YIELD-TO-MATURITY MEASURE


Next we must consider how to construct a measure that will permit us 
to compare the rate of return of debt instruments having different cash 
flows and different maturities. For 1-period debt instruments, the mea-
sure is clear; it is provided by the left-hand side of equation (20.1). But 
that approach cannot be generalized readily to long-term debt instru-
ments. For instance, for an instrument with a cash flow (a1, a2), the 
measure (a1 + a2)/P0 would not be a useful measure of yield. In the first 
place, if we seek a measure that can be used to compare instruments of 
different maturities, it must measure return per unit of time. And sec-
ond, the proposed measure ignores the timing of receipts, thus failing to 
reflect the time value of money. 

The widely accepted solution to this problem is provided by a mea-
sure known as the yield to maturity. It is defined as the interest rate that 
makes the present value of the cash flow equal to the market value 
(price) of the instrument. Thus for the debt instrument in equation 
(20.3), the yield to maturity is the interest rate y that satisfies the fol-
lowing equation: 

= ----------------- + -------------------- + … + -------------------- (20.4)nP0 
a1 a2 an 

(1 + y) (1 + y)2 (1 + y)n 

In general, the yield to maturity must be found by trial and error or 
by using an iterative technique like Newton-Raphson. If the debt instru-
ment is a bond, the cash flow (a1... an) can be written as (C, C, ..., C + 
M), where C is the coupon payment and M the maturity value. Equation 
(20.4) can be rewritten as 

C C C M+P =	 ----------------- + -------------------- + … + -------------------- (20.5) 
(1 + y) (1 + y)2 (1 + y)n 

After dividing both sides of equation (20.5) by M, to obtain the 
price per dollar of maturity value, and factoring C, we obtain 

n 
P C 1 1 
----- = ----- ∑ ------------------- + --------------------	 (20.6) 

tM Mt = 1 (1 + y) (1 + y)n 

Recognizing that the summation on the right-hand side of equation 
(20.6) is the sum of a geometric progression, we can rewrite the equa-
tion as 
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P C 1 – (1 + y) –n 1 
----- = ----- -------------------------------- + -------------------- (20.7) 
M M y (1 + y)n 

The yield to maturity is the solution to equation (20.7) for y, the 
yield of an n-period bond. In equation (20.7) P/M is the so-called par 
value relation, usually expressed as a percentage. If it is equal to one, 
the bond sells “at par”; if it is larger than one, it sells at a “premium”; 
and if it is less than one, it sells at a “discount.” C/M is the coupon rate 
expressed as a ratio. 

So far we have not specified the unit of time for measuring the fre-
quencies with which interest is computed and the coupons are paid. 
Interest rates (and maturity) customarily are quoted per year (e.g., 7% 
per year), and we shall follow this convention; this means that in equa-
tion (20.7) it is implicitly assumed that the coupon rate is C per year 
and paid once a year. In fact, in the United States almost all bonds pay 
interest twice a year. Each coupon payment therefore amounts to C/2, 
which must be discounted twice a year at half the annual yield or y/2. 
As a result, equation (20.7) is changed to 

P C 1 – (1 + y ⁄ 2) –2n 1 
----- = --------- ------------------------------------------ + ------------------------------ (20.8) 
M 2M y ⁄ 2 (1 + y ⁄ 2)2n 

To illustrate calculation of the yield to maturity of a bond with semi-
annual coupon payments, consider a 7%, 20-year bond with a maturity 
or par value of $100, and selling for 74.26%, or 74.26 cents per $1 of par 
value. The cash flow for this bond per dollar of par value is: 40 six-month 
payments of $0.035, and $1 received in 40 six-month periods from now. 
The present value at various semiannual interest rates (y/2) is: 

Interest rate (y/2): 3.5% 4.0% 4.5% 5.0% 5.5% 6.0% 6.5% 
Present value (P/M): 1.0000 0.9010 0.8160 0.7426 0.6791 0.6238 0.5756 

When a 5.0% semiannual interest rate is used, the present value of the 
cash flows is equal to 0.7426 per $1 of par value, which is the price of 
the bond. Hence, 5.0% is the semiannual yield to maturity. 

The annual yield to maturity should, strictly speaking, be found by 
compounding 5.0% for one year. That is, it should be 10.25. But the con-
vention adopted by the bond market is to double y/2, the semiannual 
yield to maturity. Thus, the yield to maturity for the bond above is 10% 
(two times 5.0%). The yield to maturity computed using this convention 
of doubling the semiannual yield is called the bond equivalent yield. 
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Premium Par Yield 
In general, equation (20.7) and equation (20.8) cannot be solved explic-
itly for y (for n > 2); these equations must be solved by trial and error or 
by using an iterative technique—with one important exception. It is 
apparent from equation (20.7) that the par value, P/M, increases as the 
coupon rate, C/M, increases. Now consider a bond whose coupon rate is 
such that the corresponding value of P/M is one—that is, the bond sells 
at par. Then equation (20.7) becomes: 

C 1 – (1 + y) –n 11 =	 ----- -------------------------------- + -------------------- (20.9) 
M y (1 + y)n 

Equation (20.9) can be solved explicitly for y; the solution is y = C/ 
M. In other words, if a bond sells at par, its yield to maturity is the same 
as its coupon rate; for example, if a 7.75%, 20-year bond sells at par, its 
yield to maturity is 7.75%. This means that, for a bond to be issued at 
par, the coupon rate offered must be the same as the market-required 
yield for that maturity. The coupon rate of an n-period bond selling at 
par may be labeled the n-period par yield. 

It can also be verified from equation (20.9) that if the coupon rate 
on a bond is less than the required yield to maturity, or par yield, the 
bond will sell at a discount; the converse is true for a bond with a cou-
pon above par yield. The explanation for this relation is self-evident: if 
the cash payment per period—namely, the coupon is below the required 
yield per period, the difference must be made up by an increase in price, 
or capital gain, over the life of the bond. This requires that the price of 
the bond be lower than its maturity value. In the United States, bonds 
(other than zero-coupon bonds) customarily are issued with a yield to 
maturity as to insure that the issue sells at close to par. 

Reinvestment of Cash Flow and Yield 
The yield to maturity takes into account the coupon income and any 
capital gain or loss that the investor will realize by holding the bond to 
maturity. The measure has its shortcomings, however. We might think 
that if we acquire for P a bond of maturity n and yield y, then at matu-
rity we can count on obtaining a terminal value equal to P(1 + y)n. This 
inference is not justified. By multiplying both sides of equation (20.5) by 
(1 + y)n, we obtain 

P(1 + y)n = C(1 + y)n–1 + C(1 + y)n–2 + C + M 
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For the terminal value to be P(1 + y)n, each of the coupon payments 
must be reinvested until maturity at an interest rate equal to the yield to 
maturity. If the coupon payment is semiannual, then each semiannual 
payment must be reinvested at the yield y. 

Clearly, as the equation indicates, the investor will realize the yield to 
maturity that is calculated at the time of purchase only if (1) all the cou-
pon payments can be reinvested at the yield to maturity, and (2) the bond 
is held to maturity. With respect to the first assumption, the risk that an 
investor faces is that future interest rates at which the coupon can be rein-
vested will be less than the yield to maturity at the time the bond is pur-
chased. This risk is referred to as reinvestment risk. And if the bond is not 
held to maturity, it may have to be sold for less than its purchase price, 
resulting in a return that is less than the yield to maturity. The risk that a 
bond will have to be sold at a loss is referred to as interest rate risk. 

Our focus in this section has been on coupon-bearing bonds. In the 
special case of a bond that produces only one cash flow, the maturity value, 
the yield to maturity does measure the rate at which the initial investment 
rises. We can see this if we substitute zero for the coupon payments in the 
last equation. As explained in Chapter 3, bonds that do not make coupon 
payments are called zero-coupon bonds. The advantage of these bonds is 
that they do not expose the investor to reinvestment risk. Zero-coupon 
bonds play a key role in the valuation process as explained later. 

THE TERM STRUCTURE OF THE INTEREST RATES AND THE 
YIELD CURVE 

The relationship between the yield on bonds of the same credit quality 
but different maturities is generically referred to as the term structure of 
interest rates. The graphical depiction of the term structure of interest 
rates is called the yield curve. 

There are different yield measures that can be used to construct the 
yield curve. As we will see in this chapter, the alternative yield measures 
that can be used are (1) the yield to maturity on a country’s benchmark 
government bonds; (2) the spot rate; (3) the forward rates; and (4) and 
the swap rate. We will explain the last three yield measures later in this 
chapter. Market participants typically construct yield curves from the 
market prices and yields in the government bond market of a country or 
from swap rates. As we will see, the other two rates—spot rates and for-
ward rates—are derived from market information. 

In the United States it is the U.S. Treasury securities market and the 
resulting yield curve is referred to as the Treasury yield curve. Two rea-
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sons account for this tendency. First, Treasury securities are free of 
default risk, and differences in creditworthiness do not affect yield esti-
mates. Second, the Treasury market offers the fewest problems of illi-
quidity or infrequent trading. 

Typically in constructing a yield curve using Treasury yields the on-
the-run Treasury issues are used. These are the most recently auctioned 
Treasury issues. In the United States, the U.S. Department of the Trea-
sury currently issues 3-month and 6-month Treasury bills and 2-year, 5-
year, and 10-year Treasury notes. Treasury bills are zero-coupon instru-
ments and Treasury notes are coupon-paying instruments. Hence, there 
are not many data points from which to construct a Treasury yield 
curve, particularly after two years. At one time, the U.S. Treasury issued 
30-year securities (referred to as Treasury bonds). However, the Trea-
sury stopped this practice. In constructing a Treasury yield curve, mar-
ket participants use the last issued Treasury bond (which has a maturity 
less than 30 years) to estimate the 30-year yield. The 2-year, 5-year, and 
10-year Treasury notes and an estimate of the 30-year Treasury bond is 
used to construct the Treasury yield curve. On September 5, 2003, Leh-
man Brothers reported the following values for these four yields: 

2 year 1.71% 
5 year 3.25% 
10 year 4.35% 
30 year 5.21% 

To fill in the yield for the 25 missing whole year maturities (3 year, 4 
year, 6 year, 7 year, 8 year, 9 year, 11 year, and so on to the 29-year matu-
rity), the yield for the 25 whole-year maturities are interpolated from the 
yield on the surrounding maturities. The simplest interpolation, and the 
one most commonly used in practice, is simple linear interpolation. 

For example, suppose that we want to fill in the gap for each one 
year of maturity. To determine the amount to add to the on-the-run 
Treasury yield as we go from the lower maturity to the higher maturity, 
the following formula is used: 

(yH  – yL)/N 

where: 

yH = yield at higher maturity 
yL = yield at lower maturity 
N = number of years between two observed maturity points 
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The estimated on-the-run yield for all intermediate whole-year maturi-
ties is found by adding to the yield at the lower maturity the amount 
computed from the above formula. 

For example, using the September 5, 2003 yields, the 5-year yield is 
3.25% and the 10-year yield is the 4.35%% are used to obtain the 
interpolated 6-year, 7-year, 8-year, and 9-year yields by first calculating: 

(4.35% – 3.25%)/5 = 0.22% 

Then, 

interpolated 6-year yield = 3.25% + 0.22% = 3.47% 
interpolated 7-year yield = 3.47% + 0.22% = 3.69% 
interpolated 8-year yield = 3.69% + 0.22% = 3.91% 
interpolated 9-year yield = 3.91% + 0.22% = 4.13% 

Thus, when market participants talk about a yield on the Treasury 
yield curve that is not one of the on-the-run maturities—for example, 
the 8-year yield—it is only an approximation. Notice that there is a 
large gap between the maturity points. This may result in misleading 
yields for the interim maturity points when estimated using the linear 
interpolation method. 

Another factor complicates the relationship between maturity and 
Treasury yield in constructing the Treasury yield curve. The yield for 
on-the-run Treasury issues may be distorted by the fact that these secu-
rities can be financed at cheaper rates and as a result can offer a lower 
yield than in the absence of this financing advantage. There are inves-
tors who purchase securities with borrowed funds and use the securities 
purchased as collateral for the loan. This type of collateralized borrow-
ing is called a repurchase agreement. Since dealers, for whatever reason, 
want to obtain use of these securities for their own trading activities, 
they are willing to loan funds to investors at a lower interest rate than is 
otherwise available for borrowing in the market. Consequently, 
impounded into the price of an on-the-run Treasury security is the 
cheaper financing available, resulting in a lower yield for an on-the-run 
than would prevail in the absence of attractive financeability. 

From a practical viewpoint, the key function of the Treasury yield 
curve is to serve as a benchmark for pricing bonds and setting yields in all 
other sectors of the debt market—bank loans, mortgages, corporate debt, 
and international bonds. However, the Treasury yield curve is an unsatis-
factory measure of the relation between required yield and maturity. The 
key reason is that securities with the same maturity may actually carry 
different yields. This phenomenon reflects the role and impact of differ-
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ences in the bonds’ coupon rates. Hence, it is necessary to develop more 
accurate and reliable estimates of the term structure of interest rates. We 
will show how this is done later. Basically, the approach consists of identi-
fying yields that apply to zero-coupon bonds and, therefore, eliminates 
the problem of nonuniqueness in the yield-maturity relationship. 

Limitations of Using the Yield to Value a Bond 
The price of a bond is the present value of its cash flow. However, in our 
illustrations and our discussion of the pricing of a bond above, we assume 
that one interest rate should be used to discount all the bond’s cash flows. 
The appropriate interest rate is the yield on a Treasury security, with the 
same maturity as the bond, plus an appropriate risk premium or spread. 

To illustrate the problem with using the Treasury yield curve to deter-
mine the appropriate yield at which to discount the cash flow of a bond, 
consider the following two hypothetical 5-year Treasury bonds, A and B. 
The difference between these two Treasury bonds is the coupon rate, 
which is 12% for A and 3% for B. The cash flow for these two bonds per 
$100 of par value for the 10 six-month periods to maturity would be: 

Period Cash Flow for A Cash Flow for B 

1–9  $6.00  $1.50
 10 106.00 101.50 

Because of the different cash flow patterns, it is not appropriate to 
use the same interest rate to discount all cash flows. Instead, each cash 
flow should be discounted at a unique interest rate that is appropriate 
for the time period in which the cash flow will be received. But what 
should be the interest rate for each period? 

The correct way to think about bonds A and B in order to avoid arbi-
trage opportunities is not as bonds but as packages of cash flows. More 
specifically, they are packages of zero-coupon instruments. Thus, the 
interest earned is the difference between the maturity value and the price 
paid. For example, bond A can be viewed as 10 zero-coupon instru-
ments: one with a maturity value of $6 maturing six months from now; a 
second with a maturity value of $6 maturing one year from now; a third 
with a maturity value of $6 maturing 1.5 years from now, and so on. The 
final zero-coupon instrument matures 10 six-month periods from now 
and has a maturity value of $106. Likewise, bond B can be viewed as 10 
zero-coupon instruments: one with a maturity value of $1.50 maturing 
six months from now; one with a maturity value of $1.50 maturing one 
year from now; one with a maturity value of $1.50 maturing 1.5 years 
from now, and so on. The final zero-coupon instrument matures 10 six-
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month periods from now and has a maturity value of $101.50. Obvi-
ously, in the case of each coupon bond, the value or price of the bond is 
equal to the total value of its component zero-coupon instruments. 

Valuing a Bond as a Package of Cash Flows 
In general, any bond can be viewed as a package of zero-coupon instru-
ments. That is, each zero-coupon instrument in the package has a maturity 
equal to its coupon payment date or, in the case of the principal, the matu-
rity date. The value of the bond should equal the value of all the compo-
nent zero-coupon instruments. If this does not hold, it is possible for a 
market participant to generate riskless profits by stripping the security and 
creating stripped securities. We will demonstrate this later in this chapter. 

To determine the value of each zero-coupon instrument, it is neces-
sary to know the yield on a zero-coupon Treasury with that same matu-
rity that we referred to as the spot rate earlier. The spot rate curve is the 
graphical depiction of the relationship between the spot rate and its 
maturity. Because there are no zero-coupon Treasury debt issues with a 
maturity greater than one year issued by the U.S. Department of the 
Treasury, it is not possible to construct such a curve solely from obser-
vations of market activity. Rather, it is necessary to derive this curve 
from theoretical considerations as applied to the yields of actual Trea-
sury securities. Such a curve is called a theoretical spot rate curve. 

Obtaining Spot Rates from the Treasury Yield Curve 
We will now explain the process of creating a theoretical spot rate curve 
from the yield curve that is based on the observed yields of Treasury 
securities. The process involves the following: 

1. Select the universe of Treasury securities to be used to construct the 
theoretical spot rates. 

2. Obtain the theoretical spot rates using bootstrapping. 
3. Create a smooth continuous curve. 

We will return to the first and the third tasks later in this chapter. For 
now, we want to show how the theoretical spot rates can be obtained 
from the interpolated yields on Treasury securities (i.e., the Treasury yield 
curve). To simplify the illustration, we will assume that an estimated 
Treasury yield curve is as shown in Exhibit 20.1. The 6-month and 1-year 
Treasury securities are assumed to be zero-coupon Treasury securities. 

The process of extracting the theoretical spot rates from the Trea-
sury yield curve is called bootstrapping. To explain this process, we use 
the data for the price, annualized yield (yield to maturity), and maturity 
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EXHIBIT 20.1 Hypothetical Treasury Yields (Interpolated) 

Annual Par Yield to Spot Rate 
Period Years Maturity (BEY) (%)a Price (BEY) (%)a

 1  0.5 3.00 — 3.0000
 2  1.0 3.30 — 3.3000
 3  1.5 3.50 100.00 3.5053
 4  2.0 3.90 100.00 3.9164
 5  2.5 4.40 100.00 4.4376
 6  3.0 4.70 100.00 4.7520
 7  3.5 4.90 100.00 4.9622
 8  4.0 5.00 100.00 5.0650
 9  4.5 5.10 100.00 5.1701 

10  5.0 5.20 100.00 5.2772 
11  5.5 5.30 100.00 5.3864 
12  6.0 5.40 100.00 5.4976 
13  6.5 5.50 100.00 5.6108 
14  7.0 5.55 100.00 5.6643 
15  7.5 5.60 100.00 5.7193 
16  8.0 5.65 100.00 5.7755 
17  8.5 5.70 100.00 5.8331 
18  9.0 5.80 100.00 5.9584 
19  9.5 5.90 100.00 6.0863 
20 10.0 6.00 100.00 6.2169 

a The yield to maturity and the spot rate are annual rates. They are reported as bond-
equivalent yields. To obtain the semiannual yield or rate, one half the annual yield 
or annual rate is used. 

of the 20 hypothetical Treasury securities shown in Exhibit 20.1. The 
basic principle of bootstrapping is that the value of the Treasury secu-
rity should be equal to the value of the package of zero-coupon Trea-
sury securities that duplicates the coupon bond’s cash flow. 

Consider the 6-month and 1-year Treasury securities in Exhibit 
20.1. These securities are assumed to be zero-coupon instruments.
Therefore, their annualized yield of 3% and 3.3% are respectively the 6-
month spot and the rate 1-year spot rate. Given these two spot rates, we 
can compute the spot rate for a theoretical 1.5-year zero-coupon Trea-
sury. The price of a theoretical 1.5-year Treasury should equal the 
present value of three cash flows from an actual 1.5-year coupon Trea-
sury, where the yield used for discounting is the spot rate corresponding 



20-Term Structure  Page 605  Wednesday, February 4, 2004  1:33 PM

605 Term Structure Modeling and Valuation of Bonds and Bond Options 

to the cash flow. Using $100 as par, the cash flow for the 1.5-year cou-
pon Treasury is $1.75 for the first two 6-month periods and $101.75 in 
1.5 years when the bond matures. Letting zt represent one-half the 
annualized spot rate for period t, then the absence of arbitrage requires 
that the present value of the three cash flows when discounted at the 
spot rates equal the market price, $100 in our illustration. That is, 

1.75 1.75 101.75 
---------------------- + ---------------------- + ---------------------- = 100 
(1 + z1)1 (1 + z2)2 (1 + z3)3 

Since the 6-month spot rate and 1-year spot rate are 3.0% and 
3.3%, respectively, we know that: z1 = 0.015 and z2 = 0.0165. Substi-
tuting these spot rates into the above equation and solving for z3, we 
obtain 1.7527%. Doubling this yield, we obtain the bond-equivalent 
yield of 3.5053%, which is the theoretical 1.5-year spot rate. That rate 
is the spot rate that the market would apply to a 1.5-year zero-coupon 
Treasury security if, in fact, such a security existed. 

Given the theoretical 1.5-year spot rate, we can obtain the theoreti-
cal 2-year spot rate. The cash flows for the 2-year coupon Treasury 
security follows from Exhibit 20.1. Since the annual coupon rate is 
3.9%, the cash flow for the first three periods is $1.95 and the cash flow 
for the fourth period is $101.95. Given the spot rate for the first three 
periods (z1 = 0.015, z2 = 0.0165, and z3 = 0.017527), the 4-period spot 
rate is then found by solving the following equation: 

1.95 1.95 1.95 101.95 
---------------------- + ------------------------- + -------------------------------- + ---------------------- = 100 
(1.015)1 (1.0165)2 (1.017527)3 (1 + z4)4 

The value for z4 is 0.019582 or 1.9582%. Doubling this yield, we obtain 
the theoretical 2-year spot rate bond-equivalent yield of 3.9164%. 

One can follow this approach sequentially to derive the theoretical 
2.5-year spot rate from the calculated values of z1, z2, z3, and z4, and the 
price and coupon of the 2.5-year bond in Exhibit 20.1. Further, one 
could derive theoretical spot rates for the remaining 15 half-yearly rates. 

The spot rates thus obtained are shown in the last column of 
Exhibit 20.1. They represent the term structure of Treasury spot rates 
for maturities up to 10 years. 

In practice, yields for interim maturities are not readily available for 
government bond markets. Hence, to construct a continuous spot rate 
curve requires the use of a methodology described later in this chapter. 
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Using Spot Rates to the Arbitrage-Free Value of a Bond 
Finance theory tells us that the theoretical price of a Treasury security 
should be equal to the present value of the cash flow where each cash 
flow is discounted at the appropriate theoretical spot rate For example, 
if the Treasury spot rates shown in the last column of Exhibit 20.1 are 
used to compute the arbitrage-free value of an 8% 10-year Treasury 
security, the present value of the cash flow would be found to be 
$115.2619. If a 4.8% coupon 10-year Treasury bond is being valued 
based on the Treasury spot rates shown in Exhibit 20.1, the arbitrage-
free value is $90.8428. 

Suppose that the 8% coupon, 10-year Treasury issue is valued using 
the traditional approach based on 6% (i.e., the yield on a 10-year Trea-
sury coupon bond shown in Exhibit 20.1). Discounting all cash flows at 
6% would produce a value for the 8% coupon bond of $114.8775. Con-
sider what would happen if the market priced the security at $114.8775. 
The value based on the Treasury spot rates is $115.2619. Faced with this 
situation, a securities dealer can buy the 8% 10-year issue for $114.8775, 
strip off each coupon payment and the maturity value, and sell each cash 
flow in the market at the spot rates shown in Exhibit 20.1. By doing so, 
the proceeds that will be received by the dealer are $115.2619. This 
results in an arbitrage profit of $0.3844 (= $115.2619 – $114.8775). 
Securities dealers recognizing this arbitrage opportunity will bid up the 
price of the 8% 10-year Treasury issue in order to acquire it and strip it. 
Once the price is up to around $115.2619 (the arbitrage-free value), the 
arbitrage opportunity is eliminated. 

We have just demonstrated how stripping of a Treasury issue will 
force the market value to be close to its arbitrage-free value when the 
market price is less than the arbitrage-free value. When a Treasury issue’s 
market price is greater than the arbitrage-free value, a securities dealer 
can capture the arbitrage value by a process referred to as reconstitution. 
Basically, the securities dealer can purchase a package of stripped Trea-
sury securities traded in the market so as to create a synthetic Treasury 
coupon security that is worth more than the same maturity and the same 
coupon Treasury issue. The sale of the resulting synthetic coupon security 
that is created will force the price down to its arbitrage-free value. 

The Discount Function 
A more convenient way of characterizing the term structure of interest rates 
is by means of the discount function. The discount function specifies the 
present value of a cash flow in the future. It can therefore be interpreted as 
the price of a pure risk-free discount bond of a given maturity with a $1 
face value. The discount function (Dn) is related to spot rates as follows: 
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1D = ----------------------n 
(1 + z )n 

n 

The reason for describing the term structure in terms of the discount 
function is that bond prices can be expressed in an easy way in terms of 
it. The price of a bond is simply the sum of the products of the cash flow 
expected from the bond at time t and the discount function for time t. 
That is, for a bond with a maturity n and a cash flow of C for periods 
1,…,n–1 and maturity value of M, the price is 

n – 1 

∑ DtC D (C M)+ +n 
t – 1 

Forward Rates 
In addition to spot rates and discount functions to describe the term 
structure, there is another important analytical concept that can be used 
to describe the term structure: forward rates. Forward rates can be 
derived from the Treasury yield curve by using arbitrage arguments, just 
as we did for spot rates. 

To illustrate the process of obtaining 6-month forward rates, we will 
use the yield curve and corresponding spot rate curve from Exhibit 20.1. 
For this construction, we will use a very simple arbitrage: If two invest-
ments have the same cash flows and have the same risk, they should have 
the same value. 

Consider an investor who has a 1-year investment horizon and is 
faced with the following two alternatives:

 ■ Alternative 1. Buy a 1-year Treasury security
 ■ Alternative 2. Buy a 6-month Treasury security and, when it matures in 

six months, buy another 6-month Treasury security 

The investor will be indifferent toward the two alternatives if they 
produce the same return over the 1-year investment horizon. The investor 
knows the spot rate on the 6-month Treasury security and the 1-year 
Treasury security. However, he does not know what yield will be available 
on a 6-month Treasury security that will be purchased six months from 
now. That is, he does not know the 6-month forward rate six months 
from now. Given the spot rates for the 6-month Treasury security and the 
1-year Treasury security, the forward rate on a 6-month Treasury security 
is the rate that equalizes the dollar return between the two alternatives. 
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Letting $X denote the face amount of the 6-month Treasury security, z1 is 
one-half the bond-equivalent yield (BEY) of the theoretical 6-month spot 
rate, and z2 represents one-half the BEY of the theoretical 1-year spot 
rate, then the investor will be indifferent toward the two alternatives if 

X(1 + z1)(1 + f) = X(1 + z2)2 

where f is the 6-month forward rate six months from now. Solving, we get 

(1 + z2)2 

f = ---------------------- – 1 
(1 + z1) 

Doubling f gives the BEY for the 6-month forward rate six months 
from now. In our illustration, f is 1.8% and therefore the 6-month for-
ward rate on a BEY basis is 3.6%. 

We can generalize the 1-period forward rates as follows.2 Let fn 
denote the 1-period forward rate contract that will begin at time n. 
Then f0 is simply the current 1-period spot rate. 

Exhibit 20.2 shows all of the 6-month (i.e., 1-period) forward rates 
for the Treasury yield curve and corresponding spot rate curve shown in 
Exhibit 20.1. The forward rates reported in Exhibit 20.2 are the annual-
ized rates on a bond-equivalent basis. The set of these forward rates is 
called the short-term forward-rate curve. 

The relationship between the n-period spot rate, the current 6-
month spot rate, and the 6-month forward rates is as follows: 

zn = [(1 + z1) (1 + f1) (1 + f2) ... (1 + fn–1)]1/n – 1 

The discount function can be expressed in terms of forward rates as 
follows: 

1D = ---------------------------------------------------------------------------------------------------------------------n 
[(1 + z1)(1 + f1)(1 + f2)…(1 + 1fn – 1)]1 ⁄ n – 1 

Swap Curve 
Instead of using a government spot rate curve, market participants are 
more often using the swap curve or London Interbank Offered Rate 
(LIBOR) curve for reasons described below. A swap curve is derived 

2 We will generalize the notation later in this chapter when continuous time is used. 
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EXHIBIT 20.2 Short-Term Forward Rates 

Notation Forward Rate

 1f0 3.00

 1f1 3.60

 1f2 3.92

 1f3 5.15

 1f4 6.54

 1f5 6.33

 1f6 6.23

 1f7 5.79

 1f8 6.01

 1f9 6.24 

1f10 6.48 

1f11 6.72 

1f12 6.97 

1f13 6.36 

1f14 6.49 

1f15 6.62 

1f16 6.76 

1f17 8.10 

1f18 8.40 

1f19 8.72 

from observed swap rates in the interest rate swap market. In a generic 
interest rate swap two parties agree to exchange cash flows based on a 
notional amount where (1) one party pays a fixed rate and receives a 
floating rate and (2) the other party agrees to pay a floating rate and 
receives a fixed rate. The fixed rate is called the swap rate. A swap curve 
can be constructed that is unique to a country where there is a swap 
market for converting fixed cash flows to floating cash flows in that 
country’s currency. 

Typically, the reference rate for the floating rate is 3-month LIBOR. 
Effectively, the swap curve indicates the fixed rate (i.e., swap rate) that a 
party must pay to lock in 3-month LIBOR for a specified future period. 
By locking in 3-month LIBOR it is meant that a party that pays the 
floating rate (i.e., agrees to pay 3-month LIBOR) is locking in a borrow-
ing rate; the party receiving the floating rate is locking in an amount to 
be received. Because 3-month LIBOR is being exchanged, the swap 
curve is also called the LIBOR curve. 
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The convention in the swap market is to quote the reference rate flat 
(i.e., no spread) and quote the fixed-rate side as a spread over a bench-
mark (typically the yield on a government bond) with the same maturity 
as the swap. 

Effectively the swap rate reflects the risk of the counterparty to the 
swap failing to satisfy its obligation. Consequently, the swap curve does 
not reflect rates for a default-free obligation. Instead, the swap curve 
reflects credit risk. Since the counterparty in swaps are typically bank-
related entities, the swap curve reflects the credit risk of the banking sec-
tor—effectively, it is an interbank or AA rated curve. 

Investors and issuers use the swap market for hedging and arbitrage 
purposes, and the swap curve as a benchmark for evaluating performance 
of fixed-income securities and the pricing of fixed-income securities. Since 
the swap curve is effectively the LIBOR curve and investors borrow based 
on LIBOR, the swap curve is more useful to funded investors than a gov-
ernment yield curve. 

The increased application of the swap curve for these activities is 
due to its advantages over using the government bond yield curve as a 
benchmark. Before identifying these advantages, it is important to 
understand that the drawback of the swap curve relative to the govern-
ment bond yield curve could be poorer liquidity. In such instances, the 
swap rates would reflect a liquidity premium. Fortunately, liquidity is 
not an issue in many countries as the swap market has become highly 
liquid, with narrow bid-ask spreads for a wide range of swap maturities. 
In some countries swaps may offer better liquidity than that country’s 
government bond market. The advantages of the swap curve over a gov-
ernment bond yield curve are:3 

1. There is almost no government regulation of the swap market. The 
lack of government regulation makes swap rates across different 
markets more comparable. In some countries, there are some sover-
eign issues that offer various tax benefits to investors and, as a 
result, for global investors it makes comparative analysis of govern-
ment rates across countries difficult because some market yields do 
not reflect their true yield. 

2. The supply of swaps depends only on the number of counterparties 
that are seeking or are willing to enter into a swap transaction at 
any given time. Since there is no underlying government bond, there 

3 See Uri Ron, “A Practical Guide to Swap Curve Construction,” Chapter 6 in Frank 
J. Fabozzi (ed.), Interest Rate, Term Structure, and Valuation Modeling (New York: 
John Wiley & Sons, 2002). 
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can be no effect of market technical factors that may result in the 
yield for a government bond issue being less than its true yield.4 

3. Comparisons across countries of government yield curves is difficult 
because of the differences in sovereign credit risk. In contrast, the 
credit risk as reflected in the swaps curve are similar and make com-
parisons across countries more meaningful than government yield 
curves. Sovereign risk is not present in the swap curve because, as 
noted earlier, the swap curve is viewed as an interbank yield curve 
or AA yield curve. 

4. There are more maturity points available to construct a swap curve 
than a government bond yield curve. More specifically, what is 
quoted daily in the swap market are swap rates for 2-, 3-, 4-, 5-, 6-, 
7-, 8-, 9-, 10-, 15-, and 30-year maturities. Thus, in the swap mar-
ket there are 10 market interest rates with a maturity of two years 
and greater. In contrast, in the U.S. Treasury market, for example, 
there are only three market interest rates for on-the-run Treasuries 
with a maturity of two years or greater (2, 5, and 10 years) and one 
of the rates, the 10-year rate, may not be a good benchmark because 
it is often on special in the repo market. Moreover, because the U.S. 
Treasury has ceased the issuance of 30-year bonds, there is no 30-
year yield available. 

In the valuation of fixed-income securities, it is not the Treasury 
yield curve that is used as the basis for determining the appropriate dis-
count rate for computing the present value of cash flows but the Trea-
sury spot rates. The Treasury spot rates are derived from the Treasury 
yield curve using the bootstrapping process. Similarly, it is not the swap 
curve that is used to for discounting cash flows when the swap curve is 
the benchmark but the corresponding spot rates. The spot rates are 
derived from the swap curve in exactly the same way—using the boot-
strapping methodology. The resulting spot rate curve is called the 
LIBOR spot rate curve. Moreover, a forward rate curve can be derived 
from the spot rate curve. The same thing is done in the swap market. 
The forward rate curve that is derived is called the LIBOR forward rate 
curve. 

Consequently, if we understand the mechanics of moving from the 
yield curve to the spot rate curve to the forward rate curve in the Trea-
sury market, there is no reason to repeat an explanation of that process 
here for the swap market; that is, it is the same methodology, just differ-
ent yields are used. 

4 For example, a government bond issue being on “special” in the repurchase agree-
ment market. 
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CLASSICAL ECONOMIC THEORIES ABOUT THE 
DETERMINANTS OF THE SHAPE OF THE TERM STRUCTURE 

As mentioned earlier, the Treasury yield curve shows the relationship 
between the yield to maturity on Treasury securities and maturity. His-
torically, three shapes have been observed: an upward sloping yield 
curve (the most typical and therefore referred to as a “normal” yield 
curve), an downward sloping yield curve (also referred to as an 
“inverted” yield curve), and a flat yield curve. Exhibit 20.3 shows the 
yield curve for four countries on September 5, 2003 and September 12, 
2003: United States, Germany, United Kingdom, and Japan. Notice that 
all four yield curves are upward sloping. 

While we know that the yield curve is not the same as the term struc-
ture of interest rates, what will the shape of the spot rate curve and short-
term forward rate curve look like? If the yield curve is upward sloping, the 
spot rate curve will lie above the yield curve, and the forward rate curve 

EXHIBIT 20.3 Global Bellwether Yield Curves, September 5, 2003 and 
September 12, 2003 
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EXHIBIT 20.3  (Continued) 

Yields (%) 

2-Yr 5-Yr 10-Yr 30-Yr 

United 
States 

9/5/03 1.71 3.25 4.35 5.21 
9/12/03 1.62 3.15 4.26 5.17 
W-o-W Chg (bp) –9 –10 –9 –4 

Germany 9/5/03 2.60 3.54 4.30 4.98 
9/12/03 2.44 3.36 4.17 4.90 
W-o-w Chg (bp) –16 –18 –13 –8 

United 
Kingdom 

9/5/03 4.16 4.46 4.69 4.77 
9/12/03 4.05 4.36 4.57 4.69 
W-o-w Chg (bp) –11 –10 –12 –8 

Japan 9/5/03 0.19 0.74 1.44 1.79 
9/12/03 0.20 0.73 1.54 1.98 
W-o-w Chg (bp) 1 –1 10 19 

Source: Lehman Brothers, “Global Relative Value,” Fixed Income Research, Sep-
tember 8, 2003, p. 13. 

will lie above the spot rate curve. The reverse is true if the yield curve is 
downward sloping. If the yield curve is flat, all three curves are flat. 

Two major economic theories have evolved to account for these 
observed shapes of the yield curve: expectations theories and market 
segmentation theory. We describe these theories below. However, these 
are qualitative theories that tend to explain general features of market 
behavior. The quantitative determination of interest rates is a major 
problem of macroeconomics; it is made particularly challenging by the 
fact that interest rates are influenced by both market forces and by the 
decisions of central banks. In principle, General Equilibrium Theories 
(GET) can determine interest rates endogenously. However, GET remain 
an abstract tool; it is virtually impossible to apply them to practical 
forecasting. In practice, the forecast of interest rates for bond and bond 
option valuation is made using econometric models. Later in this chap-
ter we will take a look at the structure and form of econometric models 
used to forecast interest rates, or represent their stochastic evolution. 

Expectations Theories 
There are several forms of the expectations theory: pure expectations 
theory, liquidity theory, and preferred habitat theory. Expectations theo-
ries share a hypothesis about the behavior of short-term forward rates 
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and also assume that the forward rates in current long-term bonds are 
closely related to the market’s expectations about future short-term 
rates. These three expectations theories differ, however, as to whether 
other factors also affect forward rates, and how. The pure expectations 
theory postulates that no systematic factors other than expected future 
short-term rates affect forward rates; the liquidity theory and the pre-
ferred habitat theory assert that there are other factors. Accordingly, the 
last two forms of the expectations theory are sometimes referred to as 
biased expectations theories. 

Pure Expectations Theory 
According to the pure expectations theory, the forward rates exclusively 
represent the expected future spot rates. Thus the entire term structure at a 
given time reflects the market’s current expectations of the family of future 
short-term rates. Under this view, a rising term structure must indicate 
that the market expects short-term rates to rise throughout the relevant 
future. Similarly, a flat term structure reflects an expectation that future 
short-term rates will be mostly constant, and a falling term structure must 
reflect an expectation that future short rates will decline steadily. 

We can illustrate this theory by considering how the expectation of 
a rising short-term future rate would affect the behavior of various mar-
ket participants so as to result in a rising yield curve. Assume an initially 
flat term structure, and suppose that subsequent economic news leads 
market participants to expect interest rates to rise. 

1. Those market participants interested in long-term bonds would not 
want to buy long-term bonds because they would expect the yield 
structure to rise sooner or later, resulting in a price decline for the 
bonds and a capital loss on the long-term bonds purchased. Instead, 
they would want to invest in short-term debt obligations until the rise 
in yield had occurred, permitting them to reinvest their funds at the 
higher yield. 

2. Speculators expecting rising rates would anticipate a decline in the 
price of long-term bonds and therefore would want to sell any long-
term bonds they own and possibly to “short sell” some they do not 
own. (Should interest rates rise as expected, the price of longer-term 
bonds will fall. Because the speculator sold these bonds short and can 
then purchase them at a lower price to cover the short sale, a profit will 
be earned.) Speculators will reinvest in short-term bonds. 

3. Borrowers wishing to acquire long-term funds would be pulled toward 
borrowing now in the long end of the market by the expectation that 
borrowing at a later time would be more expensive. 
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All these responses would tend either to lower the net demand for, 
or to increase the supply of, long-maturity bonds, and all three 
responses would increase demand for short-term bonds. This would 
require a rise in long-term yields in relation to short-term yields; that is, 
these actions by investors, speculators, and borrowers would tilt the 
term structure upward until it is consistent with expectations of higher 
future interest rates. By analogous reasoning, an unexpected event lead-
ing to the expectation of lower future rates will result in the yield curve 
sloping downward. 

Unfortunately, the pure expectations theory suffers from one short-
coming, which, qualitatively, is quite serious. It neglects the risks inher-
ent in investing in bonds. If forward rates were perfect predictors of 
future interest rates, the future prices of bonds would be known with 
certainty. The return over any investment period would be certain and 
independent of the maturity of the instrument initially acquired and of 
the time at which the investor needed to liquidate the instrument. How-
ever, with uncertainty about future interest rates and hence about future 
prices of bonds, these instruments become risky investments in the sense 
that the return over some investment horizon is unknown. 

There are two risks that cause uncertainty about the return over some 
investment horizon: interest rate risk and reinvestment risk. Interest rate 
risk is the uncertainty about the price of the bond at the end of the invest-
ment horizon. For example, an investor who plans to invest for five years 
might consider the following three investment alternatives: (1) invest in a 
5-year bond and hold it for five years; (2) invest in a 12-year bond and sell 
it at the end of five years; and (3) invest in a 30-year bond and sell it at the 
end of five years. The return that will be realized for the second and third 
alternatives is not known because the price of each long-term bond at the 
end of five years is not known. In the case of the 12-year bond, the price 
will depend on the yield on 7-year debt securities five years from now; and 
the price of the 30-year bond will depend on the yield on 25-year bonds 
five years from now. Because forward rates implied in the current term 
structure for a future 12-year bond and a future 25-year bond are not per-
fect predictors of the actual future rates, there is uncertainty about the 
price for both bonds five years from now. Thus there is interest rate risk; 
that is, the risk that the price of the bond will be lower than currently 
expected at the end of the investment horizon. An important feature of 
interest rate risk is that it is greater the longer the maturity of the bond. 

The second risk has to do with the uncertainty about the rate at 
which the proceeds from a bond can be reinvested until the expected 
maturity date. This risk is referred to as reinvestment risk. For example, 
an investor who plans to invest for five years might consider the follow-
ing three alternative investments: (1) invest in a 5-year bond and hold it 
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for five years; (2) invest in a 6-month instrument and when it matures, 
reinvest the proceeds in six-month instruments over the entire 5-year 
investment horizon; and (3) invest in a 2-year bond and when it matures, 
reinvest the proceeds in a 3-year bond. The risk in the second and third 
alternatives is that the return over the 5-year investment horizon is 
unknown because rates at which the proceeds can be reinvested until 
maturity are unknown. 

As noted by John Cox, Jonathan Ingersoll, and Stephen Ross, in 
practice, there are at least five variants of the pure expectations theory 
that have been put forth in the financial literature.5 

1. Globally equal expected-holding-period return theory 
2. Local expectations theory 
3. Unbiased expectations theory 
4. Return-to-maturity expectations theory 
5. Yield-to-maturity theory6 

The globally expected-holding-period return theory asserts that the 
expected return for a given holding period is the same regardless of the 
maturity of the bonds held. So, for example, an investor who has a 
holding period of three years is expected to have the same 5-year return 
whether the investor (1) purchased a 1-year bond today and when it 
matures reinvests the proceeds in a 4-year bond; (2) purchased a 2-year 
bond today and when it matures reinvest the proceeds in a 3-year bond; 
or (3) purchased a 10-year bond and sold it at the end of three years. 
The globally expected-holding-period return theory is the broadest 
interpretation of the pure expectations theory. 

The second variant of the pure expectations theory, the local expec-
tations theory, is more restrictive about the relevant holding period for 
which the returns are expected to be equal. It is restricted to short-term 
holding periods that begin today. An investor with a 6-month holding 
period, for example, would have the same expected return if (1) a 6-
month bond is purchased today; (2) a 3-year bond is purchased today; 
or (3) a 20-year bond is purchased today. 

The unbiased expectations theory asserts that the spot rates that the 
market expects in the future are equal to today’s the forward rates. 

5 John Cox, Jonathan Ingersoll, and Stephen Ross, “A Re-examination of Tradition-
al Hypotheses about the Term Structure of Interest Rates,” Journal of Finance (Sep-
tember 1981), pp. 769–799. 
6 The labels for the last four variants of the pure expectations theory are those given 
by Cox, Ingersoll, and Ross. The first label is given by McEnally and Jordan, “The 
Term Structure of Interest Rates,” p. 829. 
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Thus, the forward rates are viewed as the market’s consensus of future 
interest rates. The return-to-maturity theory asserts that the return that 
can be realized if a zero-coupon bond is held to maturity is the same 
return expected by following a strategy of buying shorter term maturity 
bonds and reinvesting them until the maturity of the zero-coupon bond. 
For example, if an investor purchases a 5-year zero-coupon bond, then 
the known return from holding that bond to maturity is the same as the 
expected return from buying a 6-month bond today and reinvesting the 
proceeds when it matures in another six-month bond and then continu-
ing to reinvest in six-month instruments until the end of the fifth year. 
The yield-to-maturity theory asserts the same as in the return-to-matu-
rity theory except that this variant of the pure expectations theory is in 
terms of periodic returns. 

As Cox, Ingersoll, and Ross have demonstrated, these interpreta-
tions are not exact equivalents nor are they consistent with each other, 
in large part because they offer different treatments of the two risks 
associated with realizing a return (i.e., interest rate risk and reinvest-
ment risk). Furthermore, Cox, Ingersoll, and Ross showed that only one 
of the five variants of the pure expectations theory is consistent with 
equilibrium: the local expectations theory. 

Liquidity Theory 
We have explained that the drawback of the pure expectations theory is 
that it does not consider the risks associated with investing in bonds. 
Nonetheless, there is indeed risk in holding a long-term bond for one 
period, and that risk increases with the bond’s maturity because matu-
rity and price volatility are directly related. Given this uncertainty, and 
the reasonable consideration that investors typically do not like uncer-
tainty, some economists and financial analysts have suggested a different 
theory. This theory states that investors will hold longer-term maturities 
if they are offered a long-term rate higher than the average of expected 
future rates by a risk premium that is positively related to the term to 
maturity. Put differently, the forward rates should reflect both interest 
rate expectations and a “liquidity” premium (really a risk premium), 
and the premium should be higher for longer maturities. 

According to this theory, which is called the liquidity theory of the 
term structure, the implied forward rates will not be an unbiased esti-
mate of the market’s expectations of future interest rates because they 
embody a liquidity premium. Thus, an upward-sloping yield curve may 
reflect expectations that future interest rates either (1) will rise, or (2) 
will be flat or even fall, but with a liquidity premium increasing fast 
enough with maturity so as to produce an upward-sloping yield curve. 
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Preferred Habitat Theory 
Another theory, known as the preferred habitat theory, also adopts the 
view that the term structure reflects the expectation of the future path of 
interest rates as well as a risk premium. However, the preferred habitat 
theory rejects the assertion that the risk premium must rise uniformly 
with maturity. Proponents of the preferred habitat theory say that the 
latter conclusion could be accepted if all investors intend to liquidate 
their investment at the shortest possible date while all borrowers are 
anxious to borrow long. This assumption can be rejected since institu-
tions have holding periods dictated by the nature of their liabilities. 

The preferred habitat theory asserts that, to the extent that the 
demand and supply of funds in a given maturity range do not match, 
some lenders and borrowers will be induced to shift to maturities show-
ing the opposite imbalances. However, they will need to be compensated 
by an appropriate risk premium whose magnitude will reflect the extent 
of aversion to either price or reinvestment risk. Thus, this theory pro-
poses that the shape of the yield curve is determined by both expecta-
tions of future interest rates and a risk premium, positive or negative, to 
induce market participants to shift out of their preferred habitat. 
Clearly, according to this theory, yield curves sloping up, down, flat, or 
humped are all possible. 

Market Segmentation Theory 
The market segmentation theory also recognizes that investors have pre-
ferred habitats dictated by the nature of their liabilities. This theory also 
proposes that the major reason for the shape of the yield curve lies in 
asset/liability management constraints (either regulatory or self-imposed) 
and/or creditors (borrowers) restricting their lending (financing) to spe-
cific maturity sectors. However, the market segmentation theory differs 
from the preferred habitat theory in that it assumes that neither investors 
nor borrowers are willing to shift from one maturity sector to another to 
take advantage of opportunities arising from differences between expec-
tations and forward rates. Thus, for the segmentation theory, the shape 
of the yield curve is determined by supply of and demand for securities 
within each maturity sector. 

BOND VALUATION FORMULAS IN CONTINUOUS TIME 

Recall that the price of a coupon-paying bond can be expressed as the 
price of a package of cash flows as follows: 
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C C C M+P =	 ---------------------- + ---------------------- + … + -------------------------
(1 + z1)1 (1 + z2)2 (1 + zN)N 

where zi is the spot rate relative to the i-th period. The coefficients 

1Di =	 --------------------
(1 + zi)

i 

are called the discount function or discount factors. 
In continuous time, as it will be demonstrated in the below, if short-

term interest rates are constant, the bond valuation formula is 

C C C M+P = ----------- + ----------- + … + ----------------
1 × i 2 × i N i× e e e 

If short-term rates are variable, the formula is: 

–∫1
( ) sd –∫2

i s 	 ( ) sd i s ( ) sd –∫N
i s

+P =	 Ce  0 + Ce 0 + … + (C M)e 0 

To consider bond valuation in continuous time, we will use many 
relationships related to yield and interest rates in a stochastic environ-
ment. We begin by explicitly computing a number of these relationships 
in a deterministic environment (that is, assuming that interest rates are a 
known function of time) then extending these relationships to a stochas-
tic environment. 

In the case of a zero-coupon bond, the financial principles of valua-
tion are those illustrated earlier when we considered very small time 
intervals, in the limit infinitesimal time interval. We denote by T the 
time of maturity of a bond. At a point in time s < T the time to maturity 
is t = T – s. In the infinitesimal interval dt, the bond value P(t) changes 
by an amount dP according to the following equation: 

dP = –iPdt 

where i is the deterministic short-term interest rate. 
If M is the principal to be repaid at maturity, we have the initial condi-

tion M = P(0). The solution of this an ordinary differential equation with 
separable variables whose solution is 
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P = Me–it = Me–i(T–s) 

If the interest rate is a known function of time, the above equation 
becomes 

dP = –i(t)Pdt 

This too is an equation with separable variables whose solution is 

–∫T
i u( ) ud 

P = Me  s 

where M is the principal to be repaid. The equivalence pathwise between 
capital appreciation and present value is valid only if interest rates are 
known. 

In the above expression, the interest rate i is the instantaneous rate 
of interest, also called the short-term rate. In continuous time, the short-
term rate is the limit of the interest rate over a short time interval when 
the interval goes to zero. As observations can only be performed at dis-
crete dates, the short-term rate is a function i(t) such that 

t2 i s( ) sd ∫t1 e 

represents the interest earned over the interval (t1,t2). 
We can now examine these valuation formulas in the limiting case 

where the interval between two coupon payments goes to zero. This 
means that coupon payments are replaced by a continuous stream of 
cash flows with rate c(s). As discussed in Chapter 15 on arbitrage pric-
ing, a continuous cash flow rate means that 

t2 

C = ∫ c  s( ) sd 
t1 

is the cash received in the interval (t1,t2). To gain a better understanding 
of these valuation relationships, let’s now explicitly compute the present 
value of a continuous cash-flow rate c(s). We will arrive at the formula 
for the present value of a known, deterministic continuous cash flow 
rate c(t) in two different ways. We can thus illustrate in a simple context 
two lines of reasoning that will be widely used later. 
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The first line of reasoning is the following. The cash received over the 
infinitesimal interval (t,t + dt) is c(t)dt. Its value at time 0 is therefore 
c(t)dte–it, if the short-term rate is constant, or, more in general, 

–∫t
i s( )  sd 

c t( )dte 0 

if the short-term rate is variable. The value at time 0 of the entire cash-
flow stream is the infinite sum of all these elementary elements, that is, it 
is the integral 

t 

( )e –isP0 = c s sd ∫ 
0 

for the constant short-term rate, and: 

t s
i u–∫ ( ) ud 

P0 = c s( )e 0 sd ∫ 
0 

in the general case of variable (but known) short-term interest rates. 
This present value has to be interpreted as the market price at which the 
stream of continuous cash flows would trade if arbitrage is to be 
avoided. 

The second line of reasoning is more formal. Consider the cumu-
lated capital C(t) which is the cumulative cash flow plus the interest 
earned. In the interval (t,t + dt), the capital increments by the cash c(t)dt 
plus the interest i(t)C(t)dt earned on the capital C(t) in the elementary 
period dt. We can therefore write the equation 

dC = i(t)C(t)dt + c(t)dt 

This is a linear differential equation of the type 

dx 
------- = A t + ( ) , 0 ≤ t < ∞( )x a  t
dt 

with initial conditions x(0) = ξ. This is a one-dimensional case of the 
general d-dimensional case discussed in Chapter 10. It can be demon-
strated that this equation has an absolutely continuous solution in the 
domain 0 ≤ t < ∞; this solution can be written in the following way: 
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t 

x t ( ) x 0 s ( )ds , 0 ≤ t < ∞( ) = Φ t ( ) + ∫Φ–1( )a s
0 

where Φ(t), called the fundamental solution, solves the equation 

dΦ ( )Φ , 0 ≤ t < ∞ 
dt 
-------- = A t

In the case we are considering 

x t ( ) , A t ( ) , a t ( ) , ξ = 0( ) = C t ( ) = i t ( ) = c t

and 

i s( )ds∫0 

t

Φ t( ) = e 

and therefore 

s
i s i u( )ds

t 
–∫ ( )du

C t c s( ) = e ∫0 

t

∫ ( )e 0 ds 
0 

If we consider that 

–∫t
i s( )ds

= C tP0 ( )e 0 

is the value at time 0 of the capital C(t), we again find the formula 

t s
i u–∫ ( )du

( )e 0 dsP0 = ∫c s
0 

that we had previously established in a more direct way. 
If the coupon payments are a continuous cash-flow stream, the sen-

sitivity of their present value to changes in interest rates under the 
assumption of constant interest rates are: 
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 t  
( )e –is 

∂P 
∂


 

0 
∫c s sd 


 t 

∂[c s( )e –is t 

( )e –is 
------ = ------------------------------------- = ∫ ---------------------------

]
sd = –∫sc s sd 

∂i ∂i 0 
∂i 

0 

The above formula parallels the discrete-time formula that was estab-
lished in Chapter 4.7 

THE TERM STRUCTURE OF INTEREST RATES IN 
CONTINUOUS TIME 

Our ultimate objective is to establish a stochastic theory of bond pricing 
and of bond option pricing. To do so, we will reformulate term struc-
ture theory in a continuous-time, continuous-state environment. We will 
subsequently develop examples on how processes can be discretized, 
thus going back to a discrete-state, discrete-time environment. The sto-
chastic description of interest rates is challenging from the point of view 
of both mathematics and economic theory. We discussed the economic 
theories of interest rates earlier in this chapter. 

Mathematical difficulties stem from the fact that one should con-
sider not just one interest rate but the entire term structure of interest 
rates that was defined earlier. This is, in principle, a (difficult) problem 
of infinite dimensionality. Though attempts have been made in the aca-
demic literature to describe the stochastic behavior of a curve without 
any restriction, in practice models currently in use make simplifications 
so that the movement of the term structure curve is constrained to that 
of one or a small number of factors. 

The term structure of interest rates is a function U(t,s) of two vari-
ables t,s that represents the yield computed at time t of a zero-coupon 
risk-free bond with maturity s. The yield on a zero-coupon bond is 
called the spot rate. In calculating the spot rate in developed bond mar-
kets, the yields on government bonds are used. Government bonds are 
typically coupon-paying instruments. However, we have seen in this 
chapter how to obtain, from arbitrage arguments, the theoretical spot 
rates from a set of yields of coupon-paying bonds. The term structure of 
interest rates is a mathematical construct as only a finite number of spot 
rates can be observed. A continuous curve needs to be reconstructed 
from these discrete points. 

7 See footnote 7 in Chapter 4, p. 114. Note that in Chapter 4, V is used rather than 
P to denote market price. 
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Spot Rates: Continuous Case 
Assume for the moment that the evolution of short-term interest rates is 
deterministic and it is known. Thus, at any time t the function i(s) that 
describes the short-term rate is known for every moment s ≥ t. Recall 
that i(s) is the limit of the interest rate for an interval that tends to zero. 
Earlier in this chapter we established that the value at time t1 of capital 
of a risk-free bond paying B(t2) at time t2 is given by 

i s2 ( )dst–∫
t

1( ) = B t2B t1 ( )e 

The yield over any finite interval (t1,t2) is the constant equivalent 
interest rate 

t2Rt1 

over the same interval (t1,t2) which is given by the equation 

t
i s–(t2 – t1)R 2 2 ( )dst

B t1 ( )e 1 = B t2

–∫t

t

1( ) = B t2 ( )e 

Given a short-term interest rate function i(t), we can therefore 
udefine the term structure function Rt as the number which solves the 

equation 

u
i s––(u t)Ru –∫ ( )ds

t t e = e 

In a deterministic setting, we can write 

u 
u 1

Rt = ----------------∫ i s( )ds
(u t)– 

t 

This relationship does not hold in a stochastic environment, as we will 
see shortly. From the above it is clear that u is the yield of a risk-freeRt 
bond over the interval (t,u). The function 

u
i s–∫ ( )ds

u t = eΛt 
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is called the discount function.8 

The term on the right side is the price at time t of a bond of face 
value 1 maturing at u. 

Forward Rates: Continuous Case 
The forward rate f(t,u) is the short-term spot rate at time u contracted 
at time t. To avoid arbitrage, the following relationship must hold: 

logΛu + ∆u – logΛu ∂logΛu 
t( , tf t  u  ) = lim – ----------------------------------------------t = – ------------------

∆u → 0 ∆u ∂u 

In this deterministic setting, the above relationship yields: f(t,t) = 
i(t). Given the short-rate function i(s), the term structure is completely 
determined and vice versa. 

In a stochastic environment, short-term interest rates form a sto-
chastic process is(ω). This means that for each state of the world there is 
a path of spot interest rates. For each path and for each interval (t,u), 
we can compute the discount function 

u
i s–∫ ( ) sd 

t e 

Under a risk-neutral probability measure Q, the price at time t of a 
bond of face value 1 maturing at time u is the expected value of 

u
i s–∫ ( ) sd 

t e 

computed at time t: 

u
i s–∫ ( ) sd 

u QΛt = Et e t 

The term structure function can be computed from the discount func-
tion as follows as follows: 

8 Some authors call this function the term structure of interest rates. For example, 
Darrell Duffie, Dynamic Asset Pricing Theory (Princeton, NJ: Princeton University 
Press, Third Edition, 2001) and Steven Shreve, Stochastic Calculus and Finance 
(Springer, forthcoming 2004). 
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u
i s–∫ ( ) sd u 1 1  Q tRt = – ----------------log (Λu) = – ----------------log Et e t – –(u t) (u t)  

As noted above, this formula does not imply 

u 
u – Q ∫ ( ) sd (u t)Rt = Et i s

t 

Relationships for Bond and Option Valuation 
We have established the formula 

u
u –∫ ( ) sd ––(u t)Rt = EQ

t e t
i s

e 

in a rather intuitive way as the expectation under risk-neutral probabil-
ity of discounted final bond values. However, this formula can be 
derived formally as a particular case of the general expression for the 
price of a security that we determined in Chapter 15 on arbitrage pric-
ing in continuous time: 

T T T
–r ud –r ud u 

St = Et eQ ∫t u
ST + ∫e ∫t dDs 

t 

considering that, for zero-coupon bonds, the payoff rate is zero and that 
we assume ST = 1. 

We used risk-neutral probabilities for the following reason. The factor 

u
i s( ) sd ∫t e 

represents capital appreciation pathwise. However, the formula 

u
i s–∫ ( ) sd 

u t = eΛt 

which gives the price at time t of a bond of face value 1 maturing at u in

a deterministic environment, does not hold pathwise in a stochastic
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environment. This is because bonds of longer maturities are riskier than 
bonds of shorter maturities. The martingale relationship holds only for 
risk-neutral probabilities. 

We can now go back to the forward rates. The expression 

logΛ u + ∆ u – logΛ u ∂ logΛ u 

( , t tf t  u  ) = lim – ---------------------------------------------- = – -----------------t -
→ ∆ 0 ∆ uu ∂ u 

holds in a stochastic environment when the term structure is defined as 
above. 

We have now defined the basic terms and relationships that can be 
used for bond valuation and for bond option valuation and we have 
established a formula that relates the term structure to the short-rate 
process. The next step is to specify the models of the short-term interest 
rate process. The simplest assumption is that the short-term rate follows 
an Itô process of the form 

ˆdrt = µ( rt, t) dt + σ( rt, t) dBt 

where dB̂ 
t is a standard Brownian motion under the equivalent martin-

gale measure. 
As explained in Chapter 15 on arbitrage pricing, it is possible to 

develop all calculations under the equivalent martingale measure and to 
revert to the real probabilities only at the end of calculations. This pro-
cedure greatly simplifies computations. Under the equivalent martingale 
measure all price processes St follow Itô processes with the same drift of 
the form 

ˆdSt = rtStdt + σ( rt, t) dBt 

Note that the short-term interest rate process is not a price process 
and therefore does not follow the previous equation. Models of the 
short-term rate as the above are called one-factor model because they 
model only one variable. 

The Feynman-Kac Formula 
Computing the term structure implies computing the expectation 

u
i s–∫ ( )  sd 

u QΛ t = Et e t 
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We will now describe a mathematical technique for computing this 
expectation using the Feynman-Kac formula. 

To understand the reasoning behind the Feynman-Kac formula, 
recall that there are two basic ways to represent stochastic processes. 
The first, which was presented in Chapter 8, is a direct representation of 
uncertainty pathwise through Itô processes. Itô processes can be 
thought of as modifications of Brownian motions. One begins by defin-
ing Brownian motions and then defines a broad class of stochastic pro-
cesses, the Itô processes, as Itô integrals obtained from the Brownian 
motion. Discretizing an Itô process, one obtains equations that describe 
individual paths. 

An equivalent way to represent stochastic Itô processes is through 
transition probabilities. Given a process Xt that starts at X0, the transi-
tion probabilities are the conditional probability densities p(X /X0).t
Given that the process is a Markov process, these densities also describe 
the transition between the value of the process at time s to time t: 
p(X Xs) that we write p(x,t,y,s). The Markov nature of the processt
means that, given any function h(y), the expectation E [h(X Xs)] is thes t
same as if the process started anew at the value Xs. 

It can be demonstrated that the transition density p(x,t,y,s) obeys 
the following partial differential equation (PDE) which is called the for-
ward Kolmogorov equation or the Fokker-Planck equation: 

2∂ ( 1∂2[σ (x t)p x t y s)] ∂ µ(x t)p x t y s)], ( , ,  ,  [ , ( , ,  ,
-----p x t y s) = -------------------------------------------------------------- – -----------------------------------------------------

∂x 
, ,  ,  

∂t 2 ∂x 2 

with boundary conditions p(x,t,y,s) = δ (y) where δ (y) is Dirac’s deltas s
function.9 The numerical solution of this equation, after discretization, 
gives the required probability density. 

For example, consider the Brownian motion whose stochastic differ-
ential equation is 

= dBt , µ = 0, σ = 1dXt 

The associated Fokker-Planck equation is the diffusion equation in one 
dimension: 

9 Strictly speaking Dirac’s delta function is not a function but a distribution. In a 
loose sense, it is a function that assumes value zero in all points except one where it 
becomes infinite. It is defined only through its integral which is finite. 
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∂p 1 2∂2 p
------ = ---σ ---------
∂t 2 ∂x 2 

As a second example, consider the geometric Brownian motion whose 
stochastic differential equation is 

= µX dt + σXtdB , µ(Xt, t) = µX , σ(Xt, t) = σXtdXt t t t 

The associated Fokker-Planck equation is 

2∂p 1 2∂2(x p) ∂(xp)
------ = ---σ -------------------- – µ---------------

∂x∂t 2 ∂x 2 

The Fokker-Planck equation is a forward equation insofar it gives 
the probability density at a future time t starting at the present time s. 
Another important PDE associated with Itô diffusions is the following 
backward Kolmogorov equation: 

∂2 p x t y s) ∂p x t y s)( , ,  ,  ( , ,  ,∂ ( , ,  ,  1 , ,–-----p x t y s) = ---σ2(x t)---------------------------------- – µ(x t)-------------------------------
∂t 2 ∂x 2 ∂x 

The Kolmogorov backward equation gives the probability density that 
we were at x,t given that we are now at y,s. Note that there is a fundamen-
tal difference between the backward and the forward Kolmogorov equa-
tions because the Itô processes are not reversible. In other words, the 
probability density that we were at x,t given that we are now at y,s is not 
the same as if we start the process at y,s and we look at density at x,t. 

Thus far we have established an equivalence between stochastic dif-
ferential equations and associated partial differential equations in the 
sense that they describe the same process. We have now to make an 
additional step by establishing a connection between the expectations of 
an Itô process and an associated PDE. The connection is provided by the 
Feynman-Kac formula which is obtained from a generalization of the 
backward Kolmogorov equation. 

Consider the following PDE: 

∂F x t) 1 ∂2F x t) ∂F x t)( , ( , ( ,
–-------------------- = ---σ2(x t)---------------------- + µ(x t)--------------------, , 

∂x∂t 2 ∂x 2 
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with boundary conditions F(x,T) = Ψ(x). Consider now the stochastic 
differential equation 

dX = µ(X , t)dt + σ(X , t)dB , s ∈ [t,T], Xt = xs s s s 

There is a fundamental relationship between the two equations given by 
the Feynman-Kac formula, which states that 

( ,F x t) = [Ψ(X ) = x]Et T Xt 

The meaning of this relationship can be summarized as follows. A 
PDE with the related boundary conditions F(x,T) = Ψ(x) is given. The 
solution of this PDE is a function of two variables F(x,t), which assumes 
the value Ψ(x) for t = T. A stochastic differential equation (SDE) is asso-
ciated to this equation. The two coefficients of the PDE are the drift and 
the volatility of the SDE. The solution of the SDE starts at (x,t). For 
each starting point (x,t), consider the expectation E [Ψ(XT)]. Thist
expectation coincides with F(x,t). 

One might wonder how it happened that a conditional expectation— 
which is a random variable—has become the perfectly deterministic solu-
tion of a PDE. The answer is that F(x,t) associates the expectation of a 
given function Ψ(XT) to each starting point (x,t). This relationship is 
indeed deterministic while the starting point depends on the evolution 
of the stochastic process which solves the SDE. It is thus easy to see why 
the above is a consequence of the backward Kolmogorov equation 
which associates to each starting point (x,t) the conditional probability 
density of X .T

We can now make the final step and state the Feynman-Kac equa-
tion in a more general form. In fact, it can be demonstrated that, given 
the following PDE: 

( , ( , ( ,∂F x t) 1 ∂2F x t) , ∂F x t) ( , ( ,-------------------- + ---σ2(x t)---------------------- + µ(x t)-------------------- – f x t)F x t) = 0, 
∂x∂t 2 ∂x 2 

with boundary conditions F(x,T) = Ψ(x) and given the stochastic equa-
tion 

dX = µ(X , t)dt + σ(X , t)dB , s ∈ [t,T], Xt = xs s s s 

the following relationship holds: 



20-Term Structure  Page 631  Wednesday, February 4, 2004  1:33 PM

631 Term Structure Modeling and Valuation of Bonds and Bond Options 

(–∫T
f XT, s)ds

( ,F x t) = Et e t Ψ(XT) = xXt 

We can now go back to the original problem of computing the term 
structure from the stochastic differential equation of the short-rate pro-
cess. Recall that the term structure is given by the following conditional 
expectation: 

u
i s( )ds

u = EQ
t e ∫tΛt 

If we apply the Feynman-Kac formula, we see that the term struc-
ture is a function 

u = F it, t)(Λt 

of time t and of the short-rate it which solves the following PDE: 

( , ( , ( ,∂F x t) 1 ∂2F x t) ∂F x t) ( ,, ,-------------------- + ---σ2(x t)---------------------- + µ(x t)-------------------- – xF x t) = 0 
∂x∂t 2 ∂x 2 

with boundary conditions F(x,T) = 1. 
Note explicitly that the solution of this equation does not determine 

the dynamics of interest rates. In other words, given the short-term rate 
it at time t the function 

u = F it, t)(Λt 

does not tell us what interest rate will be found at time s > t. It does tell, 
however, the price at time s of a bond with face value 1 at maturity T for 
every interest rate i . If the coefficients σ = σ(x), µ = µ(x) do not depends
on time explicitly, then one single function gives the entire term structure. 

Note also that the above is true in general for any asset which does 
not exhibit any intermediate payoff. Recall, in fact, the pricing formula: 

St Et 
Q e 

ru – ud 
t 

T∫ ST e 
ru – ud 

t 

s∫ 
t 

T 

∫ dDs+= 
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If intermediate payoffs are zero the previous formula becomes 

T
–r ud uQ ∫tSt = Et e ST 

Given the final price ST, there is a pricing function in the sense that 

T
–r ud uQ ∫tSt = F it, t) = Et e ST( 

The pricing function satisfies a Feynman-Kac formula and is the solu-
tion of a PDE. It tells us that the price St is a function of time t and of 
the interest rate at time t. 

Multifactor Term Structure Model 
The above discussion presented the derivation of the term structure 
from the interest rate process. We say that, under this assumption, the 
term structure model is a one-factor model because it depends on one 
single process. Empirical analysis has shown that one factor is insuffi-
cient. Principal component analysis of the term structure of the U.S. 
Treasury market, as well as other country government bond markets, 
has shown that three factors are sufficient to explain 98% of the term 
structure fluctuations. The three factors are the level, slope, and curva-
ture of the yield curve. Typically 90% of the term structure is explained 
by changes in the level of interest rates. Around 8% is explained by 
changes in the slope, or steepness, of the spot rate curve. Exhibit 20.4 
provides a summary of these studies.10 

Multifactor models of the term-structure have been proposed. Note 
that multifactor models described in the literature and currently used by 
practitioners might use variables such as the long-term interest rate and 
the short-term interest rate. This might give the impression that the 
short-term interest rate is not sufficient to determine the term structure. 
This is not true. The short-term rate is indeed sufficient to completely 
determine the term structure. Conversely, given the term structure, 

10 In addition to the references in Exhibit 20.4, there is the study from which the ex-
hibit is reproduced: Lionel Martellini, Philippe Priaulet, and Stéphane Priaulet, “An 
Empirical Analysis of the Domestic and Euro Yield Curve Dynamics,” Chapter 24 in 
Frank J. Fabozzi and Moorad Choudhry (eds.), The Handbook of European Fixed 
Income Markets (Hoboken, NJ: John Wiley & Sons, 2004). 
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short-term interest rates are determined. Multiple factors model the 
term structure as well as the short-term rate. 

In fact, a multifactor term-structure model is a model of the form: it 
= F(Xt,t) where it is the short-rate process and Xt is an N-dimensional 
Itô process that obeys the following SDE: 

ˆdX = µ(X , t)dt + σ(X , t)dBs s s s 

ˆwhere Xs is an N-vector, i is a 1-vector, dB  is an N-dimensionals 
Brownian motion under an equivalent martingale measure, µ(Xs,t) is an 
N-vector and σ(Xs,t)s is a N×N matrix. The Feynman-Kac formula can 
be extended in a multidimensional environment in the sense that the fol-
lowing relationships hold: 

–∫T
f XT, s) sd( 

( , Q tF x  t) = Et e Ψ(XT) 

and 

( , ( , ( ,∂F x  t) 1 ∂2F x  t) ∂F x  t) ( ,, , ,-------------------- + ---tr σ(x t)σT(x t)---------------------- + µ(x t)-------------------- – xF x t) = 0 
∂x∂t 2 ∂x 2 

Arbitrage-Free Models versus Equilibrium Models 
Stochastic differential equations are typically used to model interest 
rates. There are two approaches used to implement the same SDE into a 
term structure model: equilibrium and no arbitrage. While these two 
approaches begin with a given SDE, they differ as to how each approach 
applies the SDE to bonds and contingent claims. Equilibrium models 
begin with an SDE model and develop pricing mechanisms for bonds 
under an equilibrium framework. Arbitrage models, also referred to as 
no-arbitrage models, start with the same or similar SDE models as the 
equilibrium models. However, no-arbitrage models utilize observed 
market prices to generate an interest rate lattice. The lattice represents 
the short rate in such a way as to ensure there is a no arbitrage relation-
ship between the observed market price and the model-derived value. 
Practitioners prefer arbitrage-free models to value options on bonds 
because such models ensure that the prices observed for the underlying 
bonds are exact. As a result, bonds and options on those bonds will be 
valued in a consistent framework. Equilibrium models, in contrast, will 
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not price bonds exactly so they do not provide a consistent framework 
for valuing options on bonds and the underlying bonds. 

Examples of One-Factor Term Structure Models 
A number of one-factor and multifactor term structure models have 
been proposed in the literature. We will discuss some of the more popu-
lar one-factor models here:

 ■ The Ho-Lee model
 ■ The Vasicek model
 ■ The Hull-White model
 ■ The Cox-Ingersoll-Ross model
 ■ The Kalotay-Williams-Fabozzi model 
■ Black-Karasinski model 
■ The Black-Derman-Toy model 

Our coverage is not intended to be exhaustive.11 

Most of these models are based on a short-term process which satis-
fies an SDE of the following type: 

ˆ,di = µ(i t)dt + σiαdB

The various models differ for the choice of the drift µ(i,t) and of the 
exponent α. 

The Ho-Lee Model 
The first arbitrage-free model was introduced by Thomas Ho and Sang-
Bin Lee in 1986.12 In the Ho-Lee model α = 0, µ(i,t) = µ = constant. 

di = µdt + σdB̂ 

This model is quite simple. It has the disadvantage that interest rates 
might drift and become negative, which is inconsistent with what is 
observed in financial markets. In addition, having only two free param-
eters, it cannot be easily fitted to the initial observed term structure. 

11 For a more detailed discussion of these models, see Gerald W. Buetow, Jr., Frank 
J. Fabozzi, and James Sochacki, “A Review of No Arbitrage Interest Rate Models,”
Chapter 3 in Fabozzi, Interest Rate, Term Structure, and Valuation Modeling. 
12 Thomas Ho and Sang Bin Lee, “Term Structure Movements and Pricing Interest 
Rate Contingent Claims,” Journal of Finance (1986), pp. 1011–1029. 
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The Vasicek Model 
In 1977, Oldrich Vasicek proposed the Ornstein-Uhlenbeck process as a 
model of interest rates to produce a one-factor equilibrium model.13 In 
the Vasicek model α = 0, 

(L i)– ,µ(i t) = ----------------
T 

L i ˆ– 
di = -----------dt + σdB

T 

where L and T are constants. 
The Vasicek model is a mean-reverting process as interest rates are 

pulled back to the value L. Interest rates exhibit mean reversion proper-
ties, a fact that the Vasicek models correctly address. However, having 
only three free parameters, the Vasicek model is difficult to fit to the ini-
tial term structure. 

The Hull-White Model 
In 1990 Hull and White proposed a mean-reverting model that generalizes 
the Vasicek model.14 The Hull-White model is given by the choice α = 0, 

(L t( ) – i),µ(i t) = -----------------------
T t( )  

with time-variable volatility 

L t( ) – i ( )dBdi = ------------------dt + σ t ˆ 
T t( )  

The Hull-White model has enough parameters to be fitted to any 
initial term structure. 

13 Oldrich Vasicek, “An Equilibrium Characterization of the Term Structure,” Jour-
nal of Financial Economics (1977), pp. 177–188. 
14 J. Hull and A. White, “Pricing Interest Rate Derivative Securities,” Review of Fi-
nancial Studies 3 (1990), pp. 573–592, and, “One Factor Interest Rate Models and 
the Valuation of Interest Rate Derivative Securities,” Journal of Financial and Quan-
titative Analysis (1993), pp. 235–254. 
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The Cox-Ingersoll-Ross Model 
In 1985 John Cox, Jonathan Ingersoll, and Stephen Ross (CIR)15 pro-
posed an equilibrium model with 

1α = ---
2 

(L i)– ,µ(i t) = ----------------
T 

L i– 
di = -----------dt + σ idB̂ 

T 

where L and T are constants. The CIR model is mean reverting but has 
only three free parameters to fit the initial term structure. It can be 
shown that in this model interest rates always remain non-negative. 

Kalotay, Williams, and Fabozzi 
In 1993 Andrew Kalotay, George Williams, and Frank Fabozzi (KWF)16 

proposed a model with α = 1, µ = θ(t)i described by the following SDE: 

di = θ t( )idt + σidBt 

For θ = constant the model becomes a geometric random walk. As the 
model is lognormal, interest rates never become negative. 

Black-Karasinski 
In 1991 Fisher Black and Piotr Karasinski17 proposed a model with α = 
1 described by the following SDE: 

d ln i = [θ(t) – φ(t)ln i]dt + σ(t)dBt 

15 John Cox, Jonathan Ingersoll, and Stephen. Ross, “A Theory of the Term Struc-
ture of Interest Rates,” Econometrica (1985), pp. 385–408. 
16 Andrew J. Kalotay, George Williams, and Frank J. Fabozzi, “A Model for the Val-
uation of Bonds and Embedded Options,” Financial Analyst Journal (May–June 
1993), pp. 35–46. 
17 Fischer Black and Piotr Karasinski, “Bond and Option Pricing when Short Rates 
are Lognormal,” Financial Analysts Journal (July–August 1991), pp. 2–59. 
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If φ(t) = 0 then the Black-Karasinki model becomes the KWF model. 
The Black-Karasinki model is lognormal and therefore interest rates 
cannot be negative. The error correction term also prevents rates from 
diverging. 

The Black-Derman-Toy Model 
In 1990 Fischer Black, Emanuel Derman, and William Toy18 proposed a 
lognormal arbitrage-free model with α = 1, µ(i,t) = c(t)i: 

di = c t ( )idB( )idt + σ t ˆ 

Two-Factor Models 
A number of two factor models have also been proposed. Brennan and 
Schwarz, for example, proposed in 1979 a model based on a short rate i 
and a long rate y.19 This model is written as a set of two equations, 

, ,  , ,di = µ1(i τ y)dt + σ1(i τ y)dB̂ 

, ,  , ,dy = µ2(i τ y)ydt + σ2(i τ y)ydB̂ * 

where the two Brownian motions are correlated. 

PRICING OF INTEREST-RATE DERIVATIVES 

The models of the term structure described thus far are based on deriv-
ing the arbitrage-free prices of zero-coupon bonds from the short-term 
rate process. In a nutshell, the methodology involves the following 
steps:

 ■ Step 1. Assume that the short rate process it is a function of an N-
dimensional Itô process Xt (the factors): 

(it = F Xt, t) 

18 Fischer Black, Emanuel Derman, and William Toy, “A One Factor Model of In-
terest Rates and Its Application to the Treasury Bond Options,” Financial Analyst 
Journal (January–February 1990), pp. 33–39. 
19 Michael J. Brennan. and Eduardo S. Schwartz, “A Continuous Time Approach to 
the Pricing of Bonds,” Journal of Banking and Finance 3 (1979), pp. 133–155. 
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ˆdX = µ(X , t)dt + σ(X , t)dBs s s s 

where dB̂ 
s is a standard Brownian motion under an equivalent mar-

tingale measure Q. In the single factor case, the short rate process it 
follows an Itô process

ˆdi = µ(i , t)dt + σ(i , t)dBs s s s 

■ Step 2. Compute the arbitrage-free price of a zero-coupon bond using 
the theory of arbitrage-free pricing under an equivalent martingale 
measure according to which the price u at time t of a zero-couponΛt

bond with face-value 1 maturing at time u is


u
i s( )  sd 

u = EQ
t e ∫tΛt 

■ Step 3. Use the Feynman-Kac formula to show that Λu
t = F it, t) ,( 

which solves the following PDE: 

( , ( , ( ,∂F x  t) 1 ∂2F x  t) ∂F x  t) ( ,, ,-------------------- + ---σ2(x t)---------------------- + µ(x t)-------------------- – xF x t) = 0 
∂x∂t 2 ∂x 2 

with boundary conditions F(x,T) = 1. 

The above methodology can be immediately extended to cover the 
pricing of a class of interest-rate derivatives whose payoff can be 
expressed as a function of short-term interest rates or, alternatively, as a 
function of bond prices. Consider, first, the case of a derivative security 
whose payoff is given by two functions h(it,t) and g(iτ,τ), which specify, 
respectively, the continuous payoff rate and the final payoff at a speci-
fied date τ ≤ T. This specification covers a rather broad class of deriva-
tive securities and bond optionality, including European options on 
zero-coupon bonds, swaps, caps and floors. 

The general arbitrage pricing theory (see Chapter 15) can be imme-
diately applied. The price at time t of a derivative security defined as 
above is the following extension of the bond pricing formula: 

τ u
( )  sd i si s ( )  sd

Q ∫t ( ∫t 

τ

((F it, t) = Et ∫e h is, s) sd + e g iτ, τ) 
t 
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Note that the first term under the expectation sign is the expectation 
under risk-neutral probabilities of the formula for the present value of a 
continuous cash-flow stream that we established earlier in this chapter: 

t s
i u–∫ ( )  ud 

V0 = c s( )e 0 sd∫ 
0 

where c(s) = h(is,s) and the initial time is 0. 
The Feynman-Kac formula can be extended to this case. In fact it 

can be demonstrated that the function F obeys the following PDE: 

( , ( , ( ,∂F x  t) 1 ∂2F x  t) , ∂F x  t) ( , ( ,,-------------------- + ---σ2(x t)---------------------- + µ(x t)-------------------- – xF x t) + h x  t) = 0 
∂x∂t 2 ∂x 2 

with boundary conditions F(x,τ) = g(x,τ). If h(x,t) = 0, g(x,τ) ≡ 1, we find 
the bond valuation formula of the previous section. 

THE HEATH-JARROW-MORTON MODEL OF THE 
TERM STRUCTURE 

In the previous sections we derived the term structure from a short-term 
rate process which might depend, in turn, on a number of factors. How-
ever, this is not the only possible choice. In 1992, David Heath, Robert 
Jarrow, and Andrew Morton introduced a methodology that recovers 
the term structure (i.e., bond prices) from the forward rates.20 The key 
issue with this methodology is to ensure the absence of arbitrage. 

Recall that the forward rate f(t,u) is the short-term spot rate at time 
u contracted at time t. In a deterministic environment (that is, assuming 
that the forward rates are known) to avoid arbitrage, the following rela-
tionships must hold: 

u∂(logΛt )( ,f t  u) = – -----------------------
∂u 

20 David Heath, Robert A. Jarrow, and Andrew J. Morton, “Bond Pricing and the 
Term Structure of Interest Rates: A New Methodology for Contingent Claim Valu-
ation,” Econometrica (1992), pp. 77–105. 
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f(t,t) = it 

Integrating the first relationship we obtain 

u
( ,–∫ f t s  )ds

u t = eΛt 

Now suppose that in the interval u ∈ (0,T] the forward rate obeys 
the following SDE: 

df = α(t,u)dt + σ(t,u)dBt 

Equivalently, this means that for each u ∈ (0,T] the following rela-
tionship holds: 

t t 

( , , , ˆf t u  ) = f(0, u) + α(s u)ds + ∫σ(s u)dBs∫ 
0 0


Stochastic differentiation yields


u u 

( , ( , f( ,d –∫f t s  )ds = f t t  )dt + ∫d t s  )ds
t t 

u 

= i t , , ˆ 
t( )dt – ∫[α(t s)dt + σ(t s)dB ]ds

t 

( )dt – α*(t u)dt + σ*(t u)dB= i t , ˆ, t 

where 

u 

, ,α*(t u) = α(t s)ds∫ 
t 

u 

, ,σ*(t u) = σ(t s)ds∫ 
t 

Using Itô’s lemma, it can be demonstrated that the term structure 
process obeys the following SDE: 
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u u ˆ( )  α*(t u) + ---[σ*(t u)]2 dt – σ*(t u)Λ dBtdΛt = Λu
t 
 

i t – , 1 , ,
 2  

t 

This process determines the bond price process in function of a for-
ward rate process. However, to avoid arbitrage, the forward rate pro-
cess must be constrained. In particular, Heath, Jarrow, and Morton 
(HJM) demonstrated the following theorems. 

Suppose that the forward rate obeys the following SDE under the 
probability measure P: 

t t 

( , , , ˆf t u) = f(0, u) + α(s u)ds + ∫σ(s u)dBs∫ 
0 0 

Then P is an equivalent martingale measure if and only if the coeffi-
cients α(t,u), σ(t,u) obey the following relationship: 

1 , ,α*(t u) = ---[σ*(t u)]2 

2 

that is, 

u  2 
1u 

, ,α(t s)ds = ---∫σ(t s)ds∫ 2  
t t 

where 0 ≤ t ≤ u ≤ T. 
If P is not an equivalent martingale measure, then there is no arbi-

trage if and only if there is an adapted process θ(τ) satisfying the follow-
ing relationship: 

1α*(t u) = ---[σ*(t u)]2 + σ*(t u)θ τ, , , ( ) , 0 ≤ t ≤ u ≤ T 
2 

or, equivalently, differentiating both sides with respect to u: 

, , , , ( ) , 0 ≤ t ≤ u ≤ Tα(t u) = σ(t u)σ*(t u) + σ(t u)θ t

Implementing the HJM methodology takes advantage of the available 
degrees of freedom. The initial forward rate curve f(0,u) can be deter-
mined by observing the initial curve 
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∂(log ΛT )0f(0, T) = – -----------------------
∂u 

As only a finite number of bond prices can be observed, it is necessary to 
use techniques to convert a number of finite observations into a smooth 
curve. One cannot simply fit a high-degree polynomial to the available 
observations as this would introduce a lot of noise. On the other hand, fit-
ting a low-degree polynomial would create a curve that does not corre-
spond to the true term structure. Splines is an approach that is often used to 
create a smooth initial forward curve. This technique involves fitting pieces 
of curves in such a way that the transition between the pieces is smooth. 

Suppose that the initial forward rate curve has been fitted to empiri-
cal data. Suppose that two deterministic functions σ*(t,u), θ(t) have 
been chosen. Let’s define 

α(t u) = σ(t u)σ*(t u) + σ(t u)θ t, , , , ( )  

With these definitions, the forward rate process is determined by the fol-
lowing equation in the risk neutral probabilities: 

ˆ, ,df = σ(t u)σ*(t u)dt + σ(t u)dB, t 

Solving this equation yields the forward rate process and the short-term 
process. The bond pricing equation then becomes 

udΛt = i t t , u ˆ( )Λudt – σ*(t u)Λt dBt 

In this equation only the volatility σ*(t,u) appears. This shows that, 
in order to implement the HJM model, only the initial term structure 
and the volatilities are needed. 

THE BRACE-GATAREK-MUSIELA MODEL 

The Brace-Gatarek-Musiela (BGM) model is a particular implementa-
tion of the HJM model which corresponds to a specific choice of the 
volatility.21 The BGM model is based on defining a forward LIBOR 

21 Alan Brace, Dariusz Gatarek, and Marek Musiela, “The Market Model of Interest 
Rate Dynamics,” Mathematical Finance 7, no. 2 (April 1997), pp 127–155. 
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interest rate which is a simple forward interest rate defined over a dis-
crete time period. The BGM model, and the HJM from which it derives, 
form a wide class of models which has been extensively explored in the 
literature. Here we will only give a brief account of the BGM model. 

First define L(t,0) as the rate of simple interest over a discrete period 
δ so that an amount of D(t,δ ) dollars invested at time t in a bond with 
maturity (t + δ ) become 1 dollar at maturity: 

( (D t  δ, )[ 1 + δ L t, 0)] = 1 

Then define the forward LIBOR as follows: 

D t, τ δ) (( + 
---------------------------[ 1 + δ L t  τ, )] = 1 

D t  τ, )( 

It is possible to demonstrate that 

+∫ (ττ δ) 
f t  u) ud( , 

( 
δ 

L t  τ, ) = ------------------------------------------
e – 1 

where f is the continuously compounding forward rate. 
Define now σ *(t,τ ) recursively as follows: 

(δ L t  τ, )γ ( t τ, )
+σ *( t, τ δ) = σ *( t τ, ) + ------------------------------------

1 + δ L t  τ, )( 

( 1 ( +L t  τ, )γ ( t τ, ) =	 ---[ 1 + δ L t  τ, )][σ *( t, τ δ) – σ *( t τ, )]
δ 

DISCRETIZATION OF ITÔ PROCESSES 

Itô processes are stochastic differential equations that admit a forward 
discretization scheme similar to that of ordinary differential equations. 
Consider an Itô process that obeys the following SDE: 

dXt = µ( Xt, t) dt + σ( Xt, t) dBt 
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A natural, and simple, discretization scheme is given by the Euler 
approximation. The Euler approximation replaces the differentials with 
finite differences. If we divide the unit interval in n subintervals, the 
Euler approximation replaces the SDE with the following recursive 
scheme: 

 k 1  k 1– Xk = µXk, --- --- + σXk, --- -------εk + 1Xk + 1  n n  n n 

where εk + 1 are independent random draws from a standard normal, 
N(0,1). A computer implementation of this scheme would start from 
some initial value and compute the solution recursively using a random 
number generator to generate the . Repeating the process manyεk + 1 
times over, one obtains many paths and many final points from which 
quantities such as averages can be easily computed. More complex 
schemes can be used in order to obtain a smaller approximation error. 

As an illustration of the above, Exhibit 20.5 presents random paths 
generated using the Euler approximation to approximate several one-
factor interest rate models described earlier in this chapter. 

EXHIBIT 20.5 Ten Paths Generated from Different One-Factor Interest Rate 
Models 

Ho-Lee model: Vasicek model: 
µ = 0.005, σ = 0.1 L = 1, T = 200, σ = 0.1 
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EXHIBIT 20.5  (Continued) 

Hull-White model: 
L(t) = 1 + 0.002t, T(t) = cost. = 200, CIR model: 

σ = 0.01 L = 1, T = 200, σ = 0.005 

Black-Karasinski model: 
Kalotay-Williams-Fabozzi model: ϑ(t) = 0.005exp(–0.005t), 

ϑ(t) = 0.005exp(–0.005t), σ = 0.01 φ(t) = 0.001, σ = 0.01 

SUMMARY

 ■ There are different types of interest rates.
 ■ The term structure of interest rates is a curve that associates to each 

future date the yield of an hypothetical risk-free zero-coupon bond 
maturing exactly at that date.

 ■ The term structure of interest rates can be recovered from empirical 
data using the no-arbitrage principle and curve smoothing techniques.

 ■ The term structure of interest rates is not fixed but might change with 
time. 
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■ A number of classical economic theories explain the shape of the term 
structure.

 ■ Mathematically, the term structure can be derived by a model of short-
term interest rates.

 ■ Multifactor models of the term structure are based on multifactor mod-
els of the short-term interest rates.

 ■ A number of models for the short term rate as (multivariate) Itô pro-
cesses have been proposed.

 ■ The term structure of the interest rates can also be modelled starting 
from a model of the forward rates.

 ■ Features of term structure models include absence of arbitrage, mean 
reversion, ability to fit empirical term structure. 
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CHAPTER 21 
Bond Portfolio Management


n this chapter, we look at the more popular strategies for managing a bond 
portfolio. A portfolio manager will select a portfolio strategy that is con-

sistent with the objectives and policy guidelines of the client or institution. 
As explained in Chapter 1, a portfolio manager’s benchmark can be either a 
bond market index or liabilities. In this chapter, we provide an overview of 
strategies for managing a bond portfolio versus both benchmarks. 

MANAGEMENT VERSUS A BOND MARKET INDEX 

There are several bond market indexes that represent different sectors of 
the bond market. The wide range of bond market indexes available can 
be classified as broad-based bond market indexes and specialized bond 
market indexes. The three broad-based bond market indexes most com-
monly used by institutional investors are the Lehman Brothers U.S. 
Aggregate Index, the Salomon Smith Barney Broad Investment-Grade 
Bond Index, and the Merrill Lynch Domestic Market Index. There are 
more than 5,500 issues in each index. One study has found that the cor-
relation of annual returns between the three broad-based bond market 
indexes were around 98%.1 The three broad-based bond market indexes 
are computed daily and are market value weighted. This means that for 
each issue, the ratio of the market value of an issue relative to the mar-
ket value of all issues in the index is used as the weight of the issue in all 

1 Frank K. Reilly and David J. Wright, “Bond Market Indexes,” Chapter 7 in Frank 
J. Fabozzi (ed.), The Handbook of Fixed Income Securities: Sixth Edition (New 
York: McGraw-Hill, 2000). 

649 
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calculations.2 The specialized bond market indexes focus on one sector 
of the bond market or a subsector of the bond market. 

There are risk factors associated with a bond market index which 
we discuss later in this chapter. The proper way to categorize bond port-
folio strategies is in terms of the degree to which a manager constructs a 
portfolio with a risk profile that differs from the risk profile of the bond 
market index that is the manager’s benchmark. The following general 
categorization of bond portfolio management strategies has been pro-
posed by Kenneth Volpert of the Vanguard Group:3

 ■ Pure bond index matching
 ■ Enhanced indexing/matching risk factors
 ■ Enhanced indexing/minor risk factor mismatches
 ■ Active management/larger risk factor mismatches
 ■ Active management/full-blown active 

In terms of risk and return, a pure bond index matching strategy 
involves the least risk of underperforming a bond market index. 

An enhanced indexing strategy can be pursued so as to construct a 
portfolio to match the primary risk factors associated with a bond mar-
ket index without acquiring each issue in the index. While in the spec-
trum of strategies defined by Volpert this strategy is called an “enhanced 
strategy,” some investors refer to this as simply an indexing strategy. 
Two commonly used techniques to construct a portfolio to replicate an 
index are cell matching (stratified sampling) and tracking error minimi-
zation using a multifactor risk model. Both techniques assume that the 
performance of an individual bond depends on a number of systematic 
factors that affect the performance of all bonds and on an unsystematic 
factor unique to the individual issue or issuers. With the cell matching 
approach the index is divided into cells representing the risk factors. 
The objective is then to select from all of the issues in the index one or 
more issues in each cell that can be used to represent that entire cell. 
This approach is inferior to the second approach, minimizing tracking 
error using a multifactor risk model discussed later.4 

Another form of enhanced strategy is one in which the portfolio is 
constructed so as to have minor deviations from the risk factors that affect 
the performance of the index. For example, there might be a slight over-

2 The securities in the SSB BIG index are all trader priced. For the two other indexes,

the securities are either trader priced or model priced.

3 Kenneth E. Volpert, “Managing Indexed and Enhanced Indexed Bond Portfolios,”

Chapter 3 in Frank J. Fabozzi (ed.), Fixed Income Readings for the Chartered Financial

Analyst Program: First Edition (New Hope, PA: Frank J. Fabozzi Associates, 2000).
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weighting of issues or sectors where the manager believes there is relative 
value. A feature of this strategy is that the duration of the constructed 
portfolio is matched to the duration of the benchmark index. That is, 
there is no duration bet for this strategy, just as with the pure index match 
strategy and the enhanced index with matching risk strategy. 

Active bond strategies are those that attempt to outperform the 
bond market index by intentionally constructing a portfolio that will 
have a greater index mismatch than in the case of enhanced indexing. 
Volpert classifies two types of active strategies. In the more conservative 
of the two active strategies, the manager constructs the portfolio so that 
it has larger mismatches relative to the benchmark index in terms of risk 
factors. This includes minor mismatches of duration. Typically, there 
will be a limitation as to the degree of duration mismatch that a client 
will permit. In full-blown active management, the manager is permitted 
to make a significant duration bet without any constraint. 

Tracking Error and Bond Portfolio Strategies 
In Chapter 18, we explained forward-looking (ex ante) tracking error. 
Tracking error, or active risk, is the standard deviation of a portfolio’s 
return relative to the return of the benchmark index.5 Forward-looking 
tracking error is an estimate of how a portfolio will perform relative to 
a benchmark index in the future. Forward-looking tracking error is used 
in risk control and portfolio construction. The higher the forward-look-
ing tracking error, the more the manager is pursuing a strategy in which 
the portfolio has a different risk profile than the benchmark index and 
there is, therefore, greater active management. 

We can think of the spectrum of bond portfolio strategies relative to 
a bond market index in terms of forward-looking tracking error. In con-
structing a portfolio, a manager can estimate forward-looking tracking 
error. When a portfolio is constructed to have a forward-looking track-
ing error equal or close to zero, the manager has effectively designed the 
portfolio to replicate the performance of the benchmark. If the forward-
looking tracking error is maintained for the entire investment period, 
the portfolio’s return should be close to zero. Such a strategy—one with 

4 For a discussion and illustration of both approaches to bond indexing, see Lev 
Dynkin, Jay Hyman, and Vadim Konstantinovsky, “Bond Portfolio Analysis Rela-
tive to a Benchmark,” Chapter 23 in Frank J. Fabozzi and Harry M. Markowitz 
(eds.), The Theory and Practice of Investment Management (Hoboken, NJ: John 
Wiley & Sons, 2002). 
5 There are two types of tracking error—backward-looking tracking error and for-
ward-looking tracking error. Backward-looking tracking error is calculated based on 
the actual performance of a portfolio relative to a benchmark index. 
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a forward-looking tracking error of zero or “very small”—indicates that 
the manager is pursing a passive strategy relative to the benchmark 
index. When the forward-looking tracking error is “large” the manager 
is pursuing an active strategy. 

Risk Factors and Portfolio Management Strategies 
Since forward-looking tracking error indicates the degree of active portfo-
lio management being pursued by a manager, it is necessary to understand 
what factors (referred to as “risk factors”) affect the performance of a man-
ager’s benchmark index. The risk factors affecting one of the most popular 
broad-based bond market indexes, the Lehman Brothers U.S. Aggregate 
Index, have been investigated by Dynkin, Hyman, and Wu.6 A summary of 
the risk factors is provided in Exhibit 21.1. They first classify the risk fac-
tors into two types: systematic risk factors and nonsystematic risk factors. 
Systematic risk factors are the common factors that affect all securities in a 
certain category in the benchmark bond market index. Nonsystematic fac-
tor risk is the risk that is not attributable to the systematic risk factors. 

EXHIBIT 21.1 Summary of Risk Factors for a Benchmark 

Systematic Nonsystematic 
Risk Factors Risk Factors 

Term Structure Nonterm Structure Issuer Issue 
Risk Factors Risk Factors Specific Specific 

Sector Risk 
Quality Risk 

Optionality Risk 
Coupon Risk 

MBS Sector Risk 
MBS Volatility Risk 

MBS Prepayment Risk 

6 Lev Dynkin, Jay Hyman, and Wei Wu, “Multi-Factor Risk Factors and Their Ap-
plications,” in Frank J. Fabozzi (ed.) Professional Perspectives on Fixed Income 
Portfolio Management: Volume 2 (Hoboken, NJ: John Wiley & Sons, 2001). 
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Systematic risk factors, in turn, are divided into two categories: 
term structure risk factors and nonterm structure risk factors. Term 
structure risk factors are risks associated with changes in the shape of 
the term structure (level and shape changes). Nonterm structure risk 
factors include the following:

 ■ Sector risk
 ■ Quality risk
 ■ Optionality risk
 ■ Coupon risk
 ■ MBS sector risk
 ■ MBS volatility risk
 ■ MBS prepayment risk 

Sector risk is the risk associated with exposure to the sectors of the 
benchmark index. For example, consider the Lehman Brothers U.S. Aggre-
gate Index. At the macro level, these sectors include Treasury, agencies, credit 
(i.e., corporates), residential mortgages, commercial mortgages, and asset-
backed securities (ABS). Each of these sectors is divided further. For example, 
the credit sector is divided into financial institutions, industrials, transporta-
tions, and utilities. In turn, each of these subsectors is further divided. For 
the residential mortgage market (which includes agency passthrough securi-
ties), there are a good number of subsectors based on the entity issuing the 
security, the coupon rate, the maturity, and the mortgage design. 

Quality risk is the risk associated with exposure to the credit rating 
of the securities in the benchmark index. The breakdown for the Leh-
man Brothers U.S. Aggregate Index which includes only investment-
grade credits is Aaa+, Aaa, Aa, A, Baa, and mortgage-backed securities 
(MBS). MBS includes credit exposure to the agency passthrough sector. 

Optionality risk is the risk associated with an adverse impact on the 
embedded options of the securities in the benchmark index. This 
includes embedded options in callable and putable corporate bonds, 
MBS, and ABS. Coupon risk is the exposure of the securities in the 
benchmark index to different coupon rates. 

The last three risks are associated with the investing in residential 
mortgage passthrough securities. The first is MBS sector risk which is 
the exposure to the sectors of the MBS market. The value of an MBS 
depends on the expected interest rate volatility and prepayments. MBS 
volatility risk is the exposure of a benchmark index to changes in 
expected interest rate volatility. MBS prepayment risk is the exposure of 
a benchmark index to changes in prepayments. 

Nonsystematic factor risks are classified as risks associated with a 
particular issuer, issuer-specific risk, and those associated with a partic-
ular issue, issue-specific risk. 
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Determinants of Tracking Error 
Using statistical techniques,7 given the risk factors associated with a 
benchmark index, forward-looking tracking error can be estimated for a 
portfolio based on historical return data. The tracking error occurs 
because the portfolio constructed deviates from the exposures for the 
benchmark index. The tracking error for a portfolio relative to a bench-
mark index can be decomposed as follows: 

I. Tracking error due to systematic risk factors:
 A. Tracking error due to term structure risk factor
 B. Tracking error due to nonterm structure risk factors

 1. Tracking error due to sector
 2. Tracking error due to quality
 3. Tracking error due to optionality
 4. Tracking error due to coupon
 5. Tracking error due to MBS sector
 6. Tracking error due to MBS volatility
 7. Tracking error due to MBS prepayment 

II. Tracking error due to nonsystematic risk factors
 A. Tracking error due to issuer-specific risk
 B. Tracking error due to issue-specific risk 

A manager provided with information about (forwarding-looking) 
tracking error for the current portfolio can quickly assess if (1) the risk 
exposure for the portfolio is one that is acceptable and (2) if the partic-
ular exposures are the ones being sought. 

Illustration of the Multifactor Risk Model 
We will now illustrate how a multifactor risk model is used to quantify 
the risk profile of a portfolio relative to a benchmark and then explain 
how optimization can be used to construct a portfolio. We will use the 
Lehman Brothers multifactor model in the illustration. The bond market 
index used as benchmark is the Lehman Brothers U.S. Aggregate Index.8 

7 Lev Dynkin of Lehman Brothers has described the statistical technique to the authors 
as follows. The risk model uses decomposition of individual bond returns into carry, 
yield curve, and spread components. The spread component is regressed on a certain 
set of systematic (or common to all bonds in a peer group) risk factors using a prespec-
ified set of sensitivities. Residuals of this regression are used to estimate security-specific 
risk. Factor realizations collected over many months form the covariance matrix of sys-
tematic risk factors. The current mismatch in risk sensitivities between the portfolio 
and the benchmark is multiplied by this matrix to get the systematic tracking error. 
8 The illustration in this section draws from Dynkin, Hyman, and Wu, “Multi-Factor 
Risk Factors and Their Applications.” 
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Exhibit 21.2 shows the sample portfolio used in the illustration. The 
portfolio includes 57 bonds. The analysis was performed on September 
30, 1998. Summary information for the portfolio and the corresponding 
information for the Lehman Brothers U.S. Aggregate Index are shown in 
Exhibit 21.3. From the exhibit, it can be seen that the 57-bond portfolio 
has greater interest rate risk as measured by duration—4.82 for the 
portfolio versus 4.29 for the benchmark. 

EXHIBIT 21.2 Portfolio Report: Composition of Sample Portfolio, 9/30/98 

# Issuer Name Coup Maturity Moody S&P Sect Par Val %

 1 BAKER HUGHES 8.000 05/15/04 A2 A IND  5,000 0.87

 2 BOEING CO 6.350 06/15/03 Aa3 AA IND 10,000 1.58

 3 COCA-COLA ENTERPRISES I 6.950 11/15/26 A3 A+ IND 50,000 8.06

 4 ELI LILLY CO 6.770 01/01/36 Aa3 AA IND  5,000 0.83

 5 ENRON CORP 6.625 11/15/05 Baa2 BBB+ UTL  5,000 0.80

 6 FEDERAL NATL MTG ASSN 5.625 03/15/01 Aaa+ AAA+ USA 10,000 1.53

 7 FEDERAL NATL MTG ASSN-G 7.400 07/01/04 Aaa+ AAA+ USA  8,000 1.37

 8 FHLM Gold 7-Years Balloon 6.000 04/01/26 Aaa+ AAA+ FHg 20,000 3.03

 9 FHLM Gold Guar Single F. 6.500 08/01/08 Aaa+ AAA+ FHd 23,000 3.52 

10 FHLM Gold Guar Single F. 7.000 01/01/28 Aaa+ AAA+ FHb 32,000 4.93 

11 FHLM Gold Guar Single F. 6.500 02/01/28 Aaa+ AAA+ FHb 19,000 2.90 

12 FIRST BANK SYSTEM 6.875 09/15/07 A2 A− FIN  4,000 0.65 

13 FLEET MORTGAGE GROUP 6.500 09/15/99 A2 A+ FIN  4,000 0.60 

14 FNMA Conventional Long T. 8.000 05/01/21 Aaa+ AAA+ FNa 33,000 5.14 

15 FNMA MTN 6.420 02/12/08 Aaa+ AAA+ USA  8,000 1.23 

16 FORD MOTOR CREDIT 7.500 01/15/03 A1 A FIN  4,000 0.65 

17 FORT JAMES CORP 6.875 09/15/07 Baa2 BBB− IND  4,000 0.63 

18 GNMA I Single Family 9.500 10/01/19 Aaa+ AAA+ GNa 13,000 2.11 

19 GNMA I Single Family 7.500 07/01/22 Aaa+ AAA+ GNa 30,000 4.66 

20 GNMA I Single Family 6.500 02/01/28 Aaa+ AAA+ GNa  5,000 0.76 

21 GTE CORP 9.375 12/01/00 Baa1 A TEL 50,000 8.32 

22 INT-AMERICAN DEV BANK-G 6.375 10/22/07 Aaa AAA SUP  6,000 1.00 

23 INTL BUSINESS MACHINES 6.375 06/15/00 A1 A+ IND 10,000 1.55 

24 LEHMAN BROTHERS INC 7.125 07/15/02 Baa1 A FIN  4,000 0.59 

25 LOCKHEED MARTIN 6.550 05/15/99 A3 BBB+ IND 10,000 1.53 

26 MANITOBA PROV CANADA 8.875 09/15/21 A1 AA− CAN  4,000 0.79 

27 MCDONALDS CORP 5.950 01/15/08 Aa2 AA IND  4,000 0.63 

28 MERRILL LYNCH & CO.-GLO 6.000 02/12/03 Aa3 AA− FIN  5,000 0.76 

29 NATIONSBANK CORP 5.750 03/15/01 Aa2 A+ FIN  3,000 0.45 

30 NEW YORK TELEPHONE 9.375 07/15/31 A2 A+ TEL  5,000 0.86 

31 NIKE INC 6.375 12/01/03 A1 A+ IND  3,000 0.48 

32 NORFOLK SOUTHERN CORP 7.800 05/15/27 Baa1 BBB+ IND  4,000 0.71 

33 NORWEST FINANCIAL INC. 6.125 08/01/03 Aa3 AA− FIN  4,000 0.62 

34 ONT PROV CANADA-GLOBA 7.375 01/27/03 Aa3 AA− CAN  4,000 0.65 
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EXHIBIT 21.2 (Continued) 

# Issuer Name Coup Maturity Moody S&P Sect Par Val % 

35 PUB SVC ELECTRIC + GAS 6.125 08/01/02 A3 A− ELU  3,000 0.47 

36 RAYTHEON CO 7.200 08/15/27 Baa1 BBB IND  8,000 1.31 

37 RESOLUTION FUNDING CORP 8.125 10/15/19 Aaa+ AAA+ USA 17,000 3.51 

38 TIME WARNER ENT 8.375 03/15/23 Baa2 BBB− IND  5,000 0.90 

39 ULTRAMAR DIAMOND SHAM 7.200 10/15/17 Baa2 BBB IND  4,000 0.63 

40 US TREASURY BONDS 10.375 11/15/12 Aaa+ AAA+ UST 10,000 2.17 

41 US TREASURY BONDS 10.625 08/15/15 Aaa+ AAA+ UST 14,000 3.43 

42 US TREASURY BONDS 6.250 08/15/23 Aaa+ AAA+ UST 30,000 5.14 

43 US TREASURY NOTES 8.875 02/15/99 Aaa+ AAA+ UST  9,000 1.38 

44 US TREASURY NOTES 6.375 07/15/99 Aaa+ AAA+ UST  4,000 0.61 

45 US TREASURY NOTES 7.125 09/30/99 Aaa+ AAA+ UST 17,000 2.59 

46 US TREASURY NOTES 5.875 11/15/99 Aaa+ AAA+ UST 17,000 2.62 

47 US TREASURY NOTES 6.875 03/31/00 Aaa+ AAA+ UST  8,000 1.23 

48 US TREASURY NOTES 6.000 08/15/00 Aaa+ AAA+ UST 11,000 1.70 

49 US TREASURY NOTES 8.000 05/15/01 Aaa+ AAA+ UST  9,000 1.50 

50 US TREASURY NOTES 7.500 11/15/01 Aaa+ AAA+ UST 10,000 1.67 

51 US TREASURY NOTES 6.625 03/31/02 Aaa+ AAA+ UST  6,000 0.96 

52 US TREASURY NOTES 6.250 08/31/02 Aaa+ AAA+ UST 10,000 1.60 

53 US TREASURY NOTES 5.750 08/15/03 Aaa+ AAA+ UST  1,000 0.16 

54 US TREASURY NOTES 6.500 05/15/05 Aaa+ AAA+ UST  1,000 0.17 

55 US TREASURY NOTES 6.125 08/15/07 Aaa+ AAA+ UST  1,000 0.17 

56 WELLS FARGO + CO 6.875 04/01/06 A2 A− FIN  5,000 0.80 

57 WESTPAC BANKING CORP 7.875 10/15/02 A1 A+ FOC  3,000 0.49 

Source: Exhibit 9 in Lev Dynkin, Jay Hyman, and Wei Wu, “Multi-Factor Risk 
Models and Their Applications,” in Frank J. Fabozzi (ed.) Professional Perspec-
tives on Fixed Income Portfolio Management: Volume 2 (New Hope, PA: Frank J. 
Fabozzi Associates, 2001). 

Systematic Risk Exposure 
The estimated total tracking error is 52 basis points per year. Exhibit 21.3 
provides a summary of the tracking error breakdown for the 57-bond port-
folio. As described earlier, the systematic risk factors are broken into two 
parts: term structure factors and nonterm structure factors. From the first 
column of Exhibit 21.3 it can be seen that the three major systematic risk 
exposures are (1) term structure factors (i.e., exposure to changes in the 
term structure); (2) sector factors (i.e., changes in credit spreads of sectors); 
and (3) quality factors (i.e., changes in credit spreads by quality rating). 

The subcomponents of the tracking error breakdown reported in 
Exhibit 21.3 are shown in two different ways, labeled “Isolated” and 
“Cumulative.” In the “Isolated” column, the tracking error due to the 
effect of each subcomponent is considered in isolation. What is not con-
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sidered in the “Isolated” calculations are the correlations between the 
risk factors. For example, the 14.7 basis points for the tracking error for 
quality considers only the mismatch between the portfolio exposure and 
benchmark exposure due to quality and taking into consideration the 
correlations only of quality exposure for the different quality ratings. 
The tracking error for the portfolio is 52 basis points and the tracking 
error for the systematic and nonsystematic risk is 45 basis points and 
26.1 basis points, respectively. Because the tracking errors represent 

EXHIBIT 21.3 Tracking Error Breakdown for Sample Portfolio 
Sample Portfolio versus Aggregate Index, 9/30/98 

Tracking Error (bp/year) 

Isolated Cumulative 
Change in 

Cumulative 

Tracking error term structure 36.3 36.3 36.3 

Nonterm structure 39.5 
Tracking error sector 32.0 38.3  2.0 
Tracking error quality 14.7 44.1  5.8 
Tracking error optionality  1.6 44.0 −0.1 
Tracking error coupon  3.2 45.5  1.5 
Tracking error MBS sector  4.9 43.8 −1.7 
Tracking error MBS volatility  7.2 44.5  0.7 
Tracking error MBS prepayment  2.5 45.0  0.4 
Total systematic tracking error 45.0 

Nonsystematic tracking error 
Issuer-specific 25.9 
Issue-specific 26.4 
Total 26.1 

Total tracking error 52 

Systematic Nonsystematic Total 

Benchmark return standard deviation 417  4 417 
Portfolio return standard deviation 440 27 440 

Source: Exhibit 2 in Lev Dynkin, Jay Hyman, and Wei Wu, “Multi-Factor Risk 
Models and Their Applications,” in Frank J. Fabozzi (ed.) Professional Perspec-
tives on Fixed Income Portfolio Management: Volume 2 (New Hope, PA: Frank 
J. Fabozzi Associates, 2001).
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variances, it not the sum of these two risks that sum to the portfolio’s 
tracking error, but rather the squares of these two tracking errors that 
will equal the square of the portfolio’s tracking error. Or equivalently, 
the square root of the square of the two tracking errors will equal the 
portfolio’s tracking error (i.e., [(45.0)2 + (26.1)2]0.5 = 52.0). Adding of 
variances assumes that there is zero correlation between the risk factors 
(i.e., the risk factors are statistically independent). 

The alternative calculation for subdividing the tracking error is shown 
in the last two columns of Exhibit 21.3, the “Cumulative” calculation. In 
the second column the cumulative tracking error is computed by introduc-
ing one group of risk factors at a time and computing the resulting change 
in the tracking error. The analysis begins with the 36.3 basis point tracking 
error due to the term structure risk. The value shown in the next row of 
38.3 basis points is calculated by holding the risk factors constant except
for term structure risk and sector risk. The change in the cumulative track-
ing error from 36.3 to 38.3 basis points is shown in the last column for the 
row corresponding to sector risk. The 2 basis point change is interpreted 
as follows: given the exposure to yield curve risk, sector risk adds 2 basis 
points to tracking error. By continuing to add the subcomponents of the 
risk factors, the cumulative tracking error is determined. Because of the 
way in which the calculations are performed, the cumulative tracking 
error shown for all the systematic risk factors in the next-to-the last col-
umn is 45 basis points, the same as in the “isolated” calculation. 

Exhibit 21.4 can be used to understand the difference between the 
“isolated” and “cumulative” calculations. For purposes of the illustra-
tion, the exhibit shows a covariance matrix for just the following three 
groups of risk factors: yield curve (Y), sector spreads (S), and quality 
spreads (Q). How the covariance matrix is used to calculate the subcom-
ponents of the tracking error in the “isolated” case is shown in panel a. 
The diagonal of the covariance matrix shows the elements of the matrix 
that are used in the calculation for that subcomponent. The off-diagonal 
terms of the matrix deal with the correlations among different sets of risk 
factors. They are not used in calculating the tracking error and therefore 
do not contribute to any of the partial tracking errors. The elements of 
the covariance matrix used in the calculation of the “cumulative” track-
ing error at each stage of the calculation are shown in Panel b of Exhibit 
21.4. The incremental tracking error due to sector risk takes into consid-
eration not only the S × S variance but also the cross terms S × Y and Y × 
S which represent the correlation between yield curve risk and sector risk. 
Note that the incremental tracking error need not be positive. When the 
correlation is negative, the increment will be negative. This can be seen in 
the last column of Exhibit 21.3 which shows that the incremental risk 
due to the MBS sector risk is –1.7 basis points. 
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EXHIBIT 21.4 Illustration of “Isolated” and “Cumulative” Calculations of 
Tracking Error Subcomponentsa 

a. Isolated Calculation of Tracking Error Components

Y × Y Y × S Y × Q 

S × Y S × S S × Q 

Q × Y Q × S Q × Q 

b. Cumulative Calculation of Tracking Error Components

Y × Y Y × S Y × Q 

S × Y S × S S × Q 

Q × Y Q × S Q × Q 

a Y – Yield curve risk factors; S – Sector spread risk factors; Q – Credit Quality 
spread risk factors. 

Source: Exhibit 12 in Lev Dynkin, Jay Hyman, and Wei Wu, “Multi-Factor Risk 
Models and Their Applications,” in Frank J. Fabozzi (ed.), Professional Perspec-
tives on Fixed Income Portfolio Management: Volume 2 (New Hope, PA: Frank 
J. Fabozzi Associates, 2001).

The “isolated” calculation helps a portfolio manager identify the 
relative magnitude of each subcomponent of the tracking error. The 
advantage of the “cumulative” calculation is that it takes into consider-
ation the correlations among the subcomponents of the risk factors and 
the sum of the tracking error components is equal to the total tracking 
error. The drawback of the “cumulative” calculation is that it is depen-
dent upon the order in which the risk factors are introduced. 

Another portfolio risk measure provided in Exhibit 21.3 is the vola-
tility of returns. That is, the standard deviation of the return for each 
systematic risk factor and the standard deviation for the portfolio return 
can be computed. Similarly, the standard deviation of the benchmark 
return can be calculated. Note the difference between tracking error and 
standard deviation of returns. The former is computed by using the his-
torical differences in return between the portfolio and the benchmark. 
The latter only considers the historical returns. As was computed for 
tracking error, there are systematic return and nonsystematic return 
components. The last panel in Exhibit 21.3 reports the total standard 
deviation for the portfolio and the benchmark and the composition of 
each in terms of systematic and nonsystematic risk factors. Notice that 
the portfolio’s standard deviation (430 basis points) is greater than that 
of the benchmark (417 basis points). 
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Nonsystematic Risk Exposure 
Now let’s look at nonsystematic risk. The nonsystematic tracking error is 
divided into those that are issuer specific and those that are issue specific. 
As indicated in Exhibit 21.3, the tracking error associated with the 57-
bond portfolio is 52 basis points per annum and there is 26 basis points 
per annum of nonsystematic risk. The latter risk arises from the concen-
tration of the portfolio in individual securities or issuers. The last column 
of Exhibit 21.2 shows this risk. The column reports the percentage of the 
portfolio’s market value invested in each issue. Because there are only 57 
issues in the portfolio, the portfolio is relatively small in terms of issues. 
Consequently, each issue makes up a nontrivial fraction of the portfolio. 
Specifically, look at the exposure to two corporate issuers, GTE Corp. 
and Coca-Cola. Each is more than 8% of the portfolio. If there is a 
downgrade of either firm, this would cause large losses in the 57-bond 
portfolio, but it would not have a significant effect on the benchmark 
which includes 6,932 issues. Consequently, a large exposure in a portfo-
lio to a specific corporate issuer represents a material mismatch between 
the exposure of the portfolio and a benchmark that must be taken into 
account in assessing a portfolio’s risk relative to a benchmark. 

Optimization Application 
The multifactor risk model can be used by the portfolio manager in 
combination with optimization in constructing and rebalancing a port-
folio to reduce tracking error. A portfolio manager using optimization, 
for example, can determine the single largest transaction that can be 
used to reduce tracking error. Or, a portfolio manager can determine 
using optimization a series of transactions (i.e., bond swaps) that would 
be necessary to alter the target tracking error at minimum cost.9 

Suppose that the portfolio manager’s objective is to minimize track-
ing error. From the universe of bonds selected by the portfolio manager, 

9 According to Lev Dynkin of Lehman Brothers, the optimization procedure is as fol-
lows. Instead of finding a complete portfolio that optimizes tracking error in the 
model, a step-by-step optimization algorithm is chosen based on marginal contribu-
tions of each security already in a portfolio or any buy-candidate to the portfolio risk 
versus the benchmark. Current portfolio holdings are then sorted in a descending or-
der of their marginal contribution to tracking error, offering the manager an oppor-
tunity to pick a sell candidate with the most impact on tracking error, but not forcing 
the portfolio manager into any one choice. Once the sell candidate is selected, it is 
paired with any eligible buy candidate to find the highest possible tracking error im-
provement. Buy candidates are ranked on the tracking error that would result from 
having picked each specific security. This step-by-step optimization mechanism al-
lows the portfolio manager to intervene with every transaction. 
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an optimizer can be employed to rank bond purchases in terms of the 
marginal decline in tracking error per unit of each bond purchased. A 
portfolio manager would then determine the bond issues that would be 
purchased and the optimizer would then identify potential market-
value-neutral swaps of these bond issues against various bonds issues 
currently held in the portfolio; the optimizer would indicate the optimal 
transaction size for each pair of bond issues that are being swapped 
ranked by the potential reduction in tracking error. 

Dynkin, Hyman, and Wu illustrate how this optimization process can 
be used to minimize the tracking error for the 57-bond portfolio. The 
illustration is provided in Exhibit 21.5. Look at the first trade used in the 
exhibit which indicates that the majority of the large position in the 
Coca-Cola 30-year bond can be swapped for a Treasury note. If the pro-
posed trade (i.e., bond swap) is executed, this would result in (1) a change 
in the systematic exposures to term structure, sector, and quality and (2) a 
reduction in nonsystematic risk by cutting one of the largest issuer expo-
sures. From this one bond swap alone that the optimizer identifies, track-
ing error is reduced from 52 basis points to 29 basis points. Notice that as 
the risk profile of the initial sample portfolio approaches that of the 
benchmark (Lehman Brothers U.S. Aggregate Index), the opportunity for 
major reductions in the tracking error declines. 

If all five transactions shown in Exhibit 21.5 are executed, there is 
the potential to reduce the tracking error to 16 basis points. The result-
ing portfolio after these transactions is effectively a passive portfolio. 
Exhibit 21.6 provides a summary of the tracking error for the portfolio 
if all five transactions are executed. The systematic and nonsystematic 
tracking error is 10 and 13 basis points, respectively. 

LIABILITY-FUNDING STRATEGIES 

Liability-funding strategies are strategies whose objective is to match a 
given set of liabilities due at future times. These strategies provide the cash 
flows needed at given dates at a minimum cost and with zero or minimal 
interest rate risk. However, depending on the universe of bonds that are 
permitted to be included in the portfolio, there may be credit risk and/or 
call risk. Liability-funding strategies are used by (1) sponsors of defined 
benefit pension plans (i.e., there is a contractual liability to make payments 
to beneficiaries); (2) insurance companies for single premium deferred 
annuities (i.e., a policy in which the issuer agrees for a single premium to 
make payments to policyholders over time), guaranteed investment con-
tracts (i.e., a policy in which the issuer agrees for a single premium to 
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EXHIBIT 21.5 Sequence of Transactions Selected by Optimizer Showing 
Progressively Smaller Tracking Error, $000s 
Initial Tracking Error: 52.0 bp 

Transaction # 1 

Sold: 31,000 of COCA-COLA ENTERPRISES 6.950 2026/11/15 
Bought: 30,000 of U.S. TREASURY NOTES 8.000 2001/05/15 
Cash Leftover: −17.10 
New Tracking Error: 29.4 bp 
Cost of This Transaction: 152.500 
Cumulative Cost: 152.500 
Transaction # 2 

Sold: 10,000 of LOCKHEED MARTIN 6.550 1999/05/15 
Bought: 9,000 of U.S. TREASURY NOTES 6.125 2007/08/15 
Cash Leftover: 132.84 
New Tracking Error: 25.5 bp 
Cost of This Transaction: 47.500 
Cumulative Cost: 200.000 
Transaction # 3 

Sold: 4,000 of NORFOLK SOUTHERN CORP 7.800 2027/05/15 
Bought: 3,000 of U.S. TREASURY BONDS 10.625 2015/08/15 
Cash Leftover: −8.12 
New Tracking Error: 23.1 bp 
Cost of This Transaction: 17.500 
Cumulative Cost: 217.500 
Transaction # 4 

Sold: 33,000 of GTE CORP 9.375 2000/12/01 
Bought: 34,000 of U.S. TREASURY NOTES 6.625 2002/03/31 
Cash Leftover:  412.18 
New Tracking Error: 19.8 bp 
Cost of This Transaction: 167.500 
Cumulative Cost: 385.000 
Transaction # 5 

Sold: 7,000 of COCA-COLA ENTERPRISES 6.950 2026/11/15 
Bought: 8,000 of U.S. TREASURY NOTES 6.000 2000/08/15 
Cash Leftover: −304.17 
New Tracking Error: 16.4 bp 
Cost of This Transaction: 37.500 
Cumulative Cost: 422.500 

Source: Exhibit 15 in Lev Dynkin, Jay Hyman, and Wei Wu, “Multi-Factor Risk 
Models and Their Applications,” in Frank J. Fabozzi (ed.) Professional Perspec-
tives on Fixed Income Portfolio Management: Volume 2 (New Hope, PA: Frank 
J. Fabozzi Associates, 2001).
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EXHIBIT 21.6 Tracking Error Summary 
Passive Portfolio versus Aggregate Index, 9/30/98 

Tracking Error (bp/year) 

Isolated Cumulative Change 

Tracking error term structure 7.0  7.0 7.0 
Nonterm structure 9.6 
Tracking error sector 7.4 10.5 3.5 
Tracking error quality 2.1 11.2 0.7 
Tracking error optionality 1.6 11.5 0.3 
Tracking error coupon 2.0 12.3 0.8 
Tracking error MBS sector 4.9 10.2 −2.1 
Tracking error MBS volatility 7.2 11.1 0.9 
Tracking error MBS prepayment 2.5 10.3 −0.8 
Total systematic tracking error 10.3 

Nonsystematic tracking error 
Issuer-specific 12.4 
Issue-specific 3.0 
Total 12.7 
Total tracking error return 16 

Systematic Nonsystematic Total 

Benchmark sigma 417  4 417 
Portfolio sigma 413 13 413 

Source: Exhibit 16 in Lev Dynkin, Jay Hyman, and Wei Wu, “Multi-Factor Risk 
Models and Their Applications,” in Frank J. Fabozzi (ed.) Professional Perspec-
tives on Fixed Income Portfolio Management: Volume 2 (New Hope, PA: Frank 
J. Fabozzi Associates, 2001).

make a single payment to a policyholder at a specified date with a guaran-
teed interest rate); and (3) municipal governments for prerefunding munic-
ipal bond issues (i.e., creating a portfolio that replicates the payments that 
must be made for an outstanding municipal government bond issue), and, 
for states, payments that must be made to lottery winners who have 
agreed to accept payments over time rather than a lump sum. 

There are two types of solutions to the problem of liability funding 
currently used by practitioners: (1) numerical/analytical solutions based 
on the concept of duration and convexity and (2) numerical solutions 
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based on optimization methodologies. Ultimately, all methodologies can 
be cast in the framework of optimization, but duration and convexity play 
an important role from the practical as well as conceptual point of view. 
We will begin by discussing the cash-flow matching approach in a deter-
ministic context and then successively discuss strategies based on duration 
and convexity and lastly a full stochastic programming approach. 

Cash Flow Matching 
Cash flow matching (CFM), also referred to as a dedicated portfolio strat-
egy, in a deterministic environment is the problem of matching a predeter-
mined set of liabilities with an investment portfolio that produces a 
deterministic stream of cash flows.10 In this context, fluctuations of inter-
est rates, credit risk, and other sources of uncertainty are ignored. There 
are, however, conditions where financial decisions have to be made. 
Among them we will consider:

 ■ Reinvestment of excess cash
 ■ Borrowing against future cash flows to match liabilities
 ■ Trading constraints such as odd lots 

To formulate the model, consider a set of m dates {t0,t1,...,tm} and a 
universe U of investable assets U = {1,2,...,n}. Call {Ki,0,...,Ki,m} the 
stream of cash flows related to the i-th asset. We will consider only 
bonds but most considerations that will be developed apply to broader 
classes of assets with positive and negative cash flows. In the case of a 
bond with unit price Pi per unit par value 1, with coupon ci,t, and with 
maturity k, the cash flows are 

{–Pi,ci,1,...,ci,k–1,ci,k + 1,0,...,0} 

Let’s call Lt the liability at time t. Liabilities must be met with a 
portfolio 

∑ αiPi 
i ∈ U 

where αi is the amount of bond i in the portfolio. The CFM problem can 
be written, in its simplest form, in the following way: 

10 For an illustration of cash flow matching applied to pension fund liabilities, see 
Frank J. Fabozzi and Peter F. Christensen, “Dedicated Bond Portfolios,” Chapter 45 
in Frank J. Fabozzi (ed.), The Handbook of Fixed Income Securities (New York, NY: 
McGraw Hill, 2000). 
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Minimize ∑ αiPi , subject to the constraints 
i ∈ U 

∑ αiKi t ≥ Lt, 
i ∈ U 

αi ≥ 0 

The last constraint specifies that short selling is not permitted. 
The above formulation of the CFM as an optimization problem is too 

crude as it takes into account only the fact that it is practically impossible 
to create exactly the required cash flows. In fact, in this formulation at 
each date there will be an excess of cash not used to satisfy the liability 
due at that date. If borrowing and reinvesting are allowed, as is normally 
the case, excess cash can be reinvested and used at the next date while 
small cash shortcomings can be covered with borrowing. 

Suppose, therefore, that it is possible to borrow in each period an 
amount bt at the rate βt and reinvest an amount rt at the rate ρt. Suppose 
that these rates are the same for all periods. At each period we will require 
that the positive cash flow exactly matches liabilities. Therefore coupon 
payments of that period plus the amount reinvested in the previous period 
augmented by the interest earned on this amount plus the reinvestment of 
that period will be equal to the liabilities of the same period, plus the repay-
ment of borrowing in the previous period plus the eventual new borrowing 
of the period. The optimization problem can be formulated as follows: 

Minimize ∑ αiPi , subject to the constraints 
i ∈ U 

∑ αiKi t + (1 + ρt)rt – 1 + bt = Lt + (1 + βt)bt – 1 + rt,

i ∈ U


bm = 0 

αi ≥ 0; i ∈ U 

The CFM problem formulated in this way is a linear programming (LP) 
problem.11 Problems of this type can be routinely solved on desk-top 
computers using standard off-the-shelf software. 

11 The mathematical programming techniques described in this chapter are discussed 
in Chapter 7. 
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The next step is to consider trading constraints, such as the need to 
purchase “even” lots of assets. Under these constraints, assets can be 
purchased only in multiples of some minimal quantity, the even lots. For 
a large organization, purchasing smaller amounts, “odd” lots, might be 
suboptimal and might result in substantial costs and illiquidity. 

The optimization problem that results from the purchase of assets in 
multiples of a minimal quantity is much more difficult. It is no longer a rel-
atively simple LP problem but it becomes a much harder mixed-integer pro-
gramming (MIP) problem. A MIP problem is conceptually more difficult 
and computationally much more expensive to solve than an LP problem. 

The next step involves allowing for transaction costs. The objective 
of including transaction costs is to avoid portfolios made up of many 
assets held in small quantities. Including transaction costs, which must 
be divided between fixed and variable costs, will again result in a MIP 
problem which will, in general, be quite difficult to solve. 

In the formulation of the CFM problem discussed thus far, it was 
implicitly assumed that the dates of positive cash flows and liabilities are 
the same. This might not be the case. There might be small misalignment 
due to the practical availability of funds or positive cash flows might be 
missing when liabilities are due. To cope with these problems, one could 
simply generate a bigger model with more dates so that all the dates cor-
responding to inflows and outflows are properly considered. In a number 
of cases, this will be the only possible solution. A simpler solution, when 
feasible, consists in adjusting the dates so that they match, considering the 
positive interest earnings or negative costs incurred to match dates. 

In the above formulation of the CFM problem, the initial investment 
cost is the only variable to optimize: The eventual residual cash at the end of 
the last period is considered lost. However, it is possible to design a different 
model under the following scenario. One might try to maximize the final 
cash position, subject to the constraint of meeting all the liabilities and 
within the constraint of an investment budget. In other words, one starts 
with an investment budget which should be at least sufficient to cover all the 
liabilities. The optimization problem is to maximize the final cash position. 

We have just described the CFM problem in a deterministic setting. 
This is more than an academic exercise as many practical dedication 
problems can be approximately cast into this framework. Generally 
speaking, however, a dedication problem would require a stochastic for-
mulation, which in turn requires multistage stochastic optimization. 
Dahl, Meeraus, and Zenios12 discuss the stochastic case. Later in this 

12 H. Dahl, A. Meeraus, and S.A. Zenios, “Some Financial Optimization Models,” 
in S.A. Zenios (ed.), Financial Optimization (Cambridge: Cambridge University 
Press, 1993). 
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chapter we discuss dedication in a multistage stochastic formulation, as 
well as other bond portfolio optimization problems. Let’s now discuss 
portfolio immunization, which is the numerical/analytical solution of a 
special dedication problem under a stochastic framework. 

Portfolio Immunization 
The actuary generally credited with pioneering the immunization strat-
egy is Reddington, who defined immunization in 1952 as “the invest-
ment of the assets in such a way that the existing business is immune to 
a general change in the rate of interest.”13 The mathematical formula-
tion of the immunization problem was proposed by Fisher and Weil in 
1971.14 The framework is the following in the single liability case 
(which we refer to as single period immunization): Given a predeter-
mined liability at a fixed time horizon, create a portfolio able to satisfy 
the given liability even if interest rates change. 

The problem would be simple to solve if investors were happy to 
invest in U.S. Treasury zero-coupon bonds (i.e., U.S. Treasury strips) 
maturing at exactly the given date of the liability. However, investors seek 
to earn a return greater than the risk-free rate. For example, the typical 
product where a portfolio immunization strategy is used is a GIC offered 
by an insurance company. This product is typically offered to a pension 
plan. The insurer receives a single premium from the pension sponsor and 
in turn guarantees an interest rate that will be earned such that the pay-
ment to the policyholder at a specified date is equal to the premium plus 
the guaranteed interest. The interest rate offered on the policy is greater 
than that on existing risk-free securities, otherwise a potential policy 
buyer can do the immunization without the need for the insurance com-
pany’s service. The objective of the insurance company is to earn a higher 
rate than that offered on the policy (i.e., the guaranteed interest rate).15 

The solution of the problem is based on the fact that a rise in interest 
rates produces a drop in bond prices but an increase in the reinvestment 
income on newly invested sums while a fall of interest rates increases bond 
prices but decreases the reinvestment income on newly invested sums. One 

13 F.M. Reddington, “Review of the Principle of Life-Office Valuations,” Journal of 
the Institute of Actuaries 78 (1952), pp. 286–340. 
14 L. Fisher and R.L. Weil, “Coping with the Risk of Interest-Rate Fluctuations: Re-
turns to Bondholders from Naive and Optimal Strategies,” Journal of Business (Oc-
tober 1971), pp. 408–431. 
15 For a discussion of the implementation issues associated with immunization, see 
Frank J. Fabozzi and Peter F. Christensen, “Bond Immunization: An Asset/Liability 
Optimization Strategy,” Chapter 44 in The Handbook of Fixed Income Securities: 
Sixth Edition. 
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can therefore choose an investment strategy such that the change in a port-
folio’s value is offset by changes in the returns earned by the reinvestment 
of the cash obtained through coupon payments or the repayment of the 
principal of bonds maturing prior to the liability date. 

The principle applies in the case of multiple liabilities. To see how 
multiple-period immunization works, let’s first demonstrate that—given 
a stream of cash flows at fixed dates—there is one instant at which the 
value of the stream is insensitive to small parallel shifts in interest rates. 
Consider a case where a sum V0 is initially invested in a portfolio of 
risk-free bonds (i.e., bonds with no default risk) that produces a stream 
of N deterministic cash flows Ki at fixed dates ti. At each time ti the sum 
Ki is reinvested at the risk-free rate. Suppose that there is only one rate r 
common to all periods. The following relationship holds: 

V0 =

N 

∑ Kie 
–rti 

i = 1 

where we have used the formula for the present value in continuous time. 
As each intermediate payment is reinvested, the value of the portfo-

lio at any instant t is given by the following expression: 

Vt =

N 

∑ Kie 
(–r t  – ti) rt= e V0 

i = 1 

Our objective is to determine a time t such that the value Vt at time 
t of the portfolio is insensitive to parallel shifts in the interest rates. The 
quantity Vt is a function of the interest rate r. The derivative of Vt with 
respect to r must be zero so that Vt is insensitive to interest rate changes. 
Let’s compute the derivative: 

N 

∑dVt (
(

r t  
Ki t ti – 

– ti))e
=

dr 

i = 1 
N 

∑ Kitie 
–rti 

i = 1= tVt – Vt ------------------------------V0 

Kie 
–rtiN 

∑V t  

 


= –
 ti 
i = 1 




 V0 




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From this expression it is clear that the derivative


dVt 

dr 

is zero at a time horizon equal to the portfolio duration. In fact, the 
quantity 

N Kie 
–rti

∑ ti---------------- 
 V0 i = 1 

is the portfolio’s duration expressed in continuous time. 
Therefore, if the term structure of interest rates is flat, we can match 

a given liability with a portfolio whose duration is equal to the time of 
the liability and whose present value is equal to the present value of the 
liability. This portfolio will be insensitive to small parallel shifts of the 
term structure of interest rates. 

We can now extend and generalize this reasoning. Consider a 
stream of liabilities Lt. Our objective is to match this stream of liabili-
ties with a stream of cash flows from some initial investment insensitive 
to changes in interest rates. First we want to prove that the present 
value of liabilities and of cash flows must match. Consider the frame-
work of CMF with reinvestment but no borrowing: 

∑ αiKi t + (1 + ρt)rt – 1 = Lt + rt,

i ∈ U


∑ αiKi t – Lt ≥ 0 , 
i ∈ U 

ai ≥ 0; i ∈ U 

We can recursively write the following relationships: 

∑ αiKi, 1 – Lt = r1 

i ∈ U 

∑ αiKi, 2 + (1 + ρ2) ∑ αiKi, 1 = (1 + ρ2)L1 + L2 + r2 

i ∈ U i ∈ U 
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…


n m m 

∑ αiKi, 1 ∏ (1 + ρt) + … αiKi m = L1 ∏ (1 + ρ ) + … + L+ , t m 
i = 1 t = 2 t = 2 

ai ≥ 0; i ∈ U 

If we divide both sides of the last equation by 

∏ 
m 

(1 + ρt) 
t = 2 

we see that the present value of the portfolio’s stream of cash flows must 
be equal to the present value of the stream of liabilities. We can rewrite 
the above expression in continuous-time notation as 

n 
–r t

+ m m∑ [αiKi, 1 + … αiKi me 
–rmtm] = L1 + … + L e , m

i = 1 

As in the case of CFM, if cash flows and liabilities do not occur at the 
same dates, we can construct an enlarged model with more dates. At 
these dates, cash flows or liabilities can be zero. 

To see under what conditions this expression is insensitive to small 
parallel shifts of the term structure, we perturb the term structure by a 
small shift r and compute the derivative with respect to r for r = 0. In 
this way, all rates are written as rt + r. If we compute the derivatives we 
obtain the following equation: 

n 
m m]+d ∑ [αiKi, 1 + … αiKi me 

–(r + r)t

[ 
–(r + r)tm]

, 
d L1 + … + L e m 

i = 1 m------------------------------------------------------------------------------------------------ = -------------------------------------------------------------------
dr dr 

n 
–(r + r)t

+ m m m – ∑ [αiKi, 1 + … αiKi mt e 
–(r + r)t

] = –[L1 + … + L t e m], m m m

i = 1


which tells us that the first-order conditions for portfolio immunization

are that the duration of the cash flows must be equal to the duration of
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the liabilities. This duration is intended in the sense of effective duration 
which allows for a shift in the term structure. This condition does not 
determine univocally the portfolio. 

To determine the portfolio, we can proceed in two ways. The first is 
through optimization. Optimization calls for maximizing some function 
subject to constraints. In the CFM problem there are two constraints: 
(1) The initial present value of cash flows must match the initial present
value of liabilities, and (2) the duration of cash flows must match the 
duration of liabilities. A typical objective function is the portfolio’s 
return at the final date. It can be demonstrated that this problem can be 
approximated by an LP problem. 

Optimization might not be ideal as the resulting portfolio might be 
particularly exposed to the risk of nonparallel shifts of the term struc-
ture. In fact, it can be demonstrated that the result of the yield maximi-
zation under immunization constraints tends to produce a barbell type 
of portfolio. A barbell portfolio is one in which the portfolio is concen-
trated at short-term and long-term maturity securities. A portfolio of 
this type is particularly exposed to yield curve risk, i.e., to the risk that 
the term structure changes its shape, as described in Chapter 20. 

One way to control yield curve risk is to impose second-order con-
vexity conditions. In fact, reasoning as above and taking the second 
derivative of both sides, it can be demonstrated that, in order to protect 
the portfolio from yield curve risk, the convexity of the cash flow stream 
and the convexity of the liability stream must be equal. (Recall from 
Chapter 4 that mathematically convexity is the derivative of duration.) 
This approach can be generalized16 by assuming that changes of interest 
rates can be approximated as a linear function of a number of risk fac-
tors. Under this assumption we can write 

k 

∆rt = ∑ βj t∆ εt+ , fj 
j = 1 

where the fj are the factors and εt is an error term that is assumed to be 
normally distributed with zero mean and unitary variance. Factors here 
are a simple discrete-time instance of the factors we met in the description 
of the term structure in continuous time in Chapter 19. There we assumed 
that interest rates were an Itô process function of a number of other Itô 
processes. Here we assume that changes in interest rates, which are a dis-
crete-time process, are a linear function of other discrete-time processes 
called “factors.” Each path is a vector of real numbers, one for each date. 

16 See Stavros Zenios, Practical Financial Optimization, unpublished manuscript. 
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Ignoring the error term, changes in the present value of the stream of cash 
flows are therefore given by the following expression: 

n 

+ m m∆V = – ∑ [αiKi, 1 + … αiKi mt e 
–r t

∆r ], m m 
i = 1 

n k 

= – ∑ αiKi, 1 + … αiKi mt e 
–rmtm ∑ βj tm 

∆fj+ , m , 
i = 1 j = 1 

The derivative of the present value with respect to one of the factors 
is therefore given by 

n 
∂V + e m m 

, , ------- = – ∑ αiKi, 1 + … αiKi mtmβj tm 

–r t

∂fj i = 1 

The factor duration with respect to the j-th factor is defined as the rela-
tive value sensitivity to that factor: 

1 ∂V = ---- -------kj V ∂fj 

The second derivative represents convexity relative to a factor: 

1 ∂2V = ---- ----------Qj V ∂f2 
j 

First- and second-order immunization conditions become the equality of 
factor duration and convexity relative to cash flows and liabilities. 

Scenario Optimization 
The above strategies are based on perturbing the term structure of inter-
est rates with a linear function of one or more factors. We allow sto-
chastic behavior as rates can vary (albeit in a controlled way through 
factors) and impose immunization constraints. We can obtain a more 
general formulation of a stochastic problem in terms of scenarios.17 Let 
the variables be stochastic but assume distributions are discrete. Scenar-

17 Ron Dembo, “Scenario Immunization,” in Financial Optimization. 
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ios are joint paths of all the relevant variables. A probability number is 
attached to each scenario. A path of interest rates is a scenario. If we 
consider corporate bonds, a scenario will be formed, for example, by a 
joint path of interest rates and credit ratings. How scenarios are gener-
ated will be discussed later in this chapter. 

Suppose that scenarios are given. Using an LP program, one can find 
the optimal portfolio that (1) matches all the liabilities in each scenario 
and (2) minimizes initial costs or maximizes final cash positions subject 
to budget constraints. The CFM problem can be reformulated as follows: 

Minimize ∑ αiPi , subject to the constraints 
i ∈ U 

s s s s s s s s∑ αiKi t + (1 + ρt )rt – 1 + bt = Lt + (1 + βt )bt – 1 + rt,

i ∈ U


bs = 0m 

ai ≥ 0; i ∈ U 

In this formulation, all terms are stochastic and scenario dependent 
except the portfolio’s weights. Each scenario imposes a constraint. 

Scenario optimization can also be used in a more general context. 
One can describe a general objective, for instance expected return or a 
utility function, which is scenario-dependent. Scenario-dependent con-
straints can be added. The optimization program maximizes or mini-
mizes the objective function subject to the constraints. 

Stochastic Programming 
Strategies discussed thus far are static (or myopic) in the sense that deci-
sions are made initially and never changed. As explained in Chapter 7, 
stochastic programming (or multistage stochastic optimization) is a 
more general, flexible framework in which decisions are made at multi-
ple stages, under uncertainty, and on the basis of past decisions and 
information then available. Both immunization and CFM discussed 
above can be recast in the framework of stochastic programming. 
Indeed, multistage optimization is a general framework that allows one 
to formulate most problems in portfolio management, not only for 
bonds but also for other asset classes including stocks and derivatives. 

Stochastic programming is a computerized numerical methodology to 
solve variational problems. A variational principle is a law expressed as the 
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maximization of a functional, with a functional being a real-valued func-
tion defined over other functions. Most classical physics can be expressed 
equivalently through differential equations or variational principles. 

Variational methodologies also have important applications in engi-
neering, where they are used to select a path that maximizes or mini-
mizes a functional given some exogenous dynamics. For example, one 
might want to find the optimal path that an airplane must follow in 
order to minimize fuel consumption or flying time. The given dynamics 
are the laws of motion and eventually specific laws that describe the 
atmosphere and the behavior of the airplane. 

Economics and finance theory have inherited this general scheme. 
General equilibrium theories can be expressed as variational principles. 
However, financial applications generally assume that some dynamics 
are given. In the case of bond portfolios, for example, the dynamics of 
interest rates are assumed to be exogenously given. The problem is to 
find the optimal trading strategy that satisfies some specific objective. In 
the case of immunization an objective might be to match liabilities at 
the minimum cost with zero exposure to interest rates fluctuations. The 
solution is a path of the portfolio’s weights. In continuous time, it 
would be a continuous trading strategy. 

Such problems are rarely solvable analytically; numerical techniques, 
and in particular multistage stochastic optimization, are typically 
required. The key advantage of stochastic programming is its ability to 
optimize on the entire path followed by exogenously given quantities. In 
applications such as bond portfolio optimization, this is an advantage 
over myopic strategies which optimize looking ahead only one period. 
However, because stochastic programming works by creating a set of sce-
narios and choosing the scenario that optimizes a given objective, it 
involves huge computational costs. Only recently have advances in IT 
technology made it feasible to create the large number of scenarios 
required for stochastic optimization. Hence there is a renewed interest in 
these techniques both at academia and inside financial firms.18 

Scenario Generation 
The generation of scenarios (i.e., joint paths of the stochastic variables) is 
key to stochastic programming. Until recently, it was imperative to create 
a parsimonious system of scenarios. Complex problems could be solved 
only on supercomputers or massively parallel computers at costs prohibi-
tive for most organizations. While parsimony is still a requirement, sys-

18 A presentation of stochastic programming in finance can be found in Zenios, Prac-
tical Financial Optimization, forthcoming. 
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tems made of thousands of scenarios can now be solved on desk-top 
machines. Two well-known scenario systems in practical use are SPAN, a 
16-scenario system developed by the Chicago Mercantile Exchange and 
New York 7, a 7-scenario system use by New York insurance regulators 
(National Association of Insurance Commissioner scenarios). 

As a general requirement, scenarios must be both “complete” and 
“coherent.” Completeness means that scenarios must capture the business-
as-usual situations as well the extremes. Coherence means that scenarios 
must respect the conditions typical of many financial variables. For 
instance, some financial variables are perfectly anti-correlated, a condition 
that must be respected by scenarios. Financial and economic scenarios 
must also be free from anticipation of information. A natural way to make 
nonanticipative scenarios is the use of information structures as described 
in Chapter 5. Information structures require that scenarios are indistin-
guishable up to a given date and then part in a treelike structure. 

Consider the generation of interest rates scenarios. This is a prob-
lem that can be solved starting from a model of the term structure of 
interest rates. Continuous-time models of interest rates were introduced 
in Chapter 15. To create scenarios, these models need to be discretized 
as discussed in Chapter 15. Recall that there are different ways of dis-
cretizing a continuous-time model. For example, a Brownian motion 
can be simulated as a random walk whose increments are random draws 
from a normal distribution. Alternatively, one can adopt a binomial 
approximation to the Brownian motion. The first procedure creates a 
random sampling from a continuous distribution while the second pro-
duces a discrete-time, discrete-state model. 

If we consider only risk-free bonds, the information contained in the 
interest rate processes is sufficient to create scenarios. A large number of 
scenarios can be created either by sampling or with discrete models. If, 
in contrast, we want to consider bonds with default risk, then we need 
to generate scenarios according to a specified model of credit risk (see 
Chapter 22). For example, if we use a rating process, we need to simu-
late a rating process for each bond taking into consideration correla-
tions. It is clear that we immediately run into computational difficulties, 
because the number of scenarios explodes even for a modest number of 
bonds. Drastic simplifications need to be made to make problems tracta-
ble. Simplifications are problem-dependent. 

Multistage Stochastic Programming 
After creating scenarios one can effectively optimize, taking into account 
that after initial decisions there will be recourses (i.e., new decisions even-
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tually on a smaller set of variables) at each subsequent stage. Here we 
provide a brief description of multistage stochastic optimization.19 

The key idea of stochastic programming is that at every stage a deci-
sion is made based on conditional probabilities. Scenarios form an informa-
tion structure so that, at each stage, scenarios are partitioned. Conditional 
probabilities are evaluated on scenarios that belong to each partition. For 
this reason, stochastic optimization is a process that runs backwards. Opti-
mization starts from the last period, where variables are certain, and then 
conditional probabilities are evaluated on each partition. 

To apply optimization procedures, an equivalent deterministic prob-
lem needs to be formulated. The deterministic equivalent depends on the 
problem’s objective. Taking expectations naturally leads to deterministic 
equivalents. A deterministic equivalent of a stochastic optimization 
problem might involve maximizing or minimizing the conditional 
expectation of some quantity at each stage. 

We will illustrate stochastic optimization in the case of CFM as a 
two-stage stochastic optimization problem. The first decision is made 
under conditions of uncertainty, while the second decision at step 1 is 
made with certain final values. This problem could be equivalently for-
mulated in a m-period setting, admitting perfect foresight after the first 
period. This two-stage setting can then be extended to a true multistage 
setting. At the first stage there will be a new set of variables. In this case, 
the new variables will be the portfolio’s weights at stage 1. Call S the set 
of scenarios. Scenarios are generated from an interest rate model. A 
probability ps, s ∈ S is associated with each scenario s. The quantity to 
optimize will be the expected value of final cash. The two-stage stochas-
tic optimization problem can be formulated as follows: 

Maximize ∑ psh , subject to the constraintss 
s ∈ S 

∑ αiKi, 0 + b0 + B = r0 
i ∈ U 

s s s s s s s s∑ αiKi t + (1 + ρt )rt – 1 + bt = Lt + (1 + βt )bt – 1 + rt,

i ∈ U


s s∑ αiPi = ∑ γ iPi 
i ∈ U i ∈ U 

19 For a full account of stochastic programming in finance, Zenios, Practical Finan-
cial Optimization. 
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bs = 0m 

s r = hs 
m 

αi, γi ≥ 0; i ∈ U 

The first condition is the initial budget constraint, which tells us 
that the initial investment (which has a negative sign) plus the initial 
borrowing plus the initial budget B is equal to the first surplus. The sec-
ond condition is the liability-matching condition. The third condition is 
the self-financing condition. Note that as interest rates are known in 
each scenario, bond prices are also known in each scenario. The fifth 
and sixth conditions are the statements that there is no borrowing at the 
final stage and that the objective is the final cash. The seventh condition 
is the constraint that weights are nonnegative at each stage 

This formulation illustrates all the basic ingredients. The problem is 
formulated as a deterministic equivalent problem, setting as its objective 
the maximization of final expected cash. The final stage is certain and 
the process is backward. With this objective, the stochastic optimization 
problem is recast as an LP problem. 

This formulation can be extended to an arbitrary number of stages. 
Formulating in full generality a multistage stochastic optimization prob-
lem is beyond the scope of this book. In fact, there are many technical 
points that need a careful handling.20 

SUMMARY 

■ Bond market indexes can be classified as broad-based bond market 
indexes and specialized bond market indexes.

 ■ Bond management strategies range from pure bond index matching to 
active management.

 ■ Pure bond index matching strategy involves the least risk of underper-
forming a bond market index.

 ■ Enhanced indexing strategies involve constructing portfolios to match 
the primary risk factors associated with a bond market index without 
acquiring each issue in the index. 

20 See, for example, Peter Kall and Stein W. Wallace, Stochastic Programming 
(Chichester, U.K.: John Wiley & Sons, 1994). 
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 ■ Active bond strategies attempt to outperform the bond market index 
by intentionally constructing a portfolio that will have a greater index 
mismatch than in the case of enhanced indexing.

 ■ Tracking error, or active risk, is the standard deviation of a portfolio’s 
return relative to the return of the benchmark index.

 ■ Systematic risk factors are the common factors that affect all securities 
in a certain category in the benchmark bond market index.

 ■ Nonsystematic factor risk is the risk that is not attributable to the sys-
tematic risk factors.

 ■ Systematic risk factors are divided into term structure risk factors and 
nonterm structure risk factors.

 ■ Given the risk factors associated with a benchmark index, forward-
looking tracking error can be estimated.

 ■ A multifactor risk model can be used by the portfolio manager in com-
bination with optimization in constructing and rebalancing a portfolio 
to reduce tracking error.

 ■ Optimization is generally done step-by-step based on marginal contri-
butions of each security.

 ■ Liability-funding strategies are strategies whose objective is to match a 
given set of liabilities due at future times.

 ■ Cash flow matching in a deterministic environment is the problem of 
matching a predetermined set of liabilities with an investment portfolio 
that produces a deterministic stream of cash flows.

 ■ Cash flow matching problems can be solved with linear programming 
or mixed-integer programming algorithms.

 ■ The objective of an immunization strategy is to construct a portfolio 
that is insensitive to small parallel shifts of interest rates.

 ■ A given stream of liabilities can be matched with a portfolio whose 
duration is equal to the duration of the liabilities and whose present 
value is equal to the present value of the liabilities.

 ■ Matching duration and present value makes portfolios insensitive only 
to small parallel shifts of interest rates; in order to minimize the effects 
of nonparallel shifts, optimization procedures are needed.

 ■ Scenario optimization optimizes on a number of representative scenar-
ios.

 ■ Multistage stochastic optimization deals with the problem of optimiza-
tion when there is recourse, that is, when decisions are made at each 
stage.

 ■ Taking expectations at each stage, stochastic optimization becomes a 
problem of deterministic optimization. 
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CHAPTER 22 
Credit Risk Modeling and 

Credit Default Swaps* 

n Chapter 2, we described the different forms of credit risk–default risk, 
credit spread risk, and downgrade risk. Credit derivatives are financial 

instruments that are designed to transfer the credit risk exposure of an 
underlying asset or assets between two parties. With credit derivatives, 
market participants can either acquire or reduce credit risk exposure. The 
ability to transfer credit risk and return provides a new tool for market par-
ticipants to improve performance. Using credit derivatives, banks may sell 
concentrated credit risks in their portfolios while keeping the loans of their 
customers on their books; these loans are otherwise not transferable due to 
relationship management issues or due to legal agreements. Credit deriva-
tives include credit default swaps, asset swaps, total return swaps, credit 
linked notes, credit spread options, and credit spread forwards.1 By far the 
most popular credit derivatives is the credit default swap. In this chapter we 
describe credit risk modeling and the valuation of credit default swaps. We 
begin with a discussion of the basic features of credit default swaps. 

CREDIT DEFAULT SWAPS 

In a credit default swap, the documentation will identify the reference 
entity or the reference obligation. The reference entity is the issuer of 

1 For a discussion of each of these credit derivatives, see Mark J.P. Anson, Frank J. 
Fabozzi, Moorad Choudhry, and Ren-Raw Chen, Credit Derivatives: Instruments, 
Applications, and Pricing (Hoboken, NJ: John Wiley & Sons, 2003). 

* This chapter is coauthored with Professor Ren-Raw Chen of Rutgers University. 

679 
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the debt instrument. It could be a corporation, a sovereign government, 
or a bank loan. In contrast, a reference obligation is a specific obligation 
for which protection is being sought. 

In a credit default swap, the protection buyer pays a fee, the swap 
premium, to the protection seller in return for the right to receive a pay-
ment conditional upon the default of the reference obligation or the refer-
ence entity. Collectively, the payments made by the protection buyer are 
called the premium leg; the contingent payment that might have to be 
made by the protection seller is called the protection leg. 

In the documentation of a trade, a default is defined in terms of a 
credit event and we shall use the terms “default” and “credit event” inter-
changeably throughout this book. Should a credit event occur, the protec-
tion seller must make a payment. 

Credit default swaps can be classified as follows: single-name credit 
default swaps and basket swaps. We’ll discuss the difference between 
these types of swaps next. 

Single-Name Credit Default Swaps 
The interdealer market has evolved to where single-name credit default 
swaps for corporate and sovereign reference entities are standardized. 
The parties to the trade specify at the outset when the credit default swap 
will terminate. If no credit event has occurred by the maturity of the 
credit swap, then the swap terminates at the scheduled termination date— 
a date specified by the parties in the contract. However, the termination 
date under the contract is the earlier of the scheduled termination date or 
a date upon which a credit event occurs and notice is provided. Therefore, 
notice of a credit event terminates a credit default swap. 

The termination value for a credit default swap is calculated at the 
time of the credit event, and the exact procedure that is followed to calcu-
late the termination value will depend on the settlement terms specified in 
the contract. This will be either cash settlement or physical settlement. 

A credit default swap contract may specify a predetermined payout 
value on occurrence of a credit event. This may be the nominal value of 
the swap contract. Alternatively, the termination value can be calculated 
as the difference between the nominal value of the reference obligation 
and its market value at the time of the credit event. This arrangement is 
more common with cash-settled contracts. 

With physical settlement, on occurrence of a credit event the buyer 
delivers the reference obligation to the seller, in return for which the seller 
pays the face value of the delivered asset to the buyer. The contract may 
specify a number of alternative issues of the reference entity that the 
buyer can deliver to the seller. These are known as deliverable obligations. 
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This may apply when a credit default swap has been entered into on a ref-
erence entity rather than a specific obligation issued by that entity (i.e., 
when there is a reference entity rather than a reference obligation). 

Where more than one deliverable obligation is specified, the protection 
buyer will invariably deliver the one that is the cheapest on the list of eligi-
ble deliverable obligations. This gives rise to the concept of the cheapest-
to-deliver. In practice, the protection buyer will deliver the cheapest-to-
deliver bond from the deliverable basket. This delivery option has debat-
able value in theory, but significant value in practice. 

The standard contract for a single-name credit default swap in the 
interdealer market calls for a quarterly payment of the swap premium. 
Typically, the swap premium is paid in arrears. The quarterly payment is 
determined using one of the day count conventions in the bond market. 
A day count convention indicates the number of days in the month and 
the number of days in a year that will be used to determine how to pro-
rate the swap premium to a quarter. The day count convention used for 
credit default swaps is actual/360. A day convention of actual/360 
means that to determine the payment in a quarter, the actual number of 
days in the quarter are used and 360 days are assumed for the year. 

Basket Default Swaps 
In a basket default swap, there is more than one reference entity. Typically, 
in a basket default swap, there are three to five reference entities. There are 
different types of basket default swap. They are classified as follows:

 ■ Nth to default swaps
 ■ Subordinate basket default swaps
 ■ Senior basket default swaps 

Below we describe each type. 

Nth to Default Swaps 
In an Nth-to-default swap, the protection seller makes a payment to the 
protection buyer only after there has been a default for the Nth refer-
ence entity and no payment for default of the first (N – 1) reference enti-
ties. Once there is a payout for the Nth reference entity, the credit 
default swap terminates. That is, if the other reference entities that have 
not defaulted subsequently do default, the protection seller does not 
make any payout. 

For example, suppose that there are five reference entities. In a first-
to-default basket swap a payout is triggered after there is a default for 
only one of the reference entities. There are no other payouts made by the 
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protection seller even if the other four reference entities subsequently have 
a credit event. If a payout is triggered only after there is a second default 
from among the reference entities, the swap is referred to as a second-to-
default basket swap. So, if there is only one reference entity for which 
there is a default over the tenor of the swap, the protection seller does not 
make any payment. If there is a default for a second reference entity while 
the swap is in effect, there is a payout by the protection seller and the 
swap terminates. The protection seller does not make any payment for a 
default that may occur for the three remaining reference entities. 

Subordinate and Senior Basket Credit Default Swaps 
In a subordinate basket default swap there is (1) a maximum payout for 
each defaulted reference entity and (2) a maximum aggregate payout 
over the tenor of the swap for the basket of reference entities. For exam-
ple, assume there are five reference entities and that (1) the maximum 
payout is $10 million for a reference entity and (2) the maximum aggre-
gate payout is $10 million. Also assume that defaults result in the fol-
lowing losses over the tenor of the swap: 

Loss result from default of first reference entity =  $6 million


Loss result from default of second reference entity = $10 million


Loss result from default of third reference entity = $16 million


Loss result from default of fourth reference entity = $12 million


Loss result from default of fifth reference entity = $15 million


When there is a default for the first reference entity, there is a $6 
million payout. The remaining amount that can be paid out on any sub-
sequent defaults for the other four reference entities is $4 million. When 
there is a default for the second reference entity of $10 million, only $4 
million will be paid out. At that point, the swap terminates. 

In a senior basket default swap there is a maximum payout for each 
reference entity but the payout is not triggered until after a specified 
threshold is reached. To illustrate, again assume there are five reference 
entities and the maximum payout for an individual reference entity is 
$10 million. Also assume that there is no payout until the first $40 mil-
lion of default losses (the threshold). Using the hypothetical losses 
above, the payout by the protection seller would be as follows. The 
losses for the first three defaults is $32 million. However, because the 
maximum loss for a reference entity, only $10 million of the $16 million 
is applied to the $40 million threshold. Consequently, after the third 
default, $26 million ($6 million + $10 million + $10 million) is applied 
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toward the threshold. When the fourth reference entity defaults, only 
$10 million is applied to the $40 million threshold. At this point, $36 
million is applied to the $40 million threshold. When the fifth reference 
entity defaults in our illustration, only $10 million is relevant since the 
maximum payout for a reference entity is $10 million. The first $4 mil-
lion of the $10 million is applied to cover the threshold. Thus, there is a 
$6 million payout by the protection seller. 

LEGAL DOCUMENTATION 

Credit derivatives are privately negotiated agreements traded over the 
counter. The International Swaps and Derivatives Association (ISDA) 
has recognized the need to provide a common format for credit deriva-
tive documentation. In addition to the definitions of credit events, ISDA 
developed the ISDA Master Agreement. This is the authoritative con-
tract used by industry participants because it established international 
standards governing privately negotiated derivative trades (all deriva-
tives, not just credit derivatives). 

The most important section of the documentation for a credit 
default swap is what the parties to the contract agree constitutes a credit 
event that will trigger a credit default payment. Definitions for credit 
events are provided by the ISDA. First published in 1999, there have 
been periodic supplements and revisions of these definitions 

The 1999 ISDA Credit Derivatives Definitions (referred to as the 
“1999 Definitions”) provides a list of eight possible credit events: (1) 
bankruptcy; (2) credit event upon merger; (3) cross acceleration; (4) 
cross default; (5) downgrade; (6) failure to pay; (7) repudiation; and (8) 
restructuring. These eight events attempt to capture every type of situa-
tion that could cause the credit quality of the reference entity to deterio-
rate, or cause the value of the reference obligation to decline. 

The parties to a credit default swap may include all of these events, 
or select only those that they believe are most relevant. There has been 
standardization of the credit events that are used in credit default swaps 
in the United States and Europe. Nevertheless, this does not preclude a 
credit protection buyer from including broader credit protection. 

CREDIT RISK MODELING: STRUCTURAL MODELS 

To value credit derivatives it is necessary to be able to model credit risk.

Models for credit risks have long existed in the insurance and corporate
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finance literature. Those models concentrate on default rates, credit rat-
ings, and credit risk premiums. These traditional models focus on diver-
sification and assume that default risks are idiosyncratic and hence can 
be diversified away in large portfolios. Models of this kind are along the 
line of portfolio theory that employs the capital asset pricing model 
(CAPM). In the CAPM, only the systematic risk, or market risk, matters. 

For single isolated credits, the models calculate risk premiums as 
mark-ups onto the risk-free rate. Since the default risk is not diversified 
away, a similar model to the CAPM called the security market line 
(described in Chapter 17) is used to compute the correct markup for 
bearing the default risk. The Sharpe ratio is commonly used to measure 
how credit risks are priced.2 

Modern credit derivative models can be partitioned into two groups 
known as structural models and reduced form models. Structural mod-
els were pioneered by Black and Scholes3 and Merton.4 The basic idea, 
common to all structural-type models, is that a company defaults on its 
debt if the value of the assets of the company falls below a certain 
default point. For this reason, these models are also known as firm-
value models. In these models it has been demonstrated that default can 
be modeled as an option and, as a result, researchers were able to apply 
the same principles used for option pricing to the valuation of risky cor-
porate securities. The application of option pricing theory avoids the 
use of risk premium and tries to use other marketable securities to price 
the option. The use of the option pricing theory set forth by Black-
Scholes-Merton (BSM) hence provides a significant improvement over 
traditional methods for valuing default risky bonds. It also offers not 
only much more accurate prices but provides information about how to 
hedge out the default risk which was not obtainable from traditional 
methods. Subsequent to the work of BSM, there have been many exten-
sions and these extensions are described in this chapter. 

The second group of credit models, known as reduced form models, 
are more recent. These models, most notably the Jarrow-Turnbull5 and 

2 Robert Merton, “Option Pricing When Underlying Stock Returns Are Discontinu-
ous,” Journal of Financial Economics 3 (1976), pp. 125–144. 
3 Fischer Black and Myron Scholes, “The Pricing of Options and Corporate Liabili-
ties,” Journal of Political Economy 81, no. 3 (1973), pp. 637–654. 
4 Robert Merton, “Theory of Rational Option Pricing,” Bell Journal of Economics 
(Spring 1973), pp. 141–183, and Robert Merton, “On the Pricing of Corporate 
Debt: The Risk Structure of Interest Rates,” Journal of Finance 29, no. 2 (1974), pp. 
449–470. 
5 Robert Jarrow and Stuart Turnbull, “Pricing Derivatives on Financial Securities 
Subject to Default Risk,” Journal of Finance 50, no. 1 (1995), pp. 53–86. 
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Duffie-Singleton6 models, do not look inside the firm. Instead, they 
model directly the likelihood of default or downgrade. Not only is the 
current probability of default modeled, some researchers attempt to 
model a “forward curve” of default probabilities which can be used to 
price instruments of varying maturities. Modeling a probability has the 
effect of making default a surprise—the default event is a random event 
which can suddenly occur at any time. All we know is its probability. 

There is no standard model for credit. Part of the reason why this is 
so is that each of the models has its own set of advantages and disad-
vantages, making the choice of which to use depend heavily on what the 
model is to be used for. 

The Black-Scholes-Merton Model 
The earliest credit model that employed the option pricing theory can be 
credited to BSM. Black-Scholes, explicitly articulated that corporate lia-
bilities can be viewed as a covered call: own the asset but short a call 
option. In the simplest setting, where the company has only one zero-
coupon debt, at the maturity of the debt the debt holder either gets paid 
the face value of the debt—in such a case, the ownership of the com-
pany is transferred to the equity holder—or takes control of the com-
pany—in such a case, the equity holder receives nothing. The debt 
holder of the company therefore is subject to default risk for he or she 
may not be able to receive the face value of his or her investment. BSM 
effectively turned a risky debt evaluation into a covered call evaluation 
whereby the option pricing formulas can readily apply. 

In BSM, the company balance sheet consists of issued equity with a 
market value at time t equal to E(t). On the liability side is debt with a 
face value of K issued in the form of a zero-coupon bond that matures 
at time T. The market value of this debt at time t is denoted by D(t,T). 
The value of the assets of the firm at time t is given by A(t). 

At time T (the maturity of the debt), the market value of the issued 
equity of the company is the amount remaining after the debts have 
been paid out of the firm’s assets; that is, 

( ) = max{A TE T ( ) – K, 0} 

This payoff is identical to that of a call option on the value of the firm’s 
assets struck at the face value of the debt. The payoff is graphed as a 
function of the asset value in Exhibit 22.1. The holders of the risky cor-

6 Darrell Duffie and Kenneth Singleton, “Modeling the Term Structure of Default-
able Bonds,” working paper, Stanford University, 1997. 
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porate debt get paid either the face value, K, under no default or take 
over the firm, A, under default. Hence the value of the debt on the 
maturity date is given by 

( , ( ), K}D T T  ) = min{A T

( ) – max{A T= A T ( ) – K, 0} (22.1) 

= K – max{K A T– ( ), 0} (22.2) 

The equations provide two interpretations. Equation (22.1) decom-
poses the risky debt into the asset and a short call. This interpretation 
was first given by Black and Scholes that equity owners essentially own 
a call option of the company. If the company performs well, then the 
equity owners should call the company; or otherwise, the equity owners 
let the debt owners own the company. Equation (22.2) decomposes the 
risky debt into a risk-free debt and a short put. This interpretation 
explains the default risk of the corporate debt. The issuer (equity own-
ers) can put the company back to the debt owner when the performance 
is bad.7 The default risk hence is the put option. These relationships are 
shown in Exhibit 22.1. Exhibits 22.1(a) and 22.1(b) explain the rela-
tionship between equity and risky debt and Exhibits 22.1(b) and 22.1(c) 
explain the relationship between risky and risk-free debts. 

Note that the value of the equity and debt when added together must 
equal the assets of the firm at all times, that is, A(t) = E(t) + D(t,T). Clearly, 
at maturity, this is true as we have 

EXHIBIT 22.1 Payoff Diagrams at Maturity for Equity, Risky Debt, and 
Risk-Free Debt 

7 A covered call is a combination of a selling call option and owning the same face 
value of the shares which might have to be delivered should the option expire in the 
money. If the option expires in the money, a net profit equal to the strike is made. If 
the option expires worthless, then the position is worth the stock price. 
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E T ( , ( ) – K, 0} + min{A T( ) + D T  T  )	 = max{A T ( ), K} 
= A T( )  

as required. 
Since any corporate debt is a contingent claim on the firm’s future 

asset value at the time the debt matures, this is what we must model in 
order to capture the default. BSM assumed that the dynamics of the 
asset value follow a lognormal stochastic process of the form 

dA t
--------------- = rdt + σdW t

( )  ( ) 	 (22.3) 
A t( )  

where r is the instantaneous risk-free rate which is assumed constant, σ 
is the percentage volatility, and W(t) is the Wiener process under the 
risk neutral measure (see Chapter 15).8 This is the same process as is 
generally assumed within equity markets for the evolution of stock 
prices and has the property that the asset value of the firm can never go 
negative and that the random changes in the asset value increase pro-
portionally with the asset value itself. As it is the same assumption used 
by Black-Scholes for pricing equity options, it is possible to use the 
option pricing equations developed by BSM to price risky corporate lia-
bilities. 

The company can default only at the maturity time of the debt when 
the payment of the debt (face value) is made. At maturity, if the asset 
value lies above the face value, there is no default, else the company is in 
bankruptcy and the recovery value of the debt is the asset value of the 
firm. While we shall discuss more complex cases later, for this simple 
one-period case, the probability of default at maturity is 

K 

p = φ[A T ( ) = 1 – N d2( )]dA T ( )  (22.4)∫ 
–∞ 

where φ(⋅) represents the log normal density function, N(⋅) represents 
the cumulative normal probability, and 

8 The discussions of the risk neutral measure and the change of measure using the 
Girsanov theorem can be found in standard finance texts. See, for example, Darrell 
Duffie, Dynamic Asset Pricing (New Jersey: Princeton Press, 2000), and John Hull, 
Options, Futures, and Other Derivatives (New York: Prentice Hall, 2002). 
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( ) – lnK + (r – σ2 ⁄ 2)(T t)lnA t – 
= -----------------------------------------------------------------------------------d2 

σ T t– 

Equation (22.4) implies that the risk neutral probability of in the 
money N(d2) is also the survival probability. To find the current value of 
the debt, D(t,T) (maturing at time T), we need to first use the BSM 
result to find the current value of the equity. As shown above, this is 
equal to the value of a call option: 

( ) = A t ( ) – e –r T  t  )KN dE t ( )N d ( – ( )  (22.5)1 2

where d1 = + σ T t . The current value of the debt is a covered call–d2 
value: 

( , ( ) – E tD t T  ) = A t ( )  (22.6) 

= A t ( )N d ( – ( )]( ) – [A t ( ) – e –r T  t  )KN d1 2

( )[1 – N d ( – ( )= A t ( )] + e –r T  t  )KN d1 2

Note that the second term in the last equation is the present value of 
probability-weighted face value of the debt. It means that if default does 
not occur (with probability N(d2)), the debt owner receives the face 
value K. Since the probability is risk neutral, the probability-weighted 
value is discounted by the risk-free rate. The first term represents the 
recovery value. The two values together make up the value of debt. 

The yield of the debt is calculated by solving D(t,T) = Ke–y(T–t) for y to 
give 

lnK – lnD t T  )( , 
y = ---------------------------------------- (22.7)

T t– 

Consider the case of a company which currently has net assets 
worth $140 million and has issued $100 million in debt in the form of a 
zero-coupon bond which matures in one year. By looking at the equity 
markets, we estimate that the volatility of the asset value is 30%. The 
risk-free interest rate is at 5%. We therefore have 

A(t) = $140 million 
K = $100 million 
σ = 30% 
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T – t = 1 year 
r = 5%  

Applying equation (22.5), the equity value based upon the above 
example is, 

ln140 – ln100 + (0.05 – 0.32 ) × 1 
= -------------------------------------------------------------------------------------- = 1.4382d2 

0.3 1 

= 1.4382 – 0.30 = 1.1382d1 

E t( ) = 140 × N(1.1382) – e –0.05 × 100 × N(1.4382) 
= $46.48 million 

and market debt value, by equation (22.6) is 

( , ( ) – E tD t T  ) = A t ( ) = 140 – 46.48 = $93.52 million 

Hence, the yield of the debt is, by equation (22.7): 

ln100 – ln93.52 
y = ----------------------------------------- = 6.70% 

1 

which is higher than the 5% risk-free rate by 170 basis points. This “credit 
spread” reflects the 1-year default probability from equation (22.4): 

p = 1 – N(1.4382) = 12.75% 

and the recovery value of 

( )(1 – N dA t ( )) = $17.851

if default occurs. 
From above, we can see that, as the asset value increases, the firm is 

more likely to remain solvent, the default probability drops. When default 
is extremely unlikely, the risky debt will be surely paid off at par, the risky 
debt will become risk free, and yield the risk-free return (5% in our exam-
ple). In contrast, when default is extremely likely (default probability 
approaching 1), the debt holder is almost surely to take over the company, 
the debt value should be the same as the asset value which approaches 0. 
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Implications of BSM Model 
As we can see from this example, the BSM model captures some impor-
tant properties of risky debt; namely, the risky yield increases with the 
debt-to-asset leverage of the firm and its asset value volatility. Using the 
above equations, one can also plot the maturity dependency of the 
credit spread, defined as the difference between the risky yield and the 
risk-free rate. 

What is appealing about this model is that the shapes of the credit 
spread term structures resemble those observed in the market. The highly 
leveraged firm has a credit spread which starts high, indicating that if the 
debt were to mature in the short term, it would almost certainly default 
with almost no recovery. However as the maturity increases, the likeli-
hood of the firm asset value increasing to the point that default does not 
occur increases and the credit spread falls accordingly. For the medium 
leveraged firm, the credit spread is small at the short end—there are just 
sufficient assets to cover the debt repayment. As the maturity increases, 
there is a rapid increase in credit spread as the likelihood of the assets 
falling below the debt value rises. For the low leveraged company, the 
initial spread is close to zero and so can only increase as the maturity 
increases and more time is allowed for the asset value to drop. The gen-
eral downward trend of these spread curves at the long end is due to the 
fact that on average the asset value grows at the riskless rate and so given 
enough time, will always grow to cover the fixed debt. 

Empirical evidence in favor of these term structure shapes has been 
reported by Fons who observed similar relationships between spread term 
structure shapes and credit quality.9 Contrary evidence was reported by 
Helwege and Turner who observed that the term structure of some low-
quality firms is upward sloping rather than downward sloping.10 

Geske Compound Option Model 
If the company has a series of debts (zero coupon), then it is quite easy 
for the BSM model to characterize default at different times. The trick is 
to use the compound option model by Geske.11 A compound option is 

9 Jerome Fons, “Using Default Rates to Model the Term Structure of Credit Risk,” 
Financial Analysts Journal (September/October 1994), pp. 25–32. 
10 Jean Helwege and Christopher Turner, “The Slope of the Credit Yield Curve for 
Speculative-Grade Issuers,” Federal Reserve Bank of New York Working Paper 
no.97-25 (1997). 
11 See Geske, “The Valuation of Debt as Compound Options,” and Robert Geske 
and Herbert Johnson, “The Valuation of Corporate Liabilities as Compound Op-
tions: A Correction,” Journal of Financial and Quantitative Analysis 19, no. 2 
(1984), pp. 231–232. 
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an option on another option. The main point is that defaults are a series 
of contingent events. Later defaults are contingent upon prior no-
default. Hence, layers of contingent defaults build up a series of sequen-
tial compound options, one linking to the other. 

For example, suppose there are two zero-coupon bonds expiring in 
one year and two years, respectively. Both bonds have a $100 face 
value. The asset value is $200 today and follows the diffusion process 
given by equation (22.3). If the asset value falls below the face value in 
year 1, the company is technically under default. The company may seek 
additional capital to keep it alive or the company may simply declare 
default and let the holders of the two debts liquidate the company. In 
this case we have 

A(t)	 = $200 million r = 5% 

= $100 million T1 – t = 1 year
K1

= $100 million T2 – t = 2 years
K2 

σ	 = 20% 

The default point of a two-year model is the key to the problem. 
The recovery further complicates the problem. For example, the com-
pany may default when it fails to pay the first debt ($100); or the com-
pany may default if its asset value falls below the market value of the 
total debt, which is the face value of the first debt ($100) and the market 
value of the second debt. This happens at a situation where the second 
debt owner can audit the asset value of the firm. Furthermore, a fixed 
recovery of these debts simplifies the problem. But oftentimes recoveries 
of debts depend on claims on the assets at different priority levels. 

Take a simple example where the company defaults when it fails to 
pay its first debt. In this case the default probability is 

ln 200 ln – 100 + (5% – 0.22 ⁄ 2) × 1 
= -------------------------------------------------------------------------------------------- = 3.6157d2 

0.2 1 

p = 1 – N(3.6157) = 0.015% 

If we further assume that the first debt has a recovery rate of 0, then the 
debt value is 

( ,D t T1) = (1 – 0.015% )e –5% × 1 × 100 = 95.11 
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If we calculate the yield as before, we find that the spread to the risk-
free rate is 1.5 basis points. If the recovery is the asset value, then we do 
need to follow equation (22.5) and the debt value is 

ln200 – ln100 + (0.05 – 0.22) × 1 
= -------------------------------------------------------------------------------------- = 3.6157d2 

0.2 1 

= 3.6157 + 0.2 = 3.8157d1 

E t( ) = 200 × N(3.8157) – e –0.05 × 100 × N(3.6157) 
= 104.877 

D t T( , 1) = 200 – 104.8777 = 95.1223 

The small difference in the two results is because the default probability 
is really small (only 0.015%). When the default probability gets bigger, 
the debt value difference will get larger. 

The second bond is more complex to evaluate. It can be defaulted in 
t = 1 when the first debt is defaulted or t = 2 when only itself is defaulted. 
The retiring of the first debt can be viewed as the dividend of the stock. 
Under the lognormal model described above, we can write the firm 
value at the end of the two-year period as 

( , 2) = [A t T
(r–σ2 ⁄2)(T1 –t)+ σW T1A t T ( , 1) – K1]e 

( )  

= A t
(r–σ2 ⁄2)(T2 –t)+σW T2( )e 

( )  

– K1e 
(r–σ2 ⁄2)(T1 –t)+ σW T1( )  

where K1 is the face value of the 1-year debt and 

W u( ) = t d ( )duW t ∫0 

The default probability of the second debt is the sum of the first year 
default probability and the second year default probability as follows: 

( (Pr[A T < K1] + Pr[A (T > K1 and (A T < K2) ]1) 1) 2) 
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If the company survives the first period, it has to pay off the first 
debt, which clearly causes the asset price to be discontinuous. The dis-
continuity of the asset value makes the valuation of the second debt 
more difficult. Geske suggests that the if the firm issues equity to pay for 
the first debt, then the asset value should remain continuous and a 
closed-form solution can be achieved. Here, we simply show the result: 

( , 1) = e 
–r(T1 – t) – ( ( )[1 – N d+D t T K1N d11) + A t ( 11)] 

+( , 2) = A t ( 11) – M d+ , d22)]D t T ( )[N d+ ( 12 
–r(T2 – t) – – + e K2M d , d( 12 22) 

– – + e 
–r(T1 – t)

K1[N d12) – N d11)]( ( 

where 

ln A 0( ) ln – Kij + (r ± σ2 ⁄ 2)± = ------------------------------------------------------------------------dij 
σ Tij 

K12 is the internal solution to E(T1) = K11 which is given as the face 
value of the first debt (maturing at t = 1 year) and K22 is the face value 
of the second debt (maturing at t = 2). This formulation can be extended 
to include any number of debts, T = T1 = 1 and T22 = 2. The11 = T12 
correlation in the bivariate normal probability functions is the square 
root of the ratio of two maturity times. In this case, it is ¹⁄₂ .


Note that the total debt values add to


( , 1) + D t TD t T ( , 2) 

( + – = A t 12 (( )[1 – M d+ , d22)] + e 
–r(T1 – t)

K1N d12) 
–r(T2 – t) – – + e K2M d , d( 12 22) 

– which implies that the one-year survival probability is ( ) andN d12 – – two-year is ( , d  which is a bivariate normal probability func-M d12 22) 
tion with correlation T1 ⁄ T2 . The equity value, which is the residual 
value 
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( ) = A t ( , 1) – D t TE t ( ) – D t T ( , 2) 
– = A t ( + (( )M d+ , d22) – e 

–r(T1 – t)
K1N d12)12 

–r(T2 – t) – – – e K2M d , d( 12 22) 

which is precisely the compound option formula derived by Geske. The 
two debt values in the example are $95.12 and $81.27, respectively. The 
equity is $23.61. 

Using the information given in our earlier example, we solve for the 
“internal strike price”—the asset price at time 1 for E(1) = K11 to be 
$195.12. In other words, if the asset price at time 1, A(1), exceeds this 
value, the company survives; otherwise the company defaults. As a 
result, we can calculate the default probability of the first year to be 

( (Pr(A T K ) = 1 – N d12) = 1 – 0.6078 = 0.39221) < 12 

The two-year total default probability is the one whereby the com-
pany defaults in year 1 or it survives the first year but defaults the sec-
ond year: 

– – Pr[A T K ∪ A T2) K ] = 1 – M d12, d( ( (1) < 12 < 22 22) 
= 1 – 0.6077 = 0.3923 

The default probability therefore between the first year and the second 
year is only 0.0001. In other words, the Geske model indicates that the 
majority default probability is in the first year, and then the company 
can survive with almost certainty. 

In general, structural models are not easy to calibrate since informa-
tion regarding the size and priority of claimants on a company’s assets is 
not readily available. Typically companies only publish details of their 
balance sheets at most quarterly, and some companies, particularly 
those facing severe financial difficulties, do not disclose the full picture. 
Instead, practitioners tend to take equity volatility as a proxy for the 
asset value volatility.12 

Barrier Structural Models 
In addition to the Geske (compound option) model, another series of 
models have also evolved to extend the BSM model to multiple periods. 

12 For example, KMV uses = (A E)N d⁄ ( )σ , where is the volatility of eq-σE 1 A σE 
uity and is the volatility of the asset.σA 
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Pioneered by Black and Cox,13 these models view default as a knockout 
(down-and-out barrier) option14 where default occurred the moment the 
firm value crossed a certain threshold. 

More recently Longstaff and Schwartz15 examined the effect of sto-
chastic interest rates as did Briys and de Varenne16 who modeled the 
default as being triggered when the forward price of the firm value hits a 
barrier. Few studies within the structural approach of credit risk valua-
tion have incorporated jumps in the firm value process, because of lack 
of analytic tractability. Zhou17 incorporates jumps into a setting used in 
Longstaff and Schwartz.18 However, this model is very computation 
intensive. 

Huang and Huang propose a jump-diffusion structural model which 
allows for analytically tractable solutions for both bond prices and 
default probabilities and is easy to implement.19 The presence of jumps 
overcomes two related limitations of the BSM approach. First, it makes 
it possible for default to be a surprise since the jump cannot be antici-
pated as the asset value process is no longer continuous. Jumps also 
make it more likely that firms with low leverage can suddenly default in 
the short term and so enable them to have wider spreads at the short 
end than previously possible.20 

13 Fischer Black and John Cox, “Valuing Corporate Securities: Some Effects of Bond 
Indenture Provisions,” Journal of Finance 31, no. 2 (1976), pp. 351–367. 
14 A barrier option is a path dependent option. For such options both the payoff of 
the option and the survival of the option to the stated expiration date depends on 
whether the price of the underlying or the underlying reference rate reaches a speci-
fied level over the life of the option. Barrier options are also called down-and-out 
barrier options. Knockout options are used to describe two types of barrier options: 
knock-out options and knock-in options. The former is an option that is terminated 
once a specified price or rate level is realized by the underlying. A knock-in option is 
an option that is activated once a specified price or rate level is realized by the un-
derlying. 
15 Francis Longstaff and Eduardo Schwartz, “A Simple Approach to Valuing Risky 
Fixed and Floating Rate Debt,” Journal of Finance 50, no. 3 (1995), pp. 789–819. 
16 Eric Briys and Francois de Varenne, “Valuing Risky Fixed Rate Debt: An Exten-
sion,” Journal of Financial and Quantitative Analysis 32, no. 2 (1997), pp. 239–248. 
17 Chunsheng Zhou, “An Analysis of Default Correlations and Multiple Defaults,” 
Review of Financial Studies (2001), pp. 555–576. 
18 Longstaff and Schwartz, “A Simple Approach to Valuing Risky Fixed and Floating 
Rate Debt.” 
19 Ming Huang and Jay Huang, “How Much of the Corporate-Treasury Yield 
Spread is Due to Credit Risk?” working paper, Stanford University (2002). 
20 For a discussion of barrier-based models, see Chapter 8 in Anson, Fabozzi, 
Choudhry, and Chen, Credit Derivatives: Instruments, Applications, and Pricing. 
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Advantages and Drawbacks of Structural Models 
Structural models have many advantages. First, they model default on 
the very reasonable assumption that it is a result of the value of the 
firm’s assets falling below the value of its debt. In the case of the BSM 
model, the outputs of the model show how the credit risk of a corporate 
debt is a function of the leverage and the asset volatility of the issuer. 
The term structure of spreads also appear realistic and empirical evi-
dence argues for and against their shape. Some of the more recent struc-
tural models have addressed many of the limitations and assumptions of 
the original BSM model. 

However structural models are difficult to calibrate and so are not 
suitable for the frequent marking to market of credit contingent securi-
ties. Structural models are also computationally burdensome. For 
instance, as we have seen, the pricing of a defaultable zero-coupon bond 
is as difficult as pricing an option. Just adding coupons transforms the 
problem into the equivalent of pricing a compound option. Pricing any 
subordinated debt requires the simultaneous valuation of all of the more 
senior debt. Consequently, structural models are not used where there is 
a need for rapid and accurate pricing of many credit-related securities. 

Instead, the main application of structural models is in the areas of 
credit risk analysis and corporate structure analysis. As explained later 
in this chapter, a structural model is more likely to be able to predict the 
credit quality of a corporate security than a reduced form model. It is 
therefore a useful tool in the analysis of counterparty risk for banks 
when establishing credit lines with companies and a useful tool in the 
risk analysis of portfolios of securities. Corporate analysts might also 
use structural models as a tool for analyzing the best way to structure 
the debt and equity of a company. 

CREDIT RISK MODELING: REDUCED FORM MODELS 

The name reduced form was first given by Darrell Duffie to differentiate 
from the structural form models of the BSM type. Reduced form models 
are mainly represented by the Jarrow-Turnbull21 and Duffie-Singleton22 

models. Both types of models are arbitrage free and employ the risk-
neutral measure to price securities. The principal difference is that 

21 Robert Jarrow and Stuart Turnbull, “Pricing Derivatives on Financial Securities 
Subject to Default Risk,” Journal of Finance (March 1995), pp. 53–86. 
22 Darrell Duffie and Kenneth Singleton, “Modeling the Term Structure of Default-
able Bonds” (1997), working paper, Stanford University. 
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default is endogenous in the BSM model while it is exogenous in the Jar-
row-Turnbull and Duffie-Singleton models. As we will see, specifying 
defaults exogenously greatly simplifies the problem because it ignores 
the constraint of defining what causes default and simply looks at the 
default event itself. The computations of debt values of different maturi-
ties are independent, unlike in the BSM model that defaults of the later-
maturity debts are contingent on defaults of earlier-maturity debts. 

The Poisson Process 
The theoretical framework for reduced form models is the Poisson pro-
cess.23 To see what it is, let us begin by defining a Poisson process that 
at time t has a value Nt. The values taken by Nt are an increasing set of 
integers 0, 1, 2, … and the probability of a jump from one integer to the 
next occurring over a small time interval dt is given by 

[ + – Nt = 1] = λdtPr Nt dt  

where λ is known as the intensity parameter in the Poisson process. 
Equally, the probability of no event occurring in the same time 

interval is simply given by 

[ + – Nt = 0] = 1 – λdtPr Nt dt  

For the time being we shall assume the intensity parameter to be a fixed 
constant. In later discussions and especially when pricing is covered in the 
next chapter, we will let it be a function of time or even a stochastic vari-
able (known as a Cox process24). These more complex situations are 
beyond the scope of this chapter. It will be seen shortly that the intensity 
parameter represents the annualized instantaneous forward default prob-
ability at time t. As dt is small, there is a negligible probability of two 
jumps occurring in the same time interval. 

The Poisson process can be seen as a counting process (0 or 1) for 
some as yet undefined sequence of events. In our case, the relationship 
between Poisson processes and reduced form models is that the event 
which causes the Poisson process to jump from zero to 1 can be viewed 
as being a default. 

23 A Poisson process is a point process. Point processes were briefly introduced in 
Chapter 13. 
24 David Lando, “On Cox Processes and Credit Risky Securities,” Review of Deriv-
atives Research 2 (1998), pp. 99–120. Cox processes were briefly covered in Chapter 
13 of this book. 
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Another way to look at the Poisson process is to see how long it 
takes until the first default event occurs. This is called the default time 
distribution. It can be proven that the default time distribution obeys an 
exponential distribution as follows: 

– >Pr(T t) = e –λ(T t) 

This distribution function also characterizes the survival probability 
before time t: 

– ( , >Q t  T  ) = Pr(T t) = e –λ(T t) 

The Jarrow-Turnbull Model 
The Jarrow-Turnbull model is a simple model of default and recovery 
based on the Poisson default process described above.25 In their model, 
Jarrow and Turnbull assume that no matter when default occurs, the 
recovery payment is paid at maturity time T. Then the coupon bond 
value can be written as 

T n 

B t ( , ( )∫–dQ t  u  ) ud + ∑ P t  Tj)cje 
–λ(Tj – t)

( ) = P t  T  )R T ( , ( ,

t j = 1


n

– = P t  T  )R T ( ,( , ( )(1 – e –λ(T t)) + ∑ P t  Tj)cje 

–λ(Tj – t) 

j = 1 

where: 

P(t,T) = the risk-free discount factor 
cj = the j-th coupon 
Q(t,T) = the survival probability up to time t 
R = the recovery ratio 

It is seen that the conditional default probability is integrated out and dis-
appears from the final result. As a consequence, by assuming recovery 
payment to be at maturity, Jarrow and Turnbull assume away any depen-
dency between the bond price and the conditional default probability. 

It is worth noting that when the recovery rate is 0, for a zero-cou-
pon bond the value of the intensity parameter is also the bond’s forward 

25 Jarrow and Turnbull, “Pricing Derivatives on Financial Securities Subject to De-
fault Risk.” 
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yield spread. This is so because in any one-period interval in the bino-
mial model, we have 

– ( , ( ,D t T  ) = P t T  )e –λ(T t) 

= P t T  )Q t T  )( , ( , 

This is known as the risky discount factor, which is the present value of 
$1 if there is no recovery (i.e., the recovery ratio is zero, R = 0). 

The Jarrow-Turnbull model is usually modified when it is used in 
practice. One modification is to allow the Poisson intensity λ to be a 
function of time and the other is to allow recovery to be paid upon 
default. As a result the bond equation is modified as follows: 

T	 n 

( , ( )(–d ( )) + ∑ P t Tj)cjQ t Tj)( ) = P t u  )R u Q u ( , ( ,B t ∫ 
t j = 1


T u

λ w	 ( )dw–∫ ( )dw n –∫

Tj λ w
t( , ( )λ u t ( ,P t u  )R u ( )e + ∑ P t Tj)cje= ∫ 

t	 j = 1 

To actually implement this equation, it is usually assumed that λ fol-
lows a step function. That is between any two adjacent time points, λ is a 
constant. Furthermore, it is also, as a matter of mathematical tractabil-
ity, assumed that default can occur only at coupon times.26 As a result of 
this further assumption, the above equation can be simplified as 

j	 n 

– ∑ λ(Tk)	 – ∑ λ(Tk) 

( )e 
n n 

k = 1 ( , k = 1B t ( , ( )λ T( ) =	 ∑ P t Tj)R Tj j + ∑ P t Tj)cje

j = 1 j = 1


The major advantage of the Jarrow-Turnbull model is calibration. 
Since default probabilities and recovery are exogenously specified, one 
can use a series of risky zero-coupon bonds to calibrate out a default 
probability curve and hence a spread curve. 

Calibration has become a necessary first step in fixed-income trad-
ing recently for it allows traders to clearly see relative prices and hence 
be able to construct arbitrage trading strategies. The ability to quickly 
calibrate is the major reason why reduced form models are strongly 
favored by real-world practitioners in the credit derivatives markets. 

26 This assumption is not unreasonable because between two coupon times, if the 
company is not audited, the company should not have any reason to default. 
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The Calibration of Jarrow-Turnbull Model 
Exhibit 22.2 best represents the Jarrow-Turnbull model.27 The branches 
that lead to default will terminate the contract and incur a recovery pay-
ment. The branches that lead to survival will continue the contract which 
will then face future defaults. This is a very general framework to describe 
how default occurs and contract terminates. Various models differ in how 
the default probabilities are defined and the recovery is modeled. 

Since a debt contract pays interest under survival and pays recovery 
upon default, the expected payment is naturally the weighted average of 
the two payoffs. For the ease of exposition, we shall denote the survival 
probability from now to any future time as Q(0,t) where t is some 
future time. As a consequence, the difference between two survival 
times, Q(0,s) – Q(0,t) where s > t, by definition, is the default probabil-
ity between the two future time points t and s. 

The above binomial structure can be applied to both structural 
models and reduced form models. The default probabilities can be easily 
computed by these models. The difference resides in how they specify 
recovery assumptions. In the Geske model, the asset value at the time is 

EXHIBIT 22.2 Tree-Based Diagram of Binomial Default Process for a 
Debt Instrument 

27 As recent articles by Ren-Raw Chen and Jinzhi Huang [“Credit Spread Bonds and 
Their Implications for Credit Spread Modeling,” Rutgers University and Penn State 
University (2001)] and Ren-Raw Chen [“Credit Risk Modeling: A General Frame-
work,” Rutgers University (2003)] show, the binomial process is also applicable to 
structural models. 
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recovered. In the Duffie-Singleton model, a fraction of the market debt 
value is recovered. And in the Jarrow-Turnbull and other barrier mod-
els, an arbitrary recovery value is assumed (it can be beta distributed).28 

From the observed bond prices, we can easily retrieve default proba-
bilities from bond prices. Suppose there are two bonds, a one-year bond 
trading at $100 with a $6 annual coupon and a two-year bond trading 
at $100 with a $7 annual coupon. Assuming a recovery of $50 per $100 
par value, the first bond price is calculated as 

, ,p(0 1) × 50 + 106 × (1 – p(0 1))
100 = --------------------------------------------------------------------------------------

1 5%  + 

The default probability is then found by solving for p(0,1): 

,105 = 106 – 56 × p(0 1) 
p(0 1) = 1.79% , 

We use pt to represent the forward/conditional default probability at 
time t. Hence, p1 is the default probability of the first period. In the first 
period, the survival probability is simply 1 minus the default probability: 

, ,Q(0 1) = 1 – p(0 1) = 1 – 1.79% = 98.21% 

and therefore 

λ = –ln 0.9821 = 1.8062% 

The second bond is priced, assuming a recovery of $20 out of $100: 

, , p(1 2) × 20 + (1 – p(1 2)) × 107 
p(0 1) × 20 + Q(0 1) × 7 + -------------------------------------------------------------------------------------- 

 1.05 
, , 

100 = ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
1.05 

, , p(1 2) × 20 + (1 – p(1 2)) × 107 
1.79% × 20 + 98.21% × 7 + -------------------------------------------------------------------------------------- 

 1.05  
= ----------------------------------------------------------------------------------------------------------------------------------------------------------------------

1.05 

28 For more details, see Chen, “Credit Risk Modeling: A General Framework.” 
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Solving for the second-period default probability one obtains p(1,2) = 
14.01%. 

The total survival probability till two years is surviving through the 
first year (98.21%) and the second year (1 – 14.01% = 85.99%): 

, , ,Q(0 2) = Q(0 1)(1 – p(1 2)) = 98.21% × (1 – 14.01% ) = 84.45% 

λ1 + λ2 = –ln 0.8445 = 16.9011% 

λ2 = 16.9011% – λ1 = 16.9011% – 1.8062% = 15.0949% 

The total default probability is either defaulting in the first period 
(1.79%) or surviving through the first year (98.21%) and defaulting in 
the second (14.01%). 

1.79% + 98.21% × 14.01% = 15.55% 

This probability can be calculated alternatively by 1 minus the two-
period survival probability: 

1 – Q(0,2) = 1 – 84.45% = 15.55% 

It should be noted that any forward default probability is the differ-
ence of two survivals weighted by the previous survival as shown below: 

( Q(0, j – 1) – Q(0, j)
p j  – 1, j) = ---------------------------------------------------- (22.8) 

Q(0, j – 1) 

For example, the second period default probability is 

p(0,2) = 1 – Q(0,2)/Q(0,1) 

To express this more clearly, let us examine a two-period binomial 
tree shown in Exhibit 22.3. It should be clear how the recovery amount 
can change the default probabilities. Take the one-year bond as an 
example. If the recovery were higher, the default probability would be 
higher. This is because for a higher recovery bond to be priced at the 
same price (par in our example), the default probability would need to 
be higher to compensate for it. If the default probability remains the 
same, then the bond should be priced above par. 

So far we have not discussed any model. We simply adopt the spirit 
of the reduced form models and use the market bond prices to recover 
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EXHIBIT 22.3 Immediate Recovery 

risk-neutral probabilities. This is very similar to the bootstrapping 
method in calibrating the yield curve. The probabilities are solved recur-
sively. 

No matter which model is used, the model has to match the default 
probabilities implied by the bond prices observed in the market. It can 
be seen in the above section that there is no closed-form solution. The 
reason is that the recovery amount is the liquidation value of the com-
pany and can change as time changes (so called “stochastic recovery”). 

Transition Matrix 
The binomial structure can be extended to multinomial to incorporate 
various credit classes. It is as easy to specify n states (different credit rat-
ings) instead of just two states (default and survival). The probabilities 
can always be given exogenously. Hence, instead of a single default for 
default (and survival), there can be a number of probabilities, each for 
the probability of moving from one credit rating to another credit rat-
ing. Based upon this idea, Jarrow, Lando, and Turnbull,29 extend the 
Jarrow-Turnbull model to incorporate the so-called migration risk. 
Migration risk is different from default risk in that a downgrade in 
credit ratings only widens the credit spread of the debt issuer and does 
not cause default. No default means no recovery to worry about. This 
way, the Jarrow-Turnbull model can be more closely related to spread 
products, whereas as a model of default it can only be useful in default 
products. One advantage of ratings transition models is the ability to 
use the data published by the credit rating agencies. 

29 Robert Jarrow, David Lando, and Stuart Turnbull, “A Markov Model for the 
Term Structure of Credit Spreads,” Review of Financial Studies 10 (1997), pp. 481– 
532. 
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For a flavor of how a rating transition model can be obtained, con-
sider a simple three-state model. At each time interval an issuer can be 
upgraded, downgraded or even jump to default. This process is shown 
in Exhibit 22.4. This time, the tree is more complex. From a “live” 
state, the issuer can be upgraded or downgraded, or even jump to 
default. The default state, on the other hand, is an absorbing barrier 
which cannot become live again. In terms of Exhibit 22.4, a movement 
from “good rating” to “middle rating” is downgrade, and vice versa. 

To best describe the situation, we can establish the following transi-
tion matrix: 

Future state 
2 1 0 

2 p22 p21 p20 

Current state 1 p12 p11 p10 

0 0 0 1 

where 0 is the default state, 1 is the middle credit rating state, and 2 is 
good credit rating state. pij is the transition probability to move from 
the current state i to future state j. The sum of the probabilities of each 
current state should be 1, that is 

2 

∑ pij = 1 
j = 0 

The last row of the matrix is all 0’s except for the last column. This 
means that once the asset is in default, it cannot become live again and 
it will remain in default forever. 

EXHIBIT 22.4 Multistate Default Process 
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To make the model mathematically tractable, Jarrow-Lando-Turn-
bull assume that the transition matrix follows a Markov chain; that is, 
the n-period transition is the above matrix raised to the n-th power. The 
main purpose to derive such a matrix is that we can calibrate it to the 
historical transition matrix published by rating agencies. Note that the 
historical transition matrix consists of real probabilities which are dif-
ferent from the risk-neutral probabilities in the tree. Hence, Jarrow-
Lando-Turnbull make a further assumption that the risk-neutral proba-
bilities are proportional to the actual ones. For a risk averse investor, 
the risk-neutral default probabilities are larger than the actual ones 
because of the risk premium. 

Since historical default probabilities are observable, we can then 
directly compute the prices of credit derivatives. For example, let the 
transition probability matrix for a 1-year period be 

Future state 
2 1 0 

2 0.80 0.15 0.05 
Current state	 1 0.15 0.70 0.15 

0 0 0 1 

Then, for a one-year, 0-recovery coupon bond, if the current state is 
1, it has 85% to receive the coupon and 15% to go into default in the 
next period. So the present value of the next coupon is 

0.85 × $6 
------------------------ = $4.81 

1.06 

In the second period, the bond could be upgraded with probability of 
15% or remain the same with probability of 70%. If it is at the good rat-
ing, then the probability of survival is 95% and if it is at the bad rating, the 
probability of survival is 85%. Hence, the total probability of survival is 

0.15 × 0.95 + 0.7 × 0.85 = 0.7375 = 73.75% 

Therefore, the present value of the maturity cash flow (coupon and face 
value) is 

0.7375 × 106 
---------------------------------- = $69.58 

1.062 
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The bond price today is 

$4.81 + $69.58 = $74.39 

Similar analysis can be applied to the case where the current state is 2. In 
the above example, it is quite easy to include various recovery assumptions. 

It is costly to include the ratings migration risk in the Jarrow-Turn-
bull model. It is very difficult to calibrate the model to the historical 
transition matrix. First of all, the historical probabilities computed by 
the rating agencies are actual probabilities while the probabilities that 
are used for computing prices must be risk neutral probabilities that we 
introduced in Chapter 14. The assumption by Jarrow, Lando, and Turn-
bull that there is a linear transformation does not necessarily provide a 
good fit to the data. Second, there are more variables to solve for than 
the available bonds. In other words, the calibration is an underidentifi-
cation problem. Hence, more restrictive assumptions about the proba-
bilities need to be made. In general, migration risk is still modeled by 
the traditional portfolio theory (non-option methodology). But the 
model by Jarrow, Lando, and Turnbull is a first attempt at using the 
option approach to model the rating migration risk. 

The Duffie-Singleton Model 
Obviously, the Jarrow-Turnbull assumption that recovery payment can 
occur only at maturity is too far from reality. Although it generates a 
closed-form solution for the bond price, it suffers from two major draw-
backs in reality: recovery actually occurs upon (or soon after) default 
and the recovery amount can fluctuate randomly over time.30 

Duffie and Singleton take a different approach.31 They allow the 
payment of recovery to occur at any time but the amount of recovery is 
restricted to be the proportion of the bond price at default time as if it 
did not default. That is 

( ) = δD t  T  )R t ( , 

where R is the recovery ratio, δ is a fixed ratio, and D(t,T) represents the 
debt value if default did not occur. For this reason the Duffie-Singleton 
model is known as a fractional recovery model. The rationale behind this 
approach is that as the credit quality of a bond deteriorates, the price 
falls. At default the recovery price will be some fraction of the final price 

30 Recovery fluctuates because it depends on the liquidation value of the firm at the

time of default.

31 Duffie and Singleton, “Modeling the Term Structure of Defaultable Bonds.” 
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immediately prior to default. In this way we avoid the contradictory sce-
nario which can arise in the Jarrow-Turnbull model in which the recovery 
rate, being an exogenously specified percentage of the default-free payoff, 
may actually exceed the price of the bond at the moment of default. 

The debt value at time t is32 

1( , [ (	 [ (D t T  ) =	 ------------------{pδE D t + ∆t, T)] + (1 – p)E D t + ∆t, T)]}
1 + r t∆ 

By recursive substitutions, we can write the current value of the 
bond as its terminal payoff if no default occurs: 

( , 1 – p t n∆ (1 – δ) ( )D t T  ) = ------------------------------------ X T
1 + r t∆ 

Note that the instantaneous default probability being p∆t is consis-
tent with the Poisson distribution, 

–dQ
------------ = p t∆ 

Q 

Hence, recognizing ∆t = T/n, 

D t T  ) = -------------------------------------------X T + ( )  (22.9) 
exp(rT)

( , exp(–p(1 – δ)T) ( ) = exp(–(r s)T)X T

When r and s are not constants, we can write the Duffie-Singleton 
model as 

 T  
D t T  ) = Et exp–∫ [r u ( )]du X T( , ( ) + s u ( )

  
t 

where s(u) = p (1 – δ). Not only does the Duffie-Singleton model have au
closed-form solution, it is possible to have a simple intuitive interpretation 
of their result. The product p(1 – δ) serves as a spread over the risk-free 
discount rate. When the default probability is small, the product is small 

32 The probability, p, can be time dependent in a more general case. 
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and the credit spread is small. When the recovery is high (i.e., 1 – δ is 
small), the product is small and the credit spread is small. 

Consider a two-year zero coupon bond. Assume that the probability 
of defaulting each year is 4%, conditional on surviving to the beginning 
of the year. If the bond defaults we assume that it loses 60% of its mar-
ket value. We also assume that risk-free interest rates evolve as shown in 
Exhibit 22.5 where an up move and a down move have an equal proba-
bility of 50%. At any node on the tree the price is the risk-free dis-
counted expectation of the payoff at the next time step. Therefore at the 
node where the risk-free rate has climbed to 7%, the value of the secu-
rity is given by 

1 
-----------[(1 – 0.04) × $100 + 0.04 × ($100 – $60)] = $91.25 
1.07 

Using the relationship 

EXHIBIT 22.5 Valuation of a Two-Year Defaultable Zero-Coupon Bond Using 
Duffie-Singleton 
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1 1 -------------------- = ------------[pδ + (1 – p)]
1 + +r s 1 + r 

this implies an effective discounting rate of r + s = 9.63% over the time 
step from the 7% node. In this way we can proceed to value the other 
nodes and roll back to calculate an initial price for the bond equal to 
$84.79. On each node in Exhibit 22.5 is also shown the effective dis-
counting rate. Knowing these we can equally price the bond as though it 
were default free but discounted at r + s rather than at the risk-free rate. 

The Duffie-Singleton model has one very important advantage. The 
above result implies that it can be made compatible with arbitrage-free 
term structure models such as Cox-Ingersoll-Ross33 and Heath-Jarrow-
Morton.34 The difference is that now the discounting is spread adjusted. 
Just like the yield curve for the risk-free term structure, the spread curve 
is added to the risk-free yield curve and we arrive at a risky yield curve. 
The spread curve is clearly based upon the probability curve (pt for all t) 
and the recovery rate (δ). 

Although the Duffie-Singleton model seems to be superior to the 
Jarrow-Turnbull model, it is not generic enough to be applied to all 
credit derivative contracts. The problem with the Duffie-Singleton 
model is that if a contract that has no payoff at maturity such as a credit 
default swap, their model implies zero value today, which is of course 
not true. Recall that credit default swaps pay nothing if default does not 
occur. If recovery is proportional to the no-default payment, then it is 
obvious that the contract today has no value. It is quite unfortunate that 
the Duffie-Singleton model is not suitable for the most popular credit 
derivative contracts. Hence, the proportionality recovery assumption is 
not very general. 

The calibration of the Duffie-Singleton model is as easy as the Jarrow-
Turnbull model. The two calibrations are comparable. However, there 
are significant differences. Note that in the Jarrow-Turnbull model, the 
recovery assumption is separate from the default probability. But this is 
not the case in the Duffie-Singleton model—the recovery and the default 
probability together become an instantaneous spread. While we can cal-
ibrate the spreads, we cannot separate the recovery from the default 
probability. On the other hand, in the Jarrow-Turnbull model, the 

33 John Cox, Jonathan Ingersoll, and Stephen Ross, “A Theory of the Term Structure 
of Interest Rates,” Econometrica 53 (1985), pp. 385–407. 
34 David Heath, Robert Jarrow, and Andrew Morton, “Bond Pricing and the Term 
Structure of Interest Rates: A New Methodology,” Econometrica 59 (February 
1992), pp. 77–105. 
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default probability curve can be calibrated to only if a particular recov-
ery assumption is adopted. Hence the default probability is a function 
of the assumed recovery rate. 

General Observations on Reduced Form Models 
While the reduced form models lay a solid theoretical foundation, as 
they attempt to model the underlying risk-neutral probability of default 
which is not a market observable, they are not as intuitive as one might 
like. They also suffer from the constraint that default is always a sur-
prise. While this is true under some rare circumstances, Both Moody’s 
and Standard & Poor’s data show that there are very few defaults 
straight out of investment-grade quality bonds. Default is usually the 
end of a series of downgrades and spread widenings and so can be antic-
ipated to a large extent. Hence, although more and more financial insti-
tutions are starting to implement the Jarrow-Turnbull and Duffie-
Singleton models, spread-based diffusion models remain very popular. 

The Jarrow-Turnbull and Duffie-Singleton models assume that defaults 
occur unexpectedly and follow the Poisson process. This assumption 
greatly reduces the complexity since the Poisson process has very nice 
mathematical properties. In order to further simplify the model, Jarrow-
Turnbull and Duffie-Singleton respectively make other assumptions so 
that there exist closed-form solutions to the basic underlying asset. 

PRICING SINGLE-NAME CREDIT DEFAULT SWAPS 

There are two approaches to pricing default swaps—static replication 
and modeling. The former approach is based on the assumption that if 
one can replicate the cash flows of the structure which one is trying to 
price using a portfolio of tradable securities, then the price of the struc-
ture should equal the value of the replicating portfolio. This is accom-
plished through what is known as an asset swap; however, there are 
limitations of using of asset swaps for pricing.35 In situations where 
either the nature of the instrument we are trying to price cannot be rep-
licated or that we do not have access to prices for the instruments we 
would use in the replicating portfolio, it becomes necessary to use a 
modeling approach. That is the approach explained below for pricing 
credit default swaps. 

35 See Chapter 4 in Anson, Fabozzi, Choudhry, and Chen, Credit Derivatives: Instru-
ments, Applications, and Pricing. 
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Several models have been suggested for pricing single-name credit 
default swaps.36 These products (before we take into account the valua-
tion of counterparty risk) are generally regarded as the “cash product” 
that can be directly evaluated off the default probability curves. No 
parametric modeling is necessary. This is just like the coupon bond val-
uation which is model free because the zero-coupon bond yield curve is 
all that is needed to price coupon bonds. 

General Framework 
To value credit derivatives it is necessary to be able to model credit risk. 
The two most commonly used approaches to model credit risk are struc-
tural models and reduced form models. The latter do not look inside the 
firm. Instead, they model directly the likelihood of a default occurring. 
Not only is the current probability of default modeled, some researchers 
attempt to model a “forward curve” of default probabilities which can 
be used to price instruments of varying maturities. Modeling a probabil-
ity has the effect of making default a surprise—the default event is a 
random event which can suddenly occur at any time. All we know is its 
probability of occurrence. 

Reduced form models are easy to calibrate to bond prices observed 
in the marketplace. Structural-based models are used more for default 
prediction and credit risk management.37 

Both structural and reduced form models use risk-neutral pricing to 
be able to calibrate to the market. In practice, we need to determine the 
risk-neutral probabilities in order to reprice the market and price other 
instruments not currently priced. In doing so, we do not need to know 
or even care about the real-world default probabilities. 

36 See, for example, John Hull and Alan White, “Valuing Credit Default Swaps I,” 
working paper, University of Toronto (April 2000) and “Valuing Credit Default 
Swaps II: Counterparty Default Risk,” working paper, University of Toronto (April 
2000); and Dominic O’Kane, “Credit Derivatives Explained: Markets Products and 
Regulations,” Lehman Brothers, Structured Credit Research (March 2001) and “In-
troduction to Default Swaps,” Lehman Brothers, Structured Credit Research (Janu-
ary 2000). 
37 Increasingly, investors are seeking consistency between the markets that use differ-
ent modeling approaches, as the interests in seeking arbitrage opportunities across 
various markets grows. Ren-Raw Chen has demonstrated that all the reduced form 
models described above can be regarded in a non-parametric framework. This non-
parametric format makes the comparison of various models possible. Furthermore, 
as Chen contends, the non-parametric framework focuses the difference of various 
models on recovery. See Ren-Raw Chen, “Credit Risk Modeling: A General Frame-
work,” working paper, Rutgers University, 2003. 
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Since in reality, a default can occur any time, to accurately value a 
default swap, we need a consistent methodology that describes the fol-
lowing: (1) how defaults occur; (2) how recovery is paid; and (3) how 
discounting is handled. 

Survival Probability and Forward Default Probability: 
A Recap 
Earlier in this chapter we introduced two important analytical con-
structs: survival probability and forward default probability. We recap 
both below since we will need them in pricing credit default swaps. 

Assume the risk-neutral probabilities exist. Then we can identify a 
series of risk-neutral default probabilities so that the weighted average 
of default and no-default payoffs can be discounted at the risk-free rate. 

Let Q(t,T) to be the survival probability from now t till some future 
time T. Then Q(t,T) – Q(t,T + τ) is the default probability between T and 
T + τ (i.e., survive till T but default at T + τ). Assume defaults can only 
occur at discrete points in time, T1, T2, ..., T . Then the total probabilityn
of default over the life of the credit default swap is the sum of all the per 
period default probabilities: 

n 

( , ( , ( ( )∑ Q t Tj) – Q t Tj + 1) = 1 – Q Tn) = 1 – Q T
j = 0 

where t = T0 < T1 < ... < T = T and T is the maturity time of the creditn 
default swap. Note that the sum of the all the per-period default proba-
bilities should equal one minus the total survival probability. 

The survival probabilities have a useful application. A $1 “risky” 
cash flow received at time T has a risk-neutral expected value of Q(t,T) 
and a present value of P(t,T)Q(t,T) where P is the risk-free discount fac-
tor. A “risky” annuity of $1 can therefore be written as 

∑ 
n 

P t Tj)Q t Tj)( , ( , 
j = 1 

A “risky” bond with no recovery upon default and a maturity of n 
can thus be written as 

n 

( ) = ∑ P t Tj)Q t Tj)cj + P t T )Q t T )B t ( , ( , ( , ( ,n n 
j = 1 
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This result is similar to the risk-free coupon bond where only risk-free 
discount factors are used. 

The “forward” default probability is a conditional default probabil-
ity for a forward interval conditional on surviving until the beginning of 
the interval. This probability can be expressed as 

( , ( ,Q t Tj – 1) – Q t Tj)p Tj( ) = ------------------------------------------------------- (22.10)
( ,Q t Tj – 1) 

Credit Default Swap Value 
A credit default swap takes the defaulted bond as the recovery value and 
pays par upon default and zero otherwise. 

µ
r s–∫ ( )ds

V = E e  e 1µ < T[1 – R µ( )] 

where µ is default time. 
Hence the value of the credit default swap (V) should be the loss upon 

default weighted by the default probability: 

n 

V = ∑ P t Tj)[Q t Tj – 1) – Q t Tj)][1 – R Tj( , ( , ( , ( )] (22.11) 
j = 1 

where P(·) is the risk-free discount factor and R(·) is the recovery rate. 
In equation (22.2) it is implicitly assumed that the discount factor is 

independent of the survival probability. However, in reality, these two 
may be correlated—usually higher interest rates lead to more defaults 
because businesses suffer more from higher interest rates. Equation 
(22.2) has no easy solution.

From the value of the credit default swap, we can derive a spread 
(s), which is paid until default or maturity: 

V 
s = -------------------------------------------------- (22.12) 

n 

∑ P t Tj)Q t Tj)( , ( , 
j = 1 

Exhibit 22.6 depicts the general default and recovery structure. The 
payoff upon default of a default swap can vary. In general, the owner of 
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EXHIBIT 22.6 Payoff and Payment Structure of a Credit Default Swap 

the default swap delivers the defaulted bond and in return receives prin-
cipal. Many default swaps are cash settled and an estimated recovery is 
used. In either case, the amount of recovery is randomly dependent 
upon the value of the reference obligation at the time of default. Models 
differ in how this recovery is modeled.38 

To illustrate how to use the above formulation of credit default 
swap pricing, assume (1) two “risky” zero-coupon bonds exist with one 
and two years to maturity and (2) no recovery upon default. From equa-
tion (22.10) we know the credit spreads of these two “risky” zeros are 
approximately their default probabilities. For example, assume the one-
year zero has a spread of 100 basis points and the two-year has a spread 
of 120. The survival probabilities can be computed from equation 
(22.10). For the one-year bond whose yield spread is 100 basis points, 
the (one year) survival probability is 

1% = –ln Q(0 1), 
Q(0 1) = e –1% = 0.9900, 

For the two-year zero-coupon bond whose yield spread is 120 basis 
points, the (two year) survival probability is: 

,1.2% × 2 = –lnQ(0 2) 
,Q(0 2) = e –1.2% × 2 = 0.9763 

38 We provide an example where the two variables are independent and the defaults 
follow a Poisson process. The simple solution exists under the continuous time as-
sumption. The analysis is provided in the appendix to Chapter 10 in Anson, Fabozzi, 
Choudhry, and Chen, Credit Derivatives: Instruments, Applications, and Pricing. 
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These survival probabilities can then be used to compute forward 
default probabilities defined in equation (22.8): 

p	 1
, ,Q(0 0) – Q(0 1) 1 – 99.00% 

( ) = ---------------------------------------------- = ------------------------------ = 1.00% 
Q(0 0) 1, 

and 

p	 2
, ,Q(0 1) – Q(0 2) 99.00% – 97.63% 

( ) = ---------------------------------------------- = ------------------------------------------------ = 1.39% 
Q(0 1) 99.00% , 

Since we assume a 5% flat risk-free rate for two years, the risk-free dis-
count factors are 

P(0 1) = e –5% , 
,P(0 2) = e –5% × 2 

for one and two years, respectively. Assuming a 20% recovery ratio, we 
can then calculate, using equation (22.11), what the total protection 
value (V) of the default swap contract is providing 

–5% × 2V = e –5%(1 – 0.99)(1 – 0.2) + e (0.99 – 0.9763)(1 – 0.2) 
= 0.00761 + 0.010134 
= 0.017744 = 177.44 basis points 

As mentioned, the default swap premium is not paid in full at the 
inception of the swap but paid in a form of spread until either default or 
maturity, whichever is earlier. From equation (22.12), we can compute 
the spread of the default swap as follows: 

0.017744 
s = ---------------------------------------------------------------------------------------------------------------------

0.99 × exp(–0.05) + 0.9763 × exp(–0.05 × 2) 
0.017744 

=	 ------------------------- = 0.009724

1.824838


which is 9.724 basis points for each period, provided that default does not 
occur. This is a payment in arrears. That is, if default occurs in the first 
period, no payment is necessary. If default occurs in the second period, 
there is one payment; if default never occurs, there are two payments. 
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No Need For Stochastic Hazard Rate or Interest Rate 
The analysis above demonstrates that to price a default swap, we only need 
a recovery rate, the risk-free yield curve (the P-curve), and the survival 
probability curve (the Q-curve). This implies that regardless of which model 
is used to justify the P-curve or the Q-curve, default swaps should be priced 
exactly the same. This further implies that there is no need to be concerned 
if the risk-free rate and the hazard rate are stochastic or not, because they 
do not enter into the valuation of the default swap. In other words, random 
interest rates and hazard rates are “calibrated out” of the valuation.39 

Delivery Option in Default Swaps 
As explained earlier in this chapter, a credit default swap trade can spec-
ify a reference entity or a reference obligation. In the former case, the 
protection buyer has the option to deliver one of severable deliverable 
obligations of the reference entity. This effectively creates a similar situ-
ation to the well-known quality option for Treasury note and bond 
futures contracts where more than one bond can be delivered. In this 
case, the value of the credit default swap is 

n 

( , ( , j – 1) – Q t  Tj )][1 – minR TjV =	 ∑ P  t  Tj )[Q t  T ( , ( )] 
j = 1 

The difference between the above equation and equation (22.11) is the 
recovery. The delivery of the lowest recovery bond, min{R(Tj)}, for all j 
bonds is what the payoff is. 

It is natural that the worst quality bond should be delivered upon 
default. For a credit default swap, the one with the lowest recovery 
should be delivered. Unlike Treasury bond and note futures where the 
cheapest-to-deliver issue can change due to interest rate changes, recovery 
is mostly determined contractually and usually the lowest priority bond 
will remain the lowest priority for the life of the contract. The only uncer-
tainty in determining the cheapest-to-deliver issue is the future introduc-
tion of new bonds. This is largely related to the capital structure of the 
company and beyond the scope of risk-neutral pricing. The model that 
can incorporate capital structure issues (i.e., using debt to optimize capi-
tal structure) needs to be a structural model with wealth maximization.40 

39 For the stochastic hazard rate model, see Daniel Lando, “On Cox Processes and 
Credit Risky Securities,” Review of Derivatives Research (1998), pp. 99–120. 
40 Issues about optimal capital structure and default risk are discussed in Hayne E. Le-
land and Klaus Bjerre Toft, “Optimal Capital Structure, Endogenous Bankruptcy, and 
the Term Structure of Credit Spreads,” Journal of Finance (July 1996), pp. 987–1019. 



22-Credit Risk Model Derivs  Page 717  Wednesday, February 4, 2004  1:12 PM

717 Credit Risk Modeling and Credit Default Swaps 

Default Swaps with Counterparty Risk 
Counterparty risk is a major concern for credit default swap investors 
because major participants in the market are financial firms, which are 
themselves subject to default risk.41 Most bank/dealer counterparties 
are single A or at most AA rated. If the reference entity name is a AAA 
rated company, then the default probability of the bank/dealer is so 
much higher than the reference entity that the bank/dealer may default 
well before the reference entity. In this case, the protection buyer in a 
credit default swap is more concerned with the counterparty default risk 
than the default risk of the reference entity. In this section, we shall 
extend the previous risk-neutral methodology to account for counter-
party risk, with the assumption that the default of the reference entity 
and the default of the counterparty are uncorrelated. 

We label the survival probability of the reference entity Q1(t,T) and 
that of the counterparty Q2(t,T). The default probabilities of the reference 
entity and counterparty in the jth period in the future are Q1(t,T ) –j
Q1(t,T +1) and Q2(t,T ) – Q2(t,T +1), respectively. The default of either one is j j j

, , , j + 1)Q2(t TQ1(t Tj)Q2(t Tj) – Q1(t T , j + 1) 

The above equation represents a situation that both the reference 
entity and counterparty jointly survive till Tj but not Tj+1. Hence one of 
them must have defaulted in the period (Tj,Tj+1). Subtracting the coun-
terparty default probability from the probability of either default gives 
rise to the probability of the case that only the reference entity (but not 
the counterparty) defaults. Hence the total probability of only the refer-
ence entity defaulting is 

n 

, , j , j + 1)Q2(t T , , j + 1)]∑ [Q1(t Tj)Q2(t T ) – Q1(t T , j + 1)] – [Q2(t Tj) – Q2(t T
j = 0 

When recovery and discounting are included, we have the credit 
default swap value as 

n 

( , ( )][Q1(t Tj)Q2(t Tj) – Q1(t T , j + 1)V = ∑ P t Tj)[1 – R Tj , , , j + 1)Q2(t T
j = 0 

, j , j + 1)} ]–{Q2(t T ) – Q2(t T

41 See also Hull and White, “Valuing Credit Default Swaps II: Counterparty Default 
Risk.” 
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The default swap valued under the counterparty risk requires two 
default curves, one for the reference entity and one for the counterparty. 
This default swap should be cheaper than the default swap with only 
default risk for the reference entity. The difference is the value of the 
default swap that protects the joint default. An investor who buys such 
a default swap owns a default swap on the reference entity and has 
implicitly sold a default swap of joint default back to the counterparty. 

When the defaults of the reference entity and the counterparty are 
correlated, the solution becomes much more complex. When the corre-
lation is high, it is more likely that the counterparty should default 
before the reference entity, and the credit default swap should have very 
little value. On the other hand, when the correlation is low (negative), 
the situation where the reference entity defaults almost guarantees the 
survival of the counterparty. Consequently, in such instances the coun-
terparty risk is not a concern. 

VALUING BASKET DEFAULT SWAPS 

In the previous section we presented a model for valuing single-name 
credit default swaps. Unlike a single-name credit default swap, which 
provides protection for one bond, a basket default swap provides pro-
tection against a basket of bonds. As with single-name credit default 
swaps, the protection buyer of a basket default swap makes a stream of 
spread payments until either maturity or default. In the event of default, 
the protection buyer receives a single lump-sum payment. 

Default baskets have become popular because purchasing individual 
basket default swaps for a collection of bonds can be very expensive, 
especially considering how unlikely it is that all the bonds in a given 
basket will default simultaneously. Buying a basket default swap, 
instead, provides a much cheaper solution. The most popular default 
basket swap contract is the first-to-default basket. In this contract, the 
seller pays (the default event occurs) when the first default is observed 
among the bonds in the basket. 

In this section, we describe how to extend the model to basket 
default swaps. The key in the extension is estimating default correla-
tions. We begin with the valuation model and then discuss how to 
model default correlations. 

The Pricing Model 
The number of issuers (or issues) contained in a default basket typically 
varies (three to five). The payoff of a default basket contract can be a 
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fixed amount or loss based. The first-to-default basket pays principal 
minus the recovery value of the first defaulted bond in the basket. 
Hence, for pricing the default basket, we can generalize the default 
swap valuation as follows: 

 –∫
min(uk)

( ) sd r s  
V = Ee t 1min uk

( )]Nk (22.13)( ) < T[1 – Rk uk
  

where 1 is the indicator function, uk is the default time of the k-th bond, Rk 
is recovery rate of the k-th bond, and Nk is the notional of the k-th bond. 
The basket pays when it experiences the first default, that is, min (uk).42 

Equation (22.13) has no easy solution when the default events (or 
default times, uk) are correlated. For the sake of exposition, we assume 
two default processes and label the survival probabilities of the two credit 
names as Q1(t,T) and Q2(t,T). In the case of independence, the default 
probabilities at some future time t are –dQ1(t,T) and –dQ2(t,T) respec-
tively. The default probability of either bond defaulting at time t is 

[ , ,–d Q1(t T)Q2(t T)] (22.14) 

The above equation represents a situation wherein both credit names 
jointly survive until t, but not until the next instant of time; hence one 
of the bonds must have defaulted instantaneously at time t. Subtracting 
the default probability of the first credit name from the probability of 

42 In either the default swap or default basket market, the premium is usually paid in 
a form of spreads. The spread is paid until either the default or maturity, whichever 
is earlier. From the total value of the default swap, we can convert it to a spread that 
is paid until default or maturity: 

V s = ------------------------------------------------------
n 

( , ,∑ P t  Tj)Q*(t Tj) 
j = 1 

where Q*(t,Tj) is the survival probability of no default of all bonds in the basket. 
Under independence assumption, 

N 

, ,Q*(t Tj) = ∏ Qk(t Tj) 
k = 1 

where N is the number of bonds in the basket. When bonds are correlated, we need 
to use materials in the following section to compute Q*. 
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either defaulting gives rise to the probability that only the second name 
(but not the first) defaults: 

T 

[– d Q1(0, t)Q2(0, t)] + dQ1(0, t)∫ 
0


= [1 – Q1(0, T)Q2(0, T)] – [1 – Q1(0, T)]

= Q1(0, T)[1 – Q2(0, T)] (22.15)


This probability is equal to the probability of survival of the first name 
and default of the second name; thus, it is with this probability that the 
payoff to the second name is paid. By the same token, the default prob-
ability of the first name is 1 – Q1(0,T), and it is with this probability 
that the payoff regarding to the first name is paid. 

In a basket model specified in equation (22.13), the final formula for 
the price of an N bond basket under independence is 

T N k k – 1


V = ∫ ∑ P(0, t) – d ∏ Ql(0, t) + d ∏ Ql(0, t) [1 – Rk t
( )] (22.16) 
0 k = 1 l = 1 l = 0 

where Q0(t) = 1 and hence dQ0(t) = 0. Equation (22.16) assumes that 
the last bond (i.e., bond N) has the highest priority in compensation, 
that is, if the last bond jointly defaults with any other bond, the payoff 
is determined by the last bond. The second to last bond has the next 
highest priority in a sense that if it jointly defaults with any other bond 
but the last, the payoff is determined by the second to last bond. This 
priority prevails recursively to the first bond in the basket. 

Investment banks that sell or underwrite default baskets are them-
selves subject to default risks. If a basket’s reference entities have a 
higher credit quality than their underwriting investment bank, then it is 
possible that the bank may default before any of the issuers. In this case, 
the buyer of the default basket is subject to not only the default risk of 
the issuers of the bonds in the basket, but also to that of the bank as 
well—that is, the counterparty risk. If the counterparty defaults before 
any of the issuers in the basket do, the buyer suffers a total loss of the 
whole protection (and the spreads that had been paid up to that point in 
time). We modify equation (22.16) to incorporate the counterparty risk 
by adding a new asset with zero payoff to the equation: 

TN + 1 k k – 1


V = ∫ ∑ P(0, t) – d ∏ Qj(0, t) + d ∏ Ql(0, t) [1 – Rk t
( )] (22.17) 
0 k = 1 l = 1 l = 0 
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where the first asset represents the counterparty whose payoff is zero, 
that is, 

( ) = 0 for all t	 (22.18)1 – R1 t

Note that the counterparty payoff has the lowest priority because the 
buyer will be paid if the counterparty jointly defaults with any issuer. 

The default swap is a special case of the default basket with N = 1 
discussed earlier. However, with a default swap, the counterparty risk is 
more pronounced than that with a basket deal. With only one issuer, 
equation (22.17) can be simplified to 

T 

( )]V =	 ∫P(0, t){–dQ1(0, t)[1 – R1 t

0


( )] }+ [– dQ1(0, t)Q2(0, t) + dQ1(0, t)][1 – R2 t
T 

P(0, t){[– dQ1(0, t)Q2(0, t) + dQ1(0, t)][1 – R2 t( )]} (22.19)= ∫ 
0 

Equation (22.19) implies that the investor who buys a default swap on 
the reference entity effectively sells a default swap of joint default back 
to the counterparty. 

When the defaults of the issuers (and the counterparty) are corre-
lated, the solution to equation (22.16) becomes very complex. When the 
correlations are high, issuers in the basket tend to default together. In 
this case, the riskiest bond will dominate the default of the basket. 
Hence, the basket default probability will approach the default proba-
bility of the riskiest bond. On the other hand, when the correlations are 
low, individual bonds in the basket may default in different situations. 
No bond will dominate the default in this case. Hence, the basket 
default probability will be closer to the sum of individual default proba-
bilities. 

To see more clearly how correlation can impact the basket value, 
think of a basket that contains only two bonds of different issuers. In 
the extreme case where the default correlation is 1, the two bonds in the 
basket should default together. In this case, the basket should behave 
like a single bond. On the other extreme, if the correlation is –1 (the 
bonds are perfect compliments of one another), default of one bond 
implies the survival of the other and vice versa. In this case, the basket 
should reach the maximum default probability: 100%. 
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How to Model Correlated Default Processes43 

Default correlation is not an easy concept to define or measure. Put in 
simple terms, it is a measurement of the degree to which default of one 
asset makes more or less likely the default of another asset. One can 
think of default correlation as being jointly due to (1) a macroeconomic 
effect which tends to tie all industries into the common economic cycle; 
(2) a sector specific effect, and (3) a company specific effect. 

The first contribution implies that default correlation should in gen-
eral be positive even between companies in different sectors. Within the 
same sector we would expect companies to have an even higher default 
correlation since they have more in common. For example, the severe 
fall in oil prices during the 1980s resulted in the default of numerous 
oil-producing industries. On the other hand, the fall in the price of oil 
would have made the default of oil-using industries less likely as their 
energy costs fell, thereby reducing their likelihood of default and reduc-
ing the default correlation. However the sheer lack of default data 
means that such assumptions are difficult to verify with any degree of 
certainty. 

It is simple enough to define pure default correlation. Basically, this 
number must correspond to the likelihood that should one asset default 
within a certain time period, how more or less likely is another asset to 
also default. In the case of default correlation, it is important to specify 
the horizon which is being considered. 

The pairwise default correlation between two assets A and B is a 
measure of how more or less likely two assets are to default than if they 
were independent. 

Specifying Directly Joint Default Distribution 
Let two firms, A and B, follow the following joint Bernoulli distribution 
(letting superscripts denote complement sets): 

Firm A 

0 1 

Firm B 0 

1 

p AC ∩ BC( ) 

p AC B∩( ) 

1 p A( )– 

p A  ∩ BC( ) 

p A  B∩( ) 

p A( )  1 

1 p B( )– 

p B( )  

43 This discussion draws from Ren-Raw Chen and Ben J. Sopranzetti, “The Valua-
tion of Default-Triggered Credit Derivatives,” Journal of Financial and Quantitative 
Analysis (June 2003). 
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where 

p AC ∩ B) = p B (( ( ) – p A ∩ B) 

p A ∩ BC) = p A (( ( ) – p A ∩ B) 

p AC( ∩ BC) = 1 – p B (( ) – p A ∩ BC) 

The default correlation is


cov 1A, 1B) p B 
( ( ( ) – p A ( )A)p A ( )p B
--------------------------------------------- = ------------------------------------------------------------------------------------

var 1A)var 1B) p A ( )p B ( ))( ( ( )(1 – p A ( ))(1 – p B

For example, suppose that A is a large automobile manufacturer 
and B is a small auto part supplier. Assume their joint default distribu-
tion is given as follows: 

Firm A


0 1


Firm B 0 80%  0%  80% 

1 10% 10%  20% 

90% 10% 100% 

In this example where A defaults should bankrupt B but not vice 
versa, B contains A and 

( ( )p A ∩ B) = p A

The dependency of the part supplier on the auto manufacturer is 

p A ∩ B) p A( ( )
A) = ------------------------ = ------------ = 100% p B( 

( )  p Ap A ( )  

and the dependency of the auto manufacturer on the part supplier is 

p A ∩ B) p A( ( )
B) = ------------------------ = ------------ = 50% p A( 

( )  p Bp B ( )  
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The default correlation is 

p B( A)p A ( )p B( ) – p A ( )  

p A ( )p B ( ))( )(1 – p A ( ))(1 – p B

10% – 10% × 20% 
= ---------------------------------------------------------------------------

10% × 90% × 20% × 80% 

0.08 2 
= ---------------------- = ---

0.0144 3 

This examples demonstrates that perfect dependency does not imply 
perfect correlation. To reach perfect correlation, p(A) = p(B). Similarly, 
perfectly negative dependency does not necessarily mean perfect nega-
tive correlation. To see that, consider the following example: 

Firm A 

0 1 

Firm B 0 70% 10%  80% 

1 20%  0%  20% 

90% 10% 100% 

It is clear that given A defaults, B definitely survives: p BC( A) = 1 , 
and p B( A) = 0 . But the default correlation is only –0.25. To reach 
perfect negative correlation of –100%, p(A) + p(B) = 1. 

The reason that perfect dependency does not result in perfect corre-
lation is because correlation alone is not enough to identify a unique 
joint distribution. Only a normal distribution family can have a uniquely 
identified joint distribution when a correlation matrix is identified. This 
is not true for other distribution families.44 

Having now defined default correlation, one can begin to show how 
it relates to the pricing of credit default baskets. 

We represent the outcomes of the two defaultable assets A and B 
using a Venn diagram as shown in Exhibit 22.7. The left circle corre-
sponds to all scenarios in which asset A defaults before time T. Its area 
is therefore equal to pA, the probability of default of asset A. Similarly, 
the area within the circle labeled B corresponds to the probability of 
default of asset B and equals pB. The area of the shaded overlap corre-

44 For an extension of the above two-company analysis to multiple companies, see 
Chen and Sopranzetti, “The Valuation of Default-Triggered Credit Derivatives.” 
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EXHIBIT 22.7 Venn Diagram Representation of Correlated Default for Two Assets 

sponds to all scenarios in which both assets default before time T. Its 
area is the probability of joint default, pAB. 

The probability of either asset defaulting is 

Ω = pA + pB – pAB 

In the zero correlation limit, when the assets are independent, the prob-
ability of both assets defaulting is given by pAB = pA pB. Substituting 
this into the above formula for the default correlation shows when the 
assets are independent, ρD(T) = 0 as expected (see Exhibit 22.8). 

In the limit of high default correlation, the default of the stronger 
asset always results in the default of the weaker asset. In the limit the 
joint default probability is given by pAB = min[pA,pB]. This is shown in 
Exhibit 22.9 in the case where pA > pB. In this case we have a maximum 
default correlation of 

ρ 
pB 1 pA –( ) 

pA 1 pB –( ) 
-= 

Once again, the price of a first-to-default basket is the area enclosed by 
the circles. In this case one circle encloses the other and the first-to-
default basket price becomes the larger of the two probabilities: 

= = pA + pB – pAB = max[pA, pB]Ωρ ρ  
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EXHIBIT 22.8 Independent Assets 

Outcome In Venn Diagram Probability 

Both asset A and asset B Anywhere in overlap of pAB 
default both circles

Asset B defaults and asset A Anywhere in B but not in pB – pAB 
does not default overlap 

Asset A defaults and asset B Anywhere in A but not in pA – pAB 
does not default overlap 

Neither asset defaults Outside both circles  1 – (pA + pB – pAB) 
Either asset A or asset B or Anywhere within outer pA + pB – pAB 

both assets default perimeter of circles 

EXHIBIT 22.9 Case of High Default Correlation 

In the case default of the stronger asset is always associated with default of the weak-
er asset. 
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If pA equals pB then pAB = pA and default of either asset results in 
default of the other. In this instance the correlation is at its maximum of 
100%. 

As correlations go negative, a point arrives at which there is zero 
probability of both assets defaulting together. Graphically, there is no 
intersection between the two circles, as shown in Exhibit 22.10, and we 
have pAB = 0. The correlation becomes 

– pApBρ = ----------------------------------------
1 – pA 1 – pB 

A negative correlation of –100% can only occur if pA = 1 – pB—that is, 
for every default of asset A, asset B survives and vice versa. 

The price of the first-to-default basket is simply the area of the two 
nonoverlapping circles 

= pA + pBΩρ = ρ 

This is when the default basket is most expensive. 
We have seen above the price of a basket in the limits of low, high, 

and zero correlation. Given that Ω = pA + pB – pAB , we can write the 
price of a basket in terms of the default correlation as 

2 2Ω = pA + pB – pApB – ρ pA – pA pB – pB 

EXHIBIT 22.10 Negative Default Correlation Case 

As the default correlation becomes negative, the two circles separate implying that 
the joint default probability has fallen to zero. 
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As more assets are considered, more default combinations become 
possible. With just three assets we have the following eight possibilities:

 ■ No assets default
 ■ Only asset A defaults
 ■ Only asset B defaults
 ■ Only asset C defaults
 ■ Asset A and asset B default
 ■ Asset B and asset C default
 ■ Asset A and asset C default
 ■ Asset A and asset B and asset C default 

To price this basket we either need all of the joint probabilities or 
the pairwise correlations ρAB, ρBC, and ρAC (see Exhibit 22.11). The 
probability that the basket is triggered is given by 

Ω = pA + pB + pC – – –pAB pBC pAC + pABC 

Joint Poisson Process 
Recent evidence (for example, Enron, WorldCom, and Quest) demon-
strated that severe economic hardship and publicity can cause chain 
defaults for even very large firms. Hence, incorporating default correla-
tion is an important task in valuing credit derivatives. 

As stated above, the period-end joint default probability by two ref-
erence entities is as follows: 

Pr(A ∩ B) = E[1A = ∩ B] pAB 

EXHIBIT 22.11 Venn Diagram for Three Issuers 
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where 1 is the indicator function.45 

The BSM model is particularly useful in modeling correlated 
defaults. If two firms do business together, it is likely that the two firms 
may have a certain relationship between their defaults. The BSM model 
provides an easy explanation as to how that may be modeled: 

( ) < KA ∩ AB TPr(AA T ( ) < KB ) 

A bivariate diffusion of firm A and firm B can easily provide what we 
need. Under the BSM model, logarithm of asset price is normally distrib-
uted. Hence, the previous equation is the tail probability of a bivariate 
normal distribution. The correlation between the two normally distrib-
uted log asset prices characterizes the default correlation. When the corre-
lation in the bivariate normal is 100%, the distribution becomes a 
univariate normal distribution and the two firms default together. When 
the correlation is –100%, one firm defaulting implies the survival of the 
other firm; so there is always one that is live and one that is dead. 

While the BSM model cleverly explains how default risk is priced in 
the corporate debt conceptually, it remains a practical problem in that it 
cannot price today’s complex credit derivatives. Hence, researchers 
recently have developed a series of reduced form models that simplify 
the computations of the prices. 

Using Common Factors to Model Joint Defaults 
There are two ways to model joint defaults in a reduced form model. 
One way, proposed by Duffie and Singleton, is to specify a “common 
factor.”46 When this common factor jumps, all firms default. Firms also 
can do so on their own. The model can be extended to multiple common 
factors: market factor, industry factor, sector factor, and so on to cap-
ture more sophisticated joint defaults. 

Formally, let a firm’s jump process be47 

45 Recall from Chapter 6 that for any random variable X the following relationship 
[ ] = X P . If X is the indicator function of the event A, X = 1A we canholds: E X ∫ d 

write Ω 

( )E[1A ] = 1A Pd = Pd = P A∫ ∫ 
Ω A 

46 Darrell Duffie and Kenneth Singleton, “Econometric Modeling of Term Structure 
of Defaultable Bonds,” Review of Financial Studies (December 1999), pp. 687–720. 
47 Darrell Duffie and Kenneth Singleton, unpublished lecture notes on credit deriva-
tives; and Darrell Duffie and Kenneth Singleton, “Simulating Correlated Defaults,” 
working paper, Stanford University (September 1998). 
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Ji = aiqM + qi 

where qM is the market jump process and qi is the idiosyncratic jump 
process. The coefficient ai is to capture different correlation levels. The 
joint event is then 

corr(Ji, Jj) = aiajvar[qM] 

Correlating Default Times 
Before we discuss how the default correlation is introduced, we need to 
discuss how single issuer default is modeled. The approach used is 
equivalent to the Jarrow-Turnbull model.48 A hazard rate, λ(t), is intro-
duced where λ(t)dt is the probability of defaulting in a small time inter-
val dt. This leads to the definition of the survival probability 

Q(0, T) = exp–∫ 
T 

λ s 0 
( ) sd  

The probability of surviving to a time T and then defaulting in the 
next instant is therefore given by the density function: 

( )exp–∫ 
T 

λ s–dQ = λ T  0 
( ) sd  dT 

In the simple case when the hazard rate is constant over time so that 
λ(t) = λ we have 

–dQ = λexp(–λT)dT 

From this we see that the probability of defaulting at time T as 
given by –dQ shows that default times are exponentially distributed. By 
extension, the average time to default is given by computing 

∞ 
1

〈 〉 = λ Texp(–λT)dT = ---T ∫ λ
0 

48 Robert Jarrow and Stuart Turnbull, “Pricing Derivatives on Financial Securities 
Subject to Default Risk,” Journal of Finance 20, no. 1 (1995), pp. 53–86. 
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Knowing that defaults are normally distributed makes it easy to 
simulate default times for independent assets. We need to generate uni-
form random numbers in the range [0,1] and then given a term structure 
for the hazard rate, imply out the corresponding default time. For exam-
ple, if we denote the uniform random draw by u, the corresponding 
default time T* is given by solving 

u = exp(–λT*) 

to give 

log u( )
T* = – ----------------

λ 

This is an efficient method for simulating default. Every random draw 
produces a corresponding default time. In terms of its usefulness, the 
only question is whether the default time is before or after the maturity 
of the contract being priced. 

There are many ways to introduce a default correlation between the 
different reference entities in a credit default basket. One way is to cor-
relate the default times. This correlation is defined as 

〈TATB〉 – 〈TA〉 TB〈  〉  
ρ(TA, TB) = ------------------------------------------------------------------------------

2〈 2 TB TBTA〉 – 〈TA〉2 〈  〉  – 〈  〉2 

It is important to stress that this is not the same as the default corre-
lation. Although correlating default times has the effect of correlating 
default, there are two reasons they are not equivalent. First, there is no 
need to define a default horizon when correlating default times. To mea-
sure this correlation, we would observe a sample of assets over a long 
(infinite) period and compute the times at which each asset defaults. 
There is no notion of a time horizon for this correlation. 

Second, since the default time correlation equals 100% when Tj = Ti 
and when Tj = Ti + ϑ, it is possible to have 100% default time correla-
tion with assets defaulting at fixed intervals. 

Under a Poisson assumption,

1 1
〈TA〉 = ------ and 〈  〉  = ------TBλA λB 
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and

2	 2 1
TA 〈 〉2 = ------ and 〈 〉 – TB〈 〉 – TA	

1 
TB 〈 〉2 = ------

λA λB 

so we have 

ρ(TA, TB) = 〈TATB〉λAλ – 1B 

Copula Function 
To generate correlated default times, we use the normal Copula function 
methodology as proposed by Li.49 A Copula function (see Chapter 6) is 
simply a specification of how the univariate marginal distributions com-
bine to form a multivariate distribution. For example, if we have N cor-
related uniform random variables U1, U2, …, UN then 

( u2 …	 …C u1, , , uN) = Pr{U1 < u1, U2 < u2, , UN < uN} 

is the joint distribution function that gives the probability that all of the 
uniforms are in the specified range. 

In a similar manner we can define the Copula function for the default 
times of N assets: 

(	 …C F1(T1), F2(T2), , FN(TN))

…
= Pr{U1 < F1(T1), U2 < F2(T2), , UN < FN(TN)} 

where Fi(Ti) = Pr{ti < t}. 
There are several possible choices but here we define the Copula 

function Θ to be the multivariate normal distribution function with cor-
relation matrix ρ. We also define Φ–1 as the inverse of a univariate nor-
mal function. The Copula function is therefore given by 

–1C u = u1
–1 u2 u3 u4 …( )  Θ(Φ–1( ), Φ ( ), Φ–1( ), Φ ( ), Φ–1(uN), ρρρρ) 

where ρρρρ is the correlation matrix. 
What this specification says is that in order to generate correlated 

default times, we must first generate N correlated multivariate gaussians 
denoted by u1, u2, u3, …, uN—one for each asset in the basket. These 

49 David X. Li, Credit Metrics Monitor, Risk Metrics Group (April 1999). 
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are then converted into uniform random variables by cumulative proba-
bility functions. 

Once we have the vector of correlated random uniforms u we can 
calculate the corresponding default times knowing that asset i defaults 
in trial n at time T given by 

lnuin 
= – -------------Tin λi 

Comparing Default Correlation and Default Time Correlation 
In addition to correlating default times, we could correlate default 
events. There is no simple way to do this directly. It is better to correlate 
the assets using some other mechanism and then measure the default 
correlation a posteriori. The question is: If we implement a model which 
correlates default times, how does the correlation relate to default cor-
relation as defined above. 

In common with the case of default correlation, it is only possible 
to have a 100% pairwise correlation in default times between two 
assets if both assets have the same default probabilities. Otherwise, the 
distributions are centered around different average default times and 
having equal default times and different average default times is not 
compatible. 

If we assume that in both cases all assets have the same default 
probability, what is the difference between correlating default times and 
correlating default events? In the limit of zero correlation there is no dif-
ference as the assets default independently. In the limit of 100% correla-
tion there is a fundamental difference: If default times have a 100% 
correlation, then assets must default either simultaneously or with a 
fixed time difference.50 However, if there is 100% default correlation, 
then this means that the default of one asset within a certain horizon 
always coincides with the default of the other within the same horizon. 
In general, we would expect a 100% default correlation to imply that 
both assets default together, but this is not a strict requirement. In prac-
tice, the default of one asset may occur at any time and be followed by 
default of the other asset at the end of the horizon. Default correlation 
is 100%, but default times have a lower correlation. 

Consider also the effect of the default horizon. Given that default 
times are exponentially distributed, extending the default horizon 

50 Since the default time correlation of 100% is preserved under translations of the 
form Tj = Ti + ϑ. 
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makes it more likely for defaults to occur. Extending the default horizon 
therefore has the effect of increasing the measured default correlation. 
Indeed we must be careful to specify the horizon when we quote a 
default correlation. On the other hand, correlation of default times is 
independent of the trade horizon (i.e., the tenor of the default swap). 

There is also a link between default correlation and the hazard rate. 
For a fixed horizon, increasing the hazard rate for all assets makes 
default more likely within that horizon. If the assets are correlated, the 
measured default correlation must increase. However, the increase in 
default probability makes the distribution of default times more 
weighted towards earlier defaults. Yet, the default time correlation can 
remain unchanged. 

The analysis below shows that the default correlation is always 
lower than the default time correlation. This can be understood in quali-
tative terms as follows: To have the same basket price we have the same 
number of defaults before maturity. As default correlation is a direct 
measurement of the likelihood of two assets to default within a fixed 
horizon, it is more closely linked with the pricing of a basket default 
swap than a correlation of default times. Indeed, as we have shown in the 
one-period model above, the value of the basket default swap is a linear 
function of the default correlation. Though a correlation of default times 
introduces a tendency for assets to default within a given trade horizon, 
it is an indirect way to do this. As a result, a simulation of defaults with 
a certain default time correlation will always tend to have a lower default 
correlation. In other words, less default correlation is required in order 
to have the same effect as a correlation of default times.51 

SUMMARY

 ■ There are different forms of credit risk: default risk, spread risk, and 
downgrade risk.

 ■ Credit derivatives are financial instruments designed to transfer credit 
risk between two parties.

 ■ Credit default swaps are the most popular credit risk derivatives.
 ■ In a credit default swap, the protection buyer pays a fee, the swap pre-

mium, to the protection seller in return for the right to receive a pay-
ment conditional upon a default, also called a credit event. 

51 Numerical examples for pricing credit default swap baskets in the single-period 
and multi-period cases are provided in Chapter 10 in Anson, Fabozzi, Choudhry, 
and Chen, Credit Derivatives: Instruments, Applications, and Pricing. 
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■ Credit default swaps for corporate and sovereign reference entities are 
standardized.

 ■ The International Swaps and Derivatives Association (ISDA) developed 
the ISDA Master Agreement which establishes international standards 
governing privately negotiated derivative trades (all derivatives).

 ■ The 1999 ISDA Credit Derivatives Definitions provides a list of eight 
possible credit events.

 ■ Credit derivative models can be partitioned into structural models and 
reduced form models.

 ■ Structural-type models represent default as an option: a company 
defaults on its debt if the value of the assets of the company falls below 
a certain default point.

 ■ Reduced form models model directly the likelihood of default or down-
grade.

 ■ Structural models use option theory.
 ■ Structural models model default on very reasonable assumption but are 

difficult to calibrate and computationally burdensome.
 ■ Structural models use Poisson processes to model the time of default.
 ■ A transition matrix defines the probability of transition between any 

two credit rating states.
 ■ Default correlation is a concept difficult to define.
 ■ Default correlation can be modeled with copula functions that model 

the correlation between the times of default. 
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CHAPTER 23 
Risk Management


R isk means uncertainty. There is risk whenever there is uncertainty 
about future events. There are many different notions of risk. In busi-

ness, as well as in daily life, an endeavor is considered risky if it is diffi-
cult or if depends on many things that might go wrong. The notion of 
risk espoused by financial theory is that of pure probabilistic uncertainty, 
without any possibility of controlling the outcome. For example, an 
investor does not control market fluctuations. 

Though risk cannot be individually influenced it can be managed by 
diversification and risk transfer. The idea of transferring and reducing 
risk is not new. As observed in Chapter 1, the practice of insurance and 
of risk reduction through diversification was already well established in 
the Middle Ages. Diversification is an intuitive idea, easily conveyed by 
the saying, “Do not put all your eggs in the same basket.” 

However, the modern idea of measuring risk and of selectively 
transferring carefully calibrated portions of risk had to wait the devel-
opment of modern probability theory. As seen in Chapter 3, the founda-
tion of probability theory as a sound mathematical discipline was 
achieved only around 1930. 

The development of the mathematical theory of risk, initiated by 
Lundberg (see Chapter 3), led to the practice of modern insurance and 
to the development of the insurance business. Insurance is deeply rooted 
in the notion of diversification: Individuals protect themselves by pool-
ing risks together. If the number of uncorrelated risks is large, individual 
risk becomes negligible. 

In recent years, financial firms and insurance companies have taken 
the concept of risk management further in three different directions: (1) 
by recognizing that the shape of risk is an important determinant of the 
risk-return trade-off; (2) by engineering contracts able to transfer 

737 
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selected portions of risk; and (3) by trading these contracts. From a sta-
tistical point of view, a key innovation is the attention paid to the ratio 
between the bulk of the risk and the risk of the tails. The latter has 
become a key statistical determinant of risk management policies. 

Within the realm of finance, one has to make a broad distinction 
between the management of risk in investment management and in 
banking and finance at large. As we have seen in the previous chapters, 
investment management is essentially a question of determining a prob-
ability distribution of returns and engineering the optimal trade-off 
between risk and return as a function of individual preferences. There-
fore, risk management is intrinsic to investment management. 

The risk management function, which is often associated with the 
investment management process, has the objective of (1) controlling risk 
when the investment process is not fully automated; (2) taking into con-
sideration special risks such as the business or operational risk; and (3) 
controlling the global risk, especially the tails of the risk. 

Banks and financial firms, however, engage in financial operations 
other than pure investing. Many of these operations are profitable but 
risky and their risk must be managed or eliminated. For instance, a 
financial firm offering a customized derivative instrument to a client 
assumes a risk that, in itself, might be suboptimal or excessive. Hence, 
the need to transfer all or part of this risk to the market at large. The 
risk management function controls this process. 

The possibility of effectively controlling and managing risk depends 
on the availability of instruments that allow for the transfer of risk. A 
market is called complete if there are instruments able to cover any trad-
able risk. 

In this chapter we discuss market completeness, risk measures, and 
the notion of coherence of risk measures, and then present risk models 
and their use in investment management. We begin the chapter with the 
concept of market completeness because it is a necessary condition for 
effective risk management. We first introduced this concept in Chapter 
14, where we covered arbitrage pricing. 

MARKET COMPLETENESS 

In finance, the effectiveness of risk management is essentially related to 
the degree of market completeness. In a complete market any individual 
risky position can be completely hedged, that is, its risk can be com-
pletely eliminated by purchasing appropriate contracts. In intuitive 
terms, this means that any payoff, intended as a random variable, can 
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be replicated by engineering appropriate portfolios. In other words, 
there is a market, and therefore a price, for every contingency. 

Markets in which this hedging is not possible are called incomplete 
markets. In incomplete markets there are contingencies that are not 
traded and cannot be priced and replicated. An investor who “owns” 
one of these contingencies is stuck with them and has no assurance that 
a buyer will be found. An incomplete market might be completed by 
adding appropriate assets provided that they are tradable. If the market 
is completed, every contingency becomes tradable. However, there is no 
guarantee that an arbitrary market can be completed. 

The question of market completeness is fairly complicated. There 
are two key aspects in the notion of market completeness: (1) the math-
ematics of market completeness and (2) the economic rationale as to 
why markets are complete or can be completed. We discuss each below. 

The Mathematics of Market Completeness 
The purely mathematical aspect of the completeness of a given market 
model is a widely studied subject. Some market models are complete 
while others are not. For instance, a market where stock prices evolve as 
geometric random walks and a risk-free asset is available is complete. 
On the other hand, a market represented by a stochastic volatility model 
is incomplete. 

A market is complete if any cash flow stochastic process can be rep-
licated by an appropriate self-financing trading strategy with some ini-
tial investment. Replication means that the self-financing trading 
strategy and the original cash flow process are equal processes. Recall 
that in Chapter 6 on probability theory we defined four notions of 
equality between stochastic processes. The weakest condition of equal-
ity requires that two processes have the same finite-dimensional distri-
butions. This concept of equality is insufficient to define replication. 
The strongest condition of equality requires that two processes have the 
same paths except for a set of measure zero. Replication requires that 
the original cash flow process and the replicating self-financing trading 
strategy are equal processes in this strongest sense. 

Recall also from Chapter 10 that there are two types of solutions of 
stochastic differential equations: strong solutions and weak solutions. 
Strong solutions are solutions built on given Brownian motions while 
weak solutions include their own Brownian motion. This notion, which 
might look abstract and remote, is however important from the point of 
view of a replicating strategy. If a replicating process is defined by a sto-
chastic differential equation, the difference between strong and weak 
solutions is important. 
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Market completeness entails that there is a core of price processes 
such that any cash flow stream can be engineered as a time-varying, but 
self-financing, portfolio made up of the core price processes. For example, 
in a complete market a complex derivative instrument can be replicated 
by a portfolio of simpler instruments. A bank that creates a credit deriva-
tive can always hedge its positions. 

As we have seen in Chapter 14 on arbitrage, in the finite-state, one-
step case, market completeness means that the number of linearly inde-
pendent price processes is equal to the number of states. In other words, 
a market is complete if there are as many linearly independent price pro-
cesses as states of the world. This notion can be easily expressed in 
terms of linear algebra. In the finite-state, discrete-time case the above 
conditions must be replaced by the notion of dynamically complete mar-
kets as assets can be traded at intermediate dates. In fact, the number of 
linearly independent price processes can be smaller than the number of 
states provided that assets can be traded repeatedly. As shown by Dar-
rell Duffie and Chi-Fu Huang1 and Hua He,2 what is needed, in this 
case, is that there are as many linearly independent price processes as 
there are branches leaving a node in the market information structure. 
Based on this, it can be demonstrated that the binomial model and its 
extension to multiple variables are complete. 

When we proceed to the continuous-state, continuous-time case this 
notion looses meaning. In this case there is a continuum of states and a 
continuum of instants. The infinite number of trading instants allows 
markets to be complete even if they are formed by a finite number of 
securities. There are restrictions to ensure that a market model is com-
plete. A fundamental theorem assures that, in the absence of arbitrage, 
market completeness is associated with the uniqueness of the equivalent 
martingale measure. In a complete market the equivalent martingale 
measure is unique, while an incomplete market is characterized by infi-
nite martingale measures. This happens because there are contingencies 
that cannot be priced by arbitrage. 

The condition of market completeness is violated in many important 
models. Two, in particular, have attracted attention: jump-diffusion mod-
els and stochastic volatility models. Jump-diffusion models are models 
formed by diffusions plus processes where finite jumps occur at random 
times, such as at those times represented by a Poisson process. Stochastic 

1 Darrell Duffie and Chi-Fu Huang, “Implementing Arrow-Debreu Equilibria by 
Continuous Trading of Few Long-Lived Securities,” Econometrica 53 (1985), pp. 
1337–1356 
2 Hua He, “Convergence from Discrete to Continuous Time Contingent Claims Pric-
es,” Review of Financial Studies 3, no. 4 (1990), pp. 523–546. 
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volatility models are models where prices are diffusion processes but the 
volatility term is driven by a separate process. In discrete time, all models 
make jumps while stochastic volatility models become the ARCH and 
GARCH models. Let’s briefly discuss completeness in relation to stochas-
tic volatility models. 

A standard geometric-diffusion model is complete as there is a 
unique equivalent martingale measure Q (see Chapter 15) under which 
the model can be written as 

dSt = rStdt + σStdBt 

where r is the risk-free rate, σ is the volatility constant, and B is a stan-
dard Brownian motion. If a stock price follows this model, any contingent 
claim can be uniquely replicated. In particular, options can be replicated 
as a portfolio formed with the stock and the risk-free asset. Options are 
redundant securities. Anyone who has underwritten an option can com-
pletely hedge its risk by constructing an appropriate self-financing repli-
cation strategy. 

The same reasoning can be applied in the case of N geometric 
Brownian motions. In this case, there is still a unique equivalent martin-
gale measure under which the model can be written as 

N 
i j jdSt = rSt

idt + ∑ σjStdBt 
j = 1 

Suppose now that volatility is not constant but that it is a time-
dependent process. The simplest two-factor, stochastic-volatility model 
can be written, in the physical probability measure, as 

dSt = µStdt + σtStdBt 

dσt = a St, σt)dt + b St, σt)Bt( ( σ 

σwhere Bt is another standard Brownian motion eventually correlated 
with Bt. In this case, however, there are infinite equivalent martingale 
measures in which the model can be written as 

dSt = rStdt + σtStdB̃ 
t 
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( ˜ σdσt = ã (St, σt )dt + b St, σt )dBt 

The above stochastic volatility model can be completed3 by adding 
an asset Yt = C(t,σt,St) that follows the following process: 

( , ˆdYt = rYtdt + F t YtSt )dBt 

ˆwhere Bt is another Brownian motion eventually correlated with the 
other two. Note that mathematically there is an infinite family of these 
models. 

The question of what model applies to a new asset introduced for 
completing the market is an empirical one. Note that this new asset is 
contractually defined as a function of the stock price. In practice it is an 
option. The market will price the new asset according to some economic 
pricing principle which is not, however, a principle of absence of arbi-
trage. In this completed market, the underwriter of an option can com-
pletely hedge his/her position. However, the hedging will not be the 
same as in the case of constant volatility. 

Similar considerations can be repeated for the jump-diffusion mod-
els. Suppose that a lognormal diffusion is given. Consider a Poisson 
point process and add a finite jump to the diffusion at every occurrence 
of the Poisson process. The resulting model is generally incomplete. 
However, it can be completed by adding appropriate contracts. What 
type of contracts must be added in each case is not a trivial question. 

The Economics of Market Completeness 
In discussing market completeness it should be kept in mind that market 
completeness means that any risk can be completely hedged. In modern 
markets, hedging is typically achieved by taking positions in appropri-
ate contracts such as options or other derivative instruments. In this 
way risk is transferred to other entities and hedged. The key question is: 
why should there be other entities willing to take the opposite side of a 
risky position? 

Beside the mathematical details, this is the essence of market com-
pleteness. It means that there is always someone willing to trade, at a 
market price, any contingent claim. It is important to reconcile this 
notion with that of mathematical completeness. Let’s use the simple 
example of European stock options in a market with a risk-free asset 

3 M.H.A. Davis, Complete-Market Models of Stochastic Volatility, forthcoming in 
Proc. Royal Society London (A). 
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and where stock prices evolve as geometrical Brownian motions. This is 
a complete market. Therefore any European option can be perfectly rep-
licated by a portfolio of the underlying stock plus the risk-free asset. 

In this market, investors can protect themselves from excessive 
losses by purchasing options. However, in case of large losses someone 
has to foot the bill. The risk transfer process is the following. Suppose 
that an investor who owns a stock wants to buy protection against large 
price movements of the stock by purchasing an option. In this way the 
owner of the stock transfers the risk of eventual large movements to the 
underwriter of the option. The underwriter might decide to bear the risk 
or to transfer the risk by purchasing an appropriate self-financing strat-
egy. In the latter case, the risk of large movements has been transferred 
in two steps from the initial investor to the option underwriter and then 
back to the market. 

In case of large negative movements, there will be a transfer of 
money from owners of long stock positions to the original investor who 
sought protection. The transfer will occur through the mechanism of 
short positions. It would be a mistake to think that by replication every-
one comes out of large negative market movement unscathed. In this 
case, in particular, if options are properly hedged, the final losers are 
those who hold stock positions without hedging them. 

Suppose, now, that price processes follow stochastic volatility dynam-
ics. In this case, markets are incomplete and options cannot be perfectly 
hedged. The key difference with respect to the previous case is that the 
underwriter of the options has to foot the bill of eventual large losses. In 
this case, underwriting options is a risky business, while in the previous 
case, ultimately the risk is borne by stock owners or stock “lenders.” 

In the case of stock markets, risk does not disappear in aggregate. 
Total market capitalization fluctuates and there is no way that this glo-
bal risk can be eliminated. In fact, on a global scale, no one profits if 
markets move down or loses if markets move up. Profits and losses of 
short and long positions are only local relative losses. In aggregate, 
investors lose if markets go down and gain if markets go up. 

However, the market as seen by each individual investor might be 
complete or not as a function of the dynamics of price processes. Com-
pleteness dictates that risk can be arbitrarily apportioned but does not 
change the fact that massive losses might occur in aggregate. In other 
markets, however, there is a level of aggregation at which risk does not 
exist or is very small. In this case, hedging has a different rationale as 
for each movement there are winners and losers. Hedging is a stabiliza-
tion device as risk can be mutually exchanged. In this case, market com-
pleteness acquires a different meaning. In fact, in a complete market, 



23-RiskManagement  Page 744  Wednesday, February 4, 2004  1:13 PM

744 The Mathematics of Financial Modeling and Investment Management 

risk can be eliminated by market mechanisms, while in an incomplete 
market this is not possible. 

It should be clear that the economic rationale for risk management 
is different in different cases. There are essentially three possibilities. 
First, risk can be transferred to firms that engineer a diversification ser-
vice. Insurance companies are the typical example. This means that 
diversification is possible; that is, in the aggregate the residual risk is 
very low simply because there are many uncorrelated events. For 
instance, the residual risk of significant short-term fluctuations of the 
average age of a population is very low except in exceptional cases (e.g., 
war or natural catastrophes). Thus life insurance is a statistically sound 
business. 

Second, risk can be transferred to “speculators” (e.g., persons or 
entities who have a different risk-return profile or an information 
advantage). Essentially, risks exist in aggregate but there are entities 
willing to make bets on some portions of it. Note that if markets were 
not correlated, there would be no risk in aggregate. 

Third, risk can be transferred because there are positions that offset 
each other in a true economic sense. In other words, there are “natural 
hedges.” This means that the fluctuations of some basic variables create 
simultaneous gains and losses approximately of the same size. This is 
the case of interest rates. There are other cases, with more or less com-
plete natural hedges. 

WHY MANAGE RISK? 

The basic motivation for risk management is financial optimization. In 
this sense, the motivation for risk management has to be found in the 
basic tenet of investment management: optimization of the risk-return 
trade-off. 

Financial optimization implies that a risk return trade-off indeed 
exists. If some risk can be eliminated in aggregate, the market cannot 
remunerate it. Therefore the assumption of that risk is always subopti-
mal and it should be eliminated. This is the case when risk can be diver-
sified away and when there are natural hedges, as in the case of interest 
rates. 

As risk management means the transfer of risk from one entity to 
another, clearly if there is risk in aggregate there are limits to the size of 
the risk management business. This is the case of the stock option busi-
ness. There is no natural hedge to stock market movements, at least 
none has been discovered thus far. No financial agent profits from mar-
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ket plunges, so only small optimization adjustment is possible. There-
fore there are natural limits to the size of coverage that can be offered. 
On the other hand, in the case of interest rates if one entity loses 
another gains and risk transfer is effective. 

In fact, the elimination of interest rate risk forms the bulk of risk 
management. According to the U.S. Office of the Controller of the Cur-
rency Quarterly Derivatives Report, interest rate derivatives made up 
86% of all derivative contracts in the second quarter of 2003. Foreign-
exchange contracts were the second-largest category of derivatives, 
making up about 11% of all derivatives in the same period while equity, 
commodity, and credit derivatives made up about 3% of all contracts. 
Note that the size of the bond and equity markets are comparable. The 
huge notional volume of interest rate derivatives is partially due to for-
mal duplication of traded contracts. For instance, in a number of cases, 
instead of selling a swap agreement it might be easier to create a new 
swap agreement with opposite cash flows. Formal duplication, however, 
is possible just because there is no risk in aggregate. 

The situation would be different for an entity that had the ability to 
make reliable forecasts. Banks as well as industrial firms hedge interest 
rates because they do not feel sufficiently comfortable with interest rate 
forecasts. Unable to make sufficiently safe bets they prefer to eliminate 
the risk. Hence the huge market for covering interest rates fluctuations. 

RISK MODELS 

A risk model is a mathematical model of prices, returns, rates, and even-
tually other quantities that allows one to determine the probability dis-
tribution of the total value of portfolios held by a financial institution. 
Many different models have been proposed in different areas of finan-
cial risk. Let’s discuss each of them. 

Market Risk 
Perhaps the best known model of market risk is RiskMetrics, initially 
proposed by JP Morgan in 1994 and now commercialized by the Risk-
Metrics Group. Over 100.000 physical copies of the RiskMetrics soft-
ware are now in use at banks and asset management firms.4 

4 Information on the company and technical details on the product are available and 
can be downloaded from the RiskMetrics Group web site www.riskmetrics.com. 
Since inception JPMorgan has made technical details on the product broadly avail-
able. The RiskMetrics Group has continued this practice. 
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The basic idea of RiskMetrics is to represent the entire set of returns 
and rates as a multivariate normal variable. In other words, RiskMetrics 
is made up of a simple linear model with some robust estimation tech-
nique. JPMorgan provided daily the estimates of volatilities and correla-
tions essentially using empirical volatilities and correlations. Over the 
years the initial model has been extended to cover more complex cases, in 
particular derivative instruments. A suite of models for banks and asset 
managers is commercialized by The RiskMetrics Group. 

Multifactor models are often used to evaluate the market risk of 
equity portfolios. Commercially available models such as Barra or APT 
are now in use at many asset management firms to evaluate market risk. 
However, if portfolios include derivative instruments, multifactor mod-
els must be completed with additional modeling tools able to capture 
the behavior of these instruments. 

Risk models are often based on the idea of creating a relatively small 
number of scenarios, that is, paths of the key financial and economic 
variables. The Toronto-based firm Algorithmics pioneered the use of sce-
nario-based risk management as a commercial software implementation. 

Credit Risk 
Credit risk models are inherently more complex than market risk mod-
els as the normal distribution is not a good approximation of default 
distributions. A number of models have been proposed, in particular 
CreditRiskMetrics from the RiskMetrics Group. This model is based on 
an underlying process for ratings. Credit Suisse proposed an actuarial 
credit risk model, Creditrisk+ that represents default distributions as a 
mixture of Gaussians. Models of credit risk based on option theory have 
been proposed by the firm KMV which is now part of Moody’s. 
Kamakura Corporation has proposed models of credit risk based on the 
work of Robert Jarrow. Credit risk models were covered in Chapter 22. 

Operational Risk 
Operational risk can be broadly defined as risk related to processes; it 
generally falls under the responsibility of internal auditors or their 
equivalents, but in a number of instances it is under the responsibility of 
the risk manager. Determining its contribution to portfolio risk varies 
from firm to firm. Some firms attribute to human error (e.g., changing 
the benchmark and not informing) up to 75% of portfolio risk. 

Large investment banks such as the former Bankers Trust and Credit 
Suisse First Boston pioneered a quantitative approach to operational risk 
several years ago, but the data problem is more severe in asset management 
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than in investment banking. Many asset management firms consider the 
occurrence of losses due to operational risk to be irrelevant. 

RISK MEASURES 

Risk is embodied in a probability distribution of returns or of possible 
losses. From a management point of view it is interesting to collapse this 
probability distribution in a single number. The problem of measuring 
risk with a single number has received much attention, even in contexts 
other than finance. 

Historically, the first measure of the risk contained in a distribution 
is its variance, or the standard deviation, which is the square root of the 
variance. The variance of a distribution gives an indication as to 
whether the distribution is concentrated around some value or spread 
over a large interval of values. If the standard deviation of a distribution 
is high, it means that there is a high probability that the variable might 
take values significantly different from its mean. A high standard devia-
tion, therefore, corresponds to a high risk. In the terminology of risk 
management, standard deviation represents unexpected loss (UL). 

Because risk is uncertainty (lack of information), the question of the 
information conveyed by a probability distribution has led to the con-
cept of information and to Information Theory. In the case of finite 
probabilities, information (I) in the sense of Information Theory is 
defined as the average of the logarithms of probabilities (pi): 

N 

I = ∑ pilog pi 
i = 1 

Information reaches its maximum when the probability is concen-
trated in only one outcome, that is, pi = 1 for i = k, pi = 0 for i ≠ k. In 
this case information is zero as the information of an outcome with 
probability zero is conventionally set to zero. Information reaches its 
minimum when all probabilities are equal, that is, when there is maxi-
mum uncertainty on the future outcome. In this case information is neg-
ative: I = –N log N. There is no lower bound to information. 

Information with a minus sign is well known in statistical physics as 
entropy, which is a measure of disorder: E = –I. The information associated 
with an equi-probable binary scheme, that is, the information associated 
with the choice between two equally probable possible outcome, is called 
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bit. As information is additive, it represents the number of bits necessary to 
characterize a choice. 

This definition of information can be extended to a continuous 
probability distribution. However, in the continuous case, information 
looses its meaning.5 For this and for other reasons, information cannot 
be used effectively as a measure of risk.6 

When JP Morgan released its RiskMetrics model in 1994, it proposed 
a measure of risk called Value at Risk (VaR).7 Defined as a confidence 
interval, VaR is the maximum loss that can be incurred with a given prob-
ability. Suppose we choose a confidence level of 95%. We say that a port-
folio has a given VaR, say $1 million, if there is a 95% probability that 
losses above $1 million will not be incurred. This does not mean that the 
given portfolio cannot lose more than $1 million, it means only that 
losses above $1 million will happen with a probability of 5%. If we trans-
late probabilities into relative frequencies, this means, in turn, that losses 
above $1 million will happen approximately 5 times every 100. If we 
measure VaR daily this means 5 days out of 100 days. 

As a measure of risk, VaR has many drawbacks. It does not specify 
the amount of losses exceeding VaR. Different distributions might have 
the same VaR but totally different distributions of extreme values. For 
instance, in the above example of a VaR of $1 million at 95%, 5 times 
every 100 a portfolio might lose just above $1 million or a much larger 
amount. Perhaps the most serious drawback of VaR is the fact that it is 
not subadditive. The VaR of aggregated portfolios might be larger than 
the sum of individual VaRs. This is unreasonable as one expects risk to 
decrease in aggregate due to diversification and anticorrelations. Despite 
these drawbacks, and despite the fact that confidence intervals are ulti-
mately a rather complex probabilistic concept, VaR has become 
extremely popular as a risk measure. 

In 1998 Artzner, Delbaen, Eber, and Heath8 published an important 
paper where they defined the conditions for risk measures to be coher-

5 This fact is well known in statistical physics where the entropy associated with a 
continuous scheme is somewhat arbitrary. 
6 The pioneering work of Arnold Zellner has started a new strain of econometric lit-
erature based on Information Theory. See Arnold Zellner, “Bayesian Method of Mo-
ments (BMOM) Analysis of Mean and Regression Models,” in J.C. Lee, W.D. 
Johnson, and A. Zellner (eds.), Prediction and Modeling Honoring Seymour Geisser 
(New York: Springer, 1994), pp. 61–74. 
7 Note that RiskMetrics and VaR are not related. The concept of VaR can be applied 
to any probability distribution of return and not only to RiskMetrics. 
8 Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath, “Coherent 
Measures of Risk,” Mathematical Finance 9 (1999), pp. 203–228. 
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ent. A coherent risk measure must satisfy a number of properties includ-
ing sub-additivity conditions, monotonicity conditions, risk-free 
conditions, and diversification conditions. To solve the problems inher-
ent in the noncoherence of VaR, Artzner et al. proposed a coherent mea-
sure of risk known as expected shortfall (ES); Rockafellar and Uryasev9 

call the measure conditional VaR (CVaR). The ES at a given confidence 
level α is defined as the expected loss given that the loss exceeds VaR at 
the confidence level α. If the loss distribution is continuous, the VaR and 
the ES or CVaR can be written as follows. 

VaR at the 100(1 – α) percent confidence level is the upper 
100α percentile of the loss distribution. If we denote the 
VaR at the 100(1 – α) percent confidence level as VaRα(L), 
where L is the random variable of loss, then the expected 
shortfall at the 100(1 – α) percent confidence level ESα(L) 
is defined by the following equation: 

( ) = E LESα L [ L ≥ VaRα L( )] 

If the distribution is not continuous, the definition of ES is slightly 
more complicated. Acerbi and Tasche,10 and Rockafellar and Uryasev 
provide a thorough discussion of the definitions of ES and CVaR under 
different distributional assumptions. It can be demonstrated that at the 
same confidence levels, the ES and VaR are equivalent measures for nor-
mal distributions in the sense that ES can be inferred from VaR and vice 
versa. However other distributions, and in particular those with fat-
tails, might exhibit the same VaR but different ES and vice versa. It has 
been demonstrated that ES is a coherent risk measure while VaR is not. 
Yamai and Yoshiba11 offer a comparison of ES and VaR under a number 
of assumptions. 

9 Tyrrell R. Rockafellar and Stanislav Uryasev, “Optimization of Conditional Value-

at-Risk,” Journal of Risk 2, no. 3 (2000), pp. 21–41.

10 Carlo Acerbi and Dirk Tasche, “On the Coherence of Expected Shortfall,” work
-
ing Paper, Center for Mathematical Sciences, Munich University of Technology,

2001.

11 Yasuhiro Yamai and Toshinao Yoshiba, “On the Validity of Value-at-Risk: Com
-
parative Analyses with Expected Shortfall,” Monetary and Economic Studies 20, no.

1 (published by Institute for Monetary and Economic Studies, Bank of Japan, 2002),

pp. 57–86. A number of papers discuss the use of ES as a risk measure in portfolio

optimization. See, for example, Rockafellar and Uryasev, “Optimization of Condi
-
tional Value-at-Risk.”
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A different way of measuring risk consists in computing different pos-
sible scenarios and defining risk as the maximum loss that can be incurred 
in any of these scenarios. This technique is used in the SPAN system devel-
oped by the Chicago Mercantile Exchange which computes 16 scenarios, 
two of which are extreme scenarios. Risk is the largest maximum loss in 
the 14 scenarios or 35% of the loss in the two extreme scenarios. 

The idea of analyzing risk under different scenarios is widely used in 
practice, often together with quantile measures such as VaR. Extreme 
scenarios can be computed in different ways, in particular with the use 
of Extreme Value Theory (EVT), which we covered in Chapter 13. As 
we noted in that chapter, and as we will see in the following sections, 
the use of EVT is still in its infancy. 

Risk measures can be seen, from a different point of view, as sensitivi-
ties to given factors. In this case, rather than capture the uncertainty of a 
given distribution it captures the amount of fluctuation of a given quantity 
as a function of the fluctuations of another quantity. We have already 
encountered most of these measures. In the analysis of stock prices, the 
coefficients of factor models, the betas, capture the sensitivity of returns to a 
number of factors. As we have seen in Chapters 11 and 12 on financial 
econometrics, sensitivities apply to a static as well as to a dynamic frame-
work. A dynamic framework is generally represented as a state-space model. 

In the analysis of bond prices, duration captures the sensitivity of 
bond prices to parallel shifts in the term structure of interest rates. Con-
vexity, which is defined as the first derivative of duration, captures the 
sensitivity of bond prices to the curvature of the term structure. 

In the analysis of derivative instruments, a number of sensitivities 
are used to capture the sensitivity of their prices to changes in different 
parameters. These sensitivities are usually indicated with specific Greek 
letters. Hence, they are called the “Greeks.” The most common Greeks 
are listed below: 

Vega Theta Delta Gamma 

Sensitivity to a Sensitivity to a Sensitivity to a Linearized rate 
change in change in time change in the of change of 
volatility remaining price of underlying delta 

A concept related to risk measures is the Sharpe ratio developed by 
William Sharpe.12 Sharpe himself called this ratio the “Reward to Vari-

12 William F. Sharpe, “Mutual Fund Performance,” Journal of Business (January 
1966), pp. 119–138; and William F. Sharpe, “Adjusting for Risk in Portfolio Perfor-
mance Measurement,” Journal of Portfolio Management (Winter 1975), pp. 29–34. 
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ability Ratio.” The Sharpe ratio is to evaluate expected returns in a risk-
weighted framework. Given a portfolio, the ex ante Sharpe ratio is 
defined as the ratio between the expected excess return (measured rela-
tive to the risk-free rate) and volatility: 

Expected return – Risk-free rate 
Sharpe ratio = ----------------------------------------------------------------------------------

Standard deviation of return 

A number of other measures similar to the Sharpe ratio have been 
introduced, in particular the Sortino ratio13 which uses only downside 
volatility. 

A variant of the Sharpe ratio commonly used to assess the perfor-
mance of a portfolio manager is the information ratio. The information 
ratio is the ratio of the excess return over a designated benchmark 
divided by the tracking error, the standard deviation of the difference 
between portfolio return and the benchmark market (see Chapter 19). 
The excess return over the benchmark is referred to as the “alpha” or 
“active return.” The information ratio is typically calculated on an ex 
post basis as follows: 

Portfolio return – Benchmark return 
Information ratio = ---------------------------------------------------------------------------------------------

Tracking error 

RISK MANAGEMENT IN ASSET AND PORTFOLIO MANAGEMENT 

Risk has different facets in asset and portfolio management. In particu-
lar, risk can be characterized as (1) market risk; (2) risk of underperfor-
mance relative to a benchmark; or (3) business risk. Ultimately, risk is 
market risk. The question is: Who bears it? Asset management firms 
define their risk as the risk of underperformance relative to a bench-
mark: the client assumes the market risk implicit in the portfolio; the 
asset manager assumes the benchmark risk. However, the asset manage-
ment function is concerned essentially with market risk. 

Some nuance is required. If a firm manages the assets of the parent 
company (e.g., an insurance company or investment bank), it is exposed 
to market risk as an investor. Also, volatility of returns or a loss of cap-
ital might be unacceptable to some institutional or retail investors, forc-

13 See Frank Sortino and Robert Van Meer, “Downside Risk,” Journal of Portfolio 
Management (Summer 1991), pp. 27–32. 
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ing asset managers to accept market risk as they devise guaranteed-
return funds or convex strategies to protect the investor against down-
side risk. The type of quantitative methods used and the extent of risk 
modeling is largely determined by the risk—relative or absolute—that 
the asset management firm is exposed to; other important factors 
include the prevailing culture and the competitive environment. 

Some asset management firms are now defining their risk more 
broadly as business risk. Market risk and the failure to deliver a mandate 
are only two facets of business risk. Others include process flows and 
fraud and come under the general heading of operational risk. Opera-
tional risk has been moved up on the agenda by management consultants 
and, more recently, by the European Commission with proposals to 
extend to the asset management subsidiaries of larger financial organiza-
tions the new Basel rules on capital charges to cover business risk. 

Factors Driving Risk Management 
One of the major contributions of quantitative methods to asset man-
agement is widely considered to be in the area of risk. For the more 
quantitatively-oriented firms, ex ante risk measurement has enabled 
risk-return optimization as prescribed by modern finance theory, the 
dynamic management of risk, and the ability to handle structured prod-
ucts; for others, it means the ability to “look back” on risk. 

Several factors are behind the focus on risk:

 ■ Regulatory and reporting frameworks have put risk on the agenda of 
institutional investors.

 ■ Pension consultants are pressing for more measures of risk and tying 
performance to risk. 

■ Growing sophistication on the part of trustees and institutional inves-
tors is also a driver behind the demands for risk measures including 
VaR.

 ■ The growing complexity of assets in portfolios (e.g., global assets, 
structured products) is adding to risk and the need to monitor and con-
trol it.

 ■ The recent volatility in both asset classes and investment styles is 
increasing the need to monitor tracking error in an effort to limit 
downside risk.

 ■ The contribution risk modeling makes in defining mandates. 

Risk Measurement in Practice 
In practice, as noted previously, a whole battery of risk measures are 
being used. A number of considerations can be made. The more complex 
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the probability distribution, the more measures required. Over a period 
of several months—a typical time horizon for asset management—distri-
butions are assumed to be Gaussian and that one risk measure suffices. 
But phenomena such as volatility clustering, trend reversals, large move-
ments, and structural breaks produce distributions that are not Gaussian. 
There is a need to measure what might happen at the extremes. It is not 
infrequent that single risk measures such as variance or VaR are being 
complemented by scenario analysis to evaluate the risk of extreme move-
ments. 

In addition, a single measure might not be equally appropriate for 
all investment styles. For example, firms focused on emerging markets 
might use information ratios, which reflect returns on assets, to comple-
ment tracking error. Multiple measures might be required by (institu-
tional) clients. Tracking error and information ratios or volatility are 
considered standard in some markets and an increasing number of cli-
ents are asking for VaR. VaR is required in managing funds for endow-
ments and foundations with a statutory requirement to generate positive 
returns; in Germany, VaR measures are now regulatory for funds man-
aging the investments of depository institutions. Multiple measures 
might be requested by fund managers themselves, in an attempt to 
improve their performance. 

In some instances, it’s important to understand in absolute terms 
how much money might be lost. This is the case with guaranteed-return 
funds or funds being managed for the parent company, for example, an 
insurance firm or investment bank. A few firms are using EVT; the 
objective is to ensure the ability to survive a market crash. One might 
want to be able to take into account different aspects or different views. 
VaR allows a uniform measure of risk across asset classes. Though with 
time horizons of 2–3 months volatility clustering phenomena disappear, 
ARCH-GARCH models are being used at some firms to gain an under-
standing of the clustering of risk. 

Getting Down to the Lowest Level 
Risk and performance are increasingly being measured at lower levels. 
Instead of looking at sector levels (e.g., geographical areas, currency or 
industry sector), firms are beginning to look at the single-asset level. 
While most firms are not there yet, this is the declared goal. 

There is also a tendency at producing risk numbers daily, with daily 
reporting to fund managers, monthly to management, and (typically) 
quarterly to clients. Investment consultants and regulators consider it 
fundamental that asset managers be aware of the risk at all times, but 
not everyone agrees that crunching out the numbers daily is appropriate 
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for all funds. Among the concerns voiced is the fact that risk measure-
ment loses significance if the covariance matrix is changed daily. Also, if 
the wrong measure is used, its use on a daily basis might exacerbate the 
problem, leading to a too frequent rebalancing of portfolios. 

Regulatory Implications of Risk Measurement 
To protect the financial system and, ultimately, the broad public of 
investors, financial intermediation and asset management are highly reg-
ulated, though regulations governing risk management are different for 
banks and asset management firms. In many countries, an asset manage-
ment firm’s procedures are highly regulated; the firm must exhibit mini-
mum requisites of financial prowess, the ability to process transactions, 
and moral qualities of its management. Asset managers are also required 
to demonstrate the ability to measure risk and to communicate to the 
investor the level of risk implied by their management. 

Risk management has strong regulatory implications, especially for 
banks. Banks are obliged to keep an amount of liquid and safe capital to 
shoulder eventual adverse market movements. The amount of bank 
reserves is subject to strict regulation. There are many facets related to 
the amount of reserve capital that banks are obliged to maintain. Con-
sider that the amount of liquid bank reserves is a fundamental quantity 
in the process of money creation and the management of the monetary 
mass. A new dimension of the reserve management process is the man-
agement of the ratio between the amount of risky capital and the 
amount of safe reserves. The modern view of this aspect is that regula-
tors decide the desired ratio between risky capital and safe reserves but, 
under appropriate conditions, let banks measure the amount of risk they 
are running with internal measurement systems. This is a substantial 
novelty with respect to the past when banks where obliged to keep a 
fixed percentage in liquid reserves. The point of view of the U.S. Federal 
Reserve is that 

By substituting banks’ internal risk measurement models 
for broad, uniform regulatory measures of risk exposure, 
[the new rule] should lead to capital charges that more 
accurately reflect individual banks’ true risk exposures.14 

14 Darryll Hendricks and Beverly Hirtle, “Bank Capital Requirements for Market 
Risk: The Internal Models Approach,” Federal Reserve Bank of New York, Eco-
nomic Policy Review (December 1997). 
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Clearly banks must show the ability to measure risk which the Fed-
eral Reserve prescribes measuring as VaR. The Federal Reserve then 
controls the quality of a bank’s ability to forecast adverse movements. If 
adverse movements occur more frequently than anticipated by a given 
bank’s risk management system, then that bank is obliged to increase its 
liquid reserve. The implications of these new regulations from both the 
business and the macroeconomic points of view will be analyzed in the 
coming years. 

SUMMARY

 ■ Diversification and risk transfer through financial engineering are the 
key tools of risk management.

 ■ Estimating the shape of loss distributions is central to modern financial 
risk management.

 ■ A market is complete if every possible contingency can be traded.
 ■ In a complete market, risk can be perfectly hedged.
 ■ Multivariate geometric diffusion models are complete.
 ■ Stochastic volatility models are not complete, but can be completed.
 ■ If risk does not exist in aggregate, it can be eliminated; if it exists in 

aggregate, it can only be transferred.
 ■ Off-the-shelf market and credit risk models are commercially available.
 ■ Risk can be measured in numerous ways: unexpected loss, value-at-

risk, expected shortfall, and sensitivities.
 ■ Client demand and management push are behind the growing use of 

risk management in investment management. 
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Daniel, Kent, 344

Danielsson, J., 377

Dantzig, Georg, 82, 201

Darboux-Young approach. See


Integration 
Data generation process (DGP), 

285, 332, 345

modeling, 378

nonlinear function, 547

schemes, 547


Database query functions, devel-
opment, 16


Datini, Francesco, 10

Davis, M.H.A., 742

DAX, 70

Day convention, 681

de Haan, L., 377

de Varenne, Francois, 695


de Vries, C.G., 377

Dealers


bid-ask spread charge, 83

role. See Real markets


DeBondt, Werner, 572

Debreu, Georges, 75

Debt


contract, 700

default probability, 692

market, 25

obligations, investment. See


Short-term debt obliga
-
tions


value, 688

Debt instruments, 22. See also 

One-period debt instru-
ment 

definition, 180

valuation principles, 594–595


Dechert, W.D., 259

Decision making, management


structures, 14

Dedicated portfolio strategy, 664

Default basket market, 719

Default basket swap contract, 718

Default prediction, 711

Default probability, 689. See


also Forward default 
probability


curves, 711

equation, 691–692

forward curve, 685, 711


Default swap, 719

contract, total protection value,


715

counterparty risk, 717–718

delivery option, 716

tenor, 734

valuation. See Baskets

value, 718


Default time

correlation, 730–733

distribution, 698


Defaultable zero-coupon bond, 696

Default-free payoff, 707

Defaults


correlation, default time cor-
relation (comparison), 
733–734 

distribution, specification. See 
Joint defaults 

processes, modeling process. 
See Correlated default 
processes 

Deferred call, 55

Defined contribution plan, 42

Dekkers, A.L.M., 377

Delbaen, F., 467

Delbaen, Freddy, 748

Deliverable obligation, 680

Delivery option. See Default swap

Delta, 117

Dembo, Ron, 672

Dempster, A.P., 348

Demsetz, Harold, 29, 30
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Densities 
Fourier transform, 192–193 
process, 465. See also Equiva-

lent Martingales

Depository institutions, 43–44


investments, 753

Derivative instruments, 26, 70,


85, 742

contrast. See Cash

value, 423


Derivatives, 21. See also Higher 
order derivatives; n par-
tial derivatives 

application. See First deriva-
tive; Second derivative


computation, rules, 107–111

market, 26

pricing, 12, 89. See also Inter-


est rates 
valuation. See European sim-

ple derivatives

Derivatives (calculus), 91

Derman, Emanuel, 638. See also


Black-Derman-Toy Model

Descriptive metafile, 16

Descriptors, 532

Determinants, 148–149

Determination, coefficient, 518

Deterministic environment, 218, 640

Deterministic equivalents, 676

Deterministic series, 296

Deterministic short-term inter-


est rates, 619

Deterministic trend, 309

Dhrymes, Phoebus J., 436

Diaconis, Persi, 327

Diagonal matrices, creation, 161–


162

Diagonal variance-covariance


matrix, 534

Diagonalization/similarity, 161–162

Diagonals, 145–146. See also


Antidiagonals

matrices, 146–147


Dickey-Fuller (DF) test, 312– 
313. See also Augmented 
Dickey-Fuller test 

Diebold, Francis X., 346, 378

Difference equations, 239. See 

also Recursive difference 
equations 

Difference method. See Finite 
difference method


Difference quotient, 106, 255

Difference stationary series, 310

Differentiable function, 106–107

Differential equations, 239. See


also Linear differential 
equation; Ordinary dif-
ferential equations; Par-
tial differential equations; 
Stochastic differential 
equations 

definition, 240


degree, 241

first-order system, 243

general solution, 242–243

solution, 92


Differentiation, 92, 106–111 
rule. See Termwise differenti-

ation 
Diffusion 

equation, 259–261 
solution, 261–263 

invariance principle, 461–462 
models. See Spread-based dif-

fusion models 
volatility, 447


Dimensional distributions, 228

Dimensionality


curse, 345

reduction, 309


Dimensions, generalization, 276–278

Dimitriu, Anca, 344, 545

Dirac delta, 228


function, 628

Dirac measure, 371

Direct investments, 35–36

Discontinuous function, 104–105

Discount bond. See Pure risk-


free discount bond 
Discount factor. See Risk-free 

discount factor

Discount function, 606–607, 625

Discrete probabilities, 171

Discrete quantities, 99

Discrete random variables, col
-

lection, 407

Discrete random walk, 225

Discrete-state discrete-time envi
-

ronment, 623

Discrete-state discrete-time setting,


445

Discrete-time continuous-state 

setting, arbitrage pricing, 
430–434 

Discrete-time models, 283

Discrete-time processes, 671

Discretization scheme, 263

Disjoint additivity. See Probability

Distances, 96–100

Distributed sequences. See Identi
-

cally distributed sequences; 
Independent distributed 
sequences 

Distributions, 174–175. See also 
Fat-tailed distributions; 
Max-stable distributions; 
Stable distributions 

functions, 174–175 
law, 175


Distributive properties, 159

Diversifiable risk, 515, 525

Diversification, 36, 472–474.


See also Cost-effective 
diversification


quantification, 472

usage, 81


Dividends

factor, 520

payment, 49

usage, 45

yield, 519


Divisibility/denomination, 22

Dodd, David, 567

Dollar convexity, 119, 122

Dollar duration, 113–114, 122

Domain of attraction. See Attraction

Dorfleitner, D., 353

Dow Jones Industrial Average


(DJIA), 46–47, 545

Dow Jones-Reuters, 17

Down-and-out barrier option, 695

Downside dollar, 502

Downside risk, 66

Drees, H., 377

Duda, Richard O., 562

Duffie, Darrell, 625, 685, 687,


696, 706, 729, 740

Duffie-Singleton Model, 697,


706–710

Duration. See Dollar duration; 

Effective duration; Rate 
duration 

usage, 115–116

Durlaf, S.N., 380

Dynamic cointegration, 540

Dynamic Cointegration Approach, 342

Dynamic market models. See Returns

Dynamic models. See Prices

Dynamic nonlinear self-rein-


forcing cascades, 380

Dynamic trading, 427

Dynkin, Lev, 651, 652, 654,


656, 657, 660, 662, 663


EAFE index, 497–498 
EAFE international equity, 504–506 
Earnings growth. See Estimated 

earnings growth

Earnings yield, 589

Eber, Jean-Marc, 748

Econometrics, 337–338. See also


Financial econometrics 
models, 511


Economic activity, 593

Economic behavior, quantitative


laws, 76–78

Economic growth rate, 175

Economic modeling, 11

Economic quantities, 168. See


also Time-variable eco-
nomic quantities 

Economic theories. See Term 
structure 

Economic value, 66–67 
Economic variables, prima facie 

trends, 287

Econophysics, 78

Edwards, Mark, 551

Effective duration, 118
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Efficiency. See Semistrong effi-
ciency; Strong-form effi-
ciency; Weak efficiency 

Efficient frontier, 473. See also 
Markowitz efficient frontier 

Efficient markets, 85–86 
theory, 79 

Efficient portfolios, 472. See 
also Markowitz efficient 
portfolios 

set, 474 
solving, 499 

Eichhorn, David, 507 
Eigenvalues, 160–161, 293– 

294, 330. See also Vari-
ance-covariance matrix 

number, 343, 522–523 
Eigenvectors, 160–161, 332 

usage, 523, 536 
Electronic communication net-

works (ECNs), 46 
Electronic transactions, diffu-

sion, 12–13, 76, 284 
Elementary functions, 222, 233. 

See also Bounded ele-
mentary function 

stochastic integral, definition, 234 
Elements. See Matrices 
Embedded call option, 116 
Embedded option, value, 117 
Embrechts, Paul, 80, 189, 329, 

353, 355, 385, 388 
Empirical analogue, derivation. 

See Capital market line 
Empirical data, 167 
Empirical distribution function, 370 
Employee Retirement Income 

Security Act (ERISA) of 
1974, 42 

Empty sets, 95 
Endowments, 45 
Endpoint. See Right endpoint 
Engle, R.F., 334, 346, 540, 543, 

548 
Engle-Granger method, 543 
Enhanced index portfolio, 554 

tracking error, 555 
Enhanced indexing, 9, 553 

matching risk factors, 650 
minor risk factor mismatches, 

650 
strategy, 650 

Entities, classification, 34–35 
Entropy, 747 

maximization, principle, 492 
Equality constraints, 207, 211 
Equality modulo sets, 179 
Equilibrium market price. See Risk 
Equilibrium models, 637 

contrast. See Arbitrage-free 
models 

Equilibrium system. See General 
equilibrium system 

Equilibrium theories. See Gen-
eral Equilibrium Theories 

Equity 
claim, 22 
indexes, types, 93–94 
investment styles, 560 
log-price processes, set, 544 
long-term expected return, 508 
management, depth/goodness, 

569 
market, 25 
portfolio management, 551 

process, integration, 551–552 
prices, cointegration (empiri-

cal evidence), 343–345 
REIT, 587 
securities, 45 
volatility, 694 

Equity styles 
classification system, 562–564 
management, 560–564 
types, 560–562 

Equivalent Martingales, 89–90 
measures, 414–415, 446, 457– 

463 
density process, 419 
usage, 455, 468. See also 

Complete markets; State 
prices 

Equivalent probability measures, 
concept, 415 

Error Correction Model (ECM), 
341–342 

usage, 539 
Error term, 559. See also Non-

factor error term 
Estimated earnings growth, 532 
Estimation, 315, 373–378, 384–385 
Estimator. See Hill estimator; 

Pickand estimator

efficiency, 319–320

unbiasedness, 319–320


Euclidean length. See Vectors 
Euclidean space, 169. See also n-

dimensional Euclidean 
space; Three-dimensional 
Euclidean space 

Euler, Leonard, 213 
Euler approximation, 250, 645 
Euler condition, 493 
Euler-Lagrange equation, 213 
European call options, valuation, 

69 
European derivative instrument, 429 
European options, 65, 68, 447, 639 

pricing, generalizing, 452–454 
European simple derivatives, 

valuation, 427–429 
European stock options, 742–743 
Events. See Outcomes/events 

algebra, 441 
dynamic nonlinear self-rein-

forcing cascades, 380 
indicator function, 729 

Ex ante Markowitz efficient 
frontier, 520 

Ex ante tracking error, 556 

Exceedances, point process, 
371–373, 373 

Excess cash, reinvestment, 664 
Excess return. See Total excess 

return 
Excess risk. See Total excess risk 
Exchange rate, 70 
Exchangeable bond, 56 
Exchange-imposed restrictions, 

28, 83 
Exchange-traded option, 65 
Execution 

costs, 33, 64

measurement, 34


speed, 32 
Exercise options, 65 
Exercise price, 64 
Existence, theorem, 274 
Exogenous factors, 532–534, 546 
Expansion periods, 347 
Expectation. See Conditional 

expectation; Homoge-
neous expectations 

theories, 613–618. See also 
Local expectations theory; 
Pure expectation theory; 
Return-to-maturity expec-
tations theory; Unbiased 
expectations theory 

Expectation Maximization (EM) 
algorithm, 348 

Expected excess return, 751 
Expected return, 7. See also 

Future expected return 
volatility, 68 

Expected shortfall (ES), 749 
Expected Shortfall Risk (ESR), 391 
Expiration date, 64 
Explanatory model, 285 
Exponential distribution, 698 
eXtensible Markup Language 

(XML), development, 16–17 
Extra-market risks, 88 
Extra-market sources, 87 
Extremal events, 353 
Extremal random variables, 365 
Extreme point, 209 
Extreme value distributions. See 

Generalized extreme value 
distributions; Standard 
extreme value distributions 

Extreme Value Theory (EVT), 
353, 373, 491–492. See 
also Independent and 
identically distributed 

applicability. See Finance

usage, 750


Fabozzi, Frank J., 33, 82, 85, 494, 
497, 500, 503–508, 532, 
556–558, 582, 583, 586, 
588, 590, 635, 637, 664, 
667, 679, 695, 710, 714, 
734. See also Kalotay Will-
iams and Fabozzi Model 
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Fabozzi (Cont.) 
(ed.), 494, 497, 500, 503–508, 

532, 551, 552, 557, 558, 
582, 583, 586, 588. 590, 
593, 610, 632, 633, 649– 
652, 656, 657, 662–664 

Face value, 52 
owning, 686 

Factiva, usage, 17 
Factor variance-covariance matrix, 

values, 577 
Factors, 87, 336. See also Abstract 

factors; Exogenous factors 
analysis, 338 
determination, 532–537 
market, 21 
models, 286, 335–338 
realizations, 654 

Falconer, J., 385 
Fama, Eugene F., 31, 85–86, 326, 

344, 481, 519, 520, 523 
Fat tails, 258, 351–353 

evidence. See Financial vari-
ables 

Fat-tailed distributions, 232, 351, 
353–358 

generation, 383 
Fat-tailed IID sequences, 380 
Fat-tailed innovations, 382 
FEA (firm), 12 
Feasible basic solution, 209 
Feasible region, determination, 207 
Feasible set, 473 
Federal Reserve (Fed), Board of 

Governors, 50 
Feldman, R.E., 355, 389 
Feynman-Kac formula, 627–632 

application, 631 
extension, 634, 640 

Filter rules, 571 
Filtration, 182–184 

concept, 225–226 
usage, 226 

Finance, extreme value theory 
(applicability), 391–392 

Finance theory, probabilistic 
theory, 181 

Financial assets, 21–24 
creation, assistance, 35 
illiquidity, impact, 24 
issuers, 37 
overview, 21 
tax status, 24 
transformation, 35 

Financial businesses, 34–35 
Financial decision-making appli-

cations, automation, 18 
Financial econometrics, 283, 315, 518 

models, 259 
Financial engineering, history, 10 
Financial futures, 57 
Financial instrument, 57 
Financial intermediaries 

function, 35 

liabilities, issuance, 36

role, 35–37


Financial markets, 21, 25–34 
buyers/sellers, interaction, 26 
classification, 25–26 
economic functions, 26–27 
futures, role, 63–64 
overview, 21 
probabilistic representation, 

180–181 
Financial modeling, milestones, 75 
Financial models, 17 
Financial obligation, 51 
Financial optimization, 744 
Financial theory, connection, 539 
Financial time series 

linear models, 324 
nonstationary models, 345–348 
relationship. See Cointegration 
stylized facts, 286–288 

Financial variables 
fat tails, evidence, 388–390 
prima facie trends, 287 

Finite difference method, 249–256 
Finite variation, 105–106 
Finite-dimension distributions, 

set, 458 
Finite-dimensional distributions, 

284, 739 
Finite-state models, 393 
Finite-state probability, 417 
Finite-state setting, 403 

arbitrage pricing. See Multi-
period finite-state setting 

Finite-variance case, 382 
Finite-variance random vari-

able, 452, 463 
Firm size factor, 520 
Firm-value models, 684 
First boundary value problem, 260 
First Crusade (1095-1099), 10 
First derivative, application, 113–115 
First-order conditions. See Port-

folios 
First-order immunization condi-

tions, 672 
First-order linear equation, 250 
First-to-default basket, 718–719 

price, 725, 727 
swap, 681 

Fischer, S., 334 
Fisher, L., 667 
Fisher information matrix, 320, 

322 
Fisher score function, 322 
Fisher-Tippett theorem, 364 
Fixed income instruments, 22 
Fixed income market, 25 
Fixed-income portfolio manage-

ment, 8 
Fixed-income trading, calibra-

tion, 698, 699 
Floating point operations per 

second (flops), 11 

Floating-rate CD, 39 
Floating-rate securities, 53 
Floors, 54, 70–71 

agreements, 26 
Focardi, Sergio, 13, 15 
Fokker-Planck equation, 628– 

629 
Fong, Gifford, 507 
Fons, Jerome, 690 
Foreign stocks. See Non-U.S. 

foreign stocks 
developing/emerging, 4 

Forni, M., 334 
Forward contracts, 26, 57–64 

contrast. See Futures contracts 
Forward curve. See Default 

probability 
Forward default probability, 712– 

713 
Forward Kolmogorov equation, 

628–629 
Forward LIBOR interest rate, 644 
Forward operator (F), 289–290 
Forward rates, 607–608 

continuous case, 625–626 
curve. See Short-term for-

ward rates 
Forward-looking tracking errors, 

558, 651, 661–662 
contrast. See Backward-look-

ing tracking errors 
Fourier integrals, 262 
Fourier transforms, 134, 137– 

138. See also Densities; 
Inverse Fourier transform 

Foward default probability, 701– 
702 

Fractals, 258–259 
dimension, 2231 

Fractional Brownian motion, 387 
Fractional recovery model, 706 
Frank Russell Company, 48, 563 

1000 index, 95–96, 561, 563 
2000 index, 48, 94, 561, 563 
2500 index, 561 
3000 index, 48, 94, 95, 561 
Midcap Index, 94 
stock indexes, 46 
Top 200 index, 561 

Frechet distribution, 362–363, 
365, 367 

MDA, 366 
French, Kenneth R., 344, 520, 523 
Frictions, 83 
Friedman, Milton, 444 
Friend, Irwin, 436 
Functions, 100–101. See also 

Cadlag functions; Com-
posite function; Continu-
ous function; Copula 
functions; Distributions; 
Inverse function; Regres-
sion function 

derivative, 91 
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Functions (Cont.) 
domain, 100 
indefinite integral, 132 
primitive integral, 132 
range, 100 

Fundamental multifactor risk 
model, 568 

Fundamental solutions, 622 
usage, 279 

Future expected return, 7 
Futures 

price, 61. See also Theoretical 
futures price 

role. See Financial markets 
Futures contracts, 57–64 

forward contracts, contrast, 
58–59 

marked to market, 59 
pricing, 59–63 
risk/return characteristics, 59 
settlement date, 58 
theoretical price, 62 

Fuzziness, concept, 92 

GARCH. See Integrated GARCH 
behavior, 574 
method, 547 
models, 12, 286, 288 

results (set), availability, 385 
usage, 345–347, 741 

processes, 312, 382–383 
Gatarek, Dariusz, 644. See also 

Brace-Gatarek-Musiela 
Model 

Gaussian distribution, 194, 
353, 355, 361. See also 
Stable inverse Gaussian 
distributions 

exception, 362 
Gaussian H-sssi process, 387 
Gaussian processes, 387 
Gaussian variables, 194–196 
General equilibrium system, 77 
General Equilibrium Theories 

(GET), 511, 536 
Generalized extreme value (GEV) 

distributions, 368. See 
also Standard General-
ized Extreme Value Distri-
bution 

Generally accepted accounting 
principles (GAAP), 6, 40 

Generating function, 294 
Geometric Brownian motion, 

273–274, 280–282, 447– 
449, 451 

stochastic differential equa-
tion, 629 

Geometric return, 98 
Geometric-diffusion model, 741 
Geske, Robert, 690 
Geske compound option model, 

690–694, 700 
Geweke, J.F., 334 
Ghysels, E., 383 

Girsanov theorem, 459–463, 687 
application. See Black-Scholes 

option pricing formula 
Glivenko-Cantelli theorem, 370 
Global equilibrium, 77 
Global probabilistic framework. 

See Portfolios 
Global VAR model, 543 
Globally equal expected-hold-

ing-period return theory, 
616 

Gobbout, Marie-Jose, 545 
Goldberger, A.S., 334 
Goldie, C.M., 355, 368 
Gopikrishnan, Parameswaran, 

390, 522 
Gourieroux, Christian, 303, 

317, 383 
Government bonds. See U.S. 

government bonds 
issuance. See Repurchase agree-

ment 
Government yield curves, com-

parisons, 611 
Government-imposed transfer 

fees, 28, 83 
Graham, Benjamin, 567 
Granger, C.W.J., 341, 540, 543 

method. See Engle-Granger 
method 

Granger Representation Theo-
rem, 540 

Greene, William H., 312 
Green’s function, 263 
Grinold, Richard, 568 
Growth stocks, 3 
Guaranteed interest rate, 667 
Guhr, Thomas, 522 
Gultekin, N. Bulent, 436 
Gumbel distribution, 362–363, 365 

MDA, 367–368 
Gupta, Francis, 82, 494, 497, 

500, 503–506 

Hallin, M., 334 
Hamilton, J.D., 347, 348 
Hamilton models, 286, 347–348. 

See also Markov switch-
ing Hamilton models 

Hankel matrices, 152–153, 305, 308 
Harrison, J. Michael, 89–90, 457 
Havenner, Arthurf, 574309 
Hazard rates, 730 

calibration, 716 
term structure, 731 

He, Hua, 427, 740 
Heart, Peter E., 562 
Heath, David, 640, 709, 748 
Heath-Jarrow-Morton (HJM) 

Model, 640, 709. See 
also Term structure 

Heavy-tailed ARMA processes, 
381–382 

Heavy-tailed distributions, 352 
Hedging, 89–90, 448–449 

Helwege, Jean, 690 
Hendricks, Darryll, 754 
Hendry, D.F., 317 
Hessian determinant, 203–204 
Hessian matrix, 203 
Heuristic computational proce-

dures, 324 
Higher order derivatives, 111–120 
High-frequency data (HFD), 

usage, 13 
High-frequency data studies 

(Olsen & Associates), 389 
High-level text mining function-

ality, development, 16 
High-risk active portfolio strat-

egies, 42 
High-yield corporate bonds, 3 
Hilburn, Robert C., 574 
Hill estimator, 376–378 
Hirtle, Beverly, 754 
Historical risk premiums, 500 
Ho, Thomas, 635 
Ho-Lee Model, 635 
Hommes, C., 259 
Homogeneous expectations, 482 
Homogeneous Poisson process, 371 
Homogeneous system, 150 
Hood, Randolph, 494 
Hosking, J.R.M., 375 
Hsieh, D., 258 
Huang, Chi-Fu, 740 
Huang, Jay, 695 
Huang, Jinzhi, 700 
Huang, Ming, 695 
Hull, John, 636, 687, 711, 717 
Hull-White Model, 635, 636 
Hyman, Jay, 651, 652, 654, 

656, 657, 662, 663 

Identically distributed sequences, 
191 

Identity matrix, 146 
IGARCH. See Integrated GARCH 
Imaginary unit, 143 
Immunization. See Multiple-

period immunization; 
Portfolios; Single period 
immunization 

conditions. See First-order 
immunization conditions; 
Second-order immuniza-
tion conditions 

constraints, 672 
Imprecision, concept, 92 
Improper integrals, 131–132 
Incomplete markets, 739 
Indefinite integrals, 131–132. 

See also Functions 
Independent and identically dis-

tributed (IID) 
alpha-stable laws, 381 
distributions, 379 
framework. See Non-IID 

framework 
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Independent and identically dis
-
tributed (Cont.)


processes, extreme value the
-
ory, 362–378


returns, 522

assumption, 492


variables, 362, 368, 437, 531

sequence, 364


Independent and identically dis
-
tributed (IID) sequences,

268, 325, 495. See also

Fat-tailed IID sequences;

Stationary IID sequence


assumption, 378

assumption, elimination, 376–388

estimation procedures, 381

normalized maxima, 374


Independent distributed sequences,

191


Independently distributed (ID)

variables, 359


Indeterminacy principle, 243

Index. See Benchmarks; Markets


tracking/cointegration, 565

Indexed portfolio, construction,


564–565

Indexing. See Enhanced indexing


strategy, 564

Indicator function. See Events

Indifference curves, 482–484

Individual investors, 2

Inequality constraints, Markow
-

itz mean-variance model 
(extension), 485–487


Infinite autoregressive form, 295

Infinite moving average. See Time


series 
representation, 292, 301


Infinite noncountable set, 99

Infinite variation, 106

Infinitesimal calculus, 107

Infinitesimal notation, 109

Infinitesimal quantities, calculus,


107

Inflation, 593

Information. See Unstructured


data/information

acquisition, cost, 28, 83

advantage, 744

costs, 26–27

criteria. See Akaike Informa
-

tion Criteria; Bayesian 
Information Criteria


overload, 15–16

processing costs, 37

propagation, 181, 402–403

set, 85

structures, 181–183

technology, role, 11–13


Information coefficient (IC), 568–

570


Information ratio (IR), 568, 570,

751, 753


Information Theory, 747


Informationless trades, 33

Ingersoll, Jonathan, 616, 637,


709. See also Cox-Inger-

soll-Ross Model


Initial conditions, 295

Initial margin, 58


requirement, 49–50

Inner product, 155

Innovation. See Processes

Inputs, requirement. See Assets

Instantaneous interest rate, 219.


See also Risk-free bank 
account 

Institutional investors, 2, 37–41. 
See also Common stocks 

Insurance

companies, 41, 80

premiums, establishment, 80

ruin problem, 80–81


Intangible assets, 21–22 
Integrals, 172–174. See also 

Improper integrals; Indefi-
nite integrals; Lebesque-
Staieltjes integrals; Rie-
mann integrals 

definition. See Stochastic inte
-
grals


transforms, 134–138

Integrated GARCH (IGARCH),


347, 548

Integrated nonstationary process,


268

Integrated processes, 311

Integrated series, 309–313

Integrated trends, 309–313

Integration, 127–130


chain rule, 129

Darboux-Young approach, 173

operation, linearity, 133

process, 14–15


Intensity of belief. See Belief 
Interest


instantaneous rate, 620

payments, receiving, 52

risk-free rate, 447


Interest rate risk, 599, 615

exposure, 44

problem, 44


Interest rate-equity swap, 70

Interest rate-risk based capital


requirements, 5

Interest rates. See Deterministic 

short-term interest rates; 
Guaranteed interest rate; 
Risk-free short-term con-
tinuously compounding 
interest rate 

calibration. See Random 
interest rates


changes, 43, 716

constancy, 119–120

convexity. See Constant inter-


est rates; Continuously 
compounding constant 

interest rate; Variable 
interest rates


derivatives, pricing, 638–640

parallel shift, 114, 668

term structure, 126, 599–612


continuous time, 623–638 
Interest ratio. See Short interest 

ratio 
Interest-rate derivatives, class 

(pricing), 639

Interior-point algorithms, 210–211

Interior-point methods, 208, 210–


211

International Swaps and Derivatives


Association (ISDA), 683

Credit Derivatives Definition


(1999), 683

Master Agreement, 683


International treaties, 34–35

Intertek Group, study, 13

Inter-trades intervals, distribu
-

tional properties, 383

Interval of convergence. See


Convergence

Intrinsic value, 66–67. See also


Stocks

Inverse characteristic equation,


297–298

Inverse floaters, 54

Inverse Fourier transform, 137

Inverse function, 101

Inverse Laplace transform, 249

Inverse operation, 159–160

Inverse operators, 291

Inverted yield curve, 612

Investing. See Active investing

Investment. See Direct invest
-

ments

alternatives, 4, 45

budget, constraint, 666

companies, 42–43

constraints, 5–6

decision-making process, 13

horizon, 502–503, 607. See


also One-period invest
-
ment horizon


management

applications, CAPM (role),


525–526

milestones, 75


objectives, 64

setup, 2


opportunities, 569

performance


measurement/evaluation, 2

monitoring, 552


policy, establishment, 2–6

principles, 81–82

processes. See Semiautomated


investment processes

risk-return trade-off, 81

strategy, 41


selection, 2

vehicles, 51
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Investment management pro-
cess, 2–10


assets, selection, 7–9

investment


objectives, setting, 2 
policy, establishing, 2–6 

performance, measurement/ 
evaluation, 9–10 

portfolio strategy, selection, 6–7 
Investment-grade corporate bonds, 

3 
Investors, 22. See also Consen-

sus investors; Institu-
tional investors; Risk-
averse investors; Individ-
ual investors 

risk-return preferences, 488 
Invisible hand, 77 
Irrational number, 98–99 
Irrelevance theorems, 84–85 
Isham, V., 371 
ISMA Center, 545, 565 
Issuer-specific risk, 653 
Iterative technique. See New-

ton-Raphson iterative 
technique 

Itô, Kiyosi, 79, 221, 224, 269 
Itô formula, 272. See also One-

dimensional Itô formula 
application, 281–282 

Itô lemma, 450, 461 
application, 453, 462 
usage, 641 

Itô processes, 271–272, 449, 
452. See also N-dimen-
sional Itô processes; Pos-
itive Itô process 

definition, 269–270

discretization, 644–646

function, 671

reversibility, 629


Itô stochastic integrals, 223, 
235–237 

Jacobs, Bruce, 568, 569 
Jagannathan, Ravi, 523 
Jarrow, Robert A., 640, 684, 

696, 698, 703, 709, 730. 
See also Heath-Jarrow-
Morton Model 

Jarrow-Turnbull Model, 698– 
703, 730 

calibration, 700–703 
Jensen, Michaell C., 519 
Jobst, Norbert J., 492 
Johansen, A., 390 
Johansen, S., 543 
Johansen methodology, 543 
Johnson, W.D., 748 
Joint Bernoulli distribution, 

722–724 
Joint defaults 

distribution, specification, 722– 
728 

modeling, common factors 
(usage), 729–730 

Joint density, 185, 192 
Joint multivariate normal distri-

bution, 531 
Joint multivariate probability 

density function, 197 
Joint Poisson process, 728–729 
Jonas, Caroline, 13, 15 
Jones, Frank J., 532, 556, 558, 

582, 583, 586, 588, 590 
Jordan, James V., 593, 616 
Jordan measure, 130 
JPMorgan, 746, 748 
Jump process, 729–730 
Jump-diffusion models, 740 

Kahn, Ronald N., 568, 569 
Kall, Peter, 202, 677 
Kalman, R.E., 538 
Kalman filter, 538 
Kalotay, Andrew J., 637 
Kalotay Williams and Fabozzi 

(KWF) Model, 635, 637 
Kanas, Angelos, 344, 546 
Karasinski, Piotr, 637. See also 

Black-Karasinski Model 
Karatzas, Ioannis, 275 
Kasa, Kenneth, 344, 545 
Kaufmann, E., 377 
k-dimensional vector, 306 
Kesten, H., 383 
Keynes, John Maynard, 81, 165 
Kim, In-Moo, 543 
Klüppelberg, Claudi, 80, 353, 

355, 385, 388 
Knock-in option, 695 
Knockout options, 695 
Kogelman, Stanley, 508 
Kolmogorov, Andrei N., 166– 

167, 318 
Kolmogorov backward equa-

tion, 629 
Kolmogorov extension theorem, 

227–228 
Konstantinovsky, Vadim, 651 
Kotz, N.L., 353 
Kouretas, Georgios P., 344, 546 
Kreps, David M., 90, 457 
Kritzman, Mark, 4 
k-th moment, 186 
kth upper order statistic, 369 
Kuhn, Thomas, 315 
Kunita, H., 221 

Labys, P., 346 
Lag operator (L), 289–292 
Lagrange, 213 

equation. See Euler-Lagrange 
equation 

multipliers, 204–206, 476 
Laherre, J., 390 
Laird, N.M., 348 
Lakonishok, J., 574 
Laloux, L., 329 

Lando, Daniel, 716 
Lando, David, 697, 703 
Lane, D.A., 380 
Laplace, Pierre-Simon, 243 
Laplace transform, 134–137. See 

also Two-sided Laplace 
transform 

Laplace-transform derivatives, 248 
Large capitalization stocks, 3 
Lau, Sheila, 516 
Lausanne School, 76–78 
Law of Large Numbers (LLN), 

38, 358–360, 380 
Law of one price, 394 
Learning 

complexity, 317–319 
Vapnik-Chervonenkis (VC) 

theory, 319, 547 
LeBaron, B., 258, 259, 574 
Lebesgue measures, 130 
Lebesgue-Stieltjes measure, 177 
Lebesque-Stieltjes integrals, 130, 177 
Ledermann, W., 375 
Lee, E.B., 214 
Lee, J.C., 748 
Lee, Sang Bin, 635. See also Ho-

Lee Model 
Left continuous function, 104 
Legal documentation. See Credit 

derivatives 
Lehman Aggregate index, 497 
Lehman Brothers U.S. Aggre-

gate Index, 649, 652, 653 
benchmark, 654 
information, 655 

Leibnitz, G.W., 91, 107 
Leibowitz, Martin L., 508 
Leland, Hayne E., 716 
Lender, definition, 51 
Lending rate, 62 
Length. See Vectors 
Leverage, creation, 59 
Leveraged portfolio, 479 
Levy, Kenneth, 568, 569 
Levy, Paul, 79 
Levy process, 227 
Levy-stable distributions, 351, 

361 
Levy-stable scaling regime, 385 
Li, David X., 732 
Liabilities 

classification, 38

market value, 40

nature, 37–39


Liability-funding strategies, 661–677 
Liability-matching condition, 677 
Life companies, 37–41 
Likelihood estimate. See Maxi-

mum likelihood estimate 
Likelihood function, 321 
Likelihood Ratio methods, 438 
Lilien, D., 548 
Limit orders, 30, 48–49. See also 

Stop-limit order 
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Limit random variable, conver-
gence, 189–190 

Limits, 102–103 
Lindskog, Filip, 189, 329 
Linear conditional factor mod-

els, 531 
Linear differential equation, 247– 

249, 621 
Linear equations 

homogeneous system, 409 
systems, 149–150 

theorem, 150 
Linear independence/rank, 151 
Linear infinite moving average 

representation, 305 
Linear models. See Financial time 

series 
Linear moving average nonsta-

tionary models, 295–296 
Linear objective function, 206– 

207 
Linear ODE, 21 
Linear programming (LP), 201, 

206–208 
Linear regression, 197–199, 328 

model, 530 
Linear stochastic equations, 278 
Linear utility function, 489 
Lintner, John, 75, 86–87, 334, 

477, 512 
Lippi, M., 334 
Lipschitz condition, 242 
Liquidation firm, 706 
Liquidity, 22. See also Assets 

premium, 610, 617 
theory, 613, 617. See also 

Term structure 
Litterman, Robert, 399 
Litzenberger, Robert, 520 
Lo, Andrew W., 327, 344, 345, 

546, 574 
Local expectations theory, 616 
Location-scale dependent fam-

ily, 368 
Loftus, John S., 552 
Logarithmic utility function, 489 
Log-gamma distribution, 366 
Log-likelihood computation, 321 
Lognormal distribution, 531 
Lognormal model, usage, 692 
Lognormally distributed variable, 

539 
Log-prices, 538 
London Interbank Offered Rate 

(LIBOR), 608–610 
forward rate curve, 611 
interest rate. See Forward 

LIBOR interest rate

one-month, 53

one-year, 54

spot rate curve, 611

three-month, 609

usage, 70


Long-memory fractional mod-
els, 346 

Long-short equity portfolios, 545 
Long-short portfolios, 340 
Longstaff, Francis, 695 
Lookback option, 423 
Lorenz, Edward, 257 
Loss analysis, risk, 507 
Loss probability, 508 
Louveaux, F., 202 
Lower Riemann sum, 127 
Lower triangular matrix, 148 
Low-risk passive portfolio strat-

egies, 42 
Lucas, A., 344 
Lundberg, Filip, 75, 80–81 
Lynch, Peter, 567 

M3. See Monetary mass 
MacKinley, A. Craig, 327, 344, 

345, 546, 574 
Maclaurin expansion, f126 
Maclaurin power series, 122 
Macroeconomic econometric 

models, 259 
Macroeconomic effect, 722 
Macroeconomic factors, identi-

fication, 436 
Macroeconomic theory, 532 
Maddala, G.S., 543 
Maintenance margin, 50, 58 

requirements, 58 
Malevergne, Y., 331, 492 
Mandelbrot, Benoit, 231, 258, 389 
Mantegna, R.N., 390 
Marcus, L., 214 
Margin 

call, receiving, 50 
requirement, 59, 65. See also 

Initial margin requirement 
transactions, 49–50 

Marginal density, 176, 192 
Marginal distribution function, 

176–178 
Market. See Complete markets; 

Factor; Financial mar-
kets; Product market; 
Thin market 

capitalization, 3, 94–95. See 
also Total market capi-
talization 

completeness, 404, 738–744 
economics, 742–744 
mathematics, 739–742 

debt value, 689

impact costs, 33, 63

index, 4


contrast. See Bonds 
makers, restrictions, 28, 83 
making, 23 
model, 524 
order, 48 
organizational structure, 25 
overreaction, 572–573 

participants, overview, 21, 
34–45


portfolio, 86, 481, 525

price efficiency, 7, 31–32

risk, 86, 745–746


reward per unit, 482 
segmentation theory, 613, 618 
thickness, 31 
timing costs, 33 
value. See Assets; Liabilities 

Market-clearing prices, 29 
Market-neutral strategies, 575– 

577 
Marketplace price efficiency, 7 
Markov chain, 705 
Markov coefficients, 293–294, 

304–305 
Markov models, 423 
Markov process. See Continu-

ous-time Markov process 
Markov switching 

method, 547 
models, 286, 347–348, 379, 384 

Markov switching Hamilton 
models, 496 

Markov-switching VAR, 548 
Markowitz, Harry M., 75, 81– 

83, 201, 471, 477, 494, 
497, 500, 503–506, 524, 
532, 557, 586. See also 
Mean-variance analysis 

(ed.), 494, 497, 500, 503–506, 
524, 532, 557, 558, 582, 
583, 586, 588, 590, 651 

Markowitz efficient frontier, 474, 
479. See also Ex ante 
Markowitz efficient frontier 

Markowitz efficient portfolios, 
474 

Marsh, T., 377 
Martellini, Lionel, 632, 633 
Martingale, 186 

conditions, system, 432 
measures. See Equivalent 

Martingale measures 
Marxist economics, 78 
Mateev, P., 389 
Mathematical programming 

problem, 201 
Matlab (software), 487 
Matrices, 141, 144–145. See 

also Covariance; Diago-
nals; Hankel matrices; 
Identity matrix; Lower 
triangular matrix; nxm 
matrix; Random matri-
ces; Square matrices; 
Transition matrix; Upper 
triangular matrix 

adjoint, 159–160

algebra, 141, 208

dimensions, 145

elements, 144–145

notation, 207
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Matrices (Cont.) 
operations, 153, 156–160 
polynomial, 301 
product, 158 

operation, 159

transpose, 156


Maturity, 23–24. See also 
Bonds; Bullet maturity; 
Claims; Term to maturity 

intermediation, 36 
value, 52 

Maxima, 202–204, 362–368, 490 
discovery, 205 

Maximum, usage, 99, 209 
Maximum domain of attrac-

tions (MDA), 366, 376. 
See also Frechet distribu-
tion; Gumbel distribu-
tion; Weibull distribution 

Maximum likelihood estimate 
(MLE), 319–324 

methods/techniques, 438, 534 
Maximum likelihood (ML), 320 

estimator, 321–323 
methodology, 375, 437 

Max-stable distributions, 368 
McElroy, Marjorie B., 436 
McEnnally, Richard W., 593, 616 
McNeil, Alexander, 189, 329 
Mean-reverting portfolio, 576 
Mean-variance analysis (M-V 

analysis) (Markowitz), 8, 
202, 211, 499. See also 
Portfolios 

extension, 508. See Inequality 
constraints 

usage, 471–477, 495 
Mean-variance model, 508 
Mean-variance pairs, selection, 476 
Mean-variance portfolio 

management, 8 
selection, 486 

Mean-variance-efficient portfolios, 
473 

Measurable function. See Real-
valued measurable function 

Measurable space, 173 
Measure, 171–172 

space, 172 
Meeraus, A., 666 
Mehta, M.L., 329 
Menger, Carl, 77 
Merrill Lynch Domestic Mar-

ket Index, 649 
Merton, Robert C., 76, 87–90, 

522, 684. See also Black-
Scholes-Merton Model 

Messages, probability, 181 
Metafile. See Descriptive metafile 
Meyer, M., 390 
Mid Cap 400 Index, 561 
Mid-capitalization stocks, 3 
Middle-of-the-road stocks, 563 
Midwest Exchange, 46 
Migration risk, 703 

Mikosch, Thomas, 80, 353, 
355, 385, 388 

Miller, Merton H., 75, 83–85, 
519. See also Modigliani-
Miller irrelevance theorem; 
Modigliani-Miller theorem 

Minima, 202–204, 490 
discovery, 205 

Minimum, usage, 99, 209 
Minimum variance portfolios, 473 
Mittnik, S., 389 
Mixed-integer programming (MIP), 

666 
Modeling. See Economic model-

ing; State-space modeling 
approaches, 14, 710 
tools, industry evaluation, 

13–15 
Models, 283. See also Asset 

pricing theory; Autore-
gressive moving average; 
Multifactor models 

complexity, 317–319 
problem, 318 

selection, 315–317 
suite, engineering principles, 

17–18 
unconstrained search, 316 

Modern Portfolio Theory (MPT), 
471 

Modigliani, Franco, 75, 83–85 
Modigliani-Miller irrelevance 

theorem, 84–85 
Modigliani-Miller theorem, 84 
Moment ratio estimator, 377 
Moments/correlation, 186–188 
Monetary mass (M3), 340 
Moneyness, 22 
Monfort, Alain, 303, 317 
Monte Carlo simulations, usage, 

494 
Monthly tracking error, 554 
Mortgage-backed securities (MBSs), 

4, 55

prepayment risk, 653

risk, 653

volatility risk, 653


Morton, Andrew J., 640, 709. 
See also Heath-Jarrow-
Morton Model 

Mossin, Jan, 76, 86–87, 334 
Moving average, 571–572. See 

also Stationary univari-
ate moving average; 
Time series 

process, 298 
representation. See Linear 

infinite moving average 
representation 

MSCI EM Free, 497 
Muller, Peter, 487, 491 
Muller, U.A., 377, 389 
Multex, usage, 17 
Multidimensional map, 278 
Multidimensional observations, 337 

Multidimensional trend station-
ary series, 311 

Multifactor CAPM, 87–88, 511 
Multifactor models, 332–338, 

333, 530–537, 746 
usage. See Common stocks 

Multifactor risk models, 532, 
555. See also Barra


application, 577–589

illustration, 654–661

usage, 565, 578


Multifactor term structure model, 
632–634 

Multiperiod finite-state setting, 
arbitrage pricing, 402–423 

Multiperiod stochastic optimi-
zation, 492–494 

Multiple market maker systems, 
45–46 

Multiple stepup note, 55 
Multiple-period immunization, 

668 
Multiplication operation, 154– 

156, 158–159 
Multiplicative state-space method, 

547 
Multiplicative state-space mod-

els, 384 
Multistage stochastic optimiza-

tion, description, 676 
Multistage stochastic program-

ming, 675–677 
Multivariate distribution, 732 
Multivariate function, 202–203 
Multivariate GARCH, 548 
Multivariate models. See Non-

stationary multivariate 
ARMA models; Station-
ary multivariate ARMA 
models 

Multivariate random walk model, 
327, 339 

Multivariate stationary series, 
293–295 

Multivariate time series, 285 
Multivariate white noise, 338 
Mulvey, John M., 392, 473 
Municipal bonds. See U.S. 

municipal bonds 
Municipal government bond 

issue, 663 
Musiela, Marek, 644. See also 

Brace-Gatarek-Musiela 
Model 

Mutual funds, 87 
investment, 36 
liabilities, 42 

Myopic one-period optimization 
models, 492 

Nagahara, Y., 388 
Naive set theory, 93 
NASDAQ-AMEX Market Group, 

Inc., 46 
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National Association of Insurance

Commissioners (NAIC)

scenarios, 675


National Association of Securi-
ties Dealers Automated 
Quotation (NASDAQ) 

Composite index, 47

system, 46–47


Natural numbers, one-to-one

relationship, 100


NAV. See Net asset value

n-dimensional Borel sets, 227–


228

N-dimensional Brownian motion,


634

n-dimensional Brownian motion,


228

n-dimensional Cartesian space, 143

n-dimensional cumulative distri
-

bution function, 176

n-dimensional distribution func
-

tion, 176

n-dimensional Euclidean space, 170

N-dimensional Itô process, 634, 638

N-dimensional price process, 458

n-dimensional probability den
-

sity, 176

n-dimensional real space, 179

n-dimensional space, 175

n-dimensional vector, 97, 158

n-dimensional zero-mean white


noise process, 293, 307

Negative sign restriction, 208. 

See also Nonnegativity 
sign restriction 

Net asset value (NAV), 42

Neural networks, usage, 345

New York Stock Exchange (NYSE),


42–43, 46

Composite Index, 46, 94

index, 521

market capitalization, 95


Newton, Isaac, 91

Newton-Raphson iterative tech
-

nique, 596

Nielsen, Steen, 344

No-arbitrage models, 634

Noise. See Colored noise; White


noise

multiplicative nature, 383

term, 328, 576


Nominal rate, 52

Nonanticipativity property, 215

Noncorporate issuers, 27

Non-decreasing function, 363

Nondiversifiable risk factors, 86

Nonequality constraints, 211

Nonfactor error term, 533

Nonfinancial businesses, 34–35

Non-Gaussian processes, 387

Nonhomogeneous system, 150

Non-IID framework, 384

Nonliability driven entities,


benchmarks, 40–41 

Nonliability driven objectives, 2

Nonlinear dynamics, 256–259


chaos, 573–574

development, 243

models, 573–574. See Prices;


Returns

Nonlinear models, 288

Nonlinear pattern recognition.


See Statistical nonlinear 
pattern recognition


Nonnegative adapted process, 404

Non-negative diagonal elements,


162

Nonnegative integer values, 371

Nonnegativity sign restriction, 207

Nonobservability, consequences,


521

Nonreproducible assets, 21–22

Nonsingular variance-covariance


matrix, 293

Nonstandard analysis, 107

Nonstationary models. See Finan
-

cial time series

Nonstationary multivariate ARMA


models, 304

Nonstationary process. See Inte
-

grated nonstationary process

Nonstationary series, 295–297, 304

Nonstationary univariate ARMA


models, 300–301

Nonsystematic factor risk, 652

Nonsystematic risk, 513–516, 518


exposure, 660

reduction, 661


Nonterm structure

factors, 656

risk factors, 653


Nontrivial solutions, 161

Non-U.S. bonds, 3

Non-U.S. common stocks, 3

Non-U.S. foreign stocks, 3

Normal distribution, 194. See


also Joint multivariate 
normal distribution; Stan-
dard normal distribution; 
Univariate normal distri-
bution 

Normal probability. See Cumu-
lative normal probability


Normal random variable, 196–197

Normal yield curve, 612

Normality assumption, relax
-

ation, 491–492 
Normally distributed IID vari-

ables, 534

Normative theory, 471

Notional amount, 69

Notional principal amount, 69–71

Nth to default swaps, 681–682

n-tuples, 96–98, 168

Null hypothesis, usage, 340

Numeraire, definition, 101

Numerical algorithms, 206–212


Numerical solutions. See Ordi-
nary differential equa-
tions; Partial differential 
equations 

Numerical values, 101

N-vector process, 460


Objective function, 201

Observations, definition, 306

Observed information matrix, 322

Odd lots, 664

Office of the Comptroller of the


Currency, Quarterly 
Derivatives Report, 1


Ohlson, J.A., 574

O’Kane, Dominic, 711

Okazaki, M.P., 388

Oksendal, Bernd, 268

Olesen, Overgaard, Jan, 344

Olsen & Associates. See High-


frequency data studies

One price, law. See Law of one


price

One-dimensional Brownian motion,


228, 271

One-dimensional Itô formula,


272–274

One-dimensional standard Brown
-

ian motion, 226, 232

One-dimensional zero-mean


white noise process, 289

One-factor equilibrium model, 636

One-factor model, 632

One-factor term structure mod
-

els, examples, 635–638

One-lag stationary VAR, 537

One-period finite-state market, 399

One-period investment horizon,


513

One-sided Laplace-transform,


application, 248–249

One-sided transform, 136

Onigo, Iris, 10

On-the-run maturities, 601

On-the-run yield, estimation, 601

Open-end funds, 42

Operation, 153

Operational efficiency, 32–34

Operational risk, 746–747

Opportunity costs, measurement,


34

Optimal control theory, 212–214

Optimal portfolio


CML, usage, 482–485 
selection, 484–485


Optimal solution, 207

Optimal value, 207

Optimization, 201. See also


Multiperiod stochastic 
optimization; Scenario


algorithm, 660

application, 660–661

models. See Myopic one-period


optimization models 
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Optimization (Cont.)

performing, 500

problem. See Constrained opti
-

mization problem; Qua-
dratic optimization problem 

formulation, 665

procedures, 324

theory, 82. See also Computer-


based optimization theory 
usage, 660


Optimizers, 487, 490

Option price, 64, 66–69


components, 66–68

factors, 68

process, 451


Option pricing, 447–454

model, 68–69

theory, 684


Option-adjusted duration, 118

Optionality risk, 653

Option-free bond, 116


value, 117–118 
Options, 64–69


buyer, 66, 67

premium, 64

risk-return, 66

theory, 89–90

time premium, 67

time to expiration, 68

valuation, relationship. See


Bond valuation 
Order


flow, 23

handling/clearance charges, 28, 83

imbalance, 30

integration, 310

processing costs, 30

statistics, 369–371


Ordered arrays, 141

Ordinary differential equations 

(ODE), 240–243, 261– 
262. See also Linear ODE 

closed-form solutions, 246–249

numerical solutions, 249–256

order/degree, 241

solution, 241–243

systems, 243–245


Ordinary least square (OLS)

estimates, 437–438

method, 312, 323, 335


Ornstein-Unlenbeck process, 
280–281, 636


Orthogonal vector, 156

Ouliaris, S., 544

Outcomes/events, 169–170

Outputs, definition, 306

Overfitting, 317

Overreaction hypothesis, 573

Over-the-counter (OTC)


instrument, 58

markets, 26, 46, 65

options, 65

traded shares, 46

trading, 45


Pacific Coast Exchange, 46

Pacific Investment Management


Company (PIMCO), 552

Pagan, Adrian, 524

Pair trading, 574

Par value. See Bonds


relation, 597

Pareto, Wilfredo, 75–78

Pareto behavior, 376

Pareto distribution, 366, 370, 531

Pareto Law, 78, 389

Pareto tail, 378

Partial differential equations


(PDE), 240, 259–265, 451

numerical solutions, 263–265

obeying, 628

solving, 452


Partial duration, technical differ-
ence. See Rate duration 

Partitions, 182–183 
Passive portfolio 

management, contrast. See 
Active portfolio 

strategy, 6. See also Low-risk 
passive portfolio strate-
gies 

Passive strategies, 564–565

Path dependence models, 423

Path dependent option, 695

Pathwise Riemann-Stieltjes inte
-

grals, 443

Payaslioglu, Cem, 289

Payment failure, 683

Payoff price pair, 406

Payoff rate, 616. See also Arbi
-

trage 
processes, 442–445


absence, 455

introduction, 466


Peaks over threshold, point pro-
cess, 371–373


Pearl, Judea, 168

Pension


funds, 41–42, 45

obligations, 42


Perfect dependency, 724

Perfect market, 28–30


results, 83

Performance. See Portfolios


lowest level measurement,

753–754


measurement/evaluation. See

Investment


Perold, André F., 508

Per-period default probabilities, 712

Perpetual instrument, 24

Pesaran, Hashem M., 540

Pesaran, M.H., 342

Petrov, B.N., 318

Phillips, P.C.B., 544

Physical settlement, 680

Pickand estimator, 375–376

Pictet, O.V., 377, 389

Plan sponsors, 41–42

Plerou, Vasiliki, 390, 522, 536


Pliska, Stanley R., 90, 457

Poincaré, Henri, 78

Point process. See Exceedances;


Extreme point; Peaks over

threshold


theory, 80

Points. See Critical point; Sad
-

dle point

density, 99–100

measure, 372

processes, 697


Poisson assumption, 731

Poisson distribution, 707

Poisson intensity, 699

Poisson process, 80, 697–698,


714, 740. See also Homo
-
geneous Poisson process;

Joint Poisson process


Polynomial cointegration, 540

Polynomial time, 211

Polynomials


restrictions, 302

roots, 301


Pontryagin’s Maximum Princi
-
ple, 214


Portfolio M, definition, 481

Portfolio management. See Bonds;


Mean-variance portfolio 
management 

contrast. See Active portfolio 
management


engineered approach, 568

risk management, usage, 751–


755

strategies, relationship. See


Risk factors

Portfolio risk


control, 552

measure, 659

reduction, 513


Portfolios

assets, 63

beta, 518, 559. See also Track
-

ing errors 
tracking error, relationship 

(quantification), 559

choice, 487–491, 566

construction. See Indexed


portfolio

approaches, 8–9

risk control, relationship, 582


diversification, 435

exposure, 657


assessment, 583–586

holdings, 660

immunization, 667–672


first-order conditions, 670

managers


benchmark index, 97

modeling demands, 13

performance, 9


payoff, 394

performance, 98, 578

replication, 89–90

risk-return report, 583
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Portfolios (Cont.) 
selection, 500–503 

global probabilistic frame-
work, 490–491 

mean-variance analysis, 471

size, impact, 556–560

strategy. See Active portfolio;


Dedicated portfolio strat-
egy; Passive portfolio; 
Structure portfolio 

selection. See Investment 
management process


tilting, 587–589

tracking errors, 558


Positive Itô process, 455

Positive theory, 472

Poterba, J., 343

Potters, M., 329

Power laws


distributions, 351

absence. See Scaling


truncation, 367

Power series, 122, 290

Power utility function, 489

Power-law distributions, 356–358

Power-law tail, 373

Predicted tracking error, 556, 565

Preferred habitat theory, 613, 618

Preferred stock, 25

Premium leg, 680

Premium par yield, 598

Prepayment, 56


option, 56

Priaulet, Philippe, 632, 633

Priaulet, Stéphanie, 632, 633

Price/earnings factor, 520

Price/earnings ratio, 519, 532

Prices. See Clean price; Dirty price


ARDL models, 546

diffusion, 78–80

discovery process, 26

dynamic models, 538–546

exponential divergence, 539

momentum, 572

nonlinear dynamic models,


546–549

persistence, 572

processes, sum, 444

risk, reduction, 59


Price-to-book value multiplier, 567

Price-to-book value per share


(P/B) ratio, 561, 563

calculation, 562


Price-to-earnings value multi
-
plier, 567


Pricing. See Arbitrage pricing

generalizing. See European


options

model. See Baskets

relationships, 405–414


examples, 406–414 
theory, defining, 455


Primal problem, 210

Primal-dual gap, 210


Primary market, 25

Primitive integral. See Functions

Principal, 52

Principal components analysis (PCA)


model, 335–338 
usage, 536


Principal repayment, 56

Probabilistic dynamics, 168

Probabilistic judgments, 167

Probabilistic representation. See


Financial markets 
Probability, 170–171. See also 

Conditional probability

axiomatic theory, 169

concepts, 165

curves. See Default probability

density. See n-dimensional


probability density 
function, time-evolution, 260


disjoint additivity, 171

distribution, evolution, 93

explanation, 167–169

framework, 92

interpretations, 166–167

measure, 441, 642. See also Arti
-

ficial probability measure

space, 165, 170, 178, 402


representation, 430

sum, 704

theory, 165–173


development, 80, 737

Processes. See Stochastic pro
-

cesses

drif, 279

innovation, 310–311

stochastic interval, defining,


220

volatility, 279


Product market, 21

Product rule, 109

Profit opportunities, reduction, 575

Program trades, 50

Proper subsets, 93–95

Property and casualty (P&C)


companies, 41

Proportionality recovery assump
-

tion, 709

Protection buyer. See Lump-sum


payment

Protection leg, 680

Pure bond index matching, 650

Pure expectation theory, 613–617

Pure growth stocks, 563

Pure risk-free discount bond, 606

Put option, 64

Put price, 56

Putable bond, 56


Quadratic optimization prob
-
lem, 486


Quadratic Programming (QP),

202, 211–212


Quadratic utility function, 489

Quadratic variation, 221–222


Quah, D., 334

Qualitiative information, inte
-

gration, 15–17

Quality risk, 653

Quantile plot, 374

Quantile transformation, 369

Quantitative finance, 283

Quantitative information, inte
-

gration, 15–17

Quantitative methods, usage, 14

Quantitative phenomena, dynam
-

ics, 96–97

Quantities, 96–100

Quantum physics, 444

Quarterly Derivatives Report, 

U.S. Office of the Control-
ler of the Currency, 745


Quotient rule, 109, 113


Rachev, S.T., 189, 329, 389

Radon-Nikodym derivative, 416–


417, 464

definition, 458

usage, 467. See also Continu-


ous-state setting

Ramaswamy, Krishna, 520

Rand Corporation, 82

Random disturbance, 80

Random interest rates, 716

Random matrices, 329–332


relationship. See Capital Asset

Pricing Model


Random Matrices Theory (RMT),

329


Random Matrix Theory (RMT),

522


Random phenomena, evolution, 93

Random shocks


accumulation, 217

feedback, 220


Random variables, 32, 172– 
175. See also Normal 
random variable 

convergence, 189–190 
distribution


convergence, 190–191

functions, 177


joint probability, 176

probability density, 352

sequences, 189–191


Random vectors, 175–178 
Random walk, 221. See also 

Arithmetic random walk; 
Computer-generated 
independent arithmetic 
random walks; Corre-
lated random walks; Dis-
crete random walk 

hypothesis, 343

models, 324–327. See also Mul-

tivariate random walk 
model 

empirical adequacy, 327

Range notes, 54
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Ranks, 151–153

Rank-size order property, 357

Rate duration, partial duration


(technical difference), 139

Rational number, 98–99. See


also Irrational number

r-dimensional Brownian motion,


278

Read, S., 353

Real estate, 3

Real function, 101

Real markets, brokers/dealers


(role), 28–31

Real matrix, 145

Real numbers, one-to-one rela
-

tionship, 99

Real-valued function, 101, 134–


136, 172

Fourier transform, 137


Real-valued measurable function,

174–175


Real-valued variables, 204

Recession periods, 347

Reconstitution, 606

Recourse, concept, 202

Recovery. See Stochastic recovery


assumption. See Proportional-
ity recovery assumption


fluctuation, 706

model. See Fractional recov
-

ery model

payment, 698

ratio, 698


Rectangular matrix, 145

Recursive difference equations, 249

Recursive relationship, 276

Reddington, F.M., 667

Reduced form models, 684. See


also Credit risk modeling 
observations, 710


Redundant securities, 446

Reference


designation, 71

entity, 679, 728


defaults, 718

obligation, 679–680


value, 714

rate, 54


Refunding. See Bonds

Regression. See Linear regression


function, 197–199

Regular deflator, 455

Regulatory accounting princi
-

ples (RAP), 6, 40

Regulatory constraints, 5

Regulatory surplus, 40

Reichenbach, Hans, 166

Reichlin, L., 334

Reilly, Frank K., 649

Reinvestment. See Yield


risk, 499, 615

Relative frequency, 166

Relative prices, 699


dispersion, 23

Relative risk, 560


Relative strength, 572

Representations, 283. See also 

Autoregressive moving 
average; State-space rep-
resentation 

Reproducible assets, 21. See also 
Nonreproducible assets


Repudiation, 683

Repurchase agreement, 601


market, government bond 
(issuance), 611


Residential mortgages, 653

Residual claim, 22

Residual risk, 515, 579, 582


decomposition. See Active 
systematic-active resid-
ual risk decomposition 

Resnick, S., 368, 385

Resource Description Framework


(RDF), development, 16

Retirement payments, 42

Return on investment (ROI),


examination, 18

Return/risk decisions. See Strate
-

gic return/risk decisions

Returns. See Compound return;


Simple net return

average value, 8

correlation, 8

covariance, 8

dynamic market models, 537–538

expectations, 552

forecast, 487–488

generation function, 532

nonlinear dynamic models,


546–549

potential, 66

predictability, 22

rates, 575

volatility, 287


bounds, 575

Return-to-maturity expecta
-

tions theory, 616

Return-to-maturity theory, 617

Reverse cash and carry trade, 61

Reversibility, 22, 23

Reward to Variability Ratio,


750–751

Riemann, Bernhard, 127

Riemann integrals, 127–129, 174


properties, 129–130 
Riemann sum, 126–128. See also 

Lower Riemann sum; 
Upper Riemann sum 

Riemann-Stieltjes integral, 177. 
See also Pathwise Rie-
mann-Stieltjes integrals 

Right continuous function, 104

Right endpoint, 363

Risager, Ole, 344

Risk. See Credit risk; Markets;


Operational risk

approach. See Tracking errors

bearers, 41

category, 38


control, 738. See also Stock 
market 

relationship. See Portfolios 
decomposition, 577–582. See 

also Active risk; Active 
systematic-active resid-
ual risk decomposition; 
Residual risk; System-
atic-residual risk decom-
position; Total risk 

summary, 582

equilibrium market price, 482

increase, 88

indices, 533

lowest level measurement,


753–754 
measurement, usage, 752–753 
measures, 747–751 
modeling. See Contribution 

risk modeling 
models, 745–747 

application. See Multifac-
tor risk models 

illustration. See Multifactor 
risk models 

premium, 88, 436. See also

Capital market line; His
-
torical risk premiums


reduction. See Prices

reward per unit. See Market

shape, 737

tolerance, 7

types, 31


Risk factors, 532, 652

compensation, 88

groups, 658

portfolio management strate
-

gies, relationship, 652–653

statistical independence, 658


Risk management, 737, 738, 754

factors, 752

policies, determinant, 738

reasons, 744–745

regulatory implications, 754–755

usage. See Assets; Portfolio


management

Risk neutral measure, 687

Risk-adjusted returns, produc
-

tion, 569

Risk-averse investors, 484, 490

Risk-aversion parameter, 486

Risk-free asset


absence, 484

existence, 512–513

introduction, 480

investment, 417

purchase, 426

replication, 741

return, 519

usage, 512

zero variance, 477


Risk-free bank account, deter-

ministic instantaneous

interest rate, 218


Risk-free bond, 624
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Risk-free borrowing, 447 
Risk-free coupon bond, 713 
Risk-free discount factor, 698 
Risk-free profit, 449 
Risk-free short-term continuously 

compounding interest rate, 
455 

RiskMetrics Group, 745, 748 
RiskMetrics model, 748 
Risk-neutral methodology, 717 
Risk-neutral pricing, scope, 716 
Risk-neutral probabilities, 398– 

399, 416–423. See also 
Binomial models 

computation, 401–402, 426 
determination, 416 
examples, 420–423 
existence, 712 
expectation, 640 
martingale relationship, 627 
measure, 625 
usage, 428 

Risk-of-loss analysis, 507 
Risk-premium form, 519 
Risk-return 

profile, 744 
symmetricality, 59 
trade-off, 473, 501, 538 

determinant, 737 
optimization, 86 

Risk/reward relationship. See 
Symmetric risk/reward 
relationship 

Risky asset, shorting, 426 
Risky debt, decomposition, 686 
r-minors, 149 
Robins, R., 548 
Robinson, Abraham, 107 
Rockafeller, Tyrrell R., 749 
Roll, Richard R., 87, 335, 436, 

519–521 
Ron, Uri, 610 
Rosenberg, Barr, 525, 574 
Rosenow, Bernd, 522 
Ross, Stephen A., 88–89, 335, 

435, 436, 616, 637, 709. 
See also Cox-Ingersoll-
Ross Model 

Round-trip cost, 23–24 
Round-trip transaction cost, 63 
Row rank, 53 
Row vectors, 142 
Rubin, D.B., 348 
Rubinstein, Mark, 69 
Runge-Kutta method, 252 
Russell. See Frank Russell Com-

pany 

Saddle point, 203 
Salomon Smith Barney Broad 

Investment-Grade Bond 
Index, 649 

Samorodnitsky, G., 387 
Samuelson, Paul A., 85–86, 326 

Sargent, T.J., 334 
Savings & loan (S&L) associa-

tions, 43 
Scalar product, 155, 336, 397 
Scalars, 141 
Scale, absence, 385 
Scaling, 351–362, 385–388 

laws, presence, 389 
property, 386 

power-law distribution, 386 
Scenario 

generation, 674–675 
optimization, 672–673 

Scenario-dependent constraints, 673 
Schachermayer, W., 467 
Schafer, G., 168 
Scheduled termination date, 680 
Scheinkman, J.A., 259 
Scholes, Myron S., 69, 76, 89– 

90, 451, 519, 684. See 
also Black-Scholes-Mer-
ton Model 

School of Copenhagen, 444 
Schrodinger’s cat, 243 
Schuermann, Til, 378 
Schwartz, Eduardo S., 638, 695 
Schwartz, Gideon, 318 
Schwartz, Robert A., 30 
Search costs, 26 
Second derivative, application, 

118–120 
Second order approximation, 122 
Secondary markets, 25, 27–34 
Second-order derivative, 111–112 
Second-order equations, 250–251 
Second-order immunization con-

ditions, 672 
Second-to-default basket swap, 682 
Sector risk, 653, 658 
Sector specific effect, 722 
Securities. See Floating-rate securi-

ties; Redundant securities 
analysis, 567 
margin, 63 
performance, 34 
price, 31 

difference, 33 
underwriting, 35 

Securities Exchange Act of 1934, 
49–50 

Security market line (SML), 516–518 
Segmentation theory. See Mar-

kets 
Self-financing conditions, 215, 677 
Self-financing trading strategy, 

445, 448–451 
creation, 452 
definition, 466 

Self-similarity, 258, 351, 385–388 
Semiautomated investment pro-

cesses, 324 
Semistrong efficiency, 32 
Senior basket credit default 

swaps, 681–683 

Senior basket default swaps, 682 
Separable variables, 246 
Separating Hyperplane Theo-

rem, 398 
Sequence, definition, 101 
Sets, 93–96. See also Empty 

sets; Proper subsets 
elementary properties, 96 
intersection, 95–96 
operations, 93–96 
union, 95 

Settlement date, 57–58. See also 
Futures contracts 

Sharpe, William F., 75, 82, 86– 
87, 334, 477, 512, 516, 
524, 750 

Shefrin, Hersh, 502 
Shin, Yongcheol, 342, 540 
Short interest ratio, 572 
Short selling, 49, 393 
Short-run price stability, 30 
Short-term debt obligations, 

investment, 614 
Short-term financial assets, 25 
Short-term fluctuations, 744 
Short-term forward rates 

behavior, 613 
curve, 608 

Short-term interest rate, 112, 632 
function, 624 
process, 627 

Short-term rate. See Variable 
short-term rates 

constancy, 614, 621 
function, 620 

Short-term risk-free borrowing, 415 
Short-term risk-free interest rate, 

68 
Short-term securities, 671 
Shreve, Steven E., 275, 625 
Sigman, K., 354, 356 
Similarity. See Diagonalization/ 

similarity 
Simon, Herbert, 315 
Simplex algorithm, 208–210 
Simplex method, 208, 210 
Single period immunization, 667 
Single stepup note, 55 
Single-name credit default swaps, 

680 
pricing, 710–718 

framework, 711–712 
Singleton, Kenneth J., 334, 685, 

696, 706, 729. See also 
Duffie-Singleton Model 

Single-valued standard Brown-
ian motion, 459 

Singular value decomposition, 162 
Skew-symmetric matrix, 147 
Sklar, A., 189 
Slack variable, 208 
Slowly varying function, 357 
Small Cap 600 Index, 561 
Small capitalization stocks, 3 
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Smith, Adam, 77, 83 
Smith, Adrian F.M., 316 
Smith, R.L., 375 
Sochacki, James, 635 
Software 

development, 16 
optimization packages, 212 

Solutions, stability, 256–258 
Solvers, usage, 206 
Sopranzetti, Ben J., 722, 724 
Sorbonne University, 78 
Sornette, D., 331, 390, 492 
Sortino, Frank, 751 
Souma, W., 388 
Sovereign risk, 611 
Spacings, 369 
Spanos, A., 531 
Specialized bond market indexes, 

649 
Specific risk, 578, 582 
Speculator, expectation, 79 
Splines, 643 
Spot interest rates, 625 
Spot rates, 623 

continuous case, 624–625 
curve. See Theoretical spot 

rate curve 
construction. See Continu-

ous spot rate curve 
obtaining, Treasury yield 

curve (usage), 603–605 
usage. See Bonds 

Spread-based diffusion models, 710 
Square integral, 223 
Square matrices, 145–148, 160. 

See also Symmetric square 
matrix 

Srom, S., 342 
Stability of solutions. See Solu-

tions 
Stable distributions, 360–362 
Stable inverse Gaussian distri-

butions, 361 
Stable laws, 351–362, 366 

application, 390 
Standard & Poor’s (S&P) 

classification, 536 
Composite Index, 561 

Standard & Poor’s (S&P) 500, 
70, 94–95, 332 

application, 345 
Composite, 46–47 
index, 497–498, 521, 561 
matching, 587 

Standard Brownian motion, 
447–448, 453. See also 
Single-valued standard 
Brownian motion 

correlation, 741 
drift, addition, 459 
equivalent martingale mea-

sure, 627, 639 
Standard extreme value distri-

butions, 365 

Standard form, transformation, 
207 

Standard Generalized Extreme 
Value Distribution, 368 

Standard normal distribution, 
194 

Standard notation, 109 
Stanley, H. Eugene, 390, 522 
Starica, C., 385 
State price deflator, 400, 404– 

405, 454

computation, 409, 413

definition, 456

existence, 467

linear combination, 434

representation, 408

usage, 457, 465

yield, 410


State prices, 397–398 
equivalent Martingale mea-

sures, usage, 464–466 
vector, 397 

normalization, 398 
States, real probabilities, 425 
State-space cointegration, 342 
State-space modeling, 12, 309, 

342 
linear form, 384 

State-space models, 286, 288, 
305, 379


equivalence, 541

estimation, 538


State-space representation, 305– 
309 

equivalence, 308–309 
State-space system, 308 
Static replication, 710 
Static-factor model, 543 
Stationarity, condition, 292 
Stationary disturbance, 341, 342 
Stationary IID sequence, 268 
Stationary increments (sssi), 387 
Stationary multivariate ARMA 

models, 301–304 
Stationary processes. See Autore-

gressive moving average 
Stationary sequence. See 

Asymptotically self-simi-
lar stationary sequence 

Stationary series. See Difference 
stationary series; Multi-
variate stationary series; 
Trend stationary series 

Wold representation, 296 
Stationary time series, 285 
Stationary univariate ARMA 

models, 297–300 
Stationary univariate moving 

average, 292–293 
Stationary VAR model, 539 
Statistical arbitrage, 575–577 
Statistical nonlinear pattern rec-

ognition, 574 
Statutory surplus, 40 
Stegun, Irene A., 249 

Stepup notes, 54–55. See also 
Multiple stepup note; 
Single stepup note 

Stigler, George, 29, 30 
Stochastic calculus, 93 
Stochastic differential equation 

(SDE), 217, 240, 267, 
274–276. See also 
Brownian motion; Geo-
metric Brownian motion 

association, 630

definition, 270–271

intuition, 268–271

solution, 278–282


Stochastic discount function, 494 
Stochastic environment, 218 
Stochastic general equilibrium 

theory, 86 
Stochastic hazard rate, need, 716 
Stochastic integrals, 217 

defining. See Processes 
definition, 221, 223, 232– 

236. See also Elemen-
tary functions 

intuition, 219–224 
properties. See Ito stochastic 

integrals 
Stochastic integration, 217 
Stochastic optimization. See 

Multiperiod stochastic 
optimization 

Stochastic processes, 178–180 
adaptation, 183 
realization, 217 
vector, 277 

Stochastic programming, 202, 
213–215, 673–677. See 
also Multistage stochas-
tic programming 

Stochastic recovery, 703 
Stochastic trend, 310 
Stochastic variables, 32, 85 
Stochastic volatility models, 12, 

740–742 
Stock, James H., 334, 540, 543 
Stock market, 25 

index, risk control, 587 
indicators, 46–48 
short-term movements, 572 

Stock price 
binomial model, 424 
decreases, 287 
nonnegative numbers, 395 
position, 686 
processes, 447–448 

Stocks 
cointegrated pairs, searching, 

576–577

indexes, types, 93–94

intrinsic value, 567

positions, hedging, 743

returns, distribution, 287


Stop-limit order, 48–49 
Stopping time, 429 
Stork, David G., 562 
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Strategic bond/equity mix, 498

Strategic return/risk decisions, 508

Stratified sampling, 650

Stratonovich, Ruslan L., 79, 221,


224, 269

Strike price, 64, 68. See also


Internal strike price

value, 69


Strong consistency, 376

Strong Duality theorem, 210

Strong Laws of Large Numbers


(SLLN), 358, 360

Strong solution, 275, 739

Strong-form efficiency, 32

Stroughair, John D., 378

Structural form models, 696

Structural models, 684. See also


Barrier structural model

advantages/drawbacks, 696

binomial process, 700


Structural-based models, 711

Structured portfolio strategies, 6

Stylized facts, 286

Subexponential distributions,


354–356

Subexponentiality, indicators, 256

Subordinate basket credit default


swaps, 681–683 
Subordinate basket default swaps, 

682

Subordinated models, 380

Subordinated processes, 383–384

Subsets. See Proper subsets

Subspace algorithm, 538, 544

Subspace-space algorithm, 544

Sum rule, 109

Summand


derivatives, computation, 113

number, restriction, 296

second derivatives, calcula
-

tion, 119

Summation. See Absolute sum
-

mation

Summers, L., 343

Supply-and-demand equilibrium, 77

Supremum, usage, 99

Survival function, 352

Survival probability, 688, 698, 712–


713, 719. See also One-year

survival probability; Total

survival probability


computation, 713–715

labeling, 719


Swaps, 69–70. See also Credit 
default swaps; Default 
swap; Nth to default swaps 

agreements, 26

curves, 608–612


construction, maturity points,

611


market, government regulation, 610

premium, 680


Switching models. See Markov 
switching models 

Symmetric Cauchy distributions, 361

Symmetric risk/reward relation
-

ship, 66

Symmetric square matrix, 147

System, minimal size, 307

Systematic risk, 513–517, 525,


582. See also Nonsys-
tematic risk 

exposure, 656–660. See also

Nonsystematic risk


factors, 86, 652, 654. See also

Unsystematic risk factors 

Systematic-residual risk decom-
position, 578–580 

Tails

closure property, 360

index, 356


Takayama, Akira, 483

Takayasu, H., 388

Takayasu, M., 388

Tangency portfolio, 485

Tangible assets, 21–22. See also


Intangible assets

Taqqu, M.S., 355, 387, 389

Tartaglia, Nunzio, 576

Tasche, Dirk, 749

Taxation, issues, 5–6

Taxes. See Capital gains


status, 22. See also Financial 
assets


Taylor expansion, 367

Taylor series


expansion, 121–126 
usage, 124–125, 126


Taylor’s theorem, 121

t-distribution, 392

Technical analysis, 567, 574


strategies, 571–573

Teicher, Henry, 174, 193

Tempered distributions, 268

Term structure. See Hazard


rates; Interest rates; Yield

determination, 625

factors, 656

HJM Model, 640–643

liquidity theory, 617

model. See Multifactor term


structure model

examples. See One-factor


term structure models

principal component analysis,


632

risk, 658


factors, 653

shape (determinants), classi-

cal economic theories, 
612–618 

Term to maturity, 22–24. See 
also Bonds


Terminal payoff, 707

Termination date, 680. See also


Scheduled termination date 

Termination value. See Credit 
default swaps 

Termwise differentiation, rule, 
108–109


Testing, 315

Thaler, Richard, 572

Theorem of existence. See Exist
-

ence 
Theorem of uniqueness. See Unique-

ness

Theoretical futures price, 61–62

Theoretical spot rate curve, 603

Thin market, 23

Tick-test rules, 49

Time correlation. See Defaults

Time horizon, 731

Time intervals, 247

Time invariance, 294

Time premium. See Options

Time series, 335. See also Finan
-

cial time series; Univari-
ate time series 

autoregressive representation, 
288–297 

concepts, 283–286 
infinite moving average, 288–297 

Time-dependent autocovari
-
ance function, 294


Time-independent autocorrela
-
tion function, 303


Time-path continuity, 234

Time-separable utility function,


492

Time-variable economic quanti
-

ties, 225

Time-varying interest rates, con
-

tinuous compounding, 246

Tobin, James, 22, 24, 477

Todd, Peter, 477

Toft, Klaus Bjerre, 716

Top-down approaches. See Active


investing 
Top-down investing, macroeco
-

nomic outlook, 567

Top-down passive approaches,


566

Total excess return, 578

Total excess risk, 578

Total market capitalization, 1

Total protection value. See


Default swap

Total risk, 515


decomposition, 578

Total survival probability, 712

Total variation, 105–106

Toy, William, 638. See also Black-


Derman-Toy Model 
Tracking errors, 552–560, 654. See 

also Actual tracking error; 
Annual tracking error; 
Backward-looking track-
ing errors; Forward-looking 
tracking errors; Monthly 
tracking error; Portfolios 
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bond portfolio strategies, 

relationship, 651–652

determinants, 654

minimization, 558

multi-factor risk approach, 9

portfolio beta, 556–560


Tracking portfolio, 564

Trade horizon, 734

Trading. See Pair trading
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constraints, 664

costs, control, 552

date, 180

gains, 443–445

halts, 28

restrictions, 28

strategies, 403–404, 443–445
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Training data, 318
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costs, 32, 63. See also Capital
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Transforms. See Fourier trans-

forms; Integrals; Laplace 
transform 

Transition matrix, 542, 703–706 
Transpose. See Matrices 

operation, 153–154, 156–157 
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Treasury yield curve 
Trend stationary series, 309. See 
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trend stationary series 

Trends. See Integrated trends 
Triangular matrix. See Lower 

triangular matrix; Upper 
triangular matrix 

Turnbull, Stuart, 684, 696, 698,

703, 730. See also Jar-
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Turner, Christopher, 690

Two-factor stochastic volatility


model, 741

Two-sided Laplace transform,


134–135

Two-sided transform, 136

Two-stage stochastic optimiza
-

tion problem, 676–677 

Unbiased expectations theory,

616–617


Uncertainty, 737

representation, mathematics


(usage), 165–167

Uncorrelated variables, 188

Underlying asset


current price, 68
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Underwriting. See Securities

Undiversification, quantification,


472

Unexpected Loss (UL), 391, 747

Unique risk, 515


Uniqueness, theorem, 274

Univariate ARMA models. See 

Nonstationary univariate 
ARMA models; Stationary 
univariate ARMA models 

Univariate marginal distribu
-
tions, 732


Univariate moving average. See 
Stationary univariate mov-
ing average 

Univariate normal distribution, 194

Univariate stationary series, 288–


289

Univariate time series, 340

University of Chicago, 81

University of Dijon, 79

University of Lausanne, 77

Unstructured data/information, 16

Unsystematic risk, 515


elimination, 556

factors, 86


Upper Riemann sum, 127

Upper triangular matrix, 148

Upstairs market, 50

Uryasev, Stanislav, 749

U.S. bonds, 3
U.S. Department of Energy (DOE),

11

U.S. Federal Reserve, 754–755
U.S. government bonds, 3
U.S. municipal bonds, 4
U.S. Office of the Controller of

the Currency. See Quar-
terly Derivatives Report 

U.S. Treasury bonds, 600, 606

U.S. Treasury market, 632

U.S. Treasury spot rates, 606

U.S. Treasury strips, 667

U.S. Treasury yield curve, 599


construction, 600

measurement, 601

usage, 602. See also Spot rates


U.S. 	Treasury zero-coupon

bonds, 667


Utility functions, 77, 482–484, 
487–490. See also Linear 
utility function; Loga-
rithmic utility function; 
Power utility function; 
Quadratic utility func-
tion; Time-separable util-
ity function 

defining, 82

Utility maximization framework,


491


Valuation. See American options; 
European simple derivatives


formula, 429

principles. See Debt instruments


Value

stocks, 3

understanding, 83–85


Value at Risk (VaR), 748. See 
also Conditional VaR 

noncoherence, 749

Value Line Composite Average


(VLCA), 46, 47

Van Meer, Robert, 751

van Norden, Simon, 545

Vanguard Group, 650

Vapnik, Vladimir N., 317, 319

Vapnik-Chervonenkis (VC) the
-

ory. See Learning

Vardharaj, Raman, 532, 556, 558,


582, 583, 586, 588. 590

Variable interest rates, convex
-

ity, 120

Variable short-term rates, 619

Variables, 101. See also Gaussian


variables; Random vari-
ables; Stochastic variables; 
Uncorrelated variables 

calculus, usage, 138–139

characteristic function, 193

co-movement, 189

covariance, 328

definition, 101

IID sequence, 537

sum, 191–193


Variance portfolios. See Mini-
mum variance portfolios 

Variance-covariance matrix, 82, 147,

324, 329. See also Diagonal

variance-covariance matrix;

n×n symmetrical variance-

covariance matrix


eigenvalue, 336

modeling, 347

PCA, performing, 543

usage, 335, 534

values. See Factor variance-


covariance matrix 
Variances


growth, 277

standard deviations, substitu
-

tions, 481

Variation margin, 58, 62

Variational methodologies, 674

Variational principle, 673–674

Variations. See Total variation


calculus, 201–202, 212–214

VARMA model, 542

Vasicek, Oldrich, 636

Vasicek Model, 635, 636

Vector Autoregressive (VAR). See


One-lag stationary VAR 
models, 316, 338, 348. See


also Global VAR model;

Stationary VAR model


usage, 541

Vector support machines, 547

Vectors, 141–144. See also Column


vectors; Eigenvectors; Ran-
dom vectors; Row vectors


autoregressive models, 338–339

components, 141–142

Euclidean length, 143

norm, 143

operations, 153–156
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Vector-valued function, 175 
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Volatility. See Assets; Equity 

clustering phenomena, 753 
decays, 378 
impact. See Benchmarks; White 

noise 
models. See Stochastic volatil-
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Volpert, Kenneth E., 650 
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Wagner, M., 345, 538, 544 
Wagner, N., 377 
Wagner, Wayne H., 416, 551 
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Watson, Mark W., 334, 540, 543 
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(WLLN), 358 
Weak solution, 275, 739 
Weibull distribution, 362–363, 365 

MDA, 367 
Weil, R.L., 667 

West, Richard R., 31 
White, Alan, 636, 711, 717. See 

also Hull-White Model 
White noise, 268. See also Con-

tinuous-time white noise; 
Multivariate white noise 

inputs, 308 
process. See n-dimensional zero-

mean white noise process; 
One-dimensional zero-
mean white noise process 

volatility, impact, 346–347 
Wiener process, 687 
Wigner, Eugene, 92 
Williams, George, 637 
Wilshire Associates, 46–48, 521 
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Wright, David J., 649 
Wu, Wei, 652, 654, 656, 657, 

662, 663 

Yamai, Yasuhiro, 749 
Yield. See Premium par yield 
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risk, 671 
term structure, 599–612 

reinvestment, 598–599 

Yield-maturity relationship, non-
uniqueness, 602 

Yield-to-maturity measure, 596–599 
Yield-to-maturity theory, 616, 617 
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Zahlen, 97 
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Zenios, Stavros, 487, 492, 666, 
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Zero matrix, 146 
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639. See also Defaultable 
zero-coupon bond 
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computation, 639 
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Zero-coupon Treasury debt issues, 

603 
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