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Figure 1.47 Hotels: continuation of linear functions.

Comparison of these lines shows that linear regression fails to find a good ap-
proximation of the main tendency of the whole series based on the first 23 points.
On the other hand, the Double centring line is very close to the global linear re-
gression line, but it uses only the first 23 points of the series rather than the full
number 168.

Note that using Single or Double centring SSA, one can extract not only con-
stants or linear components of time series. Other components of interest (such as
oscillatory ones) can be extracted in the same manner as in Basic SSA. For exam-
ple, for the series, containing the first 23 points of the ‘Hotels’ data and Double
centring with L = 12 (see Fig. 1.46), the eigentriples 1-2, 3-4, 5-6, 7, 8-9 and
10-11 describe harmonics with w = 1/12, 2/12, 3/12, 6/12, 4/12 and 5/12,
respectively.

Moreover, if the time series has a general linear-like tendency, then the Double
centring approach is often preferable to Basic SSA.

1.7.2 Stationary series and Toeplitz SSA

If the length IV of the series F is not sufficiently large and the series is assumed to
be stationary, then the usual recommendation is to replace the matrix § = XXT
by some other matrix, which takes into account the stationarity of the series.

Note first that we can consider the lag-covariance matrix C = S/K instead
of 8 for obtaining the SVD of the trajectory matrix X. Indeed, the difference
between the SVDs of the matrices S and C lies only in the magnitude of the
corresponding eigenvalues (for S they are K times larger); the singular vectors of
both matrices are the same. Therefore, we can use both S and C in Basic SSA
with the same effect.
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Denote by ¢;; = ¢;;(IV) the elements of the lag-covariance matrix C. If the
time series is stationary, and K — oo, then lim¢;; = Rs(|i — j|) as N — oc,
where Ry (k) stands for the lag k term of the time series covariance function; see
Sections 1.4.1 and 6.4. (Recall that according to our agreement of Section 1.4.1,
any infinite stationary series has zero average.)

Therefore, the main idea is to take the Toeplitz version of the lag-covariance
matrix, that is to put equal values ¢;; in each matrix diagonal |¢ — j| = k. Of
course, the convergence ¢;; — Ry (i — j|) must be kept.

There are several ways of getting the Toeplitz lag-covariance matrices from
the series (see Elsner and Tsonis, 1996, Chapter 5.3). The main one is to use the
standard estimate of the covariance function of the series and to transform it into
an L x L matrix. More precisely (see Anderson, 1994, Chapter 8.2), for the time
series F = (fo,..., fn—1) and a fixed window length L, we take the matrix C
with the elements

] N—li—jj-1
G = T mX_jO fmfmeli-gy 1S4,5<L, (132
rather than Basic SSA lag-covariance matrix C = S/ K with the elements
p Ko
¢j = > Fmyis1fmijo1, 1S6j< L. (1.33)
m=0
Having obtained the Toeplitz lag-covariance matrix C we calculate its ortho-
normal eigenvectors Hy, ..., H; and decompose the trajectory matrix:
L
X =Y HZ], (1.34)
i=1

where Z; = XT H;. We thus obtain an orthogonal matrix decomposition of the
kind discussed in Section 4.2.1. Setting \; = ||Z;||?> and Q; = Z;/+/X; (here we
formally assume that C has full rank), we come to the decomposition of the tra-
Jjectory matrix X into a sum similar to the usual SVD. The grouping and diagonal
averaging can then be made in the standard way. Note that the numbers A; (which
may be called squared Toeplitz singular values) generally do not coincide with
the eigenvalues of the matrix C.

If the initial series is a sum of a constant series with the general term ¢y and a
stationary series, then centring seems to be a convenient procedure (since we are
dealing with finite time series, the centring can be applied for ¢ = 0 as well).
One way is to centre the entire series before calculating the matrix (1.32).

The other method is to apply the Single centring. For Toeplitz SSA with the
lag-covariance matrix (1.32) this means that we extract the product

1 n(ia])_]

1 n(i,f)~1

n(z,]) T;) fm+|i—-j\

m=0
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(here we used the notation n(i, j) = N — |i — j|) from ¢;;, find the eigenvectors
H,,...,Hp of the above matrix, compute the (single) centred trajectory matrix
X* as was described in Section 1.7.1, obtain Z; = (X*)THi, and come to the de-
composition similar to (1.34) with an additional matrix term A corresponding to
the Single centring. Note that unlike Basic SSA, the Toeplitz SSA is not invariant
with respect to the substitution of K = N — L + 1 for the window length L, even
without centring.

The Toeplitz construction of the lag-covariance matrix seems to have an ad-
vantage since the matrix elements (1.32) are generally closer than (1.33) to the
terms R¢(|i — j|) of the theoretical covariance function, due to a wider range
of averaging. Nevertheless, it is not universally better since we are not dealing
with the lag-covariance matrix itself but rather with some specific features of the
decompositions of the trajectory matrices, such as separability.

First, the Toeplitz SSA is not aimed at nonstationary series. If the series has
a strong nonstationary component, then Basic SSA seems to be preferable. For
example, if we are dealing with a pure exponential series, then it is described by a
single eigentriple (see Sections 1.6.1 and 5.1 for details) for any window length,
while Toeplitz SSA produces L eigentriples for window length L with harmonic-
like eigenvectors. The same effect takes place for the linear series, exponential-
cosine series, etc. In terms of Section 4.2.1, Toeplitz SSA often produces a de-
composition, which is not minimal.

Second, Toeplitz SSA generally produces a nonoptimal decomposition. The de-
composition of the trajectory matrix produced by SVD (it is used in Basic SSA
and Single and Double centring SSA) is optimal in the the sense that each eigen-
value is the solution of a certain optimization problem; in other words, each eigen-
value is as large as it can be. Therefore, the main series effects are described by the
leading SVD eigentriples, but even subsequent eigentriples can be meaningful.

If we have nonoptimal orthogonal decomposition of the trajectory matrix, it
is more ‘spread’ and the problem similar to the problem of small ‘almost equal
singular values’ becomes even more serious.

Moreover, for long stationary series, both methods give practically the same
results. Yet, for relatively short stationary and noisy series, Toeplitz SSA can be
advantageous.

Example 1.7 ‘Tree rings’: four modulated harmonics

Let us consider the “Tree rings’ example (see Section 1.3.2). The periodogram
(Fig. 1.48) of the series shows four sharp peaks corresponding approximately to
the periods 77 = 74, T, = 52, T3 = 42 and Ty = 12.5.

If we take the window length L = 334, then Basic and Single centring SSA
(both using SVD) extract periodicities corresponding to 77 and 7’y but produce a
mixture of the two other periodic components. Standard Toeplitz SSA with Single
cemtring works better (see Fig. 1.49) and extracts all the leading periodicities at
once.
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Figure 1.48 Tree rings: periodogram in periods up to T = 85.
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Figure 1.49 Tree rings: four periodic components. First 500 points.

Remark 1.1 In Example 1.7 we did not discuss whether the extracted period-
icities are the true ones or produced by the aperiodic component of the series (see
Section 6.4). Our aim was to demonstrate their extraction.

1.7.3 Close singular values

As was discussed in Section 1.6.2, close singular values of SVD cause difficulties
that are difficult to overcome by modifying the window length L. Nevertheless,
there are several techniques that can help to solve the problem. Let us discuss two
of them.
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{a) Series modification

Sometimes one can modify the series in such a manner that this problem disap-
pears. The theoretical base of such effects is the following simple fact: if the time
series F(U and F?) are weakly separable, then for a wide range of constants
¢ # 0 the time series F(!) and cF(?) are strongly separable. In practice, we use
this fact in some approximate sense.

Let us consider two examples of this kind.

1. If we want to extract a small slowly varying trend whose components are mixed
with other series components, then it can be worthwhile to add a constant to
the series and use a relatively small window length for the trend extraction.
Then the new trend will be described by the leading eigentriple, and there will
be no problem in its extraction. The added constant has to be subtracted from
the extracted series.

The example ‘England temperatures’ (Section 1.6.2) is of this kind if we deal
with it in the reverse manner; being centred, the time series is complex for the
rough trend extraction, but if we add to the centred series a constant, equal to
9.18 (that is, if we come back to the uncentered data), a rather wide range of
window lengths will provide the extraction.

2. Assume that our aim is extracting a harmonic with a known frequency w and
this harmonic is mixed with some other time series components due to their
close singular values. If the selected window length L provides a weak separa-
bility of the harmonic of interest, then we can add a harmonic of the same fre-
quency (and some amplitude and phase) to the series. Under the proper choice
of these parameters, the singular values corresponding to the harmonic will be
enlarged enough so that they will not be mixed with any other series compo-
nents (for example, the harmonic will be described by the leading eigentriples).
Therefore, the modified harmonic will be easily extracted.

Example 1.8 ‘Rosé wine’: adding a harmonic component

To illustrate the extraction of a harmonic component from the series, let us con-
sider the example ‘Rosé wine’ described in Section 1.4.1 (see Fig. 1.17 for the
time series and Fig. 1.18 for its periodogram). As was mentioned in Section 1.6,
the harmonics with frequencies 4/12 and 5/12 are mixed under the choice L = 84.
Moreover, other window lengths lead to mixing of other harmonics due to a com-
plex nonstationary structure of the series.

However, if we add to the series a harmonic with frequency 4/12 (that is, pe-
riod 3), zero phase and amplitude 30, then the new quarterly harmonics will be
extracted under the choice of the same L = 84 and the pair of the second and
third eigentriples. The final result is obtained by subtracting the additional har-
monic component.

Note that the problem of close singular values can be solved by other modifi-
cations of Basic SSA as well. For instance, the Toeplitz SSA helps in extracting
harmonic components in the “Tree rings” example of Section 1.7.2. However, this
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example seems to be a good illustration of the advantages of a concrete technique
related to the problem of close singular values rather than an illustration of the
absolute advantage of the Toeplitz SSA.

(b) Sequential SSA

The mixing problem of the time series components (formaily, the problem of close
singular values for weakly separable series components) may be resolved in one
more manner, by the so-called Sequential SSA.

The two-step Sequential SSA can be described as follows. First, we extract se-
veral time series components by Basic SSA with a certain window length L.
Then we apply Basic SSA to the residuals and extract several series compo-
nents once again. The window length L of the second stage is generally different
from L;.

Having extracted two sets of time series components, we can group them in
different ways. For instance, if a rough trend has been extracted at the first stage
and other trend components at the second stage, then we have to add them together
to obtain the accurate trend.

Let us illustrate this by an example.

Example 1.9 Long ‘Unemployment’ series: extraction of harmonics

Consider the ‘Unemployment’ series starting from January 1948 (note that ‘Un-
employment’ example of Section 1.3.6 has April 1950 as its starting point). The
series is depicted in Fig. 1.50 (thin line).
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Figure 1.50 Long ‘Unemployment’ series: time series from January 1948.

Comparing Fig. 1.50 with Fig. 1.12, we see that the trend of the long ‘Unem-
ployment’ series (thick line) has a more complex structure than that of the shorter
one. Selection of a large window length would mix the trend and periodic com-
ponents of the series. For small window lengths the periodic components are not
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separable from each other, and therefore these lengths are not suitable. Hence,
Basic SSA fails to extract (amplitude-modulated) harmonic components of the
series.

The two-stage Sequential SSA proves to be a better method in this case. If
we apply Basic SSA with L = 12 to the initial series, then the first eigentriple
will describe the trend, which is extracted rather well: the trend component does
not include high frequencies, while the residual component practically does not
contain low ones (see Fig. 1.51 for the residual series).
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Figure 1.51 Long ‘Unemployment’ series: trend residuals.
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Figure 1.52 Long ‘Unemployment’ series: annual periodicity.

The second Sequential SSA stage is applied to the residual series with L =
180. Since the series is amplitude modulated, the main periodogram frequencies
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(annual w = 1/12, half-annual w = 1/6 and 4-months w = 1/4) are somewhat
spread out, and therefore each (amplitude-modulated) harmonic can be described
by several (more than 2) eigentriples.

Periodogram analysis of the obtained singular vectors shows that the leading
14 eigentriples with share 91.4% can be related to 3 periodicities: the eigentriples
1,2,5 — 8, 13, 14 describe the annual amplitude-modulated harmonic (Fig. 1.52),
the eigentriples 3,4,11 — 12 are related to half-year periodicity, and the eigen-
triples 9, 10 describe the 4-months harmonic.

The same technique can be applied to the ‘Births’ series if we want to obtain
better resuits than those described in Section 1.3.4. (See Section 1.6.2 for a dis-
cussion concerning the large window length problem in this example.)

1.7.4 Envelopes of highly oscillating signals

The capabilities of SSA in separating signals with high and low frequencies can
be used in a specific problem of enveloping highly oscillating sequences with
slowly varying amplitudes. The simple idea of such a technique can be expressed
as follows.
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Figure 1.53 EEG: a-rhythm. First 1200 points.

Let f, = A(n) cos(2nwn) where w is large and A(n) is slowly varying. Then

gn & 2f2 = A2(n) + A2(n) cos(dnwn). (1.35)
Since A%(n) is slowly varying and the second term on the right-hand side of (1.35)
oscillates rapidly, one can gather the slowly varying terms of the SSA decompo-
sition for gy, and therefore approximately extract the term A%(n) from the series
(1.35). All we need to do then is to take the square root of the extracted term.
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Figure 1.54 EEG: series G and its slowly varying component. First 600 points.

Example 1.10 EEG: envelope of a-rhythm

This idea is illustrated by the time series F' representing an a-rhythm component
of an electroencephalogram (EEG). The whole series F consists of approximately
3500 points; its first 1200 points can be seen in Fig. 1.53. The series can be de-
scribed as an amplitude-modulated harmonic with the main frequency approxi-
mately equal to 1/20.
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Figure 1.55 EEG: a-rhythm and its envelope. First 600 points.

Let us consider the square of the initial series multiplied by 2 and denote it by
G. Taking window length L = 60 and reconstructing the low- -frequency part of
the time series G from the eigentriples 1,4,7 and 10, we obtain an estimate of
A?(n) (the first 600 points of the reconstructed series are depicted in Fig. 1.54 by
the thick line; the thin line corresponds to the series G).

By taking the square root of the estimate we obtain the result. (See Fig. 155,
where the first 600 points of the initial series with its envelope are depicted.)

It may be interesting to note that the a-rhythm time series under consideration
was extracted from the initial EEG signal by S-stage Sequential SSA with differ-
ent window lengths (the largest was equal to 600).

Note also that to obtain the resulting envelope we may need some smoothing to
remove very small but existing parts of highly oscillating components. As usual,
Basic SSA with small window length would do the job.



CHAPTER 2

SSA forecasting

A reasonable forecast of a time series can be performed only if the following
conditions are met:

1. The series has a structure.
2. A mechanism (method, algorithm) identifying this structure is found.

3. A method of the time series continuation, based on the identified structure,
is available.

4. The structure of the time series is preserved for the future time period over
which we are going to forecast (continue) the series.

All these conditions are natural. Of course, condition 4 cannot be validated
with the help of the data to be forecasted. Moreover, the structure of the series can
hardly be identified uniquely (for example, if the series has a noise component).
Therefore, the situation of different (and even ‘contradictory’) forecasts is not
impossible. Thus, it is important not only to realize and indicate the structure
under continuation, but also to check its stability.

At any rate, a forecast can be made only if a certain model is built. The model
can either be derived from the data or at least checked against the data. In SSA
forecasting, these models can be described with the help of the linear recurrent
formulae (or equations). Note that in general the dimension -(in other words, the
order) of the recurrent formulae may be unknown.

The class of series governed by linear recurrent formulae (LRFs) is rather wide
and important for practical implications. For instance, an infinite series is gover-
ned by some LRF if and only if it can be represented as a linear combination of
products of exponential, polynomial and harmonic series. (See Chapter 5 for a
review of the entire theory.)

The series governed by LRFs admits natural recurrent continuation since each
term of such a series is equal to a linear combination of several preceding terms.
Of course, the coefficients of this linear combination can be used for the continu-
ation as well.

It is important that we need not necessarily search for an LRF of minimal di-
mension. Indeed, any other LRF governing the series produces the same continu-
ation.

The theory of Section 5.2, Chapter 5, indicates how to find an LRF, which

governs a series, with the help of SSA. The general idea can be described as
follows.
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Let d be the minimal dimension of all LRFs governing F'. (In this case we shall
say that the time series F' is governed by a minimal LLRF of dimension d.) It can
be proved that if the window length L is larger than d, and the length of the series
is sufficiently large, then the trajectory space of the series F' is d-dimensional.
Basic SSA provides a natural basis for the trajectory space.

The trajectory space determines (under mild and natural restrictions) an LRF
of dimension L —1 that governs the series. If we apply this LRF to the last terms
of the initial series F', we obtain the continuation of F.

The same idea may work if we want to continue an additive component F(1)
of a series F. Here we assume that F(!) is governed by an LRF and is strongly
separable from the residual series F(?) = F'— F(1) for the selected value of the
window length L. It should be mentioned that if two series are strongly separable,
then each of them must satisfy some LRF (see Remark 6.1 in Section 6.1.1).

In practice, it is not reasonable to assume that the series of interest is governed
by an LRF of relatively small dimension. In this way we come to the concept
of approximate recurrent continuation, which can and will also be called the re-
current forecasting. We thus suppose that the series F' under consideration can
be expressed as a sum of the series F(!) admitting recurrent continuation and the
residual series F'(), If we consider the residuals as a noise, then we have the prob-
lem of forecasting the signal F(!) in the presence of the noise F(2). We may also
have the problems of forecasting the series F'(1) regarded as a trend or a seasonal
component of F'.

The main assumption is that for a certain window length L, the series com-
ponents F(!) and F(®) are approximately strongly separable. Then, acting as in
Basic SSA, we reconstruct the series F(1) with the help of a selected set of eigen-
triples and obtain approximations to both the series F(1) and its trajectory space.
In other words, we obtain both the LRF, approximately governing F(1), and the
initial data for this formula. Hence we obtain a forecast of the series F'(1),

The theory of the method can be found in Chapter 5. The contents of the present
Chapter are as follow.

Section 2.1 formally describes the general SSA forecasting algorithm. The rest
of the chapter is devoted to study of this algorithm and related discussions.

Section 2.2 describes the principles of SSA forecasting and its relations to lin-
ear recurrent formulae. Several modifications of the general SSA forecasting al-
gorithm are considered in Section 2.3.

Section 2.4 is devoted to a description of different ways of constructing confi-
dence intervals that can be used for checking the forecast accuracy and stability.
After the summarizing Section 2.5, several forecasting examples are presented in
Section 2.6.

When dealing with continuation, we always need to bear in mind the length of
the series under continuation. Therefore, we usually incorporate this length into
the notation of the series and write, for example, F)y rather than simply F'.
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2.1 SSA recurrent forecasting algorithm

Let us formally describe the forecasting algorithm under consideration.

Algorithm inputs:

(a) Time series Fy = (fo,..., fn-1), N > 2.

(b) Window length L, 1 < L < N.

(c) Linear space £, C RE of dimension r < L. It is assumed that ey, ¢
£, where ez = (0,0,...,0,1)T € RL. In other terms, £, is not a ‘vertical’
space. In practice, the space £, is defined by its certain orthonormal basis, but the
forecasting results do not depend on this concrete basis.

(d) Number M of points to forecast for.

Notations and Comments:

(@)X =[X;:...: Xg](where K = N — L + 1) is the trajectory matrix of
the time series Fly.

(b) P, ..., P, is an orthonormal basis in £,..

o~ o~ —~ r o~
(c) def [X1 :...: Xk] = X P.PFX. The vector X; is the orthogonal
i=1

projection of X; onto the space £;. _

(X =HX = [X; :...: Xkg] is the result of the Hankelization gf the
matrix X. The matrix X is the trajectory matrix of some time series Fy =
(an .. '7fN—l)'

(e) For any vector Y € R we denote by Y, € RY™! the vector consisting
of the last L — 1 components of the vector Y, while YV € RI! s the vector
consisting of the first L — 1 components of Y.

(f) We set v? = wf + ...+ wf, where 7; is the last component of the vector P;
(¢ =1,...,L). Since v? is the squared cosine of the angle between the vector ey,
and the linear space £,, it can be called the verticality coefficient of L,.

(g) Suppose that e;, ¢ £,.. (In other words, we assume that £, is not a vertical
space.) Then v? < 1. It can be proved (see Chapter 5, Theorem 5.2) that the last
component yy, of any vector Y = (y1,...,y)T € £, is a linear combination of
the first components ¥, ...,yr—1:

YL =a1yrL—1 +ayr-2+...+ar1y:.

Vector R = (ap_1,...,a1)T can be expressed as
1 T .
R=1—> > Py 2.1)
i=1
and does not depend on the choice of a basis P, ..., P, in the linear space £,.

SSA recurrent forecasting algorithm:
In the above notations, define the time series Gy p = (go, -+ - » gN+M—1) DY
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the formula
fi fori=0,...,N—1,
R L-1 2
gi Zajg,-_j forz’:N,...,N+M——1. (2 )
Jj=1
The numbers gy, ..., gn4p—1 form the M terms of the SSA recurrent forecast.

For brevity, we call this algorithm SSA R-forecasting algorithm.

Remark 2.1 Let us define the linear operator P(") : £, — R’ by the formula

Y,
Oy ={ -~ . 2.
PY (RTYA>’ Yeg, (2.3)
If setting
X; fori=1,....K
J— > ) 3 2.4
Zi {szq fori=K+1,...,K+ M, 24)
the matrix Z = [Z) : ... : Zk p] is the trajectory matrix of the series Gy as.

Therefore, (2.4) can be regarded as the vector form of (2.2).

If £, is spanned by certain eigenvectors corresponding to the SVD of the trajec-
tory matrix of the series Fy, then the corresponding SSA R-forecasting algorithm
will be called the Basic SSA R-forecasting algorithm.

Remark 2.2 Denote by £5) = span(Xi,...,Xk) the trajectory space of the
series Fiy. Suppose that dim £¥) = r < L and e, ¢ £X)If we use the Basic
SSA R-forecasting algorithm with £, = £®) then X = X = X and therefore
Fy = Fy. This means that the initial points gn_1.41,...,gn_1 of the forecast-
ing recurrent formula (2.2) coincide with the last L—1 terms of the series Fiy.

2.2 Continuation and approximate continuation

The algorithmic scheme described in the previous section is related to both the
series, which are governed by the linear recurrent formulae, and the SSA method-
ology. Let us describe the ideas that lead to SSA forecasting.

2.2.1 Linear recurrent formulae and their characteristic polynomials

The theory of the linear recurrent formulae and associated characteristic polyno-
mials is well known (for example, Gelfond, 1967, Chapter V, §4). However, we
provide here a short survey of the most essential results. A more formal descrip-
tion can be found in Chapter 5.
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(a) Series governed by linear recurrent formulae

By definition, a nonzero series Fy = (fo,..., fn-1) is governed by a linear
recurrent formula (LRF) of dimension not exceeding d > 1 if

d
fiva = Z @i fird—k 2.5)

k=1

for certain a1, ...,aq withag # 0and 0 < i < N — d + 1. In the notation of
Section 5.2 this is expressed as fdim(Fy) < d. If

d = min(k : fdim(Fn) < k),

<
<

then we write fdim(Fx) = d and call d the finite-difference dimension of the
series Fiy. In the case when Fi is governed by LRF (2.5) and d = fdim(Fy),
the formula (2.5) is called minimal.

If (2.5) holds but we do not require that ay # 0, then the time series Fiy satisfies
the LRF (2.5).

The class of series governed by LRFs is rather wide: it contains harmonic,
exponential and polynomial series and is closed under term-by-term addition and
multiplication. For instance, the exponential series f, = e*™ is governed by the
LRF f,, = af,_1 with a = e®, the harmonic series f,, = cos(2mwn + ¢) satisfies
the equation ‘

n = 2¢08(27W) fn—1 — fr-2,

and so on. Other examples, as well as theoretical results, can be found in Sec-
tion52.

The difference between minimal and arbitrary LRFs governing the same series
can be illustrated by the following example. For the exponential series Fy with
fn=a" a =¢e*and N > 3, the LRF f, = af,_; is the minimal one and
fdim(Fn) = 1. On the other hand, the series f, = a™ satisfies the equation
fa=2afn_1—a*fn_ofor2<n<N-1

To understand whether the LRF (2.5) is minimal for the series Fy with suf-
ficiently large IV, one can apply the following procedure. Consider the window
length L (1 < L < N) and suppose that d < min(L, K). In view of (2.5), the

L-lagged vectors X1, ..., X satisfy the vector recurrent equation
d
Xita = zaiXi+d—k7 1<i<K-d
k=1
Therefore, each X; is a linear combination of X, ..., X . If these vectors are

linearly independent, then the LRF (2.5) is minimal and vice versa.

These assertions can be formulated in other terms. Denote by £ the trajec-
tory space of the series Fiy satisfying (2.5). If d < min(L, K), then the equalities
fdim(Fy) = d and dim £5) = d are equivalent. Such a reformulation leads to a
new concept.
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Let 1 < d < L. By definition, an arbitrary series Fy has L-rank d (i.e.,
rankz (Fy) = d) if diim £&) = 4.

If ranky (Fn) = d for any L such that d < min(L, K), then the time series
Fx has rank d (briefly, rank(Fy ) = d).

Roughly speaking, each time series Fy with fdim(Fn) = d has rank, and
this rank is equal to d. The following simple example shows that the opposite
assertion is not true: let us take N = 7and Fiy = (1,1,1,1,1, 1, 2); then for each
L =2,...,6 we have ranky (Fy) = 2, while no LRF of dimension d < 6 can
govern this series.

However, if rankz (Fy) = d < L, then the series Fy (with the exception of
several first and last terms) is governed by an LRF of dimension dy < d.

This LRF can be found by the procedure described in Theorem 5.1 of Chapter 5,
but the procedure seems to be difficult for practical computations.

Moreover, let L > ranky(Fy) and e; ¢ £®) Let us denote 7 = dim £&)
and take £, = o) Then, as shown in Theorem 5.2 in the same chapter, the
series Fy satisfies the LRF '

frvi-i =arfrpi—2+...+ap_1fi, 0<i<K-1, (2.6)

where R = (ag-1,...,a1)" is defined in (2.1).

This fact has a purely geometric origin; due to Theorem 5.2, if £ ¢ R’ is
a linear subspace of dimension 7 < L and e, ¢ £, then the last component
yL of any vector Y € £ is equal to the inner product RTY 7, where the vector
YV € RY™! consists of the first L—1 components of the vector Y and P, ..., P,
is an orthonormal basis of £.

(b) Characteristic polynomials and their roots

Let the series Fv = (fo,..., fnv—1) have finite-difference dimension d and is
governed by the LRF

fati = a1fapi-1 + a2yari—2 + ... + aqy;, aq # 0, 2.7
for 0 < ¢ < N — d. Consider the characteristic polynomial of the LRF (2.7):

d
Pa(d) =2 =3 apadk,
k=1

Let Aq,..., A, be the different (complex) roots of the polynomial P;()). Since
aq # 0, these roots are not equal to zero. We also have k; + ... + k, = d, where
k., are the multiplicities of the roots A, (m = 1,...,p).

Denote fn(m,j) = niA for1 <m < pand 0 < j < ky,~1. Theorem 5.3 of
Section 5.2 tells us that the general solution of the equation{2.7) is

P km-—1

> Y cmifa(m, i), (2.8)

m=1 j=0

fn
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with certain complex c;,,;. The specific values of the ¢,,; are defined by the first
d elements of the series Fiv: fo,..., fa—1.

Thus, each root A,,, produces a component

ki —1

™= 3" emjfalm, j) 2.9)

Jj=0

of the series f,.

Let us fix m and consider this component in the case k,, = 1, which is the
main case in practice. Set A\, = pei2™, w € (—1/2,1/2], where p > 0 is the
modulus (absolute value) of the root and 27w is its polar angle.

If w is either O or 1/2, then A, is a real root of the polynomial P;()\) and the
series component fr(tm) is real and is equal to c;eA},. This means that f,gm) =
Ap™ for positive A, and f,(lm) = A(-1)"p" = Ap" cos(mwn) for negative \,.
The latter case corresponds to the exponentially modulated saw-tooth sequence.

All other values of w lead to complex A,,. In this case, P, has a complex conju-
gate root Ay = pe~ 2™ of the same multiplicity k; = 1. We thus can assume that
0 < w < 1/2 and describe a pair of conjugate roots by the pair of real numbers
(p,w) with p > Oand w € (0,1/2).

If we add together the components fnm) and f,(,l) corresponding to these con-
jugate roots, then we obtain the real series Ap™ cos(2nwn + ¢) with A and ¢
expressed in terms of ¢,;,9 and ¢jg.

The asymptotic behaviour of f,(lm) essentially depends on p = |A,,|. Let us
consider the simplest case k,, = 1 as above. If p < 1, then f,(lm) rapidly tends to
zero and asymptotically has no influence on the whole series (2.8). Alternatively,
the root with p > 1 and |cmo| # O leads to a rapid increase of | f,,| (at least for a
certain subsequence of n).

For example, if A\, = p = 0.8 and |cpmg| # 0, then | f,(.'")| becomes smaller
by approximately a factor 10 in 10 time steps and by a factor 5-10° in 100 steps.
If A, = p = 1.2 (and |cmo| # 0), then | f,(f")| is increased approximately 6-fold
in 10 time steps and 8-107-fold in 100 steps. Similar effects hold for the series
component Ap" cos(2mwn + ¢) corresponding to a pair of conjugate complex
roots: the series amplitude Ap” rapidly decreases or increases depending on the
inequalities p < 1 orp > 1.

The root A, with k,;, > 1 produces k,, terms in the sum (2.9). For example,
if A\, = 1and k,,, = 2, then f,(,"‘) = An+ B for some A and B. In other words,
the root 1 of multiplicity 2 generates a linear series. Example 5.10 of Section 5.2
treats the general case k,,, = 2 in detail.

If the series Fiv has finite-difference dimension d, then the characteristic poly-

nomial of its minimal LRF (2.7) has d roots. As was mentioned above, the same
series satisfies many other LRFs of certain dimensions r > d. Consider such an
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LRF

Jrei =bifriict + bayryica + ...+ by, (2.10)

The characteristic polynomial P,.()) of the LRF (2.10) has r roots with d roots
(we call them the main roots) coinciding with the roots of the minimal LRF. The
other r —d roots are extraneous: in view of the uniqueness of the representation
(2.9), the coefficients ¢, j corresponding to these roots are equal to zero. However,
the LRF (2.10) governs a wider class of series than the minimal LRF (2.7).

Since the roots of the characteristic polynomial specify its coefficients uniquely,
they also determine the corresponding LRF. Consequently, by removing the ex-
traneous roots of the characteristic polynomial P,(A), corresponding to the LRF
(2.10), we can obtain the polynomial describing the minimal LRF of the series.

Example 2.1 Annual seasonality

Let the series Fiy have the period 12 (for instance, this series describes a season-
ality). Then it can be expressed as a sum of a constant and six harmonics:

5
fn=co+ ch cos(2mnk/12 + ¢) + cg cos(mn). (2.11)
k=1
Under the condition that ¢, #O0fork =0,...,6 the series has finite-difference

dimension 12. In other words, the characteristic polynomial of the minimal LRF
governing the series (2.11) has 12 roots. All these roots have the modulus 1. Two
real roots (+1 and —1) correspond to the first and the last terms in (2.1 1). The
harmonic term with frequency w;, = k /12 generates two complex conjugate roots
exp(+i2nk/12), which have polar angles +2rk/12.

1.0 j
0.5
' -
L
L]
*
0
L]
.
L]
. .
-0.5
-1.0
-1.0 0.5 0 0.5 1.0

Figure 2.1 Annual seasonality: main and extraneous roots.

Let us now consider an LRF that is not minimal. Let N be large enough. If
we select certain L > 13 and take r = 12, L, = .C(L)(FN), then the vector
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R = (ag—1,...,a1)T defined in (2.1) produces the LRF

firr-1=a1fixp—2+ ... +ar_1f;, (2.12)
which is not minimal but governs the series (2.11).
Letustake ¢g = ... = ¢cg = 1,0 = ... = ¢5 = 0 and L = 24. The roots

of the characteristic polynomial of the formula (2.12) are depicted in Fig. 2.1. We
can see that the main 12 roots of the polynomial form a regular dodecagon, with
the vertices on the unit circle of the complex plane. Eleven extraneous roots can
be seen around zero; they have small moduli.

2.2.2 Recurrent continuation of time series

If the time series Fy is governed by an LRF (2.10) of dimension r < N, then
there exists a natural recurrent continuation of such a series produced by the same
formula (2.10). Whether LRF is minimal or not is of no importance since the
extraneous roots have no influence on the series Fly.

(a) L-continuation

It is important to reformulate the concept of recurrent continuation in purely geo-
metrical terms. Let us start with a definition.

Consider a time series Fiy = (fo,..., f~v~1) and fix a window length 1 <
L < N. Denote by Xy,..., Xk the corresponding L-lagged vectors, and set
g = span(Xi,...,Xk). Let d = dim o), (In other terms, the L-rank of
the series Fy is equal to d.) Evidently, d < min(L, K).

We say that the series Fiy admits a continuation in et (or, briefly, admits L-
continuation) if there exists a uniquely defined fN such that all L-lagged vectors
of the series IT“NH = {fo,---, fN_l,fN) belong to &) n this case, the series
F ~N+1 (as well as the number fN) will be called the one-step L-continuation of
the series Fly.

Theorem 5.4 and Remark 5.9 in Section 5.3 provide the complete description
of those series that admit L-continuation. For the moment, the following is im-
portant.

1. If e, € £, then Fy does not admit L-continuation. As a consequence, if
d = L, then the series cannot be L-continued since the uniqueness condition
does not hold.

2. fd<L<Kandep ¢ E(L), then the series Iy admits L-continuation. From
now on we assume that these assumptions concerning £ are satisfied.

3. The one-step L-continuation of the series Fy can be performed by the formula

L-1

fn= Zaka—Im (2.13)

k=1
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where the vector R = (ar_1,...,a;)7T is defined in the formula (2.1) applied
to the space £, = e,

4. The series Fiy is governed by the same LRF (2.13), that is
L-1
fi+L=Zakfi+L—k7 0<i<N-L-1
k=1

5. If the series F)y admits a one-step L-continuation, then it can be L-continued
for an arbitrary number of steps. Therefore, we can consider an infinite series
F which is the L-continuation of Fly.

6. Let the series Fy satisfy an LRF
do
fivdo =Y bk fira—k, O0<i<N—do—1, 2.14)
k=1

and dy < min(L — 1, K). Thend < do, e, ¢ £F) and the series will admit
L-continuation, which can be produced by the same formula (2.14).

These properties are not surprising in view of the results discussed above concern-
ing the correspondence between the series with fdim(Fx) = d andranky (Fn) =
d. Reformulated in terms of continuation, this correspondence means that under
the conditions ranky, (Fy) < L < K ande;, ¢ £%) the concepts of recurrent
continuation and L-continuation are equivalent.

(b) Recurrent continuation and Basic SSA forecasting

Let us return to the forecasting algorithm of Section 2.1, considering the case of
Basic SSA R-forecastin

Suppose that £, = 25), er ¢ £8P andr < L < K. Then
r = ranky (Fy) = fdim(Fy)

and the series Fy is governed by an LRF of order r. In other words, the series Fyy
admits L-continuation. B

Since the vectors X; belong to the linear space £,, the matrix X of the fore-
casting algorithm coincides with the trajectory matrix X for the initial series Fiy.

Denote by Fiv ., recurrent continuation of the series Fy for M steps. This
continuation can be performed with the help of the LRF (2.6), as the latter gov-
emns the series Fy. By the algorithm description, the forecasting formula (2.2) is
produced by the same LRF (2.6).

Therefore, the series G x4+ ps defined by the formula (2.2) is equal to Fiv ar and
the SSA R-forecasting algorithm with £, = ££ ) produces recurrent continuation
of the series Fiy. The vector form (2.4) of the algorithm corresponds to the L-
continuation.

To obtain the vector R, we must have an orthonormal basis of the linear space
28| see formula (2.1). Dealing with SSA, the SVD of the trajectory matrix
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X for the series Fy provides us with the elgenvectors (left singular vectors)
Ui, ..., U,, which form a natural basis of £, Therefore, if the series Fy admits
L- contmuatlon the latter can be performed with the help of SSA.

Other choices of £, can lead to continuation of the series components. Let
Fn F(l) F(2) with nonzero F’ Nl ) and F(z) Denote the L-lagged vectors of
the series F( ) by X(l) X(l) and set £(L D= span(X(l) X(l))

Let r = dim E(L D and assume that 7 < L < K and ¢, ¢ £ Then
the series FN) admits L-continuation and the SSA R-forecasting algorithm with
g, =g performs this continuation.

Suppose that series Fz(vl ) and FI(\,2 ) are strongly separable for the window length
L < K (see Section 1.5) and denote by X the trajectory matrix of the series Fiy.
Then the SVD of the matrix X produces both the space £, and the series F,(\,1 ),

Indeed, let U; (i = 1,..., L) be the eigenvectors of the matrix S = XX and
letI = {j1,...,3-} C{1,..., L} be the set of indices corresponding to the time
series FI(VI). If wetake P; = Uj,,i = 1,...,r, then £, = span(P,,..., P,) and
7 < L. The series F,(\,1 ) can be obtained in terms of the resultant Hankel matrix,
which is produced by the grouping of the elementary matrices corresponding to
the set of indices 1.

Therefore, Basic SSA gives rise to the continuation of the series component
which is accomplished by the Basic SSA R-forecasting algorithm. Note that if
Fz(vl and F( ) are strongly separable, then both dimensions of their trajectory
spaces are smaller than L.

2.2.3 Approximate continuation

The problems of exact continuation have mainly a theoretical and methodological
sense. In practice, it is not wise to assume that the series obtained by measure-
ments is governed by some LRF of relatively small dimension. Thus, we pass to
the concept of approximate continuation, which is of greater importance in prac-
tice.

(a) Approximate separability and forecasting errors

let Fy = F(l) + F (2) and suppose that the series FN) admits a recurrent con-
tinuation. Denote by d the dimension of the minimal recurrent formula governing
F(l) Ifd < min(L,K), thend = rankL(F(l))

If F“) and F( ) are strongly separable for some window length L, then we
can perform recurrent continuation of the series FN) by the method described
in Section 2.2.2. We now assume that F(l) and F(z) are approximately strongly
separable and discuss the problem of approximate continuation of the series F 2

If F( ) is small enough and signifies an error or noise, this continuation can
be regarded as a forecast of the signal F,(\,1 ) in the presence of noise F; J(V). In
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other cases we can describe the problem as that of forecasting an interpretable
component Fz(vl ) of F: for example, forecasting its trend or seasonal component.
As above, to do the continuation we use the Basic SSA R-forecasting algorithm

described in Section 2.1. Formally, we assume that the following conditions hold.

1. The series of length N and window length L provide approximate strong
separability of the series F\) and F{?).

2. Let

X =3 VAUVT

be the SVD of the trajectory matrix X of the series Fy. Then the choice of

the eigentriples {(v/A:, Ui, Vi) }Yier, I = (41,...,i,), associated with FI(VI)
allows us to achieve (approximate) separability.

3. d¥fdim(F) <r< L < K.
4. er ¢ span{(Uy,i € I). In other terms, Yicl u?, < 1, where u;, is the last
component of the eigenvector U;.

If these conditions hold, then we can apply the (Basic) SSA R-forecasting algo-
rithm, taking £, = span(U;,i € I) and P; = Uy;. The result gn, ..., gN+M—1
is called the approximate recurrent continuation of the series F.

Let us discuss the features of this forecasting method. The forecast series g,
(n > N) defined by (2.2), generally does not coincide with recurrent continuation

of the series F,(\,1 ). The errors have two origins. The main one is the difference

between the linear space £, and £'F | the trajectory space of the series FI(V1 ),
Since the LRF (2.2) is produced by the vector R and the latter is strongly related to
the space £, (see Proposition 5.5 of Chapter 5), the discrepancy between £, and
& produces an error in the LRF governing the forecast series. In particular,
the finite-difference dimension of the forecast series g, (n > N) is generally
greater than d.

The other origin of the forecasting errors lies in the initial data for the forecast.

For recurrent continuation, the initial data is fj(\?)_ Lals-+s I(Vl?—l where f,(,l) is the

nth term of the series F,(\,1 ). In the Basic SSA R-forecasting algorithm, the initial

data consists of the last L—1 terms gy _ 41, . . . , gnv—1 Of the reconstructed series.

Since generally f,(ll) # 9n, the initial data produces its own error of forecasting.
On the other hand, if the quality of approximate separability of F,(Vl) and F,(V? )
is rather good and we select the proper elgenmg]es associated with F(), then we
can expect that the linear spaces £, and £%!) are close. Therefore, the coeffi-
cients in the LRF (2.2) are expected to be close to those of the LRF governing
recurrent continuation of the series F,(\,1 ), Analogously, approximate separability
implies that the reconstructed series g, is close to f,(ll), and therefore the errors of
the initial forecasting data are small. As a result, in this case we can expect that
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the Basic SSA R-forecasting procedure provides a reasonable approximation to
recurrent continuation of FY , at least in the first few steps.

The following artificial example illustrates the role of separability in forecast-
ing.

Example 2.2 Separability and forecasting
Let us consider the series Fy = FI(\,1 ) 4+ F,(\,2 ) with N = 100,

o=+ P, M =3a", f? =sin(2mn/10)

and a = 1.01. Note that the series FI(\,2 ) has finite-difference dimension 2 and Fz(vl )
is governed by the minimal LRF f,(ll) =a f,(ll_)l.

If we want to forecast the series F; 1(\,1 ), then we have to choose the window
length L and take just one eigenvector of the corresponding SVD as the basis of
the linear space £,. (In this example, the leading eigenvector is acceptable for a
wide range of L.)

Evidently, the forecasting result depends on L. The choice of the window length
L can be expressed in terms of separability: a proper L ought to provide good
separability characteristics. Let us compare the choice of two window lengths,
L = 50 and L = 15, from the viewpoint of forecasting. Since exponential and
harmonic series are asymptotically separable, the window length L = 50 seems
to provide a good separation, while L = 15 should be regarded as too small.

The results for both Basic R-forecasting procedures are depicted in Fig. 2.2,
where the top thick line starting at n = 101 corresponds to L = 50, and the
analogous bottom thick line relates to L = 15. The thin line indicates the initial
series Fiy continued up to n = 190, which is the last forecasting point.
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Figure 2.2 Forecasting accuracy: two variants of window length.
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For L = 50, the choice of the first eigentriple in correspondence with F,(\,1 )

leads to the w-correlation p§’;) = 0.0001 and the maximum cross-correlation
pLK) = 0.034. Therefore, the achieved separability should be regarded as rather
good. If we take L = 15, then we obtain pgg’) = 0.0067 and p(L*K) = 0.317,
which means that the separation is poorer.

If we compare the forecasting results at the point n = 190, then we observe
that the window length L = 50 provides the relative forecast error of about 2%,
while the choice L = 15 gives almost 9%. This difference is not surprising since
the window length L = 15 is too small for achieving good separability.

Note that both forecasts underestimate the true series. This can be explained in
terms of the characteristic polynomials. Indeed, the main root of the polynomial
P14()\) corresponding to L = 15 is equal to 1.0091. The analogous root for L =
50 is 1.0098. The (single) root of the polynomial corresponding to the minimal
LRF governing FI(\,l )isa = 1.01. The arrangement of the roots coincides with the

arrangement of the two forecasts and the exponential series f,(ll) =a".

(b) Approximate continuation and the characteristic polynomials

Let us return to the errors of separability and forecasting. The discrepancies be-
tween £, and £/5°1) can be described in terms of the characteristic polynomials.
We have three LRFs: (i) the minimal LRF of dimension d governing the series
Ffvl ), (ii) the continuation LRF of dimension L —1, which also governs F(l) , but
produces L—d—1 extraneous roots in its characteristic polynomial P, and (iii)
the forecasting LRF governing the forecast series g, (n > N). The characteristic
polynomial Pé’:)l of the forecasting LRF also has L —1 roots.

If £, and o1 are close, then the coefficients of continuation and forecasting
recurrent formulae must be close too. Therefore, all simple roots of the forecasting
characteristic polynomial P,S{ , must be close to that of the continuation polyno-
mial P;,_;. The roots A,,, with multiplicities k., > 1 could be perturbed in a more
complex manner.

Example 2.3 Perturbation of the multiple roots
Let us consider the series Fy with

fa=(A+0.1n)+sin(27an/10), n=0,...,199.

Evidently, Fiy = F1(vl )+ F ](\,2 ) with the linear series Ffvl ) defined by i) =
A + 0.1 n and the harmonic series FI(\,2 ) corresponding to fflz) = sin(27n/10).

The series Fiy has finite-difference dimension fdim(Fx) = 4. Therefore, any
LRF governing Fy produces a characteristic polynomial with four main roots.
These main roots do not depend on A; the linear part of the series generates one
real root A = 1 of multiplicity 2, while the harmonic series corresponds to two
complex conjugate roots with modulus p = 1 and w = 0.1.
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Our aim is to forecast the series FI(\,1 ) for A = 0 and A = 50 with the help of
the Basic SSA forecasting algorithm. In both cases, we take the window length
L = 100 and choose the eigentriples that correspond to the linear part of the
initial time series Fiv. (For A = 0 we take the two leading eigentriples, while for
A = 50 the appropriate eigentriples have the ordinal numbers 1 and 4.) Since the
series F,(\,1 ) and Fz(v2 ) are not exactly separable for any choice of L, we deal with
approximate separability.

The forecasting polynomials P,E‘f_)l with A = 0 and A = 50 demonstrate dif-
ferent splitting of the double root A = 1 into two simple ones. For A = 0 there
appear two complex conjugate roots with p = 1.002 and w = 0.0008, while in the
case A = 50 we obtain two real roots equal to 1.001 and 0.997. All extraneous
roots are less than 0.986.

This means that for A = 0 the linear series F,(V1 ) is approximated by a low-
frequency harmonic with a slightly increasing exponential amplitude. In the case
A = 50 the approximating series is the sum of two exponentials, one of them is
slightly increasing and another one is slightly decreasing.

These discrepancies lead to quite different long-term forecasting results: oscil-
lating for A = 0 and exponentially increasing for A = 50. :

In the case of a large discrepancy between £, and £(X "), both the main and
the extraneous roots of the continuation polynomial can differ significantly, and
the error of the forecasting procedure can be rather large.

Evidently, such an error depends on the order L — 1 of the characteristic poly-
nomials as well; the bigger the number of the perturbed extraneous roots, the less
precise the forecasting procedure may become.

On the other hand, the conditions for approximate separability are usually
asymptotic and require relatively large L. In practice, this means that we have
to take the smallest window length L providing a sufficient (though approximate)
separability.

2.3 Modifications to Basic SSA R-forecasting

The Basic SSA R-forecasting algorithm discussed in Section 2.2 should be re-
garded as the main forecasting algorithm due to its direct relation to the linear
recurrent formulae. Nevertheless, there exist several natural modifications to this
algorithm that can give better forecasts in specific situations.

2.3.1 SSA vector forecasting

Let us return to Basic SSA and assume that our aim is to extract a certain additive
component F,(Vl) from a series Fy. In this algorithm, for an appropriate window
length L, we obtain the SVD of the trajectory matrix of the series Fy and select
the eigentriples (vA;,U;, V;), i € I = (ji, - . ., j»), corresponding to F,(Vl). Then
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we obtain the resultant matrix
X] = Z AV )\iUi‘/iT
i€l
and, after diagonal averaging, we obtain the reconstructed series IF,(\,1 ) that esti-
mates FI(\,1 ),

Note that the columns X,..., Xk of the resultant matrix X belong to the
linear space £, = span(U;,7 € I). If F,(\,1 ) is strongly separable from FI(\,2 ) def
Fy - F](\,1 ), then £, coincides with gL (the trajectory space of the series F,(\,1 ))
and X is a Hankel matrix (in this case X is the trajectory matrix of the series
F,(\,1 )). If Fz(vl ) and F,(\,2 ) are approximately strongly separable, then £, is close to
&Y and X is approximately a Hankel matrix.

Briefly, the idea of ‘vector forecasting’ can be expressed as follows. Let us

imagine that we can continue the sequence of vectors X1, ..., Xy for M steps
in such a manner that:

1. The continuation vectors Z,,, (K < m < K + M) belong to the same linear
space £,.

2. The matrix Xy = [)?1 T )?K t Zk41 ¢ ... Zx4 M) is approximately a
Hankel matrix.
Having obtained the matrix X, we can obtain the series G ~N+M by diagonal

averaging. Since the first elements of the reconstructed series IT“,(\,1 ) coincide with

the elements of G . s, the latter can be considered to be a forecast of F,(\,1 ),

Now let us give a formal description of the SSA vector forecasting algorithm
(briefly, V-forecasting) in the same manner as was done in Section 2.1 for the SSA
recurrent forecasting algorithm.

Preliminaries:

o The SSA vector forecasting algorithm has the same inputs and conditions as
the SSA R-forecasting algorithm.

¢ The notation in (a)-(g) of Section 2.1 is kept. Let us introduce some more
notation.

Consider the matrix
D=V (V)T + (1 - v)RRT, (2.15)

where V¥ = [Py : ... : P}). The matrix II is the matrix of the linear operator
that performs the orthogonal projection RL~! — £Y (see Proposition 5.9 in
Section 5.3), where £7 = span(Py,..., PY).

We define the linear operator P(*) : £, — R’ by the formula

1y,
Wy = a 2. 2.1
POY (RTYA>, Y e (2.16)
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SSA vector forecasting algorithm:

1. In the notation above we define the vectors Z; as follows:

g | X fori=1,...,K
Tl Pz, fori=K+1,..., K+ M+L-1.

(2.17)

2. By constructing the matrix Z = [Z; : ... : Zg4m+2-1] and making its
diagonal averaging we obtain a series go, ..., N+ M+L-1-

3. The numbers gn, .. ., gn+m—1 form the M terms of the SSA vector forecast.

If £, is spanned by certain eigenvectors obtained by Basic SSA, we shall call
the corresponding algorithm the Basic SSA vector forecasting algorithm. Let us
discuss its features.

(a) Continuation ‘

If £, is the trajectory space of the series Fiy (in other words, if we act under
the assumptions of Section 2.2.2), then the result of the vector forecasting coin-
cides with that of the recurrent one. Thus, in this case the V-forecasting algorithm
performs recurrent continuation of the series Fiv.

More precisely, in this situation the matrix I is the identity matrix, and (2.16)
coincides with (2.3). Furthermore, the matrix Z has Hankel structure and diagonal
averaging is the identical operation.

The same coincidence holds if Fiy = F,(\,1 ) + F(2), the series F,(\,1 ) and FI(\,2 )
are strongly separable, and £, is the trajectory space of the series Fl,(\,l ). The Basic
SSA V-forecasting then performs recurrent continuation of F,(\,1 ),

(b) Forecasting

Though the results are the same, the essentials of recurrent and vector forecasting
are different. Briefly, recurrent forecasting performs recurrent continuation di-
rectly (with the help of LRF), while vector forecasting deals with L-continuation.
In the case of approximate continuation, the two forecasting algorithms usually
give different results.

In a typical situation, there is no time series such that the linear space £, (for
r < L — 1) is its trajectory space, and therefore (see Proposition 5.6) this space
cannot be the trajectory space of the series to be forecasted. The recurrent fore-
casting method uses £, to obtain the LRF of the forecast series.

The vector forecasting procedure tries to perform the L-continuation of the se-
ries in £,; any vector Z;y; = P Z, belongs to £,, and ZZH is as close to (Z;)
as it can be. The last component of Z;4, is obtained from Z7, ; by the LRF ap-
plied in the recurrent forecasting. Since the matrix Z is not a Hankel one, diagonal
averaging works in the same manner as in Basic SSA.

(c) Details
Both forecasting methods have two general stages: diagonal averaging and con-
tinuation. For the recurrent forecasting, diagonal averaging is used to obtain the
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reconstructed series, and continuation is performed by applying the LRF. In the
vector forecasting method, these two stages are used in the reverse order; first,
vector continuation in £, is performed and then diagonal averaging gives the
forecast values.

Note that in order to get M forecast terms the vector forecasting procedure per-
forms M+ L—1 steps. The aim is the permanence of the forecast under variations
in M: the M -step forecast ought to coincide with the first M values of the fore-
cast for M + 1 or more steps. In view of the features of diagonal averaging, we
have to produce L —1 extra steps.

JFORRRUPPAS P IS —
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(d) Comparison

If the series admits recurrent continuation, then the results for both Basic SSA
forecasting methods coincide. In the case of approximate continuation they dif-
fer. Typically, a poor approximation implies a large difference between the two
forecasts.

In the case of approximate separability it is hard to compare the recurrent and
vector forecasting methods theoretically. Generally, the approximate coincidence
of the two forecasting results can be used as an argument in favour of the fore-
casting stability.

Recurrent forecasting is simpler to interpret due to the description of LRFs in
terms of the characteristic polynomials. On the other hand, results of data analysis
show that the vector forecasting method is usually more ‘conservative’ (or less
‘radical’) in those cases when the recurrent forecasting method demonstrates rapid
increase or decrease. '

2.3.2 Toeplitz SSA forecasting

Using Basic SSA recurrent and vector forecasting, we take £, to be spanned by
certain eigenvectors U, k € I, of the SVD applied to the trajectory matrix X of
the series Fiv. In other words, the basis vectors P; of £, have the form P, = I s
(see Section 2.2.2). Other decompositions of the trajectory matrix lead to another
choice of £,.

If the original series can be regarded as a stationary one, then as defined in
(1.34) the Toeplitz SSA decomposition

L
X=> HzT
i=1

can be used in place of the SVD in Basic SSA. Here the H; stands for the ith
eigenvector of the Toeplitz lag-covariance matrix defined in (1.32). (See Sec-

tion 1.7.2 in Chapter 1 for details.)
Let us consider the SSA R-forecasting algorithm of Section 2.1. If we select a
set of indices I = (jy,. .., jr) and take P; = Hj, as the basis vectors in £,, then
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we obtain the Toeplitz SSA R-forecasting algorithm. Evidently, one can use the
vector forecasting variant in Toeplitz forecasting as well.

As was mentioned in Section 1.7.2, for relatively short intervals of stationa-
ry-like series, the Toeplitz SSA may give better separability characteristics than
Basic SSA. Therefore, if we have a problem of continuation of a sum of several
harmonic components of a stationary series, then Toeplitz forecasting may have
an advantage.

Moreover, if L is much smaller than K = N — L + 1, then the Toeplitz lag-
covariance matrix has a more regular structure than the standard lag-covariance
matrix used in Basic SSA. The eigenvectors of the Toeplitz lag-covariance matrix
are also more regular. Since forecasting is based on the space £, generated by the
eigenvectors (and does not use both the factor vectors and the singular values),
for stationary time series Toeplitz SSA forecasting may give more stable results.

2.3.3 Centring in SSA forecasting

To elucidate the characteristics of the (single) centring variant of SSA forecasting,
we start with a series that admits recurrent continuation.

Consider the series Fyy with fdim(Fx) = d > 1 and sufficiently large N.
As was described in Section 2.2, if we take the window length. L such that d <
min(L, K) and suppose that the corresponding trajectory space £ isnot a ver-
tical one, then dim £I) = 4 and the choice £, = £(I) Jeads to recurrent continu-
ation of the series Fjv, which is performed by SSA recurrent forecasting algorithm
of Section 2.1. Let us consider another way of doing such a continuation.

By definition, the space £ js spanned by the L-lagged vectors X1,..., Xk
of the series Fiv. In the same manner as in Section 1.7, we denote by £ = £;(X)
the vector of the row averages of the trajectory matrix X. In other words, we set

E=(X1+...+ XK)/K. ' (2.18)
Evidently, £ € £@&) We set
2P = span(X; - &,..., Xk - &) = £ — €. (2.19)

Then (see Section 4.4) the dimension r 41 dim S(SL) is equal to either d or d—1.
Assume that 7 > 1 (the case » = 0 corresponds to a constant series Fiv).

Ifer ¢ EEL), then according to the proof of Theorem 5.2, the last component

yr of any vector Y € S(EL) is equal to the linear combination of its first L —1
components:

L1
YL =) ar¥r—k, (2.20)

k=1
where the vector R = (ag_1,...,a;)7 is obtained from S‘(SL) by the formula

(2.1), with P, ..., P, standing for an orthonormal basis in E‘(‘;L).
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Let us now consider the infinite series F', which is recurrent continuation of
Fy, and denote by X; (i > K) the ith L-lagged vector in the series F. Since
X1,..., Xk span the space E(L), and X; € 2@ for any 7 > K, it follows that
X, -€¢€ Eg’) for any 1.

Let us denote by z,(:) the kth component of the vector X; — £. In view of (2.20)
we obtain

L-1
z(Li) = Z akzy)_k. 2.21)
k=1
Rewriting (2.21) interms of X; = (fi—1, ..., fiz1—2)T we come to the equalities
L-1
firp—2 = Z akfivp—a—k +eL — RTEY, i>1, (2.22)
k=1

where ¢, is the last component of the vector £.

Thus, we have arrived at the heterogeneous linear recurrent formula, governing
the series Fjv and performing its recurrent continuation. Evidently, if £ = 0,
then (2.22) coincides with recurrent continuation formula which is obtained in
terms of £(L), see Section 2.2.

The transition from the trajectory space £ 10 the space (2.19) is considered
in Sections 4.4 and 1.7, where the features of the centring versions of the SVD and

Basic SSA are discussed. In terms of these Sections, 2‘(51‘) corresponds to single
centring.

Single centring ideas give rise to versions of both recurrent and vector SSA
forecasting algorithms for Basic and Toeplitz forecasting. Let us describe these
versions in the formal manner of Section 2.1. For brevity, we present only the
modified items within the description of the algorithms.

There are two versions of these modifications. If we are reconstructing a com-
ponent of a time series with the help of the centring variant of the Basic (or

- Toeplitz) SSA, we can either include the average triple into the list of the eigen-
triples selected for reconstruction or not. These two possibilities are kept in the
centring variant of SSA forecasting.

Now let £, be a subspace of RY of dimension r < L, e ¢ £,, and let
Py, ..., P, be some orthonormal basis of £,.

If we do not take average triple for the reconstruction, then:

1. The matrix X (Section 2.1, Notation and Comments, item b) is defined as

X=[X1:...: Xx] =Y PPF(X - A), (2.23)
i=1
where A = [£ : ... : £] and the vector £ has the form (2.18).
2. Formula (2.2) and its vector version defined by (2.3) and (2.4) are kept for

the recurzent variant of SSA centring forecasting. Analogously, for SSA vector
forecasting, the formulae (2.16) and (2.17) are kept.
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In the case when we take the average triple for the reconstruction, we have
1. Matrix X is defined as

T
X=[X1:...:Xk] =Y PPF(X - A)+A,
i=1
in the same notation as (2.23).
2. (i) In recurrent forecasting, the formula (2.2) is modified as

fi fori=0,...,N -1,

) L1

9i= Y ajgi-j+a fori=N,....N+M-1
j=1

witha = e —RTEY. To modify its vector form (2.3), (2.4), we keep the latter
formula and replace (2.3) by

Y, — &Y
(rdy = A
pray (RT(YA_EV)>+S,

where the operator P("%) maps £, + £ to RL.

(ii) In SSA vector forecasting variant, the formula (2.17) is kept and (2.16) is
replaced by

(ve)y _ H(YA - SV)
Py = (RT(YA _ &) +& YegL +¢€

If we use Basic SSA centring forecasting, then the vectors P; (1 < i < 1)
are selected from the set of the SVD eigenvectors for the matrix X — A. In the
Toeplirz variant, the Toeplitz decomposition of X — A is used instead.

Note that the double centring variant of SVD (see Section 4.4) can hardly be
used for forecasting in the style under consideration. The main reason for this is
that the double centring is applied to both the rows and columns of the trajectory
matrix, while the SSA forecasting algorithm of Section 2.1 and all its modifica-
tions and variants are based on the linear space £,, which is associated only with
the columns of the trajectory matrix.

2.3.4 Other ways of modification

There exist numerous versions of the forecasting methods based on the SSA ideas.
Let us mention several of these versions, stating them as problems to be solved
rather than as methods recommended for direct use in practice.

(a) Minimal recurrent formula: Schubert and reduction methods

The linear recurrent formula applied in the recurrent SSA forecasting algorithm
has dimension L — 1 (L is the window length), while the minimal recurrent for-
mula governing the series Fv (if any) can have a much smaller dimension. There-




4

i

i el

Lk
-l
"

114 SSA FORECASTING

fore, for a window length sufficient for approximate separability, it is natural to
look for the LRF of relatively small dimension to perform a reasonable forecast.

Assume that the series Fyy admits a recurrent continuation. One way of finding
its minimal LRF is described in Theorem 5.1 of Section 5.2, where such an LRF
is explained in geometrical terms of the Schubert basis (Schubert method). An-
other possibility arises if we can distinguish the main and extraneous roots of the
characteristic polynomial of the LRF. In this case we can remove the extraneous
roots and come to the minimal formula (reduction method).

Both methods are theoretically exact if fdim(Fy) < min(L, K'). However,
their practical usefullness is not at all obvious since we deal with approximate
separability, which produces perturbations of all results.

The stability of the Schubert method under data perturbations has not yet been
checked. Therefore, there is a danger that not only the coefficients of the obtained
‘minimal’ LRF but even its dimension can vary significantly under small varia-
tions in the data. Also, the method seems to be much more complicated than Basic
SSA R-forecasting.

The modification of the Basic SSA R-forecasting algorithm based on the reduc-
tion of the polynomial roots works well if the main roots are properly indicated
and the perturbation in the data is not very large. Otherwise the forecasting results
can be unpredictable. An example of applying the reduction recurrent forecasting
algorithm can be found in Section 2.6.1.

Note that both methods can be used only for recurrent forecasting. Moreover,
the problem of the initial data arises again; the errors in the initial data for the
minimal LRF can affect the forecast more severely than for an LRF of large di-
mension.

(b) The nearest subspace

If F)y admits recurrent continuation, then the choice £, = £(L) eads to the LRF
governing Fyy. In the case of approximate separability, the forecasting LRF is
calculated through the selected linear space £,, which typically cannot be the
trajectory space of any time series (see Proposition 5.6 in Section 5.2).

One can try to solve this annoying contradiction in the following manner. Let
us state the problem of finding a linear space £, as follows: (a) the space has the
same dimension r as the initial space £, (b) £.. is the trajectory space of a certain
time series, and (c) S'T is the closest to £, (the cosine of the angle between these
spaces is maximum).

If the errors in data are not very large, then such a space can be regarded as
an appropriate ‘estimate’ of the trajectory space of a series under recurrent con-
tinuation. The space £, being found, the corresponding LRF of dimension L — 1
appears, and the specific form of the forecast by this LRF depends on the initial
data. Since the vector consisting of the last L — 1 points of the reconstructed series
does not generally belong to £)., we tan perform its orthogonal projection onto
this linear space and take the result for the initial forecast data.
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We do not discuss here the general algorithmic problem of finding this near-
est subspace. Let us consider the simplest case r = 1 when the space £; is
spanned by a vector X = (z1,...,z.)T, and £, must be spanned by the vec-
torY, = (1,a,...,al=")T. Then the optimal a gives the maximum value for the
expression |(X, Y,)|/||X|| ]|Y.]| and can be obtained by simple calculations.

The optimal a being obtained, we must find the corresponding LRF, that is
the vector R (see formula (2.1) in Section 2.1). In the one-dimensional case this
problem is rather simple as well, since all the components of the formula (2.1) are
expressed in terms of the single vector P, = Y, /||Y,||.

Omitting the calculations we present the result for the case |a| # 1:

R = C(a)(1,aq,...,at"%)T (2.24)
with

at=1(a® - 1)
a?l-2 1

C(a) =

We can now apply the LRF so obtained to the appropriate initial data.

Evidently the one-dimensional case is convenient for the reduction of the extra-
neous polynomial roots; the LRF defined by (2.24) defines a characteristic poly-
nomial with a single main root A = a. Therefore, taking the last term of the recon-
structed series as the initial point and applying the recurrent formula f,, = af,_1,
we make the forecast based on both ideas: that of the nearest subspace and the
minimal LRFE.

2.4 Forecast confidence bounds

According to the main SSA forecasting assumptions, the component Fz(vl ) of the
series Fiy ought to be governed by an LRF of relatively small dimension, and the

residual series Fz(v2 ) = Fy — ,(\,1 ) ought to be approximately strongly separable
from FJ(\,1 ) for some window length L. In particular, F](\,1 ) is assumed to be a finite
subseries of an infinite series F(!), which is a recurrent continuation of F}(V1 ).
These assumptions cannot be ignored, but fortunately they hold for a wide class
of practical problems.

To establish confidence bounds for the forecast, we have to apply even stronger
assumptions, related not only to F(l), but to F](vz ) as well. First, let us consider
Fi? as a finite subseries of an infinite random noise series F(2) that perturbs the
signal F(!). The other assumptions can hardly be formulated in terms of FI(\,2 )
only; they mainly deal with the residual series f’}vz ) = Fy — f‘,(\,l ), where F}(\,l )
is the reconstructed component of Fiv. Since F‘](vl ) & Fz(vl ), the features of f’,(f )
are strongly related to those of FI(\,2 ). A more precise formulation of the additional
assumptions depends on the problem we are solving and the method that we are
applying.
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Here we consider the following two problems, related to construction of the
confidence bounds for the forecast. The first problem is to construct a confidence
interval for the entire series F' = F(!) 4+ F(?) at some future point in time N + M.
The second problem can be formulated as a construction of confidence bounds for
the signal F(1) at the same future point in time.

These two problems will be solved in different ways. The first uses the informa-
tion about the forecast errors obtained by processing the series. This variant can
be called the empirical one. The second requires additional information about the
model governing the series E(VZ ) to accomplish a bootstrap simulation of the series
Fn (see Efron and Tibshirani, 1986, Section 5, for general bootstrap concepts).

Let us briefly discuss both problems of constructing the confidence bounds for
the Basic SSA R-forecasting method. All other SSA forecasting procedures can
be treated analogously.

2.4.1 Empirical confidence intervals for the forecast of the initial series

Assume that we have already obtained the forecast value f}\}_),_ M—1» that is, we
have already performed M steps of the Basic SSA R-forecasting procedure. By
definition, we use f}\}l M1 as the forecast of the (future) term fl(\}lL M- Of the
signal F(U), As was already mentioned, our problem is to build up a confidence
interval for the (future) term fx 1 ps_; of the series F.

Let us consider the multistart M-step recurrent continuation procedure. We
take a relatively small integer M and apply M steps of recurrent continuation
produced by the forecasting LRF modifying the initial data from ( }1) yeres f}l_)z
to (f}l)_M,--.,f}vllM_l),'K =N-L+1.

The last points g;r41—1 of these continuations can be compared with the
values f;ar4r—1 of the initial series Fy. We thus obtain the multistart M -step
residual series Hy _ pr4 with

th) = fj+M+L-2 — gj+M+L—2, F=0,...,K — M.

Suppose for the moment that the reconstructed series 17’1(\,1 ) coincides with F](V1 )

and the forecasting LRF governs it. Then g;, = f,ﬁl) and the multistart M -step
residual series coincides with the last K — M + 1 terms of the stationary noise
series F,(\,2 ),

If these suppositions are not valid, then th) does not coincide with f](f)M +L_2"
Even so, let us assume that the multistart M-step residual series is stationary
and ergodic in the sense that its empirical cumulative distribution function (c.d.f.)
tends to the theoretical c.d.f. of the series as N — oo. Then, having the series
Hg _pm+1 at hand, we can estimate certain of its quantiles (for example, the up-
per and lower 2.5% ones).

Note that the terms g, a1 1 are obtained through the same number of steps

with the same LRF as the forecast value ﬂ#i Mm—1» and their initial data is taken
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from the same reconstructed series. Since forecasting requires the assumption
that the series structure is kept in the future, the obtained empirical c.d.f. of the
multistart M -step residual series can be used to construct the empirical confidence
interval for. fn 4 ar—1.

More formally, let us fix a confidence level v (0 < v < 1), and set o = 1—+.
Ifc, /2 and cI /2 stand for the lower and upper a/2-quantiles, calculated through
the empirical c.d.f. of the multistart M -step residual series, then we obtain the
empirical confidence interval

1
(fI(V-)}-M 1+ ¢ fN+M 1t ca/2)

which covers fy4p—1 With an approximate confidence level . Evidently, the
number K has to be sufficiently large for the empirical c.d.f. to be stable.

If the multistart M-step residual series can be regarded as white noise, then
the other variant of empirical confidence intervals is meaningful. Assuming the
Gaussian white noise hypothesis, the standard symmetrical confidence bounds of
Sn4m—1 can be constructed with the help of the sample average and the sam-
ple variance of the multistart M -step residual series. Of course, the white noise
hypothesis can be checked with the help of the standard statistical procedures.

2.4.2 Bootstrap confidence bounds for the forecast of a signal

Let us consider a method of constructing confidence bounds for the signal F(1) at
the moment of time N + M — 1. In the unrealistic situation, when we know both
the signal F' (1) and the true model of the noise FN , the Monte Carlo simu]ation
can be applied to check the statistical properties of the forecast value f NAM—_1
relative to the actual term f,(\}i M—1-

Indeed, assuming that the rules for the eigentriple selection are fixed, we can
simulate S independent copies FJ(Vz’ )1 of the process F(z) and apply the forecasting
procedure to S independent time series Fiy ; def F(l) + F(z) Then the forecasting
results will form a sampie f}\}i m—1; (1 <1 < 9), which should be compared
against f N+ M—1- In this way the Monte Carlo confidence bounds for the forecast
can be build up.

Since in practice we do not know the signal F(l), we cannot apply this pro-
cedure. Let us describe the bootstrap (for example, Efron and Tibshirani, 1986,
Section 5) variant of the simulation for constructing the confidence bounds for the
forecast.

Under a suitable choice of the window length L and the correspondmg eigen-
triples, we have the representation Fy = (1) + F(z) where FN (the recon-
structed series) approximates F and F ](\,2 ) is the residual series. Suppose now
that we have a (stochastic) model of the residuals }7’](\,2). (For instance, we can pos-




ST

exgac o

7

118 SSA FORECASTING

tulate some model for F(Q) and, since F(l) & F(l) apply the same model for
F(z) with the estimated parameters.)
Then, simulating S independent copies F¢ N ) of the series F{? ), we obtain S

series Iy ; def F,(\,1 + FI(\,2 )1 and produce S forecasting results 7o Nim—1, in the
same manner as in the Monte Carlo simulation variant. _
More precisely, any time series Fiv ; produces its own reconstructed series Ffvl')z
and its own forecasting linear recurrent formula LRF; for the same window length
L and the same set of the eigentriples. Starting at the last L — 1 terms of the series

FN we perform M steps of forecasting with the help of its LRF; to obtain

1
-E(V}}‘M 1,i°

As soon as the sample f Nemo,i (1SS ) of the forecasting results is ob-
tained, we can calculate its (empmcal) lower and upper quantiles of a fixed level
+ and obtain the corresponding confidence interval for the forecast. This interval
(called the bootstrap confidence interval) can be compared with the forecast value
f N+ M1 obtained from the initial forecasting procedure. A discrepancy between
this value and the obtained conﬁdence interval can be caused by the inaccuracy
of the stochastic model for FN .

The average of the bootstrap forecast sample (bootstrap average forecast) es-
timates the mean value of the forecast, while the mean square deviation of the
sample shows the accuracy of the estimate.

The simplest model for I":I(f ) is the model of Gaussian white noise. The cor-
responding hypothesis can be checked with the help of the standard tests for ran-
domness and normality.

i

2.4.3 Confidence intervals: comparison of forecasting variants

The aim of this section is to compare different SSA forecasting procedures using
several artificial series and Monte Carlo confidence intervals.

Let Fy = F 1(\,1 ) 4+ F,(f ), where FI(\,2 ) is Gaussian white noise with standard
deviation 0. Assume also that the signal Ffvl) admits a recurrent continuation. We
can and shall perform a forecast of the series FI(\,1 ) for M steps using different
variants of SSA forecasting and appropriate eigentriples associated with FI(\,1 ),

If the signal F,(\,l ) and its recurrent continuation are known, then we can apply
the Monte Carlo procedure described in the previous section to check the accuracy
of the forecasting results and compare different ways of forecasting.

To do that, we simulate a large number of independent copies F(z) of F(z),
)

i?

produce the time series Fiv ; = F,(\,1 )+ Ffvz and forecast their signal component

F( ) using the eigentriples of the same ordinal numbers as that for the initial series
FN Evidently this procedure is meaningful only if the choice of the eigentriples
is stable enough for different realizations of the white noise F(
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Monte Carlo forecast of the signal F,(\,1 ) is useful in at least two respects: its
average (called the Monte Carlo average forecast) shows the bias produced by the
corresponding forecasting procedure, while the upper and lower quantiles indicate
the role of the random component in the forecasting error.

Several effects will be illustrated with the help of this technique. First, we shall
compare some forecasting variants from the viewpoint of their accuracy. The sec-
ond matter to be demonstrated is the role of the proper window length. Lastly, we
compare different variants of the confidence intervals in forecasting.

Throughout all the examples, we use the following notation: N stands for the
length of the initial series, M is the number of forecasting steps, and o denotes
the standard deviation of the Gaussian white noise F( ). The confidence intervals
are obtained in terms of the 2.5% upper and lower quantlles of the corresponding
empirical c.d.f. using the sample size S = 1000.

(a) Periodic signal: recurrent and vector forecasting

Let N = 100, M = 100, o = 0.5. Let us consider a periodic signal F,(Vl) of the
form

M = sin(27n/17) + 0.5sin(27n/10).

The series F Y has difference dimension 4, and we use four leading eigentriples
for its forecasting under the choice L = 50. The initial series Fy = F Nl M4 F(z)
and the signal FN) (the thick line) are depicted in Fig. 2.3.
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Figure 2.3 Periodic signal and the initial series.

Let us apply the Monte Carlo simulation for the Basic SSA recurrent and vector
forecasting algorithms.
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Fig. 2.4 shows the confidence Monte Carlo intervals for both methods and
the true continuation of the signal F' 1(\,1 ) (thick line). Confidence intervals for R-
forecasting are marked by dots, while thin solid lines correspond to vector fore-
casting. We can see that these intervals practically coincide for relatively small
numbers of forecasting steps, while the vector method has an advantage in the
long-term forecasting.
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Figure 2.4 Periodic signal: confidence intervals for the recurrent and vector forecasts.
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Figure 2.5 Periodic signal: Basic Monte Carlo average R-forecast.

The bias in the Basic SSA R-forecast is demonstrated in Fig. 2.5, where the

thick line depicts the true continuation of the series F,(\,1 ) and the thin line corre-
sponds to the average of the Monte Carlo average R-forecast. We see that the bias
is sufficiently small.
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Note that the bias in the vector method almost coincides with that in the recur-
rent one. Therefore, the advantage of vector forecasting can be expressed mainly
in terms of its stability rather than in the bias. The bias in both methods is caused
by the nonlinear structure of the forecasting procedures.

(b) Periodic signai: Basic and Toeplitz recurrent forecasting

The same series with the same forecasting parameters serves as an example for
comparing the Basic and Toeplitz R-forecasting methods. As usual, we apply the
centring variant of the Toeplitz forecasting algorithm, though the results of the
comparison do not depend on this choice.
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Figure 2.6 Periodic signal: Toeplitz Monte Carlo average R-forecast.

Fig. 2.6 is analogous to Fig. 2.5 and shows the bias in Toeplitz R-forecasting.
In comparison with the Basic R-forecast, we see that the bias is rather large. The
explanation lies in the fact that in contrast to Basic SSA, the four leading eigen-
triples in the Toeplitz SSA decomposition of the signal F1(v1 ) do not describe the
entire signal; their share is approximately 99.8%. From the formal viewpoint, the
Toeplitz decomposition of the trajectory matrix is not the minimal one (see Sec-
tions 4.2.1 and 1.7.2).

Indeed, if we consider the signal F}\,l ) as the initial series and produce its
Toeplitz forecast with L = 50 and 4 leading eigentriples, then the result will
be very close to the Monte Carlo average forecast, presented in Fig. 2.6 (thin line,
the thick line depicts the continuation of the series FJ(\,1 )).

The situation with the confidence intervals is different, see Fig. 2.7. The Monte
Carlo confidence intervals for the Toeplitz forecast (depicted by thick lines) are
typically inside that for the Basic forecast (thin lines). This is not surprising since
the Toeplitz SSA gives more stable harmonic-like eigenvectors for stationary time
series.
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Figure 2.7 Periodic signal: confidence intervals for the Basic and Toeplitz R-forecasts.

Note that the confidence intervals for the Basic and Toeplitz forecasting algo-
rithms are shifted relative to each other due to a large bias in the Toeplitz method.
We conclude that Toeplitz forecasting proves to be less precise (on average), but
more stable.

(¢) Separability and forecasting
Consider the series FI(\,1 ) with
Y =3am + sin(27n/10), a =1.01,
and N = 100. This series is governed by an LRF of dimension 3.
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Figure 2.8 Separability and forecasting: the signal and the initial series.
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Taking ¢ = 1 and two window lengths L = 15 and L = 50, we consider Basic
SSA R-forecasting of the series Fy = F 1(\,1 )+ Fz(v2 ) for 90 steps. Our aim is to
compare the accuracy of these two variants of forecasting of the signal F,(\,1 ) with
the help of the Monte Carlo simulation. The first three eigentriples are chosen for

the reconstruction in both variants. The series Fy and the signal F,(\,1 ) (thick line)
are depicted in Fig. 2.8.
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Figure 2.9 Separability and forecasting: two confidence intervals.

160 163 166 169 172 175 178 181 184 187 190

Figure 2.10 Separability and forecasting: comparison of biases.

The influence of separability on forecasting in the absence of noise has already
been discussed (see Example 2.2 in Section 2.2). We now explain this influence
in statistical terms of bias and confidence intervals.
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Fig. 2.9 shows that the Monte Carlo forecasting confidence intervals for L = 15
(thin line marked with dots) are much wider than that for L = 50. This is not
surprising since the separability characteristics for L = 15 are: pg’;’) = 0.0083
and p(L-K) = 0.26, while for L = 50 we have p{%) = 0.0016 and p{L¥) = 0.08.

Note that both confidence intervals are almost symmetric with respect to the
true continuation of the signal (the thick line in Fig. 2.9). This means that in this
example the choice of the window length does not have a big influence on the
bias of the forecasts. Yet if we consider the last forecast points (Fig. 2.10), we
can see that the choice L = 50 is again better. Indeed, the Monte Carlo average
forecast for L = 15 (thin line, marked with dots) has a small but apparent phase
shift relative to the true continuation (thick line), while for the choice L = 50
(thin line) there is almost no phase shift.

(d) Confidence intervals of different kinds

According to the discussion at the beginning of this section, we can construct
three kinds of confidence interval for forecasting (see Section 2.4 for their detailed
description).

First, as we know the true form of both the signal F,(\,1 ) and the noise F' ,(\,2 ), we
can build the Monte Carlo confidence intervals, which can be considered to be the
true confidence intervals for the signal forecast.

Second, we can apply the bootstrap simulation for the same purpose. Here we
use the same Gaussian white noise assumption but calculate its variance in terms
of the residuals of the reconstruction.

Third, the empirical confidence bounds for the forecast of the entire series
Fy = F,(Vl) + F’I(\?) can be built as well.

The last two methods are more important in practice since neither F,(Vl) nor

FI(\,2 ) is usually known. Our aim is to compare three kinds of confidence bounds
by a simple example.

Consider the exponential series Fz(vl ) with f,(ll) =3a" a =1.01and N = 190.
As above, we assume that Fz(v2 ) is a realization of the Gaussian white noise and
take 0 = 1. Since we want to deal with the empirical confidence intervals, we
truncate the series at n = 160 and use the truncated series as the initial one. A
comparison of the confidence intervals is performed for 30 Basic SSA R-fore-
casting steps with L = 50. Since F,(\,1 Vis governed by an LRF of dimension 1, we
take one leading eigentriple for reconstruction and forecasting in all cases.

The series Fiv (thin oscillating line) is depicted in Fig. 2.11 together with its
reconstruction, the Basic SSA R-forecast (thick lines) and the corresponding em-
pirical intervals. The vertical line corresponds to the truncation point.

Figs. 2.12-2.14 show three variants of the confidence intervals on the back-
ground of the series F)v. Fig 2.12 represents the empirical intervals around the

forecast of the signal F,(\,1 ) (thick line). Since the empirical intervals are built for
the entire series F)y, it is not surprising that they cover the series values. Note
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Figure 2.11 Exponential signal: the initial series and forecast.

that the length of the empirical confidence intervals is almost constant due to the
homogeneity of the residuals used for their construction (see Section 2.4).
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Figure 2.12 Exponential signal: empirical confidence intervals.

The bootstrap confidence intervals are shown in Fig. 2.13, where the thick line
corresponds to the exponential signal F1(vl ). The intervals are shifted relative to
the signal (and they are symmetric relative to its forecast) because the bootstrap
simulation uses the reconstructed series, which differs from the signal itself. Note
that the empirical confidence intervals in Fig. 2.12 are also shifted relative to the

: (1)
signal Fy’.
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Figure 2.13 Exponential signal: bootstrap confidence intervals.

Lastly, the Monte Carlo confidence intervals are depicted in Fig. 2.14 together

with the signal F,(\,1 ) (thick line). In this case the intervals appear to be symmetric
-around the signal.
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Figure 2.14 Exponential signal: Monte Carlo confidence intervals.

Comparing the intervals, we can see that the lengths of the bootstrap and Monte
Carlo intervals are very similar and are smaller than those of the empirical inter-
vals. The latter is natural since the first two bound the signal and the third one
bounds the entire series.

One more difference is that the intervals obtained by simulation are enlarging
in time, while the empirical ones are rather stable. Thus, we can use the empirical
confidence intervals only for relatively short-term forecasting.
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2.5 Summary and recommendations

Let us summarize the material of the previous sections, taking as an example
the Basic SSA R-forecasting method. Other versions of SSA forecasting can be
described and commented on similarly.

1. Statement of the problem .
We have a series Fy = Ffvl ) 4 F](\,2 ) and have the problem of forecasting its
component Ffvl If F,(f ) can be regarded as noise, then the problem is that of
forecasting the signal F,(\,1 ) in the presence of a noise F,(\,2 ),

2. The main assumptions

o The series Fz(vl ) admits a recurrent continuation with the help of an LRF of
relatively small dimension d.

o There exists a number L such that the series Fz(vl ) and F}VQ ) are approxi-
mately strongly separable for the window length L. This is an important

assumption since any time series FJ(V) is an additive component of Fiy in

the sense that Fy = F,(\,1 ) +F,(\,2 ) with F,(V2 ) = Fy —-F,(\,1 ). The assumption of f*

(approximate) separability means that FI(\} ) is a natural additive component g',

of F from the viewpoint of the SSA method. .l,:‘,u

3. Proper choice of parameters " ‘f

Since we have to select the window length L providing a sufficient quality of sy

separability and to find the eigentriples corresponding to FJ(\,1 ), all the major S

rules of Basic SSA are applicable here. Note that in this case we must separate i
F,(\,1 ) from F?, but we do not need the decomposition of the entire series .

Fy=Fy +F{.
4. Specifics and dangers

The SSA forecasting problem has some specifics in comparison with the Basic
SSA reconstruction problem:

e Since the chosen window length L produces an LRF of dimension L — 1,
which is applied as a recurrent continuation formula, the problem of extra-
neous roots for its characteristic polynomial becomes important. The choice
L = d + 1 with d standing for the dimension of the minimal LRF, must be
optimal. Unfortunately, in practice, small values of L do not usually pro-
vide sufficient separability. As a result, one has to try to select the minimal
window length that is greater than d and provides reasonable separability.

e The linear space £, of dimension r determining the forecasting LRF is
spanned by the eigenvectors of the chosen eigentriples. Since the condition
r > d has to be fulfilled, the number of eigentriples selected as correspond-

ing to FI(\,1 ) has to be at least d.

o In Basic SSA, if we enlarge the set of proper eigentriples by some extra
eigentriples with small singular values, then the result of reconstruction will
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essentially be the same. When dealing with forecasting, such an operation
can produce large perturbations since the space £, will be perturbed a lot;
its dimension will be enlarged, and therefore the LRF governing the forecast
will be modified. (Note that the magnitude of the extra singular values is not
important in this case.) Hence, the eigentriples describing FI(\,1 ) have to be
determined very carefully.

5. Characteristics of forecasting
Let us mention several characteristics that might be helpful in judging the fore-
casting quality.

o Separability characteristics. All the separability characteristics considered
in detail in Section 1.5 are of importance for forecasting.

* Polynomial roots. The roots of the characteristic polynomial of the forecast-
ing LRF can give insight into the behaviour of the forecast. These polyno-
mial roots can be useful in answering the following two questions:

(a) We expect that the forecast has some particular form (for example, we
expect it to be increasing). Do the polynomial roots describe such a pos-
sibility? For instance, an exponential growth has to be indicated by a
single real root (slightly) greater than 1; if we try to forecast the annual
seasonality, then pairs of complex roots with frequencies ~ k/12 have
to exist, and so on.

(b) Is it possible to obtain a hazard inconsistent forecast? In terms of the
polynomial roots, each extraneous root increases such a possibility. Even
so, if the modulus of the root is essentially less than 1, then a slight per-
turbation of the proper initial data should not produce large long-term
errors. Since the polynomial roots with moduli greater than 1 correspond
to the series components with increasing envelopes (see Section 2.2.1),
large extraneous roots may cause problems even in short-term forecast-
ing.

o Verticality coefficient. The verticality coefficient v2 is the squared cosine of
the angle between the space £, and the vector e;. The condition 12 < 1
is necessary for forecasting. If 12 is close to 1, then, in view of (2.1), the
coefficients of the forecasting LRF will be large and therefore some roots
of the characteristic polynomial will have large modauli too. If the expected
behaviour of the forecast does not suggest a rapid increase or decrease,
then a large value of the verticality coefficient indicates a possible difficulty
with the forecast. This typically means that extra eigentriples are taken to

describe Fz(vl ) (alternatively, the approach in general is inappropriate).

6. The role of the initial data
Apart from the number M of forecast steps, the formal parameters of the Ba-
sic SSA R-forecasting algorithm are the window length L and the set I of
eigentriples describing F,(Vl). These parameters determine both the forecasting
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LRF (2.1) and the initial data for the forecast. Evidently, the forecasting re-
sult essentially depends on this data, especially when the forecasting LRF has
extraneous roots.

The SSA R-forecasting method uses the last terms f}\,l)_ Lyls--o f}vl)_l of the

reconstructed series 1'51(\,1 ) as the initial forecasting data. Due to the properties of

diagonal averaging, the last (and the first) terms of the series FI(\,l ) are usually
reconstructed with a poorer precision than the middle ones. This effect may
cause essential forecast errors.

For example, any linear (and nonconstant) series f, = an + b is governed by
the minimal LRF f, = 2f,_1 — fn—2, which does not depend on a and b.
The parameters a and b used in the forecast are completely determined by the
initial data f, and f;. Evidently, errors in this data may essentially modify the
behaviour of the forecast (for example, change a tendency to increase into a
tendency to decrease).

Thus, it is important to check the last points of the reconstructed series (for
example, to compare them with the expected future behaviour of the series
FP).
7. Reconstructed series and LRFs
In the situation of strong separability of F,(\,l ) and F1(s12 ) and proper eigentriple
selection, the reconstructed series is governed by the LRF which completely
corresponds to the series Fz(vl ), Discrepancies in such a correspondence indi-
cate possible errors: insufficient separability (which can be caused by the bad
quality of the forecasting parameters) or general inefficiency of the model. Two
-characteristics of the correspondence may be useful here.

¢ Global discrepancies. Rather than using an LRF for forecasting, we can use
it for approximation of either the whole reconstructed series or its subseries.
For instance, if we take the first terms of the reconstructed series as the
initial data (instead of the last ones) and make N — L + 1 steps of the
procedure, we can check whether the reconstructed series can be globally
approximated with the help of the LRE .

Evidently, we can use another part of the reconstructed series as the initial
data while taking into consideration the poor quality of its first terms or
possible heterogeneity of the dynamics of the series FI(VI ),

e Local discrepancies. The procedure above corresponds to long-term fore-

casting. To check the short-term correspondence of the reconstructed series
and the forecasting LRF, one can apply a slightly different method.
This method is used in Section 2.4.1 to construct empirical confidence in-
tervals and is called the multistart recurrent continuation. According to it,
for a relatively small ¢ we perform () steps of the multistart recurrent
continuation procedure, modifying the initial data from (f((,l), ceey f}‘l_)l

to (j}(l)_Q, ey J?I(\})_Q), K = N — L + 1. The continuation is computed




